CHAPTER 8 Atomic Physics

- 8.1 Atomic Structure and the Periodic Table
- 8.2 Total Angular Momentum
- 8.3 Anomalous Zeeman Effect

What distinguished Mendeleev was not only genius, but a passion for the elements. They became his personal friends; he knew every quirk and detail of their behavior.

- J. Bronowski

8.1: Atomic Structure and the Periodic Table

- What would happen if there are *more than one electron*?
 - \rightarrow a nucleus with charge +2e attracting two electrons.
 - \longrightarrow the two electrons repelling one another.

Can not solve problems exactly with the Schrödinger equation because of the complex potential interactions.

Can understand experimental results without computing the wave functions of many-electron atoms by applying the boundary conditions and selection rules.

Pauli Exclusion Principle

To understand atomic spectroscopic data for optical frequencies, Pauli proposed an exclusion principle:

No two electrons in an atom may have the same set of quantum numbers $(n, \ell, m_{\ell}, m_{s})$.

It applies to all particles of half-integer spin, which are called fermions, and particles in the nucleus are fermions.

The periodic table can be understood by two rules:

- 1) The electrons in an atom tend to occupy the lowest energy levels available to them.
- 2) Pauli exclusion principle.

Atomic Structure

Hydrogen: $(n, \ell, m_{\ell}, m_{s}) = (1, 0, 0, \pm \frac{1}{2})$ in ground state.

In the absence of a magnetic field, the state $m_s = \frac{1}{2}$ is degenerate with the $m_s = -\frac{1}{2}$ state.

Helium: $(1, 0, 0, \frac{1}{2})$ for the first electron.

 $(1, 0, 0, -\frac{1}{2})$ for the second electron.

- Electrons have antialigned ($m_s = +\frac{1}{2}$ and $m_s = -\frac{1}{2}$) spins as being paired.
 Supports Pauli exclusion principle.
- The principle quantum number also has letter codes.

• n = 1 2 3 4... • Letter = K L M N... Electrons for H and He atoms are in the K shell. H: 1s² He: 1s¹ or 1s

n = shells (eg: K shell, L shell, etc.)
 *n*ℓ = subshells (eg: 1s, 2p, 3d)

► 4s fills before 3*d*.

Periodic Table of Elements

Actinides

Th

 $6d^2 7s^2$

Pa

5f2 6d1

U

5f 3 6d

Pu

y 782

Np

 $5f^{-1} 6d$

Cm

 $5f^{2} - 6d^{3}$

Am

 $5f^2 7s^2$

Bk

5f" 6d

75

Cf

 $M^{10} 7s^2$

Es

Md

78

Fm

Lr

5/11 6d

No

5/14 752

Groups and Periods

Groups:

- Vertical columns.
- Same number of electrons in an l orbit.
- Can form similar chemical bonds.

Periods:

- Horizontal rows.
- Correspond to filling of the subshells.

Inert Gases:

- Last group of the periodic table
- Closed p subshell except helium
- Zero net spin and large ionization energy
- Their atoms interact weakly with each other

Alkalis:

- Single s electron outside an inner core
- Easily form positive ions with a charge +1e
- Lowest ionization energies
- Electrical conductivity is relatively good

Alkaline Earths:

- Two s electrons in outer subshell
- Largest atomic radii
- High electrical conductivity

Halogens:

- Need one more electron to fill outermost subshell
- Form strong ionic bonds with the alkalis
- More stable configurations occur as the p subshell is filled

Transition Metals:

- Three rows of elements in which the 3*d*, 4*d*, and 5*d* are being filled
- Properties primarily determined by the s electrons, rather than by the d subshell being filled
- Have *d*-shell electrons with unpaired spins
- As the d subshell is filled, the magnetic moments, and the tendency for neighboring atoms to align spins are reduced

Lanthanides (rare earths):

- Have the outside 6s² subshell completed
- As occurs in the 3d subshell, the electrons in the 4f subshell have unpaired electrons that align themselves
- The large orbital angular momentum contributes to the large ferromagnetic effects

Actinides:

- Inner subshells are being filled while the $7s^2$ subshell is complete
- Difficult to obtain chemical data because they are all radioactive
- Have longer half-lives

If *j* and *m_j* are quantum numbers for the single electron (hydrogen atom). $J = \sqrt{j(j+1)\hbar}$

$$J_z = m_j \hbar$$

Quantization of the magnitudes.

$$L = \sqrt{\ell(\ell+1)}\hbar$$
$$S = \sqrt{s(s+1)}\hbar$$
$$J = \sqrt{j(j+1)}\hbar$$

The total angular momentum quantum number for the single electron can only have the values

$$j = \ell \pm s$$

Spin-Orbit Coupling

- An effect of the spins of the electron and the orbital angular momentum interaction is called **spin-orbit coupling**.
 - The dipole potential energy $V_{s\ell} = -\vec{\mu}_s \cdot \vec{B}_{internal}$
 - The spin magnetic moment $\propto -\vec{S}$
 - $\vec{B}_{\text{internal}} \propto \vec{L}_{\perp}$
- $\vec{B}_{internal}$ is the magnetic field due to the proton.

$$Vs \ \ell \sim \vec{S} \times \vec{L} = SL \cos \alpha$$

where $\cos \alpha$ is the angle between \vec{S} and \vec{L} .

No external magnetic field:

Only J_z can be known because the uncertainty principle forbids J_x or J_y from being known at the same time as J_z.

14

With an internal magnetic field:

• \vec{J} will precess about \vec{B}_{ext} .

- Now the selection rules for a single-electron atom become
 - $\Box \quad \Delta n = \text{anything} \qquad \Delta \ell = \pm 1$
 - $\Delta mj = 0, \pm 1 \qquad \Delta j = 0, \pm 1$
- Hydrogen energy-level diagram for n = 2 and n = 3 with the spinorbit splitting.

Many-Electron Atoms

Hund's rules:

- 1) The total spin angular momentum *S* should be maximized to the extent possible without violating the Pauli exclusion principle.
- 2) Insofar as rule 1 is not violated, *L* should also be maximized.
- 3) For atoms having subshells less than half full, *J* should be minimized.
- For labeled two-electron atom

$$\vec{J} = \vec{L}_1 + \vec{L}_2 + \vec{S}_1 + \vec{S}_2$$

There are LS coupling and jj coupling to combine four angular momenta J.

This is used for most atoms when the magnetic field is weak.

$$\vec{L} = \vec{L}_1 + \vec{L}_2$$

$$\vec{S} = \vec{S}_1 + \vec{S}_2 \longrightarrow \vec{J} = \vec{L} + \vec{S}$$

- If two electrons are single subshell, S = 0 or 1 depending on whether the spins are antiparallel or parallel.
- For given L, there are 2S + 1 values of J.
- For L > S, J goes from L S to L + S.
- For L < S, there are fewer than 2S + 1 possible J values.
- The value of 2S + 1 is the multiplicity of the state.

The notation for a single-electron atom becomes

 $n^{2S+1} L_{J}$

- The letters and numbers are called spectroscopic symbols.
- There are **singlet** states (S = 0) and **triplet** states (S = 1) for two electrons.

There are separated energy levels according to whether they are S = 0 or 1.

- Allowed transitions must have $\Delta S = 0$.
- No allowed (forbidden) transitions are possible between singlet and triplet states with much lower probability.

- The allowed transitions for the LS coupling scheme are
 - $\Box \quad \Delta L = \pm 1 \qquad \Delta S = 0$
 - $\Box \quad \Delta J = 0, \pm 1 \qquad (J = 0 \rightarrow J = 0 \text{ is forbidden})$
- A magnesium atom excited to the 3s3p triplet state has no lower triplet state to which it can decay.
- It is called metastable, because it lives for such a long time on the atomic scale.

jj Coupling

It is for the heavier elements, where the nuclear charge causes the spin-orbit interactions to be as strong as the force between the individual \vec{S}_i and \vec{L}_i

$$\vec{J}_1 = \vec{L}_1 + \vec{S}_1$$
$$\vec{J}_2 = \vec{L}_2 + \vec{S}_2$$
$$\vec{J} = \sum_i \vec{J}_i$$

8.3: Anomalous Zeeman Effect

- More than three closely spaced optical lines were observed.
- The interaction that splits the energy levels in an external magnetic field \vec{B}_{ext} is caused by $\vec{\mu} \cdot \vec{B}$ interaction.

- The 2J + 1 degeneracy for a given total angular momentum state J is removed by the effect of the \vec{B}_{ext} .
- If the \vec{B}_{ext} is small compared to internal magnetic field, then \vec{L} and \vec{S} precess about \vec{J} while \vec{J} precesses *slowly* about \vec{B}_{ext} .

Anomalous Zeeman Effect

The total magnetic moment is

$$\vec{\mu} = \vec{\mu}_{\ell} + \vec{\mu}_{s} = -\frac{e}{2m}\vec{L} - \frac{e}{m}\vec{S} = -\frac{e}{2m}(\vec{J} + \vec{S})$$
Whole system precesses slowly around \vec{B}_{ext} \vec{B}_{ext} $\vec{f}_{ast around \vec{J}}$

$$V = \frac{e\hbar B_{ext}}{2m}gm_{J} = \mu_{B}B_{ext}gm_{J}$$

$$\mu_{B} \text{ is the Bohr magneton and}$$

$$\vec{L} = \frac{\vec{J} + \vec{S}}{\vec{J} + \vec{S}}$$

$$g = 1 + \frac{J(J+1) + S(S+1) - L(L+1)}{2J(J+1)}$$
it is called the Landé g factor.

- The magnetic total angular momentum numbers m_j from -J to J in integral steps.
- \vec{B}_{ext} splits each state J into 2J + 1 equally spaced levels separated $\Delta E = V$.
- For photon transitions between energy levels $\Delta m_J = \pm 1$, 0 but $m_{J_1} = 0 \rightarrow m_{J_2} = 0$ is forbidden when $\Delta J = 0$.