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CHAPTER 7
The Hydrogen AtomThe Hydrogen Atom

The atom of modern physics can be symbolized only through a partial 
differential equation in an abstract space of many dimensions. All its qualities 
are inferential; no material properties can be directly attributed to it. An 
understanding of the atomic world in that primary sensuous fashion…is 
impossible.

- Werner Heisenberg
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7.1: Application of the Schrödinger 
Equation to the Hydrogen Atom
 The approximation of the potential energy of the electron-proton 

system is electrostatic: 

 Rewrite the three-dimensional time-independent Schrödinger 
Equation.

For Hydrogen-like atoms (He+ or Li++)
 Replace e2 with Ze2 (Z is the atomic number).
 Use appropriate reduced mass μ.
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Application of the Schrödinger Equation
 The potential (central force) V(r) depends on the distance r 

between the proton and electron.

Transform to spherical polar 
coordinates because of the 
radial symmetry.

Insert the Coulomb potential 
into the transformed 
Schrödinger equation.



4

Application of the Schrödinger Equation

 The wave function ψ is a function of r, θ,   .

Equation is separable.

Solution may be a product of three functions.

 We can separate Equation 7.3 into three separate differential 
equations, each depending on one coordinate: r, θ, or    .

Equation 7.3
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7.2: Solution of the Schrödinger Equation 
for Hydrogen
 Substitute Eq (7.4) into Eq (7.3) and separate the resulting 

equation into three equations: R(r), f(θ), and g(   ).

Separation of Variables
 The derivatives from Eq (7.4) 

 Substitute them into Eq (7.3)

 Multiply both sides of Eq (7.6) by r2 sin2 θ / Rfg
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Solution of the Schrödinger Equation

 Only r and θ appear on the left side and only     appears on the right 
side of Eq (7.7)

 The left side of the equation cannot change as     changes.
 The right side cannot change with either r or θ.

 Each side needs to be equal to a constant for the equation to be true.

Set the constant −mℓ
2 equal to the right side of Eq (7.7) 

 It is convenient to choose a solution to be        .

-------- azimuthal equation
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Solution of the Schrödinger Equation

   satisfies Eq (7.8) for any value of mℓ.

 The solution be single valued in order to have a valid solution for 
any    , which is

 mℓ to be zero or an integer (positive or negative) for this to be 
true.

 If Eq (7.8) were positive, the solution would not be realized.

 Set the left side of Eq (7.7) equal to −mℓ
2 and rearrange it. 

 Everything depends on r on the left side and θ on the right side of 
the equation.
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Solution of the Schrödinger Equation

 Set each side of Eq (7.9) equal to constant ℓ(ℓ + 1).

 Schrödinger equation has been separated into three ordinary 
second-order differential equations [Eq (7.8), (7.10), and (7.11)], 
each containing only one variable.

----Radial equation

----Angular equation
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Solution of the Radial Equation

 The radial equation is called the associated Laguerre equation 
and the solutions R that satisfy the appropriate boundary 
conditions are called associated Laguerre functions.

 Assume the ground state has ℓ = 0 and this requires mℓ = 0.

Eq (7.10) becomes

 The derivative of          yields two terms. 

Write those terms and insert Eq (7.1)
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Solution of the Radial Equation
 Try a solution

A is a normalized constant.
a0 is a constant with the dimension of length.
Take derivatives of R and insert them into Eq (7.13).

 To satisfy Eq (7.14) for any r is for each of the two expressions in 
parentheses to be zero.
Set the second parentheses equal to zero and solve for a0.

Set the first parentheses equal to zero and solve for E.

Both equal to the Bohr result.
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Quantum Numbers

 The appropriate boundary conditions to Eq (7.10) and (7.11) 
leads to the following restrictions on the quantum numbers ℓ 
and mℓ:
 ℓ = 0, 1, 2, 3, . . .
 mℓ = −ℓ, −ℓ + 1, . . . , −2, −1, 0, 1, 2, . ℓ . , ℓ − 1, ℓ

 |mℓ| ≤ ℓ and ℓ < 0.

 The predicted energy level is
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Hydrogen Atom Radial Wave Functions
 First few radial wave functions Rnℓ

 Subscripts on R specify the values of n and ℓ.
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Solution of the Angular and Azimuthal 
Equations
 The solutions for Eq (7.8) are  .
 Solutions to the angular and azimuthal equations are linked 

because both have mℓ.

 Group these solutions together into functions.

---- spherical harmonics
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Normalized Spherical Harmonics
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Solution of the Angular and Azimuthal 
Equations

 The radial wave function R and the spherical harmonics Y 
determine the probability density for the various quantum 
states. The total wave function   depends on n, ℓ, 
and mℓ. The wave function becomes
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7.3: Quantum Numbers

The three quantum numbers:
 n Principal quantum number
 ℓ Orbital angular momentum quantum number
 mℓ Magnetic quantum number

The boundary conditions:
 n = 1, 2, 3, 4, . . . Integer
 ℓ = 0, 1, 2, 3, . . . , n − 1 Integer
 mℓ = −ℓ, −ℓ + 1, . . . , 0, 1, . . . , ℓ − 1, ℓ Integer

The restrictions for quantum numbers:
 n > 0
 ℓ < n
 |mℓ| ≤ ℓ
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Principal Quantum Number n

 It results from the solution of R(r) in Eq (7.4) because R(r) includes 
the potential energy V(r).

The result for this quantized energy is

 The negative means the energy E indicates that the electron and 
proton are bound together.
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Orbital Angular Momentum Quantum 
Number ℓ
 It is associated with the R(r) and f(θ) parts of the wave function. 

 Classically, the orbital angular momentum  with L = mvorbitalr. 

 ℓ is related to L by          .

 In an ℓ = 0 state,     .

It disagrees with Bohr’s semiclassical “planetary” model of 
electrons orbiting a nucleus L = nħ.
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Orbital Angular Momentum Quantum 
Number ℓ

 A certain energy level is degenerate with respect to ℓ when the 
energy is independent of ℓ.

 Use letter names for the various ℓ values.
 ℓ = 0 1 2 3 4 5 . . .
 Letter = s p d f g h . . .

 Atomic states are referred to by their n and ℓ.
 A state with n = 2 and ℓ = 1 is called a 2p state.
 The boundary conditions require n > ℓ.
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 The relationship of L, Lz, ℓ, and 
mℓ for ℓ = 2.

            is fixed 
because Lz is quantized.

 Only certain orientations of     
are possible and this is called 
space quantization.  

Magnetic Quantum Number mℓ    
 The angle    is a measure of the rotation about the z axis.
 The solution for   specifies that mℓ is an integer and related to 

the z component of L.
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Magnetic Quantum Number mℓ

 Quantum mechanics allows     to be quantized along only one 
direction in space. Because of the relation L2 = Lx

2 + Ly
2 + Lz

2 the 
knowledge of a second component would imply a knowledge of the 
third component because we know    .

 We expect the average of the angular momentum components 
squared to be            .
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 The Dutch physicist Pieter Zeeman showed the spectral lines 
emitted by atoms in a magnetic field split into multiple energy 
levels. It is called the Zeeman effect.

Anomalous Zeeman effect:
 A spectral line is split into three lines.
 Consider the atom to behave like a small magnet.
 Think of an electron as an orbiting circular current loop of I = dq / dt 

around the nucleus.
 The current loop has a magnetic moment μ = IA and the period T = 

2πr / v.
  where L = mvr is the magnitude of the orbital 

angular momentum.

7.4: Magnetic Effects on Atomic Spectra—The 
Normal Zeeman Effect
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 The angular momentum is aligned with the magnetic moment, and 
the torque between     and     causes a precession of     .

Where μB = eħ / 2m is called a Bohr magneton.

     cannot align exactly in the z direction and 
has only certain allowed quantized orientations.

 Since there is no magnetic field to 
align them,     point in random 
directions. The dipole has a 
potential energy

The Normal Zeeman Effect
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The Normal Zeeman Effect

 The potential energy is quantized due to the magnetic quantum 
number mℓ.

 When a magnetic field is applied, the 2p level of atomic hydrogen 
is split into three different energy states with energy difference of 
ΔE = μBB Δmℓ.

mℓ Energy

1 E0 + μBB

0 E0

−1 E0 − μBB
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The Normal Zeeman Effect

 A transition from 2p to 1s.
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 An atomic beam of particles in the ℓ = 1 state pass through a magnetic 
field along the z direction.

  

  

 The mℓ = +1 state will be deflected down, the mℓ = −1 state up, and the 
mℓ = 0 state will be undeflected.

 If the space quantization were due to the magnetic quantum number 
mℓ, mℓ states is always odd (2ℓ + 1) and should have produced an odd 
number of lines.

The Normal Zeeman Effect
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7.5: Intrinsic Spin

 Samuel Goudsmit and George Uhlenbeck in Holland proposed that 
the electron must have an intrinsic angular momentum and 
therefore a magnetic moment.

 Paul Ehrenfest showed that the surface of the spinning electron 
should be moving faster than the speed of light!

 In order to explain experimental data, Goudsmit and Uhlenbeck 
proposed that the electron must have an intrinsic spin quantum 
number s = ½.
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Intrinsic Spin
 The spinning electron reacts similarly to the orbiting electron in a 

magnetic field.
 We should try to find L, Lz, ℓ, and mℓ. 

 The magnetic spin quantum number ms has only two values, 
ms = ±½.

The electron’s spin will be either “up” or 
“down” and can never be spinning with its 
magnetic moment μs exactly along the z axis.

The intrinsic spin angular momentum 

vector  .
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Intrinsic Spin
 The magnetic moment is          .
 The coefficient of     is −2μB as with     is a consequence of theory 

of relativity.

 The gyromagnetic ratio (ℓ or s).
 gℓ = 1 and gs = 2, then

 The z component of                               .
 In ℓ = 0 state

 Apply mℓ and the potential energy becomes

no splitting due to     .

there is space quantization due to the 
intrinsic spin.

and
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7.6: Energy Levels and Electron Probabilities
 For hydrogen, the energy level depends on the principle quantum 

number n.

 In ground state an atom cannot emit 
radiation. It can absorb 
electromagnetic radiation, or gain 
energy through inelastic 
bombardment by particles.
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Selection Rules

 We can use the wave functions to calculate transition 
probabilities for the electron to change from one state to another.

Allowed transitions:
 Electrons absorbing or emitting photons to change states when 

Δℓ = ±1.

Forbidden transitions:
 Other transitions possible but occur with much smaller 

probabilities when Δℓ ≠ ±1.  
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Probability Distribution Functions

 We must use wave functions to calculate the probability 
distributions of the electrons.

 The “position” of the electron is spread over space and is not 
well defined.

 We may use the radial wave function R(r) to calculate radial 
probability distributions of the electron.

 The probability of finding the electron in a differential volume 
element dτ is           .
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Probability Distribution Functions

 The differential volume element in spherical polar coordinates is

Therefore,

 We are only interested in the radial dependence.

 The radial probability density is P(r) = r2|R(r)|2 and it depends only 
on n and l.
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 R(r) and P(r) for the 
lowest-lying states of 
the hydrogen atom.

Probability Distribution Functions
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Probability Distribution Functions

 The probability density for the hydrogen atom for three different 
electron states.
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