Relativistic motion equation solver

Vojtěch Horný

February 21, 2016

Task Investigate an relativistic motion of charged particle in the presence of electromagnetic field using numerical simulation!

Physics The motion of the particle which has the mass m and charge q in the simultaneous presence of the electric field **E** and magnetic field **B** is described by set of first order differential motion equations with Lorentz force on the right side

$$\frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B}),\tag{1}$$

where \mathbf{v} is a velocity of the particle,

$$\mathbf{p} = \gamma m \mathbf{v} \tag{2}$$

its momentum and $\gamma = 1/\sqrt{1 - \mathbf{v}^2/c^2}$ is Lorentz factor. This vector equation can be understood as the set of three scalar equations

$$\frac{\mathrm{d}p_x}{\mathrm{d}t} = q(E_x + v_y B_z - v_z B_y),\tag{3}$$

$$\frac{\mathrm{d}p_y}{\mathrm{d}t} = q(E_y + v_z B_x - v_x B_z),\tag{4}$$

$$\frac{\mathrm{d}p_x}{\mathrm{d}t} = q(E_z + v_x B_y - v_y B_x). \tag{5}$$

Since the expression of $\frac{d\mathbf{p}}{dt}$ is not simple because of the dependence $\gamma = \gamma(\mathbf{v})$, it is useful to introduce energy of particle

$$\mathcal{E} = \sqrt{m^2 c^4 + \mathbf{p}^2 c^2} = \gamma m c^2. \tag{6}$$

The Lorentz factor γ can be expressed from the equation (6) as

$$\gamma = \frac{\sqrt{m^2 c^4 + \mathbf{p}^2 c^2}}{mc^2} \tag{7}$$

and combining with the equation (2) the particle velocity can be expressed as

$$\mathbf{v} = \frac{\mathbf{p}c^2}{\sqrt{m^2c^4 + \mathbf{p}^2c^2}}.$$
(8)

Implementation The evolution of particle's trajectory and momentum should be investigated. Set of six differential equations will be integrated, particularly

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{p_x c^2}{\sqrt{m^2 c^4 + (p_x^2 + p_y^2 + p_z^2)c^2}},\tag{9}$$

$$\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{p_y c^2}{\sqrt{m^2 c^4 + (p_x^2 + p_y^2 + p_z^2)c^2}},\tag{10}$$

$$\frac{\mathrm{d}z}{\mathrm{d}t} = \frac{p_z c^2}{\sqrt{m^2 c^4 + (p_x^2 + p_y^2 + p_z^2)c^2}},\tag{11}$$

$$\frac{\mathrm{d}p_x}{\mathrm{d}t} = q \left(E_x + \frac{p_y c^2}{\sqrt{m^2 c^4 + (p_x^2 + p_y^2 + p_z^2)c^2}} B_z - \frac{p_z c^2}{\sqrt{m^2 c^4 + (p_x^2 + p_y^2 + p_z^2)c^2}} B_y \right), \quad (12)$$

$$\frac{\mathrm{d}p_y}{\mathrm{d}t} = q \left(E_y + \frac{p_z c^2}{\sqrt{m^2 c^4 + (p_x^2 + p_y^2 + p_z^2)c^2}} B_x - \frac{p_x c^2}{\sqrt{m^2 c^4 + (p_x^2 + p_y^2 + p_z^2)c^2}} B_z \right), \quad (13)$$

$$\frac{\mathrm{d}p_z}{\mathrm{d}t} = q \left(E_z + \frac{p_x c^2}{\sqrt{m^2 c^4 + (p_x^2 + p_y^2 + p_z^2)c^2}} B_y - \frac{p_y c^2}{\sqrt{m^2 c^4 + (p_x^2 + p_y^2 + p_z^2)c^2}} B_x \right).$$
(14)

Six initial conditions

$$x(0) = x_0 y(0) = y_0 z(0) = z_0$$

$$p_x(0) = p_{x0} p_y(0) = p_{y0} p_z(0) = p_{z0}$$

together with the information about time evolution of electromagnetic field

$$\mathbf{E} = \mathbf{E}(t) \qquad \qquad \mathbf{B} = \mathbf{B}(t)$$

need to be known for successful integration of those equations.

This set of equations can be understood as a vector equation

$$\frac{\mathrm{d}\mathbf{Y}}{\mathrm{d}t} = \mathbf{f}(t, \mathbf{Y}) \tag{15}$$

$$\mathbf{Y}(0) = \mathbf{Y}_{\mathbf{0}}, \tag{16}$$

where

$$\mathbf{Y} = \begin{pmatrix} x \\ y \\ z \\ p_x \\ p_y \\ p_z \end{pmatrix}.$$

This vector equation can be solved e.g. using single step 4th order Runge-Kutta scheme

$$\mathbf{k_1} = \mathbf{f}(t_n, \mathbf{Y}_n) \tag{17}$$

$$\mathbf{k_2} = \mathbf{f}\left(t_n + \frac{h}{2}, \mathbf{Y}_n + \frac{h}{2}\mathbf{k_1}\right)$$
(18)

$$\mathbf{k_3} = \mathbf{f}\left(t_n + \frac{h}{2}, \mathbf{Y}_n + \frac{h}{2}\mathbf{k_2}\right)$$
(19)

$$\mathbf{k_4} = \mathbf{f} \left(t_n + h, \mathbf{Y}_n + h \mathbf{k_3} \right)$$
(20)

$$\mathbf{Y}_{n+1} = \mathbf{Y}_n + \frac{\hbar}{6} \left(\mathbf{k_1} + 2\mathbf{k_2} + 2\mathbf{k_3} + \mathbf{k_4} \right).$$
 (21)

Reduction into 2D case Let us consider 2D case, when $B_x = 0$, $B_y = 0$ and $E_z = 0$. When particle's momentum in z direction is equal to zero as well, particle stay in in the same plane whole time. Hence, set of only four ordinary differential equations need to be integrated, in particular

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{p_x c^2}{\sqrt{m^2 c^4 + (p_x^2 + p_y^2)c^2}},\tag{22}$$

$$\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{p_y c^2}{\sqrt{m^2 c^4 + (p_x^2 + p_y^2)c^2}},\tag{23}$$

$$\frac{\mathrm{d}p_x}{\mathrm{d}t} = q \left(E_x + \frac{p_y c^2}{\sqrt{m^2 c^4 + (p_x^2 + p_y^2)c^2}} B_z \right), \qquad (24)$$

$$\frac{\mathrm{d}p_y}{\mathrm{d}t} = q \left(E_y - \frac{p_x c^2}{\sqrt{m^2 c^4 + (p_x^2 + p_y^2)c^2}} B_z \right).$$
(25)

Examples of interesting configurations

- Static field, 2D case, $E_x = -200$ V/m, $E_y = 200$ V/m, $B_z = 0.09$ T, $x_0 = 0$, $y_0 = 0$, $p_x = 10^{-24}$ kg·m·s⁻¹, $p_y = 0$.
- Same configuration with oscillating magnetic field, 2D case, $B_z(t) = \frac{B_{z0}}{2} \sin\left(\frac{1.2t\pi}{T}\right)$, $B_{z0} = 0.09$ T, T = 600 ps.
- $B_z(t) = \frac{B_{z0}}{2} \sin\left(\frac{2.5t\pi}{T}\right)$
- $B_z(t) = \frac{B_{z0}}{2} \sin\left(\frac{14.5t\pi}{T}\right)$
- Figure out something interesting yourself and tell me!

Bonus task Implement some multistep method!