Lineární algebra, základní operace s poli

A = [1 2 3; 4 5 6
7 8 0]

b = [366; 804; 351]
det(A)
x = inv(A) * b
x = A\b
A.', d = eig(A), [V, D] = eig(A), [L, U] = lu(A), [Q, R] = qr(A), rank(A)

A = [1 2 3; 4 5 6; 7 8 9]
A(3,3) = 0
A(2,6) = 1
A = [1 2 3; 4 5 6; 7 8 9]
B = A(3:-1:1, 1:3)
B = A(3:-1:1, :)
C = [A B(:,[1 3])]
B = A(1:2,2:3)
C = [1 3]
B = A(C, C)
B = A(:)
B = B.'
B = A
B(:,2) = [2]
B = B.'
B(2,:) = []
A(2,:) = B
B = A(:, [2 2 2 2])
A(2,2)
B = A(4,:)
B(1:2,:) = A
B(3:4,:) = A(2:3,:)
C(1:6) = A(:,2:3)
x = -3:3
abs(x) > 1
y = x(abs(x) > 1)
y = x([1 1 1 1 0 0 0])
y = x([1 1 1 1])
y = x([1 0 1 0])
x(abs(x) > 1) = []
b = [5 -3; 2 -4]
x = abs(b) > 2
y = b(abs(b) >2)
x = -3:3
k = find(abs(x) > 1)
y = x(k)
A = [1 2 3; 4 5 6; 7 8 9];
[i, j] = find(A>5)
A = [1 2 3 4; 5 6 7 8]
B = pi:0.01:2*pi;
s = size(A)
[r c] = size(A)
length(A)
size(B)
length(B)
size([])
flipud(A), fliplr(A), rot90(A), reshape(A, m, n), diag(v), diag(A)
zeros(3), ones(2,4), ones(3)*pi, rand(3,1), eye(3)
A = [1 2 3; 4 5 6]; ones(size(A))



Milan Šiňor
2022-02-21
Valid CSS! Valid HTML 4.0!