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A Fundamental Experiment in Quantum Physics:
The Wave-Particle Dualism of Matter

6h 55"

42h 18"

=80 =40 0 40 80 X/pm

When helium atoms all having the same direction and velocity are passed through a double-slit apparatus,
each atom produces a strictly localised point of impact on a screen behind the slits; the atoms appear to
be essentially particles. If the experiment is allowed to run for a longer time, so that a large number of im-
pact points is registered on the screen, then an interference pattern appears, analogous to that seen in
Young’s double-slit experiment with light; the helium atoms thus behave in this case as waves. The seven
images show the measured intensity distribution on the screen as a function of time (5’ to 42h18’) after
starting the experiment. This experiment demonstrates the wave-particle dualism of matter in an impres-
sive fashion. How quantum theory bridges the apparent contradiction: pointlike particle on the one hand,
extended wave on the other, is a subject treated in this book. These experiments on helium atoms were
carried out by O. Carnal, J. Mlynek: Phys. Rev. Lett. 66, 2689 (1991) and Ch. Kurtsiefer, T. Pfau, J. Mly-
nek: Nature 386, 150 (1997). More details are given in Sect. 6.6.



Preface to the Seventh Edition

The highly positive affirmation and wide reception that this book continues to receive
from professors and students alike is the occasion for this 7th edition. Once again we
have included a number of valuable suggestions for improvements, which we address
as appropriate. In addition, we refer to a number of developments in atomic physics.
Of these new developments in regard to exotic atoms, we mention antihydrogen in par-
ticular, because fundamental experiments in matter and antimatter can be expected in
the future.

Furthermore, we have inserted a chapter on the behaviour of atoms in strong elec-
trical fields. Experiments with corresponding lasers could only recently be realized.
We thank our Jenaer colleague, R. Sauerbrey, for his contribution of this chapter.

We have also included a new chapter on the behaviour of the hydrogen atom in
strong magnetic fields. The results are of profound interest for two very different
fields of physics: on the one hand, according to classical physics, one expects chaotic
behaviour from Rydberg atoms in magnetic fields that can be created in the laborato-
ry; thus, an association can be drawn to aspects of chaos theory and the problems of
quantum chaos. On the other hand, the very strong fields necessary for low quantum
numbers are realized in the cosmos, in particular with white dwarfs and neutron stars.
For suggestions to this chapter, we offer our thanks to our colleague G. Wunner for
discussions and to the book by H. Ruder, G. Wunner, H. Herold and F. Geyer, “Atoms
and Strong Magnetic Fields”.

Again it is a pleasure to thank Springer, in particular C.D. Bachem and Dr. Th.
Schneider, for the continued excellent cooperation, and Prof. W.D. Brewer for his
excellent translation.

Stuttgart, June 2005 H. Haken H.C. Wolf



Preface to the Sixth Edition

Since a new edition of our book has once again become necessary, we have as be-
fore taken the opportunity to include the latest developments in atomic and quantum
physics. These areas continue to yield new and fascinating experimental and theoret-
ical results which are of fundamental importance and are also extremely interesting
to students of science. As a result of newly developed experimental methods and
theoretical techniques, it has also become possible to find solutions to some long-es-
tablished problems. In this spirit we have added an entire new chapter dealing with
entangled wavefunctions, the Einstein-Podolsky-Rosen paradox, Bell’s inequalities,
the paradox of Schrodinger’s cat and the concept of decoherence. In addition, we
have treated new ideas relating to quantum computers and the numerous quantum-
physical schemes for constructing them. These new concepts exemplify the rapidly-
developing area of quantum information.

Finally, in this new chapter we have included the experimental realisation of the
Bose-Einstein condensation and of the atom laser, which promise important new ap-
plications.

In Chap. 22, “Modern methods of optical spectroscopy”, we have added a new
section on nondestructive photon detection as an example of efficient methods for
investigating the interactions between atoms and photons in resonant cavities. Con-
sidering the current importance of these areas, we emphasize references to the origi-
nal literature. These can be found in the Bibliography.

In treating all of these subjects, we have as usual made an effort to give a read-
ily understandable description, in line with the tradition of this book.

Once again, we express our gratitude to those students, colleagues and other
readers of the book who have made a number of suggestions for its improvement.
Our special thanks go to our colleagues Th. Hénsch, J. Mlynek and T. Pfau for pro-
viding us with coloured figures of their newest experimental results. We thank Ms.
Irmgard Moller for her quick and careful preparation of the new parts of the manu-
script. We are grateful to Springer-Verlag, in particular Dr. H.J. K6lsch and Mr.
C.-D. Bachem for their efficient cooperation as always, and Prof. W.D. Brewer for
his excellent translation of the new chapters.

Stuttgart, March 2000 H. Haken H.C. Wolf



Preface to the First Edition

A thorough knowledge of the physics of atoms and quanta is clearly a must for every
student of physics but also for students of neighbouring disciplines such as chemistry
and electrical engineering. What these students especially need is a coherent presenta-
tion of both the experimental and the theoretical aspects of atomic and quantum phys-
ics. Indeed, this field could evolve only through the intimate interaction between in-
genious experiments and an equally ingenious development of bold new ideas.

It is well known that the study of the microworld of atoms caused a revolution of
physical thought, and that fundamental ideas of classical physics, such as those on
measurability, had to be abandoned. But atomic and quantum physics is not only a
fascinating field with respect to the development of far-reaching new physical ideas.
It is also of enormous importance as a basis for other fields. For instance, it provides
chemistry with a conceptual basis through the quantum theory of chemical bonding.
Modern solid-state physics, with its numerous applications in communication and com-
puter technology, rests on the fundamental concepts first developed in atomic and
quantum physics. Among the many other important technical applications we mention
just the laser, a now widely used light source which produces light whose physical
nature is quite different from that of conventional lamps.

In this book we have tried to convey to the reader some of the fascination which
atomic and quantum physics still gives a physicist studying this field. We have tried
to elaborate on the fundamental facts and basic theoretical methods, leaving aside all
superfluous material. The text emerged from lectures which the authors, an experimen-
talist and a theoretician, have given at the University of Stuttgart for many years. These
lectures were matched with respect to their experimental and theoretical contents.

We have occasionally included in the text some more difficult theoretical sections,
in order to give a student who wants to penetrate further into this field a self-contained
presentation. The chapters which are more difficult to read are marked by an asterisk.
They can be skipped on a first reading of this book. We have included chapters impor-
tant for chemistry, such as the chapter on the quantum theory of the chemical bond,
which may also serve as a starting point for studying solid-state physics. We have fur-
ther included chapters on spin resonance. Though we explicitly deal with electron spins,
similar ideas apply to nuclear spins. The methods of spin resonance play a fundamental
role in modern physical, chemical and biological investigations as well as in medical
diagnostics (nuclear spin tomography). Recent developments in atomic physics, such
as studies on Rydberg atoms, are taken into account, and we elaborate the basic
features of laser light and nonlinear spectroscopy. We hope that readers will find
atomic and quantum physics just as fascinating as did the students of our lectures.

The present text is a translation of the second German edition Atom- and Quanten-
physik. We wish to thank Prof. W.D. Brewer for the excellent translation and the most
valuable suggestions he made for the improvement of the book. Our thanks also go
to Dr. J. v. Schiitz and Mr. K. Zeile for the critical reading of the manuscript, to Ms.
S. Schmiech and Dr. H. Ohno for the drawings, and to Mr. G. Haubs for the careful



X Preface to the First Edition

proofreading. We would like to thank Mrs. U. Funke for her precious help in typing
new chapters. Last, but not least, we wish to thank Springer-Verlag, and in particular
H. Lotsch and G.M. Hayes, for their excellent cooperation.

Stuttgart, February 1984 H. Haken H.C. Wolf



Contents

List of the Most Important Symbols Used ............ ... ... ... ... ....

L. Imtroduction .............. ... . i
1.1 Classical Physics and Quantum Mechanics .........................
1.2 Short Historical Review ........ ... ... ... ... .. ... it

2. The Mass and Size of the Atom .............. ... ... ... ... ... ....
2.1 Whatisan Atom? . ....... ...ttt
2.2 Determinationofthe Mass ............. ... ... .. .. .
2.3 Methods for Determining Avogadro’s Number ......................

231 ElectrolysisS .. ...cviitn e
2.3.2 The Gas Constant and Boltzmann’s Constant ..................
2.3.3 X-Ray DiffractioninCrystals ............... ... ... ... .....
2.3.4 Determination Using Radioactive Decay .....................
2.4 Determination of the Size of the Atom ............................
2.4.1 Application of the Kinetic Theory of Gases ...................
2.4.2 The Interaction Cross Section ...............c.coiieuiaen..,
2.4.3 Experimental Determination of Interaction Cross Sections .. .....
2.4.4 Determining the Atomic Size from the Covolume ..............
2.4.5 Atomic Sizes from X-Ray Diffraction Measurements on Crystals . .
2.4.6 Can Individual Atoms Be Seen? ............................
Problems . ... e

3 IS0toPeS ... e
3.1 The Periodic System of the Elements .............................
3.2 Mass SPECLIOSCOPY - - v v vt ene ettt et e e

3.2.1 ParabolaMethod ........ ... ... ... . .. i
3.2.2 Improved Mass Spectrometers ...............c..ouieenvenn..
3.2.3 Results of Mass Spectrometry ...............ccoviiien.....
3.2.4 Modern Applications of the Mass Spectrometer ................
3.2.5 Isotope Separation ...............iiiiiiiiiii i
Problems . ... ... e

4. The Nucleusof the Atom . .......... .. ... .. ... .. . i,
4.1 Passage of Electrons Through Matter .............................
4.2 Passage of Alpha Particles Through Matter (Rutherford Scattering) .. ...

4.2.1 Some Properties of Alpha Particles .........................
4.2.2 Scattering of Alpha ParticlesbyaFoil .......................
4.2.3 Derivation of the Rutherford Scattering Formula ...............
4.2.4 Experimental Results ......... ... ... ... ... ... ... ...,
4.2.5 What is Meant by Nuclear Radius? ..........................
Problems ... ... e



XII Contents

5. ThePhoton . .. ... ... . i e 49
5.1 Wave Characterof Light ........... ... ... .. ... ... ............ 49
5.2 Thermal Radiation .............. ... . ... ... . i 51

5.2.1 Spectral Distribution of Black Body Radiation ............... 51
5.2.2 Planck’s Radiation Formula . ............... ... ... ...... 53
5.2.3 Einstein’s Derivation of Planck’s Formula ................... 54
5.3 The Photoelectric Effect ................... ... ... ... ....... 58
54 TheComptonEffect .......... ... .. ... . . i, 60
54.1 EXperiments .. .....oouinie it 60
5.4.2 Derivation of the Compton Shift ........................... 62
Problems .. ... 64

6. TheElectron. .. ... ... ... . i 69
6.1 Production of Free Electrons ............ ... ... .. ... ... ... .... 69
6.2 SizeoftheElectron ........... ... .. ... i 69
6.3 The Chargeofthe Electron ........... ... ... ... .. .. 70
6.4 The Specific Charge e/m of the Electron .. ........................ 71
6.5 Wave Character of Electrons and Other Particles ................... 74
6.6 Interferometry with Atoms ............ ... iiiiineennnn. 78
Problems . ... .. o 79

7. Some Basic Properties of Matter Waves ............................. 81
7.1 WavePackets ..........o. i e 81
7.2 Probabilistic Interpretation ............ ... ... ... i, 85
7.3 The Heisenberg Uncertainty Relation ........................... 87
7.4 The Energy-Time Uncertainty Relation .......................... 89
7.5 Some Consequences of the Uncertainty Relations for Bound States .... 90
Problems .. ... ..o e 93

8. Bohr’s Model of the Hydrogen Atom ............................... 95
8.1 Basic Principles of Spectroscopy . .........coiiiiiiiiiiiia 95
8.2 The Optical Spectrum of the Hydrogen Atom ..................... 97
83 BohrsPostulates ........... .. ... 100
8.4 Some Quantitative Conclusions ..................cooiiiinninn.. 104
8.5 MotionoftheNucleus .......... . ... ... i i 105
8.6 Spectra of Hydrogen-like Atoms ........... ... ... ... . ....... 107
8.7 MUONICALOMS . ..ottt ettt e e 109
8.8 Excitation of Quantum Jumps by Collisions ...................... 112
8.9 Sommerfeld’s Extension of the Bohr Model

and the Experimental Justification of a Second Quantum Number .. ... 114
8.10 Lifting of Orbital Degeneracy by the Relativistic Mass Change. ....... 116
8.11 Limits of the Bohr-Sommerfeld Theory. The Correspondence Principle . 117
8.12 Rydberg Atoms .. ........iiuniiune et 117
8.13 Exotic Atoms: Positronium, Muonium, and Antihydrogen .......... 120
Problems . ... .. e 122

9. The Mathematical Framework of Quantum Theory ................... 125
9.1 TheParticleinaBox ......... ...t 125

9.2 The Schrédinger Equation .. ........ ... i, 129



Contents

10.

11.

12.

13.

9.3  The Conceptual Basis of Quantum Theory .....................
9.3.1 Observations, Values of Measurements and Operators .. .. ...
9.3.2 Momentum Measurement and Momentum Probability ......
9.3.3 Average Values and Expectation Values ..................
9.3.4 Operators and Expectation Values .. .....................
9.3.5 Equations for Determining the Wavefunction .............
9.3.6 Simultaneous Observability and Commutation Relations . . . ..
9.4  The Quantum Mechanical Oscillator ..........................
Problems . . ... ..ot e

Quantum Mechanics of the HydrogenAtom ........................
10.1 MotioninaCentral Field ............. ... ... .. ... ......
10.2  Angular Momentum Eigenfunctions ..........................
10.3 The Radial Wavefunctions in a Central Field* ...................
10.4 The Radial Wavefunctions of Hydrogen .......................
Problems . ... ..o e

Lifting of the Orbital Degeneracy in the Spectra of Alkali Atoms . . .. ..
11.1 Shell Structure .. . .. PP
11,2 SCreemiNg .. ..ottt ettt et et e
113 TheTermDiagram ........... ...t
11.4 InmerShells ...... ...ttt i e
Problems . . ... e

Orbital and Spin Magnetism. Fine Structure .......................
12.1 Introduction and OVerview ...............c..cuiiinneeneenn.n.
12.2 Magnetic Moment of the Orbital Motion .......................
12.3 Precession and Orientation in a Magnetic Field ..................
12.4 Spin and Magnetic Moment of the Electron .....................
12.5 Determination of the Gyromagnetic Ratio

by the Einstein-de Haas Method ..............................
12.6 Detection of Directional Quantisation by Stern and Gerlach ........
12.7 Fine Structure and Spin-Orbit Coupling: Overview ...............
12.8 Calculation of Spin-Orbit Splitting in the Bohr Model ............
12.9 Level Scheme of the Alkali Atoms ............................
12.10 Fine Structure in the Hydrogen Atom .........................
12.11 TheLamb Shift ....... ... . .. . i
Problems . ... ..ot e e

Atoms in a Magnetic Field:
Experiments and Their Semiclassical Description ...................
13.1 Directional Quantisation in a Magnetic Field ...................
13.2 Electron SpinResonance . .......... ... .. ... i ...
133 TheZeemanEffect ........ ... ... ... .. .. ...
13.3.1 EXperiments . . ... .oonvtnet ettt
13.3.2 Explanation of the Zeeman Effect from the Standpoint
of Classical ElectronTheory ..........................
13.3.3 Description of the Ordinary Zeeman Effect
by the VectorModel .............. ... .. .. .. . ...



X1V Contents

13.3.4 The Anomalous ZeemanEffect . ......................... 214
13.3.5 Magnetic Moments with Spin-Orbit Coupling .............. 215
13.4 The Paschen-Back Effect ............. ... .. .. .. ... .......... 217
13.5 Double Resonance and Optical Pumping ........................ 218
Problems . ... e 220
14. Atoms in a Magnetic Field: Quantum Mechanical Treatment . .. ....... 223
14.1 Quantum Theory of the Ordinary Zeeman Effect .................. 223
14.2 Quantum Theoretical Treatment of the Electron and Proton Spins .... 225
14.2.1 Spin as Angular Momentum . ........................... 225
14.2.2 Spin Operators, Spin Matrices and Spin Wavefunctions . ...... 226
14.2.3 The Schrodinger Equation of a Spin in a Magnetic Field ..... 228
14.2.4 Description of Spin Precession by Expectation Values ... ..... 230
14.3 Quantum Mechanical Treatment of the Anomalous Zeeman Effect
with Spin-Orbit Coupling® ......... ... .. .. ... .. ... ... oo, 232
14.4 Quantum Theory of a Spin in Mutually Perpendicular
Magnetic Fields, One Constant and One Time Dependent ........... 236
145 The Bloch Equations .............. ... .. iiiiiiiiiiiinennn. 241
14.6 The Relativistic Theory of the Electron. The Dirac Equation ......... 243
14.7 The Hydrogen Atom in Strong Magnetic Fields* ................ 249
14.7.1 Rydberg Atoms in Strong Fields .................... ... 250
14.7.2 What is Chaos? A Reminder of Classical Mechanics . ... ... 251
1473 QuantumChaos . . ........... ... ... i 254
14.7.4 The Hydrogen Atom in Strong Magnetic Fields
and in Low Quantum States .......................... 256
Problems . ... e 259
15. AtomsinanElectricField ............ ... ... ... ... ... ......... 261
15.1 Observations of the Stark Effect .. .......... ... ... .. .......... 261
15.2 Quantum Theory of the Linear and Quadratic Stark Effects . ......... 263
15.2.1 The Hamiltonian .......... ... . ... .. . .. i iiiiinenn.. 263
15.2.2 The Quadratic Stark Effect.
Perturbation Theory Without Degeneracy * ................ 264
15.2.3 The Linear Stark Effect.
Perturbation Theory in the Presence of Degeneracy* ......... 267
15.3 The Interaction of a Two-Level Atom
with a Coherent Radiation Field ............................... 270
15.4 Spinand Photon Echoes ......... ... .. .. .. .. . . it 273
15.5 A Glance at Quantum Electrodynamics* ........................ 276
15.5.1 Field Quantization .................0uiuiinrerenenennnn 276
15.5.2 Mass Renormalization and Lamb Shift . .................. 281
15.6 Atoms in Strong Electric Fields* ............................ 288
Problems . ... .. e 292
16. General Laws of Optical Transitions . . . . ........................... 295
16.1 Symmetries and SelectionRules ............................... 295
16.1.1 Optical Matrix Elements ......................cccuuon.. 295
16.1.2 Examples of the Symmetry Behaviour of Wavefunctions .. .. .. 295

16.1.3 SelectionRules . ...... ... ... . .. 300



Contents

16.1.4 Selection Rules and Multipole Radiation* .................
16.2 Linewidths and Lineshapes .................ccoviiiiiininnnan..

17. Many-Electron Atoms . ............ .. ... . i
17.1 The Spectrum of the HeliumAtom ........ ... ... ... ... ......
17.2 Electron Repulsion and the Pauli Principle . ................. e
17.3 Angular Momentum Coupling ...............oiiiniiinnennn..

17.3.1 Coupling Mechanism . ...............ccooiiiiinviinn..
17.3.2 LS Coupling (Russell-Saunders Coupling) .................
1733 jjCoupling . ...oovi e e
17.4 Magnetic Moments of Many-ElectronAtoms .....................
17.5 Multiple EXCItations . ...........c.c..ouuiiiniennenenneennnn.
Problems .. .......iini e

18. X-Ray Spectra, Internal Shells ....... ... ... ... ... ... .. ......
18.1 Introductory Remarks ........... ... ... ..ot
18.2 X-Radiation from Outer Shells ........... ... ... .. ...........
18.3 X-Ray Bremsstrahlung Spectra ............ ..o ...
18.4 Emission Line Spectra: Characteristic Radiation ..................
18.5 Fine Structure of the X-Ray Spectra ............................
18.6 Absorption Spectra .. ...........oiuititiiie i
18.7 The Auger Effect ........ ... i
18.8 Photoelectron Spectroscopy (XPS),ESCA ............ ... ........
Problems . ... ..o e

19. Structure of the Periodic System. Ground States of the Elements . . ... ..
19.1 Periodic System and Shell Structure ............................
19.2 From the Electron Configuration to the

Atomic Term Scheme. Atomic Ground States ....................
19.3 Excited States of Atoms and Possible Electronic Configurations.
Complete Term Schemes ............. ... . it iiiinnn..
19.4 The Many-Electron Problem. Hartree-Fock Method* .. .............
19.4.1 The Two-Electron Problem .............................
19.4.2 Many Electrons Without Mutual Interactions. ..............
19.4.3 Coulomb Interaction of Electrons. Hartree and Hartree-Fock
Methods ...t e
Problems . ......ooi i e

20. Nuclear Spin, Hyperfine Structure ...............................
20.1 Influence of the Atomic Nucleus on Atomic Spectra ...............
20.2 Spins and Magnetic Moments of Atomic Nuclei ..................
20.3 The Hyperfine Interaction . ............. ... ... coiiiiieneenn..
20.4 Hyperfine Structure in the Ground State of the Hydrogen Atom,

the Sodium Atom, and the Hydrogen-like Ton &Bi®*" ...............
20.5 Hyperfine Structure in an External Magnetic Field,

Electron SpinResonance . ... ..........c.ooiiuiiiiinenennnn...
20.6 Direct Measurements of Nuclear Spins and Magnetic Moments,

Nuclear Magnetic Resonance ...................cocveniunann.
20.7 Applications of Nuclear Magnetic Resonance ....................



XVI Contents

20.8 The Nuclear Electric Quadrupole Moment ...................... 383

Problems . ... ... i 385

21. The Laser ... ... .t e e 387

21.1 Some Basic Concepts forthe Laser ........................... 387

21.2 Rate Equations and Lasing Conditions ......................... 390

21.3 Amplitude and Phase of Laser Light . . . ........................ 393

Problems . ... ... 396

22. Modern Methods of Optical Spectroscopy ......................... 399

22.1 Classical Methods ............ .. oo, 399

222 QuantumBeats .......... ... 400

22.3 Doppler-free Saturation SpectrosCopy . ...........c.c..eeiioan.. 402

224 Doppler-free Two-Photon Absorption .......................... 404

22.5 Level-Crossing Spectroscopy and the Hanle Effect ........ e 406

22.6 Laser Cooling of Atoms ..............ccoiiiiiiininnenn.,. 408
22.7 Nondestructive Single-Photon Detection —

An Example of Atomic Physics in a Resonant Cavity ............. 413

Problems . ... ..ot 415

23. Progress in Quantum Physics:

A Deeper Understanding and New Applications ..................... 417
231 Introduction . .......... ..ottt e 417
23.2 The Superposition Principle, Interference, Probabilily
and Probability Amplitudes ............ ... ... i, 417
23.3 Schrodinger’s Cat .......... ...t 419
234 DeCOherenCe . .........cuuiiuineine i, 419
23.5 Entanglement........... ..ottt 420
23.6 The Einstein-Podolsky-Rosen (EPR) Paradox ................... 421
23.7 Bell’s Inequalities and the Hidden-Variable Hypothesis . ........... 422
23.8 Experiments to Test Bell’s Inequalities ......................... 425
23.9 Quantum COMPULELS . ... vvvttrtir et e e 426
23.9.1 Historical Remarks ............ ... ... ... ... .. 426
23.9.2 Review of Digital Computers ......................... 427
23.9.3 Basic Concepts of the Quantum Computer ............... 428
23.9.4 Decoherence and Error Correction ..................... 430
23.9.5 A Comparison Between the Quantum Computer
and the Digital Computer ............ ... .. ... ....... 432
23.10 Quantum Information Theory ........... ... ... ... . ... ... 432
23.11 The Bose-Einstein Condensation ............................. 432
23.11.1 Review of Statistical Mechanics ....................... 432
23.11.2 The Experimental Discovery .................ccouoo... 433
23.11.3 The Quantum Theory of the Bose-Einstein Condensation ... 435
23.12 The Atom Laser ... ... ... ..o, 436

Problems . . ... 437



Contents

24. Fundamentals of the Quantum Theory of Chemical Bonding ..........

24.1
242
243
24.4
245
24.6
24.7
24.8

Introductory Remarks ............. .. ... i i,
The Hydrogen-Molecule lonH%, .......... .. .. .. ... ... ......
The Tunnel Effect ........ ... ... i,
The Hydrogen Molecule H, . . ......... ... . L,
Covalent-Ionic Resonance . ............c.cviuiininneneenenn...
The Hund-Mulliken-Bloch Theory of Bonding in Hydrogen .........
Hybridisation .. ... ... . i
The mElectrons of Benzene, CcHg .. ..., ..

Problems . . ... e

Appendix

A.

B.

C.

The Dirac Delta Function and the Normalisation of the Wavefunction
of a Free Particle in Unbounded Space  .........................
Some Properties of the Hamiltonian Operator, Its Eigenfunctions
andits Eigenvalues .............. ... ... i,
Derivation of Heisenberg’s Uncertainty Relation ..................

Solutionstothe Problems .............. ... ... ... . . i,

Bibliography of Supplementary and Specialised Literature . . ................

SubjectIndex .......... ... e e

Fundamental Constants of Atomic Physics (Inside Front Cover)

Energy Conversion Table (Inside Back Cover)



List of the Most Important Symbols Used
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1. Introduction

1.1 Classical Physics and Quantum Mechanics

Atomic and quantum physics, which are introduced in this book, are essentially prod-
ucts of the first third of the 20th century. The division of classical physics into branch-
es such as mechanics, acoustics, thermodynamics, electricity, and optics had to be
enlarged when — as a consequence of the increasing knowledge of the structure of
matter — atoms and quanta became the objects of physical research. Thus, in the twen-
tieth century, classical physics has been complemented by atomic physics and the
physics of light or energy quanta. The goal of atomic physics is an understanding of the
structure of atoms and their interactions with one another and with electric and mag-
netic fields. Atoms are made up of positively charged nuclei and negatively charged
electrons. The electromagnetic forces through which these particles interact are well
known in classical physics.

The physics of atomic nuclei cannot be understood on the basis of these forces
alone. A new force — the nuclear or strong force — determines the structures of nuclei,
and the typical binding energies are orders of magnitude larger than those of the elec-
trons in atoms. The study of nuclei, of elementary particles, and the whole of high
energy physics thus form their own branches of physics. They will not be treated in this
book.

1.2 Short Historical Review

The word atom comes from the Greek and means “the indivisible”, the smallest com-
ponent of matter, which cannot be further divided. This concept was introduced in the
Sth and 4th centuries B.C. by Greek natural philosophers. The first atomic theories of
the structure of matter were those of Democrites (460 — 370 B.C.), Plato (429 —348),
and Aristotle (384 —322). It required more than two millenia until this speculative
atomism grew into an exact atomic physics in the modern sense.

The meaning of the word atom becomes less subject to misinterpretation if it is
translated into Latin: an individuum is the smallest unit of a large set which possesses
all the essential characteristics of the set. In this sense, an atom is in fact indivisible.
One can, to be sure, split a hydrogen atom into a proton and an electron, but the
hydrogen is destroyed in the process. For example, one can no longer observe the
spectral lines characteristic of hydrogen in its optical spectrum.

Atomism as understood by modern science was first discovered for matter, then for
electricity, and finally for energy.

The atomism of matter, the recognition of the fact that all the chemical elements are
composed of atoms, followed from chemical investigations. The laws of constant and
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multiple proportions, formulated by J.L. Proust ca. 1799 and by Dalfon ca. 1803,
can be explained very simply by the atomic hypothesis:

The reaction equations

14 g nitrogen + 16 g oxygen yield 30 gNO  and
14 g nitrogen + 32 g oxygen yield 46 g NO,

mean: the atomic weights of nitrogen and oxygen are related as 14:16.

Only whole atoms are react with one another. The first atomic model (W. Prout, 1815)
assumed that the atoms of all elements are put together out of hydrogen atoms. As a
heuristic principle this hypothesis finally led to a scheme for ordering the elements
based on their chemical properties, the periodic system of L. Meyer and D. I. Mendeleev
(1869). More about this subject may be found in introductory textbooks on chemistry.

About the same time (1808), it was found by Gay-Lussac that not only the weights
but also the volumes of gaseous reactants occur as ratios of small integers. In the above
example,

1 volume nitrogen + 1 volume oxygen yield 2 volumes NO

1 volume nitrogen + 2 volumes oxygen yield 2 volumes NO,.

Similar observations led to the hypothesis of Avogadro (1811): Equal volumes of gases
under similar conditions (pressure, temperature) contain equal numbers of molecules.

Continued investigations of gases in the course of the 19th century led to the
atomism of heat, that is, to the explanation of heat in general and of the thermodynam-
ic laws in particular as consequences of atomic motion and collisions. In about 1870,
the first theory to encompass a whole branch of physics, the kinetic theory of gases,
was completed by the physicists Clausius and Boltzmann.

The atomism of electricity was discovered in 1833 by the English scientist Michael
Faraday. Based on the quantitative evaluation of exceedingly careful measurements of
the electrolysis of liquids, he formulated his famous laws:

The quantity of an element which is separated is proportional to the quantity of
charge transported in the process,

and

various elements are separated into equivalent weights by the same quantity of
charge.

From this, Faraday concluded:

There are “atoms” of electricity — it was only after 70 years that their mass and
charge could be determined —

and
these “atoms” of electricity — the electrons — are bound to atoms of matter.

The discovery of the atomism of energy can be dated exactly: on December 14,
1900, Planck announced the derivation of his laws for black body radiation in a'lecture
before the Physical Society in Berlin. In order to derive these laws, he assumed that the
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energy of harmonic oscillators can only take on discrete values — quite contradictory
to the classical view, in which the energy values form a continuum.

This date can be called the birth date of quantum theory. The further development
of atomic and quantum physics is the subject of this book.

Our knowledge of the structure of atoms was influenced strongly by the investiga-
tion of optical spectra. After Kirchhoff and Bunsen had shown, about 1860, that
optical spectra are characteristic of the elements which are emitting or absorbing the
light, Balmer (1885) succeeded in finding an ordering principle in atomic spectra, ex-
pressed in the formula (8.1) which bears his name and which describes the spectral lines
emitted from hydrogen atoms. As a result of the atomic model proposed by Rutherford
(1911), Bohr was able, in 1913, to formulate the basic principles of the quantisation of
electron orbits in atoms. These quantisation rules were considerably extended by Som-
merfeld. A parallel development was the concept of matter waves, carried out by De
Broglie. The actual breakthrough was attained by Born, Heisenberg, Schrodinger,
Pauli, Dirac, and other researchers in the decade between 1920 and 1930.

The problems of atomic physics which are of current interest in research are:

— an increasingly detailed description of the structure of electronic shells of atoms and
their excitations,
— the interactions between atoms and radiation fields, for example in view of their

applications in optical pumping (Chap. 21) and in laser physics (Chap. 22),

Atomic Physics
Basic Research
Determination of Atomic Data

Physics Technology Applications

Determination of Units
Fundamental constants

Quantum Electronics

Lasers, frequency standards,
navigation, geodetics

Solid State Physics

Ideal and defect structures

Space Research

Earth and planetary
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Chemical Physics

Formation of molecules,
chemical reactions

Medical Technology
Radiation effects

Astrophysics Communications Technology Environment
Atomic spectroscopy Laser techniques, Detection of pollutants
ionosphere
Plasma Physics Energy Problems
Excitation mechanisms New methods of energy
production

Biophysics

Complex molecular structures

Geophysics
Earth’s magnetic field

Fig. 1.1. The relevance of
atomic physics for other
disciplines of science and
technology
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— the interactions of atoms among themselves due to collisions in the gas phase and
during the formation of molecules,

— the physical principles which lead to the formation of condensed phases from single
atoms, and their properties.

Thus molecular and solid state physics are based on atomic physics, and chemistry
as well makes constant use of its laws and principles.

Atomic physics is furthermore a basic science for many other disciplines of re-
search, technology, and applications. A few examples are shown in Fig. 1.1.

The following chapters do not give a historical or a chronological presentation; they
do, however, show the general line of developments and discoveries. An inductive ap-
proach is often used. It is of little use in physics to content oneself with the acquisition
of factual knowledge. A physicist must learn to analyse, to explain, and to extract the
essentials from experimental findings. In this way, one develops models for nature. In
the process, it is important to recognise relationships to other experimental results and
to be able to predict the outcome of new experiments. The predictions must then be ex-
perimentally tested. Because of this process, physics is not a dead, finalised science, but
rather is in a constant state of development, since new experimental techniques open up
new areas of research while, on the other hand, the process of developing physical
concepts gives the impulse for ever newer experiments.



2. The Mass and Size of the Atom

2.1 What is an Atom?

An atom is the smallest unchangeable component of a chemical element. Unchangeable
means in this case by chemical means; i.e., by reactions with acids or bases or the effect
of moderate temperatures, atoms may only be slightly changed, namely, in their degree
of ionisation. Moderate temperatures refers here to temperatures whose equivalent
energy kT (k is Boltzmann’s constant, T the temperature in K) is not larger than a few
electron volts (eV) (see Table 8.1).

2.2 Determination of the Mass

Beginning with Dalton’s law of constant and multiple proportions, and Avogadro’s
hypothesis, according to which equal volumes of gas contain the same number of mole-
cules or atoms, we introduce relative atomic masses (also called atomic weights) A4 ;. It
was first discovered with the methods of chemistry that these atomic weights are ap-
proximately whole-number multiples of the atomic mass of the hydrogen atom. The
relative atomic masses of nitrogen and oxygen are then A, (N) = 14, 4,.4(0) = 16.
For this reason, an atomic mass unit has been defined, 1 u (abbreviation for unit,
previously also referred to as 1 amu), which is approximately equal to the mass of a
hydrogen atom. Since 1961 the unit of atomic mass has been based on the carbon atom
12C with A, = 12.00000 u and is thus no longer exactly equal to the mass of the H
atom. The use of C as base substance was found to be expedient for the experimental
precision determination of atomic masses by chemical means. We have as definition

1 u = 1/12 of the mass of a neutral carbon atom with nuclear charge 6
and mass number 12, i.e., %C . 2.1)

Earlier scales were defined somewhat differently: the old “chemical” scale was based
on oxygen in the naturally occurring isotope mixture:

1 amu,., = 1/16 (average mass of O atoms in the natural isotopic mixture)
and the old “physical” scale was based on the oxygen isotope '°O:

1 amu 6o = 1/16 (mass of an %0 atom).
The following conversion formulae hold:

aAMUgpem t @MUtsg : Uize = 0.99996: 0.99968 : 1.00000 2.2
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and
Arel,chem: Arel, 160 Arel, 12c = 1.00004: 1.00032: 1.00000 . 2.3)

The absolute atomic masses can be obtained from the relative masses using the concept
of the mole.

1 mole of a substance is, according to Avogadro, as many grams as the relative
atomic weight (in the case of molecules, as the correspondingly defined relative molec-
ular weight). Thus, 1 mole of the carbon isotope %C is 12 grams. 1 mole of any sub-
stance contains the same number (N,) of atoms (molecules).

The number N, which is defined in this way is called Avogadro’s number (in the
German literature, it is called the Loschmidt number after the Austrian physicist Lo-
schmidt who determined it in 1865 by measurements on gases). Experimental methods
for its determination will be discussed in the following section.

The absolute atomic mass m,,, can therefore be obtained by measuring
Avogadro’s number. We have:

Mass of an atom — Mass of 1 mole of the substance . 2.9

Na

The determination of atomic masses is thus based on the determination of Avogadro’s
number; the size of the latter depends evidently on the choice of the base substance for
the mole. Ny is currently defined as the number of carbon atoms in 12.000 g of iso-
topically pure '2C.

The present best value for N, is

N = (6.022045 +0.000005) - 10% mole ~*.
With this value, we can write (2.4) in the form

Ape, 12
Matom = _%N}__ [gram] . (2.5)
A

For the conversion of the mass unit u into other units the following relations hold:

1 u = (1.660565 + 0.000005) - 10~ kg = 931.478 Mezv . (2.6)

c

This last conversion results from the mass-energy equivalence E = mc>. MeV is a meas-
ure of energy (see Table 8.1), c is the velocity of light. Numerical values for masses m,
relative atomic masses A4, and the mass number A4 of a few atoms are shown in Table
2.1.

Table 2.1. Mass number, mass, and relative atomic mass of several atoms

Mass number Mass m A

A [ke]
H atom 1 1.67342-10~7 1.007825
C atom 12 19.92516 - 1027 12.000000

O atom 16 26.5584: 10~ % 15.99491
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The mass number A4 of an atom is the integer which is closest to its relative atomic
mass A.. It is found in nuclear physics that 4 is equal to the number of nucleons
(protons and neutrons) in the atomic nucleus.

2.3 Methods for Determining Avogadro’s Number

2.3.1 Electrolysis

In electrolytic decomposition of salts from a solution, the amount of salt decomposed
is proportional to the charge which flows through the electrolyte. For one mole of a
monovalent substance, a charge of 96485 As (ampere-seconds) is required. This is the
Faraday constant F. Thus, since each ion carries one elementary charge e, we have the
relation N, = F/e. The elementary charge e denotes the charge on a single electron (see
Sect. 6.3). For example, in order to electrodeposit one mole or 63.5 g of copper from a
solution of CuSO, in water, 2N, electrons are necessary, since the copper ion is doubly
positively charged. By weighing the amount of material deposited and measuring the
electric current as well as the time, one can obtain the constant Ny.

2.3.2 The Gas Constant and Boltzmann’s Constant

The universal gas constant R and Boltzmann’s constant k are related through the equa-
tion k = R/N, A-

The gas constant can be determined by means of the ideal-gas law pV = RT; the
Boltzmann constant, for example, from sedimentation equilibria (Perrin, 1908). In the
latter method, the density distribution of small suspended particles in a liquid, deter-
‘mined by the simultaneous action of gravity and the Brownian molecular motion, is
given by the equation

ny = nge”™MKT 2.7

where n, is the number of particles in a unit volume at a height A, ny the number of par-
ticles in a unit volume at height # = 0, m the mass of the particles, g the acceleration of
gravity, k the Boltzmann constant, and 7 the absolute temperature. In Fig. 2.1, a model

Fig. 2.1. Sedimentation equilibrium: distribution of suspended mastix spheres
of 0.6 um diameter at four different heights in the field of view of a micro-
scope (after Perrin)
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experiment demonstrating sedimentation is shown. The formula given by (2.7) is a
special case of the famous Boltzmann distribution. Since we will use this distribution in
numerous places in this book, we will give an explicit general formula for it here. The
exact derivation may be found in texts on statistical physics. According to the Boltz-
mann distribution, the number of particles with energies in the interval E ... E+dE in
thermal equilibrium is given by

ngdE = NZ(T)e F*Tg(E)dE, (2.8)

where, generalising (2.7), the following quantities appear: N is the total number of par-
ticles, Z(T) is the partition function. The latter ensures that, integrating over the whole
energy range, one obtains the total particle number N, i.e., [ ngdE = N. It is therefore
given by Z(T) ! = {exp(— E/kT)g(E)dE. Finally, g(E) is the density of states; it is
necessary since, for example, particles with the same energy can be moving in different
directions, i.e., there can be more than one state with the energy E.

A completely satisfactory definition of g(E) only becomes possible with the help of
quantum mechanics. Using quantum numbers, of which we will later encounter a num-
ber of examples, one can count the number of “states” in the interval E ... E+dE.

2.3.3 X-Ray Diffraction in Crystals

With x-radiation of a known wavelength, one can determine the lattice constant, or the
volume of an atom or molecule in a crystal. The volume of a mole V. is then N, times
the atomic volume. For one mole one thus has

NaVatom = Vmo = M/0, .9

where M denotes the molar mass and p the mass density.

Figure 2.2 illustrates the principle; it shows a section of a NaCl lattice. NaCl crystal-
lises in the face-centred cubic structure. The NaCl lattice can be built up from two face-
centred cubic lattices containing the Na* and the Cl~ ions. These ions occupy the
corners of cubes of side a/2, where a is the edge length of the Na* or C1~ unit cell. The
unit cell is the smallest unit of a crystal, in the sense that the crystal structure consists of
a repetition of this element in each of the three dimensions of space.

The size of a can be determined by x-ray diffraction if the x-ray wavelength is
known (Sect. 2.4.5). In a cube of volume (a/2)3, there are 4/8 = 1/2NaCl molecules,
since each ion belongs to 8 cubes. The number of molecules per unit volume is therefore

Fig. 2.2. Section of a NaCl lattice. The unit cell of the face-centred
cubic lattice is a cube of side a. It contains one face-centred cubic cell

a
2 each of Na* and of Cl~ ions
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n=»1/2)(2/a)’. (2.10)
When we set this equal to the quotient N5/ Voo = Na 0/M, We obtain

aM 4.58.4
a’o  (5.63)°-107%*.2.16

6.05-10% (kmol) "' with ¢=5.63-10"%cm and o=2.16gecm™>.

Na= =6.05-10%mol~! or @.11)

The accuracy of a measurement of N, by this method is about 5 - 10~ ° (relative uncer-
tainty). The density o cannot, up to now, be determined with greater accuracy. How-
ever, the lattice constant a can be obtained with much greater accuracy using an x-ray
interferometer of Si single crystals, resulting in a relative error of 6 - 108, This method
becomes an absolute technique for determining N, if the measurement of the x-ray
wavelength is made using a mechanically ruled grating and can thus be related to the
meter directly. This becomes possible with the method of grazing-incidence diffraction;
in the normal-incidence method, the mechanically prepared rulings are too wide
relative to the wavelength.

2.3.4 Determination Using Radioactive Decay

Among the many other methods with which N, has been determined, we will only men-
tion here that of Rutherford and Royds from the year 1909.

In the experimental setup shown in Fig. 2.3, a radon source is contained in the in-
terior of the glass tube A. The ¢ particles which are emitted by this source can pass
through the thin walls of tube A. In the second, thick-walled tube B, the o particles,

Fig. 2.3. Experimental arrangement of Rutherford and Royds:
Phil. Mag. 17, 281 (1909). The thin-walled glass tube A contains the
c-active gas radon, 22Rn. The helium atoms which collect after
some days in the evacuated space B are compressed into the capil-
lary C and detected in the spectrum of a gas discharge. The mercury

levelling vessels serve to compress the gases
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which are the atomic nuclei of helium atoms, collect as He gas. Through ionisation pro-
cesses in the source, in the glass walls, and in the gas, electrons are set free which can
combine with the  particles and make them into He atoms. Ignition of a gas discharge
in tube C excites these atoms and causes them to emit light; spectral analysis shows that
the gas is, in fact, helium.

In this manner, it was demonstrated that ¢ particles are helium nuclei. If one meas-
ures the quantity of gas which is formed in a certain time, and knows the decay rate of
the source (e.g., by counting with a Geiger counter or scintillation detector), one can
determine the number of atoms per unit volume and thus N, .

2.4 Determination of the Size of the Atom

2.4.1 Application of the Kinetic Theory of Gases

The kinetic theory of gases describes the macroscopic state variables of gases such as
pressure and temperature on an atomic basis. Its application to the explanation of the
macroscopically measurable quantities relevant to gases also leads to a determination
of the size of the atoms. To understand this, we must first recall the arguments which
provide convincing evidence for the correctness of the kinetic theory.

The ideal-gas law states

pV=nRT, 2.12)

where p is the pressure, V the volume, n the number of moles, R the universal gas con-
stant, and 7 the temperature.

At constant temperature, this is Boyle’s law. Equation (2.12) can also be derived
kinetically. To do this, one calculates the number of particles in a given volume which
collide with a unit surface of the walls per unit time and thereby transfer momentum to
the walls (this is the number of particles contained in the so-called Maxwellian cylinder
of length v). The pressure which is exerted by the gas on the walls is then given by

p=(01/3)Nmov?, (2.13)

where m is the mass of the particles (gas atoms or molecules), v is their mean-square
velocity, and N is the number of particles per unit volume. Since the mean kinetic
energy mv2/2 of a free particle in thermal equilibrium is equal to (3/2) kT, (2.13) be-
comes p = NkT. This equation is identical to the ideal-gas law, as one immediately re-
cognises upon multiplication by the molar volume V,;:

PViot = NViolkT = NakT =RT . (2.14)

The demonstration that the kinetic theory gives a good description of the physical be-
haviour of gases is provided by experimental testing of the predictions of the theory.
For example, the distribution of the molecular velocities in a gas which can be derived
from the kinetic theory (Maxwell distribution) has been experimentally verified with
great accuracy. This distribution is again a special case of the Boltzmann distribution
[cf. (2.8)]. Here the energy of a particle is E = mv?/2. We wish to calculate the number
of particles, n(v)dv, whose absolute velocity, independent of direction, lies in the
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interval v ... v+dv. Thus we must recalculate the density function g(E) in terms of a
new density function g(v), using the condition

g(E)dE = §(v)dv .

Since the calculations yield no physical insights, we will only give the end result, the
Maxwellian velocity distribution:

3/2
n(w)do = ngo? |/ 2 (L) e-m¥2Ty, (2.15)
n \ kT

with n(v)dv being the number of particles with a velocity in the interval v ... v+dv
and n, the total number of particles. In the experimental test of the velocity distribu-
tion, the relative number of gas atoms with a given velocity v is measured.

2.4.2 The Interaction Cross Section

The size of an atom in a gas may be measured from the interaction cross section with
which the atom collides with other atoms. The derivation of the concept interaction
cross section is illustrated in Fig. 2.4. A beam of atoms of type 1 (beam cross-sectional
area A, particle radius rq, particle number density N,) strikes a layer made of atoms of
type 2 (layer thickness Ax, particle radius r,, particle number density n). We ask,
“How many atoms of type 1 collide with those of type 2 and are deflected from their
course, so that they do not pass undisturbed through the layer?” This interaction cross
section is thus frequently referred to in physical language as a scattering cross section.

|
——————— . — n
(2= { 12
e it
i
N(x)  Nix+Ax)
No
B E
X x+Ax L
Fig. 2.4. Definition and measurement of interaction
cross sections. Upper part: The interaction cross sec-
—_— @ — tion of particles with radius r; with those of radius r,
N @ T N is found to be (r; +r,)?n. Centre part: Out of N,
o, O) @ particles which reach the volume element of thick-
— A @ — ness Ax from the left, N pass through undeflected.
i Q) In this manner, the interaction cross section may be

experimentally determined. Lower part: Derivation
of (2.20). The radii of particles 1 and 2 are combined
F—ax— into the radius (ry +r,)
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The problem corresponds roughly to the following macroscopic situation: someone
is standing in front of a forest and shoots a bullet from a rifle. The probability that the
bullet will pass through the forest undeflected is larger, the smaller the thickness and
the density of the trees. If one shoots repeatedly and counts the number of undeflected
bullets relative to the total number fired, it is possible to determine the thickness of the
trees (that is, their interaction cross section). In order to do so, one must know their
density. Naturally, one would not use such a method for a real forest. In atomic
physics, it is, however, necessary, since it is not possible to put a meter stick up to an
atom as it is to a tree. The same problem occurs in a number of contexts in physics: for
example, in nuclear physics, a collision between two particles can be used to determine
the interaction cross section for a nuclear or particle reaction. In atomic physics, we
shall see that the interaction between a light quantum and an atom is described by a
cross section. Because of its wide application in many areas of physics, the concept of
the interaction cross section will be treated in some detail here.

A collision between atoms of radii 7; and r, leads to a deflection of the atoms out of
their initial directions when it occurs within an area @ = (r, + r,)*n (see Fig. 2.4). We
may thus combine the deflection of both colliding particles into a common cross
section. The probability of a collision is then given as the quotient of the number of
favorable to the number of possible cases:

Area of all the interaction cross sections in the volume of the beam
Total area A '

W =

This is valid under the assumption that the areas 7r? of various particles which are
located behind one another do not overlap. This is fulfilled for a sufficiently small layer
thickness. In order to calculate the number of deflected atoms in a finite layer of thick-
ness L, we first divide up the layer into thin layers of thickness Ax. If N atoms enter a
thin layer at the position x (see Fig. 2.4), a number AN is deflected out of the beam
after passing through the distance Ax:

Total number of atoms in the volume - ¢
Total area

AN= —WN = — N. (2.16)

Since the total number of atoms in a given volume is given by the product of particle
number density n with the area A and the layer thickness Ax, we obtain from (2.16)

_ nAAxoc
A

AN = N. 2.17)

If we replace differences by the corresponding infinitesimal quantities, we have
dN/N = —nodx. (2.18)

To obtain the number of atoms which are deflected (or not deflected, respectively)
along the entire length x, we integrate (2.18):

InN= —nax+InN,. (2.19)

Here, InN, is a constant of integration, with N, being the number of particles which
are incident at the point x=0. From this relation we obtain immediately
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N= Nyexp(— nox) as the number of particles which are still present after a distance x,
or, after passing through a total length L

N = Nye "L, (2.20)
The number of deflected atoms is correspondingly
Nicae = No(1—¢™") . (2.21)

The product no = a is also denoted as the (macroscopic) scattering coefficient and o as
the (microscopic) total interaction cross section.

From a measurement of ¢ follows, according to o= (r{+ r2)2 7, the quantity
(r1+ry). In the case of identical atoms with r = r; = r,, we have thus determined s, i.e.,
the size of the atoms.

Absorbing
medium

Incident Transmitted
beam beam

Fig. 2.5. Attenuation of a light beam on
passing through an absorbing medium

We will frequently encounter the concept of the interaction cross section, which we
have defined here, in later sections of this book. Figure 2.5 shows the dependence of
the intensity of a light beam on the thickness of absorbing medium through which the
beam has passed, as described by (2.20). For the absorption of light by atoms or mole-
cules, the Lambert-Beers law is valid:

I=1Ie """, (2.22)
where 7 is the transmitted intensity, I, the incident intensity, and « the absorption

coefficient per absorbing particle. n is again the number density of atoms or molecules
in the absorbing medium.
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2.4.3 Experimental Determination of Interaction Cross Sections

Interaction cross sections can be directly measured by collision experiments using an
atomic beam and a gas target. An apparatus for such measurements is shown in Fig.
2.6.

Gas

Manometer
Gas catcher

Scattering
l chamber
Pump

Fig. 2.6. Setup for measuring scattering cross sections of atoms by atoms. A beam of gas atoms enters the
scattering chamber through the slits S. Scattering by the gas atoms in the chamber leads to an attenuation of
the beam which arrives at the catcher

Frequently, however, interaction cross sections or atomic sizes are determined indi-
rectly. For example, one measures the mean free path A, which we define with the help
of (2.20): A is the distance L or x, after which the initial density N, has been reduced to
Ny/e. Thus, with (2.20), where n is again the particle number density, and taking
rn=nrn=r,

j=_ 1 _ 1 (2.23)

anr’in on

Up to now, we have assumed that the target atoms are at rest. If they are also in
motion, the expression for A must be modified somewhat. We give the result without
derivation:

1
4n)/2r’n ‘

The mean free path thus defined enters into macroscopically measurable quantities,
for example the viscosity #. The viscosity is in fact a measure of the momentum trans-
fer between atoms or molecules in gases or liquids and therefore also depends on the
frequency of collisions between the particles. The mean free path can thus also be
macroscopically determined. The detailed relation is (without derivation)

A (2.24)

n=10l%, (2.25)

where # is the viscosity, ¢ the density, A the mean free path, and # the mean velocity of
the particles. The quantity # can be measured, e.g., from the flow velocity through a
capillary.
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Another method for measuring A results from thermal conductivity in gases. The
latter also depends on the frequency of collisions between the particles and the energy
transfer which thus occurs. Here we have — likewise without derivation — a relation
between the heat flow dQ/dt and the thermal gradient d7/dx which produces it:

dQ/dt= —Arc-A-dT/dx, (2.26)

where dQ is the differential quantity of heat, Atc the thermal conductivity, and 4 the
cross-sectional area of the heat transport medium. The thermal conductivity Atc
depends upon the mean free path according to the relation

Arc= % kiA. 2.27)

Table 2.2 on p. 20 contains some values for atomic radii. Further details and the deriva-
tions which we have passed over here may be found in standard texts on experimental
physics.

2.4.4 Determining the Atomic Size from the Covolume

The Van der Waals equation for one mole of a real gas states
(P+a/V*)(V-b)=RT. (2.28)

Here the expression a/ V2 denotes the “internal pressure” which adds to the external
pressure P and is due to the forces between the particles. Another correction due to the
internal forces is the reduction of the free volume V of the gas by the volume of the
gas particles (the so-called covolume). This quantity b, which can be experimentally
determined by measuring the P-V diagram of the equation of state, is equal to the
fourfold volume of the particles. We thus have

b=4-4T”-r3-NA. (2.29)

2.4.5 Atomic Sizes from X-Ray Diffraction Measurements on Crystals

The famous experiment of von Laue, Friedrich, and Knipping in 1912 on the diffrac-

tion of x-radiation in crystals yielded:

— the final proof that crystals are built up of atoms,

— the wavelength of x-radiation,

— the lattice constant of crystals — and with it, information on the size of the atoms in
the crystal.

Figure 2.7 shows the experimental set-up schematically. For an exact derivation of
the interference conditions, one would have to treat the interference from a three-di-
mensional lattice. Here we will use the simplified method of Bragg (1913) to illustrate
how the lattice constants can be determined.

X-ray diffraction may be regarded as a reflection of x-radiation by the so-called lat-
tice planes at certain specular angles. A lattice plane is a plane in a crystal which is oc-
cupied by atoms. In a crystal there is a large number of families of parallel and equi-
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Polychromatic

x-ray beam
Monochromatic
diffracted rays

Photographic
plate

Fig. 2.7. X-ray diffraction from a single crystal after von Laue; schematic of the experimental arrangement.
X-radiation with a continuous distribution of wavelengths (polychromatic or white x-radiation) is diffracted
by a single crystal. The conditions for interference from a three-dimensional lattice yield constructive
interference at particular directions in space and at particular wavelengths. One thus observes interference
maxima, which correspond to certain discrete wavelengths (monochromatic x-radiation)

(110) (310)

&
Fig. 2.8. Simple cubic lattice with several lattice planes. These are characterised by the Miller Indices. The
spacing between two parallel lattice planes decreases with increasing Miller indices

Fig. 2.9a, b. Derivation of the Bragg Law of Re-
flection. The horizontal lines symbolise lattice
planes, from which the incident x-radiation ar-
riving at angle 6 is scattered. a) Each atom of a
lattice plane acts as a scattering centre. b) The
derivation of the Bragg condition for the reflec-
tion of x-radiation from a lattice plane
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distant lattice planes. They are distinguished from one another by their spacing, by the
density of atoms within the planes, and by their orientations within the crystal lattice
(see Fig. 2.8). According to Huygens’ principle, each atom which is struck by the in-
cident x-radiation acts as the source point for a new elementary wave (Fig. 2.9a). These
elementary waves produce constructive interferences at certain angles. The reflection
condition is derived as follows: amplification occurs when the path difference A be-
tween two adjacent beams corresponds to a whole multiple of the wavelength, nA. For
the path difference A we have, according to Fig. 2.9b,

A=AB+BC-AE =2AB-AE = _Zd —2AD cos®f. (2.30)
sin@
With the relation AD = d/tan @, one obtains from (2.30)
A=2-2_(1-cos?p),
sin

or, finally, the condition for constructive interference
A=2dsinf=ni. 2.31)

The various methods of observing x-ray diffraction from crystals which are used in
practice differ in the following ways:

— In the Laue method one uses a single crystal, a particular value of the angle of inci-
dence, and x-radiation with a continuous spectrum (“polychromatic” x-rays). The
condition for constructive interference is fulfilled for individual points in the plane
of observation for particular wavelengths.

— In the Bragg rotating-crystal method one also uses a single crystal, but mono-
chromatic x-rays. The crystal is rotated, so that the angle of incidence varies
through a continuous range of values. The condition for constructive interference is
fulfilled for various lattice planes successively.

— In the Debye-Scherrer method (Figs. 2.10, 11), the sample is polycrystalline or
powdered. The x-rays are monochromatic. Since each lattice plane occurs in all pos-
sible orientations relative to the incident beam, one obtains interference cones
whose intersection with the plane of observation gives interference rings.

Equation (2.31) relates the wavelength of the x-rays to the lattice constant or the
spacing of the lattice planes. The x-ray wavelength can be measured by other means
than with crystal interferences. Its measurement can be directly correlated to the meter
by utilising x-ray interference at grazing incidence from a diffraction grating. Since it is
not possible to manufacture diffraction gratings with a grating constant of the order of
x-ray wavelengths, one uses coarse gratings, for example with 50 lines/mm, and lets the
x-radiation strike the grating at a grazing angle of less than 1°. Since the index of
refraction of x-rays is somewhat smaller than 1, total reflection occurs when the angle
of incidence is sufficiently small. The effective grating constant is then the projection
of the actual line spacing at this angle. It is sufficiently small to permit the measure-
ment of the x-ray wavelength.

We make two additional remarks concerning x-ray diffraction.

— In practice, x-ray diffraction is much more complicated than indicated above. The
exact intensity distribution in the diffraction pattern must be carefully determined,
and account must be taken of the fact that the scattering centres are not points, but
instead are electronic shells with a finite extension. A complete, quantitative ana-
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Fig. 2.10. Debye-Scherrer method: x-ray
diffraction of monochromatic x-radia-
tion by a polycrystalline sample Z. On
the film, the intersections of the diffrac-
tion cones from the various families of
lattice planes appear as rings. To
generate monochromatic x-radiation,
one uses either the socalled characteristic
x-ray lines (Fig. 18.3), or a single crystal
may be employed as a monochromator
according to the principle of (2.31)

A
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Fig. 2.11. Debye-Scherrer diagram of MgO [from Gerthsen, Kneser, Vogel: Physik, 13th ed. (Springer, Ber-
lin, Heidelberg, New York 1978) Fig. 12.37]

lysis of x-ray diffraction patterns leads finally to an exact determination of the elec-
tron density with the sample crystal lattice. From it, we obtain not only the spacing
between the atoms in the lattice, but also their sizes and even their shapes. Figures
2.12 and 2.13 illustrate experimentally determined electron density distributions in
crystals. A contour map of this type raises the question, “Where does an atom have
its boundary?”, and this leads in turn to the question,

“What do we really mean by the size of an atom?”

— In the case of hard spheres, the size can be defined exactly. For atoms, the concept
“size” cannot be defined without reference to the method of measurement. Various
methods are sensitive to different properties of the atom, which depend on the “size
of the atom” in differing ways.

Let us consider the methods of investigation described above once more in light of
this remark.

From the viscosity # one obtains a measure of the interatomic distance in the
presence of thermal motion. Because the atoms are not perfectly hard spheres, the
radius determined in this manner will, however, be a function of the velocity. Further-
more, the results depend on the shape of the atom; the spatial extension of the elec-
tronic shells of atoms and molecules deviates more or less strongly from a spherical
shape, in general.

The covolume b in the real-gas law is derived under the assumption that the atoms
are elastic spheres. The lattice plane spacing d measures an equilibrium distance
between the particles in the crystal lattice.
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Fig. 2.12. The electron density
distribution in the anthracene
molecule determined by V. L.
Sinclair, J. M. Robertson, A.
McL. Mathieson: Acta Crystal-
logr. 3, 254 (1950). Lines of equal
electron density (“contour lines”)
are plotted

!

N ///
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ff @\ S « %@ Fig. 2.13. Distribution of the electron
\ / : : K | density in the basal plane of NaCl from

x-ray analysis by Schoknecht: Z. Natur-
forsch. 12a, 983 (1957). The solid curves
are again lines of equal electron density
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It should therefore not be surprising that the values of atomic radii measured by the
various methods deviate somewhat from each other — the order of magnitude is,
however, always the same — a few Angstroms. Table 2.2 shows a comparison of the
measured values.

Table 2.2. Atomic radii [A], measured by various methods (1 A = 0.1 nm)

from n fromd from b
Neon 1.18 1.60 1.2
Argon 1.44 1.90 1.48
Krypton 1.58 1.97 1.58
Xenon 1.75 2.20 1.72

2.4.6 Can Individual Atoms Be Seen?

The resolving power of a microscope is defined as the smallest spacing between two
structures in an object which can still be imaged separately. According to Abbé’s
theory of image formation, the resolving power is limited by diffraction in the opening
of the lens which forms the image. In texts on optics, the condition that — in addition
to the zeroth order — at least one additional diffraction maximum is necessary in order
to form an image, is used to derive the equation for resolving power,

A

d=—>_,
nsmao

(2.32)

where d is the resolving power, A the wavelength, n the index of refraction, and « the
angular opening of the lens. For visible light, one obtains a resolution of ca. 5000 A or
500 nm.

For other types of electromagnetic radiation, the theoretical resolving power cannot
be reached. For x-rays, it is not possible to construct suitable lenses, since the index of
refraction of all substances for x-radiation is approximately equal to 1. Electrons may
be deflected by electric and by magnetic fields; thus, they may be used to construct
lenses for electrons and to form images. Because of the unavoidable “lens
aberrations”, however, it is only possible to work with beams of very small divergence
in electron microscopes. Table 2.3 gives an overview of the resolving powers of various
methods of image formation.

Table 2.3. Resolving powers for various wavelengths

Resolving Power [A] Remarks
theory practice
Light ca. 5000 ca. 5000
Dark field ca. 500 ca. 500 No image formation,
only diffraction pattern
X-rays (1 =1A) 1 several 100 No lenses
Electrons 0.04 0.7 Lens aberrations

(100000 Volt & 1 = 0.037 A)
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In recent years, great success in the effort to form images of individual atoms has
been obtained with special types of electron microscopes: with the field emission micro-
scope it has been possible to visualize single atoms or large molecules on the tips of
fine metal points (Fig. 2.14), and with the scanning electron microscope it has proved
possible to form images of atoms and molecules. Here the attainable resolution is
about 5 A or 0.5 nm. With high-voltage electron microscopes, one can now obtain a
resolution of 0.15 nm. This makes it possible to image the individual atoms in mole-
cules and in crystals. An example is shown in Fig. 2.15.

Finally, using the scanning tunnel microscope, it is possible to resolve the atomic
or molecular structure of surfaces and to make the individual structural elements visi-
ble. In this apparatus, which was developed by Binnig and Rohrer, an extremely fine
metal point is moved over the surface to be observed at a distance of less than 1 nm.

Fig. 2.14. Image of the point of a tungsten needle with a field emission microscope, developed
by F. W. Miiller. The picture was provided by the Leybold-Heraeus Co. in Cologne. The
image can easily be produced as a lecture demonstration. The various lattice planes which
intersect the tip of the needle have differing emission probabilities for the field emission of
electrons; this produces the geometric pattern of light and dark regions. This pattern reflects
the crystal lattice geometry. Barium atoms were then vapour-deposited onto the tungsten
needle. Where they are present, the emission probability is increased, so that they appear as
bright points in the image. During the vapour deposition one can observe them falling onto
the point like snowflakes. It can be shown in this manner that individual atoms become visible

‘.i. 't‘
N xl

Fig. 2.15. An electron microscope picture of hexa-deca-
chloro-copper-phthalocyanin  molecules. The molecules
were produced as a ca. 10 monolayer thick, crystalline
growth-layer on the alkali halide crystal which serves as
substrate. The image formation and processing were done
with a 500kV high-resolution electron microscope and
with a special image enhancement technique. The central
copper atoms are especially clear, as are the 16 peripheral
chlorine atoms. (The picture was kindly placed at our dis-
posal by Prof. N. Uyeda, Kyoto University)
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The tunnel current between the substrate and the point is a measure of the distance,
of the charge density, and of the electrical work function for charges leaving the
substrate. These quantities change from place to place on an atomic scale; thus, one
can obtain a picture of the substrate surface. In Fig. 2.16, the atomic structure of
single molecules of copper phthalocyanine is shown.

The imaging and manipulation of individual atoms or molecules on solid surfaces
has become possible with this instrument. More details are given in Haken and Wolf,
Molecular Physics and Elements of Quantum Chemistry, Sect. 2.1.

Fig. 2.16. A picture obtained with the
scanning tunnel microscope, showing
copper phthalocyanine molecules on a
copper substrate surface. From P.H.
Lippel, R.J. Wilson et al., Phys. Rev.
Lett. 62, 171 (1989). At the lower right,
the calculated charge density 2 A above
the molecular plane is shown

Individual atoms can thus in fact be made visible. Much older are methods of ex-
perimentally observing processes which involve single atoms.

Single atomic processes (nuclear decays) were made visible in the first years of re-
search into radioactive decay by using the “spinthariscope” (Fig. 2.17). This is nothing
more than a fluorescent screen, which produces light flashes upon bombardment with
decay products from radioactive material and which may be observed with a
magnifying lens. With this instrument, single atomic events — decays — were counted
in Rutherford’s laboratory at the beginning of this century. Today, scintillation
detectors or semiconductor detectors are used for this purpose.

A scintillation detector operates according to the following principles: when radia-
tion from a radioactive decay falls on a Nal crystal, the crystal produces light flashes,
which can be amplified in a photomultiplier tube (PMT) (Fig. 2.18). In this way, in-
dividual events can be conveniently registered. For example: one electron with an
energy of 10000 eV produces ca. 200 light quanta in the scintillator (it requires on aver-
age about 50 eV per light quantum). Each light quantum creates one photoelectron at
the photocathode of the PMT. The PMT amplifies each of these electrons about
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Radioactive Scintillator
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\ Electrodes

Fig. 2.17. Spinthariscope, schematic illustration. (“dynodes”)

The fluorescent screen scintillates due to the irradia-
tion from the radioactive source. The scintillation
processes may be observed through the magnifying
lens

Anode

Fig. 2.18. Schematic diagram of a scintillation detec- »
tor. The light flashes which are produced in the scin- + |
|

tillator by the incident radiation pass through the _
light guide to the photocathode of an electron multi- Counting
plier tube. The photoelectrons which are released by L — electronics

the cathode are amplified in a series of steps and W—_.

registered at the anode as a current pulse

10°-fold, so that per light quantum, about 10’ electrons are released from the anode.
This results in a charge per incident electron (beta particle) of 3-10~'2C, which can
easily be measured.

Individual ions can be caught in an electromagnetic ion trap, stored there, and spec-
troscopically studied as isolated particles. An ion trap is shown in Fig. 2.19. It localizes
the particle by making use of inhomogeneous electromagnetic fields of suitable geome-
try (quadrupole field). The localized ion can be excited to luminescence with narrow-
band laser light; Fig. 2.20 shows an example. Thus, the interaction between the radia-
tion field and individual ions can be investigated. Such studies are also the goal in the
development of the one-atom maser, as described by H. Walther (e.g. H. Walther:
Europhysics News 19, 105 (1988)). Here, it is possible to observe the energy exchange
between an individual atom and the electromagnetic field in a resonant cavity.

An arrangement which played an especially important role in the early period of
modern atomic physics and which is still in use today for the excitation of atoms and
for producing particle beams is the gas discharge tube, Fig. 2.21. It can be employed
both for exciting the emission of light from the atoms of the gas inside the tube and for
the production of cathode and canal rays. Pliicker described cathode rays for the first
time in 1859. They were given that name because they could be observed through a hole
in the anode and seemed to emanate from the cathode. In fact, they are generated in the
gas volume. The rays which strike the fluorescent screen in front of the hole in the
cathode, the canal rays, were discovered in 1886 by Goldstein. In 1897, Thomson show-
ed that the cathode rays consists of negatively charged particles — the electrons. Wien
demonstrated in 1900 that the canal rays are electrically charged atoms, that is, ions.
They also are formed in the region of the gas discharge through collisions with charged
particles which have been accelerated by the electric field.

Atoms as the basic particles of matter have been thus theoretically and experimen-
tally detected and made visible in the course of the past century.
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Fig. 2.19. Schematic view of an electrodynamic ion trap (Paul
trap). It is made of a ring with a hyperbolic surface and two
hyperbolic caps. A high-frequency electric field maintains the
ions on small circular orbits; the field vanishes at the center
point. From P.E. Toschek, The Art of Measurement (VCH,
Weinheim 1988). More information can also be found in F.
Diedrich and H. Walther: Phys. Rev. Lett. 58, 203 (1987). See
also the Nobel prize lecture of W. Paul: Angew. Chem. Intl.
Ed. 29, 739 (1990)

Fig. 2.20. Imaging of individual atoms. In the center of
an ion trap, a barium ion has been localized and excited
by laser light to resonance fluorescence; it becomes visi-
ble as a luminous spot. From P.E. Toschek and W.
Neuhauser: Atomic Physics 7, ed. by D. Kleppner and
F.M. Pipkin (Plenum, New York 1981)

Fig. 2.21. A gas discharge tube for producing cathode rays.
Between the cathode and the anode is a potential difference
of several thousand volts. The fluorescence which appears
in the tube and the formation of cathode rays depend
strongly on the gas pressure. In the field-free region between
the cathode and the fluorescent screen one observes the
canal beam, which consists of positive ions. The cathode
and canal rays produced in this manner were particularly
important in the early period of atomic physics for the in-
vestigation of charge, mass, and scattering cross sections of
electrons and ions
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Problems

2.1 a) Colloidal particles are dispersed in a liquid. Show that at equilibrium, the num-
ber of particles per cm? is given by a Boltzmann distribution:

4 N,
nh)=nyexp— | — V(@ —-0)gh| ,
(h) oD[RT(QQ)g]

where N, is Avogadro’s number, R is the gas constant, T is the absolute temperature,
V is the volume of the particles, o is the density of the particles, o' is the density of the
liquid, g is the acceleration due to gravity, 4 is the height and n is the number of par-
ticles at the height 2 = 0.

b) Determine Avogadro’s number, using the above relation and the following ex-
perimental data:

ny =134 particles/cm®, n(h =0.0030 cm) = 67 particles/ em®, 0=1.23 g/em?, o' =
1.00 g/cm?®, T =293 K, particle diameter = 4.24-107> cm.

Hint: To derive an expression for n(k), use the barometric altitude formula:
dp = —p(h)gdh. Treat the particles as heavy, non-interacting molecules of an ideal
gas and use the ideal gas equation p¥ = RT to obtain the relation between dp and dg or
dn.

2.2 Liquid helium (atomic weight 4.003) has a density o = 0.13 g/cm’. Estimate the
radius of a He atom, assuming that the atoms are packed in the densest possible confi-
guration, which fills 74% of the space.

2.3 Canalrays, i.e., positive ion rays are generated in a gas discharge tube. How often
does an ion (r = 0.05 nm) collide with an atom of the ideal filler gas (» = 0.1 nm) if it
travels 1 m in a straight path through the discharge tube and if the pressure in the tube
is 1 mbar? 10 2mbar? 10 *mbar and the temperature 7 =300K? (1 mbar corre-
sponds to 10? Pa).

Hint: The ions do not have a Maxwell-Boltzmann velocity distribution. All the particles
are assumed to have the same velocity.

2.4 The covolume of helium gas was determined from pressure-volume diagrams to
be b = 0.0237 litre/mole. The covolume of mercury is 0.01696 litre/mole. What is the
size of the atoms in the two gases?

2.5 a) Why are monochromatic x-rays used for the Debye-Scherrer method, and how
are they produced? Does the diffraction cone with the smallest apex angle represent
the smallest or the largest lattice plane spacing? How large is this spacing if a first-order
angle a = 5° is measured between the surface of the cone and the undiffracted beam?
(Assume that the quantum energy of the x-rays is 50 keV, E,,, = 50 ke V).

b) The angle of maximum intensity of the first order reflection of x-rays with
wavelength A =2.1 A from the cleaved surface of a NaCl crystal is measured to be
6 = 22°10'. Calculate the lattice constant of the NaCl crystal. Use the result to derive
Avogadro’s number. The density of NaCl is ¢ = 2.163 gcm ~°.
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2.6 Monochromatic x-rays (A = 0.5 A) fall on a sample of KCI powder. A flat photo-
graphic plate is set up 1 m from the powder and perpendicular to the beam. Calculate
the radii of the sections of the Bragg diffraction cone (Fig. 2.10) for first- and second-
order diffraction, assuming a lattice-plane spacing of 3.14 A.

2.7 A tight bunch of slow neutrons (2 eV), wlgich is produced in a nuclear reactor,
lands on a crystal with a lattice spacing of 1.60 A. Determine the Bragg angle for first-
order diffraction.

Hint: Use (7.1) for the wavelength of the neutrons.

2.8 Atoms of an unknown element are deposited onto a perfectly planar crystal sur-
face and are to be studied using a scanning tunneling microscope. The microscope
employs a tungsten needle tip. What is the minimum size of the unknown atoms (r,),
and how far apart must they be spaced, in order that they can be distinguished (take
e.g. the criterion that the minimum measureable height 4 2 = 30% of the W atomic
diameter)?

Hint: Use a geometric sphere model, in which the radius of the W atom at the tip is
0.16 nm.
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3. Isotopes

3.1 The Periodic System of the Elements

One of the early significant achievements of atomic physics in the past century — or
rather, of chemists working together with the physicists — was the explanation of the
periodic system of the chemical elements on the basis of atomic structure.

This system (Table 3.1) was first proposed in 1869 by Medeleev and independently by
Lothar Meyer. 1t is constructed by listing the atoms according to increasing nuclear charge
number (or atomic number), Z. In the process, the chemical properties of the atoms are
taken into account, so that chemically similar atoms are placed under each other in col-
umns. With this procedure, we find eight vertical columns with subgroups and seven
horizontal rows or periods. Each position is occupied by an atom which belongs there
because of its chemical properties. To be sure, in this system all fourteen rare earths would
have to be placed in the same position, i.e., at Z = 57, and all the actinides in position
Z = 89. Both the periodicity and the above mentioned discrepancies will be explained on
the basis of the electronic structure of the atoms near the end of the book in Chap. 19.

Using heavy-ion accelerators, particularly the one operated by the GSI in Darm-
stadt, Germany, it has been possible to discover additional transuranic elements since
1980. By the end of 2004, elements up to atomic number 112, 114, 116 and 118 had
been artificially produced. These elements have unstable nuclei and many are so
short-lived that their properties are for the most part still unknown; even the process
of naming them is as yet unfinished.

The periodic system is an ordering of the elements according to periodically recur-
ring chemical as well as physical properties. As an example of the latter we show here
the atomic volumes and the ionisation energies as functions of the nuclear charge Z
(Fig. 3.1). Chemical properties which periodically repeat themselves are, for example,
the monovalence of the alkali atoms or the lack of reactivity of the rare gases. These
empirical regularities indicate corresponding regularities in the atomic structure.
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— 20
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] 3 15 s
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/IR = 10
el A, AL W
Re o 8 [ g | o© P
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Atomic number Z Atomic number Z

Fig. 3.1. Atomic volumes and ionisation energies as functions of the position in the periodic system of the
elements. Particularly noticeable are the (relatively) large atomic volumes of the alkali metal atoms and the
large ionisation energies of the noble gas atoms
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A first attempt at an explanation was the hypothesis of Prout (1815): all atoms are
made up of hydrogen atoms. This picture was refined and modified as further ele-
mentary particles were discovered, first the electron, then the proton. Only after 1932
did it become clear that the atomic nucleus consists of neutrons as well as protons. The
number of electrons of an atom is smaller than the mass number, since the nucleus con-
tains just as many protons as the electronic shells have electrons, but it also contains
neutrons.

The relative atomic masses A,y could originally only be measured by chemical
methods. By these means, it was determined that the addition of hydrogen atoms alone
cannot explain the observed “atomic weights” without contradictions. If the model of
Prout is correct, then the atomic weights must be integers. For the most part, they are
integers to a good approximation; A and A, are nearly equal. However, there are
counter examples: the relative atomic mass — the atomic weight — of chlorine, for
example, is A,y =35.5 in the naturally occurring element. Furthermore, it was
determined that lead from various ores had differing atomic weights. Today we know
that this is due to the lead having been produced as the end product from different
radioactive decay chains.

These observations were the starting point for investigations which led to the dis-
covery of the isotopes. This term denotes the fact that atoms with differing mass num-
bers may belong to the same position in the periodic table, i.e., they may have the same
nuclear charge number Z. The position of an element in the Periodic Table is determin-
ed by the number of protons in its atomic nucleus. The differing mass numbers result
from the different numbers of neutrons in the atomic nuclei. The concept of isotopes
will be treated in the following sections. The existence of isotopes was discovered and
thoroughly investigated with the aid of mass spectroscopy.

3.2 Mass Spectroscopy

3.2.1 Parabola Method

The physical techniques for exact measurement of atomic masses and for separating
atoms with differing masses are mostly methods for determining the ratio e/m, i.e., the
ratio of charge to mass. For this purpose one uses the deflection of ionized atoms mov-
ing through electric fields E and magnetic fields B.

The oldest and most easily understood method is the parabola method of Thomson
(1913). An ion beam from a gas discharge passes through the electric field of a conden-
ser and a magnetic field B which is oriented parallel to the electric field (Fig. 3.2). In the
plane of observation, particles of the same charge and mass, but having different
velocities v, are distributed along a parabola whose origin is in the point where the
undeflected beam would pass. This can be shown in the following manner: The homo-
geneous electric field E, which is applied in the y direction, causes a deflection in this
direction. The y coordinate of the particles changes according to the equation for the
acceleration:

y=(e/m)-E. 3.1

The y coordinate itself is given by the solution of (3.1),
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- - Fig. 3.2. Schematic representation of the parabola
v method. The ion beam, collimated by the slit S, is
deflected by the magnet M and the condenser C in
EwB the x and y directions. Equation (3.5) describes the
M path of the particles on a catcher screen immediately
after exiting from the magnet and the condenser. If
c the screen is placed at a greater distance, a corre-
v"=/ 32 sponding distortion of the parabolas due to projec-
@\ tion is seen. Both branches of the parabola are valid
s > solutions if the B field is allowed to change its sign
X

Y"

1 eE e 12
y=——t'=—E-—, (3.2

where the last equation is found by expressing the time spent by the particles in the
electric field in terms of the velocity v and the length / of the condenser. This is per-
mitted as long as the magnetic field B is sufficiently weak and thus the radius r is
sufficiently large. Since the deflection of the particles in the y direction is inversely
proportional to the kinetic energy mv?/2, the condenser is referred to as an energy
filter.

The homogeneous B field, which is also applied in the y direction, produces a de-
flection in the x direction. This deflection can be calculated as follows:

The particles which enter the homogeneous B field are forced to follow circular
orbits in a plane perpendicular to the direction of the field (y direction). Since, how-
ever, the B field is limited in spatial extent (Fig. 3.2), the particles pass through only a
segment of this circular orbit and then move on in a straight line. The resulting deflec-
tion in the x direction may be derived by means of the radius of curvature of the cir-
cular orbit, which is obtained by setting equal the magnitudes of the Lorentz force in
the magnetic field, F = e(v xB), and of the centrifugal force F, = mv2r/r*:

r=mv/eB. 3.3)

For the centrifugal acceleration a.= v%/r we obtain [by inserting (3.3) for the
radius] the following relation:

a.=eBv/m.

Since the particle only moves through a relatively short segment of the circle, we may
replace its acceleration in the x direction with the centrifugal acceleration a.. The total
deflection in the time 7 is given by

x=a.t%/2.

In this equation, we replace a. by eBv/m and the time of flight ¢ by the quotient //v,

where / is the distance traveled in the field. We then obtain for the deflection in the x

direction
_eBl?

= . 3.4
2mv
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Fig. 3.3. Separation of a mixture of hydrocarbon
ions with the Thomson parabola method. For cali-
bration, one uses ions of known mass. The inten-
sities of the individual parabolic sections correspond
to the relative amounts within the mixture of the
ions which produced them. [Photo after Conrad

i from W. Finkelnburg: Einfiihrung in die Atomphy-

! sik, 11, 12th ed. (Springer, Berlin, Heidelberg, New
York 1976) Fig. 12]

// |\ \\
/ \ N
12 13 14 15 16
C+ CH+ CH,+ CH,+ CH,+

The x deflection is inversely proportional to the momentum muv of the particles. For
this reason, one often calls the magnet causing the deflection a momentum filter. From
the expressions for x and y we can eliminate v, so that we obtain the equation for the
orbit of deflection of the particles:

2E m x2.

. 3.5
1232 e ( )

y=

This is the equation of a parabola x? = 2py with the parameter p = e/>B*/4mE. This
parameter has the same value for ions with the same ratio m/e but with differing veloc-
ities v. An example of a measurement is shown in Fig. 3.3.

The total intensity of the partial beam which produces a particular parabola is a
measure of the relative abundance of the corresponding ion or isotope. Since the ions in
general have differing velocities due to their preparation in an oven or a gas discharge
tube, those ions having the same values of m/e will be distributed over the entire length
of a particular segment of a parabola.

Aston used this method in 1920 to investigate the composition of naturally occur-
ring neon, which consists of 3 types of atoms with the mass numbers 20, 21, and 22;
this was the first exact demonstration of the existence of isotopes by means of mass
spectroscopy (Table 3.2).

In any case, the most important result of the measurements with the parabola meth-
od was the following: many elements consist of several isofopes, that is atoms with the
same nuclear charge number Z and differing mass numbers 4. Nuclei with particular
values of A and Z are referred to as nuclides.
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Table 3.2. Isotopic composition of neon. The values of 4 given were not determined with the parabola
method, but rather, with the precision quoted, by the use of a double-focussing mass spectrometer

20Ne 90.92% A =19.99244
#Ne 0.26% A = 20.99385
Ne 8.82% A, =21.99138

3.2.2 Improved Mass Spectrometers

The first essential improvement of Thomson’s mass spectrograph was achieved in 1919
by Aston, namely the introduction of velocity focussing. He did not use parallel electric
and magnetic fields as in the parabola method, but rather perpendicular fields E and B.
The E field splits up the incident particle beam according to m/e, but also according to
different velocities. By proper adjustment of the field strengths, one may however
ensure that the B field brings all the particles with differing velocities together at a par-
ticular point in space, while particle beams with different m/e ratios remain separated.
Particles with the same m/e ratio are collected at one point by the detector and not
along a parabolic segment as in the parabola method (Fig. 3.4).

An apparatus with velocity focussing thus has a higher transmission for the ions
than one which uses the simple parabola method, i.e., one can detect smaller amounts
of ions and so, by closing down the slits, obtain a better mass resolution. The resolu-
tion attained by Asfon (1919) was about 130 for the ratio m/Am, that is, for the mass
divided by the separable mass difference Am.

The second major improvement was the introduction of directional focussing (first
done by Dempster in 1918). By means of properly dimensioned sector fields (Fig. 3.5),
it can be ensured that ions with the same m/e ratio but with somewhat differing angles
of incidence, which are therefore deflected by differing amounts, are again collected at
a point.

In modern high-resolution mass spectrographs, both methods — velocity and direc-
tional focussing — are used, leading to what is called double focussing. The precision
attainable today for the relative atomic masses A is down to 10 =7 u. The same criteria
apply as for optical spectrographs: by using narrow slits one obtains high resolution,

Magnetic
field

Electric

g Magnetic
field

A B
Fig. 3.4. A focussing mass spectrograph as designed by Aston. The Fig. 3.5. Directional focussing in a magnetic sector field, schema-
points 1, 2, and 3 denote the points at which three types of particles tically illustrated. Particles which pass a longer distance through

with three different values of m/e are collected the region of magnetic field are more strongly deflected
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17, 16 16 Fig. 3.6. An example of high-resolution mass

O0H 002 ODHZ spectroscopy: separation of 10 different ions

1,40 20 18nn 18 15 14, 12, with mass number 20, whose atomic or molec-
l2 A\ Ne 0D 0H2 NDH ND3 CD“ ular weights lie between 19.9878 and 20.0628.

The picture was made with the double-focus-
sing mass spectrometer of Mattauch and co-
workers [from W. Finkelnburg: Einfiihrung in
die Atomphysik, 11, 12th ed. (Springer, Ber-
lin, Heidelberg, New York 1976) Fig. 15]

but at the cost of intensity. This represents the principal problem for the experimen-
talist. The high resolution is mainly needed for nuclear physics problems, e.g., for the
measurement of the so-called mass defect, but also for problems in analysis and struc-
ture determination in chemistry, Sect. 3.2.4. The resolution m/Am which can be at-
tained at present, i.e., the possibility of separating two masses with the values m and
m+ Am, is more than 100000. An example is shown in Fig. 3.6.

3.2.3 Results of Mass Spectrometry

In atomic physics, mass spectrometers are primarily of interest as instruments for
analysing the isotopic composition of chemical elements.

An element often has several isotopes, for example chlorine: an isotope with mass
number 35 occurs with an abundance of 75.4%; the other stable isotope with mass
number 4 = 37 has an abundance of 24.6%. The resulting relative atomic mass of the
isotope mixture is A, = 35.457. There are elements with only one stable isotope, for
example

7 1
3Be) %3Ala %;L
and others with two stable isotopes, e.g.,

iH iH
99.986%  0.014%,
and finally there are elements with many stable isotopes. For example, mercury, g,Hg,

has 7 stable isotopes with A between 196 and 204. A few further examples are con-
tained in Table 3.3.
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Table 3.3. Some examples of isotopes

Mass number Rel. atomic weight  Abs. atomic weight [10~27 kg]

H 1 1.007825 1.67342
H 2 2.014102 3.34427
2c 12 12.000000 19.9251
160 16 15.99415 26.5584
el 35 34.96851 58.0628
¢l 37 36.965898 61.37929

3.2.4 Modern Applications of the Mass Spectrometer

Aside from precision measurements in atomic and nuclear physics, mass spectrometers
with limited mass resolution are utilised today in many applications in science and tech-
nology.

In chemistry, simplified double-focussing spectrometers are used for analytical pur-
poses. The molecular fragments which result from electron or ion bombardment of
molecules are identified; from their distribution, a clue to the identification of the orig-
inal molecules is obtained.

In physics, chemistry, and technology, simple, compact spectrometers are used to
analyse residual gases in vacuum systems. For this purpose, a mass resolution of
m/Am = 100 is usually sufficient.

A further application of these relatively simple spectrometers is the production of
pure atomic and molecular beams. Recently, high-frequency mass spectrometers have
been applied for this purpose. In these so-called time-of-flight spectrometers, charged
particles are differently accelerated by high-frequency electromagnetic fields depending
on their specific charges, and pass through the spectrometer with different velocities.
The different times of flight (through the spectrometer) are a measure of the ratio
e/m.

In a quadrupole mass filter, the superposition of direct and alternating potentials
on the four cross-connected, parabolically shaped electrodes results in an inhomoge-
neous high-frequency field in the interior of the electrode assembly. A static field is
superposed on the high-frequency field. Only particles with a particular mass and
energy can pass through a filter with a given geometry and frequency (Fig. 3.7).

Fig. 3.7. Schematic of a quadrupole mass filter. The ion
beam, moving in the +z direction, is deflected by a high-
frequency alternating potential. In order for the beam to
pass through the filter, a certain relation between e/m, the
frequency w, and the deflection voltages U and ¥ must be
fulfilled. The dashed orbit applies to an ion for which this
condition is not met. The electrodes are formed in such a
way that they produce an axisymmetric hyperbolic electro-
static field. More on this topic and on the equations describ-
ing the movement of ions in such fields can be found in
W. Demtrdder, Experimentalphysik, Vol. 3, Springer, 1996,
Sect. 2.7

Detector

Mass filter
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3.2.5 Isotope Separation

The separation of isotopes is more a problem of technology and nuclear physics than of
atomic physics, which is the main topic of this book. For this reason, we will only brief-
ly treat the subject here.

In principle, any method which can distinguish particles on the basis of a physical
property depending on the mass may be used to separate isotopes. Which one is em-
ployed in a particular application depends on questions of economics and the state of
the technology. The requirements are rather varied.

Separation of the two hydrogen isotopes 1H and 2H with a mass difference of 100%
is relatively easy, while by contrast the separation of % s 35U and 35U is considerably more
difficult. In the latter case, the masses differ by only 1 25%. In the following, the most
important methods will be briefly described.

Electromagnetic separation with mass spectrographs is usually expensive and slow.
The yields which can be obtained are of the order of 1 mg per hour at a current of
10~* A. For example, 35 g Cl as singly charged ions corresponds to 96500 As transport-
ed charge. At a current of 10~ %A, 35 g of Cl will be deposited in a time

4
M— =9.65 - 10%s = 30 years .
107" A
Nevertheless, this technique is applied on a large scale for isotope separation, for
example for separating uranium isotopes, initially for the manufacture of uranium fis-
sion bombs. The necessary investment of technology and energy is enormous.
Mass separation by means of diffusion through porous membranes is based on the
fact that in a gas, particles of differing masses m; and m, have different velocities v,
and v, at a given temperature. The following relation holds:

v1/vy=)/my/my, since myvi=myv3,

that is, the mean kinetic energy for both types of particle is the same. Light atoms are
therefore on the average faster and diffuse more quickly. To obtain efficient isotope
separation, many diffusion layers must be connected in series. This method was at first
the most important technology for uramum separation: the gaseous compound UFj is
employed to enrich the uranium 1sotope U relative to 238U

The gas centrifuge is also applied on a large scale for uranium separation. Here, the
heavier isotope is acted upon by a stronger centrifugal force. The lighter isotope is en-
riched in the region of the centrifuge axle. For effective separation, many stages must
be employed one after another. The most serious technical problem is the strength of
the materials used in view of the extreme accelerations necessary.

The separation tube utilises thermodiffusion: it is based on the principle that a tem-
perature gradient in a mixture of gases leads to a separation of the mixture; the effect is
increased by convection. Along the axis of a long tube, a heater wire is suspended. The
lighter isotope is enriched by thermal diffusion in the middle and at the top, the heavier
isotope collects by convection at the outer wall and at the bottom of the tube.

Fractional distillation in repeated steps uses the fact that the heavier isotope in
general has the higher boiling point. For example, the boiling point of heavy water
(D,0) lies 1.42 degrees above that of H,0.
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In electrolysis, molecules with the heavier isotope are less easily decomposed than
those with the lighter isotope. This technique is used for large-scale separation of heavy
and light hydrogen.

There are also chemical reactions in which molecules with differing isotopic compo-
sitions react with different rates. In such cases, isotope separation can be achieved
through chemical reaction. Since the availability of narrow-band, tunable light sources
in the form of dye lasers, (see Chap. 21), laser photochemistry can also be used for iso-
tope separation. In this method, certain isotopes in a mixture of molecules composed
of various isotopes can be selectively photoexcited, leading to photochemical reactions
of the selected molecules. Some interesting new techniques for isotope separation have
been developed in recent years based on this principle.

Problems

3.1 Show that a transverse homogeneous magnetic field can be used to sort charged
particles according to their momenta, and to sort monoenergetic particles according to
their masses. All the particles have the same charge.

3.2 An ion beam containing 'H*, 2H™*, and 3H " is accelerated through a voltage of
1000 V and is directed perpendicular to the field lines of a 0.05 tesla magnetic field.
How far apart are the component beams when they have travelled 5 cm through the
homogeneous magnetic field and are measured at a distance of 25 cm from the begin-
ning of the magnetic field?

3.3 A beam of positive ions traverses for a distance /=4 cm an electric field
| E| = 5000 V/m and a parallel magnetic field | B| = 0.01 tesla. The ions travel perpen-
dicular to the direction of the two fields (parabola method). They then cross a field-free
region /' = 18 cm and land on a flat fluorescent screen. What are the parameters of the
parabolas on the screen if the beam consists essentially of singly charged hydrogen ions
and hydrogen molecules with a velocity corresponding to an accelerating voltage
between 1000 V and 4000 V? What does the image on the screen look like if both
positively and negatively charged ions are directed at it?

3.4 The isotopic abundance of ?**U and #*3U in naturally occurring uranium is 0.72%
and 99.28%, respectively. If the isotopes are separated by diffusion, the isotopic mix-
ture after one separation step is 0.754% 23U. How many separations are needed to
enrich the **U to 50%? to 99%?

Hint: The separation coefficient a = (relative concentration before separation)/(relative
concentration after separation) is independent of the composition of the isotopic mixture.
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4.1 Passage of Electrons Through Matter

Beginning in the 1890s, Lenard investigated the attenuation of electron beams passing
through matter. This attenuation can have two causes: the electrons can lose their
energy by exciting or ionising atoms, or they can be elastically scattered and so change
their directions and leave the beam. Lenard produced the beam by means of a cathode
ray tube. Today, one would use thermionic emission as the electron source.

Cathode Experimental
rays area |
— S N—
- \\ Fig. 4.1. Schematic of Lenard’s cath-
. ode ray tube. The cathode rays pass
‘[ + Window through a thin foil — the Lenard
window — into the surrounding air
Pump and excite it, producing fluorescence

An important result may be obtained from the qualitative experiment illustrated in
Fig. 4.1: if the gas discharge tube used for producing the cathode rays is closed with an
extremely thin aluminium foil, it may be observed that electrons from the cathode ray
beam pass through the foil. They excite the air for a distance of several centimeters out-
side the tube, yielding a bluish-red fluorescence light, and can be detected several cm
away from the end of the tube by using a fluorescent screen. An aluminium window of
this type, with a thickness of ca. 5-10~%cm, is called a Lenard window. The experi-
ment offers visible proof that the electrons can pass through some 10000 atomic layers
as well as several cm of air at NTP. Under the assumption that atoms were im-
penetrable for electrons, the scattering of electrons by air would take place over a
length of the order of the gas kinetic mean free path, i.e., in a range of about 10> cm.

From such qualitative experiments, it follows that the interaction cross section for
collisions of an electron from a gas discharge tube with atoms is small compared to the
cross section for collisions between two atoms.

For the quantitative determination of the interaction cross section between elec-
trons and atoms, one may employ a setup analogous to that shown in Fig. 4.1, where,
however, the cathode ray beam passes through the Lenard window into a scattering
chamber. In the chamber, the electron current is measured after the beam has passed
through a gas atmosphere of known composition and density. The collisions of the
electrons with the atoms in the foil can also be investigated; for this purpose, the ex-
perimental parameters (foil thickness, foil material, pressure and composition of the
gas, and distance between foil and electron detector) may all be varied. The interaction
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cross section is obtained from the ratio of incident (/) and transmitted (7) electron in-
tensities by means of the equation derived above (2.22):

I(x) = Iye ™™, 4.1)

where x indicates the thickness of the scattering layer.
It may be shown that:

— The absorption or scattering coefficient o is proportional to the pressure in the scat-
tering chamber. This is in agreement with the definition of the total interaction cross

n
section given earlier as being equal to the sum of the partial cross sections, ¢ = ¥, oy,
i=1
since, for identical scattering particles, & = on is then the sum of all the interaction
cross sections per unit volume, where »n gives the number of particles per unit vol-
ume and is proportional to the gas pressure.

— In foils and in gases, independent of the phase of matter and of the particular prop-
erties of the material, for a given electron velocity it is found that a/¢ = const, i.e.,
the interaction cross section is proportional to the density o of the scattering mate-
rial.

— With increasing electron velocity, the ratio /o decreases strongly (Fig. 4.2).

3

S 4

o

10781
Fig. 4.2. Qualitative behaviour of the interaction
cross section for gas atoms and electrons as a func-
tion of the electron velocity. The collision radius R,

102k which is connected with the cross section ¢ by means

' L L »  of 7R%= g (Sect. 2.4.2), is plotted against the ratio
001 01 10 v v/c of the electron velocity to the velocity of light

In Fig. 4.2, the collision radii calculated from the measured interaction cross sec-
tions ¢ are plotted as a function of the electron velocity. For very fast electrons, atoms
are thus a factor of 10® more penetrable than for slow electrons. The experiments lead
to the following conclusion: only a small portion of the atomic volume is impenetrable
for fast electrons, or, as expressed by Lenard — the inside of an atom is as empty as in-
terplanetary space.

At first, the only general conclusion which could be drawn from this result was that
the mass and charge in an atom are distributed in a “lumpy” fashion, rather than being
evenly spread throughout the atomic volume. Lenard spoke of nuclei and force fields.
The analogy with a solar system was tempting. Today, we know that slow electrons are
scattered by the atomic electron cloud, while fast electrons are scattered by the nucleus
only.

The realisation that there is one small nucleus, which contains the entire positive
charge and almost the entire mass of the atom, is due to the investigations of Ruther-
ford, who utilised the scattering of alpha particles by matter.
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4.2 Passage of Alpha Particles Through Matter (Rutherford Scattering)

4.2.1 Some Properties of Alpha Particles

Alpha particles are emitted by some radioactive nuclei. They consist of doubly ionised
helium nuclei, ‘Z‘He“, with high kinetic energies (several MeV). They can, for example,
be detected by means of their ability to ionise air in a cloud chamber; alpha particles
with an energy of 5 MeV have a range of about 3.5 cm in air at NTP. In this distance,
they lose their initial kinetic energy to the air molecules through ionisation and excita-
tion processes. Since the mean free path for atoms or molecules as calculated by the
kinetic theory of gases amounts to about 10> cm, we see that alpha particles can
penetrate and pass through thousands of atoms (3.5 cm/1073 2 3.5 - 10° atoms) with-
out being noticeably deflected from a straight path. Cloud chamber pictures show that
the paths of the alpha particles are for the most part straight; only near the ends of the
tracks, when the particles have lost most of their kinetic energy and are moving slowly,
do we observe large deflections from straight-line paths (Fig. 4.3). Another possibility
for observing the paths of alpha particles is offered by the spinthariscope or the
scintillation detector (Figs. 2.16 and 2.17). Using scintillation detectors, Geiger and
Marsden investigated the scattering of alpha particles in matter, which we will now
treat in detail.

Fig. 4.3. Cloud chamber photograph of the track of an alpha particle, by Wilson.
The particle passes through several cm of air without noticeable deflection. At the
end of the track, we see two deflections; at the second, we can also see the short
track of the target nucleus, which was accelerated to the right by the collision.
[From W. Finkelnburg: FEinfiihrung in die Atomphysik, 11,12th ed. (Springer,
Berlin, Heidelberg, New York 1976) Fig. 3]

4.2.2 Scattering of Alpha Particles by a Foil

In order to investigate the interaction cross section for collisions between alpha par-
ticles and atoms quantitatively, Rutherford and coworkers utilised the following ex-
perimental setup (Fig. 4.4):
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The alpha particles, which are emitted by naturally radioactive material R, pass
through a collimator and strike a thin metal foil F. The transmitted alpha intensity is
determined by means of a scintillation screen S, observed through the lens L. In con-
trast to the determinations of interaction cross sections described above, in
Rutherford’s experiments the directly transmitted alpha intensity was not the main ob-
ject of the investigation; instead, the dependence of the scattered intensity on scattering
angle 6 was determined. 6 is the angle between the directions of the deflected and the
incident particle beams (Fig. 4.7). Scattering experiments of this type have become one
of the most important tools in nuclear physics. A typical experiment yields a result like
the one shown in Fig. 4.5.

The scattered intensity decreases strongly with increasing scattering angle. The
angular dependence is well described by the inverse fourth power of the sine of half the
scattering angle. At large scattering angles, deviations from this dependence are seen;
we will treat this so-called anomalous Rutherford scattering in Sect. 4.2.4.

It is further observed that scattering occurs even at very large angles. It can be con-
cluded that this is not due to multiple scattering processes; in scattering of alpha par-
ticles by helium atoms in a cloud chamber, large deflection angles, namely 90°, can be
seen directly. An example is shown in the cloud chamber photograph in Fig. 4.6.

A quantitative explanation of these results may be given with the help of the
Rutherford atomic model (1911). The model states that:

1
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Fig. 4.4. Experimental setup for the investigation of
Rutherford scattering: alpha particles from the
radioactive source R are scattered by the foil F. The
light flashes which are produced by the scintillation
screen S are observed through the observation tele-
scope L. The chamber can be evacuated and the ob-
servation lens L may be turned around the foil axis
by means of the ground-glass joint J

Fig. 4.5. Graphical representation of the experimen-
tal results of Geiger and Marsden for the Rutherford
scattering of alpha particles by a gold foil. The scat-
tering rate N is plotted as a function of the scattering
angle 6. The solid curve represents the theoretical
function for Coulomb scattering
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Fig. 4.6. Cloud chamber photographs of
alpha particles. Collision processes with
the gas in the chamber can be seen; left,
the chamber gas is hydrogen, right, it is
helium. In hydrogen, the alpha particle is
only slightly deflected from a straight-
line track, while the hydrogen target nu-
cleus recoils sharply off to the left. In he-
lium, the angle between the tracks of the
alpha particle and the recoiling nucleus
after the collision is 90°, since the two
particles have the same mass. [From K.
H. Hellwege: FEinfiihrung in die Physik
der Atome, Heidelberger Taschenbii-
cher, Vol. 2, 4th ed. (Springer, Berlin,
Heidelberg, New York 1974) Fig. 4]

— Atoms have nuclei with a radius R of about 10~ 2 cm. The nucleus contains nearly
the entire mass of the atom. A collision between an alpha particle and a much lighter
atomic electron produces no measurable deflection in the alpha particle’s path.

— The atomic nucleus has a positive charge Ze, where Z is the position of the element
in the periodic table.

— Around the positively charged nucleus is a Coulomb field given by (at distance r)

E=(/4ne) 28 L, 4.2
r r

4.2.3 Derivation of the Rutherford Scattering Formula

The above model leads to the Rutherford scattering formula (4.20) if we take into ac-
count only the Coulomb repulsion between the nuclear charge and the charge of the
alpha particle. We will use the model to calculate the dependence of the scattering
probability on the deflection angle in two steps: first, for a single scattering event we
determine the dependence of the deflection angle on the impact parameter b, which is
the distance of closest approach of the alpha particle to the target nucleus, assuming no
deflection occurs (see Fig. 4.7). We shall see that a unique relation between the impact
parameter b and the deflection angle 6 exists. Secondly, we will average over all pos-
sible impact parameters, since we cannot follow a single alpha particle on its path
through the target foil, but rather observe the scattering of many alpha particles.
Multiple scattering will not be considered; for the experiment, this means that the
target foil must be sufficiently thin that each alpha particle is only scattered once on
passing through the target.

In order to calculate the path of the particle we recall the motion of a planet under
the influence of an attractive gravitational field. The effective force is proportional to
1/r? where r is the sun-planet distance. The orbits which one finds in this case are
known to be either elliptical, parabolic, of hyperbolic.

Since the Coulomb force has the same dependence upon distance r as the gravita-
tional force, the orbital calculations from celestial mechanics can be utilised directly.
Admittedly, since the Coulomb force is here repulsive, only the hyperbolic orbits
represent possible solutions when we are dealing with charges of the same signs.
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Fig. 4.7. Rutherford scattering. Upper part:
Schematic illustration of the experimental setup.
Lower part: The geometry of the model calcula-
Foil tion. The alpha particle is deflected from A to B
through scattering by the nucleus Ze
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We now wish to determine the relation between the scattering angle 6 and the
impact parameter b (Fig. 4.7). The particle arrives at point A, still distant from the
nucleus, with a velocity vq. If it were not deflected, it would pass the nucleus at a dis-
tance b. Between the alpha particle and the nucleus, there is a repulsive Coulomb force
F

2
Fo_2Ze” T (4.22)

dregr® r

with the nuclear charge Ze, the elementary charge e, the permittivity constant g, and a
distance r between the nucleus and the alpha particle.

We assume that the particle has reached point M in its orbit and express the force
which acts there in terms of two components:

F, = Fsing perpendicular to the original direction, 4.3)
and
F) = Fcos ¢ antiparallel to the original direction. 4.4)

¢ is the angle between the horizontal (i.e., the direction of the incident beam) and the
radius vector r to the momentary position of the particle.

We now apply the law of conservation of angular momentum, placing the origin of
the coordinate axes at the centre of the atomic nucleus. Since the force which acts here
is radial (4.2a), it produces no torque and the angular momentum is constant; in partic-
ular, the angular momenta at the points A and M are the same, or, mathematically,
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(mvob)a = (mr*g)m 4.5)
in which we have used polar coordinates (7, ¢). Solving for 1/r2 yields
1/rt= ¢/veb . (4.6)

If we consider only the motion perpendicular to the original beam direction, New-
ton’s equation of motion reads

dv, 2Ze* 1
m =F = —-Sing . 4.7
dt * 4ney r? ’

If we replace 1/r? in this equation with the right-hand side of (4.6) and integrate over
time, using the abbreviation k = 2Ze*/4 ey, we obtain

L33 B
(20 gr= K [sing 9% ar. 4.8)
fy dt mvgb A dt

In order to determine the limits of the integral, we imagine the point A to be infinitely
distant from the nucleus. Since now no Coulomb force acts, we have v, =0, and the
angle ¢ = 0.

To determine the scattering angle 8 between the incident direction and the direction
of the particle after scattering, we let point B (see Fig. 4.7) move away to infinity. Then
the angle ¢ is seen to be related to 6 through the expression ¢ = 180° — 6. Because of
conservation of energy, the final velocity at the point B is equal to the initial velocity v,
at point A, since the potential energy vanishes at a sufficiently large distance from the
nucleus. The component v, has, using ¢ = 180° — 8, the value v, = vysin . Then the in-
tegral equation (4.8) becomes, using

9 gt —dp, and 2L dr=do,
d di

the following equation:
vosin @ k

n—0
dv, = | singdg. 4.9)
mvgb 0

Upon integration, we obtain
k

mvob

vosin 6 = (1+cosf). 4.10)

With the trigonometric identity

1+cos@

= cot(6/2) “4.11)
sin 6

we obtain the relation between the impact parameter and the deflection angle which we
are seeking:
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b= cot(6/2). 4.12)

mv3

In an actual experiment, we cannot measure the number of scattered particles arriv-
ing at a particular angle @, but rather we have to consider the finite range of angles be-
tween @ and 6+ d@; these correspond to impact parameters in the range b to b+ db.
Then, by differentiating (4.12), we obtain the relation between db and d6:

db = k ! dao. (4.13)

" 2mo? sin(6/2)

Fig. 4.8. Rutherford scattering. The incident
alpha particles with impact parameters in the
range b to b+ db are deflected into the range
of angles 6 to 8- |d6|

Finally, we have to consider that the whole problem has rotational symmetry
around an axis through the target nucleus and parallel to the direction of the incident
beam (Fig. 4.8). Therefore, we have to consider a circular ring with radii r; = b and
r,= b+db, through which the incident beam enters and is scattered into the angular
region from 0— | d |to 8. [We note that with increasing impact parameter b the angle 0
becomes smaller, see (4.12)]. This range of angles corresponds to an “effective area”,
the differential cross section da:

da=2nbdb. (4.14)

If we shoot alpha particles through a thin foil with thickness D and area A, contain-
ing N atoms/cm?, the “effective area” of all the atoms is

dA =2nbdbNDA (4.15)

with the condition that the “effective areas” of the atoms do not overlap one another,
which is a good assumption in a thin foil (up to 10000 atomic layers).

The probability that an incident alpha particle strikes the “effective area” of an
atom in the foil is given by

W= effective area —dA/A=2aNDbdb. (4.16)

total area

With a total of n alpha particles, the number dn’ of the particles which strike the
“effective area” and thus are deflected into the angle range 6 to 6— |d6|is given by
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dn'=n-2rNDbdb. 4.17)

These particles pass through the unit sphere around the target foil on a ring of area
dQ® = 27sin 9| d6|. In the following, it is convenient to use the half-angle 6/2; doing
so, we obtain

dQ® = 475in(6/2) cos(6/2)|d6|. 4.18)
The detector which is used in the measurement cuts out a segment dQ from this ring-
shaped area. This surface element on the unit sphere is called a so/id angle. The number
of particles actually measured is therefore smaller than the number dn’ by the ratio

dQ/dQWY. If the detector subtends a solid angle of d€, the number of particles ob-
served at angle @ is given by

dn=dn'-dQ/dQY. (4.19)
Inserting b and db from (4.12) and (4.13), we obtain the full Rutherford formula:

dn(6,d6) _ Z%¢’DN
n (4reg)*m?vsin®(6/2)

(4.20)

with n the number of incident particles, dn the number of particles scattered at an angle
@ into the solid angle dQ, Z the (target) nuclear charge, e the elementary charge, D the
target foil thickness, N the number of atoms/cm? in the target foil, dQ the solid angle
subtended by the alpha particle detector, g, the permittivity constant of vacuum, m the
mass of the scattered (alpha) particles, v, the velocity of the incident particles, and 6 the
angle of deflection.

This formula tells us how many particles dn out of the incident number # are scat-
tered at a particular angle @ into a particular solid angle d 2, when target properties and
incident particle velocity are known. Corresponding to (4.20), we find for the differen-
tial cross section (4.14)

2, 4
Ze dQ®W.

a= 4.21
(4meg)’mvdsin®(6/2) @.21)

Furthermore, it is useful to define the macroscopic (differential) cross section Nda,
which is equivalent to the “effective area” dA per unit volume. By integration of (4.21)
over QU we can obtain the fotal interaction cross section a; the latter, however, di-
verges in the present case of a pure (unscreened) Coulomb potential, since (4.21) di-
verges for § — 0. In the Rutherford scattering formula (4.20) for scattering by a foil, the
limiting case @ — 0 is in principle not physically relevant: this is a result of the model,
since § = 0 means that b = oo. An infinite value of the impact parameter is, however,
unreasonable given the assumed dense packing of the target atoms; the largest possible
impact parameter is equal to half the distance between target atoms in the foil. For
0= n, dn/n shows a minimum. This corresponds to & =0. For very small impact
parameters, there are deviations between the results of the calculation using the scatter-
ing formula (4.20) and the experiments. This occurs because the model of a deflection
of the alpha particles by the Coulomb field of the nuclei alone is insufficient. From the
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values of the impact parameter & for which these deviations become important, we can
determine the nuclear radius R. This will be discussed in the following section.

4.2.4 Experimental Results

The Rutherford formula has been experimentally tested with great care. Keeping the
solid angle d 2 constant, the sin ~#(8/2)-law is found to be excellently reproduced in the
counting rate (Fig. 4.5). Even with alpha particles of energy 5 MeV and scattering
angles of 150°, no deviations from the Rutherford formula are found; this corresponds
to an impact parameter of 6 - 103 m. In this region, only the Coulomb potential of
the nucleus has a measurable effect on the alpha particles.

The experimental tests of the Rutherford scattering formula can be summarised as
follows:

The Coulomb law is obeyed well even at very small impact parameters, since the
Rutherford formula is still valid. The nuclear radius is thus

R<6-10"%m.

From experiments with different foil materials, the nuclear charge Z can be deter-
mined. The experiments of Chadwick (1920) verified that Z is identical with the posi-
tion of the element in the periodic table.

The nucleus was originally assumed to be constructed from A protons and (4 — Z)
electrons where A is the mass number defined on p. 6. After 1932 it was known that this
model is not correct; (4 — Z) is rather the number of neutrons and Z is the number of
protons in the nucleus.

We come now to the so-called anomalous Rutherford scattering. In the scattering of
very fast alpha particles (E > 6 MeV) at large angles 8, i.e., with small impact para-
meters b — nearly central collisions — one observes clear deviations from the Ruther-
ford formula. Here the Coulomb law is apparently no longer obeyed. The alpha par-
ticles approach the nuclei so closely that another, short-range interaction force be-
comes effective: the nuclear force. From the values b and 8 at which deviations from
the Rutherford formula, i.e., from the Coulomb law begin to occur, a nuclear size of
R =10~ m is obtained. This means that the density of the nucleus is about 10"’ times
larger than the density of the atom as a whole. These deviations from the scattering be-
haviour expected on the basis of the Rutherford formula are called anomalous
Rutherford scattering.

The Rutherford model may be developed further. Negative electrons orbit around
the positively charged nucleus with nuclear charge Z. This represents a dynamic equi-
librium: without the motion of the electrons, no stability would be possible. If deflec-
tions of alpha particles through large angles are possible without causing a noticeable
energy loss on the part of the alpha particles, then the mass of the target nucleus must
be large compared to that of the alpha particle. On the other hand, observations with
cloud chambers filled with helium gas, in which the target and the projectile, i.e., a He
atom and an alpha particle, have virtually the same mass, show deflections of about
90°. From such experiments one can show that the nucleus must contain nearly the
whole mass of the atom.

By contrast, momentum conservation requires that in a collision between an alpha
particle and an electron, due to the small electron mass only very little momentum can
be transferred. With the electron/alpha particle mass ratio, the deflection of the alpha
particles can be no larger than 28'’.
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For very large impact parameters (small deflection angles), the Rutherford formula
is likewise no longer exactly valid. The Coulomb potential of the nucleus is perturbed
by the atomic electrons. These effects occur for b= 10~1%cm (deflection angles of a
few seconds of arc) and are very difficult to detect experimentally. Completely
analogous scattering formulae and scattering problems occur in the scattering of
protons by atomic nuclei. The angular dependence of the scattering is related to the
scattering potential; the latter can thus be determined from experiment. Scattering pro-
cesses play an important role in nuclear and elementary particle physics, in the investi-
gation of the internal structure of nuclei and of certain elementary particles. For
example, Hofstadter was granted the Nobel Prize in 1961 for his scattering experiments
using fast electrons (10° eV) on protons and neutrons. From the angular dependence of
the scattering intensity, he was able to obtain information about the inner structure of
the proton and of the neutron.

4.2.5 What is Meant by Nuclear Radius?

We can summarise our considerations in the above sections as follows: an alpha par-
ticle, which approaches a nucleus from outside the atom, is acted on at first only by the
repulsive Coulomb potential. If it approaches the nucleus sufficiently closely, it will
also be acted upon by the attractive nuclear force. The nuclear radius is defined as the
distance at which the effect of the nuclear potential is comparable to that of the
Coulomb potential (Fig. 4.9). For such investigations, alpha particles of high kinetic
energies are used, so that they can approach the nucleus sufficiently closely.

Epot 4
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Fig. 4.9. Nuclear force and Coulomb potentials,
used for defining the nuclear radius R

The empirical result of such measurements on nuclei with the mass number A4 is
found to be

R=(13+0.1)4"3.-10"%m.

Numerical examples for 4 =12 and A = 208 are:

R(%20)=2.7-10""m, R(EPb)=7.1-10"Ym.
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This relationship between the nuclear mass and the nuclear radius implies that the
density of nuclear matter is constant and independent of the size of the nucleus. This is
one of the experimental results underlying the liquid-drop model for nuclei.

Problems

4.1 An aluminium foil scatters 10* o particles per second in a given direction and solid
angle. How many « particles will be scattered per second in the same direction and solid
angle if the aluminium foil is replaced by a gold foil of the same thickness?

4.2 The number of o particles scattered from a foil into a counter is 10%s ~! for a scat-
tering angle of 10°. Calculate from this the number of ¢ particles which will be scat-
tered into this counter as it is moved on a circular path from 10° to 180°. Show your
results for N(6) graphically.

4.3 Determine the distance of the closest approach of protons to gold nuclei in head-
on collisions in which the protons have kinetic energies of (a) 10 MeV and (b) 80 MeV,
and compare the results with the nuclear radius. In which case would the proton
“touch” the nucleus? Determine the kinetic energy of the proton when it “touches” the
nucleus.

4.4 Through what angle is a 4 MeV ¢ particle scattered when it approaches a gold
nucleus with a collision parameter of 2.6 x 10~ m?

4.5 How large is the collision parameter of an ¢ particle with 4 MeV kinetic energy
which is scattered through the angle 8 = 15° by collision with a gold nucleus (Z = 79)?

4.6 A beam of ¢ particles with 12.75 MeV Kkinetic energy is scattered off a thin
aluminium foil (Z = 13). It is observed that the number of particles which are scattered
in a certain direction begins to deviate from the value calculated for pure Coulomb
scattering at the deflection angle 6 = 54°. How large is the radius of the Al nucleus if
one assumes that the ¢ particle has a radius R, =2 %10~ m?

Hint: Calculate the orbit according to (4.8 and 9) up to ¢ = (180 — 8)/2, the point of
closest approach, and determine r(¢g).

4.7 A tight bunch of protons with uniform energy strikes a 4 pm thick gold foil per-
pendicular to the direction of flight. Of these protons, the fraction #=1.35x10"3 is
scattered through the angle = 60° in the angular interval dé.

a) What is the kinetic energy of the colliding protons?
b) Calculate the differential effective cross section da(8)/d 2 of the gold nucleus.
¢) What is the collision parameter 5?

Hint: Use (4.20) and the expression

dn/n -ND da(6) )

aQ aQ

4.8 Why are a particles used for scattering from the gold atoms in the Rutherford
experiment, and not electrons? What advantages and/or disadvantages would neutrons
have as projectiles?
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5.1 Wave Character of Light

The fact that light can be regarded as a wave phenomenon was experimentally shown in
the 17th and 18th centuries by the Dutch physicist Huygens and the English physician
Young with the aid of interference experiments. In the 19th century, the physical nature
of these waves came to light: they are electromagnetic waves, described by Maxwell’s
equations. They are characterised by the field vectors E and B of the electric and the
magnetic field and exhibit a periodicity with the frequency w.

In the year 1885, the theory of electromagnetic phenomena was completed with the
formulation of the Maxwell equations. Two years later (1887), Hertz succeeded in
demonstrating that such waves can be produced in the laboratory as emissions from an
oscillating dipole. According to Maxwell, an electric and a magnetic field propagate
away from an accelerated charge with the velocity of light. The accelerated charge
radiates energy. The emission of light in the oscillator model is a result of a high fre-
quency oscillation carried out by a charged particle. In absorption and in scattering of
light, the incident electromagnetic wave excites the oscillator to forced oscillations.
This classical Maxwell theory permits the precise calculation of the electromagnetic
waves which are emitted by radio and radar antennas. Furthermore, it completely
describes all of the wave properties of electromagnetic radiation, for example inter-
ference and diffraction.

Electromagnetic waves may be produced over an extremely wide range of
frequencies (see Fig. 8.1); for this purpose, a number of different processes may be
used.

Besides the oscillating dipole, some other examples are:

— the emission of light by the electrically charged particles in particle accelerators.
Here, the synchrotron radiation is particularly noteworthy. The circulating particles
in a circular electron accelerator emit radiation with a continuous spectrum. This
radiation is utilised — for example at the German Electron Synchrotron (DESY) in
Hamburg — as an intense, continuous, polarised light source for spectroscopy in
the near, mid-, and far ultraviolet spectral regions. Figure 5.1 shows a schematic
illustration of the accelerator in Hamburg. In Fig. 5.2, the spectrum of the syn-
chrotron radiation is indicated. At relativistic particle energies, i.e., when the
particle velocity is no longer small compared to the velocity of light, the emitted syn-
chrotron radiation energy is a considerable fraction of the total energy which must
be expended to operate the accelerator.

Originally, electron synchrotrons were constructed as particle accelerators for
high-energy physics research, and the synchrotron radiation was only a byproduct.
Today, special storage rings (“dedicated sources”) are built expressly for producing
radiation, and yield intense beams of photons up to very high energies. An ex-



50 5. The Photon

ample of such a large “third-generation” machine is the European Synchrotron
Radiation Facility (ESRF) in Grenoble, France.

— A radiation emission which is produced in a similar manner and which is also called
synchrotron radiation occurs when charged particles become trapped in the
magnetic field of the earth. This phenomenon also occurs in distant regions of
space, for example in the famous Crab nebula. Various astronomical objects are
known to emit radiation in frequency regions from the far ultraviolet down to radio
frequencies.

— A negative acceleration of electrons — for example a slowing down in the field of an
atomic nucleus — leads to the emission of x-rays, the so-called bremsstrahlung.

— The thermal radiation of the sun is the energy source for all life on the earth.
While the wave character of light must be considered to be an experimentally and

theoretically well-established fact, especially because of diffraction and interference
phenomena, there are, on the other hand, experiments in which light behaves as

particles; these are called light quanta or photons.
Before we describe the experiments which demonstrate the particle nature of light,
we will summarise the most important physical properties of photons.

Photon
Energy hv
Velocity c

Rest mass m=0

&, ELECTRONS (e7)

B, PosiTRONS  (eh)
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Fig. 5.1. A schematic representation of the electron synchrotron DESY and the
storage ring DORIS in Hamburg. Electrons are preaccelerated by linear accelera-
tors; positrons are generated in a converter target and stored in the accumulator
storage ring PIA. Then both kinds of particles are further accelerated in the syn-
chrotron DESY II and injected into the DORIS ring, where they can be stored for
several hours. Alternatively, the particles may be accelerated to still higher energies
in the former storage ring PETRA, and then injected into the electron-proton
storage ring HERA (not shown in the drawing), where they are used for experi-
ments in high-energy physics. The DORIS storage ring is used both for high-energy
physics and as a large-scale source of photons for experiments with synchrotron
radiation. In the facilities of the Hamburg Synchrotron Radiation Laboratory
(HASYLAB) and the European Molecular Biology Laboratory (EMBL), about 30
experimental stations have been constructed for synchrotron radiation experi-
ments. (Provided by C. Kunz, Hamburg University)
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Fig. 5.2. The spectral intensity distribution of the syn-
chrotron radiation from various electron synchrotrons
and storage rings (photons/s eV mrad ~2). The radia-
tion is continuous from the visible into the x-ray
regions. In the far-ultraviolet and soft x-ray regions,
an electron or positron storage ring is currently the
best radiation source available. In addition to the
spectrum emitted from the bending magnets of
BESSY (in Berlin) and HASYLAB (in Hamburg), we
show the considerably higher photon flux from the 32-
pole “wiggler” W1 at HASYLAB. (Provided by
C. Kunz, Hamburg University)
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For converting from the quantum energy of a photon E = kv, which is often expressed
in eV, to the vacuum wavelength A,,. of the light wave, the following relation holds:

E[eV] = 12398/1[A] . » ;.1

In the next sections we will describe three experiments which can only be under-
stood by assuming the existence of photons.

5.2 Thermal Radiation

5.2.1 Spectral Distribution of Black Body Radiation

The quantisation of energy in the interaction of light with matter was postulated for the
first time by Planck in the year 1900 in his theoretical analysis of the spectral distribu-
tion of the light emitted by a black body radiator (defined below), which had been ex-
perimentally determined. This light is referred to as thermal or black body radiation.

Hot objects emit light radiation as a result of their temperature. This is an everyday
experience. It is well known that the colour which we see in a thermal radiator (for
example a furnace) changes from dark red to bright red to yellow to white as the tem-
perature of the furnace is increased. The determination of the colour in the interior of a
furnace is used as a measure of its temperature; this technical application is called
Dyrometry.

At temperatures below a few hundred kelvins, the radiation emitted is for the most
part infrared light, also called heat radiation. This infrared radiation is responsible for
the fact that a thermally isolated object eventually reaches the same temperature as its
surroundings. If one wishes to carry out experiments at very low temperatures (e.g., 4.2K
and below), the experimental region must therefore be screened from the thermal radia-
tion of the laboratory, which is at room temperature, by using cooled thermal shields.

The laws governing the spectral intensity distribution of thermal radiation are
obtained by the experimental analysis of the black body radiator. This is a cavity which
emits radiation being in thermal equilibrium with its walls; the material of the walls
emits and absorbs thermal radiation.

Experimentally, a source of black body radiation is most easily obtained by making
a small hole in the wall of a cavity which is held at constant temperature. The hole is so
small that neither the radiation which enters the cavity from outside, nor that which
escapes to the outside, is sufficient to alter the thermal equilibrium in the cavity
(Fig. 5.3). The energy density u(v, T) of the radiation field within the cavity can be
determined by measuring the radiative power (energy per unit time) N(v, T) connected
with the spectral radiative flux density P(v, T) which passes out of the hole, using a
spectrometer. The spectral energy density u(v, T) is defined as

u(v, Tydy = radiation energy in the frequency range v...v+dv

volume
and the spectral radiative flux density 2 P(v, T) as

2P(v, T)dv = radiative power in the frequency range v...v+dv .

area - solid angle
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Fig. 5.3. Thermal radiation. Upper part: Schematic
illustration of a cavity radiator. Lower part: Typical
measured curves of the intensity distribution in the
black body radiation at various temperatures
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2 P(v, T)dvis the quantity of energy within the frequency interval v...v+dv which
is radiated per unit time through a unit area into the solid angle 1 sterad normal to the
surface. The factor 2 in the definition comes from the fact that the radiation can be de-
composed into two components with polarisation directions perpendicular to each
other. P(v, T)dv for one component, i.e., for linearly polarised radiation, is independ-
ent of the polarisation direction for a black body radiator. For the energy radiated
from a surface 4 at an angle 6 to the surface normal as unpolarized radiation into the
solid angle 4 2, we have (in the time interval A7 and the frequency range v...v+dv):

E=uW,T)dv-c-At-(AQ/4n)Acos 8 . 5.2)
Figure 5.3 shows some typical experimental results. The radiation has a continuous
spectrum with a prominent maximum, which lies in the infrared when the black body
radiator is at room temperature.

The following results are important:

— At a given temperature, the energy distribution is the same, independently of the
shape and material of the cavity.

In (5.2), the radiation in a frequency interval from v to v+dv at an angle 6 is

calculated. The radiated power of the surface element per polarization direction in

all directions into a hemisphere can be found by integration over angles:
27 n/2

P, Ty = —u,T) | do | cosBsin0df=Su(,T) . (5.22)
8n 0 0 8

The limits of integration here imply that the surface can only radiate outwards (into
a hemisphere, see Fig. 5.3). From this expression we obtain the total radiation at
a temperature T by integrating over all frequencies and polarization directions:
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§=2§PW,T)udv=0-T*". (5.3)
0

This is the Stefan-Boltzmann Law, with o = 5.670 - 10 ¥ Wm 2K 4,
— The Wien Displacement Law holds for the wavelength at which the maximum inten-
sity Amax Occurs in the emitted spectrum, as a function of temperature:

AmaxT = const = 0.29cm K. 5.9

As an example we can take the solar radiation: the surface temperature of the sun is
6000 K; the wavelength at maximum intensity is A,z = 480 nm.
— The law derived by Rayleigh and Jeans from classical electrodynamics,

2
P=—kT (5.5)
c

describes the radiative flux density per polarisation direction very well for /ow fre-
quencies. However, at high frequencies, this law cannot be correct: if it is integrated
over all frequencies, it yields an infinitely large energy density — we encounter the
so-called ultraviolet catastrophe. Within classical electrodynamics and thermo-
dynamics it was not possible to find an expression for P which agreed with experi-
ment at high frequencies. This was accomplished for the first time by the Planck
formula.

5.2.2 Planck’s Radiation Formula

According to Planck, the experimentally determined spectral energy density of the
radiation per unit volume, in the frequency interval v... v+ dv, can be represented by

8nhv? 1

U T dy = = —r—dv. (5.6)

From this we obtain for the radiative flux density per polarisation direction and solid
angle
hv?

Pv,T)dv=————dv.
7 2T _7)

These radiation formulae may be derived by making the following assumptions:

1) The atoms in the walls of the cavity behave like small electromagnetic oscillators,
with each having its characteristic oscillation frequency v. They radiate electromag-
netic radiation out into the cavity and absorb radiation from the cavity; a thermal
equilibrium is established between the radiation in the cavity and the atoms in the
cavity walls. The excitation of the oscillators depends on the temperature.

2) The oscillators cannot — like classical oscillators — take on all possible values of
energy, but rather only discrete values described by

E,=n-h-v, $.7
where n is an integer n=0,1,2,... and & is Planck’s constant (k= 6.626176

-107% Js = 4.14 .10~ eVs). Today we know that this quantisation is more cor-
rectly described by the equation
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E,=(n+1/2)hv. (5.8)

The quantity Av/2 is the zero-point energy of the oscillator. We will derive (5.8)
using a quantum mechanical treatment in Chap. 9.

3) As long as the oscillator is not emitting or absorbing (radiation) energy, it remains
in its quantum state, characterised by the quantum number 7.

4) The number of possible states of oscillation of the electromagnetic field in the
cavity of volume V between v and v+ dv for both polarisation directions is given by

_ 8 Vv?

03

dz dv, (5.9)

which can be derived in classical electrodynamics.

The existence of discrete energy values represents a contradiction to the experience
of classical physics, where energy always seems to occur with continuous values. The
reason that quantised energy steps are not observed in classical physics is the smallness
of the Planck constant 2. We give a numerical example to make this clear:

A mass-and-spring harmonic oscillator with a mass m = 1 kg and a spring constant
f=20Nm™!is oscillating with an amplitude x, = 10 ~2m. Its characteristic frequency
is then given by

v=(1/27))/f/m=0.71s"".
The energy of the oscillator is
E=fx3/2=1.0-10737J.
This energy corresponds to n energy quanta of the frequency v:

-3
n=E/hv= 1(3)4 ! -=2.1-10".
6.6-107*Js-0.7s"

If n now changes to n+1, this produces a relatively energy change of

hv
n-hv

AE/E = =10"%.

The relative change is thus extremely small.

From this we conclude that an energy quantisation for macroscopic systems in the
realm of classical physics cannot be detected, due to the extremely large quantum
numbers which occur.

5.2.3 Einstein’s Derivation of Planck’s Formula

The derivation of the Planck radiation formula due to Einstein (1917) is an interesting
example of the combination of optics, thermodynamics, and statistics. Einstein
assumed that light consists of particles, the so-called light quanta or photons. Each
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light wave of frequency v corresponds to a number of photons. Furthermore, in this
theory the existence of discrete atomic energy levels is already assumed. The justifica-
tion for this latter assumption in terms of the Bohr atomic model will be treated in
Chaps. 8 and 9; we thus anticipate it here.

E 2 & - o
Ratataar
NN W AN\ AN
hv hv hv 2 hv Fig. 5.4. Absorption, sponta-
neous and stimulated emission of
E - \ \_ radiation with the quantum ener-
1 - gy hv between two energy levels
Absorption Spontaneous emission Stimulated emission £ and E;

An atom with two energy levels E;, E, may, according to Einstein, interact with
electromagnetic radiation in three different ways:

— Absorption of a light quantum takes the atom from the lower level E; into the
energetically higher level E,. In the process, a light quantum of energy
AE = E,— E; = hvis removed from the radiation field.

— Emission occurs from the level E, spontaneously within a time known as the mean
lifetime. A light quantum of energy AFE is thereby released into the radiation field.

— Just as light quanta can be absorbed, light quanta in the radiation field can also
stimulate the emission of further quanta when the atom is in the higher level E,. For
this stimulated or induced emission, primary light quanta are thus necessary.
Another light quantum joins those which were already present in the radiation field.

These processes are shown schematically in Fig. 5.4.

In order to derive Planck’s formula, we consider, following Einstein, a system of N
atoms. The numbers of atoms in the level E; or E, are denoted by N; and N,, respec-
tively. The system is taken to be in thermal equilibrium with its surroundings. Inter-
actions with the radiation field are only possible in the form of emission or absorption
of radiation as discrete energy quanta hv = E,— E;.

Es Ny
Biz| Az1| By
Fig. 5.5. Derivation of the Planck formula: two energy levels E,
\ and E, with occupation numbers N; and N, are connected by
E] , N‘| transitions with the probabilities By,, B,; and A,

The radiation field is taken to have the radiation energy density u(v, T), which we
will denote in the following simply as u(v). It then produces, per unit time, the
following transitions (Fig. 5.5):

Absorption from 1 to 2. The number of processes in time dt is proportional to the
occupation number N, of level 1 and to the radiation energy density u(v):
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dN12=B12u(v)N1dt. (5.10)

The proportionality constant Bj, is called the Einstein coefficient and is a measure of
the transition probability per unit time and radiation density.

Transitions from 2 to 1 are composed of two contributions, as seen in Fig. 5.5: the first
is spontaneous emission from 2 to 1. The number of such processes per unit time is pro-
portional to the occupation number N,. We have:

dN£1 =A21N2dt. (511)

Ay is also an Einstein coefficient and is a measure for the transition probability per
unit time. Furthermore, we have induced emission from 2 to 1. 1t is, analogously to
(5.10), proportional to the occupation number N, and to the radiation density u(v).
The result is:

dN3i = Bju(v)N,dt . (5.12)
B,, is defined in an analogous way to the Einstein coefficient By, in (5.10).

In equilibrium, an equal number of transitions occurs in each direction. We must
therefore have

dNy, = dNjy + dN; . (5.13)

Setting (5.10) and (5.11, 12) equal leads to the following ratio of the occupation
numbers:

Ny, = Bur®)

=_ 1272 (5.14)
A+ Byu(v)

Since the system is in thermal equilibrium, the ratio of the occupation numbers of
the two energy levels can also be calculated according to the Boltzmann distribution.
It must then be true that

Ny/N; = e 52/kT/e=EV/KT (5.15)

From these two equations follows

Bpu(v)  _ e~ E2/KT /o —E/kT (5.16)
Az + Byu(v)
and
u(v) = Ay (5.17)

RV /kT
Byse =By

with the abbreviation E,— E; = hv.
To determine the coefficients A and B, we use the limiting condition that #(v) must
go to infinity when T'— oo, i.e., the denominator of (5.17) must go to zero. Then we have

312=Bz1 . (518)
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From this follows

A

u(v)= ——= |
Blz(ehv/kT_ 1)

(5.19)

Furthermore, the experimentally verified Rayleigh-Jeans law must hold for small fre-
quencies, i.e., for hv < kT, see (5.5),

8nvikT

u(v) =—"> (5.20)
c

For small values of the exponent (hv/kT) we can use a series expansion for the
exponential function: exp(hv/kT) =1+ hv/kT+... . Inserting this in (5.19) yields

uv) = An kT (for hv <kT), (5.21)

B12 v

which, combining with the Rayleigh-Jeans law (5.20), leads to

(holds generally) . (5.22)

Finally, inserting in (5.19),

8nhv? 1

u(v) = 3 ohAT_{ "

(5.23)

Equation (5.23) is the Planck formula.
Rearranging (5.22), we find for the relation between the Einstein coefficients for
transitions between levels 2 and 1,

8nhv?
c3

Ay = By, . (5.24)

This corresponds to the Kirchhoff relation, according to which the probabilities for
spontaneous emission and absorption are proportional.

Equation (5.18) is, furthermore, an expression of the fact that the radiation field
takes up and gives out radiation quanta in like fashion; absorption and stimulated
emission are fully complementary physical processes.

Einstein’s derivation of the Planck formula lends strong support to the existence of
light quanta of energy Av. From the equation E = Av and the equivalence of mass and
energy, E = mc?, it follows that a mass can also be ascribed to the photon, having the
value m, = hv/c?. However, the rest mass of the photon is in fact zero.
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5.3 The Photoelectric Effect

In the year 1888, Hallwachs measured for the first time the laws governing the release
of electrons from metals by light, the photoelectric effect, following earlier observa-
tions by Hertz. The results of his experiments were explained in 1905 by Einstein using
the hypothesis of light quanta.

The photoeffect may be simply demonstrated, qualitatively, using the setup shown
in Fig. 5.6. A zinc plate is activated on its surface by rubbing with mercury and is
mounted in an electrically insulated holder. If it is negatively charged and then illu-
minated with ultraviolet light, it rapidly discharges. A positively charged plate cannot
be discharged by light.

From these experiments we see that light sets electrons from the plate free. The
negatively charged plate releases these electrons to the surrounding air; the positively
charged plate retains them due to Coulomb attraction. These experiments may be made
more quantitative by replacing the electrometer with a so-called dropping electrometer;
the quantity of charge released from the plate can then be measured as a function of the
intensity and energy of the light.

If one also wishes to measure the kinetic energy of the electrons, the counter-field
method may be used: one measures the maximum voltage V., which is just sufficient

Light
1 a 1 b intensity P
T’lim 4
4
Vimax c
Slope —
0 * )
il v P
//
I
Va

Fig. 5.7a— d. Quantitative results for the photoeffect. a) Photocurrent
I as a function of the frequency v of the light. Below the limiting fre-
quency vy, there is no longer a photocurrent. b) Photocurrent I as a
function of the applied voltage V. Positive values of the voltage here
mean that the irradiated electrode is the cathode. The largest negative
voltage which can still be overcome by the photoelectrons (when the
irradiated electrode is the anode) is V,,. The saturation current Igis a
Photocathode function of the light intensity P. ¢) Maximum braking voltage V,,, asa

L’Qh{

function of the light frequency v; measurement of the ratio #/e and of

Fig. 5.6. Photoeffect. Upper part: A negatively
charged electrometer is discharged upon illumination
of the electrode, a positively charged one is not.
Lower part: Arrangement for quantitative study of
the photoeffect (voltage V, current I)

the work function ¥V, as the slope and intercept of the straight line
according to (5.28). It should be remembered that in the counter-field
method, both work functions, that of the cathode and that of the
anode, are to be taken into account. d) Saturation current Ig as a func-
tion of the light intensity P. The current increases with the intensity
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to keep the electrons from leaving the plate. For this purpose, the setup shown in the
lower part of Fig. 5.6 may be used, with the illuminated electrode however attached to
the positive pole of the voltage source.

The results of such an experiment are shown in Fig. 5.7: the electron current / as a
function of the frequency v of the light begins at a limiting frequency vy, which is char-
acteristic for the electrode material (Fig. 5.7a). The maximum kinetic energy of the
electrons follows from the current-voltage characteristic curve of the apparatus
(Fig. 5.7b). If the counter voltage — the braking potential — reaches a certain value
Vimax» dependent on the frequency of the light, the photocurrent drops to zero and
remains so. The electrons which are emitted no longer have sufficient energy to over-
come the braking potential. The expression eV, = mv?/2 gives the velocity of the
electrons. If the maximum braking potential V,,,, is plotted against the frequency of the
light, a straight line is found (Fig. 5.7¢).

To understand these experiments, we need the light quantum hypothesis. Classical-
ly, it would be expected that the electric field E of the light, which is proportional to the
square root of the light intensity, is responsible for the acceleration and release of the
electrons from the electrode. The energy of the photoelectrons should increase with in-
creasing light intensity. We find, however, that the energy of the photoelectrons does
not depend on the light intensity (and thus on the radiation power), but only on the fre-
quency of the light.

On the other hand, the number N of emitted electrons is proportional to the inten-
sity P of the light (Fig. 5.7d).

Photoelectrons are only emitted when the light frequency is larger than a charac-
teristic value vy, which depends on the electrode material. The following relation must
hold:

hvzhvjp,=eV,. (5.25)

Clearly, a part of the light energy Av is used to release an electron from the metal
electrode. For this purpose an amount of energy equal to eV,, called the work
function, is required. This work function is specific for the electrode material. The
remainder of the energy of the light quantum is available to the electron as kinetic
energy. The total energy of the light quantum is thus transferred in an elementary
process to the electron. The energy balance is given by

mv?/2 =hv —eVy. (5.26)
kinetic energy = quantum energy — work function
of the photoelectron  of the light of the photoelectron

The kinetic energy of the photoelectrons is equal to the energy e V,.,; thus we can write
(5.26) in the form

eViax = hv—eVy (5.27)
or

Vinax = Av/e—Vy . (5.28)

The slope of the straight line which is obtained by plotting V,,,, against the fre-

quency v of the exciting light (Fig. 5.7¢) can be used for a precision measurement of the
ratio #/e. For the angle a of the slope we have
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tana = h/e. (5.29)

Table 5.1 gives some examples for the work functions of various metals. The alkali
metals are notable for their especially small work functions.

Table 5.1. Work functions eV, and limiting wavelengths A;;;, of several metals

Metal eV, [eV] Ajim [nm]
Li 2.46 504
Na 2.28 543
K 2.25 551
Rb 213 582
Cs 1.94 639
Cu 4.48 277
Pt 5.36 231

An arrangement in which the electrons released from an electrode (photocathode)
complete a circuit, open in the absence of light, between the photocathode and another
electrode is called a photocell. Photocells are used in numerous applications in meas-
urement and control technology.

Apart from the so-called external photoeffect, which we have discussed above, the
same phenomenon is met again in many other areas of physics. In solid state physics,
the release of normally bound charge carriers by the action of light is called the internal
photoeffect. In this case, an increase in the electrical conductivity of semiconductors or
insulators upon illumination may be observed. In nuclear physics, atomic nuclei can be
excited and caused to emit nucleons, i.e., the particles of which the nucleus is
composed, upon absorption of very short wavelength radiation (x-rays or gamma
rays). This is termed the nuclear photoeffect.

5.4 The Compton Effect

5.4.1 Experiments

The Compton effect is the name given to the scattering of light by weakly bound or free
electrons. This effect occurs in particular in the x-ray region of the electromagnetic
spectrum. The incident light wave (x-radiation) excites electrons in the target atoms so
that they oscillate. The oscillating electrons in the field of the positively charged nuclei
may be considered as classical oscillators; they emit radiation themselves, with the same
frequency as that with which they are driven. This radiation is called Rayleigh-scattered
radiation. The theory of Rayleigh scattering was first developed for visible light; it
explains the blue colour of the sky. Light of short wavelength (blue) is more strongly
scattered than light of long wavelength (red light). The scattered radiation has the same
wavelength as the primary radiation, and is polarised. In 1909 it was shown by Barkla
that this type of scattering also occurs with x-radiation.

In 1921, Compton observed that in addition to the spectrally unshifted scattered
radiation, a spectrally displaced component appeared (Fig. 5.8). There is a simple
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Incident Scattered Fig. 5.8. Compton Effect. Upper part: Experimental setup.
x-radiation x-radiation The x-radiation which is scattered by the target (e.g., a
%/// graphite block) is measured as a function of the scattering

% angle 6, which is defined to be 0° for undeflected radiation

Target and 180° for radiation reflected back towards the source.
5 Lower part: Measured scattered radiation as a function of
Crystal wavelength for various scattering angles. The unshifted
spectrometer 5 Rayleigh-scattered radiation as well as the shifted Compton-
scattered radiation are seen
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relation between the shift in the wavelength and the scattering angle: independently of
the target material, it is found that

AA =24 (1—-cos8) (5.30)

with the Compton wavelength 1. = 0.024 A. The wavelength shift A4 is also completely
independent of the primary wavelength. Only the intensity of the Compton scattering
depends on the target material: it is especially large for light materials (Z small), as
compared to the x-ray absorption which increases approximately with Z3 (18.5).

Two numerical examples may serve to illustrate Compton scattering; the wave-
length shift is a maximum at 8 = 180°. At an energy of 1000 eV for the light quanta
before scattering, the energy of the 180°-scattered radiation is 996 eV; at a primary
energy of 1 MeV, the 180°-scattered radiation has an energy 200 keV. In the former
case, the energy is reduced by 4 eV or 0.4%, in the latter by 800 keV or 80%. In both
cases, the corresponding shift in the wavelength is about A4 = 0.050 A.

Fig. 5.9. Explanation of the Compton effect: the incident x-ray
quantum with energy E = hv and momentum p = Av/c collides
with an electron. In the collision, it transfers energy and momen-
tum to the electron; the scattered x-ray quantum thus has a reduced
energy hv' and a reduced momentum Av'/c
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The explanation of these experiments was not possible within the wave picture of
light. Using the hypothesis of light quanta, the effect can be represented as a collision
between two particles, a photon and an electron (Fig. 5.9). In the collision, energy and
momentum are transferred.

More precisely, we are dealing with an elastic collision between radiation quanta
and electrons that are weakly bound in the outer shells of atoms with initial velocities
vo=0. The binding energy of the electrons is assumed to be so small that it can be
neglected in comparison with the photon energy in the following derivation.

5.4.2 Derivation of the Compton Shift

We consider the Compton effect as an elastic collision between a photon and an elec-

tron. Energy and momentum conservation must both be fulfilled. The momentum and

the kinetic energy of the electron before the collision are practically zero. The calcula-

tion must be done relativistically, leading to the following equations (see Fig. 5.9).
Energy before and after the collision is conserved, so that

hv+mgc?=hv' + mc?. (5.31)

Here m, is the rest mass of the electron and m its mass after the collision, and v and v’
are the frequencies of the radiation before and after the collision.
For the momentum in the y direction before and after the collision we have

0= Gino—mosing (5.32)
c

and for the momentum in the x direction

-]-1—v-=h—vcosf)+mvcos¢. (5.33)

c c

In (5.31), we move hv’ to the left side and abbreviate v— v’ = Av. We then express
the mass of the moving electron in terms of the rest mass, using the relativistic mass
formula m = my(1 — v*/c?)~ 12, If we now square (5.31) and rearrange somewhat, we
obtain

»2
c?—p?

R4 (Av)* + 2mycthAv = m3c? (5.34)

In order to eliminate the angle ¢ from (5.32) and (5.33), we solve these equations
for sing and cos¢ and use the identity sin?¢+cos’¢ = 1. When we rearrange, we
obtain

2
(5.35)

h2[(Av)*+2v(v—Av)(1 —cos 0)] = mic* 5

Since the right-hand sides of (5.34) and (5.35) are identical, we can set the left-hand
sides equal to one another, obtaining

moc?hAv = h*v(v—Av)(1 —cos ) . (5.36)
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We wish to express the result in terms of wavelengths instead of frequencies. Using
¢ = Av, we obtain

cAy

|aA|=|S-—C |= . (5.37)
v v—Ay v(v—A4v)
Inserting (5.37) into (5.36), we have finally
h
|[AA|= (1—cosf)=A.(1—cosb), (5.38)
myc

where we have introduced the abbreviation A.=h(myc)™! (the “Compton
wavelength”). Incidentally, the quantum energy of radiation which has the Compton
wavelength A is just equal to the rest energy of an electron:

hv="hc/A. = myc?=511keV . (5.39)

The energy and momentum of the recoil electrons may also be calculated with these
equations. The energy received by the electrons is relatively small, but their paths can
still be seen in a cloud chamber and be quantitatively determined. This was shown in
1925 by Compton and Simon.

Another experiment done by Bothe and Geiger in 1925 shows that the electrons and
the photons are, in fact, “emitted” simultaneously in the Compton effect (Fig. 5.10). A
scattering target is set up in the centre between symmetrically placed electron and
photon detectors. The number of simultaneous counts in the two detectors is measured
with a coincidence circuit, with the result that the number of coincidences observed is
far greater than the number which would be expected by chance from uncorrelated
events.

Coincidence
Scattering
\ target ,Jj
Electron Photon
counter counter
Fig. 5.10. Apparatus to detect coincidences between
scattered x-ray quanta and recoil electrons from the
Y - radiation Compton effect

The following remarks may be useful for a deeper understanding of the Compton
effect:

— Compton scattering is relatively weak in the case of strongly bound electrons, that is
in heavy atoms. When the electron’s binding energy is large compared to the
quantum energy /v of the photon, no momentum transfer is possible.
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— In certain energy ranges — in particular for medium-hard x-rays — the Compton
effect is the principal cause of scattering and attenuation of radiation in matter.

— In Compton scattering, the incident and the scattered radiation are incoherent
relative to one another (if Av # Av').

We see that the photoeffect and the Compton effect can only be understood by
assuming that light (radiation) consists of individual particles with a momentum p. On
the other hand, we know from interference and diffraction experiments that light
behaves as a wave, characterised by a wavelength A and a frequency v. The particle
aspects of light which we summarised at the beginning of this chapter find their con-
firmation in the photoelectric and Compton effects.

How can we reconcile the wave and the particle character of the same phenomenon?
To clarify this question we imagine the following experiment (Fig. 7.5): we allow a
beam of light to pass through a small hole in an opaque wall and to fall on a screen. On
this screen we observe, following the laws of wave optics, a diffraction pattern. We
could, however, detect the light falling on the screen by means of the photoeffect or the
Compton effect. If we now make the intensity of the light weaker and weaker, we find,
using the photoeffect as detector, that locally, at particular points, single photoelec-
trons are set free by the light. The particle character of the radiation is here predom-
inant. If this experiment is now repeated a number of times and the relative abundance
of photoelectron releases is kept track of as a function of position, a distribution curve
will be obtained which is in exact agreement with the diffraction pattern.

This thought experiment, which could actually be carried out as a real experiment,
gives us the key to explaining the nature of light. Light carries — virtually, so to speak
— both properties — wave and particle — within itself. Depending on the experiment
we carry out, it shows us the one or the other aspect of its character. In order to
combine both aspects, which at first appear contradictory, we have to apply statistical
considerations. Thus in the case just described, if we perform an experiment which is
intended to detect the diffraction pattern, but then inquire about the particle character,
we find that we cannot predict the point at which the light particle will strike the screen
with certainty. Instead, we can only give the probability that it will arrive at a particular
point. The resulting probability distribution is then identical with the diffraction
pattern which we would calculate according to the laws of classical physics. This
statistical way of considering things is, as we shall see again and again, fundamental to
the quantum mechanical interpretation of physical phenomena (Chap. 7.2).

Problems

5.1 Express the relativistic mass of a photon in terms of 4, A and c.

5.2 What is the momentum of a photon with 1 eV energy? Give the corresponding
wavelength in Angstroms.

5.3 How much mass does a 100 W light bulb lose in one year due to light emission?

5.4 A photon with 2 MeV of energy is converted into a positron-electron pair. What is
the kinetic energy of the positron and electron, if the energy is equally distributed
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between the two particles and the electrostatic interaction between the two is ignored?
(m.- = m,+ £ 0.511 MeV). How large is their velocity?

5.5 In the upper atmosphere, molecular oxygen is split into two oxygen atoms by
photons from the sun. The longest wavelength of photons which can do this have
A =1.75 x 10~ "m. What is the binding energy of O,?

5.6 A person can perceive yellow light with the naked eye when the power being
delivered to the retina is 1.8 x 10 ¥ W. The wavelength of yellow light is about
6000 A. At this power, how many photons fall on the retina each second?

5.7 A monochromatic beam of electromagnetic radiation has an intensity of 1 W/m?2.
What is the average number N of photons per m? and second for a) 1 kHz radio waves
and b) 10 MeV gamma rays?

5.8 Calculate the radiation pressure of sunlight when the incoming energy/(s m?) is
1.4 x 10°* W/m? and the radiation is completely absorbed. Compare this value with the
atmospheric pressure. What is the force on a surface of 1 m?? What is the force if the
light is completely reflected?

Hint: The radiation pressure is the momentum transferred per unit of time and surface
area.

5.9 A photon which is emitted by an atom imparts an equal and opposite momentum
to the atom.

a) What is the kinetic energy transferred to the atom if the frequency of the photon is v
and the mass of the atom is M?

b) How much energy is transferred to the Hg atom in the emission of the mercury
spectral line A = 2357 A? (My, ~ 200.6 u).

¢) What is the corresponding reaction energy in the emission of y quanta with
1.33 MeV energy by Ni? (My; = 58.7 u).

Compare these values with the energy uncertainty due to the lifetime according to
(7.29) (tig = 10785, 7y = 10~ 5).

5.10 What is the temperature of a black sphere with a diameter of 10 cm which is
emitting a total of 100 W thermal radiation? How much mass is lost each year by being
radiated away?

Hint: Use the numerical values from (5.3).

5.11 Calculate the temperature of the sun and the energy density of the radiation in its
interior, assuming that the sun is a spherical black body with a radius R of 7 x 108 m.
The intensity of the solar radiation at the surface of the earth (which is 1.5 x 10"' m
from the sun) is 1.4 x 10> W/m? Assume that the energy density in the interior of the
sun is homogeneous. Is this realistic?

5.12 What is the wavelength of the spectral maximum of the radiation from a black
body at 300 K (room temperature)? Calculate the monochromatic energy density at this
frequency.
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5.13 A photon releases a photoelectron with an energy of 2 eV from a metal which
has a work function of 2 eV. What is the smallest possible value for the energy of this
photon?

5.14 The work function for the photoeffect in potassium is 2.25eV. For the case
when light with a wavelength of 3.6 x 10" m falls on the potassium, calculate a) the
braking potential U,,, of the photoelectrons and b) the kinetic energy and the velocity
of the fastest of the emitted electrons.

5.15 A homogeneous monochromatic light beam, wavelength 4.0 x 10~ m, falls per-
pendicularly on a material with a work function of 2.0eV. The beam intensity is
3.0 x10~°W/m?2. Calculate a) the number of electrons emitted per m?and second, b) the
energy absorbed per m? and second, and c) the kinetic energy of the photoelectrons.

5.16 A metal surface is irradiated with light of various wavelengths A. The braking
potentials V indicated in the table are measured for the photoelectrons.

211077 m] VIV] 21107 m] VIV]
3.66 1.48 4.92 0.62
4.05 1.15 5.46 0.36
4.36 0.93 5.79 0.24

Plot the braking potential along the ordinate versus the frequency of the light along the
abscissa. Calculate from the curve a) the threshold frequency, b) the photoelectric work
function of the metal, and c) the quotient A/e.

5.17 The yellow D lines of sodium appear when sodium vapour is irradiated with elec-
trons which have been accelerated through a potential difference of 2.11 V. Calculate
the value of h/e.

5.18 In a Compton effect experiment, the scattered light quantum is observed at an
angle of 60° to the direction of the incident light. After the collision, the scattered elec-
tron moves in a circular path with a radius R=1.5cm in a magnetic field
|B| = 0.02 Vs/m? which is perpendicular to the plane of the electron path. What is the
energy and the wavelength of the incident light quantum?

Hint: Use (6.7) with |E| = 0 to calculate the electron’s path.

5.19 A photon with 10*eV energy collides with a free electron at rest and is scattered
through an angle of 60°. Calculate a) the change in energy, frequency and wavelength
of the photon, and b) the kinetic energy, momentum and direction of the electron after
the collision.

5.20 X-rays with a wavelength of 1 A are scattered on graphite. The scattered radia-

tion is observed perpendicular to the direction of the incident x-rays.

a) How large is the Compton shift AA?

b) How large is the kinetic energy of the ejected electron?

¢) What fraction of its original energy does the photon lose?

d) How large is the corresponding fraction of energy lost by a photon with a wave-
length A = 0.1 A if it is deflected through 90° by Compton scattering?

The electron should be considered at rest before the collision, and the binding energy

should be neglected.
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5.21 A pulsed laser with a repetition rate of 20 Hz produces light pulses with a length
of 30 ps (picoseconds). Its laser medium is Nd: YAG and the wavelength is 1064 nm.
The light pulses are passed through a frequency-tripler (efficiency 10%, i.e. only 1/10
of the incident energy is available at the output of the frequency-tripler). An output
pulse energy of 1 mJ is required at the output wavelength A (to be calculated).

a) How many photons #n are contained in an output pulse?

b) How high is the peak power P of the laser system at the output of the tripler?

¢) What is the average light power 7 of the pulsed laser before the tripler, if only 0.1%
of the electrical power is converted into light power?



6. The Electron

6.1 Production of Free Electrons

The name “electron”, which is derived from the Greek word for amber, was coined by
the English physicist Stoney in 1894.

In the early days of atomic physics, free electrons were usually produced as cathode
rays from gas dicharges. Now, however, they are most often obtained using thermionic
emission from wires. This process has the advantage that the electrons can easily be
focussed and accelerated. Free electrons can also be produced by utilising the photo-
effect (Chap. 5) or in the form of emissions from radioactive nuclei.

6.2 Size of the Electron

The electron is just as invisible as the atom; indeed, as a component of the latter, it
must be smaller. We first arbitrarily define a parameter, called the classical electron
radius, by making the following assumptions:

— the electron is a sphere with radius r and surface charge —e,
— the energy of the rest mass E = moc2 is equal to the potential electrostatic energy of
the surface charge.

We use the formulae of classical electrostatics to calculate the electrostatic energy.
The capacitance of a spherical surface of radius r is

C=4neyr. 6.1)
The work required to add a charge g to a capacitor with capacitance C is
w=1g¥YC. (6.2)

Therefore the potential energy of a spherical capacitor, i.e. the energy of its elec-
trostatic field, is

e2

Epo = (6.3)

8meyr

The condition that E},; = myc? (my is the rest mass of the electron and c is the velocity
of light) determines the radius r = r;

2

e
ra= (6.4)

2. 41t£0m0c2
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Other assumptions regarding the distribution of charge (e.g., continuous distribu-
tion of charge throughout the volume instead of a surface charge) lead to somewhat
different numerical values. The “classical” electron radius is, finally, defined as

e2

Fe = =2.8-10""m. (6.5)

4 megmyce

It can be seen from this derivation that the parameter is purely conceptual. Is it
possible to measure the electron’s radius? In principle, yes. For example, the scattering
cross section can be determined by irradiating with x-rays, exactly as the scattering
cross sections of gas atoms may be determined (Chap. 4). The result of such experi-
ments is a cross section g =7 r4, and the parameter r, is found to be of the same
order of magnitude as the classical electron radius defined above.

Experiments in which electrons are scattered by electrons reveal no deviations from
the Coulomb law, even at very small collision distances. All results up to now have thus
yielded only the information that the electron is a structureless, point-like particle.

6.3 The Charge of the Electron

As mentioned earlier, the charge of the electron, — e, can be derived from the Faraday
constant F:

e=F/N,. (6.6)

However, since we wish to use this equation to determine Avagadro’s number N,,
we require an independent method of measuring the elementary charge e.

This was accomplished by Millikan’s experiment (1911), in which the charge on
small drops of oil is determined from their motion in the electric field of a capacitor. It
remains the best method for determining e.

The principle of the method is illustrated in Fig. 6.1. Figure 6.2 shows the entire ex-
perimental setup. The rising or falling velocity of a charged oil droplet in the homo-
geneous electric field of a capacitor is determined by the resultant of all the forces
acting on the droplet: electrostatic force, gravitational force, buoyancy in the air, and
friction with the air. We will pass over the details of the measurement procedure; we
mention only, as a curiosity, the fact that an incorrect value of the quantity e was used
for some years due to an error in the determination of the viscosity of the air. The latter
quantity is needed to calculate the frictional force acting on the droplet which is rising
or falling. The best value of the elementary charge is currently e = (1.6021917
+ 0.0000070) - 10~ % C.

The question has been repeatedly raised, whether there are smaller amounts of
charge than the so-called elementary charge e. Up to the present time, no smaller
charges have been detected unambiguously.

To explain the structure of elementary particles, the existence of more fundamental
elementary particles, the “quarks”, has been suggested; they would have charges of e/3
or 2¢/3. A number of experiments in high energy physics can, in fact, be understood by
the assumption that such particles exist, but are bound to each other and/or to their anti-
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particles. On the other hand, there has so far been no convincing proof of the existence
of free quarks, and theoreticians have even developed a theory of “confinement”.
According to this theory, the forces between quarks become so large that they can
never appear as individual particles.

6.4 The Specific Charge e/m of the Electron

The mass of the electron is determined by measuring the deflection of electrons in
electric and magnetic fields. The motion is determined by the ratio of charge to mass
e/m according to the equation

F= m—d—v = —e[E+(vXxB)]. 6.7)
dt

Following the first e/m measurement by Thompson (1897), many methods for measur-
ing this quantity were developed in the next 50 years, but all of them were basically
variations of the same principle which we have already discussed for the parabolic
method in mass spectroscopy.

The method of Classen (1907) is particularly elegant (Fig. 6.3). The E field between
the cathode and the film imparts a uniform, known velocity to the electrons. The
kinetic energy, to a non-relativistic approximation, is

m
—v°=ceVl, 6.8
> (6.8)
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Film Fig. 6.3. Experimental arrangement for measurement of the specific

- mass m/e of the electron. The electrons are generated at the cathode C
and accelerated by the voltage V. They are deflected into circular paths
by a magnetic field perpendicular to the plane of the figure and
recorded on a film. The direction of the deflection is reversed by
reversing the poles of the magnet

Film strip
(top view)

where V is the accelerating voltage. Rearranging,

= |/ 2eV (6.9)
m

The B field deflects the electrons into a circular path with radius r. Equating the
Lorentz and the centrifugal forces yields

=evB. (6.10)

The desired ratio of charge to mass follows from (6.9) and (6.10):

e 2V
= == (6.11)
m r’B?

One can thus obtain the ratio e/m by measurement of a voltage, a magnetic field
strength and a distance. Over the years, various other methods were used to measure
the specific mass m/e. They differ primarily in the relative positions of the electric and
magnetic fields. Figure 6.4 shows one of these other experimental arrangements, one
which corresponds in principle to the Aston mass spectrograph.

The dependence of the mass on the velocity was examined quite early with the help
of these experiments. Table 6.1 lists some measured values for e/m.

The limiting value of m as the kinetic energy of the electron went to zero was found
to be my=1.7588 - 10 ~3' kg or (5.485930 + 0.000034) - 10" *u. 1u is thus 1822.84 mj,.

The dependence of the ratio e/m on the particle velocity was found experimentally
in 1901 (4 years before Einstein’s theory of relativity) by Kaufmann. Kaufmann used
the method known in mass spectroscopy as the Thomson parabola method (Figs.
3.2, 3). The particles are deflected in transverse E and B fields. The electrons studied by
Kaufmann were f particles from radioactive sources, because his experiments were
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Fig. 6.4. Arrangement for measurement of the ratio e/m for electrons. Here the electrons are deflected first
by an electric field and then by a magnetic field

meant to clarify the physical nature of g rays. However, the photographic record of the
particles did not yield the segment of a parabola which would be expected if the ratio of
e/m were constant at different velocities of the particles.

Kaufmann’s curves can be understood in the following way: For a uniform value of
e/m, each point of the parabola correspondings to a particular value of the velocity v.
From the fact that a parabolic segment is actually observed for lower velocities (larger
deflections), it can be concluded that the slower particles have a continuous velocity
distribution at a constant mass. However, at high velocities v the mass appears to
increase steadily. The curve therefore passes through points on each of a series of
adjacent parabolas, corresponding to successively higher masses m.

These measurements were the first to substantiate the dependence of mass on
velocity. They fit the Lorentz equation

m=my— 2 | (6.12)

1—p%/c?

It was later shown that this equation can also be derived from the theory of rela-
tivity, if the validity and Lorentz invariance of the conservation of energy is assumed.
The equation is equivalent to the principle E = mc?. Figure 6.5 shows experimental
values of the dependence of the mass on the velocity.

The following qualitative argument was advanced in an attempt to understand the
change in mass with velocity: When the electron is accelerated, part of the energy is
absorbed in the creation of the magnetic field of the moving electron — which is of
course an electric current. Thus an “electromagnetic mass” is added to the inertial

/
m /
™o 4
15 g
l Fig. 6.5. Experimental values for the mass of the
— ] g
| oot electron as a function of its velocity (test of the
1.0 Lorentz formula). The mass m, in units of the rest
0.4 05 0.6 0.7 0.8 09 mass m, is plotted against the velocity in units of

=% the velocity of light, v/c
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mass. This argument fails, however, because the mass increase is also observed with
neutral particles, e.g. neutrons.

As time went on, the Lorentz equation was tested by many highly precise measure-
ments. It was possible to confirm it to within 1.5% by measurement of electron
energies under 1 MeV. In modern electron accelerators, it has been confirmed to far
better precision, as shown in Fig. 6.5, and is now a well established tenet of physics.

It is instructive to consider the error one would make by neglecting the relativistic
mass increase. From conservation of energy and (6.12) we find for a kinetic energy
Ey i, = 1keV a velocity v/c = 0.063, and for 1 MeV, v/c = 0.942. The relativistic mass
increase is then according to (6.12) at 1 keV 4 - 103 times the rest mass m,, but at
1 MeV it is already 2 times m,, i.e. (m—mgy)/mgy= 2.

6.5 Wave Character of Electrons and Other Particles

The motion of electrons in electric and magnetic fields may initially be understood as
a particle motion. We have treated it as such in explaining various experiments up to
now. There are, however, a number of different experiments in which electrons and
other particles show interference and diffraction phenomena, that is they exhibit wave
character. In this section, we will discuss the experimental grounds for assuming the
existence of matter waves.

Experiment 1: The Ramsauer Effect (1921)

The measurement of the interaction cross section for collisions of extremely slow elec-
trons with gas atoms yielded very small values, much smaller than those found in the
kinetic theory of gases; at somewhat higher electron energies, the values were found to
be much larger (Fig. 6.6). This type of minimum in the velocity dependence of the inter-
action cross section could be explained as the result of diffraction by particles whose
size was comparable with the wavelength of the electrons.

50

Fig. 6.6. Scattering coefficient a = no for
electrons on gas atoms at various electron
velocities (Ramsauer Effect). The dashed
line represents the gas kinetic cross section G
of the atoms. For the relation between scat-
Accelerating voltage [Volts] tering coefficient and cross section see (2.21)

Interaction cross section [cm?/cm?)

Experiment 2: The Investigations of Davisson and Germer (1919);
Their Explanation (1927)

On reflecting slow electrons from crystals, Davisson and Germer observed interference
effects, i.e. maxima and minima in the intensities of the reflected electrons, which were
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4V | 44V | 48V 54V Fig. 6.7. Electron interference experiment of Davisson and Germer. Left:
Diagram of the apparatus. The electrons accelerated through the voltage V'
are reflected from selected surfaces of a single crystal of nickel and record-
|_ 1 ed as a function of the reflection angle 6. Right: Angular distribution of
Electron V/ 500 7/ reflected electrons at various accelerating voltages. The diagrams shown
7,
Z

beam are polar plots in which the distance from the zero point to the curve corre-

sponds to the intensity of reflection at the corresponding angle. There is a
Detector ference
60V 64V 68V
Ni crystal

maximum at a scattering or reflection angle of about 50°, due to inter-

uniquely determined by the electron velocities, the crystal orientation, and the angle of
observation. Their experimental setup and the results are shown schematically in
Fig. 6.7. The interference maxima and minima come about in a manner similar to x-ray
diffraction from the lattice planes of a crystal (Bragg reflections, see Sect. 2.4.5). The
occurrence of interference means that the motion of the electrons must be connected
with a wave phenomenon. Indeed, de Broglie put forth the suggestion that just as light
can possess a particle character, electrons must also have a wave character; he assumed
the validity of the fundamental relation p = A/A between the momentum and the wave-
length.

If we express the momentum by means of the mass and the velocity, i.e. p = myv,
and set v = |/2 Ey,/mg for non-relativistic velocities, we find

A=h/)/2myEy, . (6.13)

It follows that for electrons which have been accelerated by a voltage V,

[A] .

The wavelength is measured in angstroms and the kinetic energy is converted to eV,
because the electrons acquire their kinetic energy by traversing a voltage V. An
accelerating voltage of 54 V, for example, produces A = 1.67 A.

De Broglie’s hypothesis applies to all particles, not only electrons. The values given
in Table 6.2 are for electrons.

Table 6.2. Wavelength of electrons in A corresponding to various energies [eV], according to de Broglie

Ekin [CV] 10 100 103 104 105 106 107 108
A [A] 39 12 039 012 37-107% 87-107%* 12-107% 1.2-107*

Many other experiments were suggested and could now be understood.
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Experiment 3: Fresnel Diffraction from a Sharp Boundary, Boersch (1956)

One of the basic diffraction experiments in optics is the diffraction by a semi-infinite
plane. Like light, electrons can be diffracted from a sharp boundary. In this experiment
they are diffracted from the edge of an extremely thin foil of Al,O; (Fig. 6.8).

Fig. 6.8. Above: Diffraction lines of filtered red light at
the geometric shadow boundary of a semi-infinite plane.
Middle: Diffraction of electrons from the edge of an
AL, foil in a semi-infinite plane. 1 =5 - 10~ 2 m, cor-
responding to an electron energy of 3.4 - 10% eV. Below:
Diffraction of electrons from a 2 um thick gold-coated
wire. Electron energy 1.94-10*eV. All photos from
R.W. Pohl, Optik und Atomphysik, 11, 12th ed.
(Springer, Berlin, Heidelberg, New York 1967) Figs.
202, 522, 523

Experiment 4: Diffraction from a Fresnel Double Prism, Mollenstedt (1956)

The Fresnel double prism experiment of classical optics was carried out with electrons.
In this experiment, an electrically charged quartz fibre acts a double prism for elec-
trons. Electrons from the two virtual electron sources interfere (Fig. 6.9). Measurement
of the resulting interference lines in the image plane confirmed the de Broglie rela-
tionship to within 0.5% (Fig. 6.10).

Experiment 5: Atoms as Waves (1931)

The wave character of particles other than electrons was also demonstrated by inter-
ference experiments. Stern, Frisch and Estermann (1931) observed the diffraction of
beams of helium atoms from the surface of a LiF crystal. The wavelength of the helium
atoms is derived from the temperature 7=400K and the mean kinetic energy
&€= 3 kT/2 of the atomic beam. It lies in the angstrom range:

Age=h/)/2mE = h/)/3mykT .

This relationship has also been experimentally confirmed.

Interference and diffraction with particle beams are now included among the
routine physical methods. Electrons can be used in the same interference experiments
as x-rays.
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Fig. 6.10. Electron interference from the electrostatic double prism according to Mollenstedt and
Diiker. This image shows the measured intensity distribution on the film in Fig. 6.9; from Gerth-
sen, Kneser, Vogel: Physik, 13th ed. (Springer, Berlin, Heidelberg, New York 1977)

Film
Fig. 6.9. Electron interference with an electrostatic double prism according to Méllenstedt and Diiker. There
is a voltage between the fibre and the counterelectrodes. The electrons are deflected by the resulting inhomo-
geneous field as shown. From Gerthsen, Kneser, Vogel: Physik, 13th ed. (Springer, Berlin, Heidelberg, New
York 1977) Fig. 10.68 . |
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Fig. 6.11. Neutron diffraction from a single crystal, von Laue
arrangement. With polyenergetic neutrons, one obtains Laue
diagrams from scattering on the single crystal
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€ 1000
E 800 Fig. 6.12. Neutron spectrometer
@ (1) according to E. V. Wollan, C. G.
2 600 (220) Shull, Phys. Rev. 73, 830 (1948).
® The neutrons are monochromatised
3 400} by reflection from a NaCl crystal.
o When diffracted from a polycrys-
£ 200 talline sample, they generate inter-
3 0 - . . S N - - ference rings according to Debye-
O 20° 20° 40° 50° 60° 70° Scherrer. They are measured by
Counter position means of a BF; counter. This is a
historical spectrometer. Modern
Fig. 6.13. Neutron diffraction from diamond powder, ac- instruments, however, contain the
cording to G. Bacon. Diffraction maxima occur from four same basic elements. A single
families of lattice planes, which are denoted by the crystallo- crystal can also be the object of

graphic indices (111), (220), (311) and (400) investigation.
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Neutron diffraction methods have become important in solid state physics. They
are among the most useful means of determining crystal structures, analysing magne-
tically ordered systems (due to the existence of a neutron magnetic moment), and detec-
tion of lattice oscillation spectra in crystals.

Figure 6.11 shows schematically an arrangement for measurement of neutron dif-
fraction from single crystals according to von Laue. It is completely analogous to the
x-ray arrangement (Fig. 2.7). High intensity neutron beams are most conveniently
obtained from a nuclear reactor. They are produced by nuclear fission with a velocity
distribution which is continuous, within certain limits. If one wishes to work with par-
ticles of a single wavelength, or according to de Broglie, with uniform velocity, one
must monochromatise the neutron beam.

This can be done, for example as shown in Fig. 6.12, by reflection from a single
crystal (here NaCl). If these monochromatic neutrons are directed onto a polycrystal-
line or powdered sample, one obtains the same interference patterns as with the Debye-
Scherrer x-ray technique (Fig. 2.10). An example of such a pattern is shown in
Fig. 6.13; it is the result of diffraction of a neutron beam from diamond powder.

6.6 Interferometry with Atoms

The wave nature of particles can be employed to construct an interferometer using
atomic beams, or to set up an imaging system based on interference of atoms, similar
to those known from photon optics.

The problems encountered in this atomic interferometry can be demonstrated by
making use of the quantum-mechanical analog of Young’s two-slit experiment, which
is well-known from classical optics; see Fig. 6.14. A beam of helium atoms is excited
into the metastable state 2'S, or 23S, by electron bombardment (the meaning of the
term symbols is explained in Sect. 17.1). The corresponding de Broglie wavelength of
the He atoms is found from (6.13) using the velocity of the He atoms to be A = 0.56 A
at 300K, and A = 1.03 A at 77 K. The excited atoms now pass through a slit A of width
2 pm and reach the double slit B. It consists of two slits of width 1 pm separated by
a distance of 8 um. The atoms which pass through these two slits, i.e. the correspond-
ing de Broglie waves, interfere in the region behind B. The resulting interference pat-
tern is registered in the plane C by a photoelectron multiplier, which measures the light

Fig. 6.14. The experimental setup for carrying out Young’s two-slit interference experiment with atoms (after
O. Carnal and J. Mlynek, Phys. Rev. Lett. 66, 2689 (1991)). A beam of helium atoms is excited by electron
bombardment and passes through a slit 2 um wide in plane A, then reaches plane B containing two slits of
width 1 pm and spacing 8 um. The resulting interference pattern behind plane B is observed via a third slit
in plane C using a secondary electron multiplier (PM)



Problems

300

200

79

Fig. 6.15. The two-slit experiment in atomic interferometry carried out with the ex-
perimental setup shown in Fig. 6.14: the intensity distribution in plane C. To in-
crease the attainable resolution, the measurement is performed using a mechanical
grating which can be moved within plane C and has the “correct” lattice spacing.
When the slits in the grating coincide with the interference maxima, the measured
intensity at the electron multiplier PM shows a maximum; it is at a minimum when
the grating is shifted by one-half its lattice-spacing period. The lattice spacing here

was 8 um

Intensity

Scanning Grating Position

emitted by the metastable He atoms as they return to their ground states. Figure 6.15
shows the result of such a measurement. One observes a system of equidistant in-
terference maxima separated by a distance which corresponds to what one would
calculate from the geometry of the experiment and the de Broglie wavelength of the
atomic beam. This provides an impressive proof of the wave nature of atoms and the
validity of (6.13).

The biprisma experiment, in which an electrically-charged wire serves as interfero-
meter (cf. Fig. 6.9), has also been carried out with atoms and was used to determine
their de Broglie wavelengths [S. Nowak, N. Stuhler, T. Pfau, and J. Mlynek: Phys.
Rev. Lett. 81, 5792 (1998)].

In this manner, the diffraction of atoms by micromechanical structures such as mir-
rors, lenses, and beam splitters for matter waves can be employed to produce an
‘atomic optics’. Image formation has already been demonstrated using a Fresnel zone
plate, for example (O. Carnal, J. Mlynek et al., Phys. Rev. Lett. 67, 3231 (1991)). The
way has thus been opened for the construction of microprobes on an atomic scale, with
which one could, for example, study surfaces with a high spatial resolution, namely
that of the de Broglie wavelength, and nondestructively. Since the energy of the atoms
can be made very small, less than 10 meV, little radiation damage would be produced
on the surface under investigation. The high spatial resolution is made possible by the
short wavelengths. This area of atom lithography is certainly an interesting field for
future research.

Problems

6.1 In the Millikan experiment to determine the elementary charge, a voltage of
V =50V is applied between the plates of a capacitor, which are 1 cm apart. What must
the diameter 2 r of the oil droplets be, in order that a droplet with a single charge is held
in suspension? What is the velocity v of the droplets as they fall when the direction of
the electric field is reversed? The coefficient of viscosity of air is 7 = 1.84 x 10~ poise,
and the density of the oil o = 0.9 g/cm’.

Hint: The frictional force Fy is given by Stokes’ Law, Fr= —67mnrv (1 poise =
1 dyns/cm? = 10~! Ns/m?).
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6.2 A singly charged particle with 0.12MeV of kinetic energy moves through a
transverse homogeneous magnetic field with field strength B=100G (1G = 10"*T).
Calculate the mass of the particle, given that the deflection from the original direction
of travel is 3 mm in a 10 cm flight path.

6.3 To measure their specific charge, electrons are accelerated through a voltage V.
Then they pass through the transverse fields of two small plate capacitors, which are
placed at a distance / from one another. Both capacitors are connected to a single fre-
quency generator (frequency v). When the frequency is suitably adjusted, the electrons
leave the second capacitor in their original direction of travel.

a) Under what condition is this possible?
Derive a relation between e/m and the experimental data.

b) What is the minimum frequency required from the generator if V=500V and
I=10cm?

¢) Sketch the apparatus.

6.4 If the kinetic energy of an electron is equivalent to its rest mass, what is its
velocity?

6.5 The rest energy of the electron is 0.511 MeV. Give the ratio of inertial mass to
rest mass for an electron as a function of its kinetic energy. How large is the ratio for
Ekil; =1MeV?

6.6 Calculate the de Broglie wavelength of an electron with the velocity v = 0.8 ¢,
using relativistic relationships.

6.7 Calculate the de Broglie wavelength of an electron with kinetic energy of 1 eV,
100 eV, 1000 eV, 100 keV. Which wavelengths will be noticeably diffracted in a nickel
crystal, in which the atomic spacing is about 2.15 A? Calculate the kinetic energy of
those electrons which are scattered through angles of less than 30°.

6.8 What is the average kinetic energy and the corresponding de Broglie wavelength
of thermal neutrons, i.e., neutrons which are in thermal equilibrium with matter at
25°C? According to the Bragg formula, what is the angle of incidence at which the first
interference maximum occurs when these neutrons are reflected from a NaCl crystal in
which the lattice spacing d is 2.82 A? The mass of the neutron is 1.675 x 10~ %" kg.

6.9 Consider an electron which is far away from a proton and at rest. It is attracted to
the proton. Calculate the magnitude of the wavelength of the electron when it has
approached within a) 1 m and b) 0.5 x 10 ~'m of the proton. (The latter distance is of
the same order as the orbital radius of the electron in the ground state of the hydrogen
atom.)



7. Some Basic Properties of Matter Waves

7.1 Wave Packets

In the two preceding chapters it was shown that light, electrons and other elementary
particles can have both wave and particle characteristics. In this chapter we will
examine more closely how the wave properties of matter can be understood and
described mathematically.

For both light and material particles there are basic relationships between energy
and frequency, and between momentum and wavelength, which are summarised in the
following formulae:

Light Matter
E=hv E=hv=how
(7.1)
c A
4 Alx,t)
A
‘0 - x
Fig. 7.1. Instantaneous view of a wave with
- A > amplitude 4, and wavelength 4

We now wish to expand these relationships into a more exact theory. We are
familiar with descriptions of wave motion from the study of light. If we consider a
plane monochromatic wave (Fig. 7.1) travelling in the x direction, the wave amplitude
A at time ¢ and point x is A(x, ) = Agcos(kx — wt). The wave number X is related to
the wavelength A by k£ = 2n/A. The circular frequency w is related to the frequency by
w = 27nv. In many cases it is more useful to use complex notation, in which we express
the cosine by exponential functions according to the formula

cosa=L(e'%+e”'?). (7.2)
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We accordingly expand A (x, 7):

A(x, 1) = Aptlexp(ikx—iwt) +exp(—ikx+iwt)]. (7.3)

Applying the relations (7.1), we obtain

exp(ikx—iwt) = exp |:—;l— (px—Et)] . (7.9

The wave represented by (7.4) is an infinitely long wave train.

On the other hand, since we ordinarily assume that particles (“point masses”) are
localised, we must consider whether we can, by superposing a sufficient number of
suitable wave trains, arrive at some spatially concentrated sort of “wave”. We are
tempted to form what are called wave packets, in which the amplitude is localised in a
certain region of space. In order to get an idea of how such wave packets can be built
up, we first imagine that two wave trains of slightly differing frequencies and wave-
numbers are superposed. We then obtain from the two amplitudes A, (x, ¢) and 4, (x, ¢)
a new amplitude 4 (x, t) according to

A(x,t)=A1(x,t)+A2(x,t), (7.5)
or, using cosine waves of the same amplitude for A; and A4,,
A(x, 1) = Ap[cos(kix — w1 t) + cos(kyx — wsyt)] . (7.6)

As we know from elementary mathematics, the right-hand side of (7.6) may be ex-
pressed as

2Apcos(kx— wt) cos(dkx—Awt), 7.7)
where

k=3(kitky), w=3(o+w),
and

Ak =L(ki—ky), Adw=wi—w)).

The resulting wave is sketched in Fig. 7.2. The wave is clearly amplified in some regions
of space and attenuated in others. This suggests that we might produce a more and
more complete localisation by superposing more and more cosine waves. This is, in
fact, the case. To see how, we use the complex representation. We superpose waves of
the form (7.4) for various wavenumbers k and assume that the wavenumbers form a
continuous distribution. Thus, we form the integral

ko+ Ak
| aexplitkx—wt)]dk = y(x,1), (7.8)
ko— Ak

where a is taken to be a constant amplitude.
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A A (X,t) . Fig. 7.2. Superposition of two waves of the
same amplitude. Fundamental wave 1:
(—--), fundamental wave 2: (— —) same
amplitude as 1. Resulting wave A: (—).
The envelope cos(4kx — Awt) for constant ¢
is also shown as a dashed curve

In taking this integral, we must notice that « and k& are related to one another, since
the energy and the momentum of an electron are connected by the relation
E = p*/(2my), and this in turn means that w and k are related according to (7.1). To
evaluate the integral we set

k =ko+ (k—kop) 7.9

and expand w about the value k, using a Taylor series in (k — k), which we terminate
after the second term:

dw
= — (k-k ee . 7.10
W= wyt (dk>( o)+ (7.10)

In the following, we abbreviate dw/dk as w'. Inserting (7.9) and (7.10) in (7.8), we
obtain

k

w(x,t) = aexp[—i(wot — kox)] IAkexp[—i(w’t—x)ﬂdé, (7.11)

where we have set (k — kg) = & The remaining integral may be evaluated in an elemen-
tary manner and (7.11) finally takes the form

sin[(w’'t—x)Ak]
w't—x '

w(x,t) =aexp(—iwgt+ikex)-2 (7.12)

The real part of y is shown in Fig. 7.3.

We can draw two important conclusions from (7.12):

1) The wave packet represented by i is strongly localised in the region of x = w'¢.
The maximum amplitude moves with a velocity w’ = dw/dk. With the help of (7.1),
we can express w and X in terms of E and p, obtaining w’ = 8E/0p, or, if we use the
standard relation E = p%/2my, finally w' = p/mq = Uparticle- I Order to understand this
result, we recall the concepts of phase velocity and group velocity.
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4 Rel[W¥i(x,t)] Fig. 7.3. The real part of y(x,¢) as a func-
tion of the position x. The rapid oscillations
are described by cos (kox — wyt) with ¢ fixed.
The envelope is given by sin[(w't—x)4k]/
(w't—x) with ¢ fixed. Note that the scale of
the x axis has been greatly reduced in com-
parison to Fig. 7.2

If we let the time variable increase in the wavefunction cos(kx— wt), then the
position X, at which a particular wave maximum is to be found moves according to
the relation kx ., — w? =0, i.e. X = (w/k)t. The position xpn,, thus moves with the
phase velocity vppas. = w/k.

If we replace w by E and k by p according to (7.1), we find immediately that this v
does not equal the particle velocity. On the other hand, we have just seen that the
maximum of a wavepacket moves with the velocity vg = dw/dk. This velocity of a
wave group (wavepacket) is called the group velocity. Thus the group velocity of the
de Broglie waves (matter waves) is identical with the particle velocity.

We could be tempted to unify the wave and particle pictures by using wave packets
to describe the motion of particles. This is unfortunately not possible, because in
general, wave packets change their shapes and flow apart with time. We are therefore
compelled to adopt a quite different approach, as will be shown below.

2) A second implication of the result (7.12) is the following: The width of a wave
packet is roughly the distance between the first two zero points to the left and right of

W (x,t)
P AN /\ /\ VAN - N
AR (VAR
Fig. 7.4. The envelope of the real
part of the wave packet (7.12) (Fig.

7.3). The first node is at xy = 7/ 4k
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the maximum (Fig. 7.4). Since the first zero point is at xo = n/ A4k, the width of the
wave packet would be Ax = 2/4k. The more we wish to concentrate the wave packet,
i.e., the smaller we make Ax, the larger we must make the k-region, or Ak.

In order to clarify the relationship between the particle and the wave descriptions,
we shall consider the experiment described in the following section as we have already
for light.

7.2 Probabilistic Interpretation

We wish to illustrate, tising the electron as an example, how one can unify the wave and
particle descriptions. To determine the position of an electron in the x direction
(Fig. 7.5), we allow an electron beam to pass through a slit with a width Ax. We can
thus ensure that the electron coming from the left must have passed through this
position. Now, however, the wave properties come into play, and the electron is
accordingly diffracted by the slit. A diffraction pattern is produced on the screen S
(Fig. 7.5). According to wave theory, the intensity of the diffraction pattern is propor-
tional to the square of the amplitude. When we consider the electron as a wave, and
take y as its wave amplitude, we obtain the intensity 7= |w(x,#)|* at time ¢ and
position x on the observation screen. It is better, for both mathematical and physical
reasons, not to speak of the intensity at a point in space, but rather of the intensity in
the three-dimensional region dx, dy, dz around the point x, y, z.

A X
\
N
— |
—l
-_— aX
—_—
— |
Fig. 7.5. An electron beam (arrows at left)
N passes through an aperture and generates a
R diffraction pattern on a screen. The intensity
Aperture Screen Diffraction distribution on the screen is shown schemat-

pattern ically on the right

Therefore, in the following we shall consider the intensity in a volume element
dVv =dxdydz:

Idxdydz = |y(x,y,2,t) [*dxdydz. (7.13)

(Compare this to the one-dimensional example in Fig. 7.6.)
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p el

2
IW(X°+dX)I

> X
Xo  Xo+dX

Fig. 7.6. |y (x) '2 as a function of x at a given time ¢. The shaded area corresponds to the probability that the
electron is located in the interval x, to xo+ dx

Now comes the essential point. The screen can also be considered as an apparatus
which detects electrons individually as particles. A fluorescent screen flashes at the
point of impact each time an electron hits it. The electron is thus highly localised, and
there is no diffraction pattern. If we repeat the experiment, we observe other flashes of
light, and in general these are at different points on the screen. Only when we carry out
many experiments, or allow many electrons to pass through, do we obtain a diffraction
pattern of the form described by (7.13). This is the key to the explanation of the phe-
nomenon of “wave-particle duality”. On the one hand, the intensity of the diffraction
pattern in a volume AV is proportional to the absolute square of the amplitude,

lwlav, (7.14)

and on the other, it is proportional to the probability of finding the electron in A V.
|w|>AV is thus itself proportional to the frequency of finding the electron in AV.
lw(x,y,2,1) lzdx dy dz must therefore be seen as the probability of finding the electron
in a volume element d'V about the point x, y, 2.

Because the statistical interpretation of quantum mechanics will be mentioned fre-
quently, and is absolutely necessary to an understanding of the subject, we shall spend
a bit more time on the concept of probability. Let us compare a quantum mechanical
experiment with a game of dice. Since a die has six different numbers on its faces, it
has, so to speak, six different experimental values. We cannot say in advance, however,
which face, i.e. which experimental value we will obtain in any given throw. We can
only give the probability P, of obtaining the value n. In the case of a die, P, is very easy
to determine. According to a basic postulate of probability theory, the sum of all prob-
abilities P, must be one (i.e., one face must come up on each throw):

YP,=1. (7.15)

Since all the numbers n =1, 2,...6 are equally probable, the six values of P, must be
equal, so P, = 1/6.
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It is not so easy to determine |y |>*dx dy dz. We can infer from the above, however,
that there must be a normalisation condition for |y |*dx dy dz. If we integrate over all
points in space, the particle must be found somewhere, so the total probability must
therefore be equal to 1. We thereby obtain the basic normalisation condition

[lw(x,»,2)|Pdxdydz=1. (7.16)

We shall illustrate the use of this normalisation condition with two examples.
1) We assume that the electron is enclosed in a box with volume V. The integral
(7.16) must then extend only over this volume. If we use for y the wavefunction

w=Apexp(ik-x—iwt), (7.17)
where k - x = k,x+k,y+k,z, then A, must be
Ag= V712, (7.18)

2) If the space extends to infinity, there is a difficulty, because here 4y = 0 if we
simply allow V to go to infinity in (7.18). It can be shown, however, that a generalised
normalisation condition can still be derived. In one dimension the normalised wave-
function is

v, t) = (1/)2n)exp(ikx—iwt), (7.19)
and the normalisation condition is
SwEx, ) wie(x, ydx = 6(k—k') . (7.20)

Here d(k — k') is the Dirac ¢ function (see Appendix A).

The probabilistic interpretation of the wavefunction is also necessary for the fol-
lowing reason: if the impact of an electron on the screen were to cause it to flash at
more than one point, this would mean that the electron had divided itself. All experi-
ments have shown, however, that the electron is not divisible. The determination of
|w |*dV allows us only to predict the probability of finding the electron in that volume.
If we have found it at one position (localised it), we are certain that it is not somewhere
else as well. This is evidently a “yes-no” statement and leaves no ambiguity for an
individual electron. If we consider the reflection of electrons in this way, and observe
that 5% are reflected, it means this: if we carry out a very large number of experiments,
5% of all the electrons would be reflected. It would be completely false, however, to
say that 5% of a single electron had been reflected.

7.3 The Heisenberg Uncertainty Relation

We now consider some of the implications of the fact that the electron sometimes acts
as a particle and sometimes as a wave. As we calculated earlier, the one-dimensional
distribution of the wave packet is

(7.21)

W) ~ sin(x Ak) ‘
X
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If we take the position of the first zero point as a measure of the uncertainty in the
position, we obtain from (7.21) (Fig. 7.4) the relation

= =, (7.22)

The uncertainty in the position is clearly connected with the uncertainty in the wave-
numbers k. But the wavenumber is related to the momentum by the equation

p=hk. (7.23)

If we insert this in (7.22), we obtain the basic Heisenberg uncertainty relation

AxAp=h (7.24)

(a mathematically precise formulation and derivation can be found in Appendix C).
This relation states that it is impossible to measure the position and the momentum of
an electron exactly at the same time. A lower bound to the simultaneous measurability
is given by (7.24). Indeed, if we wished to let Ax go to zero (exact determination of the
position), we would have to allow Ap to become infinite, and vice versa. The fact that
we notice nothing of this uncertainty relation in daily life is a result of the smallness of
Planck’s constant 4. If, on the other hand, we consider the microscopic world, then we
can only understand the results of experiments if we take the finite size of the constant
h into account. We will clarify the meaning of (7.24) with the example of an experi-
ment.

An electron is moving in a horizontal direction (y). We wish to determine its co-
ordinate in the perpendicular (x) direction. For this purpose, we set up a collimator per-
pendicular to the direction of motion with a slit of width d = Ax. If the electron passes
through this slit, then we know that it was at that position with the uncertainty Ax.
Now, however, we must take into account the wave nature of the electron. From the
theory of diffraction we know that a wave produces a diffraction pattern on the obser-
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vation screen after passing through a slit of width d (Fig. 7.7). The angle ¢ at which the
first diffraction minimum occurs is given by

sing = A/d. (7.25)

If we denote the total momentum of the electron by p, the projection of the momentum
on the x axis is p sin ¢. This x component in the momentum is produced by diffraction
of the electron wave at the slit; the resulting uncertainty in the momentum is then

Apy=psing. (7.26)
If we once again use the relation
p="h/a (7.27)

and insert (7.26) and (7.27) in (7.25), we again obtain the Heisenberg uncertainty
relation (7.24).

This example shows clearly that a measurement of one quantity, here the position,
immediately produces a perturbation of the complementary quantity, namely the
momentum. Before we set up the collimator with its slit, we could have determined the
momentum of the electron. The result would have been that the electron was moving
exactly in the y direction, i.e., that its momentum component in the x direction was
exactly equal to zero. In the above experiment, we were able to determine the position
with a certain accuracy, but we had to accept the fact that the momentum thereby
became uncertain in the x direction. There is also a relation between energy and time
which is analogous to (7.24).

7.4 The Energy-Time Uncertainty Relation

In the wavefunction ~exp(ikx—iwt), which was the starting point of this chapter, the
position x and the time ¢ occur in a symmetric fashion. Just as we could form wave
packets which exhibited a certain concentration in space, we can also construct wave
packets which have a concentration about a time ¢ with an uncertainty A¢. Instead of
the relation Ax Ak = 2, we then have

AtAwz2m. (7.28)
Utilising the relation E = A w, we find from this that
AEAt=h. (7.29)

This relation, which we shall discuss in more detail at a later point in the book, states
among other things, that one must carry out a measurement for a sufficiently long
time, in order to measure an energy with good accuracy in quantum mechanics.
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7.5 Some Consequences of the Uncertainty Relations for Bound States

In the preceding sections of this chapter we have explicitly considered free electrons. In
the next chapters we shall be concerned with the experimental and theoretical questions
associated with bound electrons, for example in the hydrogen atom. In this section we
shall to some extent anticipate the presentation in the rest of the book. The reader will
recognise even in this section that wave mechanics will play a fundamental role in the
treatment of bound states.

We will consider the hydrogen atom as the simplest case of a bound state. We
assume that the electron travels around the nucleus in an orbit, as a planet around the
sun. Why the electronic shells of the atom have a finite extent — why there is a smallest
electron orbit — was an insoluble problem in classical physics.

The energy of an electron is equal to the sum of the kinetic and the potential energy,

E lass = Exin+ Epot . (7.30)

If we express the kinetic energy of a particle Ey;, = (my/2) v? in terms of the
momentum p, and substitute the Coulomb potential energy — e/ (4 neyr) for Epy, the
expression for E is

2 2
E=P __¢ (7.31)
2my  dmeyr

Here r is the distance of the electron from the nucleus.

It can be shown in classical mechanics that Eg, = —e%/(2 - 47eor).

If we allow r to go to zero, the energy naturally goes to — oo. In other words, the
energy decreases continually and there is no smallest orbital radius. Let us now
consider the expression (7.31) from a “naive” quantum mechanical point of view. Then
“orbit” would mean that we have the electron concentrated at a distance of approxi-
mately r from the nucleus. The positional uncertainty would therefore be of the order
of r. This, however, would entail uncertainty in the momentum p of the order of 4/r,
which in turn establishes a minimum for the order of magnitude of the kinetic energy
(Fig. 7.8). If we therefore substitute

p=lt (7.32)
r

in (7.31), we realise that the minimum of the energy expression
E=—— — — — _=Min (7.33)

is no longer at r= 0. If we let r go to zero, the kinetic energy would increase very
rapidly. We shall leave the determination of the minimum of (7.33) to the reader as an
simple exercise in differential calculus and give the result immediately. The radius is

h*4ne,

m0e2

(7.34)
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) E(r) Fig. 7.8. This figure is meant to clarify the competition between kinetic and
potential energies as a function of the distance r < position uncertainty in the
hydrogen atom, based on the Heisenberg uncertainty relation. (- —) poten-
tial energy, (— —) kinetic energy, (——) total energy = sum of potential and
kinetic energies. An energy minimum is seen to result

If we substitute this r in (7.33), the corresponding energy is

_1_e'my
2 (dneg)h?’

(7.39)

When we substitute the known numerical values for Planck’s constant, and the mass
and charge of the electron, we obtain a radius of about 108 cm, which is the right
order of magnitude for the hydrogen atom. As we shall see later, the exact quantum
mechanical calculation of the energy yields

1 e4m0
2 (dre)?h®

(7.36)

The only difference between (7.35) and (7.36) is the factor A% = (h/2)* which re-
places h2.

The Heisenberg uncertainty principle also allows us to calculate the so-called zero-
point energy of a harmonic oscillator. Here we consider the motion of a particle elas-
tically bound by a spring with a spring constant f. Since the elastic energy increases
quadratically with the displacement x and the kinetic energy again has the form
p*/2my, the total energy is

2
E=P .S (7.37)
2m0 2
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V E (X ) Fig. 7.9. Illustrating the competition between
0 . . . . .

kinetic and potential energies as a function of
the displacement < position uncertainty in the
harmonic oscillator. (—-—) potential energy,
(— —) kinetic energy, (——) total energy. The
classical energy minimum at x, = 0 is shifted toa
finite value

:Xo

In classical physics this energy is at a minimum when both the momentum and the
position are zero, i.e., the particle is at rest. However, since according to the Heisen-
berg relation an exact position is associated with an infinite momentum, we allow a
positional uncertainty of the same magnitude as the oscillation amplitude x, and have
the corresponding momentum uncertainty according to (7.24), where x, assumes the
role of r (Fig. 7.9). We again require that the total energy is minimised by the appro-
priate choice of x:

2
E=_ " 7 Min. (7.38)

Solving this equation for X, yields the amplitude of the harmonic oscillator,

4
2
Xo = h . (7.39)
my f
The energy then has the form
E=hw. (7.40)

As we shall see later, an exact quantum mechanical calculation yields the relations

E=Jhow (7.41)

=

and

Xo= |/ —h—— . (7.42)
2myw
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It follows from these considerations that atomic, elastically bound particles are
fundamentally incapable of being at rest. Such elastically coupled particles occur, for

example, in crystal lattices. The quantum theory predicts that these atoms will con-
stantly carry out zero-point oscillations.

Problems

7.1 Normalise the wave packet

+ o .
w,t)=N | exp[- }e'[kx_“’(k)’]dk

2(4k)?

for ¢ = 0. Then calculate w(x, ¢) for a free particle of mass m, for ¢ > 0. Does the nor-
malisation hold for # > 0? On the basis of the occupation probability, decide whether
the wave packet falls apart. What is the significance of

exp ——Lz— ?
2(4k)?

Hint: Use the relation

e _as2_be v4a) ¢ —ale+ b/Qa)R
fe dé=e e 14
oo — o0

(completing the square!)

The second integral can be converted to the Gaussian integral by changing the
coordinates.

7.2 By the appropriate choice of Ak in Problem 7.1, let the probability of locating the
wave packet outside Ax = 10~8cm be zero. How long would it take Ax to attain the
size of the distance between the earth and sun (=150 million km)?

Hint: Choose Ax so that y(A4x,0) =1/e [e =exp(1)!]

7.3 Treat Problems 7.1 and 7.2 in three dimensions.



8. Bohr’s Model of the Hydrogen Atom

8.1 Basic Principles of Spectroscopy

In the following chapters we shall take up the detailed analysis of the spectra of atoms
in every wavelength region. The most important sources of information about the elec-
tronic structure and composition of atoms are spectra in the visible, infrared, ultra-
violet, x-ray, microwave and radio frequency ranges. Figure 8.1 summarises these
spectral regions.

Optical spectra are further categorised as line, band and continuous spectra. Con-
tinuous spectra are emitted by radiant solids or high-density gases. Band spectra consist
of groups of large numbers of spectral lines which are very close to one another. They
are generally associated with molecules. Line spectra, on the other hand, are typical of
atoms. They consist of single lines, which can be ordered in characteristic series.
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Optical spectra can be observed either by emission or by absorption. The former
mode requires that the substance to be examined be made to emit light; this can be
achieved by transferring energy to the atoms by means of light, electron collisions,
x-ray excitation or some other process. If a substance re-emits the light it has absorbed,
the process is called resonance fluorescence. The best known example of this is the
resonance fluorescence of sodium vapour (Fig. 8.2).

Resonance light
!

\ A
\ /[
= g
/N—a\ Transmitted light
xapour o e 4 .
\ / (attenuated) Fig. 8.2. Resonance fluorescence of
\{ N . sodium vapour. Sodium metal is

heated in an evacuated glass sphere.
The resulting sodium vapour absorbs
the light of a sodium vapour lamp
and emits the same light as resonance
fluorescence in all directions

Details of apparatus will be discussed in the following sections in connection with

particular problems.
Spectra are traditionally measured in several different units, due to the features of
the apparatus or for practical reasons:
— In wavelength units. These can be determined absolutely with a diffraction grating.
Usually, however, one uses a calibrated comparison spectrum, which allows greater

accuracy.
One wavelength standard is the yellow 3°Kr line, that is a yellow line in the spectrum

of the ®Kr atom. For this line,
Avac = 6057.80211 A 2 7 =16507.6373cm ™! (see below) .

In general the wavelengths are referred to vacuum. The corresponding wavelength
in air is somewhat smaller, because the index of refraction of air is somewhat greater
than 1, and the velocity of light in air is thus somewhat less than in a vacuum. To
convert wavelengths measured in air (“normal” air, 15°C, 760 Torr), the formula is

Aair = Avac/n .

The refractive index of air is a function of the wavelength. At 6000 A, n=1.0002762.
For the yellow %Kr line in normal air,

Aair = 6056.12941 A .

— Specifying the frequency is more general, since it is not dependent on the medium.
We have:

Vv =C/Ayac= /(N As) -
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— A frequently cited quantity is the wavenumber:
v=v/c=1/Ayu=1/(nly) .

The wavenumber is, like the frequency, a quantity proportional to the energy; con-
version may be made according to the equation

E="Vhc.

— Finally, the unit electron volt (eV) is often used as a measure of the energy.
Several units which are important and practical in atomic physics as well as conver-
sion factors are set out in Table 8.1 and in Fig. 8.1.

Table 8.1. Frequently used units and conversion factors (see also the table on the inner side of the front
cover)

Quantity Unit and conversion factor
Wavelength A 1A=10"""m=0.1 nm
Wavenumber ¥ 1 em~! (=1 kayser)
v=1/4 7 = 8066 E(eV) cm !
1 em~! =29.979 GHz
Energy E 1 electron volt = 1.602 - 10719 J = 1.96 - 1076 myc?

E=hv="hce/A=hcy
1 eV 22.418- 10" Hz 2 8066 cm ™!

E@eV)=1.24-10"%
C

m
Mass m 1 electron mass = 9.11 - 1073 kg = 511 keV/c?
Charge e 1 elementary charge = 1.6 -10~1° C
Planck’s constant A h=414-10"Y eV s

h=h/2n=658-10"1eV s

8.2 The Optical Spectrum of the Hydrogen Atom

Kirchhoff and Bunsen, the founders of spectroscopic analysis, were the first to discover
in the mid-19th century that each element possesses its own characteristic spectrum.
Hydrogen is the lightest element, and the hydrogen atom is the simplest atom, con-
sisting of a proton and an electron. The spectra of the hydrogen atom have played an
important role again and again over the last 90 years in the development of our under-
standing of the laws of atomic structure and of the structure of matter.

The emission spectrum of atomic hydrogen shows three characteristic lines in the
visible region at 6563, 4861, and 4340 A (Hg, g,4)- The most intense of these lines was
discovered in 1853 by Angstrom; it is now called the H, line. In the near ultraviolet
region, these three lines are followed by a whole series of further lines, which fall closer
and closer together in a regular way as they approach a short-wavelength limit (H,,)
(Fig. 8.3).

Balmer found in 1885 that the wavelengths of these lines could be extremely well
reproduced by a relation of the form

am (MG (8.1)
ni—4 ' ’
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Fig. 8.3. Balmer series in the hydro-
gen emission spectrum. The conver-
gence of the lines to the series limit
H,, is clearly seen

T
Ha Hg Hy Hs Ho
6562.8 A 48613 A 43405A 41017 A

Here n, is an integer, ny; = 3,4, ... and G is an empirical constant. Today, we write the
Balmer formula somewhat differently. For the wavenumbers of the lines we write

1 1

v=1/A=Ry <—27-——2> , naninteger >2 8.2)
n

The quantity Ry (=4/G) is called the Rydberg constant and has the numerical value
Ry =109677.5810cm ™! .

The series limit is found for n— o to be
Vo =Ry/4.
For the further investigation of the hydrogen spectrum, astrophysical observations

have played an important rdle. In the spectra of stars, photographically recorded as
early as 1881 by Huggins, a large number of lines from the hydrogen spectrum are seen.

Table 8.2. The first 20 lines of the Balmer series of hydrogen. The numbers quoted are wavelengths in air, the
wavenumbers in vacuum, and the values calculated from the Balmer formula

. 1 1
n Aair [A] Vyac [cm™ ! ] RH <? - 7)
H, 3 6562.79 15233.21 15233.00
Hy 4 4861.33 20564.77 20564.55
H, 5 4340.46 23032.54 23032.29
H; 6 4101.73 24373.07 24372.80
H, 7 3970.07 25181.33 25181.08
H, 8 3889.06 25705.84 25705.68
H, 9 3835.40 26065.53 26065.35
H,10 3797.91 26322.80 26322.62
H 11 3770.63 26513.21 26512.97
H, 12 3750.15 26658.01 26657.75
H,; 13 3734.37 26770.65 26770.42
H, 14 3721.95 26860.01 26859.82
H, 15 3711.98 26932.14 26931.94
H, 16 3703.86 26991.18 26990.97
H, 17 3697.15 27040.17 27039.89
H, 18 3691.55 27081.18 27080.88
H,19 3686.83 27115.85 27115.58

H;20 3682.82 27145.37 27145.20
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Using modern radio-astronomical techniques, transitions between states with extremely
large n-values have been found; levels with n between 90 and 350 could be identified.

The reason that many lines were discovered first in astrophysical observations and
not by experiments on the earth is connected with the difficulty of preparing pure
atomic hydrogen in the laboratory. Gas discharges, in which H, gas is decomposed into
atomic hydrogen and excited to fluorescence, always contain fluorescing hydrogen
molecules as well, whose spectrum overlaps the atomic-hydrogen spectrum.

Above the series limit we observe the so-called series-limit continuum, a region in
which the spectrum shows no more lines, but is, instead, continuous.

A comparison of the calculated spectral lines obtained from the Balmer formula
(8.2) with the observed lines (Table 8.2) shows that the formula is not just a good
approximation: the series is described with great precision. The whole spectrum of the
H atom is represented by equations of the form

v=Ry (;1,—2— — 712—> with n' < n being integers . 8.3)

The numbers n and »' are called principal quantum numbers. Table 8.3 contains some
of the lines from the first four series.

Table 8.3. The wavelengths of some lines of the various spectral series in hydrogen. The series with n’ =5
was observed in 1924 by Pfund, it begins with a line of A = 74000 A, but is not shown in the table

n' 1 2 3 4
n Lyman Balmer Paschen Brackett
2 1216 A
2 82257 cm™!
3 1026 A 6563 A
2 97466 cm ™! 215233 cm ™!
4 973 A 4861 A 18751 A
2102807 cm ™! 220565 cm ™! 2 5333 cm™!
5 950 A 4340 A 12818 A 40500 A
2105263 cm ™! 223033 cm™! 2 7801 cm™~! 2 2467 cm™~!
Year of 1906 1885 1908 1922
discovery

The relation (8.3) was formulated first by Rydberg in 1889. He found, “to his great
joy”, that the Balmer formula (8.1) is a special case of the Rydberg formula (8.3).
Table 8.3 also illustrates the Ritz Combination Principle, which was found empirically
in 1898. It states:

The difference of the frequencies of two lines in a spectral series is equal to the fre-
quency of a spectral line which actually occurs in another series from the same atomic
spectrum. For example, the frequency difference of the first two terms in the Lyman
series is equal to the frequency of the first line of the Balmer series, as can be seen from
the wavenumber entries in Table 8.3.
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Fig. 8.4. a) Term diagram of the lines of the hydrogen spectrum b) This represents the lines of the hydrogen spectrum in the term
and series classification. The wavelengths of the transitions are scheme of Grotrian [Struktur der Materie VII (Springer, Berlin
given in A. The energies can be given as (negative) binding energies, 1928)]. The symbols / and k appearing in the upper margin of the
with the zero of energy being the ionisation limit, or they can be figure will be explained later (Sect. 8.9)

given as excitation energies, beginning with the ground state, so
that the energy of the term n,, is equal to the ionisation energy

We-can conclude from observation and inductive reasoning that the frequencies (or
wavenumbers) of all the spectral lines can be represented as differences of two terms of
the form R/n> As we shall see in the following, these are just the energy levels of the
electron in a hydrogen atom. The spectral lines of the hydrogen atom can be graphical-
ly pictured as transitions between the energy levels (terms), leading to a spectral energy
level diagram (Fig. 8.4).

8.3 Bohr’s Postulates

In the early years of this century, various models were suggested to explain the relation-
ship between atomic structure and the spectral lines. The most successful of these is due
to Bohr (1913). Following the Rutherford model, he assumed that the electrons move
around the nucleus in circular orbits of radius r with velocity », much as the planets
move around the sun in the Solar System. A dynamic equilibrium between the cen-
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trifugal force and the Coulomb attraction of the electrons to the nucleus is assumed to
exist. Thus, for the hydrogen atom, one has

€ mre? 8.4)
47::;‘0r2 0 '

The corresponding energy is the sum of the kinetic and the potential energies of the
electrons:

E= Ekin+Epot s

where the kinetic energy, as usual, is given by movz/2 or m0r2w2/2. The potential
energy is defined as the work which one obtains on allowing the electron to approach
the nucleus under the influence of the Coulomb force from infinity to a distance r.
Since the work is defined as the product of force and distance, and the Coulomb force
changes continuously with the distance from the nucleus, we must integrate the contri-
butions to the work along a differential path dr; this gives

Ep= | ¢ __ar ¢ 3.5)
=) —-—sdr=- . .
Pt dmeyr'? dneyr

E,, as a binding energy, may be seen to be negative, with the zero point being the state
of complete ionisation. The total energy is thus found to be

E=%mor2w2— ¢, (8.6)

Thus far, the model corresponds to that of Rutherford.
We may rewrite (8.6) by using (8.4):

eZ

4 2,173
= — = — e mow . 8.7
2-dmegr 20 neg)?? (e"mo ) @7

If, however, one attempts to understand the emission and absorption of light using this
model and the known laws of classical electrodynamics, one encounters fundamental
difficulties. Classically, orbits of arbitrary radius and thus a continuous series of
energy values for the electron in the field of the nucleus should be allowed. But on
identifying the energy levels which are implied by the spectral series with the values of
the electron’s energy, one is forced to assume that only discrete energy values are
possible. Furthermore, electrons moving in circular orbits are accelerated charges, and
as such, they should radiate electromagnetic waves with frequencies equal to their
orbital frequencies, v= w/2n. They would thus lose energy continuously, i.e. their
orbits are unstable and they would spiral into the nucleus. Their orbital frequencies
would change continuously during this process. Therefore, the radiation emitted would
include a continuous range of frequencies.

In order to avoid this discrepancy with the laws of classical physics, Bohr
formulated three postulates which describe the deviations from classical behavior for
the electrons in an atom. These postulates proved to be an extremely important step
towards quantum mechanics. They are:
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— The classical equations of motion are valid for electrons in atoms. However, only
certain discrete orbits with the energies E, are allowed. These are the energy levels
of the atom.

— The motion of the electrons in these quantised orbits is radiationless. An electron
can be transferred from an orbit with lower (negative) binding energy E,, (i.e. larger
r) to an orbit with higher (negative) binding energy E,, (smaller r), emitting radia-
tion in the process. The frequency of the emitted radiation is given by

E,—E, =hv. (8.8)
Light absorption is the reverse process.
By comparing (8.8) and (8.3), Bohr identified the energy terms E, and E, as

Rh
', E,--Rhc (8.9)
n n

E,= -

where the minus sign again implies that we are dealing with binding energies.

— Finally, for the calculation of the Rydberg constant R in (8.9) from atomic quan-
tities, Bohr used the comparison of the orbital frequencies of the electrons with the
frequency of the emitted or absorbed radiation. In classical physics, these fre-
quencies would be equal, as mentioned above. However, using (8.4), one can easily
calculate that this is not at all the case in the hydrogen atom for small orbital radii r.
Bohr’s decisive idea was then to postulate that with increasing orbital radius 7, the

laws of quantum atomic physics become identical with those of classical physics. The

application of this “Correspondence Principle” to the hydrogen atom allows the deter-
mination of the discrete stable orbits.

We consider the emission of light according to the first two postulates for a transi-
tion between neighboring orbits, i.e. for (n—n') =1, and for large n. From (8.3) we
have for the frequency v, withn—n'=1

1 1 1 1

Rc—% —1——2—1 ERCE;
n (1-1/n) n

or, with =1,

2Rc

n3

8.11)

This frequency is now set equal to the classical orbital frequency w/2= in (8.7), setting
(8.7) equal to (8.9) and inserting in (8.11); this yields an equation from which R can
be calculated:

211/3
Rhe 1 1 o*m 2n2Rc
n?  2(4ng)™? AE

and

4
mye
~8einic &2
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From (8.12), we find for the Rydberg constant R (which we denote by R, for reasons
which will become apparent below) the numerical value

R, =(109737.318+0.012) cm ' . (8.13)

This may be compared with the empirical value in (8.2). In Bohr’s model, R is just the
ionisation energy of the ground state of the atom, n = 1.
From (8.12), with (8.7) and (8.9), we find the radius r, of the nth orbital to be

n2h24 &y
n=
e"moy

(8.14)

The quantum number n» which occurs in these expressions is called the principal quan-
tum number.

In addition, we may calculate the orbital angular momentum l=r xp of an
electron having velocity v, and orbital frequency w, in the orbit with radius r,, and find,
using (8.11) and (8.14), the quantisation rule

|l|= movpry,=moriw,=nh with n=1,2,3,.... (8.15)

This quantisation rule is often (but incorrectly) taken to be one of Bohr’s postulates.

The essential common feature of the Bohr postulates is that they make no state-
ments about processes, but only about states. The classical orbital concept is aban-
doned. The electron’s behaviour as a function of time is not investigated, but only its
stationary initial and final states. Figure 8.5 illustrates the model.

Whether spectral lines are observable, either in emission or in absorption, depends
on the occupation of the energy terms (also referred to as energy states). Absorption
from a state presupposes that this state is occupied by an electron. In emission transi-
tions, an electron falls from a higher state into an unoccupied lower one; the electron
must be previously raised to the higher state by an excitation process, i.e. by an input of
energy. At normal temperatures only the Lyman series in hydrogen is observable in
absorption, since then only the lowest energy term (7 = 1 in Fig. 8.4) is occupied. When
the Balmer lines are observed in the spectra of stars as Fraunhofer lines (that is, these

Lyman series
(ultraviolet)

Paschen series
(infrared)

Pfund
series

Fig. 8.5. Schematic representation of the Bohr atomic

0 2 4 6 8 10x0°° . ) .
[N S ) o model, showing the first five spectral series
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lines are missing in the continuous spectrum because of absorption of light on the way
through the stellar atmosphere), then it can be concluded that the temperature of the
atmosphere is so high, that the first excited state of the H atom (n = 2) is also occupied.
This is the basis of spectroscopic temperature determination utilising the Boltzmann
distribution (2.8). For example, in the sun, with a surface temperature of 6000 K, only
1078 of the hydrogen atoms in the solar atmosphere are in the n = 2 state.

8.4 Some Quantitative Conclusions

We will now treat the Bohr model with arbitrary nuclear charge for hydrogen-like
systems such as He *, Li?*, etc. quantitatively. The nucleus with charge Z is orbited by
an electron in a circular orbit n at a distance r, and with the velocity v,. There is an
equilibrium between the Coulomb force and the centrifugal force:

Ze? m002

2
= = myr,w; , (8.16)
47zsorﬁ rn 07nn

where w, = v,/r, is the circular frequency of the electron in its orbit #» and my is its
mass. For the possible orbital radii follows, see (8.14)

252
= _”hzﬂ 8.17)
Ze my
With Z=1, n=1 we find for the smallest orbital radius r; in the hydrogen atom
ry(H) = 0.529 A, the right order of magnitude for the spatial extension of the neutral
hydrogen atom. ri(H) is referred to as the Bohr radius of the hydrogen atom in the
ground state, abbreviated ay.
For the possible circular frequencies of the electronic motion we obtain

. = 1 Z%e*m,
§ (47[80)2 n3h3

(8.18)

For Z =1, n=1, the largest possible circular frequency is seen to be
wi(H) =10'°Hz;

w, would be the “classical” frequency of the emitted light if the electron behaved like a
classical dipole in the atom. This is, however, not the case, see Sect. 8.3. The emitted
frequency corresponds to the difference of the energy states of two orbits » and n’
according to (8.9). The total energy is according to (8.6)

Ze?

E,=myv2/2 -
4negr,

(8.19)

Substituting for r, from (8.17) and v,, which can be obtained from (8.15), yields the
possible energy states:
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Z2e4m0 1

E,=-_2¢" _ °
: 32n2e3n? n?

(8.20)

For Z=1, n=1 we find the lowest energy state of the hydrogen atom:
E/(H)= —13.59¢V.

This is the ionisation energy of the H atom.
For arbitrary Z, n = 1, one obtains

E{(Z)= -Z%-13.59¢V.

For the wavenumbers of the spectral lines we find, according to (8.3) and (8.9)

_ 1 e*myz? 1 1
v=.E(E,,—E,,') = ° < _2_> 8.21)

64nieindc\n'? n

Comparison of this result with the empirically found Balmer formula (see Sect. 8.2)
shows complete agreement with respect to the quantum numbers # and n’. The
quantum number zn which was introduced by Bohr is thus identical with the index n of
the Balmer formula.

8.5 Motion of the Nucleus

The spectroscopically measured quantity Ry (Sect. 8.2) does not agree exactly with the
theoretical quantity R, (8.13). The difference is about 60 cm ™~ !, The reason for this is
the motion of the nucleus during the revolution of the electron, which was neglected in
the above model calculation. This calculation was made on the basis of an infinitely
massive nucleus; we must now take the finite mass of the nucleus into account.

In mechanics it can be shown that the motion of two particles, of masses m, and m,
and at distance r from one another, takes place around the common centre of gravity.
If the centre of gravity is at rest, the total energy of both particles is that of a fictitious
particle which orbits about the centre of gravity at a distance r and has the mass

=_mm (8.22)
mqy+my

referred to as the reduced mass. In all calculations of Sect. 8.4 we must therefore
replace the mass of the orbiting electron, m,, by u and obtain, in agreement with
experiment,

1

R=R,——— . (8.23)
1+ mo/M

Here my=m,, the mass of the orbiting electron, and M= m,, the mass of the
nucleus. The energy corrections due to motion of the nucleus decrease rapidly with in-
creasing nuclear mass (Table 8.4).
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Table 8.4. Energy correction for motion of the nucleus for the Rydberg numbers of several one-electron
atoms

Atom H(H) D(H) T(CH) He* Liz*
A 1 2 3 4 7
_AE 10* 5.45 2.75 1.82 1.36 0.78
E
AE
e/ 0.0545 0.0275 0.0182 0.0136 0.0078
E

This observation makes possible a spectroscopic determination of the mass ratio
M/my, e.g.

Mproton/melectron =1836.15.

Due to the motion of the nucleus, different isotopes of the same element have
slightly different spectral lines. This so-called isotope displacement led to the discovery
of heavy hydrogen with the mass number 4 = 2 (deuterium). It was found that each
line in the spectrum of hydrogen was actually double. The intensity of the second line
of each pair was proportional to the content of deutgrium. Figure 8.6 shows the Hgline
with the accompanying Dgat a distance of about 1 A in a 1: 1 mixture of the two gases.
The nucleus of deuterium contains a neutron in addition to the proton. There are easily
measurable differences in the corresponding lines of the H and D Lyman series, namely

RH=R°.,-——1————-= 109677.584 cm !, (8.24)
1+ my/ My

Rp=Ro- Y _109707.419cm . (8.25)
1+ my/Mp

The difference in- wavelengths A A for corresponding lines in the spectra of light and
heavy hydrogen is:

AA=AH—AD=AH<I—%>=AH< —_R—H>. (8.26)

H Rp

s Dp

Fig. 8.6. B lines of the Balmer series in a mixture of equal parts hydrogen ('H) and
deuterium (2H). One sees the isotope effect, which is explained by motion of the nucleus.
The lines are about 1 A apart and have the same intensity here, because the two isotopes
are present in equal amounts [from K. H. Hellwege: Einfiihrung in die Physik der Atome,
Heidelberger Taschenbiicher, Vol. 2, 4th ed. (Springer, Berlin, Heidelberg, New York
1974) Fig. 40a]
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Table 8.5 gives the measured values. The agreement between the calculated and
measured values is excellent.

Historical remark: a difference of about 0.02% had been found between the values
of the molecular weight of hydrogen determined chemically and by mass spectroscopy,
because D is present in the natural isotopic mixture of hydrogen. Its mass was included
in the results obtained by chemical means, but not by mass spectroscopy. In 1931,
however, Urey discovered spectral lines which, according to their Rydberg number,
belonged to D by observing a gas discharge through the vapour of 3 litres of liquid
hydrogen evaporated into a 1 cm? volume (Fig. 8.6).

Table 8.5. Comparison of the wavelengths of corresponding spectral lines in hydrogen and deuterium. The
lines belong to the Lyman series

Ip/A In/A

1215.31 1215.66

1025.42 1025.72
972.25 972.53

8.6 Spectra of Hydrogen-like Atoms

According to Bohr, the spectra of all atoms or ions with only one electron (one-electron
systems) should be the same except for the factor Z? and the Rydberg number. The
spectrum of hydrogen should thus explain those of the ions He*, Li**, Be** or any
other ions which have only one electron. This has been completely verified experi-
mentally (see Table 8.6 and the energy diagram in Fig. 8.7).

For He*, astronomers found the Fowler series

- 1 1

Table 8.6. Wavelengths A, of the first Lyman lines, i.e. the spectral lines with n’ = 1, n = 2, of hydrogen and
hydrogen-like atomic ions. The mass correction (first column) is used to calculate the Rydberg number
(second column) and thus A,, (third column). The calculated values are in good agreement with the measured
values (fourth column)

my Roug Az A

1+ -
Mo [em™1] (calc) (meas)
[A] [A]
H 1.00054447 109677.6 1215.66 1215.66
2H 1.00027148 109707.4 1215.33 1215.33
‘Het 1.00013704 109722.3 303.8 303.6
TLi2t 1.00007817 109728.7 135.0 135.0
1335“ 1.00006086 109730.6 75.9 75.9
B4+ 1.00005477 109731.3
g4+ 1.00004982 109731.8 486 48.6

12¢s+ 1.00004571 109732.3 33.7 33.7
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and the Pickering series

- 1 1
Vp = 4RHe <?— 7> s

which can also be represented as

1 1
bp=Rpe(————), n=56....
F H°<22 (n/2)2>

8. Bohr’s Model of the Hydrogen Atom

Table 8.7. Comparison of the spec-
tral lines of the Balmer series in hy-
drogen and the Pickering series in the
helium ion, in A

Het H

6560.1 6562.8 (H,)
5411.6

4859.3 4861.3 (Hp)
4561.6

4338.7 4340.5 (H;,)
4199.9

4100.0 4101.7 (H5)

Fig. 8.7. Some energy levels of the atoms H, He*
and Li?*

(8.28)

(8.29)

Every other line of the Pickering series thus almost corresponds to one of the Balmer

lines of H. This is shown in Table 8.7.

Later other He™ series were found, such as the

1st Lyman series Vp ;= 4Ry, <-11—2 -
L 1
2nd Lyman series ¥, = 4Ry, 57

1
nt)’
A
n?)’

(8.30)

(8.31)

For Li?*, Be’" and still heavier highly ionised atoms, spectral lines have been
observed which can be calculated by multiplying the frequencies of the lines of the
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H atom by Z? and insertion of the corresponding Rydberg constant. With increasing
nuclear charge Z, we quickly reach the region of x-ray wavelengths.

In 1916, the collected spectroscopic experience concerning the hydrogen-similarity
of these spectra was generalised in the displacement theorem of Sommerfeld and
Kossel, which states:

The spectrum of any atom is very similar to the spectrum of the singly charged
positive ion which follows it in the periodic table.

Hydrogen-like heavy atoms, i.e. heavy atoms from which all the electrons except
one have been removed, can be prepared by accelerating the singly-ionised atoms to
high energies and passing them through a thin foil; their electrons are “stripped off”
on passing through the foil. For example, in order to strip all the electrons from a
uranium atom and produce U®>* jons, they must be accelerated to energies greater
than 10 GeV. By permitting the U®?* jons to recapture one electron each, one can
then obtain the hydrogen-like ion U°'*. The corresponding spectral lines are emitted
as the captured electron makes transitions from orbits of high # to lower orbits. For
U®'*, the Lyman series has been observed in the spectral region around 100 keV and
the Balmer series is in the region between 15 and 35 keV (Th. Stéhlker, Phys. Bl. 52,
42 (1996)).

8.7 Muonic Atoms

With the simple Bohr model, the muonic atoms, first observed in 1952, can be
described. They contain, instead of an electron, the 207-times heavier 4 meson or muon
and are, in contrast to the Rydberg atoms, extremely small, in extreme cases hardly
larger than the typical diameter of an atomic nucleus.

To produce them, matter is bombarded with energetic protons (about 440 MeV),
giving rise to other elementary particles, the pions, according to the following reaction
schemes:

p+n-n+n+n*t or p+nop+p+n.

Here p denotes the proton, # the neutron, and 7 the pion.
Pions have a charge +e or —e and mass m,= 273 m,. They decay into other
particles, the muons, according to the reactions

ntout+v, or wTou +v,.

Here, the symbols v or ¥ mean a neutrino or an antineutrino, the index 4 means muon
neutrino (neutretto), and electron neutrinos carry the index e to distinguish them. The
neutrinos are only shown for completeness.

The half-life for this decay is 7;,, = 2.5 - 10 ~®s. Muons may be characterised as
heavy electrons; they have a charge e, a mass equal to 206.8 m,, and a half-life
T,,,=2.2-10"%s.

Muons decay into electrons (e~) or into positrons (e*) according to the reactions

utoet+ve+v,, U e +V.+v,.

Before they decay, they can be captured into outer atomic orbits by atomic nuclei and
can occupy these orbits in the place of electrons. The capture of those particles com-
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ing from the accelerator and slowed down in the experiment occurs mostly in condi-
tions with high angular momentum quantum numbers. The transition from here to the
ground state can take place through the release of electrons by the Auger process or
through the emission of electromagnetic radiation. The muonic atoms radiate light of
atomic transition frequencies. This is then the light of an hydrogen-like spectrum in
the spectral region of X-rays or gamma rays. In making transitions from the outer
to inner orbits, the muons radiate light of the corresponding atomic transition fre-
quency; this is light in the x-ray region of the spectrum. Since muons behave like heavy
electrons, we can simply apply the results of the Bohr model. For the orbital radii we
have, see (8.17)

dreyh’
_ oft” 2

n= 2
Ze“m,

(8.32)

r, is thus smaller than the radius of the corresponding orbit which is occupied by an
electron by the ratio of the electron to the muon mass.

A numerical example: for the magnesium atom 2Mg we find

Electron: ri(e”) = -(%3—13;= 4.5-10"2%m,

- _ n(e) —14
Muon: r =—— - =22-10""m.
1(17) 07

The muon is thus much closer to the nucleus than the electron. For the radiation
from a transition between the levels with principal quantum numbers 1 and 2 the
following expression holds:

2,4
L Zm, <_1__ _1_>, (8.33)

12 22

-~ 3272e2n?

Fig. 8.8. The probability W of finding a
muon at a distance r from the center of the
nucleus of a muonic atom, in arbitrary units,
for various shells; also showing the nuclear
charge distribution (shaded area). The plot
is for the lead nucleus, with Z =282 and
nuclear radius R = 6.687+10~ '3 m (fm). The
symbols used to indicate the shells will be ex-
plained later. (After E. Boric and G.A.
Rinker: Rev. Mod. Phys. 54, 68 (1982))
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Fig. 8.10. Lyman series (np—1s) of the muonic transitions in a titanium atom.

Note the energy scale

A

Fig. 8.9. Muonic terms for an atom with Z = 60. The fully drawn levels correspond to the assumption of a point nucleus; the dashed levels take
account of the finite nuclear size. The notation used for the transitions corresponds to that used for x-ray lines (Chap. 18). Note the energy
scale

that is, the quantum energy is larger by the ratio of the masses than the energy of the
corresponding transition in an electronic atom. Finally, the muon decays as described
above, or else it is captured by the nucleus, which then may itself decay.

Muonic atoms are observed for the most part by means of the x-radiation which
they emit; this radiation decays in intensity with the half-life characteristic of muons.
Muonic atoms are interesting objects of nuclear physics research. Since the muons
approach the nucleus very closely, much more so than the electrons in an electronic
atom, they can be used to study details of the nuclear charge density distribution, the
distribution of the nuclear magnetic moment within the nuclear volume and of nuclear
quadrupole deformation.

Figure 8.8 shows the spatial distribution of a muon in several orbits of a lead atom.
It can be seen that the muons in these orbits spend a considerable amount of time in the
nucleus or in its immediate neighbourhood. Since the muons approach the nuclear
charge Ze very closely, the binding and excitation energies become extremely large.

Figure 8.9 shows a term diagram of the muonic-atom levels for a nuclear charge
number Z = 60. The analogy with the hydrogen atom is evident; however, the transi-
tions here are in the energy region of MeV, i.e. in the region of hard x-rays and of
gamma rays. For the investigation of such muonic atoms, one therefore requires the
tools of nuclear physics. Detection of the radiation is carried out with scintillator or
solid-state detectors.

Finally, Fig. 8.10 shows an example of the measurement of radiation from a
muonic atom, the Lyman series in the muonic spectrum of titanium. The notations
s, p,d, etc. in Figs. 8.8 —10 refer to the orbital angular momentum of the electrons
(muons). They will be further described in Sect. 8.9.
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Fig. 8.11. Experimental arrangement for detecting ionisa- Fig. 8.12. Experimental arrangement of Franck and Hertz for investigating
tion processes in gases. Only positive ions, which are form- inelastic collisions between electrons and atoms. Electrons on the way from
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ionise the atoms

other

With the development of accelerators that accelerate electrons and protons to ever-
higher levels of energy and intensity, it was possible to generate a variety of further
particles; which, with their negative charge, can be used for building the shell. These
are, for example, the tauon and the kaon. These and other “exotic” atoms (see also
Sect. 8.13), like the muonic atoms, can be used in many ways for the investigation of
the characteristics of the atomic nucleus.

8.8 Excitation of Quantum Jumps by Collisions

Lenard investigated the ionisation of atoms as early as 1902 using electron collisions.
For his measurements, he used an arrangement following the principle of the experi-
mental scheme shown in Fig. 8.11. The free electrons produced by thermionic emission
are accelerated by the positive grid voltage V5 and pass through the open-meshed grid
into the experimental region. Between the grid and the plate A at the right of the
drawing, which serves as the third electrode, a plate voltage V} is applied. The plate is
negatively charged relative to the grid. The voltages are chosen so that the electrons
cannot reach the plate; they pass through the grid and are repelled back to it. When an
electron has ionised an atom of the gas in the experimental region, however, the ion is
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accelerated towards the plate A. Ionisation events are thus detected as a current to the
plate.

The current is plotted as a function of the grid voltage Vg in the lower part of
Fig. 8.11. Only when the electrons have a certain minimum energy e V; does the current
appear. The corresponding accelerating potential ¥} is the ionisation potential of the
atoms.

Franck and Hertz showed for the first time in 1913 that the existence of discrete
energy levels in atoms can be demonstrated with the help of electron collision processes
independently of optical-spectroscopic results. Inelastic collisions of electrons with
atoms can result in the transfer of amounts of energy to the atoms which are smaller
than the ionisation energy and serve to excite the atoms without ionising them.

The experimental setup is shown schematically in Fig. 8.12. Electrons from a heated
cathode are accelerated by a variable voltage V applied to a grid. They pass through
the grid and are carried by their momenta across a space filled with Hg vapour to an
anode A. Between the anode and the grid is a braking voltage of about 0.5 V. Electrons
which have lost most of their kinetic energy in inelastic collisions in the gas-filled space
can no longer move against this braking potential and fall back to the grid. The anode
current is then measured as a function of the grid voltage V; at a constant braking po-
tential V.

The result is shown in the lower part of Fig. 8.12. As soon as Vg is greater than V3,
the current increases with increasing voltage (space-charge conduction law). At a value
of V=5V (in mercury vapour) the current 7 is strongly reduced; it then increases
again up to Vg=10V, where the oscillation is repeated. The explanation of these
results is found by making the following assumptions: when the electrons have
reached an energy of about 5 eV, they can give up their energy to a discrete level of the
mercury atoms. They have then lost their energy and can no longer move against the
braking potential. If their energy is 10 eV, this energy transfer can occur twice, etc.
Indeed, one finds an intense line in emission and absorption at E = 4.85¢V in the
optical spectrum of atomic mercury, corresponding to a wavelength of 2537 A. This
line was also observed by Franck and Hertz in the optical emission spectrum of Hg
vapour after excitation by electron collisions. The excitation or resonance voltages are
denoted in Figs. 8.12, 13 as V,.

The resolving power for the energy loss of the electrons may be improved by using
an indirectly heated cathode and a field-free collision region. In this way, one obtains a
better uniformity of the energies of the electrons. With an improved experimental
arrangement (Fig. 8.13), a number of structures can be seen in the current-voltage
curve; these correspond to further excitations of the atoms. The step at 6.73 eV, for
example, corresponds to a further intense line in the Hg spectrum; 6.73 eV 2 1850 A.

Not all the maxima in the current-voltage curve can be correlated with observed
spectral lines. To explain this fact, we have to assume that optically “forbidden” transi-
tions can, in some cases, be excited by collisions. We shall see later that there are selec-
tion rules for optical transitions between energy terms of atoms, according to which not
all combinations of terms are possible — one says “allowed”. The selection rules for
collision excitation of atoms are clearly not identical with those for optical excitation
(or de-excitation).

In this connection, the following experiment is interesting: Na vapour at low pres-
sure can be excited to fluorescence by illumination with the yellow Na line (quantum
energy 2.11 eV). The excitation occurs only when the light used for illumination has
exactly the quantum energy 2.11 eV. Both smaller and larger quantum energies are in-
effective in producing an excitation.
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Excitation by means of collisions with electrons are in this respect quite different: in
this type of excitation, the yellow line is emitted whenever the energy of the electrons is
equal to or larger than 2.11 eV. This can be explained as follows: the kinetic energy of
free electrons is not quantised. After excitation of a discrete atomic energy level by
electron collision, the exciting electron can retain an arbitrary amount of energy,
depending on its initial value. This remaining energy can, if it is sufficiently large, serve
to excite still other atoms in the gas volume.

All in all, these electron collision experiments prove the existence of discrete excita-
tion states in atoms and thus offer an excellent confirmation of the basic assumptions
of the Bohr theory. In modern atomic and solid state physics, energy-loss spectra of
electrons represent an important aid to the investigation of possible excitation stages of
atoms and of the structure of the surfaces of solids.

8.9 Sommerfeld’s Extension of the Bohr Model
and the Experimental Justification of a Second Quantum Number

The finished picture of the Bohr model still contained some fuzzy details: exact spectral
measurements at high resolution showed that the lines of the Balmer series in hydrogen
are, in fact, not single lines. Each of them consists rather of several components; how
many one can distinguish depends on the resolution of the spectrometer employed.
The H,, line of hydrogen with ¥ = 15233 cm ™! consists, for example of a multiplet
with a wavenumber splitting of A% =0.33 cm~' between the strongest components
(Fig. 8.14). In order to observe this structure, a spectral resolution of nearly
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¥/4v = 100000 is needed. In the spectrum of the one-electron ion He™, these multiplet
lines are more strongly separated, and the splitting is therefore easier to observe.
We shall see in Chap. 12 that the splitting increases as the 4th power of the nuclear
charge number Z.

From observations of this type, Sommerfeld derived an extension of the Bohr
model. It is well known from classical mechanics that, according to Kepler’s Laws, not
only circular orbits, but also elliptical orbits are possible, having the same energies.

From this, Sommerfeld drew the conclusion that the same is true in atoms also. In
order to distinguish the elliptical orbits from the circular ones, a new, second quantum
number is required. Since Sommerfeld’s chain of reasoning was on the one hand of
great historical importance in introducing a second quantum number, but has, on the
other hand, been made obsolete by the later quantum mechanical treatment, we will
only give a brief summary here.

The principal quantum number n remains valid; it continues to determine the total
energy of a term according to (8.20), i.e.

_ RhcZ?

n2

E,= (8.34)

According to Sommerfeld, n also determines the major semiaxis of the ellipse. The
minor semiaxis is determined by the second quantum number in such a fashion that the
absolute value of the angular momentum remains a whole multiple & of A, with k < n.
The length of the minor semiaxis, that is the eccentricity of the ellipse, has in this model
no influence on the total energy. Each principal quantum number # corresponds to one
major semiaxis a,, but to various orbital shapes, characterised by the minor semiaxis
b, x. We say that the energy term is n#-fold degenerate, by which is meant that different
orbits with two quantum numbers » and k belong to one and the same energy value.

We should mention at this point that in quantum theory, the Sommerfeld second
quantum number k£ became the orbital angular momentum quantum number /(/ =
k—1). The orbital angular momentum of the electron is given by (as we shall show in
Chap. 10)

l|=VI0+1)h with [=0,1,2,...n—1. (8.35)

In order to distinguish the orbital angular momentum itself, /, from its quantum
number /, we shall henceforth use the symbol |I|for the absolute value of the angular
momentum vector /.

For the various numerical values of the angular momentum quantum number, letter
symbols s, p, d, f, g, h, etc. have become firmly established; these are listed in the
following table:

Quantum number I=0 1 2 3 4 5
Angular momentum |I|=0 2k |/6kh |12k )20k }/30h
Name (Symbol) s p d f g h-electron or state.

What this means in terms of the spatial form of the electron orbitals will be
explained later, together with the solution of the Schrodinger equation (Chap. 10).



116 8. Bohr’s Model of the Hydrogen Atom

Fig. 8.15. Rotation of the perihelion point in the motion of an
electron around the nucleus in a many-electron atom according
to the Sommerfeld theory. The shaded region is the electronic
shell of the atom. The outer electron follows a so-called “diving
orbit” in its motion, i.e., it dives into the atomic shell. This
model provides an intuitive explanation of the lifting of orbital
degeneracy due to the relativistic mass effect (Sect. 8.10) and to
the shielding of the nuclear charge (see Sect. 11.2)

8.10 Lifting of Orbital Degeneracy by the Relativistic Mass Change

We still have no explanation for the doublet or multiplet structure of the spectral lines
mentioned at the beginning of the last section. However, we now know that each level
is n-fold degenerate; by this we mean the fact that each energy level has various pos-
sibilities for the spatial distribution of the electrons occupying it. The number of levels
with differing energies, and thus the number of observable spectral lines, however still
remains the same.

The lifting of this degeneracy occurs, according to Sommerfeld (1916), through the
effect of the relativistic mass change, m = m(v), which we have neglected up to now.
We can understand this qualitatively as follows: exactly as in planetary motion accord-
ing to Kepler’s Laws, the electrons are accelerated when they come near to the nucleus.
This is a result of Kepler’s Law of Areas, which requires that the moving electron sweep
out equal areas between its orbit and the nucleus in equal times. In the neighbourhood
of the nucleus, the electrons are thus faster and, from special relativity, more massive.
This leads, in turn, to a decrease in energy: increased mass means, according to Bohr, a
smaller radius, and this leads to a larger (negative) binding energy, i.e. to a decrease in
total energy. The smaller the minor semiaxis of an ellipse, the more significant these
relativistic corrections must become.

We will not repeat Sommerfeld’s calculation here; we just give the result. The rela-
tivistic mass change leads to a rotation of the perihelion point of the orbits; in an intui-
tive picture, the electron then has a “rosette motion” about the nucleus (Fig. 8.15).

In Summerfeld’s calculation, the “fine structure constant” plays a role:

o= Velocity of the electron in the 1st Bohr orbit
Velocity of light

e’ 1 .
= —— (dimensionless) .
2g0hc 137

For an electron orbit with the quantum numbers » and k, the result of
Sommerfeld’s calculation of the relativistic mass effect is

2 2

2 272
E, ;= —Rhci [l + 2 Z <% - —i—) + higher-order corrections} . (8.36)
n n

The relativistic energy change is thus of the order of a?=1073, i.e. small, but observ-
able (see Fig. 8.14). Applying the models developed by Sommerfeld, the structures of
the hydrogen atom mentioned thus far can be described both qualitatively and quan-
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titatively. However, further experiments, which we shall describe in Chap. 12, pointed
out the limits of these models. An adequate description of the relativistic motion of
the electron is provided by the Dirac equation (cf. Sect. 14.6).

8.11 Limits of the Bohr-Sommerfeld Theory.
The Correspondence Principle

The Bohr-Sommerfeld model is theoretically unsatisfying: on the one hand, classical
mechanics is set aside, and only certain particular orbits are allowed; on the other
hand, classical physics is used to calculate the orbits, see Sect. 8.3. It is as though, “On
Mondays, Wednesdays and Fridays one uses the classical laws, on Tuesdays, Thurs-
days, and Saturdays the laws of quantum physics” (Bragg). Furthermore, the model
predicts only the frequencies but not the intensities or the time dependence of emitted
or absorbed light.

The gap which had opened between classical physics and the (early) quantum theory
was bridged by Bohr with his Correspondence Principle.

According to this principle, for large quantum numbers, the classical and quantum
theories approach one another; or, the behaviour of an atom approaches that expected
from classical, macroscopic physics, the larger its energy relative to the energy change
which occurs in the process considered, i.e. all the more, the higher the level and the
smaller the level difference.

Starting from considerations such as the above, one arrives at the following general
formulation of the Correspondence Principle:

Every non-classical theory must, in the limit of high energies and small energy
changes, yield the results of classical theory.

The intensities, polarisations, and selection rules for spectral lines may be
calculated from the laws of classical physics. The Correspondence Principle allows us,
within limits, to translate these results, by using a prescription for quantisation, into
the quantum theory.

In spite of a series of successes, the application of the Bohr-Sommerfeld theory led
to fundamental difficulties. The results were wrong even for atoms with two electrons.
The magnetic properties of atoms were not correctly described. The removal of these
difficulties was accomplished with the development of modern quantum mechanics. In
Chap. 10, we will treat the hydrogen atom problem exactly with the help of quantum
theory; we shall find there that some of the results of the Bohr-Sommerfeld theory
remain valid, while others must be modified.

8.12 Rydberg Atoms

Atoms in which an electron has been excited to an unusually high energy level illustrate
well the logical continuity between the world of classical physics and quantum
mechanics.

Such atoms, called Rydberg atoms, have extraordinary properties. They are
gigantic: Rydberg atoms are known with diameters reaching 10 ™2 mm, corresponding
to a 100000-fold increase over the diameters of atoms in the ground state. Further-
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more, these excited states have extremely long lifetimes. While typical lifetimes of
lower excited states of atoms are about 10~ %s, there are Rydberg atoms which have
lifetimes of 1s. The difference in energy between two neighboring states n and n’
becomes very small when # is large. The long lifetimes of such states are in part a result
of the fact that the probability of a spontaneous transition between two states » and n’
is, according to Einstein (Sect. 5.2.3), proportional to v>. In addition, Rydberg atoms
may be strongly polarised by relatively weak electric fields, or even completely ionised.

When the outer electron of an gtom is excited into a very high energy level, it enters
a spatially extended orbit — an orbital — which is far outside the orbitals of all the
other electrons. The excited electron then “sees” an atomic core, consisting of the
nucleus and all the inner electrons, which has a charge + e, just the same as the charge
of the hydrogen nucleus. As long as the excited electron does not approach the core too
closely, it behaves as though it belonged to a hydrogen atom. Rydberg atoms behave
therefore in many respects like highly excited hydrogen atoms.

In interstellar space, there are atoms whose outer electrons are in states with principal
quantum numbers n up to 350; this has been observed by radio astronomical methods.
In the laboratory, Rydberg atoms with principal quantum numbers between 10 and 290
have been studied. A recent example of still larger values of »n is shown in Fig. 8.18.

The orbital radius of an electron in an atom is proportional to n? (8.17). The
spacing between neighbouring energy levels decreases as n~>. It is because these higher
powers of n have especially large effects for large n-values that Rydberg atoms have
their unusual properties.

Rydberg atoms are produced by exciting an atomic beam with laser light. To detect
the highly excited atoms, an electric field is applied between the plates of a condenser
through which the atomic beam passes. Through field ionisation, the atoms can be con-
verted to ions with the aid of small electric fields of the order of a few hundred Vem 1.
The ions can be detected by means of their charge, for example with the aid of an
electron multiplier or channeltron. An example of an experimental setup is shown in
Fig. 8.16; Fig. 8.17 shows some experimental results. In Fig. 8.17, the result of exciting
a beam of lithium atoms with three laser beams is shown. The first two excite the atoms
into intermediate excited states (e.g. here n = 3, /= 0), while the third is continuously
variable within a small energy range and adds the last necessary energy contribution to
put the atoms into a Rydberg state. By continuously changing the frequency of this last
laser, the experimenter can excite a series of Rydberg states of the atoms one after
another — in the figure, the states with n = 28 to 39. Thus, a particular Rydberg state
can be chosen and selectively excited in order to investigate its physical properties.

When a Rydberg atom reduces its principal quantum number by 1 in emitting a light
quantum, the light is in the far infrared or microwave region of the electromagnetic
spectrum. With this radiation, isolated Rydberg atoms were first discovered in 1965 in
interstellar space. The density of atoms is so low there that collisions are extremely
rare.

It has been possible to investigate Rydberg atoms in the laboratory since narrow-
band, tunable lasers have been available (especially dye lasers, see Chap. 21). Since
then, the energy levels, lifetimes, spatial extension of the wavefunctions, and the in-
fluence of electric and magnetic fields have been studied for quantum numbers which
were previously only theoretical. The predictions of theory have been fully confirmed.
Table 8.8 contains an overview of the properties of Rydberg atoms.
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Fig. 8.16. Apparatus for the detection of Rydberg
atoms. An atomic beam is crossed by several (here 2)
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into Rydberg states when the sum of the quantum
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Fig. 8.17. An example of the detection of Rydberg P

states of the lithium atom with n = 28 to 39, measured
with an apparatus like that shown in Fig. 8.16. The
distance (in wave number units) to the series limit is
plotted as the ordinate

Fig. 8.18. Rydberg excitation states of barium atoms with the principal
quantum number 7, observed using Doppler-free spectroscopy. The abcissa
gives the distance from the series limit in units of GHz. From J. Neukammer

et al.: Phys. Rev. Lett. 59, 2947 (1987)
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Table 8.8. Some properties of Rydberg atoms, valid for unperturbed electronic states

Property General Rydberg atoms,
n=30
Size d=ayn? 10° A
Binding energy -E, = Rm/rl2 10-2 eV
Transition energy AE =2R/n? 107 %eV 210 cm™!
An=1
Lifetime rocn’ 30-107%s

8.13 Exotic Atoms: Positronium, Muonihm, and Antihydrogen

The development of particle accelerators with ever-higher energy and intensity has
made the production and investigation of many, albeit short-lived, atoms possible. The
nucleus of such atoms is made up of other particles besides protons and neutrons and
the shell is made up of other particles besides electrons. These are the “exotic” atoms.

It is possible to make artificial atoms in which one or both of the atomic components
of hydrogen, the proton and the electron, are replaced by their corresponding antipar-
ticles. The antiparticle of the proton is the antiproton, p; that of the electron is the
positron, e*. As far as is currently understood, particles are distinguished from their
antiparticles only through the opposite sign of their electric charges and magnetic
moments, cf. Sect. 14.6. Therefore, all the conclusions of the Bohr model concerning
atomic radii, energy levels, and transition frequencies derived in Sects. 8.4 and 8.5
should also apply to atoms containing antiparticles. Here, we shall treat briefly the
“exotic” atoms positronium, muonium, and antihydrogen.

Positronium, an “atom” consisting of an electron, e, and a positron, e*, was
discovered in 1949 by M. Deutsch. It is formed when positrons and electrons enter a
(short-lived) bound state (e* e™), before they annihilate each other with the emission
of two y-quanta. If the particles have no kinetic energy before their annihilation, each
of the y-quanta has an energy equal to myc? = 511 keV, where my is the mass of the
electron. The lifetime of socalled parapositronium, with overall spin S=0 (see
Sect. 17.3), is 1.25-10" %5, Orthopositronium, with S = 1, is produced with a smaller
probability and has a longer lifetime of 1.4-107 7 s. It decays into 3 or more y-quanta.

Positrons can be obtained from the radioactive decay of nuclei, e.g. of Na, and
are thus relatively readily available. Positronium atoms are formed when positrons
pass through a gas or impinge on solid surfaces, where the positron can capture an elec-
tron. Thus, an accelerator is not necessary here. During the brief lifetime of the atoms,
their binding energies and excitation energies can be measured and the results of the
Bohr model thus confirmed.

According to (8.20) and (8.22), the energies of the levels should be proportional to
the reduced mass, and therefore half as large as in the hydrogen atom. The orbital radii
and the wavelengths of the emitted radiation should be twice as large as in hydrogen.
Both effects are observed as predicted; cf. Table 8.9.

In condensed-matter physics and in modern medicine, positronium atoms are used
as probes for structures and dysfunctions, because the emission of their annihilation
radiation, and thus their lifetimes, is dependent on their material surroundings. In
medicine, positron emission tomography is used for example to form an image of
diseased tissue in the brain.
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Table 8.9. The reduced mass m, in units of the electron mass, the binding energy Ey, the energy spacing be-
tween the #n = 1 and n = 2 levels, and the first Bohr radius g, for positronium and muonium in comparison
to the H atom

s E E,-E

o B 2~ £y )
Hydrogen pte =1 13.6eV 10.2eV 0.53 A
Positronium ete” 0.5 6.8 eV 5.1eV 1.06 A
Muonium ute =1 13.5eV 10.2eV 0.53 A

Muonium, (u* e™), is so to speak the lightest muonic atom (cf. Sect. 8.7). It is
formed in a similar way to positronium, when positive muons, u *, enter into a bound
state with electrons on passing through a gas or on a solid surface. Like negative
muons, x4 particles are unstable (see Sect. 8.7), and the lifetime of muonium is cor-
respondingly only 2.2 - 107% s. A pair annihilation does not occur because u* and e~
are unequal leptons. According to (8.20) and (8.22), its binding energy is 13.5 eV,
only slightly different from that of hydrogen, due to the nearly equal reduced
masses. The orbital radii are obtained from (8.17), and the lowest optical excitation
from the state with n =1 (1§ state) to the state with n =2 (25) is found from (8.21)
to be 10.15 eV; cf. also Table 8.7. These atoms have been studied extensively by spec-
troscopic methods, but we will not discuss the results further here. They are particular-
ly relevant to the refinements of the Bohr model by Dirac’s relativistic quantum
mechanics, which we will treat in Chap. 12.

Particularly interesting is the antihydrogen atom, (pe®), which consists of a
positron bound to a negatively-charged antiproton. According to the postulates of
quantum mechanics, antimatter should behave just like ordinary matter. While the
equality of strong, electromagnetic, and weak interactions for matter and antimatter is
considered proven, experimental proof for the gravitational force is still missing
because the appropriate antimatter is not yet available. In 1995, the successful pre-
paration of antihydrogen was reported for the first time. It was carried out as follows:

Antiprotons can be produced in accelerators having particle beams of sufficiently
high energy, for example at CERN in Geneva. When they pass through the Coulomb
field of an atomic nucleus (xenon gas was used), a portion of the kinetic energy of the
antiprotons is converted into e* /e~ pairs. With a small probability, the slowed anti-
proton p can capture a positron e, giving rise to an atom of antihydrogen, (pe*).
It is electrically neutral and therefore leaves the accelerator ring on a tangential orbit.

Thus far, these antihydrogen atoms have been detected only via their decays: the
e is stripped off the atom when it passes through a Si semiconductor particle detec-
tor. This positron annihilates with a negative electron, and the resulting annihilation
radiation is detected and measured by a Nal scintillation counter. The remaining p is
analysed with respect to its mass, charge, and velocity by additional detectors. In the
first report (by the group of W. Oelert, in Phys. Lett. B (1996)), the detection of 8 anti-
hydrogen atoms is described; they were produced by a beam of 10'° antiprotons
during a beam time of 15 hours. Their lifetime was about 40 ns.

One goal of such efforts is the spectroscopic investigation of the antihydrogen
atoms, as a test of the symmetry of the interactions between matter and antimatter.
For this purpose, e.g. for the observation of the Balmer series of antihydrogen, the very
few atoms as yet produced, which in addition have high kinetic energies and short
lifetimes, are naturally not sufficient.
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Another experiment designed to produce antihydrogen is planned to yield the atoms
in a state of rest, without kinetic energy, by using a combination ion trap for positive
heavy and negative light particles (cf. Sect.2.4.6) and trapping antiprotons and
positrons in it at the same time. The group of Th. Hénsch has already reported the
simultaneous trapping of positive and negative particles in such a combined trap (Phys.
Rev. Lett. 75, 3257 (1995)). The binding of trapped particles to antihydrogen has how-
ever not yet been observed.

In the year 2002, the generation of “cold” antihydrogen with temperatures in the
range of 415 K was actually successful, even in larger quantities, namely with a gen-
eration rate of up to 300 antiatoms every second (Amoretti et al., Nature 419, 456
(2002) and Gabrielse et al., Phys. Rev. Lett. 89, 233401 (2002)). The antiproton p~ was
created in a suitable accelerator at 3.5 GeV and decelerated to approximately one-
tenth the speed of light in a decelerator. Together with the positron e* from the decay
of the isotope ?Na, they were caught in an electromagnetic trap (Sect. 2.4.6). There,
the particles collide and build antihydrogen atoms. The yield is low, but well measur-
able.

The proof for the antihydrogen atom occurs through their decay. Because they are
electrically neutral, they drift to the electrodes within less than 1 ps. On collision with
the wall, both building blocks can annihilate with the respective antiparticle. The anti-
proton annihilates with nucleons. This results in several pions. The positrons decay
with an electron into two y-photons, which radiate out with an energy of 511 keV and
an angle of 180°. The measurement of the collision of pion and photon within a time
frame of 5 ps is the signature of an antihydrogen atom. The radiation point of the
antiproton annihilation can be determined with an accuracy better than 8 mm.

These antihydrogen atoms, however, find themselves in high Rydberg conditions
with n > 50. To analyse them spectroscopically, in order to test the question whether
the terminal energy of hydrogen and antihydrogen is the same, they must be trans-
ferred to a lower condition, i.e., to their ground state — a difficult task. There are, how-
ever, indications that antihydrogen atoms were also generated with n=1. One can then
employ the extreme accuracy of high-resolution laser spectroscopy, i.e., up to 2x 10
(Hénsch et al.). This is being worked on intensively.

Problems

8.1 Calculate the recoil energy and velocity of a hydrogen atom in a transition from
the state n = 4 to the state n = 1, in which a photon is emitted.

8.2 Five of the Balmer series lines of hydrogen have the wavelengths 3669.42 A,
3770.06 A, 3835.40 A, 3970.07 A and 4340.47 A. Plot v as a function of n for the
Balmer series. From this, determine the value of 7 for the upper level of each of the five
wavelengths above.

8.3 The absorption spectrum of hydrogen can be obtained by allowing white light to
pass through hydrogen gas which is in the ground state and contains atomic hydrogen
(not just H,). Which photon energies are observed in the hydrogen absorption spec-
trum? Give the wavelengths of these “Fraunhofer lines”.

8.4 a) The emission spectrum of the hydrogen atom is taken with a diffraction grating
(line spacing d = 2 um). A line of the Balmer series is observed in the second order at an
angle 6 =29°5'. What is the quantum number of the excited state from which the
transition starts?
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b) What is the minimum number of lines necessary in a diffraction grating if the
first 30 spectral lines of the Balmer series of the hydrogen atom are to be resolved in the
first-order diffraction spectrum?

Hint: In this case, the number of lines corresponds to the required resolution A/4 4.

8.5 Is it true that in a circular Bohr orbit, the potential energy is equal to the kinetic
energy? If not, where does the energy difference go which arises if we assume that the
electron and the nucleus are initially infinitely far apart and at rest? How large is E,,
compared to Ey;, for the various Bohr orbits?

8.6 The attractive force between a neutron (mass M) and an electron (mass m) is
given by F = GMm/r?. Let us now consider the smallest orbit which the electron can
have around the neutron, according to Bohr’s theory.

a) Write a formula for the centrifugal force which contains m, r and v; r is the radius
of the Bohr orbit, and v is the velocity of the electron in this orbit.

b) Express the kinetic energy in terms of G, M, m and r.

¢) Express the potential energy in terms of G, M, m and r.

d) Express the total energy in terms of G, M, m and r.

e) Set up an equation which corresponds to the Bohr postulate for the quantisation of
the orbits.

f) How large is the radius r of the orbit with n = 1? Express r in terms of 4, G, M and
m; give the numerical value of r.

8.7 For the Bohr model of the atom, calculate the electric current and the magnetic
dipole moment of the electron in the first three orbits (n = 1, 2, 3).

Hint: Use (12.1 —7) to calculate the magnetic dipole moment.

8.8 “Positronium” is a bound electron-positron pair. The positron is the anti-particle
corresponding to the electron. It has a charge + e and the same rest mass as the elec-
tron. On the assumption that e~ and e* — in analogy to the H atom — circle the com-
mon centre of gravity, calculate the rotational frequency w, the radius r and the
binding energy of the system in the ground state.

8.9 A muonic atom consists of an atomic nucleus with nuclear charge Z and a
captured muon, which is in the ground state. The muon is a particle with a mass 207
times that of the electron; its charge is the same as that of the electron.

a) What is the binding energy of a muon which has been captured by a proton?

b) What is the radius of the corresponding Bohr orbit with » = 1?

¢) Give the energy of the photon which is emitted when the muon goes from the state
n = 2 to the ground state.

8.10 Estimate the number of revolutions N an electron makes around the nucleus in
an excited hydrogen atom during the average lifetime of the excited state — 10 ~3s — if
a) it is in the state with n = 2, and b) in the state with n = 15, before it returns to the
n =1 state. ¢) Compare these numbers with the number of revolutions the earth has
made around the sun in the 4.5 x 10° years of its existence.
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8.11 In addition to the isotope “He, natural helium contains a small amount of the
isotope He. Calculate the differences in the wavenumbers and energies of the first and
third lines of the Pickering series which result from these mass differences. The relative
isotopic masses are:

SHe:3.01603u  and “He: 4.00260u .

8.12 Which lines of the hydrogen spectrum lie in the visible region of the spectrum
(between 4000 A and 7000 A)? Which helium lines fall in the same region? How could
one tell whether a helium sample has been contaminated with hydrogen?

8.13 Estimate the relative relativistic correction AE,, ,/E, for the n = 2 levels in the
hydrogen atom.

Hint: Compare (8.29).

8.14 To excite the hydrogen atom into its Rydberg states, one uses the additive
absorption of the light from two lasers. Let the first of these have a fixed emission
wavelength A, which corresponds to 11.5 eV. What wavelengths must the second laser
have in order to pump atoms into the state with n = 20, 30, 40 or 50? How large are the
radii and binding energies for these states? What is the maximum possible linewidth for
both lasers if only a single n state is to be populated?

8.15 a) Calculate the frequency of the orbital motion of an electron in a hydrogen
atom for a level with the quantum number 7.

b) Calculate the frequency of the radiation emitted in the transition from the state n
to the state n—1.

¢) Show that the results of a) and b) agree if 7 is very large.

8.16 Estimate the magnitude of the correction terms which must be applied to the
energies of the stationary states of the lightest atoms, i.e. 'H, ?H, *H, He* and Li**, to
account for the motion of the nucleus.

8.17 1If one did the Franck-Hertz experiment on atomic hydrogen vapour, which lines
in the hydrogen spectrum would one see if the maximum energy of the electrons were
12.5eV?

8.18 Four lines in the Balmer series of He* have the wavelengths 164.05 nm,
121.52 nm, 108.45 nm, and 102.53 nm. Plot the wavenumbers v as a function of n. Is
there a more reasonable way to plot these data? Find the value of # in the upper level
for each of the wavelengths given.

Hint: What is the meaning of the Balmer series? He* is analogous to H.

8.19 A Wannier exciton is a bound state between an electron and a hole in a solid.
Apply the Bohr model to such an electron-hole pair, taking the effective masses and
the dielectric constant of the semiconductor (surrounding medium) into account.

a) What are the energies of the excited states with 2<n<5?
b) What does the absorption spectrum of such an exciton book like?

Hint: A hole is a missing electron, which ideally has the same properties as an electron
except for its positive charge. As an example, consider Cu,O, with ¢, =10, reduced
mass u=0.7 m,. Literature: C. Kittel: Introduction to Solid State Physics.



9. The Mathematical Framework of Quantum Theory

As we saw in the previous chapter, classical physics is unable to offer a satisfactory
explanation of the structure of even the simplest atom, that of hydrogen. This was first
achieved by quantum theory. We shall therefore go into the theory in more depth,
beginning where Chap. 7 left off. We shall be particularly, but not exclusively,
concerned with bound states, of which the simplest example is

9.1 The Particle in a Box

In order to become more familiar with the formalism of quantum theory, which will
then lead to quantitative predictions, we first consider the one-dimensional motion of
an enclosed particle. “Enclosed” means that it can only move in a “box” of length a.
The probability of finding the particle outside the box is zero (Fig. 9.1). We shall now
attempt to construct the appropriate wavefunction. We require that

w=0 for x<0, ©.1)
w=0 for x>a, )

because the particle cannot be outside the box. We further postulate that the wavefunc-
tion w(x) inside the box is continuous with the function outside, i.e. that

w(0)=0, w(@)=0. , 9.2
7,
% Infinitely high /
potential barriers /
Forbidden / \. Forbidden/
region region
7

0 a X Fig. 9.1. Potential barriers for a particle in a box

We are seeking wavefunctions which describe a particle in this box and simultaneously
guarantee that the particle always has a certain definite energy. We recall the de Broglie
waves

Aexp [i (kx — wr)]. 9.3)
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According to the basic laws of quantum theory, the wavenumber k£ and the frequency
w are related to the particle’s energy and momentum by the relations

E=hw .9
and
p=hk. 9.5)

From the experiments described above, we know that we can use the relationship
from classical physics,

2

o P (9.6)
2m0

If we express p in terms of k, and solve for k, we obtain two possible values for &,

V/2myE , ©.7

1
kip=+—
1,2 7

for the given value of total energy E.
In addition to the wavefunction (9.3), the wavefunction

Aexp(—ikx—iwt) 9.8)

yields the same energy. This will help us out of a difficulty. As one can see by substi-
tuting x = 0 and x = a in (9.3), the wavefunction (9.3) does not satisfy the boundary
conditions (9.2). One way out is the following: since electron waves display diffraction
and interference, we may infer that we can superpose waves in quantum mechanics, as
we did in fact with wave packets in Sect. 7.1. We therefore generate a new wavefunc-
tion by superposing (9.3) and (9.8):

w(x, 1) = (Cre*+ Cre e, 9.9)

where the constants C; and C, are still unknown.
To abbreviate, we write (9.9) in the form

wix, t) = p(x)e ' (9.92)
where
d(x) = Crel¥+ Cre ™%, (9.9b)

In order to determine the constants C; and C,, we substitute (9.9) in the first equation
(9.2) and obtain

90)=0: C;+C,=0. (9.10)
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Thus C, can be expressed in terms of Cj. (9.9) then takes the form
#(x) = Ci (e —e~**) = 2iC, sinkx; 9.11)

here we have made use of the definition of the sine function. To fulfil the second
condition of (9.2), we substitute (9.11) in (9.2) and obtain:

because ¢@(a)=0; thecondition sinka=0. 9.12)

Since the sine can only be zero if its argument is a whole multiple of 7, we can only
satisfy (9.12) by the choice of

k=TT 41=1,2,3,4.... (9.13)

a

This result means that the only waves which will fit into the box have a half-wavelength
equal to a whole fraction of the length of the box, a (Fig. 9.2). If we substitute (9.13) in
the expression for kinetic energy (9.6), we obtain

2 2
g=_" <ﬂ> 9.14)

2my \ a

for the energy of the particle, with the condition that » >1 must be an integer. The
parameter n cannot be equal to zero, because otherwise the wavefunction would be
identically equal to zero. In other words, there would be no particle.

The result (9.14) is typical for quantum theory. The energies are no longer con-
tinuous as in classical physics, but are quantised. In order to determine C; in (9.11),
which is still open, we remember that the wavefunction must be normalised. We thus
have the condition |w*ydx = 1 to fulfil. If we substitute (9.11) in this, we first obtain

:27n :27n

‘f|¢(x) [2dx = |C, |2‘f(2—e'7x—e-l—a—")dx. 9.15)
0 0

v
JEy
2 \J

Fig. 9.2. Potential barriers, energies and wavefunctions of the
particle in the box. Two different parameters are plotted in the
same figure. 1) The energies E;, E,, E; of the first 3 states are
plotted along the E (=energy) axis. (There is an infinite series of
higher energies above these.) 2) The x axis is drawn to the right of
. each of the E values, and the wavefunction appropriate to each
°E, energy is shown on it. One should notice that the number of times
x the wavefunction crosses the x axis inside the box increases by 1 for
0 a each higher energy state

Nm
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This integral is easy to evaluate and yields
a
flp(c) Pdx = |Ci|*-2a. 9.16)
0

Because the integral (9.15) has to be equal to 1 to fulfil the normalisation condition, the
normalisation constant C; has the form

1
C, = .
! /2a

It should be remembered that C; can only be determined up to the constant phase
factor exp (i @). As we shall see later, this type of phase factor has no physical meaning,
because it disappears during the calculation of expectation values (see below). Our final
result thus has the form

9.17)

exp(ixnn/a) — exp(—ixnn/a), (9.18)

1 1
V2a %r:

or in another notation,

o(x) = W -isin(x- nn/a). (9.19)
a

As we have seen, the wavefunction (9.18) is associated with a definite energy. Does
this also hold for the momentum? This is clearly not the case, because it describes both
a wave with kK = nn/a and a wave with kK = — nn/a. If we should measure the momen-
tum, we would thus find values p = 2k and p = — hk with equal frequencies. In order
to derive the probability of occurrence of a given momentum from the wavefunction,
let us first consider the wavefunction

P(x) =

—-l/% exp(ixnn/a) (9.20)

which is obviously normalised in the region from 0 to a:

2
1 . nm

—exp|i—x
Va < a >

When we measure the momentum, it means that we determine a particular value of
k, i.e., we select one of the components of (9.18). This component is a factor of 1/ ]/i
smaller than the corresponding component of (9.20). On the other hand, we expect for
symmetry reasons that both components occur with equal probability = 1/2. To go
from 1/]/2 to 1/2, of course, we square 1/]/2. This observation can be generalised: The
probability of measuring a given momentum k can be obtained by taking the square of
the absolute value of the coefficient in front of the normalised plane wave.

We leave it to the reader as an exercise to explain the relationship between the wave-
function (9.18) and the momentum (9.5) using the Heisenberg uncertainty relation.

a
dx = ij‘dx =1. (9.21)
ao

Ot Q




9.2 The Schroédinger Equation 129
9.2 The Schrodinger Equation

As we saw in the preceding example, there are for a given problem, in this case the
particle in a box, infinitely many solutions, each with a corresponding energy level
(9.14). In this case it was relatively easy to find these solutions, which is decidedly not
the case for other quantum mechanical problems. In such cases it is often useful first to
look for an equation which determines . In the case of the electron which is not sub-
jected to any forces, we find it as follows: we ask if there is an equation for y such that
its solutions automatically fulfil the relation

h2k2

. (9.22
2 my )

how=

Since the parameters k£ and w are found in the de Broglie wave exp(ikx —iwt?), we can
formulate the question thus: what must be done to obtain #%k%/2 my from exp(ikx)
and & w from exp(—iwt), so that the relation

r2k*

how (9.23)
2m0

will be fulfilled? If we differentiate exp(ikx) twice with respect to x and multiply by
— h?%/2my, we obtain the left side of (9.23) as a factor. Correspondingly, the right side
of (9.23) is obtained if we differentiate exp(— i w?) with respect to time and multiply by
iA. In this way we obtain the basic Schrodinger equation for the force-free particle:

r: 4
dx? v

_ =ihy. (9.29)
2 my

It must be said, however, that it is generally not possible to derive the basic equa-
tions of physics from still more fundamental principles. Instead, one must try to com-
prehend the physics by heuristic thought processes, to arrive at an equation, and then
to compare the possible solutions with experimentally testable facts. In this way it has
been found that the Schrddinger equation is completely valid in nonrelativistic
quantum mechanics. We generalise (9.24) to three dimensions by writing the kinetic
energy in the form

1
2m0

E= (Pi+py+p3) - (9.25)

It seems reasonable to generalise the wavefunction to
exp(ikyx+ik,y+ik,z) exp(—iw?). (9.26)

Instead of (9.23) we have the relation

1

RAkE+ K2+ kD) =ho. 9.27)
2mo
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The left side of (9.27) is obtained from (9.26) by taking the second derivatives of (9.26)
with respect to the position coordinates x, y and z, adding these and multiplying the
result by — A%/2m,. The right side of (9.27) results by differentiation of (9.26) with
respect to time and multiplication by i #. We thus obtain the equation

2 2 2 2
__t <"’ b 40 >W=ihi.,,. 9.28)

2my \ 9x2  8y?  9z? ot
The left side can be abbreviated by introducing the Laplace operator

2 2 2
»_ 0 ) ]
Vo= 2+ 2+ 2
ox oy 0z

(9.29)

which yields the usual form of the Schrédinger equation for the force-free particle in
three dimensions,

2
__h v2w=ihi.,/. (9.30)
2m0 ot

Now we are naturally not so interested in the force-free motion of the particle as in
its motion in a force field. However, (9.30) gives us a hold on the subject. We see that
the left side was derived from the expression p?/ 2my for the kinetic energy by replacing
it by a differentiation rule — (h%/2 me) V2. This rule acts on v and is called the kinetic
energy operator. In the presence of a potential field, the total energy according to clas-
sical mechanics is the sum of the kinetic and the potential energy:

1

p*+V(r)=E. 9.31)
2m0

We can arrive heuristically at the total energy operator of the quantum treatment by
simply adding V to the kinetic energy operator. We thus obtain the time-dependent
Schradinger equation in the presence of a potential field:

K Vi+ V() W(r,t):ihiw(r,t). 9.32)
2 ¢

mo
The expression

K2
mo

=

Vit V() (9.33)

is called the Hamiltonian (operator).

The beginner may not be used to working with operators. One can quickly become
accustomed to them, if one remembers that they are only convenient abbreviations.
One must also remember that such operators are always to be applied to functions.

If the potential field on the left side of (9.32) does not depend on time, we can
proceed from the time-dependent to the time-independent Schrodinger equation. In
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doing so, just as in (9.9a), we separate a time factor exp(—iw¢) from y(r,?). In quan-
tum mechanics it is customary to write E/# instead of w, so that we write

w(r, ) =e E (). 9.34)

Since the time differentiation only applies to y on the right side of (9.32), we need here
only to differentiate the exponential function with respect to time, which yields the
factor E. If we then divide both sides of the corresponding equation by the exponential
function, we obtain as the result the time-independent Schrodinger equation

) _
(— 2” V24 V(r)> o) =Ep(). 9.35)

my

As we saw in the preceding example, the wavefunction must ordinarily be subject to
boundary conditions (9.2). If these are not specified, we apply the so-called natural
boundary conditions, which require that y vanishes at infinity, so that the wavefunc-
tion can be normalised, i.e.

flwlPav=1. 9.36)

Before we proceed to the solution of the Schrédinger equation, we shall again take
up the question of observations, measured values and operators.

9.3 The Conceptual Basis of Quantum Theory

9.3.1 Observations, Values of Measurements and Operators
Determination and Probability of Position 4

In the preceding sections, we saw that the explanation of microcosmic processes
required new ways of thinking which are fundamentally different from the ideas of
classical physics. In classical mechanics, the motion of a body, such as the fall of a
stone or the flight of a rocket, can be precisely predicted by the laws of motion.
According to these laws, the position and momentum of a body can be determined to as
great a precision as is desired.

The wavefunction is the new concept which is central to quantum physics. As the
solution of the time-dependent Schrédinger equation, it describes the time evolution of
physical processes in the microcosm. In this section we shall explore the physical impli-
cations of the wavefunction, or in other words, which experimental results the theo-
retical physicist can predict for the experimental physicist. The (conceptually) simplest
experiment would be to determine the position of a particle. As we already know, the
wave function y can only make a probabilistic prediction. The expression

ly(x,,2) *dxdy dz (9.37)
gives the probability that the particle will be found in a volume element dx dy dz about

the point x, y, z. We now ask whether the wavefunction can also predict the results of
observations of momentum.
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9.3.2 Momentum Measurement and Momentum Probability

Let us first consider as an example the wavefunction of the particle in a box (Sect. 9.1),

p(x) = ——
2

exp(ikx) — % L exp(—ikx). (9.38)
a

5-

uy(x) Us(x)

The two underlined wavefunctions each satisfy the normalisation conditions (9.36).
According to the basic rules of quantum mechanics, the momentum associated with the
wavefunction u,(x) is given by zk, while the momentum of the second wavefunction
uy(x)is A(—k) = — hk.

Both of these momenta are thus represented by the wavefunction (9.38). If we
determine the momentum of the particle in the box described by the wavefunction
(9.38), we expect to observe either + Ak or — hk. However, we cannot predict which of
the two momenta we will observe. If we imagine that the particle flies back and forth in
the box, it is intuitively clear that we will observe the momenta Ak and — hk with a
probability of 1/2 each. As we saw in Sect. 9.1, the squares of the absolute values of the
coefficients C; and C, give the probability of finding the corresponding momentum.
We generalise this insight to the determination of the probability distribution of the
momenta of a generalised wave packet. Here the particle is no longer confined in a box.
This type of wave packet has the general form

+ o0 .
w(x)= | are*dk. (9.39)

In order to connect the coefficients a; with a probabilistic interpretation, we must
be sure that the wavefunctions exp(ikx) are normalised in infinite space. This is some-
what difficult, and will not be demonstrated here (see Appendix A). We shall simply
state the result. If we introduce the momentum variable p in the place of the integration
variable k, and at the same time use the correct normalisation of the wavefunction in
one dimension, we obtain

+ oo 1 .
y(x)= | cp)——=¢""dp. (9.40)
- V2nh
s

The underlined wavefunction is normalised. As a generalisation of our considerations
above, we see |[c(p) Izdp as the probability of observing momentum p in the interval p,
..., p+dp. This result can be immediately expanded to three dimensions: if we rep-
resent a wavefunction w(x,y,z) as a superposition of normalised plane waves,

+ o
w(x,9,2) = [{{c@y,py,p)2nh) " *exp(ip - r/h)d’p, with (9.41)
p-r=px+p,y+p.z, then

I C(Px,py;pz) lzdpx dpy dpz



9.3 The Conceptual Basis of Quantum Theory 133

is the probability that the components of the observed momentum of the particle p will
lie in the intervals p...p,+dpy, py...py+dp,, ;... +dD,.

9.3.3 Average Values and Expectation Values

To explain these concepts, we think again about the example of the dice. The individual
possible “observed values” are the numbers of spots, 1,2,...,6. For a single throw we
cannot predict which of these numbers we will obtain. We can only make predictions if
we throw many times and keep track of the frequency F, with which we obtain the
number n (n=1,2,...,6). The average number 7 is then given by

A=l (9.42)

This average value can be predicted statistically (in the limiting case of an infinite
number of throws) through the use of the concept of probability. This is the ratio of the
number of times the desired result is obtained divided by the total number of attempts.
The probability of obtaining n spots (“desired result” is n) is denoted by P,,. Since each

6
number of spots is equally probable, P, = P,... = Ps. Further, since ¥ P,=1 must
n=1

hold, we use the equality of the individual probabilities to obtain immediately
P,=1/6, n=1,2,...6. (9.43)

(We exclude loaded dice.) According to probability theory, # may be expressed in terms
of P, as follows:

+...6-1. : (9.44)

These relatively simple concepts may be applied directly to the definition of the
mean value of position and of momentum in quantum mechanics. In general, we can
make no definite predictions as to which position or which momentum will be meas-
ured; we can only give probabilities. If we repeat the measurement of position or of
momentum many times and calculate the mean value, the latter may be defined exactly
as for the dice. The theoretician can, as we saw in the dice game, predict this mean
value for the experimentalist. This mean value is therefore called the expectation value;
it is defined as follows: Expectation value = Sum over the individual values measured,
times the probability that that value would be found.

Let us apply this definition to some examples.

a) Mean Value of the Position (one-dimensional example), Fig. 9.3

A single measurement yields the result that the particle is to be found in the interval
X...x+dx. The corresponding probability is |w(x) |2dx. Since the position x is con-
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Fig. 9.3. Explanation of the mean value of the position. The loca-
tion of a vertical line indicates the value of a measurement of the
position coordinate x and the length of the line is proportional to
the frequency with which that value is found (probability density).
If we interpret the latter as a weight, the calculation of ¥ corre-
sponds to the calculation of the centre of gravity X of an object

x|

» X (= Position)

tinuously variable, while the number of spots on the die was discrete, we use an integral
instead of the sum (9.44). The mean value of the position is thus defined as

+ o

= [ x|y(x)|dx. (9.45)

— oo

In the calculation of (9.45) and in the following, the normalisation of the wavefunction
was assumed, i.e.

iym lw(x) [Pdx=1. (9.46)

Correspondingly, we can take the nth power of x, x", and then generalise the definition
(9.45) to obtain the mean value of the nth power:

+ oo
"= | x"|w(x)[*dx. 9.47)
-

If we replace the function x” quite generally by the potential energy function V(x), we
obtain the definition of the mean value of the potential energy,

_ + oo
V= [ V() wx)|dx. (9.48)
b) Mean Value of the Momentum (one-dimensional example), Fig. 9.4.

leto)|®

P Fig. 9.4. Explanation of the mean value of the momentum.
See caption of Fig. 9.3

ol



9.3 The Conceptual Basis of Quantum Theory 135

In this case, we first take the wavefunction to be given by a superposition of plane
waves:

W) = *;“c(p)Lhewx/hd,,, 9.49)

i

If we now measure the momentum, the probability of finding its value in the interval
p...p+dp is given by |c(p)[*dp. In complete analogy to the mean value of the
position, we find the definition of the mean value of the momentum to be

+ o0
p= [ple@)|dp, (9.50)
or for the nth power
— to )
p"=§ p"lc)|dp. 9.51)

As we shall see later, wavefunctions are normally expressed as functions of
position, in the form w(x). It is therefore difficult to calculate the expansion (9.49) in
detail in order to determine the mean of the momentum, because the coefficients c(p)
would first have to be calculated. We shall now show that there is a very simple com-
putational rule which allows us to calculate the mean value of the momentum without
following the indirect route via (9.49).

We assert that the mean value of the momentum is given by the basic formula

+ o0

p= | y*x) (E i) w(x)dx . 9.52)
i dx

— oo

The notation (%/i) (d/dx) w(x) may seem unfamiliar to the reader; it is a common form
in quantum mechanics. It means that we are to differentiate y(x) by x, that is, we
calculate

/] dl//
— . 9.53
i dx ( )

This notation (9.52) is also referred to as applying the “momentum operator”
(h/1)(d/dx) to the wavefunction w(x). The proof that (9.52) is the same as (9.50) is
relatively simple, but requires some basic mathematical knowledge. We begin by sub-
stituting (9.49) in (9.52). After differentiation with respect to x and exchanging the
order of integration with respect to x and p, we obtain

+0 400 +
p= [dp]| dp’p'c*(p)c(p')% § exp(—ipx/h)exp(ip'x/h)dx . (9.54)
| |

The underlined part, however, is merely the Dirac J function, d(p —p’) (Appendix A).
The definition of the J function eliminates the integration over p’, and leads to p’ = p,
so that p’ is replaced by p. We then obtain directly
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p= _§°°dpp|c(p) 2. 9.55)

If we go through the calculation again in detail, we recognise that we have replaced the
factor p in (9.50) by the differential operator (%/i)d/dx. In order to arrive at (9.51), we
would have had to apply this operator n times to the wavefunction w(x).

¢) Average Values of Energy

Our results to this point enable us to calculate average energy values. The kinetic energy
of a particle is p%/2m,. The probability of observing the momentum p in the interval
p...p+dpis given by |c(p) |*dp.

Thus the average kinetic energy is given by

_ + o 2
Ein= | |c)2—dp. (9.56)
— 2m0

If we use the computational rule discussed above, we immediately obtain

2

_ o h
Eyin= {f§ y* <—
— o 2m0

v?2 w> dxdydz, 9.57)

where we have used the abbreviation

2 2 2
vi= 62+62+a2 (9.58)
dx oy 9z

and generalised the result to three dimensions. Equation (9.48) can be extended in the
same way, which yields the expectation value for the potential energy:

Epor = !Tj w*V(r)wdxdydz. (9.59)

Since the total energy is equal to the sum of the kinetic and the potential energy, the
expectation value for the total energy is, finally,

oo 2
Bo= [1] w* [— %v% V(r)] wdxdydz. (9.60)
pipe 0

9.3.4 Operators and Expectation Values

With the help of the above results, we can now discuss the conceptual framework and
the computational rules of quantum theory. In classical physics, we have certain me-
chanical parameters, like the position x(¢), momentum p(¢), energy, etc. In quantum
theory, these classical parameters are assigned certain expectation values [compare
(9.45, 52, 60)]. These quantum mechanical expectation values can be obtained from
classical physics by means of a very simple translation process according to the follow-
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ing “recipe”: The classical parameters are assigned operators, which are nothing but
multiplication or differentiation rules, which act on the wavefunctions following them.
The position operator x is assigned to x(¢), which simply says that one multiplies the
wavefunction w(x) by x. It may seem strange at first that a time-independent operator
X can be assigned to a time-dependent parameter x(¢). As we shall see below, however,
the time-dependence is reintroduced in the process of finding the average, if the wave-
function itself is time-dependent. The momentum is assigned the operator —i%(d/dx)
which differentiates the wavefunction. After carrying out the appropriate operator
multiplication or differentiation, one multiplies the result by w* and integrates over all
space to obtain the quantum mechanical expectation value.

Using these rules, we can define still other operators which we have not yet con-
sidered. One important parameter is the angular momentum /, which has the com-
ponents /,, /, and /.. In classical physics, /,, for example, is defined as xp,—yp,. In
quantum theory we obtain the corresponding operator by replacing p, and p, by
(h/1)8/8x and (#/i)8/8y, respectively. The z component of the angular momentum
operator is thus

. #A( O )
lz=f<x—— —) 9.61)
i\ dy ox

In order to prevent confusion between the classical angular momentum and the angular
momentum operator, we use here and in the following text the symbol " (read “hat”)
over the angular momentum operator.

The following table summarises what has been said above.

Classical Operator Quantum theoretical
variable Expectation value
Position x(t) x % = fy*x, Dxpix, fydx
Momentum p(¢) i 4 (Jordan’s rule) D= Sw*(x, ) i 4 w(x, t)dx
i dx i dx
Energy r: a2 _ PYIRN?
- —+ V(x E=\y*x,0)| —-——— —5+ V(x x,t)dx
E = #(x(),p(0) amg a2 T V® Jurean | -5 G V@ wenn
Angular momentum h 7oy h
1= ] [rx i v} T=fy*rx =V | wdxdydz

In the preceding discussion, we have given no consideration to the wavefunction y,
which has, so to speak, fallen from heaven. We must still consider the principles by
which we can determine the wavefunction, in case it is not determined by the
Schrédinger equation.

9.3.5 Equations for Determining the Wavefunction

We have already presented equations which were explicitly or implicitly applicable to
the determination of w. As the simplest example, let us take the plane wave
w ~ exp(ikx). As we already know, this wave determines the propagation of a particle
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with momentum #k. Can we regard this plane wave as a solution of an equation which
relates directly to momentum? This is in fact the case, because if we differentiate the
plane wave with respect to x and multiply by #/i, we obtain the relation

B4 ik etttz peitr, (9.62)
i dx

The plane wave thus satisfies an equation of the following form: The momentum
operator (%/i)d/dx applied to the plane wave yields p = Ak times the plane wave.

As a second example, let us consider the time-independent Schrddinger equation.
The application of the Hamiltonian operator to the wavefunction gives an energy F
times the wavefunction. A glance at the above table shows that the Hamiltonian is
precisely that quantum mechanical operator associated with the classical energy expres-
sion Eyjy + Epy.

When we extract what is common to these examples, we see that these functions are
so-called eigenfunctions which satisfy the following equation:

Operator - Eigenfunction = Eigenvalue - Eigenfunction .

If we denote the operator by £, the eigenfunction by ¢ and the eigenvalue by w, this
relationship is

Qo=wg. (9.63)

The eigenvalue indicated here and in Sect. 9.3.6 following should not be confused with
a frequency. It can have quite different physical meanings, e.g. momentum. In the
example (9.62), we had
Q.—.l__d_’ ¢=eikx, w=hk.
i dx

We must now make use of a few basic facts of the mathematical treatment of such
eigenvalue equations without being able to derive them here. As can be shown mathe-
matically, eigenfunctions and eigenvalues are determined by (9.63), if appropriate
boundary conditions for the wavefunction (eigenfunction) are given. One example for
a set of boundary conditions is the particle in a box. If no explicit boundary conditions
are given, we must require that the wavefunction be normalisable, which implies that
the wavefunction must go to zero rapidly enough as infinity is approached.

When the operator Q2 in (9.63) and the boundary conditions are given, there is a
particular sequence of eigenvalues, e.g. discrete energy values as in the particle in the
box, etc. The calculation of these eigenvalues and the associated eigenfunctions is thus
the task of mathematicians or theoretical physicists. In order to make them agree with
experimental observations, one makes use of the basic postulate of the quantum
theory: the eigenvalues are identical with the observed values. This basic postulate has
enormous significance, and we can accept it, because it has been repeatedly confirmed
in innumerable experiments. If we measure the energy of the electron in a hydrogen
atom, for example, this must agree with the quantum mechanically calculated eigen-
values E,. If there is a discrepancy, one does not impute this to a failure of quantum
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theory, but rather looks for interactions which have not yet been taken into account. In
this way, an excellent agreement has so far been attained.

As we can see from our example (9.62), the Schrodinger equation is only one of
many possible ways to determine the wavefunction. We are always concerned here with
the physical problem. Thus whenever we use the Schrédinger equation, we would
always assume that we have access to observations which measure the energy exactly.
When we have then measured the energy, we have identified the associated eigenfunc-
tions as solutions of the Schrédinger equation. We might also wish to measure the
momentum. Since the wavefunction is known and, as one can easily demonstrate by
Fourier analysis, this function contains several momentum eigenfunctions, we are no
longer able to predict exactly the momentum of the particle, but can only calculate the
expectation value. The simplest example for this is again the particle in the box.

9.3.6 Simultaneous Observability and Commutation Relations

As we saw above, there is a very close relationship between wavefunctions and eigen-
values on the one hand and individual observations on the other. If a wavefunction is
an eigenfunction for a particular operator — that is, if it satisfies an equation like
(9.63) — then we know that the eigenvalue will be found by measurement. If we repeat
this measurement, we shall find exactly the same eigenvalue. If follows from this that:

If y, is an eigenfunction of a specific operator Q, the eigenvalue w, agrees with the
expectation value Q. In fact, if we know the operator Q2 and the associated eigenvalue
w;, then

Qui= oy Q= [yt dx = [yfwv,dx = w;fyiydx = w;.

What happens, though, when we want to determine another parameter with the
second measurement? One example for this was examined in more detail in Sect. 7.3,
where we wanted to measure first the momentum and then the position of the particle.
In that case, the measurement of position destroyed the results of the previous momen-
tum determination. On the other hand, we can measure first the momentum and then
the kinetic energy of a particle. In the first measurement, we obtain a certain value p.
We have then “prepared” the particle into a particular state which is an eigenfunction
of the momentum operator; the wavefunction after the measurement is thus (aside
from a normalisation factor) given by exp(ipx/h). If we now measure the kinetic
energy, this measurement corresponds to the mathematical operation of applying the
kinetic energy operator, — (%2%/2 my)d 2/dx?. In the process, the “prepared” plane wave
yields the eigenvalue E = p*/2 my, and the plane wave remains as wavefunction. In this
case, the second measurement does not destroy the result of the first measurement.
There exist, apparently, measurements which do not disturb each other, or, in other
words, which can be simultaneously carried out with arbitrary accuracy.

We will now derive a necessary criterion for simultaneous measurability. For this
purpose, we consider the operators Q¥ and Q®@, which could, for example, be
operators for the momentum and the kinetic energy. We now require that the wave-
function y be simultaneously an eigenfunction of both characteristic equations

QWy =Wy 9.64)
and
Q@ v= w®? V. (9.65)
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If we apply operator 2@ to the left side of the first equation and operator Q@ to the
second equation, then subtract one equation from the other, rearrange, and finally
apply (9.64) and (9.65) again, we obtain

(9(1)9(2)_ 9(2)9(1)) y= (w(1)w(2)_ w(Z)w(l)) w=0. (9.66)

The simultaneous measurability of a/l wavefunctions which simultaneously fulfil (9.64)
and (9.65), not merely special cases, should be guaranteed. Therefore the y in (9.66) is
omitted in quantum theory, and one writes

QWO _0@opB_q. 9.67)

This, however, should be understood to be an abbreviation. When one sees such an
equation, one should always remember that any desired wavefunction y stands to the
right of the operators, i.e., (9.66) applies. It can be mathematically shown that the
converse of the above is also true: if two operators Q) and 2 fulfil the commutation
relation (9.67), then eigenfunctions of @ can always be determined to be eigenfunc-
tions of 2@ as well; they fulfil (9.64) and (9.65). If there is only a single eigenfunction
belonging to the eigenvalue w'® of Q®, this is itself an eigenfunction of Q@®.
However, if there are several eigenfunctions of Q" associated with w®, then it will
alz)ays be possible to find linear combinations of these which are also eigenfunctions of
v,

Let us consider a few examples. If we choose as Q) the momentum operator
(h/i)d/dx, and the kinetic energy operator (— /2%/2 my)d Y/dx? as Q?, these operators
commute. The result of differentiating a wavefunction twice and then once with respect
to x is naturally the same as that of differentiating first once and then twice with respect
to x:

2 2 2
S W _‘i’_._dT_d_z._‘Z_ -0, (9.68)
2my i \dx dx dx* dx

It can be shown in the same way that the x components of the momentum and the y
components of the position mutually commute.

Let us take as a second example the x component of the momentum and the
coordinate x itself. Thus Q® = (#/i)d/dx and Q® = x:

@PQO_goowy, (A 4,k d), (9.69)
i dx i dx

We now evaluate this expression. First we remove the parentheses:

xy-x= ¥ (9.70)

d/dx means, of course, that everything to the right of the operator is to be differen-
tiated, and
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d dx dy
— () =" w+x—. 9.71
dx( ¥) e 0.71)

If we substitute this in (9.70), we obtain

2. 9.72)
1

If we again write out the right side of (9.69), we obtain the relation

(Z’_ 9t _d_> w=Tly. (9.73)

_—— XX — = 9.74)

This is the famous Heisenberg commutation relation between the momentum operator
and the position operator. It says that the momentum and the position operators do not
commute, which means that the position and momentum cannot be simultaneously
determined to any desired degree of precision (see Sect. 7.3).

The following formulation is often used to express the commutation relation
between the two operators 2 and Q@:

[9(1), 9(2)] = 9(1)9(2)_ 9(2)9(1) . 9.75)
In this form, the Heisenberg commutation relation is

[ﬁ i,x] =2, (9.76)
i dx i

We leave it to the reader to derive the following relations:

i_d_,V _hav
i dx i dx

For the components of the angular momentum [compare the definition in (9.61)].

7 1,] = iR, 9.77)
(5, ] =ihl,, (9.78)
[, L1=inl,, (9.79)

[%1=0, j=xyz2. (9.80)
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These equations say that the components of the angular momentum are not simul-
taneously measurable, although one component and the square of the angular momen-
tum can be simultaneously measured.

9.4 The Quantum Mechanical Oscillator

Aside from the particle in the box, the harmonic oscillator is one of the simplest
examples of quantum theory. Although this example does not apply to the motion of
an electron in an atom, because a different force law applies there, the harmonic oscil-
lator has innumerable applications in all areas of quantum physics. We shall return to it
repeatedly. In classical physics, the equation of motion of the harmonic oscillator is
given by mox = —kx (Fig. 9.5). The associated kinetic energy is (mm/2)x* and the po-
tential energy (k/2) x% To convert this to quantum mechanics, we express the velocity x
in terms of the momentum: myx = p. We also make use of the classical relation
between oscillation frequency w, mass and force constant, w?= k/. my. In this way we
obtain the following expression for the total energy (or mathematically expressed, for
the Hamiltonian function):

2
P ™Mo 22, (9.81)

sz 2

H=

I
|
|
l
,_Zero

point %

Force = -kx

m
V(x) = —2 @?x2
2

Fig. 9.5. The harmonic oscillator. Above, as an example, a point mass on a
spring. Middle, force as a function of the displacement x. Below, potential
X energy as function of the displacement x

The corresponding Schrédinger equation is

hz d2 my 2 2
- +— wx x)=Ey(x). 9.82
< ame a2 2 (& y(x) = Ey(x) (9.82)

As one can easily convince oneself, the energy E can only have positive values. We
ensure this by multiplying both sides of (9.82) by w*(x) and integrating from x = — oo
+ 00

to x = + oo. The integral on the right side of (9.82), | w*wdbx, is positive, because

— 0o
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w*y = |y|>= 0. The same applies to the term contalmng x2, S (my/2) w2x2|w|2dx

on the left side of (9.82). The remaining term, [ [— (R 2mg) w*- d*w/dx* dx, is
rearranged by partial integration to yield

2 X=+ 00 2 + oo *
h LAy + h { dy dy dx.
2my dX |y _e 2my “xdx dx

(9.82a)

If we substitute the limits of integration in the first term, it disappears, since we require

+
that y—0 as x— + oo, (Otherwise the normalisation integral | |y|*dx=1 would

not exist!) The integral in (9.82a) is positive, and thus, so is the entire expression corre-
sponding to the left side of (9.82). It now immediately follows that E = 0.

Since the Schrédinger equation includes several constants, we first carry O*It atrans-
formation to a new, dimensionless coordinate ¢ and a new energy, by setting

x=|/ h e e £ (9.83)
myw how _

vx)=¢(). (9.84)

Then (9.82) becomes

Fo=L(- L o) o =co. (9.85)
2\ 42

If the differentiation operator d/d¢ were an ordinary number, we could use the rule
—a*+b?=(—a+b)(a+b). Although this is naturally not possible with operators, we
shall use it as an heuristic aid and write, so to speak, experimentally,

1 d 1
+ + 9.86
% ( ; 6) % < : 6) P(%). (9.86)

J J

g

b+ b

The order of the differentiation steps must be strictly observed here, that is, operators
on the right must be applied before operators to the left of them. Let us now
“multiply” out the parentheses, strictly observing the order of operations:

RN G PP ———6 e ) o). 9.87)
2\~ a2 2\ de " "ae '

This is the left side of (9.85), with an extra term. Just as we did with the Heisenberg
commutation relation (9.69), we can apply the differentiation in the extra term to the
wavefunction, and we obtain — ¢(£)/2 for the second expression in (9.87). Equation
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(9.86) thus differs from the middle expression in (9.85) only by the term — ¢/2. If we
observe this and introduce, as shown in (9.86), the abbreviations b and b*, the original
Schrodinger equation (9.82) can be given in the form

b*bo=(H#-L)p=(e—1)o. (9.88)

In the following it is important to remember that b and ™ are only certain abbrevia-
tions for operators, which are defined in (9.86). If we also substitute ¢ — 1 = n and
provide the wavefunction ¢ and this # with an index A, the justification for which will
be given below, we finally obtain the Schrodinger equation in the form

b+b¢l=nl¢i. (989)
The operators b and b™* satisfy the commutation relation
bb*-b*b=1. (9.90)

We shall leave the proof of (9.90) to the reader as an exercise. One needs only to sub-
stitute the definition of »* and b and then proceed as above with the Heisenberg com-
mutation rule.

Let us first consider (9.89) generally and multiply it from the left by the operator b,
i.e., we apply the operator b to the left and right sides of (9.89). We then obtain

bb+b¢l=nlb¢l. (9.91)

According to the commutation relation (9.90), we can substitute 1+ 5% b for bb™.
When we do this with the first two factors on the left side of (9.91), we obtain

b b(bg)+bgr=nbg;, (9.92)
or, if we combine the terms containing b ¢, on the right,

b b(bey) = (n,=1)(b9y) . 9-93)

As we see, application of b to the wavefunction ¢; produces a new wavefunction
¢ = (bg;) which satisfies (9.89), although its eigenvalue is 1 less: n;—»n;—1. The
operator b thus reduces the number »n by 1. We refer to it as an annihilation operator.
Since, as we observed earlier, the energy E must be positive, n» must have a lower limit.
There must therefore be a lowest number 7, and a corresponding wavefunction ¢, for
(9.89). If we were to repeat this formalism on the lowest eigenstate with A =0, we
would introduce a contradiction. We would have found a wavefunction with a still
smaller eigenvalue, contrary to the assumption that ¢ is already the lowest eigenstate.
The contradiction is only resolved if b ¢, is identically equal to zero. Then (9.89) is
fulfilled trivially for each value of n; zero is, however, not a genuine eigenvalue. For
the lowest state, we then have the condition

boo=0. (9.94)
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If we replace b with the operator which it symbolises (9.86), then (9.24) is equivalent to

<§§. + 5) 60=0. 9.95)

This first-order differential equation can also be written in the form

g, ©99

9o

from which we obtain on integration

Ingy= —1&*+C', (9.97)
or, taking the antilogarithm,

¢o= Cexp(—1&%). (9.98)

The constant C must be determined by the normalisation condition.

LJ— L —t—

3 —— 3
I I
2 + 2 -+

1 - 1 =t Fig. 9.6. Illustration of the effect of the creation and annihilation
operators. Left: Application of »* means climbing up the “ladder”
n=0— n=0=—— of states n=0,1,... by one rung. Right: Application of b corre-

sponds to climbing down by one rung

We will now investigate what happens if we apply not the annihilation operator b
but rather the operator b* on both sides of (9.89). By analogy to the steps (9.91 —93),
we obtain using (9.90) the relation

br b ) =(m+1)(d" ), 9.99)

i.e. by application of b* to ¢,, we increase the eigenvalue by one unit. Therefore, b* is
called a creation operator (Fig. 9.6). If we choose the ground state ¢, for ¢;, we obtain
a proportionality

¢1 b * ¢O ’
and a second application of b gives

prxb* gy (b)gy, etc.
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Here we have used a proportionality sign and not an equals sign, since we do not yet
know whether the functions b* @y, (b*)? ¢y, etc. are normalised. In general, we obtain

¢,=Ci(b") 9y, (9.100)

where the constant factor C; serves as normalisation factor.

Since n always increases by an integer on application of b*, but the lowest eigen-
value is zero (ny = 0), we may identify the index A with n. Including the normalisation
factor (which we will not derive here), C, =1/ 1/17!_, we find the normalised wavefunc-
tions:

1

Yl

Relation (9.101) still looks terribly abstract. We shall therefore show by means of
several examples how the explicit wavefunctions may be derived; for this purpose, we
shall leave the normalisation factor out of consideration. For n = 0 we have already
obtained ¢, exp(— ¢ 22). Using (9.88, 83), we find for the lowest energy value
E,= hw/2, the same zero-point energy which we have already discussed in Sect. 7.5.
For n =1 we obtain

On= b "9, 9.101)

p1xb” @,

or, using the explicit expressions for b* and ¢,
d 2
1| ——+ &) exp(— 3¢9
1 < d > :
After carrying out the differentiation we have
@1 < Eexp(— 1&%).
The corresponding energy is

E=3/2hw.

For n = 2 we obtain
probt gy — L 1) fexp(- 187,
de 2

or, after differentiating,

Prx(2E2 -1 exp(~ £&%).
For the energy we find

E=(5/hw.
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If we continue this procedure, we obtain polynomials through multiplication by &
or differentiation with respect to £. In general, for the nth wavefunction we obtain an
expression of the type '

on=e 2EH,(), 9.102)

where H,, is a polynomial which is known in the mathematical literature as a Hermite
polynomial. The corresponding energy is given by

E,=n+Hhw, n=0,1,2... (9.103)

(Fig. 9.7). For completeness, we shall give the formula for finding the Hermite poly-
nomials. It states

(=" pde® 1

V2" 48 atya

If we return from the coordinate ¢ to the original coordinate x, the correctly normalised
eigenfunctions of the Schrddinger equation of the harmonic oscillator are given by

4
Wa(x) = l/ ’";“’ exp(— 1x2mow/h) - H,(x)/mow/h) . (9.105)

H,() = (9.104)

In Fig. 9.8, we have plotted the potential V' (x). Furthermore, the energy levels
(n+1/2) hw are given along the ordinate, as are, finally, the wavefunctions them-
selves. The first four wavefunctions in the energy scale are shown in more detail in Figs.
9.9a, b. Although we will for the most part use the configuration representation w(x)
for the wavefunctions in this book, the creation and annihilation operators b* and b
are indispensable in many areas of modern quantum theory.
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Fig. 9.7. The energy levels of
the harmonic oscillator

4 TFig. 9.8. A representation of the quantum mechan-
ical harmonic oscillator which is often found in
books. This figure contains three drawings in one: 1)
The ordinate means total energy E. The horizontal
lines (above the x axis) give the quantised energy
levels. 2) The ordinate gives the potential V' (x). The
dashed curve shows the shape of the potential curve
as a function of position x. 3) Each of the horizontal
lines serves as an x axis, on which the shape of the

X wavefunction of the corresponding energy is plotted

4 Fig. 9.9. a) The wavefunctions of the harmonic oscillator for n =0, 1. b) The wave-
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Problems

9.1 By substituting the wave packet with w = hk¥/(2 my) from Problem 7.1 into the
Schrédinger equation, convince yourself that it is a solution for a particle which
experiences no forces.

9.2 Let the wavefunctions ¢, and ¢, be solutions of the Schrédinger equation (9.35)
with the eigenenergies F; and E,. Show that

w(r,t) = ciexp(—iE t/h) ¢1(r)+ c,exp(—iE,t/h) ¢,(r)

is a solution of the Schrédinger equation (9.32). What conditions must ¢; and c; satisfy,
in order to normalise w(r, ¢)? Generalise this exercise to the wavepacket

w0 = Texp(~1E/R) /(7).
J
Hint:
§¢/*(’)¢k(r)dV=5jk{ 0 for j*k

=1 for j=k.

9.3 The potential V(r) is represented in one dimension by — 8J5(x), where d(x) is the
Dirac ¢ function (see the Mathematical Appendix). Solve the Schrédinger equation for
bound states, i.e. for E <O0.

Hint: Solve the Schrodinger equation for x <0 and x>0, in other words where
o(x)=0.
Where x = 0, the solutions found for y_ and y, must join in a continuous fashion.

Also, derive a second boundary condition (“jump condition”) for w’ and w/ by
integrating the Schrodinger equation over — ¢ < x < g, ¢ — 0. Write the wavefunction so
that it can be normalised, and find the normalisation constants and the energy.

9.4 Find the bound states of a particle in a one-dimensional box, for which the
potential is

Vix)=0 for x<-L
Vix)=—-Vy<0 for -L<gx<L
Vix)=0 for x>0L.

Hint: Solve the Schrédinger equation in the three subregions. Require y(x) -0 for
X — + o; w(x) and y'(x) are continuous at x = + L. Display the eigenvalue spectrum
for E <0, and discuss its dependence on L and V.

9.5 Calculate the “scattering states”, in which E =0, for a particle moving in the J
potential of Problem 9.3.

Hint: Use the trial solution w(x)=exp(ikx)+aexp(—ikx) for x<0 and w=b>
exp(ikx) for x = 0, and determine ¢ and b. What is the physical interpretation of this
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trial solution in the field of wave optics? It does not need to be normalised. How do a
and b change when the sign of 8 is changed, i.e., when the potential is repulsive?

9.6 Let an otherwise free particle collide with an infinitely high potential barrier.
What is its wavefunction (without normalisation)?

9.7 For the one-dimensional wave packet of Problem 7.1, calculate the expectation
values of the position x, momentum p, kinetic energy, and x2. Why is the expectation
value of x? more informative than that of x?

9.8 Express the energy expectation value for the wave packet of a free particle in
Problem 7.1 in terms of the energy eigenvalues of the kinetic energy operator.

9.9 Prove the commutation relations (9.77 — 80) for angular momentum.

Hint: Use the quantum mechanical definition of the angular momentum operator and
the commutation relations between position and momentum in three dimensions.

9.10 Demonstrate the commutation relations between /, and x, and between /, and the
central potential V(r) which depends only on r = |r].

9.11 The two functions 4 and y, are to vanish at infinity.

Show that

+ oo + o *
§ vtxy,dx= <_5 wix yydx

+ o0 + o *
i Wféfw:dx=<_j wiHydx | .

2 2
The properties of the operators x, p = i i, H = h d
i dx 2my dx?

be proved here, indicate that these operators are Hermitian.

+ V(x), which are to

Hint: Carry out partial integrations over d/dx and d*/ dx>.

9.12 Prove the Ehrenfest theorem

mo 3 x=p, Lp-_(9
4t © o ar dx

for the one-dimensional quantum mechanical motion of a particle.
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Hint: Use the definition of the operators x, p and dV/dx, and the fact that y (and y*)
satisfy a Schrédinger equation with the potential ¥ (x). Make use also of the result of
Problem 9.11.

What is the expression for this theorem in three dimensions?

9.13 Calculate the wavefunctions and energy values of a particle which is subjected to
a force F= —kx+kqy, (k = myw?).

Hint: Set up V(x) and derive the new Schrédinger equation from the “old” one for the
harmonic oscillator by means of a coordinate transformation.

9.14 Prove the commutation relation (9.90)
bbt-b*b=1

for the operators b and b* of the harmonic oscillator.

Hint: Use the definitions of b* and b (9.86) and the commutation relation between x
and - 9 (9.74).
i dx

9.15 Construct the wavepacket

. W 3o
W= t//oexp<—1—2-t> + t//iexp<—1-—2—t>

from the first two states of the harmonic oscillator and examine the change in |y |* with
time by means of a graphical representation.

9.16 Let the Schrodinger equation of the harmonic oscillator be

b+b¢n=n¢n (n=0’1921"')a

where b* = (1/)/2) <— dié+ §>, b=01/)2) <7j? + ¢’>, ¢ = ¢(&).Forb,b*,thecom-

mutation relation [b, b*] = 1 holds.
Prove the following relations. The integrals extend fr_om — o to + oo,

a) [[b*oO)*w(&)de=[p*()bw(E)d¢E
SIbpON1* w(&)de=[p(O)*b™ w(&)d¢
b) [(b* o)* (b ¢)dE=(n+1)[or0,d¢
¢) If ¢, is normalised, then ¢,,,=1/)/n+1b" ¢, is also normalised.
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d) The normalised functions ¢, can be expressed as
¢n=1/)/n1(d")"¢o, bo=0.
€) b+¢n=l/n+1¢n+1’ b¢n=l/’_z¢n—1-

f) b(b+)n—(b+)nb=n(b+)"_1’ b+(b)"—(b)"b+ - —n(b)”‘1= _ 6abb" )

Hints: a) Use the explicit expressions for b* and b in terms of ¢, i and partial inte-
gration. ' ag

b) Use a), the exchange relation and the Schrddinger equation.

¢) Follows from a).

d) Mathematical induction method.

e) Follows from d) and the commutation relations.

f) Solve by the induction method (write b(b*)"—(b*)"bas b(b*)"—(b*)" 'b* b).

9.17 Calculate the expectation value of the momentum, the kinetic energy and the
potential energy for the nth excited state of the harmonic oscillator.

Hint: According to (9.83 and 84), change from x to &, transform ¢ and d/d¢ into b*
and b, and use

forr m#n
for m=n,

[02(E) P&V AE = S = {‘1’

nm=0,1,2,... .

9.18 Prove for the wavefunctions of the harmonic oscillator, ¢,(¢):

§OR(E) n(E)AE = S
Hint: Use the fact that

1

V/nt

b¢0=0,

¢n = (b+)”¢0a

and the result a) of Problem 9.16. Proceed by induction.

9.19 The bra and ket notation

The English physicist Dirac introduced a very concise notation, especially for expecta-
tion values and wavefunctions, which we shall demonstrate here for the case of the
harmonic oscillator.

Instead of ¢,, one writes |n). The integral {@*(&) ¢,(£)d¢ is presented as (n|n), and
the expectation value [@*(&)b@,(£)dE as (n|b|n). Since ¢ ) is a “bracket”, (n|is
called “bra”, and |n) is called “ket”. Using the results of Problems 9.16 and 9.18, show
that
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a) b*ny=)n+1|n+1)
b |n)=]/l-1 [n—1)

b) (n|m) =0, n

¢) (n|blny=0
(nlb*|n)=0

d) Calculate {n|(b* +b)*|n) and (n|(b* —b)*|n).

What is the physical significance of these expectation values?



10. Quantum Mechanics of the Hydrogen Atom

10.1 Motion in a Central Field

In this chapter, we shall solve the Schrédinger equation of the hydrogen atom. For our
calculations, we will not initially restrict ourselves to the Coulomb potential of the
electron in the field of the nucleus of charge Z, V(r) = — Ze?/(4eyr), but rather will
use a general potential V(r), which is symmetric with respect to a centre. As the reader
may know from the study of classical mechanics, the angular momentum of a particle
in a spherically symmetric potential field is conserved; this fact is expressed, for
example, in Kepler’s law of areas for the motion of the planets in the solar system. In
other words, we know that in classical physics, the angular momentum of a motion in a
central potential is a constant as a function of time. This tempts us to ask whether in
quantum mechanics the angular momentum is simultaneously measurable with the
energy. As a criterion for simultaneous measurability, we know that the angular
momentum operators must commute with the Hamiltonian. As we have already noted,
the components /, /,, and /, of the angular momentum / are not simultaneously meas-
urable; on the other hand, /, and / 2 for example, are simultaneously measurable. A
long but straightforward calculation reveals that these two operators also commute
with the Hamiltonian for a central-potential problem. Since the details of this calcula-
tion do not provide any new physical insights, we shall not repeat it here.

In quantum mechanics as well as in classical mechanics, we may thus measure the
total energy, the z component of the angular momentum, and the square of the angular
momentum simultaneously to any desired accuracy. In the following, we shall there-
fore seek the simultaneous eigenfunctions of /2, l;, and . We remind the reader that
we denote the angular momentum operators by a ~ (hat), in order to distinguish them
from the classical quantities /. Since we are here dealing with a spherically symmetric
problem it is reasonable not to use Cartesian coordinates, but to change to another
coordinate system which better reflects the symmetry of the problem. This is naturally
the spherical polar coordinate system. If we choose a particular point x,y,z in
Cartesian coordinates, we shall describe its position by means of the following coor-
dinates (Fig. 10.1):

Fig. 10.1. Illustration of spherical polar coordinates
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1) its distance from the origin, r,

2) the angle @ between the z axis and the vector r,

3) the angle ¢ between the x axis and the projection of r on the x-y plane.
Recalculating the Laplace operator V2= 98%0x2+8%/98y%+0%9z? in terms of

spherical polar coordinates is a lengthy mathematical procedure, which however con-

tributes nothing to the understanding of quantum mechanics. We shall therefore

simply write down the kinetic energy operator in polar coordinates; it is

2 2
S £ T T B R TR (10.1)
2m0 2m0 or or 2m0r
with
2
P--pr| L2 (Gng 0 )y 1 O | (10.2)
sinf@ 96 00 sin“d 8¢

We note that the operator /2 is nothing other than the square of the angular
momentum operator, and contains only derivatives with respect to angles. Since the
potential of our problem depends only on the radius coordinate r, it is reasonable to
separate the radial and angular functions in a trial wavefunction as follows:

y(r, 6,9) = R(r)F(6,9), (10.3)

i.e., we write the wavefunction as the product of a function which depends only on r
with a second function which depends only on the angles 6 and ¢. If we insert (10.3)
into the Schrodinger equation

2
|:— h™ g2y V(r)jl w=Ey, (10.4)
2m0
we obtain

2

2
Hy=F6,0)| - w18 (28 + V(r) R(r)+}l”~izF(e,¢)=ERF.
2 dr or 2myr (10.5)

We now make use of our recognition ofAthe fact that the wavefunction (10.3) can be
chosen to be an eigenfunction of /% and of 7, as well as of /. We write the correspond-
ing eigenvalues in the (arbitrary) form h%w and Am. These new, additional equations
are then!

I?F(6,¢) = h>wF(6,¢) and (10.6)
I,F(6,¢9) = hmF(6, ¢) . 10.7)

Note that m in (10.7) is the “magnetic quantum number” and must not be confused
with the mass.

! 1In literature one often uses Y instead of F.
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By assuming that (10.6) is already solved, we can express the term R(r)/
@2mor?)I?F(6, ¢) in (10.5) in a simple form through the eigenvalue %%w. We then
have eliminated all derivatives with respect to 8 or ¢ on the left side of (10.5), and we
may divide both sides of (10.5) by F(6, ¢). We thus obtain an equation for the radial
part R(r) alone:

2 2
[—_h_ 18 (ﬂ%) + V() + 2” “’Z}R(r) = ER(r) . (10.8)

2my r° or mor

We have reduced the task of solving the three-dimensional Schrédinger equation
(10.4), to that of solving the (as we shall see) simpler equations (10.6, 7 and 8).

Since the quantity %2 in (10.8) is still an unknown parameter, which occurs as an
eigenvalue in (10.6), our first problem is to determine this eigenvalue. We thus begin
with the task of solving (10.6) and (10.7).

10.2 Angular Momentum Eigenfunctions

The first part of this section is somewhat more abstract. For the reader who would like
to see the results first we give them here in compact form:
The eigenvalues of the square of the angular momentum / Zare

RA+1), (10.9)
where / is an integer,
1=0,1,2....
According to (10.7), the eigenvalues of the z component of the angular momentum are
hm.
The integer m is called the magnetic quantum number, and takes on the values
-l=mz=l.

The wavefunctions F(6, ¢) naturally depend on the quantum numbers / and m and
have the form

Fim(6, 9) = €™ P *(cos 6) . (10.10)

These functions are drawn in Fig. 10.2. P{? is called a Legendre polynomial, and P}’
with m + 0 is called an associated Legendre function. The entire function (10.10) is
called a spherical harmonic function.

We first address ourselves to the task of finding the eigenfunctions F as the
solutions to (10.6, 7). We write (10.6) again, giving the components of [ explicitly:

(PADR+YFy = hw,Fp - (10.11)
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Fig. 10.2a—j. Legendre polynomials (a, d, g) and associated Legendre functions.
To illustrate the functions PJ*(cos ), they are plotted as polar diagrams: in the
direction of a radius vector which makes an angle 6 with the z axis, the value of the
function is plotted as a distance from the origin. The plots are to be imagined as
having rotational symmetry around the z axis
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Furthermore, we derive a new equation from (10.7) by applying the operator 7z to both
sides and then using (10.7) once more. This yields

I’F, = h*m?F,,,. (10.12)
If we subtract (10.12) from (10.11), we obtain
(Z+T)F) = W (w;—m*)Fp . (10.13)

If we multiply both sides of this equation from the left by F}',, and integrate over the
coordinates # and ¢, we can show, in a way similar to that used with the harmonic
oscillator, that

w-m*=0. (10.132)

In analogy to the harmonic oscillator, it seems reasonable to write 72+72 as the
product of two factors [, = [+ 11 and /_=1,— il,. We might suspect that these new
linear combinations, 11ke the operators b* and b w1th the harmonic oscillator, are a
kind of creation and annihilation operators. As already stated in (9.77 — 80), the fol-
lowing commutation relations hold between the angular momentum operators:

[, L] =inl,. (10.14)

Further commutation relations can be derived from these by simple algebraic trans-
formations:

PN

21,1=0, (10.15)?
[l 7. = +hi,, (10.16)
V., =+hnl,. (10.17)

In order to demonstrate that 7, is a kind of creation operator and /_ a correspond-
ing annihilation operator, we consider

[ Fim. (10.18)

To find an equation for this quantity, we apgly 7. to the left of each side of (10.6) and
then obtain, due to the commutativity with I'%, the equation

PULF ) =h ol F ). (10.19)

This means that if F; ,, is an eigenfunction of (10.6), so is the function (10.18). We now
apply 7, to the left of both sides of (10.7) and then, because of the commutation
relation (10.17), we obtain after rearranging

LA.F ) =hm+ ). F, ). (10.20)

2 ], means that (10.15) holds for both 7, and /_. (10.16) and (10.17) are to be understood in the same way.
In each case, the two upper signs belong together, as do the two lower signs.
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7. thus increases (or decreases) the eigenvalue m by 1. Leaving off the normalisation
factor, we can therefore write

I, F) ,,= F} +1 - (Numerical normalisation factor) . (10.21)

Equation (10.13a), which requires that m? cannot be larger than w,, applies here.
Therefore the series of new eigenfunctions /. F; ,, must terminate at a maximum
m = mg,, and at a negative, minimum m = mp;,. Thus, just as in the case of the
harmonic oscillator, we must require that

I Fim,, =0 (10.22)
and
[_Fp, =0. (10.23)

If we apply 7_ to the left of (10.22), and make use of the relations
I:0, =2+ D2FLn=12-T(I,+h) (10.24)
and the fact that F ,, is an eigenfunction of 7 2 and 7, we obtain the basic equation

[ 1,F) = h*(0—Mhex—Mpa)Fim =0 (10.25)

max max

In analogous fashion, by applying 7. to (10.23), we obtain
LT Fi o, = B*(0= Miin + Migin) F = 0. (10.26)

Since the eigenfunctions F; ,, are not zero, the factors by which they are multiplied
must vanish. It must therefore hold that

Mmax(Mmax + 1) = Myin (Mpin—1) = w;. (10.27)
This can be rearranged to
(mmax+ Mmin) (Mmax — Mpin + 1)=0. (10.28)

Since Moy = Mpin, it follows that the second factor in (10.28) must be different from
zero, and therefore that the first factor is equal to zero. From this,

Mpax = — Mpin - (10.29)

As we have seen, each application of 7, to F} ,, increases the eigenvalue m by 1. There-
fore the difference m g, — my;, must be an integer. If follows from (10.29) that
integer

Mgy = ——>—20. (10.30)

So far we have only made use of the fact that F,,, satisfies the Eqs. (10.6) and
(10.7), and that the commutation relations (10.14) apply. As we shall see later, we must
require for the orbital motion of the electron that all values of m, and thus in particular
Myax, must be integers. Interestingly, the electron and also a few other elementary
particles have their own angular momentum, which is independent of the orbital
angular momentum, for which mp,, = 1. This independent angular momentum is
called “spin”. We shall return to it in Sect. 14.2.1.
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If we set my,, = /, there are 2/+ 1 integers m between +/and —/ which satisfy the
condition

—-l=mz=l. (10.31)
From (10.27) we know that the parameter w;, which appears in (10.6), is

wr=I(+1). (10.32)
The eigenvalue of the operator “angular momentum squared” is thus

Mopax (Mo + 1) B2 = I(1+ 1) B2 (10.33)

With these results, we can give the original equations (10.6) and (10.7) with their
exact eigenvalues

I’F) =R+ 1)F,,, (10.34)
[.Fim=hmF,,. (10.35)

The application of 7, to Fj , leads to a new function F; ., for which the normal-
isation factor N remains undetermined:

Fl’m+1=Ni+F[’m. (10.36)
It can be shown that

1

N=l .
B Y(I-my(I+m+1)

(10.37)

We again proceed in analogy to the harmonic oscillator. There we constructed the
eigenfunctions in space, in that we applied the operators b and b successively to the
ground state. Here we do exactly the same. First, one can express the angular momen-
tum operators, which were given in Cartesian coordinates according to (9.61), in polar
coordinates. As can be shown mathematically, the result is

-h 8 (10.38)
i 9¢

- h 0 0

l,= ——|sing—+cotfcosgp— |, 10.39
x : < ] 20 @ 6¢> ( )
-~ h 0 . o

[,=—|cos¢p— — cotfsing — | . 10.40
7 < ? 00 ¢ a¢> (1040

Using (10.35) and (10.38), we represent F; ,, as the following product:

Fppm=¢€"f .(0), (10.41)
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where we write the second factor on the right in the form
P/"(cos 6) (10.42)
for later use. If we increase ¢ by 2z, we must naturally obtain a single-valued function

F, ,,. This can only be guaranteed if m is an integer. Therefore the odd multiples of 1/2
which would satisfy (10.30) are excluded.

We now calculate F; ,, for m = —/ from the condition (10.23). If we substitute
(10.39) and (10.40) into this equation, we obtain in simple fashion

(h—il)F, ;= —he %711 {599— —lcot e]f,,_,(e) =0. (10.43)
The exponential functions can be removed from the second equation to give

—=>7 =] cot 6f,, _[(9) . (10.44)

af, -1(0)
a0

The solution of this differential equation is
fi,-1(8) = C(sinh)’, (10.45)

as the reader can be convinced by substitution. Here C must be determined by the nor-
malisation. The condition

2n 7
{ [IF|*sinfddg =1 (10.46)
00

yields the coefficient C after carrying out the integration:

oo | V@I+1)!
V/4n nat

If we now apply 7, to F) , consecutively in the form

[,Fp = he? [a—ae_ mcote} Fim (10.47)

we can construct all the angular momentum eigenfunctions.

In the following, we give the expressions obtained thus for / = 0, 1, and 2. The func-
tions F, , are normalised according to (10.46). They are given both as functions of the
angular coordinates 6 and ¢ and as functions of the Cartesian coordinates x, y, z (with
r=]/x*+ y*+z%); they are denoted in the standard notation by Y, ,,(6, ¢).

Yo,0= (10.48)
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=1

Y1,0= _3_(;050= i z
4n 4n r = (10.49)
Yy :1=7F isim9e*i‘”= F 3 x#iy
8n 8n r 5

ﬁ

=2
5 (3 1 27%—x2—y? 7
Y —|/ ~_cos?f- — __I/___
* <2 ) 47 r2
-1 5 (xxiy)z
F— —smecosee*“" _ L (10.50
2 27 27 I’2 ( 5 )
. \2
Yz,x2=i D n2geszie L[/ 15 (X2 )
4 2n 4 2n r )

10.3 The Radial Wavefunctions in a Central Field *

Before we turn to the problem of hydrogen, let us consider the general case of an
electron in a centrally symmetrical potential field ¥(r), of which we assume only that it
vanishes at infinity. The starting point is then (10.8), which we repeat here:

2 2
[~ 14 <rzi> F 2D e )] R(r) = ER(r). (10.51)

2my r° dr dar 2mqr?

Let us rewrite the underlined differential expression:

> 2 d
= 4+ = 10.52
dar* r dr ( )
and multiply the equation by —2mg/%> to obtain
2
IR 2R Na-vn -0 \poy, (10.53)
dr r dr r?

where we have used the abbreviations

2
4= 2;1;0 E= x2 for E<O
h k* for E>O0,
7=2"y ). (10.54)
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We shall now see what happens to the solution R(r) if we allow r to become very
large. We begin with the function

R=H40 (10.55)
r

If we substitute this in (10.53), we obtain

2
_dd_zu(r) + [A - V() - ’(”21)] u(r)=0. (10.56)
r r

Since both ¥ and 1/r% go to zero at infinity, we neglect these two parameters. The
remaining equation has two types of solution:

1) E>0, ie. A>0.

In this case the general solution of (10.56) is

u=cie* +ce (10.57)

and thus the original solution R (r), according to (10.55), is
R= —1—(01 ek c e iRy | (10.58)
r

To illustrate the meaning of this solution, let us imagine it to be multiplied by the
time-dependence factor exp(—iwt) which would occur in the solution of the time-
dependent Schrédinger equation. We see then that r~ ! exp(ikr) exp(—iw?) represents
a spherical wave propagating outwards, while r ! exp(—ikr) exp(—iwt) is a spherical
wave coming inwards. These spherical waves which come in from infinity and travel
outwards again correspond to the hyperbolic orbits in the classical Kepler problem.

Now let us investigate the case

2) E<0, ie. A<O.
Then the solution of (10.56) is
u=ce+ce™. (10.59)

Since the solution naturally must not become infinite at large distances, which the
exponential function exp(xr) would do, we must require that the coefficient ¢; = 0. We
then obtain according to (10.55) a solution of the type

ReSexr (10.60)
r

Since the absolute square of R represents the probability of finding the particle, and
this quantity decreases exponentially for increasing r, we see that in (10.60), the
electron is localised within a certain area in space. This is the quantum mechanical
analogy to the closed elliptical orbits of classical physics (see Sect. 8.9).
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10.4 The Radial Wavefunctions of Hydrogen

We will now attack the problem of solving (10.51) for the case of a Coulomb potential

Ze?

V=- .
4reyr

(10.61)

For this purpose it is convenient to use dimensionless quantities. We thus introduce a
new distance variable

o=2kr (10.62)
with x defined by (10.54). Corresponding to this, we introduce a new function R (o),

which is related to R(r) by R(r) = RQkr) = R(p). We then divide (10.53) by (4x2)
and obtain:

Fre 2 piy <_L+_B_- "’*21)>jé=o (10.63)
[ 4 ke 0

in which we have used the abbreviation

my Ze?

B=—02% .
h 47!80

(10.64)

The primes on R denote derivatives with respect to .

Having seen before that the wavefunction decays exponentially at large distances, it
would appear reasonable for us to use an exponential function as trial solution. It will
later prove useful to adopt the form

R=¢"%(0). (10.65)

If we insert this trial solution in (10.63) and carry out the differentiation of the
exponential function and of the function v(g), we obtain

o + <£_ 1>v’+ [<£_1>i- ’(”;”]v=o. (10.66)
o K Q [

It is shown in the study of differential equations that (10.66) is satisfied by a trial
solution in the form of a power series in o, which we will express in the convenient form

v =" §0av9” = foave‘”") .. (10.67)
V=

V=

in which it is assumed that a, £ 0.
In this expression, the exponent u and the coefficients a, are still to be determined.
We insert the trial solution (10.67) in (10.66), re-order according to powers of g, and
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require that the coefficient of each power of g should be independently equal to zero.
The lowest power which occurs is o#~2. The corresponding coefficient is

aou(u—1)+ag2u—apl(i+1)=0. (10.68)

Since we have assumed that a, is nonvanishing, the common factor of @, must be
Zero, i.e.

p(u+1)=10+1). (10.69)

Of the two possible solutions = /and u = —/—1, only the first is usable for us, since
the other solution leads to a function v which diverges at the origin (10.67), causing the
trial solution for R also to diverge (10.65); however, we require the solutions of the
Schrédinger equation to be well-behaved in the entire range.

We now investigate the coefficients of the higher powers of o(v+0). For 0**/~? we
find

a,(v+)w+Il-1)+a 20w+ —al(l+1)—a,_(v+I-1)+a,_(n-1)=0, (10.70)
where the abbreviation
n=B/k (10.71)

has been employed. Relation (10.70) connects the coefficient a, with the preceding
coefficient a,_;. We thus obtain from (10.70), after an elementary rearrangement, the
recursion formula

v+l—n a
v(v+2/+1)

vt (10.72)

This recursion relation permits two quite different types of solutions, depending on
whether the chain of the @’s is terminated or not. If it is not, the sum in (10.67) contains
infinitely many terms, and it may be shown mathematically that then v (o) is practically
equal to an exponential function which diverges at infinity. We must therefore restrict
ourselves to the case when the chain of the a’s does terminate; this is in fact possible if #
is an integer. We then obtain a cutoff for v = v, where

vo=n-—1. (10.73)
Since we must have vy = 1, we obtain from this a condition for /:
Il=n-1. (10.74)

In the following, we shall refer to n as the principal quantum number and to [ as the
angular momentum quantum number. According to (10.74), the angular momentum
quantum number cannot be larger than n—1.

We now calculate the energy value, which, as we will see immediately, is already
determined in principle by our assumptions. For this purpose, we express E in terms of
x (10.54); x is, however, already determined by (10.71).
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In (10.71), as we have just seen, » is an integer, n=1,2,... . Furthermore, B is
defined in (10.64). We thus obtain for E:
2,4
Eo__MZ%e¢ 1 (10.75)

2h%(4 neo)z . n?

If we think back through the whole derivation, we see that the energy values E came
about through the requirement that the series (10.72) be terminated, or, in order to find
the actual solution, that the wavefunction should vanish at infinity. » is allowed to take
on integral values 1,2, 3,... in (10.75), so that we obtain the energy level diagram of
Fig. 8.4. The same energy values have already been derived in Chap. 8, starting with the
Bohr postulates. :

For E >0, i.e. for non-bound states, the energies form a continuous distribution of
values. We will not give the corresponding wavefunction here.

Since the series (10.67) has a cutoff, v(o) is a polynomial. If we recall the trial
solution for R () and the abbreviation for o, (10.62),

R=¢"9%p(0), (10.76)
we finally arrive at an expression for the original R of the form
Ry (r) = Ny sexp(— k,r) L3 Qer) (10.77)

The various quantities have the following meanings:
N,,,;is the normalisation factor, which is determined by the condition

{RZ (r)r’dr=1. (10.78)
0

(The factor 7% in the integrand results from the use of spherical polar coordinates.)
K, has the dimensions of an inverse radius and is given explicitly by (10.71, 64)

1 myZe?
Ky=—e 92" 10.79
" n h¥4ng ( )

L2+ !is the mathematical symbol for the polynomial which occurs in (10.77), whose
coefficients are determined by the recursion formula (10.72). It may be shown that
L4 can be obtained from the so-called Laguerre Polynomials L, ; by (2/+ 1)-fold
differentiation:

L2 = d*t L, /do . (10.80)
The Laguerre Polynomials, in turn, are obtained from the relation

L,+/(@) = e?d"*'[exp(- )" )/ do™*'. (10.81)

A series of examples of (10.77) is given in Fig. 10.3 for various values of the quan-

tum numbers. In Fig. 10.3a, the radial wavefunction is plotted as a function of the
dimensionless radius variable ¢ (10.62). The parentheses (1,0), (2,0) etc. contain the
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Fig. 10.3. a) The radial wavefunctions R(0) = R (r) of the hydrogen atom (10.77) are plotted vs the dimen-
sionless coordinate . The indices on the curves, (1,0), (2,0) etc. correspond to (n,/) where n is the principal
quantum number and / the angular momentum quantum number. b) The corresponding probability densities
in the radial coordinate, i.e. 47 0%R?(0) are plotted against the dimensionless coordinate 0
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values of n and / (n,/). In Fig. 10.3b, 470?R*(0) is plotted for various values of n
and /. R%(p)do gives the probability of finding the particle in a particular direction in
space in the interval g. .. 0+ dp. If, on the other hand, we wish to know the probability
of finding the particle at the distance g in the interval g...0+ dg independently of
direction, we must integrate over a spherical shell. Since the volume of a spherical shell
is just 4w o%dp, we are led to the above quantity, 4 702R ?(¢). The maxima of these
curves is displaced to regions of greater distance with increasing quantum number 7, so
that here we see an indication, at least, of the classical orbits.

Let us summarise our results. The wavefunction of the hydrogen atom may be
written in the form

Wn,i,m(r> 6, 9) = €™ P"(cos O) R, (r) . (10.82)
Here n is the principal quantum number, / the angular momentum quantum number,

and m the magnetic quantum number or directional quantum number. These quantum
numbers can assume the following values:

n=1,2,...,
O=sl=sn-1,
—l=mz= +1. (10.83)

Some examples for the density distribution of the electron (= probability density
distribution |, ; (7, 6, ¢) |*) are represented in Fig. 10.4.

The density of points shown here was calculated by computer. It represents the
probability density of the electron. Since the hydrogen functions are partially complex,
combination of functions which belong to +m and — m yields real functions. These
linear combinations are also solutions of the Schrédinger equation of the hydrogen
problem. They still have the quantum numbers # and /, but they are no longer eigen-
functions for the z component of the angular momentum, so that this quantum number
is lost. Figures 10.4a,b and e represent solutions with /= 0, which yield spherically
symmetrical distributions. The sections ¢, d, f and g represent / = 1. Here one notices
the dumbbell shaped distribution along one axis. There is a further linear combination
possible in each case, but not shown here, in which the long axis of the dumbbell would
lie along the third coordinate. Sections h and i represent / =2, with m =01in h, and i
represents a linear combination of m = +1. Figure 10.4 does not show the wavefunc-
tions with /=2, m = +2.

The energy corresponding to (10.82) is given by (10.75). It clearly depends only on
the principal quantum number n. Since each energy level E, (with the exception of
n = 1) contains several different wavefunctions, these levels are called degenerate. This
degeneracy is typical of the hydrogen atom problem with the Coulomb potential.

The degeneracy with respect to / is lifted, i.e. the energy levels become dependent
upon /, if the potential no longer has the form — const/r, but is still spherically sym-
metric (Sect. 11.2). We will be led to consider effective departures from the Coulomb
potential for all atoms with more than one electron (see below). The / degeneracy is also
lifted even for hydrogen if we treat the problem relativistically, which is necessary for
the exact treatment of the spectra (Sect. 12.11). The m degeneracy can only be lifted by
superimposing a non-spherically symmetric potential on the central potential of the
atom, i.e. an electric or a magnetic field (Chaps. 13 and 14).
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Fig. 10.4a—i. The density distribution (= localisation probability
density ||//|2) of the electron in the H atom represented by the
density of dots (according to H. Ohno). The wavefunctions
represented are:

a) (10.82),n=1,1=0,m=0

b) (10.82),n=2,/=0,m=0

¢) (10.82),n=2,l=1,m=0

d) linear combination (v 1,1+ ¥3,1,-1)

i

/2

e) (10.82),n=3,/=0,m=0

f) (10.82),n=3,/=1,m=0 .

g) linear combination (y; ;1 + y/3,,,_1);

h) (10.82), n=3,1=2, m=0 V2

i) linear combination (w3 , 4+ w3,2,_,)—]/1—?

The linear combinations given are also solutions of the Schrédinger
equation of the hydrogen problem with the energies E,, but they
are not eigenfunctions of /,



Problems 169
Problems

10.1 Calculate the expectation values of the kinetic and potential energies

a) for the ground state of the hydrogen atom, n=1, /=m =0,
b) for the wavefunctions n=2,/=0,m=0and n=2,/=1, m= +1,0.

Hint: Use spherical polar coordinates, so that for the volume element dV,
dV =sin0dodoridr.

10.2 As will be discussed in Sect. 15.2.3, in quantum mechanics dipole matrix
elements between two states with the wavefunctions w4 and y, are defined by

D = [ytery,dxdydz.

Why is D a vector? Calculate the components of D when

a) W1=y2= 1,00,

b) wi= w1005 V2= ¥2,0,0
or V2= ¥2,1,0
or V2= V¥2,1,+1-

Here y, ; , is the wavefunction of the hydrogen atom with the quantum numbers n, /
and m.

10.3 Calculate x (10.79) and E,, (10.75) numerically for the first three values of n for
the hydrogen atom.

10.4 Using the ground state of hydrogen as an example, we discuss here the variation
principle of quantum mechanics. This says, in general, that the wavefunction y of the
ground state of a Schrodinger equation /# y = E y can be found (aside from solving the
equation directly) by minimising the expectation value of the energy by a suitable
choice of y: E = {y*# wdxdy dz = min. y must simultaneously satisfy the additional
condition that [y*ydxdydz = 1.

This principle can also be used to estimate wavefunctions, and especially energies.

Problem: a) Take the trial solution y = Nexp(—r%/r3). Calculate the normalisation
factor N. Then calculate E as a function of r,, and minimise E by a suitable choice of
ro. Then compare E;, with the exact value of the energy.

b) Repeat the procedure for y = Nexp(—r/ry).

10.5 Solve the one-dimensional Schrédinger equation

h? diy(x) )
—_ 2 -2+ 2y =E
2my  dx? x  x? v v

for x=0, ¢;>0, ¢;,>0, E<O.
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Hint: First examine the limiting case x— o and determine the asymptotic form of y/(x).
Then try the solution

w(x) = x%e Veg(x),

where g = L + |/ 4+ & with & = 2mgc,/h* and e = —2myE/h>.

Calculate g(x) with a power series which, however, must be terminated. Why?



11. Lifting of the Orbital Degeneracy in the Spectra
of Alkali Atoms

11.1 Shell Structure

After the spectra of atoms with only one electron, the next simplest spectra are those of
alkali atoms.

The alkali atoms have a weakly bound outer electron, the so-called valence electron,
and all other (Z — 1) electrons are in closed shells. What the atomic-physical meaning of
a closed shell is, we will discover later. At present we shall only say that even when
several electrons are bound to a nucleus, their individual electron states can be charac-
terised by the three quantum numbers #n, / and m, but the corresponding energies are
strongly modified, with respect to the one-electron problem, by the interactions of the
electrons with each other. The Pauli principle (Sect. 17.2) says that a state characterised
by specific values of #, / and m can be occupied by at most two electrons. In the ground
state of an atom, the states with the lowest energies are naturally the occupied ones. A
particular state of occupation of the energy levels or terms of an atom by electrons is
called the electron configuration of the atom in that state — in this case, the ground
state. A closed shell or noble gas configuration occurs whenever the next electron to be
added would occupy the s state of the next higher principal quantum number #. It is not
necessary that all the states belonging to lower principal quantum numbers be filled;
more about this will be said in Chap. 20. The electrons in the closed shells are closer, as
arule, to the nucleus than the valence electron, and are more strongly bound. The total
angular momentum of a closed shell vanishes. The closed shell is spherically sym-
metrical and is especially stable.

How is this known? Firstly, from chemistry: all alkali metal atoms have a valence of
one. Each alkali metal is preceded in the periodic system by a noble gas, each of which
has one electron fewer and has a particularly stable electron configuration — a closed
shell. These gases are chemically inactive. Compared to those of their neighbours in the
periodic table, their ionisation potentials are large. The neighbours with one more
nuclear charge unit, the alkali metals, have very low ionisation potentials. For example,
the ionisation energy of the noble gas helium is 24.46 eV. The next element in the
periodic table, the alkali metal lithium, has an ionisation energy of only 5.40 eV. The
ionisation energies of the heavier alkali metal atoms are even lower, as can be seen from
Table 11.1. The table also shows that the ionisation energy for the removal of the
second electron from an alkali metal atom is very large, because the electron configura-
tion of the singly charged positive ion is a closed shell. In Fig. 11.1, the simplified term
diagrams of the alkali metals are compared to that of the H atom.

The comparison shows that in the alkali atoms, the / degeneracy is lifted. States
with the same principal quantum number n and different orbital angular momentum
quantum numbers / have different energies. Relative to the terms of the hydrogen
atom, those of the alkalis lie lower — this means a larger (negative) binding energy —
and this shift increases, the smaller / is. For larger principal quantum numbers, i.e.
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Table 11.1. Work of ionisation for the elements with Z = 1 to Z = 20. Values are given for the neutral atom,
and for singly, doubly and triply charged ions. The ionisation energy is always especially large for a noble gas
configuration (closed shell). It is especially low if there is only one electron more than a noble gas configura-
tion which is indicated by bold-face numbers

Element Work of ionisation [eV] for the transition from the —
neutral atom to singly to doubly to triply to
singly charged doubly charged triply charged quadruply charged
H 13.59 - - -
,He 24.5 54.1 - -
sLi 5.4 75 122 -
4Be 9.3 18.2 154 217
sB 8.3 251 38 259
6C 11.3 24.5 48 64.5
4N 14.6 29.6 47 77.4
s0 13.6 35.2 55 77.4
oF 17.4 34.9 62.7 87.3
1oNe 21.6 41.0 63.9 96.4
11Na 5.14 47.3 1.7 98.9
Mg 7.64 15.0 80.2 109.3
13Al 5.97 18.8 28.5 120
1451 8.15 16.4 33.5 44.9
1sP 10.9 19.7 30.2 51.4
165 10.4 23.4 35.1 47.1
17C1 12.9 23.7 39.9 53.5
1gAT 15.8 27.5 40.7 ca. 61
10K 4.3 31.7 45.5 60.6
2Ca 6.1 11.9 51 67
Li Na K Rb Cs H
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Fig. 11.1. Simplified term diagrams for the alkali metal atoms, showing the empirical positions of the most
important energy terms. The principal quantum number » is indicated by numerals, the secondary quantum
number / by the letters S, P, D, and F. For comparison, the levels of the H atom are given on the right
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greater orbital radii, the terms are only slightly different from those of hydrogen. Here
also, however, electrons with small / are more strongly bound and their terms lie lower
in the term diagram. This effect becomes stronger with increasing Z. We would like to
understand this effect, at least qualitatively.

11.2 Screening

In order to understand the term diagrams of the alkali atoms, we will use the following
model (Fig. 11.2):

Fig. 11.2. Model of an alkali atom. The valence electron is screened
from the nuclear charge +eZ by the (Z—1) inner electrons

A “valence electron” is located at a relatively large distance r from the nucleus. It
moves in the electrostatic field of the nuclear charge + eZ, which is for the most part
screened by the (Z—1) inner electrons. We describe the screening effect of the inner
electrons together with the nuclear potential by means of an effective potential Vg (r)
for the valence electron. In this way we reduce the original many-body problem to a
single-particle system, and we can treat the energy levels of an alkali atom as terms of a
single-electron atom.

The shape of the effective potential V(r) is shown schematically in Fig. 11.3. If
the valence electron moves at a great distance from the nucleus, its potential energy is
—e¥/(4 nmegr). The nuclear charge which attracts the valence electron is in this case

V(r)

Fig. 11.3. Effective potential V ¢ (r) for an alkali atom. At small
- electron-nuclear distances, Vg has the shape of the unscreened
nuclear Coulomb potential; at large distances, the nuclear charge is
screened to one unit of charge
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compensated down to one unit of charge by the inner electrons. However, the nearer
the valence electron approaches the nucleus, the more it experiences the unscreened
nuclear potential. The potential energy approaches V= —Z e2/(47t£0r). The effective
potential V,(r) is no longer proportional to ~!. This proportionality was, as we recall
(Chap. 10), responsible for the / degeneracy.

Fig. 11.4. Variation in screening for electrons with
different radial probability densities. In the Som-
merfeld model it is intuitively clear that electrons
with “diving orbits” approach the nucleus closely
and are affected at least partially by the unscreened
nuclear potential. It has to be remembered,
however, that in the modern quantum theory, the
electrons are described as charge clouds rather than
as orbiting particles

In the Sommerfeld picture, the so-called diving orbits demonstrate especially clearly
that electrons with differing orbital angular momenta, i.e. differing orbital shapes,
experience different degrees of screening. This is illustrated in Fig. 11.4. Quantum
mechanically, this picture remains valid to a large extent. In Chap. 10 it was shown that
the probability density of the electrons in the neighbourhood of the nucleus decreases
in the order /=0,1,2,... . The s electrons are thus most strongly affected by the un-
screened field of the nucleus. For a given principal quantum number n, the energy
terms of the s electrons are therefore shifted the most strongly to negative values
relative to the H atom (Fig. 11.1).

11.3 The Term Diagram

For the alkali atoms, we thus obtain a term diagram like that shown in Fig. 11.5 for
lithium. This term diagram permits a classification of the spectral lines to series, if one
employs the additional selection rule for optical transitions A/ = +1, i.e. in an optical
transition, the quantum number / must change by 1. Such selection rules will be treated
in detail in Chap. 16.

The series in the emission spectra of the neutral alkali atoms can be described by
series formulae similar to the Balmer series formula. For the energy terms E, ; which
are determined by the quantum numbers n and /, an effective principal quantum
number 7. may be defined, so that, e.g. for sodium we have

E, 1= —Rnahc 12 = _RNahC{——l—z} .
Mest [n—A4(n,D]

Here the multiplication by the factor Ac is necessary if the Rydberg number Ry, is
measured in cm~!, as is customary. Here n.s=n—A4(n,l) is a principal quantum
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number, in general not an integer, and A(n,/) = n— nqg is the so-called quantum defect
associated with the quantum numbers 7 and /. The empirically determined numerical
values for the quantum defects (see Table 11.2) are largest for s electrons, decrease with
increasing orbital angular momentum quantum /, and are largely independent of the
principal quantum number z#. They increase down the column of alkali atoms from
lithium to cesium, or with increasing nuclear charge number Z. These quantum defects
are empirical expressions of the different degrees of screening of the s, p, d, etc. elec-
trons by the electrons of the inner shells.

For the sodium atom, the decomposition of the total spectrum into series is repre-
sented in Fig. 11.6. Figure 11.7 shows the transitions in the form of a Grotrian

Table 11.2. Quantum defects A(n,/) for the spectra of the Na atom [from F. Richtmyer, E. Kennard,

J. Cooper: Introduction to Modern Physics, 6th ed. (McGraw-Hill, New York 1969)]. These are empirical
values

Term n=3 4 5 6 7 8
=0 s 1.373 1.357 1.352 1.349 1.348 1.351
1 D 0.883 0.867 0.862 0.859 0.858 0.857
2 d 0.010 0.011 0.013 0.011 0.009 0.013
3 f - 0.000 —0.001 —0.008 -0.012 -0.015
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Fig. 11.6. The three shortest-wave spectral series of the sodium
atom. The series limits are indicated by shading. The emission spec-
trum is a composite of these series. In absorption spectra, normally
only the principal series is observed, because in the ground state of
the Na atom the highest occupied term is the 3s term. The yellow
colour of sodium lamps is due to the longest-wave resonance line of
the main series, the transition 3s < 3 p. This is the sodium D line, a
terminology which has been retained for historical reasons

Fig. 11.7. Term scheme (Grotrian diagram) of the sodium atom.
Some of the shortest-wave transitions from the principal series, the
two secondary series and the Bergmann series have been included.
The numbers in the diagram indicate the wavelength of the transi-
tion in Angstrom units. The term symbols indicated on the upper
edge of the figure also represent the quantum numbers for the
multiplicity and the total angular momentum. These are explained
in Chaps. 12 and 17

11. Lifting of the Orbital Degeneracy in the Spectra of Alkali Atoms
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and the Bergmann (fundamental) series with transitions from f to d electron terms:

1 1
[no— A(ng,2))*  [n—A(n,3)]?

‘-’f=RNa|: ], nzng+1.

Ry, is again the Rydberg number of the sodium atom and #, is the integral principal
quantum number of the lowest state. This is 2 for Li, 3 for Na, 4 for K, 5 for Rb and 6
for Cs. We are jumping slightly ahead in saying that the valence electron of the alkali
atoms begins a new shell in each element. The principal quantum number of the ground
state therefore increases by one in each successive alkali element of the periodic system.

The names for the series and the system of indicating the electrons with orbital
angular momentum 0, 1,2,3,4,...ass,p,d, f, g... are historic. p is for principal, s for
sharp, d for diffuse and f for fundamental.

Under normal conditions, only the principal series is observed by absorption spec-
troscopy, because unless the temperature is extremely high, only the ground state of the
atoms is sufficiently populated for transitions into higher states to be observed. The
lines of the principal series are thus resonance lines. The best known is the D line of
sodium, which is the transition 35— 3 p. The sum of the s terms can also be designated
S, and of the p terms, P, so that the sodium series can be written:

Principal series 3S<nP
Secondary series 3P < nS
3PeonD with nz=3.

Capital letters are used for terms which apply to several electrons in an atom, and
lower case letters for the terms for individual electrons. In the alkali atoms, which have
only one valence electron, the two notations are equivalent.

The screening effect of the inner electrons can be quantitatively calculated, if one
knows their charge distribution with sufficient accuracy. Qualitatively, we wish to
demonstrate the effect of the nuclear charge on a single 3d or 45 electron in the atoms
H(Z=1)andK (Z=19).

In the H atom, the charge cloud of a 3d electron is, on the average, closer to the
nucleus than that of a 4s electron (Fig. 11.8). Therefore, the 3d electron is more
strongly bound to the H atom. It is different, however, in the K atom. The configura-
tion of the atomic core, i.e. the noble gas configuration of Ar, consists of two s elec-
trons with 7 = 1 (symbol 152), two s electrons with n = 2 (symbol 252), six p electrons

‘:g: L 3d 4s
;' L Fig. 11.8. Radial probability densities for a
45 and a 3d electron in the H atom. The 4s
r /, - electron is, on the average, farther from the
A \ : \ N nucleus, but the probability of finding it near
0 4 8 12 16 20 24 28 32 36 the nucleus is greater than the probability of

Bohr radiir finding the 3d electron there
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with n = 2 (symbol 2p®), two s electrons with n = 3 (symbol 35?) and six p electrons
with n = 3 (symbol 3p®):

15225%*2p%3s*3p°— or[Ar] for argon .

Now the question is, does K, with one more electron, have the configuration
[Ar]4s!, or does [Ar] 3d! have a greater binding energy? Is the 19th electron added as a
4s or a 3d electron?

From our consideration of the H atom, we would predict that the [Ar] 3d! con-
figuration is more stable. However, it must now be determined what the effects of
shielding are on the 3d and 4s electrons. Because the 45 electron has a higher prob-
ability of being very close to the nucleus, and thus unscreened, it turns out that the 4s
energy level is energetically somewhat lower than the 3d. The 20th electron is also an s
electron; see Table 3.1. The element following potassium in the periodic table, calcium,
has the configuration [Ar] 4s% It thus becomes clear how decisively the screening
affects the binding energies of the outer electrons, in a manner dependent on the orbital
angular momentum quantum number /.
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Fig. 11.9. Left. Grotrian diagram for the neutral potassium atom in the visible and infrared regions. The
wavelengths for a few transitions (in nm) are indicated. The term symbols on the upper edge of the diagram
are explained in Sect. 12.8 and Chap. 17. Right. Term scheme for the potassium atom in the infrared, visible,
ultraviolet and x-ray regions. The term symbols used in this diagram are explained in Chaps. 12 and 17. (One
should observe that the energy ranges in the two halves of the figure are different.) The x-ray spectrum also
includes terms with lower principal quantum numbers than the visible spectrum. Terms with n=1,2,3...
are referred to in the x-ray region as the K, L, M... shells, see Chap. 18

Energy E [eV]
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11.4 Inner Shells

So far we have treated only the optical spectra of the alkali atoms. The valence electron
could only have the principal quantum number # = 2 for Li, =3 for Na, =4 for K, etc.
The states with lower principal quantum numbers were completely occupied. Transi-
tions involving these inner electrons were not discussed. However, they are also
possible. Since the inner electrons are more strongly bound, such transitions take place
at higher energies. We will introduce such transitions later, in the discussion of x-ray
spectra (Chap. 18).

Figure 11.9 shows, in addition to the optical term scheme for the valence electron of
the K atom, a complete term scheme. This includes the transitions in the x-ray region of
the spectrum, in which an electron is removed from a closed inner shell and replaced by
an electron from further out.

Problems

11.1 The energy levels of the valence electrons of an alkali atom are given, to a good
approximation, by the expression

E,= —Rhc-1/[n—A(n,D))*.

Here A(n,!) is the quantum defect (which depends on the values of n and / of the
valence electron in question). For lithium and sodium, A4 (n,/) have been measured:

s D d
Li(Z=3) 0.40 0.04 0.00
Na (Z=11) 1.37 0.88 0.01

Calculate the energy of the ground state and the first two excited states of the valence
electron in lithium and sodium.

11.2 The ionisation energy of the Li atom is 5.3913 eV, and the resonance line
(2s+2p) is observed at 6710 A. Lithium vapour is selectively excited so that only the
3 p level is occupied. Which spectral lines are emitted by this vapour, and what are their
wavelengths?

Hint: Start from the fact that the quantum defect is independent of #, the principal
quantum number.

11.3 Explain the symbols for the 32D —32P transition in sodium. How many lines
can be expected in the spectrum?



12. Orbital and Spin Magnetism. Fine Structure

12.1 Introduction and Overview

We have not yet discussed the magnetic properties of atoms. It turns out that the study
of these properties yields a deeper insight into the shell structure of atoms.

The impetus to study the magnetic properties was given by a few fundamental ex-
periments, which we shall discuss in this chapter. The most important are
— Measurements of the macroscopic magnetisation and of the gyromagnetic proper-

ties of solids, known as the Einstein-de Haas effect.

— Measurements of directional quantisation and of the magnetic moments of atoms in
atomic beams, made by Stern and Gerlach.
— Observation of the so-called fine structure in the optical spectra of atoms.

We shall begin with the third point. Many of the lines in the spectra of alkali atoms
are double, and are called doublets. They occur because all the energy terms E, ; of
atoms with single valence electrons, except for the s terms (energy levels with no orbital
angular momentum), are split into two terms. This splitting cannot be understood in
terms of the theory discussed so far. It is fundamentally different from the lifting of
orbital degeneracy discussed in the last chapter. If the orbital degeneracy has already
been lifted, there must be a new effect involved, one which has not yet been taken into
account. Let us take as an example the D line in the spectrum of the sodium atom, i.e.
the transition 3 P < 3 S (Fig. 11.7 and 12.1). With sufficient spectral resolution, one can
see two lines: Dy = 589.59 nm 2 16956 cm ! and D, = 588.96 nm 2 16973 cm . In the
following we shall often use this pair of lines as an example for explanation and experi-
mental demonstration of spectroscopic results. Like the Balmer series of the H atom,
the sodium D lines are especially suitable for demonstration of basic concepts in atomic
spectroscopy — so much so, that they have become the “guinea pigs” of the field.

Arrangement Screen Fig. 12.1. Arrangement for spectral separation of the two com-

Na lamp . of prisms ponents Dy and D, of the sodium D line. With this arrangement,
the splitting can easily be demonstrated in the lecture hall by

) /\ /W replacing the screen with a television camera. To separate the

y : lines distinctly, one needs two commerically available straight-

through prisms

Fig. 12.2. Arrangement for observation of the sodium D lines by absorp-
; tion (as the so-called Fraunhofer line). The continuous spectrum of an arc
Light

i lamp or xenon high-pressure lamp is spread out by a prism. A gas flame
source made yellow by addition of NaCl, or better still, sodium vapour from a
/ Gasflame heated piece of sodium metal, absorbs the light of the D line from the

continuous spectrum. On the screen, therefore, the line is seen as a black
band on the continuous spectrum

Slit with NaCl

Screen
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To explain the doublet structure, one needs three additions to our previous picture:

— A magnetic moment u, is associated with the orbital angular momentum /.

— The electron also has a spin s. It too is associated with a magnetic moment, g,.

— The two magnetic moments g, and g, interact. They can be parallel or antiparallel to
each other. The two configurations have slightly different binding energies, which
leads to the fine structure of the spectrum.

Two demonstrations of the yellow sodium lines are shown in Figs. 12.1 and 12.2;
other experiments follow in Chap. 13.

12.2 Magnetic Moment of the Orbital Motion

An electron moving in an orbit is equivalent to a circular electric current. We know
from electrodynamics that a circular electric current generates a magnetic dipole field.
We expect that the orbiting electron will do the same, and it does in fact have a
magnetic dipole moment. This we shall now calculate.

The magnetic dipole moment of a conducting loop is defined as

u=I-4 [Am?], (12.1)

where I is the current, and A4 is a vector which is perpendicular to the plane of the con-
ducting loop and which has a magnitude equal to the area enclosed by the loop. Thus
the vector u is also perpendicular to the plane of the loop.

If we bring this magnetic dipole into a homogeneous magnetic field B, a torque z is
applied to the dipole:

T=uxB. (12.2)

The magnetic potential energy of the dipole is (Fig. 12.3)
a

Vimag= —#-B= {tda= —uBcosa, (12.3)
n/2

where « is the angle between u and B.

/_" Fig. 12.3. Calculation of the potential energy of a con-

ducting loop in a magnetic field. The magnetic moment
is the product of the current 7 and the area vector 4. The
potential energy depends on the angle a between the
normal to the plane of the loop and the direction of the

l N l magnetic field
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The magnetic moment can be defined either in terms of the torque in the field (12.2)
or the potential energy (12.3).

In atomic and nuclear physics, the magnetic moment is often defined as the torque
in a uniform field of strength H (not of strength B). Accordingly,

t=p' xH, ' =plA, (12.4)

if we indicate magnetic moments which are defined w.r.t. H by u’. Because of the
relation B = uyH, the induction constant =47 - 10~' Vs/Am occurs in (12.4).

B
N
N\

o>

2nr

e =5

Y Fig. 12.4. Calculation of the orbital moment. The circulating electron has
-e an angular momentum / and a magnetic dipole moment ;. For a negative

P o L charge, the vectors / and g, point in opposite directions

We now wish to transfer the definition of the magnetic dipole moment to the atom
and calculate the magnetic moment of an electron with the charge ¢ = —e whichisina
circular orbit moving with the velocity » (Fig. 12.4). If the time for a single revolution is
T =27n/w, a current

ew

— 12.5
e (12.5)

=9 _ _
T

is flowing. Here we have used e (without a sign) for the elementary unit of charge. Here
and in the following, we use a negative sign for the electron.
The magnetic moment u of this circular current is then, according to (12.1),

u=IA=-Ltewr®. (12.6)

If we introduce! the orbital angular momentum || = mvr = mwr?, we can rewrite
(12.6) as a relation between the magnetic moment and the orbital angular momentum

e

l. 12.7
T (12.7)

H=—

If the charge g is positive, the vectors u and / point in the same direction; if it is
negative, as with the electron, they point in opposite directions. Therefore (12.7) holds.
We have introduced the symbol m, to make it clear that the rest mass is what is meant.

! The orbital angular momentum is given by /, and its magnitude by |Z|. This is to prevent confusion with the
quantum number / of the orbital angular momentum. See also (8.28)
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The proportionality between angular momentum and magnetic moment is also
known as the magnetomechanical parallelism. The fact that it is valid in atoms is by no
means self-evident, and follows from experimental observations which will be dis-
cussed below.

As the unit of magnetic moment in atoms, we use the strength of the moment which
corresponds to an electron with the orbital angular momentum |/| = A/2 . This is the
orbital angular momentum in the first Bohr orbit of the hydrogen atom in the old Bohr
model. An electron with |/|= h/2n or A produces a magnetic moment given by the
Bohr Magneton:

¢ h=9.274078 - 10~% Am?. (12.8)

u =
B 2m0

It is an unfortunate — but, because of its wide usage, unavoidable — inelegance
that the same symbol u is used both for the magnetic moments u and ug and for the in-
duction or permeability constant of vacuum, .

The magnetic moments of electrons are frequently given in units of ug. For the
magnitude of the magnetic moment of an orbit with the angular momentum quantum
number /, the following expression is valid:

W= ugl/1U+1) = 2" R/10+1). (12.9)

my

This expression is also valid for vectors, in the form

l
= =g (12.10)

Equation (12.10) thus defines the g factor, which we shall often meet in the following.
It is dimensionless and here has the numerical value g;= 1. It is a measure of the ratio
of the magnetic moment (in Bohr magnetons) to the angular momentum (in units of #).
It was introduced by Landé, in the presence of spin-orbit coupling (Sects. 12.7, 8), in
order to characterise the ratio of the magnetic moment (in ug) and the total angular
momentum (in units of A).

With “angular momentum”, we often denote — briefly but inaccurately — the
quantum number /, i.e. the maximum component in the z direction, /,/A. The maxi-
mum component of g in the z direction is then given by (4;)max = 9,/ up. We will treat
the g factors for other cases of the angular momentum later. They are always defined
as the ratio of the magnetic moment to the corresponding angular momentum, in units
of ug and A, respectively.

12.3 Precession and Orientation in a Magnetic Field

An applied field with the magnetic flux density B, acts on the orbital magnetic mo-
ment g; by trying to align the vectors g; and B, parallel to one another, since the
potential energy is a minimum in this orientation (12.3). The electrons, which are mov-
ing in their orbits, behave mechanically like gyroscopes and carry out the usual preces-
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sion about the direction of the field. The precession frequency w, of a gyroscope
under the action of a torque 7 is

7]
. = ’ (12.11)
P |lIsina
where / is the angular momentum of the gyroscope, and « the angle between the
directions of / and B, (Fig. 12.5).

wp ‘]Bo

IUsina

Fig. 12.5. Vector diagram for the calculation of the precession frequency W, of
a gyroscope with angular momentum / and magnetic moment u. The angle
between the field B, and the direction of / (and u) is denoted by ¢; the vectors
Al and 7 are perpendicular to / and B

These considerations may be directly transferred to the case of the atomic
gyroscope. The precession frequency of the electron orbit, the Larmor frequency, is
found from (12.10) and (12.11) to be

- I'fl _ tuBsine _ gt p_ ,p. (12.12)
[l|sine |I|sine h :

The new quantity y which we have introduced here is called the gyromagnetic ratio. It
gives the precession frequency in a field with a magnetic flux density of 1 Vs/m? =1
tesla. The sign and direction of the vectors is indicated in Fig. 12.6. As can be seen from
(12.12), the Larmor frequency «wy, is independent of the angle «.

We have already seen that the orientation of the vector / in space is not random. The
solution of the Schrodinger equation (Sect. 10.2) implies that when one axis is
established, a component of the angular momentum is quantised. This axis can be

| 9 l
@y,
N €
/ Fig. 12.6. Directional quantisation: Only the projections of the vectors /
B I (Hi)z and g on a chosen axis z can be observed. Here the z direction is the
” direction of B,
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determined by a magnetic field, for example. Therefore only discrete values of ¢, the
angle between B and [ or y;, are allowed.

According to Sect. 10.2, the following holds for the components of the angular
momentum in the z direction:

L,=mh, with m=0,x1...%/. (12.13)

Here m, is used instead of m in Sect. 10.2. In this way we emphasise that m(=m,) is
associated with the orbital angular momentum. m;,is the magnetic quantum number. 1t
can have 2/+1 different values. Here / is again the angular momentum quantum
number, |/| = |/I(/+ 1) h. The largest possible component of / in the z direction thus has
the value /- A.

The magnetic moment y; associated with the orbital angular momentum is corre-
spondingly quantised. For its component in the z direction the quantisation rule is

U z= l;=—mug. (12.14)

2m0

The maximum value in the z direction is /- ug. As a simplification (but not
accurately), it is said that the state has the magnetic moment /- ug.

Since u precesses around the direction of B, it is intuitively clear that in an observa-
tion of the energy of interaction between the magnetic moment and the magnetic field,
the x and y components of u are averaged out over time. However, the z component
can be observed.

The experimental demonstration of the existence of a directional quantisation was
provided by the Stern and Gerlach experiment (see Sect. 12.6).

12.4 Spin and Magnetic Moment of the Electron

The s states with orbital angular momentum / = 0 have no orbital magnetic moment.
Therefore, a one-electron atom should be diamagnetic in the ground state, when it has
one valence electron in an outer shell and all the others in closed shells. However, these
atoms are actually paramagnetic. .

The reason is the existence of electron spin and the associated magnetic moment.
Electron spin was introduced by Uhlenbeck and Goudsmit in 1925 to explain spectro-
scopic observations.

The splitting of many spectral lines in a magnetic field, which will be discussed later
(the anomalous Zeeman effect) can only be explained if the electron has a spin angular
momentum s,

Is|=1/sG+1)h (12.15)

and the associated magnetic moment

¢ s, (12.16)

=-9
Hs s 2m,
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where e is again the unit charge of the electron, without the negative sign. s=1/2isa
new quantum number, the spin quantum number. The similarity of (12.16) and (12.10)
is apparent. The two expressions differ only in that (12.16) contains the new factor g,
the so-called g factor of the electron. Although the expected value for this propor-
tionality constant on the basis of classical theory would be 1, the value has been empir-
ically determined to be g,= 2.0023. Figure 12.7 represents the spin and magnetic
moment of the electron schematically.

Spin 4 |s|=¥s(s+1) h

Charge -e
<
Mass m,

Magnetic €
Hs=~0s—S
moment v *om
Fig. 12.7. Spin and magnetic moment Fig. 12.8. The electron spin has two possible orientations in
of the electron a magnetic field in the z direction. These are characterised

by the quantum number m, = +1/2

Dirac showed in 1928 that the spin of the electron is a necessary consequence of a
relativjstic quantum theory (the Schrodinger theory is non-relativistic). The g factor
gs = 2 could also be thus derived. The slight difference between the predicted value of 2
and the empirical value can only be understood if the interaction of the electron with its
own radiation field is taken into account through quantum electrodynamics.

As first shown by the experiment of Stern and Gerlach (Sect. 12.6), the spin can
only have two orientations in an external magnetic field B (or in the presence of a
defined z axis): “parallel” and “antiparallel” to the field (Fig. 12.8). Its components in
this defined z direction are

s,=msh with my=+1; 12.17)

my is the magnetic quantum number of the spin.
It follows from the orientation of the angular momentum that the magnetic
moment is also oriented. The z component is

Ms,z = —gsMslup, (12.18)
or numerically,

My = +1.00116 yg . (12.19)
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Intuitively speaking, the spin and the magnetic moment precess around the field
axis, leaving the z component constant (compare Sect. 12.3).

The gyromagnetic ratio, which was defined above (12.12) as the ratio between the
magnetic moment and the angular momentum,

y=lﬂ—' or y=Lu—|, (12.20)
1] Is |

is thus not the same for orbital (12.10) and spin (12.16) magnetism. For pure orbital
magnetism,

e

‘}}:-1_
! 2 my

I

and for pure spin magnetism,

ye=1.00116 -5
my

The previously mentioned g factor is also used instead of the gyromagnetic ratio y.
g is obtained by multiplying y by # and is defined for pure orbital magnetism as

1 e
yih=— —h=gug 12.21)
2 mo

and for pure spin magnetism by

yoh =1.00116 mi B =g pp = 2.0023 ug . (12.22)
0

In the following, the reader will see that the easiest and most definitive way to
calculate the magnetic properties of atoms is often to make use of measurements of the
ratio y or g.

12.5 Determination of the Gyromagnetic Ratio
by the Einstein-de Haas Method

The gyromagnetic ratios of macroscopic samples can be measured as shown in
Fig. 12.9. An iron needle is magnetised by a coil. If one changes the magnetisation of
the sample — and this means changing the direction of the atomic magnetic moments
in the sample — one will also change the direction of the atomic angular momenta, and
this must be observable as a change in the angular momentum of the whole sample,
according to the law of conservation of angular momentum. If the magnetisation is
changed by 180° by reversing the poles of the coil, the angular momentum vector must
also be rotated through 180°. Quantitatively, the change Auy in the magnetisation of
the needle, measured with a detection coil and a ballistic galvanometer, can be repre-
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7

Fig. 12.9. Einstein-de Haas experiment. When the current in the coil is
reversed, the magnetisable bar hanging in it turns. The torsion of the
fibre on which the bar is suspended is measured with a mirror and light
beam

Scale

N

sented as the sum of the changes for the individual electrons,

n
?Aﬂz=n'2/-‘za

if n electrons have reversed their directions.
Likewise, the macroscopic change in the angular momentum of the needle, ALy,

measured by means of the torsion fibre, is the sum of the changes of the atomic angular
momenta:

Y Al,=n-2I,.
1

For macroscopic samples, the measured ratio

Aun _ Yz _ €
ALN lz my

Thus according to the definition of (12.20),

y=—— or g=2.
myg

From this experiment it can be seen that there is an angular momentum associated
with the magnetism of atoms, and that it can be calculated as derived above.

In general, gyromagnetic ratio measurements, first described in 1915 by Einstein
and de Haas, can indicate how much of the magnetism in a given sample is due to spin
and how much to orbital angular momentum. However, a quantitative understanding
of this type of measurement requires a deeper knowledge of solid state physics. There,
it is found that in a solid, the orbital magnetic moment is often “quenched”, i.e. it ap-
pears to be vanishingly small.

12.6 Detection of Directional Quantisation by Stern and Gerlach

In 1921, the deflection of atomic beams in inhomogeneous magnetic fields made
possible

— the experimental demonstration of directional quantisation and

— the direct measurement of the magnetic moments of atoms.
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Fig. 12.10. Stern-Gerlach experiment. The atomic
beam passes through an inhomogeneous magnetic
field. One observes the splitting of the beam into two
components. Classically, one would expect a continu-
ous distribution

Result

Expected
3B classical
37 result

Atomic beam

In the experiment (Fig. 12.10), one first generates a beam of atoms. In the first
experiments of Stern and Gerlach, this was a beam of silver atoms which was generated
in an atomic beam furnace and collimated by a series of slits. Later, hydrogen atoms
from a gas discharge were also used. The collimated beam passes through a highly in-
homogeneous magnetic field, with the direction of the beam perpendicular to the direc-
tion of the field and of the gradient. The directions of the field and gradient are the
same. Without the field, the vectors of the magnetic moments and angular momenta of
the atoms are randomly oriented in space. In a homogeneous field, these vectors
precess around the field direction z.

An inhomogeneous field exerts an additional force on the magnetic moments. The
direction and magnitude of this force depends on the relative orientation between the
magnetic field and the magnetic dipole. A magnetic dipole which is oriented parallel to
the magnetic field moves in the direction of increasing field strength, while an anti-
parallel dipole moves towards lower field strength. A dipole which is perpendicular to
the field does not move.

The deflecting force can be derived from the potential energy in the magnetic field
Vihag= —# B:

Fz=uzil?-=uilicosa, (12.23)
dz dz

where @ is the angle between the magnetic moment and the direction of the field
gradient.

15
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Fig. 12.11. Stern-Gerlach experiment. Observed

M

Galvanometer signal

5 4 \\ intensity distribution of an atomic beam with
/ \, and without an applied magnetic field, 2S,,
P AN state [from H. Kopfermann: Kernmomente, 2nd
_=0" fmm S on ed. (Akademische Verlagsgesellschaft, Frank-
e L furt 1956)]
30 40 50 60 70

Position of detector wire
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In classical mechanics, any orientation ¢ of the atomic magnet with respect to the
field is allowed. Atoms with magnetic moments perpendicular to the field gradient are
not deflected. Those in which the vectors are parallel are deflected the most, and all
possible intermediate values can occur. In the classical picture one thus expects a con-
tinuum of possible deflections. With H and Ag atoms, however, two rather sharp peaks
separated by 2 were observed on the detector (Fig. 12.11).

This experiment and similar measurements on other atoms permit the following
conclusions:

— There is a directional quantisation. There are only discrete possibilities for the
orientation relative to a field By, in this case two, parallel and antiparallel.

— From a quantitative evaluation of the observed deflection J in the above example,
one obtains the value y, = +up. In general this method provides observed values
for atomic magnetic moments if the magnitude of the field gradient is known.

— For all atoms which have an s electron in the outermost position, one obtains the
same value for the deflecting force, from which it follows that the angular momenta
and magnetic moments of all inner electrons cancel each other and one measures
only the effect of the outermost s electron.

— The s electron has an orbital angular momentum [ = 0 and one observes only spin
magnetism.

— Like gyroscopes, atoms maintain the magnitude and direction of their angular mo-
menta in the course of their motion in space.

This experiment provides the basis for the knowledge of the angular momenta and

magnetic moments of atoms which was summarised in Sects. 12.2 and 12.3.

12.7 Fine Structure and Spin-Orbit Coupling: Overview

In the introductory section to this chapter we mentioned that all energy terms — with
the exception of the s states of one-electron atoms — are split into two substates. This
produces a doublet or multiplet structure of the spectral lines, which is denoted by the
generic name fine structure.

The fine structure cannot be explained with the Coulomb interaction between the
nucleus and the electrons. Instead, it results from a magnetic interaction between the
orbital magnetic moment and the intrinsic moment of the electron, the spin-orbit
coupling. Depending on whether the two moments are parallel or antiparallel, the
energy term is shifted somewhat.

The magnetic coupling energy between the orbital moment and the spin moment
will be calculated in Sect. 12.8. The coupling of the magnetic moments leads to an
addition of the two angular momenta to yield a total angular momentum.

The following conclusions are then valid (Fig. 12.12):

— I and s add to give a total angular momentum j;

— j has the magnitude |/j(j+1) A with j = |/xs|, i.e. j = [I+ 1| for the case treated
here of a single-electron system with s = 1. The quantum number j is a new quan-
tity: the quantum number of the total angular momentum. We shall show with a
quantum mechanical calculation in Sect. 14.3 that j has the magnitude given above.

— For a p electron with / = 1, s = 1, we find the following possibilities:
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ji=3/2, |jl=V15/2h, and
J=1/2, 1jl=V3/2h;

— when /=0, j =s and there is no doublet splitting;
— forj, just as for /, there is a directional quantisation. The z components must obey
the condition

Je=mjh, mj=j,j—1,...—j (2j+1 possibilities) .

4
(j)z 12 m;
3 3
2h 2
1 1
2 2
1 0 1
-zh "7
23 3
2 h 2
Fig. 12.12. Coupling of the vectors of spin s and orbital Fig. 12.13. Directional quantisation: for the
angular momentum / to give the total (resultant) angular z component of the angular momentum j,
momentum j in the vector model. The vectors s and / only certain discrete values are allowed.
precess about the resultant j. In a magnetic field applied They are denoted by the magnetic quantum
in the z direction, j precesses about z. The opening angle number m;. For the case illustrated, j = 3/2,
of the cone of precession is determined by the magnetic the magnitude of the vector is |j|=
quantum number m;. The figure shows the case s = 1/2, /(3/2)(5/2) h. Four orientations are al-
1=2,j=5/2 lowed: m;=3/2,1/2, —1/2, -3/2

For example, a state with j = 3/2 is fourfold degenerate (Fig. 12.13).
— A magnetic moment ; is associated with j; this will be calculated in Sect. 13.3.5.
— For optical transitions, a selection rule Aj = 0 or +1 is valid; however, a transition
from j = 0 toj = 0 is always forbidden. This selection rule may be considered to be
an empirical result, derived from the observed spectra. The reasons for it will
become clear later (Chap. 16).

12.8 Calculation of Spin-Orbit Splitting in the Bohr Model

In this section, we shall calculate the energy difference between the parallel and the
antiparallel orientations of the orbital angular momentum and the spin. For this
purpose, the simple Bohr model will be used as starting point; the quantum mechanical
treatment will be discussed in Sect. 14.3.

The motion of the electron around the nucleus generates a magnetic field B; at the
site of the electron. This field interacts with the magnetic moment of the electron. To
determine the magnitude of this magnetic field, we borrow from relativity theory and
assume that the electron is stationary and that the nucleus moves instead (Fig. 12.14).
We replace the position vector for the orbiting electron, r, by the vector —r.
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l (Ms) ‘ Fig. 12.14. For the calculation of spin-orbit
S’z (Ms), coupling, the system with the nucleus at rest
v (left) is transformed to the system with the
— - electron at rest (right). The vector r is replac-
+ "/r-' (/ | _ ed by the reversed vector —r
.\_
+ v
l

The magnetic field of the moving charge + Ze is found from the Biot-Savart law
to be

B =+ Z"’”;’ [v X ()] (12.24)
dnr
or
B= - 284 [y xr. (12.25)
4nr

Angular momentum is defined as I = r X myv or —I = myv X r. Then

B =2 |, (12.26)
4rrimg

where my is the rest mass of the electron.

The magnetic field which is generated by the relative motion of the nucleus and the
electron is thus proportional and parallel to the orbital angular momentum of the
electron. We still require the back transformation to the centre-of-mass system of the
atom, in which the nucleus is essentially at rest and the electron orbits around it. A
factor 1/2 occurs in this back transformation, the so-called Thomas factor, which can
only be justified by a complete relativistic calculation. The particle in its orbit is
accelerated, and from the viewpoint of the proton, the rest system of the electron
rotates one additional time about its axis during each revolution around the orbit. The
back transformation is therefore complicated and will not be calculated in detail here.

The magnetic moment of the electron, and with it, its coupled spin vector, precess
about the magnetic field B; produced by the orbital motion (cf. Fig. 12.15).

T

C,_\_

Fig. 12.15. Precession of the spin about the magnetic field B, associated
with the orbital angular momentum, with the components s, and g; ,
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The interaction energy between the spin and the orbital field is thus
Vis= —Hs- B;.

Substituting — see (12.16), g;=2 — we find

e
Vis=2 (s-By),
2m0

and with (12.26)

Ze /lo (S l)

12.27)
8 rcm

Here we have included the (underived) Thomas correction; this gives the factor 8 in
the denominator (instead of 4).

In order to get a feeling for the order of magnitude, we set Z=1and r=1 A and
obtain ¥, (=10~ 4eV. The field produced by the orbital motion at the position of the
electron is found to be about 1 tesla = 10* gauss. The fields associated with the orbital
angular momentum are thus — for small values of Z — of the same order of magnitude
as may be readily produced in the laboratory.

Equation (12.27) may also be written in the form

V,,S—?l ”haT |1]|s]cos(,s) (12.28)

where a = Ze*uyh?/(8 m3r?). The scalar product / - s may be expressed in terms of the
vectors [ and s by using the law of cosines according to Fig. 12.16, where we recall that
1% must be replaced by its quantum value /(/+ 1) A2, etc. We thus obtain for the spin-
orbit coupling energy

Vie= 5 (s P= P s

2h2 — (FP= 1P~ s

=%U(i+1)—l(l+1)—s(s+1)] . (12.29)

[=Vt(+1)h

Fig. 12.16. Vector addition of the angular momentum vectors to the
total angular momentum j, explanation of (12.29)

The spin-orbit coupling energy is thus expressed in terms of the quantum numbers j, /
and s, as well as a constant @, known as the spin-orbit coupling constant. The latter is
directly measurable by determination of the doublet structure in the optical spectra.
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Comparison with (12.27) shows that the orbital radius r is included in this coupling
constant . We must remember, however, that there are no fixed orbits in the quantum
theoretical description of the atom. Therefore it is necessary to replace r~ 3 by the corre-
sponding quantum theoretical average 1/ 1/r3= [(lw |2/ r})dV, where y is the wavefunc-
tion of the electron and d'V the volume.

If we use the radius r, of the nth Bohr radius as a rough approximation for 7,

4megh’n?

1 (12.30)
Ze mg

r,=

we obtain

a Z4
n6

If instead we use the above-defined average value F, we obtain for atoms similar to H

74

~——, (12.31)

n’l(+1)(+1)

which will not be derived here.

Let us again summarise what we know about the fine structure of one-electron
states:

— Interaction of the electron with the orbital angular momentum or the orbital
moment splits each level into two. The result is doubletdevels; for example in the
upper state of the sodium D lines, the 3 P state is split into the 3 P/, and the 3 P;,,
states (Fig. 12.17).

P
P { a/2 /2
-a Fig. 12.17. Fine structure splitting of the P state in the one elec-
tron system into the two states P/, and P, . The magnitude of
P‘ the splitting is given by (12.29). Since only one electron is in-
/ 2 volved, one can also use lower case “p”

— For s terms there is no splitting, because there is no magnetic field with which the
spin can align itself.

— Levels with higher values of the quantum number j have higher energies (12.29).

— The fine structure splitting V,  is proportional to the fourth power of the nuclear
charge.
The fine structure is therefore difficult to observe in the H atom. For the H,, H s
and H, lines of the Balmer series (6562.79, 4861.33 and 4340.46 A), the splitting is
0.14, 0 08 and 0.07 A, respectively. This corresponds to a wavenumber of 0.33
cm -1 for the H, line, which is in the microwave range — if one wished to observe it
directly. A direct observation of the splitting of optical spectral lines into two very
close components is not possible by conventional spectroscopy because of Doppler
broadening of the lines. In the lithium atom, the splitting of the first resonance line
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is likewise only 0.337 cm~!. By contrast, the observed values for a line pair of the
1st primary series, i.e. for the first resonance lines, of cesium (Z = 55, n = 6) are
A =8943 A and 8521 A. The splitting is thus A4 =422 A or AV =554cm™'. It is
so large, in fact, that the two lines are difficult to recognise as components of a pair.
The sodium atom (Z = 11, n = 3) lies between these extremes: the yellow D lines
D, and D, are separated by 41 =6 A, which corresponds to 17.2cm ™ L.

— The splitting is greatest for the smallest principal quantum number n (12.31).

We can now expand upon the symbolism needed to identify the energy terms of
atoms. The terms for orbital angular momentum are generally indicated by upper case
letters S, P, D, F, etc. The principal quantum number # is written as an integer in front
of the letter, and the total angular momentum quantum number j as a subscript. The
multiplicity 25+ 1 is indicated by a superscript to the left of the orbital angular momen-
tum letter. For single-electron systems, the terms are doublet terms, because the spin of
the single electron can have two orientations with respect to the orbital angular momen-
tum.

The S terms are not split. Nevertheless, one writes the multiplicity 2 even for S terms
in one-electron systems.

One thus has the following symbols:

22S,,, for a state in which the valence electron has the quantum numbers n = 2,
[=0,j=1/2.

22P,,, | for states in which the valence electron has the quantum numbers 7 = 2,
22P3/2 I=1,j=1/2 or 3/2, respectively.

In general, the symbolism is #25* L ;. The upper case letters S (spin quantum number),
L (orbital angular momentum quantum number) and J (total angular momentum
quantum number) apply to several-electron atoms, while the corresponding lower case
letters apply to single electrons.

12.9 Level Scheme of the Alkali Atoms

For an atom with one electron in the incomplete outer shell, the results of Sect. 12.7 can
be summarised in the term scheme of Fig. 12.18. This figure should make it clear that
both the lifting of orbital degeneracy (i.e. the energy difference between terms with the

S P D F

n=4 —————— 350 -——==Z/2 =
P Y2 2
2

Fig. 12.18. Term scheme for alkali atoms, i.e. one-electron states,
including the spin-orbit splitting. The levels are not shown to scale.
A few allowed transitions are indicated. The terms are displaced
with respect to those of the H atom (n = 2, 3, 4, left side, dashed
lines), the s terms most. The fine structure splitting decreases with
increasing values of n and /
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same n but different / quantum numbers) and spin-orbit splitting become smaller as the
quantum numbers # and / increase.

The optical transitions in the term scheme obey the rules A/= +1, 4j= +1or 0.
Optical transitions are thus allowed only if the angular momentum changes. The total
angular momentum j, however, can remain the same. This would happen if the orbital
angular momentum and the spin changed in opposite directions.

The first principal series of the alkali atom arises from transitions between the
lowest 28, ,, term (i.e. n =2, 3,4, 5, 6 for Li, Na, K, Rb, Cs) and the P terms 2P, , and
2p, ,. Since the S terms are single-valued, one sees pairs of lines. The same holds for the
sharp secondary series, which consists of transitions between the two lowest P terms
n2P3,2 (n=2,3,4,5,6 for Li, Na, K, Rb, Cs) and all higher 2S1 ,2 terms. The lines of the
diffuse secondary series, however, are triple (Fig. 12.19), because both the P and the D
terms are double.

2
205/2
D
3
2p —— Allowed Fig. 12.19. Allowed and forbidden transitions
¥ transitions between P and D states of the alkali atom, here for a
2P ———- Forbidden triplet of the diffuse secondary series. This is a
12 transitions section from Fig. 12.18

12.10 Fine Structure in the Hydrogen Atom

Since the wavefunctions of the H atom are known explicitly (Chap. 10), its fine struc-
ture can be exactly calculated. The starting point is the expression derived above (12.27)
for the spin-orbit splitting energy:

2
e“uy 1

Vis= —(s-1). 12.32

O i LU (12.32)

We use the solution of the non-relativistic Schrodinger equation for the H atom,
which provides the energy states E, , (Sect. 10.4). For the H atom, both the relativity
correction (cf. Sect. 8.10) and the fine structure interaction are small compared to the
energies E, ;, but the two are of comparable magnitude. One can therefore calculate
the two corrections separately and write

E, Lji= E,i+Eq+E;.

i

The two correction terms, the one for the relativistic mass change E, and the other for
the spin-orbit coupling E| ;, together give the fine structure correction Erg. These terms
will not be calculated in detail here. The complete calculation was carried out by Dirac.
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As a result, one obtains

E, a? 1 3
Epg= — 22— [ ———-—)-2%, 12.33
B </+1/2 4n> (1239

2
a=—2F <or Ho€ e2>,
dneghc 4nh

which is the Sommerfeld fine structure constant which was introduced in Sect. 8.10.

By including the spin-orbit coupling, one thus obtains the same result as earlier
(Sect. 8.10) in the calculation of the relativistic correction, the only change being that /
has been replaced by j. The energy shift with respect to the previously calculated energy
terms E, ;is of the order of o, i.e. (1/137)%, and is thus difficult to measure.

The most important result of (12.33) is the fact that the fine structure energy of the
H atom depends only on j, not on /. This means that terms with differing / quantum
numbers (for the same n) and the same quantum number j have the same energies; they
are energetically degenerate (Fig. 12.20).

S P D

0108 cm ™ 0036 cm ™!
n=3 __—UKE;S__~_1_/——_F—L'£__ 3dg),

f gg?h T 3d;
Fig. 12.20. Fine structure splitting of the
n=2——- A—E:s 4 states with n=1,2 and 3 (far left, dashed
P3), lines, the levels without fine structure),
25,/2 T 2p, /2 according to Dirac (not to scale). The fine
0.36 cm-! structure shifts are indicated by open arrows.
States with the same / are degenerate without
n=l ——3—— fine structure interactions. States with the
AEgg= -18-107%ev same j have the same energy if fine structure

1s

is taken into account

The fine structure of the hydrogen lines is thus quantitatively accounted for. The
fine structure energies of heavier atoms are larger and are thus easier to observe. Their
calculations, however, are far more difficult, because the exact calculation of the wave-
functions of atoms with more than one electron is far more complex.

12.11 The Lamb Shift

In the years 1947 — 1952, Lamb and Retherford showed that even the relativistic Dirac
theory did not completely describe the H atom. They used the methods of high-fre-
quency and microwave spectroscopy to observe very small energy shifts and splitting in
the spectrum of atomic hydrogen. In other words, they used the absorption by H atoms
of electromagnetic radiation from high-frequency transmitters or klystron tubes. They
could, in this way, observe energy differences between terms with the same j, namely
differences of 0.03 cm ! — this corresponds to a difference of 900 MHz — between the
terms 22S1/2 and 22P1/2.
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— Bohr Dirac QED Fig. 12.21. The Lamb shift: fine structure of
TE Of =————_ the n =2 level in the H atom according to
S 1 \\ 3 L=t =1 2P3/ Bohr, Dirac and quantum electrodynamics
> \ 2 w 2 taking into account the Lamb shift. The j de-
- \ . generacy is lifted
0.365¢cm "
S | \\ 251/
| = 2
S T 1\ =0, l s
2 osh 2 =1 va
' 0035cm’ 2

They achieved a precision of 0.2 MHz. Figure 12.21 shows the corresponding
energy diagram.

Like the fine structure, this small energy shift was not observable by means of
optical spectroscopy as a splitting of the H, line of hydrogen, because the Doppler
broadening of the spectral lines due to the motion of the atoms exceeded the magnitude
of the splitting.

The Lamb-Retherford result can be generalised: levels with the same quantum
numbers n and j, but different /, are not exactly the same. Rather, all S;,, terms are
higher than the corresponding P;,, terms by an amount equal to about 10% of the

energy difference (P3/,— Py,,), and the P;/, terms are higher than the D;,, terms by
about 2% of (Ds/,— D3/5).

Magnetic field B |

,,,WIN«W»NNN«IIIH,,,,
L4

Resonator
Electron tunable

beam 1..10 GHz

W foil

e G

5 e

Oven

Fig. 12.22. Arrangement for measurement of the Lamb shift. A beam of H atoms is excited to the metastable
28, , state by bombardment with electrons. The beam passes through a resonator. If electromagnetic transi-
tions are induced there, the number of excited atoms reaching the tungsten foil receiver is lower, and the
measured electron current correspondingly drops. The magnetic field B serves to create an additional

energetic separation between the S,,, and the P, ,, states. This prevents mixing of those states and thereby
avoids an immediate decay via the 2P, state

The Lamb and Retherford experiment is shown in Fig. 12.22. A beam of hydrogen
atoms is generated from H, molecules by thermal dissociation at 2500°C. A small
number of these atoms is excited to the metastable state 22S;,, by bombardment by
electrons. Optical transitions between this state and the ground state 125, , are forbid-
den. The atoms then pass through a tunable resonator for high-frequency or micro-
wave radiation, to a tungsten foil. There the metastable atoms can give up their excita-
tion energy, thereby releasing electrons from the surface of the metal. The electron
current is measured and serves as an indicator of the rate at which atoms in the 225,
state arrive at the detector. Those atoms which are excited to the 22P, , state by absorb-
ing microwaves in the range of 10000 MHz in the resonator (compare term scheme in
Fig. 12.21) can emit light at the wavelength of the H, line (or more exactly, of one
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Fig. 12.23. Structure of the H, line of hydrogen and term scheme
including the fine structure. The expected optical spectrum is
shown below (ignoring the line widths). Darker lines indicate higher
intensity. The wavenumbers are in cm ™!
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T IJ[
~

Lamb shift

AV [GHZ]

Fig. 12.24. Above: Structure of H, line of the hydrogen atom at
room temperature. The linewidth and thus the spectral resolu-
tion is determined by the Doppler width. Below: The method of
Doppler-free spectroscopy (saturated absorption using a dye laser,
Sect. 22.3) allows resolution of the individual components of the
H, line (after Hdnsch et al.). The two additional very weak lines
shown in Fig. 12.23 are omitted in Fig. 12.24

component of this line) and return to the ground state. When absorption of this type
occurs, the electron current in the tungsten foil decreases. Lamb and Retherford found
in 1947 that the same effect, a decrease in the electron current, occurred on absorption
or induced emission of radiation at a frequency of about 1000 MHz. This was due to
the transition from the 228, , to the 2% P, ,, state. From the latter state, radiative tran-
sitions to the ground state are also allowed. It was thus shown that even states with
the same total angular momentum j are energetically different.

The term scheme of an atom can be refined for optical transitions as well. Figure
12.23 shows the complete term scheme for the H,, line of the hydrogen atom. This line

Fig. 12.25. Lamb shift and fine struc-
ture of the helium atom: fine structure
at 1640 A. Seven components are ob-
served. The lines 1,2 and 3,4 would be
\ unsplit without the Lamb shift. [From

12 34
1640.335

7 G. Herzberg: Trans. Roy. Soc. Can. §,
1640537 & (1967) Fig. 5]

wl
o
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consists of 7 components of different intensities in an energy range of about 0.4 cm ™~ !

The upper part of Fig. 12.24 shows the structure of the H, line, as it can be observed in
the presence of Doppler broadening. The lower part shows a curve obtained by the
modern method of Doppler-free spectroscopy (Sect. 22.3). With this method, the
Lamb shift can also be seen in optical spectra. The fine structure splitting and the Lamb
shift are larger in the heavier helium atom, so that direct optical observation of the
splitting is easier than with the H atom. Even without removing the Doppler broaden-
ing, the fine structure can be resolved, as Fig. 12.25 shows.

The Lamb shift was of utmost importance for the development of quantum electro-
dynamics. Previously, this theory treated only the emission and absorption of light
quanta in atomic transitions. To explain the Lamb shift, it was necessary to go one step
further. It had to be assumed that the electrons in an atom were continually emitting
and reabsorbing light quanta, in which process energy conservation can apparently be
violated.

This “violation of energy conservation” must not, to be sure, be taken too literally.
According to the uncertainty relation between energy and time (7.29), the energy is only
sharply defined when a measurement is performed over a sufficiently long period of
time. It is thus completely consistent with energy conservation that an electron can emit
a quantum even without having the necessary energy, as long as the quantum is reab-
sorbed quickly enough. Much more decisive for the theoreticians was, however, the
recognition that the energy shifts in the atomic levels (on a negative energy scale) pro-
duced by these “virtual” processes were infinitely large. A free electron can also con-
tinually emit and absorb virtual quanta; its energy decreases infinitely in the process.
Energy shifts caused by virtual processes are termed self energy. Experimentally, a free
electron, like a bound electron, has a well-defined, finite energy. The basic idea for
solving the “infinity problem” of the energy shift was the recognition that only the dif-
ference between the energies of bound and free electrons is physically interesting. Or, in
other words: to calculate the energy shift of bound electrons, one must subtract the
self-energy of a free electron from that of a bound electron in a particular atomic state
(cum grano salis). This process is termed “renormalisation”. Since the masses also
become infinite due to virtual processes, they must also be “renormalised”. Naturally,
at first glance it seems very adventurous to subtract two infinite quantities from one
another in order to obtain a well-defined finite result. In the framework of quantum
electrodynamics, however, it was found possible to set up well-defined rules for the
renormalisation procedure, and the Lamb shift can be calculated today with great
precision. The important result is that the validity of quantum electrodynamics can
therefore be tested — and has been verified — in an excellent manner.

A summary of the theoretical treatment is given in Sect. 15.5.2. In preparation for
this treatment, in Sect. 15.5.1 we introduce the quantisation of the electromagnetic
field, which follows immediately from the quantisation of the harmonic oscillator. As
is shown in one of the problems for Sect. 15.5.1, the theory of the Lamb shift has a sur-
prisingly simple physical explanation: the quantum-mechanical zero-point fluctuations
of the electromagnetic field act statistically on the electrons and thus cause a shift of
their potential energy.
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Problems

12.1 Calculate the precessional frequency of electrons and of protons [/ = 1/2, mag-
netic moment = (2.79/1836)-ug] in the magnetic field of the earth (=2- 1073 tesla).

12.2 In the Stern-Gerlach experiment, a beam of silver atoms in the ground state
(5°s; ,2) is directed perpendicularly to a strong inhomogeneous magnetic field. The field
gradient is dB/dz = 10° tesla/m. In the direction of the atomic beam, the magnetic
field extends a distance of /; = 4 cm, and the catcher screen is a distance /, =10 cm
from the magnet. Calculate the components of the magnetic moment in the direction of
the magnetic field, if the splitting of the beam at the screen is observed to be d = 2 mm,
and the velocity of the atoms is v = 500 m/s. The average mass of silver atoms is
M =1.79 - 10~ % kg. Why doesn’t the nuclear spin affect the experiment?

12.3 How large is the magnetic field generated by the electron in the ground state of a
hydrogen atom, at the position of the proton if it would circulate according to Bohrs
model on the shell n = 1?

12.4 How large is the magnetic moment of the orbital motion in a muonium atom, in
which the electron of a ground-state hydrogen atom has been replaced by a muon?
How large is the moment in positronium (an electron and a positron, i.e. particles with
the mass of the electron and opposite charges, moving around the common centre of
mass)?

12.5 Calculate the spin-orbit splitting of the states of the hydrogen atom with n =2
and n = 3 using the relations

1 Zez,uo
Vis=———=5@"D),
b 8 amir?
and
3 z3

o @nlll+ DA+

What are the values for a Rydberg state with n» = 30 for the largest (/= 1) and the
smallest (/ = 29) splitting?
ay is the radius of the innermost Bohr orbit.

12.6 In the cesium atom, spin-orbit splitting between the states 6 P,,, and 6 P3/, leads
to a wavelength difference of AA = 422 A for the first line pair of the primary series,
with A = 8521 A for the line with the shorter wavelength. Calculate from this the fine
structure constant ¢ and the field at the nucleus B;. Use (12.27).

12.7 Sketch the energy levels of the hydrogen atom, including the fine structure, up to
n = 3. Show the possible transitions. How many different lines are there?

12.8 The fine structure in hydrogen-like ions (ions with only one electron) is described
by (12.33).
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a) Show that the correction term does not disappear for any possible combination of
the quantum numbers » and j, but that it always reduces the value of the uncor-
rected energy.

b) Into how many energy levels are the terms of singly charged helium with the
principal quantum numbers n = 3 and n = 4 split by the fine structure interaction?

¢) Sketch the positions of these levels relative to the non-shifted terms and give the
amount of the shift.

d) Determine which transitions are allowed, using the selection rules A/= +1, Aj=0
or +1.

12.9 Give the relative splitting of the various levels of an L.SJ multiplet due to spin-
orbit interaction for the *F and D multiplets. Sketch the energy levels of these multi-
plets and indicate with arrows the allowed F—>D transitions. Repeat the above process
for the *D—*P and *P—*S transitions.

12.10 The interaction energy E between two magnetic moments g and u, is (r = the
radius vector of 4y and u,):

E= +_u_o{ﬂ1-ﬂz_3 (ﬂl'r)(llZ"')}
> .

4n r r

a) Under which conditions is E = 0 for a given |r |?

b) For parallel moments, which arrangement yields an extreme value for E?

¢) For case b) with |r| =2 A, calculate the energy for the electron-electron and proton-
proton interactions. In each case, how large is the magnetic field at u, due to g
(Uproton =1.4 - 107%A mZ)?



13. Atoms in a Magnetic Field:
Experiments and Their Semiclassical Description

13.1 Directional Quantisation in a Magnetic Field

In the previous chapters, we have already seen that a directional quantisation exists.
The angular momentum vectors in an atom can only orient themselves in certain
discrete directions relative to a particular axis (the quantisation axis). The directional
quantisation is described by the magnetic quantum number 7. In an applied magnetic
field B, the interaction energy between the field and the magnetic moment of the
electrons in an atom, which we have already calculated, leads to a splitting of the
energy terms, which is described by the different possible values of the magnetic
quantum number. We shall concern ourselves in this chapter with the measurement of
this energy splitting.

A first application of the splitting of atomic states in a magnetic field to the deter-
mination of the magnetic moments of the atoms was already discussed in the treatment
of the Stern-Gerlach experiment. In the following, we shall consider some other types
of experiments.

13.2 Electron Spin Resonance

The method of electron spin resonance (abbreviated ESR, sometimes EPR for electron
paramagnetic resonance) involves the production of transitions between energy states
of the electrons which are characterised by different values of the magnetic quantum
number m. In general, the degeneracy is lifted by the application of an external
magnetic field; the transition frequencies, which are usually in the range of microwave
frequencies, depend on the strength of the applied field. With this technique, one can
observe transitions between states of different magnetic quantum number directly. In
Zeeman spectroscopy, to be described later, the transitions observed are in the optical
region, and their response to magnetic fields is studied; in this case, the transitions
cause changes in not only the magnetic quantum number, but also in the other
quantum numbers.

Fig. 13.1. The spin of an electron, and thus its magnetic moment, have two
possible orientations in an applied magnetic field. They correspond to two
values of the potential energy
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The principle of ESR may be easily understood by considering the magnetic
moment produced by the spin of a free electron in a magnetic field B, (Fig. 13.1).
An electron has the magnetic moment

Ms = l/S(S+1),uBgs (131)

with the possible components along the quantisation axis z of the field B,

(ﬂs)z == %gs/‘B . (132)
The potential energy of these two orientations differs by the amount
AE=gsﬂBBo. (13.3)

If a sinusoidally varying magnetic field B, = B, sin wt is now applied in a direction
perpendicular to B, transitions between the two states are induced if the frequency
v = w/2 7 fulfils the condition

AE = hy = gs,uBBo , (13.4)
or, in numbers,
v =2.8026-10'°. ByHz (tesla) ! . (13.5)

The transitions with Am = + 1 are allowed magnetic dipole transitions. A quantum
mechanical treatment of ESR will follow in Chap. 14. The frequency which must be
used depends, according to (13.5), on the choice of the applied magnetic field B,. For
reasons of sensitivity, usually the highest possible frequencies are used, corresponding
to the highest possible magnetic fields. The fields and frequencies used in practice are,
of course, limited by questions of technical feasibility; usually, fields in the range 0.1 to
1 T are chosen (T = tesla). This leads to frequencies in the GHz region (centimetre
waves).

What we have here described for a free electron is also valid for a free paramagnetic
atom. In this case, the total resultant magnetic moment produced by the spin and or-
bital angular momenta of the atom, u;, must be used in (13.3-5).

Fig. 13.2. Demonstration experiment for electron spin resonance: a
gyroscope whose axle is a bar magnet is precessing in a magnetic
field B, (as well as in the gravitational field of the earth). The in-
clination of the axis of the gyroscope relative to By may be changed
by means of an oscillating field B, if the frequency of B is equal to
the precession frequency of the gyroscope. For a lecture demonstra-
tion, it is expedient to construct the gyroscope in such a way that it
is driven from the support pedestal S, for example using com-
pressed air and following the principle of a water turbine
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The fundamental idea of ESR may be illustrated by a mechanical model (Fig. 13.2):
a gyroscope containing a bar magnet in its axis is precessing in a magnetic field. The
precession frequency is (neglecting gravitational force)

|- |Bol
wp =10, (13.6)
IL|

where u is the magnetic moment of the bar magnet and L is the angular momentum
of the gyroscope.

The precession frequency or better, angular velocity w; of a magnetic gyroscope in
a magnetic field is independent of the angle a between u4 and B,, since the torque pro-
duced by the field and the rate of change of the angular momentum vector both depend
in the same way on the sine of the angle a (12.12). When gravitational force is neglected,
the frequency w; is determined only by the magnetic moment # and the angular
momentum L of the gyroscope, as well as by the torque produced by the field B,.

When we now let an additional oscillating field B, with the frequency w act perpen-
dicular to B, we observe a continuous increase or decrease in the angle of inclination
a, depending on whether the field is in phase or out of phase with the motion of the
gyroscope, provided that the frequency w is equal to w; .

This model may be immediately transferred to the atom. We replace the magnetic
moment of the bar magnet by the moment of the atom and obtain for the circular fre-
quency of the electron spin resonance the following condition:

wL=l"_||ll.|IBL|= 9: (13.7)

This is the Larmor frequency, which was already introduced in Sect. 12.3.

In the classical gyroscope model, the tip of the gyroscope axle moves on a spiral
orbit from one stable position to another. This picture may be applied with consider-
able accuracy to the motion of the spin or the orbital angular momentum in an atom.
There is an additional possibility for picturing the resonant transitions, which makes
use of the fact that the spin or the angular momentum of an atom has only certain
discrete allowed stationary orientations in a constant magnetic field B,. In this picture,
the spin makes transitions between these discrete energy levels under the influence of
the oscillating field B;. In particular, this means in the case of spin 1/2 that the spin
flips from the one possible orientation to the other when the resonance condition (13.7)
is fulfilled.

Electron spin resonance was observed for the first time in 1944 by the Russian phy-
sicist Zavoisky. The analogous spin resonance of paramagnetic atomic nuclei is seen
under otherwise identical conditions at a frequency which is 3 orders of magnitude
smaller, due to the fact that nuclear moments are about a factor of 1000 smaller than
atomic magnetic moments; the corresponding frequencies are in the radio frequency
region. This nuclear magnetic resonance (NMR) was observed in the solid state for the
first time in 1946 by Bloch and Purcell, nearly 10 years after it had first been used by
Rabi to measure the gyromagnetic ratio of nuclei in gas atoms (cf. Sect. 20.6).

A schematic of an ESR apparatus is shown in Fig. 13.3. Today, ESR spectrometers
count as standard spectroscopic accessories in many physical and chemical labora-
tories. For technical reasons, usually a fixed frequency is used in the spectrometers;
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®

Fig. 13.3. Electron spin resonance. Above: Schematic
representation of the experimental setup. The sample
is located in a resonant cavity between the pole pieces

Waveguide

Sample

Klystron of an electromagnet. The microwaves are generated by
a klystron and detected by a diode. To increase the
Magnet coils Resonator sensitivity of detection, the field By is modulated..Be-
‘ low, left: Energy states of a free electron as functions
Pole pieces of the applied magnetic field. Below, right: Signal U
from the diode as a function of B, for resonance
Oscilloscope
Diode
Modu- : ] V
lation \ 1
=
E ui
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30006 B, 30006 B,

the magnetic field is varied to fulfil the resonance condition and obtain ESR transitions

in absorption and sometimes in emission. The sample is usually placed in a microwave

resonator; a frequently used wavelength is 3 cm (the so-called X-band). The microwave
radiation is generated by a klystron and detected by a high frequency diode or a bolo-
meter.

ESR is utilised for

— precision determinations of the gyromagnetic ratio and the g factor of the electron;

— measurement of the g factor of atoms in the ground state and in excited states for
the purpose of analysing the term diagram;

— the study of various kinds of paramagnetic states and centres in solid state physics
and in chemistry: molecular radicals, conduction electrons, paramagnetic ions in
ionic and metallic crystals, colour centres.

The full importance of ESR will only become clear after we have treated the topic of
hyperfine structure, i.e. when we discuss the interaction of the electronic spin with the
spins of the neighbouring nuclei. Using this interaction, termed hyperfine splitting
(Chap. 20), one can determine the spatial distribution of the electrons in molecules, in
liquids, and in solids. More information about ESR and its significance for the physics
of atoms, molecules, and solids is given in H. Haken and H. C. Wolf: Molecular Phys-
ics and Elements of Quantum Chemistry, Chap. 19.

13.3 The Zeeman Effect

13.3.1 Experiments

The splitting of the energy terms of atoms in a magnetic field can also be observed as a
splitting of the frequencies of transitions in the optical spectra (or as a shift). A splitting
of this type of spectral lines in a magnetic field was observed for the first time in 1896
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Fig. 13.4. Demonstration experiment for the Zeeman effect. A flame coloured
with sodium or NaCl appears dark when projected using light from a Na
vapour lamp. Upon switching on a magnetic field, it brightens, since the reso-
nance between the light from the lamp and the light of the sodium flame is de-
stroyed by the Zeeman effect. The wavelength of the light from the flame is
shifted slightly by the magnetic field; this suffices to remove the resonance

Magnetic

by Zeeman. The effect is small; for its observation, spectral apparatus of very high re-
solution is required. These are either diffraction grating spectrometers with long focal
lengths and a large number of lines per cm in the grating, or else interference spectro-
meters, mainly Fabry-Perot interferometers. We shall discuss this topic in more detail
in Chap. 22.

There is, however, a simple lecture demonstration (Fig. 13.4) which shows the shift
of the spectral lines in a magnetic field in a drastic manner: a flame, coloured yellow
with sodium, is opaque to the yellow light of a sodium vapour lamp, because the latter
represents resonance light, i.e. light whose wavelength matches the absorption and
emission wavelength in the flame. If, however, a magnetic field is applied to the flame,
the resonance between the light source (Na lamp) and the absorber (Na flame) is de-
stroyed. On the observation screen, the previously “dark” flame brightens, because it
has now become transparent to the light from the Na vapour lamp.

With a Fabry-Perot interferometer or with a grating spectrometer of sufficient
resolution, the splitting in magnetic fields may be quantitatively measured. The split-
ting behaviour observed in moderate magnetic fields is illustrated in Figs. 13.5 and
13.6. The splitting of the cadmium line in Fig. 13.5 is called the “ordinary” Zeeman
effect; using transverse observation (i.e. observation perpendicular to the direction of
the applied magnetic field, Fig. 13.7), one sees the unshifted line as well as two
symmetrically split components, each linearly polarised. With longitudinal observation

Fig. 13.6. Anomalous Zeeman effect, here
Without D D using the sodium D lines. The D, line splits
magnetic field 1 2 into four components, the D, line into six in
) a magnetic field. The wavelengths of the D;
Without and D, lines are 5896 and 5889 A; the quan-
magnetic field tum energy increases to the right in the dia-
With gram
t ‘ magnetic field
B
- transverse .
observation With o
magnetic field
ELBy EllBy, ELBg
- longitudinal
= <P observation 4 Fig. 13.5. Ordinary Zeeman effect, e.g. for the atomic Cd line at A = 6438 A. With
transverse observation the original line and two symmetrically shifted components are

i seen. Under longitudinal observation, only the split components are seen. The polar-
E 1 By , circular isation (E vector) is indicated ’
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(parallel to the field lines), only the two shifted components are seen; they are circularly
polarised in this case.

The splitting behaviour of the D lines of the sodium atom shown in Fig. 13.6 is
typical of the anomalous Zeeman effect. The number of components into which the
spectral lines are split is greater than in the normal Zeeman effect. Both the ordinary
and the anomalous Zeeman effects merge to the so-called Paschen-Back effect in suf-
ficiently large magnetic fields B,. We shall now discuss these three effects of the
influence of magnetic fields on the spectral lines and the energy terms of atoms.

S == o

Longitudinal |
observation

Transverse
E observation  Fig. 13.7. Transverse and longitudinal observation of spectral lines
= d S | in a magnetic field. The three component electrons used in the clas-
= I sical description of the Zeeman effect are indicated (orbits with
E S arrows in the pole gap of the magnet). The emission of a light

source in the magnetic field is observed either transversely or longi-
tudinally (through a hole drilled in the magnet pole piece). S is the
entrance slit of a spectrometer

13.3.2 Explanation of the Zeeman Effect from the Standpoint
of Classical Electron Theory

The Zeeman effect may be understood to a large extent using classical electron theory,
as was shown by Lorentz shortly after its discovery. We shall restrict ourselves to the
ordinary Zeeman effect — the splitting of states with pure orbital angular momentum.
If the resultant angular momentum is composed of both spin and orbital contributions,
one speaks of the anomalous Zeeman effect. The normal Zeeman effect describes states
in which no spin magnetism occurs. In these states, at least two electrons contribute
in such a way that their spins are coupled to zero. Therefore, the normal Zeeman effect
is found only for states involving several (at least two) electrons, which are treated in
Chap. 17.

We discuss the emission of light by an electron whose motion about the nucleus is
interpreted as an oscillation, for example by considering the projection of the motion
on a certain direction. We ask the question, “What force does a magnetic field exert on
a radiating electron?” The radiating electron is treated as a linear oscillator with a
random orientation with respect to the magnetic lines of force (Fig. 13.8).

In the model, we replace the electron by three component oscillators according to
the rules of vector addition: component oscillator 1 oscillates linearly, parallel to the
direction of B,. Oscillators 2 and 3 oscillate circularly in opposite senses and in a plane

( ) ( J B, Fig. 13.8. Classical explanation of the Zee-

Z J \/ U man effect. An oscillating electron is re-
—Gj- solved into three component oscillators.
@ ©) Further details in the text
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perpendicular to the direction of B,. This resolution into components is allowed, since

any linear oscillation may be represented by the addition of two counterrotating

circular ones. Without the field By, the frequency of all the component oscillators is
equal to that of the original electron, namely wy.

We now inquire as to the forces which the magnetic field exerts on our three com-
ponent electron-oscillators:

— Component 1, parallel to B,, experiences no force. Its frequency remains un-
changed; it emits light which is linearly polarised with its E vector parallel to the
vector By.

— The circularly oscillating components 2 and 3 are accelerated or slowed down by the
effect of magnetic induction on turning on the field B,, depending on their direc-
tions of motion. Their circular frequencies are increased or decreased by an amount

dw = L1(e/mo)By= (up/h)By. (13.8)

This is almost the same expression as that which we have already come to know as
the Larmor frequency. It differs from the Larmor frequency only by a factor 2,
because we are here dealing with an orbital moment (g = 1) instead of a spin moment
(g=2) as in the case of the Larmor frequency, which applies to electron spin
resonance.

Classically, one can calculate the frequency shift d w for the component oscillators
as follows: without the applied magnetic field, the circular frequency of the component
electrons is wy. The Coulomb force and the centrifugal force are in balance, i.e.

2 V4 ez

mogir=——~_r.
47[80"3

In a homogeneous magnetic field B, applied in the z direction, the Lorentz force acts in
addition; in Cartesian coordinates, the following equations of motion are then valid:

mi+mwix—eyBy=0, (13.9a)
my+mwiy+exBy=0, (13.9b)
mz+mawiz =0. (13.9¢)

From (13.9¢), we immediately find the solution for component oscillator 1, z =
Zoexp(iwg?), i.e. the frequency of the electron which is oscillating in the z direction
remains unchanged.

To solve (13.9a) and (13.9b), we substitute ¥ = x+iy and v =x—1iy. It is easy
to show that the equations have the following solutions (with the condition
eBy/2m < wy):

u=ugexpli(wp—eBy/2m)t] and v =uyvgexp[i(wo+eBy/2m)t].

These are the equations of motion for a left-hand and a right-hand circular motion with
the frequencies wy+ dw, with dw = eBy/2m. The component electron oscillators 2
and 3 thus emit or absorb circularly polarised light with the frequency wy+ dw.

The splitting observed in the ordinary Zeeman effect is therefore correctly predicted
in a classical model.



Fig. 13.9. Precession of J and
uy about the direction of the
applied field B,,: ordinary Zee-
man effect, i.e., J=L
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The frequency change has the magnitude:

Sv=dw/2n=—_ B, (13.10)
4r my

For a magnetic field strength By = 1T, this yields the value
ov=1.4-10"s""20.465cm™". (13.11)

Independently of the frequency v, we obtain the same frequency shift dv for each
spectral line with a given magnetic field B,. Theory and experiment agree completely
here. For the polarisation of the Zeeman components, we find the following predic-
tions: component electron oscillator 1 has the radiation characteristics of a Hertzian
dipole oscillator, oscillating in a direction parallel to B,. In particular, the E vector of
the emitted radiation oscillates parallel to By, and the intensity of the radiation is zero
in the direction of B,. This corresponds exactly to the experimental results for the un-
shifted Zeeman component; it is also called the 7 component (7 for parallel). If the
radiation from the component electron oscillators 2 and 3 is observed in the direction
of By, it is found to be circularly polarised; observed in the direction perpendicular to
By, it is linearly polarised. This is also in agreement with the results of experiment. This
radiation is called " and ¢~ light, were o stands for perpendicular (German “senk-
recht”) and the + and — signs for an increase or a decrease of the frequency. The o*
light is right-circular polarised, the ¢~ light is left-circular polarised. The direction is
defined relative to the lines of force of the B, field, not relative to the propagation
direction of the light.

The differing polarisations of the Zeeman components are used in optical pumping.
In this technique, the exciting light can be polarised so as to populate individual
Zeeman levels selectively, and thus to produce a spin orientation. More about this in
Sect. 13.5.

13.3.3 Description of the Ordinary Zeeman Effect by the Vector Model

In the preceding section, we gave a purely classical treatment of the ordinary Zeeman
effect; we now take the first step towards a quantum mechanical description. For this
pupose, we employ the vector model which has been already introduced in Sect. 12.2
(cf. Fig. 13.9 and 13.11. Note that this figure illustrates the somewhat more complex
case in which both orbital and spin magnetism play a réle). A complete quantum
mechanical treatment will be given in Chap. 14. The angular momentum vector j and
the magnetic moment u;, which is coupled to j, precess together around the field axis
B,,. The additional energy of the atom due to the magnetic field is then (Chap. 12 and
Fig. 13.9 and 13.11)

ij= _Wj)z.B0= +mjgjuBBo with mj=j, j-1, e —j . (1312)

Here the factor g; in (12.10) was replaced by g;, because the total angular momen-
tum is being considered.

The (2j+ 1)-fold directional degeneracy is thus lifted, and the term is split into
2j+ 1 components. These are energetically equidistant. The distance between two com-
ponents with Am; =1 is

AE = g;jugBy.
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m; Fig. 13.10. Ordinary Zeeman effect. Splitting of the A =
— 2 .6438 A line of the neutral Cd atom, transition 1P; - 'D,,
1 into three components. The transitions with Am;=0
s} 0 are called = transitions; those with Am;= +1 are o
2 4 transitions. The quantum number J is written as a
2 capital letter because the atom has several electrons (see
- Chap. 17). Here, S = 0, and J = L: we are dealing with
a case of purely orbital magnetism
A=64384

yd 1

Py < 0

-

AmJ -1 0 +

If we ignore the spin and consider only orbital magnetism (i.e. the ordinary Zeeman
effect), g; has a numerical value of 1 and we obtain

ov=_1 ¢ p,. (13.13)
4r my

The magnitude of the splitting is thus the same as in classical theory. For optical
transitions, one must also make use of the selection rule

Amj=0,il .

One thus obtains from quantum theory, too, the result that the number of lines is
always three: the ordinary Zeeman triplet.

As an example, Fig. 13.10 shows the splitting diagram for a cadmium line. We must
point out that the orbital angular momentum for the states of the Cd atom comprises
the orbital angular momenta of two electrons, and is therefore indicated by a capital
letter L. The spins of the two electrons are antiparallel and thus compensate each other,
giving a total spin S = 0. Transitions between the components of different terms (e.g.
'P, or 'D, in Fig.13.10) with the same Am; are energetically the same. The splitting is
equal in each case because only orbital magnetism is involved. [See the discussion of the
Landé g factor in Sect. 13.3.5, especially (13.18).] The undisplaced line corresponds to
transitions with 4m = 0, while the displaced lines are the transitions with Am = +1.
They are circularly polarised.

Polarisation and ordinary Zeeman splitting are a good example of the correspon-
dence principle (Sect. 8.11). Based on the conservation of angular momentum for the
system of electrons and light quanta, the polarisation behaviour of the Zeeman effect
implies that light quanta have the angular momentum 1 - A.
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Fig. 13.11. Left: The relation between the angular momentum J, the magnetic moment #; and their orienta-
tion with respect to the magnetic field B, for strong spin-orbit coupling, cf. also Fig. 13.13. The angular
momentum vectors .S and L combine to form J. Likewise, the associated magnetic moments #; and ug com-
bine to u;. Because spin and orbital magnetism have different gyromagnetic ratios, the directions of the
vectors J and u; do not coincide. What can be observed is the projection of u; on J, as the time average
of many precession cycles. That is, one observes the component (u;);, which is therefore represented as ji;
or jig, see the right-hand diagram. In the one-electron system, lower case letters can be used instead of S,
L and J, as is done in the text. Right: The projection of u; on the vector J is (u;);, see Fig. 13.14. The pro-
jection of (u;); on By is calculated using the Landé factor. Because the angular momenta § and L are
strongly coupled, the vector u; precesses rapidly around the negative extension of the vector J. Only the
time average (u;); in the J direction can be observed. This precesses slowly, because of weak coupling,
around the axis of B,. The magnetic energy is the product of the field strength B, and the component of
(u;); in the direction of By, i.e. () , or (&), By. Lower case letters can be used instead of S, L, J in the
one electron system.

Figure 13.11 illustrates the anomalous Zeeman effect (Sect.13.3.4). The ordinary Zeeman effect
(Sect. 13.3.3) is more simple. From S = 0 follows u; = u;, and the directions of the vectors — u;and J =L
coincide; see Fig. 13.9

13.3.4 The Anomalous Zeeman Effect

One speaks of the anomalous Zeeman effect when the angular momentum and mag-
netic moment of the two terms between which an optical transition occurs cannot be
described by just one of the two quantum numbers s or / (or S or L), but are determined
by both. Refer also to Fig. 13.11. This is the general case, in which atomic magnetism
is due to the superposition of spin and orbital magnetism. The term “anomalous” Zee-
man effect is historical, and is actually contradictory, because this is the normal case.

In cases of the anomalous Zeeman effect, the two terms involved in the optical tran-
sition have different g factors, because the relative contributions of spin and orbital
magnetism to the two states are different. The g factors are determined by the total
angular momentum j and are therefore called g; factors. The splitting of the terms in
the ground and excited states is therefore different, in contrast to the situation in the
normal Zeeman effect. This produces a larger number of spectral lines. The calculation
of the g; factors follows in Sect. 13.3.5.

We will use the Na D lines (Fig. 13.12) as an example for a discussion of the
anomalous Zeeman effect.

For the three terms involved in the transitions which produce the Na D line, namely
the 28, ,, the 2P, ,, and the *P;,, the magnetic moments in the direction of the field are

W))j,. = —m;g;us , (13.14)
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and the magnetic energy is

Vi, = — W),z Bo -

215

(13.15)

The number of splitting components in the field is given by m; and is again 2+ 1.
The distance between the components with different values of m; — the so-called
Zeeman components — is no longer the same for all terms, but depends on the quan-
tum numbers /, s, and j:

AEp, m;_ = giupBo-

(13.16)

Experimentally, it is found that g; = 2 for the ground state 2812, 2/3 for the state
2Py, and 4/3 for the state *Py/,. We shall explain these g; factors in the next section. For
optical transitions, the selection rule is again Am; =0, = 1. It yields the 10 lines shown
in Fig. 13.12. The spectrum which is, in fact, observed is shown schematically in

Fig. 13.13.
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< Fig. 13.12. Anomalous Zeeman effect. Splitting of the D; and D,
lines of the neutral Na atom, transitions 2S;,,~2P,, and
28, /3= 2Py,,, into 4 and 6 components, respectively, in a magnetic
field. Here, S=0 and we are dealing with purely orbital magnet-
ism. The 2P, state is higher in energy than the 2p,, state; this is
not shown in the figure. Compare also Fig. 12.18
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Fig. 13.13. Energy splitting (in cm ™) of the D, and D, lines in a
magnetic field of 3 T (Zeeman effect)

The significance of the Zeeman effect is primarily its contribution to empirical term
analysis. Term splitting depends unequivocally on the quantum numbers /, s and j or,
in many-electron atoms, L, S and J (Chap. 17). The quantum numbers can therefore be
determined empirically from measurements of the Zeeman effect.

13.3.5 Magnetic Moments with Spin-Orbit Coupling

In anomalous Zeeman splitting, other values of g; than 1 (orbital magnetism) or 2 (spin
magnetism) are found. We can understand these quantitatively through the vector

model.

The g; factor links the magnitude of the magnetic moment of an atom to its total
angular momentum. The magnetic moment is the vector sum of the orbital and spin
magnetic moments,

Hi= st .
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The directions of the vectors g; and / are antiparallel, as are those of the vectors g
and s. In contrast, the directions of j and — u; do not in general coincide. This is a result
of the difference in the g factors for spin and orbital magnetism. This is demonstrated
in Figs. 13.14 and 13.11.

The magnetic moment u; resulting from vector addition of u; and u precesses
around the total angular momentum vector j, the direction of which is fixed in space.
Due to the strong coupling of the angular momenta, the precession is rapid. Therefore
only the time average of its projection onj can be observed, since the other components
cancel each other in time. This projection (u;); precesses in turn around the B axis of
the applied magnetic field By. In the calculation of the magnetic contribution to the
energy Vy,, the projection of u; on the j axis (u;); must therefore be inserted in (13.15).
Its magnitude can be calculated from the vector model: from Figs. 13.11 and 13.14,
the j component of u; is

()| = |mlcos(,J) + |us|cos (s, i)

= ug[)/I(I+1) cos(l,j)+2}/s(s+1) cos(s,j)] .

Fig. 13.14. Calculation of the J components of u; and interpreta-
tion of the differing g factors of orbital and spin magnetism.
Again, lower case letters s, / and j apply to single-electron systems,
upper case S, L and J to many-electron systems

The expressions for cos(l,j) and cos(s,j) are derived from Figs.13.14 and. 13.11
using the law of cosines. The length of the vectors is again |//(/+1)% or |/s(s+1) A,
respectively. We shall present a deeper quantum theoretical justification for this in
Sect. 14.3.

We then have for the magnitude of (u;);,

_— e
()| = D *stst]) - 10+ )un=gj JG+Dus, (13.17)

21jG+1)

and for the moment

W)= —gjusj’h

with
g=1+ JG+ 1)+st+ H-I(I+1)
2jG+1)

, (13.18)
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and for the component in the z direction,

W))j,z= —m;gjus. (13.19)

The Landé factor g; defined in this way has a numerical value of 1 for pure orbital
magnetism (s = 0) and 2 (more exactly, 2.0023) for pure spin magnetism (/ = 0). For
mixed magnetism, one observes values which differ from these two cases. By making
the appropriate substitutions, one can easily see that the g factors given in the preceding
section for the terms of the sodium atom are obtained from (13.18). In many-electron
atoms, the quantum numbers s, / and j are replaced by S, L and J, as already mentioned
(but see Sect. 17.3.3). This has been done in Figs. 13.11 and 13.14.

13.4 The Paschen-Back Effect

The preceding considerations on the splitting of spectral lines in a magnetic field hold
for “weak” magnetic fields. “Weak” means that the splitting of energy levels in the
magnetic field is small compared to fine structure splitting; or, in other words, the
coupling between the orbital and spin moments, the so-called spin-orbit coupling, is
stronger than the coupling of either the spin or the orbital moment alone to the external
magnetic field. Since spin-orbit coupling increases rapidly with increasing nuclear
charge Z (Sect. 12.8), the conditions for a “strong” field are met at a much lower field
with light atoms than with heavy atoms. For example, the spin-orbit splitting of the
sodium D lines is 17.2 cm ™!, while the splitting for the corresponding lines of the
lithium atom is 0.3 cm ~!. The Zeeman splitting in an external field B, of 30 kG (3 T) is
the same in both cases, about 1 cm ™!, cf. Fig. 13.13. Thus this field is a “strong”
magnetic field for lithium, but a “weak” field for sodium.

When the magnetic field B is strong enough so that the above condition is no
longer fulfilled, the splitting picture is simplified. The magnetic field dissolves the fine
structure coupling. / and s are, to a first approximation, uncoupled, and precess inde-
pendently around By. The quantum number for the total angular momentum, j, thus
loses its meaning. This limiting case is called the Paschen-Back effect.

The components of the orbital and spin moments (x;), and (u;), in the field direc-
tion are now individually quantised. The corresponding magnetic energy is

Vms,mI = (m;+2ms) up By (13.20)
and the splitting of the spectral lines is
AE =(Am+2Amg) upBy . (13.21)

For optical transitions, there are again selection rules, and as before, Am;= 0 or
+1 for n or o transitions. Since electric dipole radiation cannot, to a first approxima-
tion, effect a spin flip, it also holds that Am;= 0. With these rules, (13.21) yields a
triplet of spectral lines like those of the ordinary Zeeman effect.

Figure 13.15 shows the splitting scheme of the Na D lines. A vector model is shown
in Fig. 13.16, which makes it clear that a total angular momentum vector j cannot even
be defined here. Like the Zeeman effect, the Paschen-Back effect is chiefly used in



2P ———<

32

+ 1/2
-2

218 13. Atoms in a Magnetic Field: Experiments and Their Semiclassical Description

m_ mg Fig. 13.15a — c. Paschen-Back effect (¢) and Zeeman effect (b)
. with the D; and D, lines of the neutral sodium atom (a). In the
-+ R limiting case of strong magnetic fields, one observes one un-
shifted and two symmetrically split lines, as in the ordinary
0 +2 Zeeman effect
-1 +1/2
+ -2
0 -1
-1 -
b 1 4 d
z,B,
0 +2
4>
> \/S—'\ /4 L
0 -2 = L
S
G M G
Fig. 13.16. Paschen-Back effect. In the limiting case of a strong

magnetic field By, the spin § and orbital L angular momenta
c align independently with the field By. A total angular momen-
tum J is not defined

empirical term analysis. In many-electron atoms, where the single-electron quantum
numbers j, /, and s are replaced by the many-electron quantum numbers J, L and S, this
method is especially important (Chap. 17).

The area between the limiting cases of weak fields (Zeeman effect) and strong fields
(Paschen-Back effect) is difficult to analyse, both theoretically and experimentally.

13.5 Double Resonance and Optical Pumping

One can make use of the difference in polarisation of the various Zeeman components
in order to populate selectively individual Zeeman levels, even when the spectral resolu-
tion is insufficient or the linewidth is too great to obtain the excited state otherwise.
This is the simplest case of optical pumping.

The first experiment of this type is represented in Fig. 13.17 (Brossel, Bitter and
Kastler 1949 — 1952). Mercury atoms in an external magnetic field B, are excited by ir-
radiation with linearly polarised light in a # transition to the m; = 0 level of the 3P1
excited state. The emission from these atoms is also linearly polarised 7 light. Now one
can induce transitions Am = =1 with a high-frequency coil perpendicular to B,, as
shown in Fig. 13.17, and thus populate the Zeeman substates m = 1 and m = — 1. The
light emitted from these levels, however, is circularly polarised ¢ light. The emission
of circularly polarised light in a direction perpendicular to that of the 7 emission can
thus be used for the detection and measurement of Am = +1 transitions between
Zeeman substates.
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Here, the same transitions as in electron spin resonance are observed, but they are
detected optically. By means of this double resonance technique (double excitation with
light and with high-frequency radiation), an extremely high detection sensitivity can be
reached, because the high-frequency quanta with small quantum energies are detected
via the much more energetic light quanta. In this way, the detection of spin resonance
in a short-lived excited state becomes possible. Double resonance methods of this type
have attained considerable importance in spectroscopy in the past 30 years.

The principle of optical pumping may be explained conveniently using the example
of the sodium D lines, e.g. the transition from the 25, ,, ground state to the 2P, , ex-
cited state. In an applied magnetic field, both terms are split into the Zeeman terms
m; = +1/2 (Figs. 13.12 and 13.18). If the “pumping” light is now circularly polarised,
for example as ¢ light, only transitions from m;= —1/2 in the ground state to the

= +1/2 excited state can take place, populating only the latter state. Emission from
th1s state can occur either as g+ light, leading to the %S, 5, m; ;= —1/2 initial state, or as
7 light, leading to the ground state term with m; = +1/2. Overall, this pumping cycle
increases the population of the terms with m; = + 1/2 in the ground state at the cost of

those with m; = —1/2. An equalisation of the populations can occur through relaxa-
tion processes, for example by means of collisions of the Na atoms with one another or

BO= 0 BO 0 mJ
«l
v
3P, 0
\ v
] ""
A=2537nm !m m G*!miG!
' i I
s Lo,
0 Excitation Emission
without with
transitions v in 3P1 state
Emission
of g -light

Bg - field coils
B, - field coils

Excitation

with Tt-light
Emission
of m-light

Fig. 13.17.  Double resonance, after the method of Brossel, Bitter
and Kastler. In the upper part of the figure, the three Zeeman levels
of the excited state 3P1 are shown. The lower part shows the experi-
mental arragngement. The mercury atoms are contained in a cuvette
between two pairs of coils, which produce the constant field By and
the high-frequency field B;. The transition occurs between the
ground state of the Hg atom 6s (1S0) and the excited state
6s6pCPy)

n= 3,2 F; Y + 1’2
12 -2
[
E - LA
‘ |
n= 3, 251,2 |
-2
Excitation, Emission ESRor
absorption relaxation

B, -High-frequency field coils

By - (static)
ﬂ /( field coils
¢ [Na]
Y]
Na light, U v Photo-
multiplier

6'- polarised

Fig. 13.18. Optical pumping of the transition 2S;,,— 2Py, of
the sodium atom. In the field B, the terms split up into Zeeman
terms with m; = + 1/2 Only atoms in the ground state m; =
—1/2 absorb the g+ light with which the sample is irradiated. =
transitions occurring in emission from the excited state lead to
an increase in the population of atoms in the ground state with
m;= +1/2. With the high-frequency field, transitions from
m;= +1/2to m;= —1/2 are induced, increasing the number of
atoms which are able to absorb the pumping light
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with the walls of the container. If these processes are not sufficiently rapid, one can
induce transitions in the ground state by irradiation with microwaves. These electron
spin resonance transitions change the populations of the Zeeman terms. The detection
of this ESR can be accomplished optically, namely through the change in the intensity
of the absorption from 2S,,,, m;=-1/2 to P2, mj= +1/2, provided that the
population of the ground state terms was altered by optical pumping. Figure 13.18
shows the experimental arrangement schematically. This is thus also a double reso-
nance method.

Double resonance methods, in which magnetic resonance transitions are detected
by means of the absorption or emission of light in the visible or ultraviolet spectral
ranges, have also acquired considerable importance in molecular and solid-state phys-
ics. They are termed ODMR, for optically-detected magnetic resonance. This subject
is treated in more detail in Molecular Physics and Quantum Chemistry by H. Haken
and H.C. Wolf, Sect. 19.7.

Problems

13.1 What frequency is required to induce electron spin transitions from the parallel
to the antiparallel configuration, or vice versa, if the magnetic field is 10 ! tesla?

13.2 Why is the *D;,, term not split in a magnetic field? Explain this in terms of the
vector model.

13.3 Calculate the angle between the total and the orbital angular momenta in a *D;,
state.

13.4 The spectral lines ciorresponding to th§ 3p ~ 3s transition in sodium have the
wavelengths A, = 5895.9 A and A, = 5889,6 A.

a) Calculate the magnetic field strength at which the lowest Zeeman level of the %P;,
term would coincide with the highest level of the 2P, term, if the conditions for the
anomalous Zeeman effect were still fulfilled.

b) How large are the frequency differences between the outer two components of the
D, line and of the D, line in a magnetic field of 1 tesla?

13.5 Discuss the splitting of the lines in the 3d < 2p transition in the presence of a
magnetic field when the Zeeman splitting is small compared to the spin-orbit interaction.

13.6 Sketch the Zeeman splitting in the lines of the hydrogen atom Balmer series.
Calculate the magnetic moments of the states P ,5, P2, D3/ and Ds,.

Also sketch the splitting in the Paschen-Back effect. At what magnetic field does the
transition from the Zeeman to the Paschen-Back effect occur?

13.7 a) Consider hydrogen atoms in a magnetic field By=4.5 tesla. At this field
strength, is the splitting of the H, line (n = 3 - n = 2) due to the anomalous Zeeman
effect or the Paschen-Back effect? Support your answer. (The spin-orbit coupling
between the 3%P,, and 3%P;, terms of the hydrogen atom is 0.108 cm ~'.)
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b) Sketch the splitting of the energy levels in the given magnetic field and show the
transitions which contribute to the H, line. Into how many components is the H,, line
split?

¢) Determine the specific charge e/m of the electron, given that the frequency
splitting between two neighbouring components is 6.29 - 10'° Hz. The fine structure
can be ignored here.

d) Is the wavelength splitting in the first line of the Lyman series (n=2-n=1)
smaller, larger or the same as that of the H, line?

13.8 a) Sketch the energy levels of a free electron in a magnetic field as a function
of the field strength.

b) Consider two electrons whose spins are coupled (the precise coupling mechanism
is not important for the problem; e.g. they could interact as two magnetic dipoles).
How many possible orientations are there? Distinguish between singlet and triplet
states.

¢) What is the minimum number of electrons which you must couple together in
order to produce a sextet state?

Hint: An x-tet state is named for its multiplicity.



14. Atoms in a Magnetic Field:
Quantum Mechanical Treatment

14.1 Quantum Theory of the Ordinary Zeeman Effect

The ordinary Zeeman effect is a beautiful example of the fact that even with classical
physics, one can obtain results similar to those of strict quantum theory. In order to set
our earlier results on a firm basis, however, we shall now go through the strict quantum
theoretical treatment.

This chapter is somewhat more demanding, because we shall have to make use of
some of the basic theory of electromagnetism. As is shown in this theory, a magnetic
field B can be expressed as the curl of the vector potential 4:

B=curlAd. (14.1)

The electric field strength F can be obtained in a similar way from the electric poten-
tial ¥ and the vector potential 4 according to the rule

F=—gradV— a4 (14.2)
dt

Furthermore, we remember that the equation of motion of a particle with charge —e
(we are thinking specifically of electrons here) and mass my is

moyf=(—e)(F)+(—e)(vxB). (14.3)
The second term on the right is the so-called Lorentz force, v is the particle velocity. It

can be shown that this equation of motion can be obtained, using the Hamilton
equations

p= —grad,H(p,r) and (14.4)
r= grad,H(p,r), (14.5)

from the Hamiltonian function

H=

@+ed)+V. (14.6)
my

The potential energy V of the electron is related to the electric potential V: V= —eV.

! In order to avoid confusion between the energy E and the electric field strength, we denote the latter by F
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At this point, it is only important to remember that in quantum theory, we always
start from a Hamiltonian function. As we saw in Sect. 9.3.4, the Hamiltonian function
is converted to an operator in quantum mechanics by using the Jordan rule to replace
the momentum, according to

p—2grad. (14.7)
1

By applying this technique here, we arrive at the Hamiltonian operator
H =[(1/2mg)[1/i) grad +eA)*+ V. (14.8)

When we multiply out the squared term, taking care to maintain the order of the
factors, we obtain

2 2 42
#= g2y he.Agrad+ he_gradA+eA

+V. 14.9)
2my 2myi 2myi 2my

In applying the various differential operators, however, we must be careful, since we
know that s is to operate on the wavefunction y. Thus we must interpret

grad A (14.10)
exactly as
grad(4 y) . (14.11)

On differentiating the product in (14.11) and then again applying (14.7), we obtain for
the Hamiltonian

2 2 42
#=- 92 aps P G4+ A
2m0 my 2m01 2m0

+V. (14.12)

(The operators gradient, divergence, and curl used here are vector differential
operators which are often abbreviated using the Nabla symbol V, with Vf = gradf,
V.-F=divF, VxF=curlF, and V.Vf=V2f=Laplacian f, where f is a scalar
function and F a vector function.)

We now choose, as always in this book, the constant magnetic field B in the z
direction:

B=(0,0,B,). (14.13)

It can be demonstrated that the vector potential A in (14.1) cannot be uniquely deter-
mined. One possible representation, which is convenient for the present calculation, is

Ax=_%y, Ay=%ax, A,=0. (14.14)
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With this, the Schrdodinger equation with the Hamiltonian (14.12) becomes

2 2p2
P g B8 8By v | w=Ey.
2my 2my i oy ox 8my (14.15)

In the following, we shall assume a spherically symmetrical potential for V.
We recall the following relation from Sect. 10.2:

f.(xi_yi>=iz=f_ 9 (14.16)
1

where IAz is the angular momentum operator in the z direction. In general, the term in
(14.15) containing (x+ y?) can be neglected in comparison to the preceding term with
I;, if the magnetic field is not too large, and as long as the magnetic quantum number
m +0. Leaving out the term with x2+ y2, and using the usual formula for the wave-
function,

w(r) =R, (r) e™?*PI(cos 6) , ‘ (14.17)
we recognise that (14.15) is identically satisfied. The energy is now

eh
2m0

E=E+B, -m, -—lsmsl. (14.18)

The energy E is thus shifted with respect to the unperturbed energy E,? by an amount
which depends on the magnetic quantum number 7, and the energy level is split. The
factor ug = eh/(2my) is the Bohr magneton which was introduced earlier. With the
addition of the selection rules for optical transitions,

Am=0 or 1,

the above derivation leads to the splitting of spectral lines known as the ordinary
Zeeman effect (Sect. 13.3).

14.2 Quantum Theoretical Treatment of the Electron and Proton Spins

14.2.1 Spin as Angular Momentum

As we saw in Sect. 12.4, the electron has three degrees of freedom in its translational
motion, and a fourth in its spin. As we know, a number of other elementary particles,
including the proton, have spins too. Our quantum mechanical calculations to this
point, especially our derivation of the Schrédinger equation -and its application to the
hydrogen atom, have not included spin. In the following, we shall show how spin is
included in the quantum theoretical treatment of atomic states. This is necessary, for
example in spin-orbit coupling, in the anomalous Zeeman effect, in spin resonance,
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and in an adequate formulation of the Pauli principle, which will be discussed later.
Like every angular momentum, the spin of the electron is a vector with three spatial
components Sy, s, and s:

5= (8x,5y,5;) . (14.19)

In the following development of the spin formalism, we must account for the ex-
perimental observation that the spin has only two possible orientations such that the
spin component in a chosen direction, e.g. the z direction, can only have the value
+ h/2 or — h/2. In this sense, it is a genuine two-level system.

14.2.2 Spin Operators, Spin Matrices and Spin Wavefunctions

Since it is intuitive to think of one of the states of spin as “spin up” and the other as
“spin down”, we shall first introduce in a purely formal way two “wave” functions
which correspond to these spin directions, i.e. ¢1 and ¢,. If we proceed strictly accord-
ing to quantum formalism, measurement of the z component of the spin corresponds to
applying the operator §, to a wavefunction. (As with the angular momentum I, we
distinguish the spin operator from the corresponding classical parameter by using the
“hat” sign.) We can choose the wavefunctions in such a way that the application of the
operator gives the observed values of the wavefunction. Because we have only two
observed values, namely #/2 and — A/2, we expect that

$,01= ; #1, and (14.20a)
$.01= — g 0. (14.20b)

These can be summarised as
§Z¢ms = hmstpms R (14.21)

where m,= +1/2 (corresponding to T) or

mg= —1/2 (corresponding to !).

I

my is thus the quantum number of the z component of the spin.

We are now looking for a formalism which will more or less automatically give us
the relations (14.20a,b). It has been found that this is most easily done by using
matrices. A matrix, in mathematics, is a square array, for example

a b
M= . 14.22
< c d> ( )

There is a multiplication rule for this array. As an example, let us imagine a vector v
. . X
with the components x and y in a plane, or v = . We can produce a new vector

Yy
x', y' by multiplying <;C > by M. This is done according to the rule
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(2)-m()=(2 2)(3)- (22,

We thus are looking for a “vector” ¢ and a matrix M such that M ¢ yields exactly either

h h
—¢or — —¢.
2 ¢ 2 ¢
We shall simply give the result, and then verify it. We choose §, in the form
R{1 O
§,=— 14.24
) ( 0 -1 > (1429

and the spin functions in the form

1 0
= , = . 14.2
o1 < 0> o) < ) > (14.25)

With the help of (14.23), it can be immediately calculated that substitution of (14.24
and 25) in (14.20a and b) actually yields the relations M@= (h/2)¢1, Mo, =
—(7/2) ;. We obtain the most general spin function by superposition of ¢ and ¢,
with the coefficients @ and b, as we have done before with wave packets:

p=apr+bo,= (Z) (14.26)

In order to arrive at a normalisation condition, we must now introduce the “scalar
product” for the ¢’s. If we have a general ¢, in the form

ai 27
= 14-
¢1 < 1) ( )

and another ¢, in the form

a
= s 14.28
73 < b2> ( )

we define the scalar product as

P16, = (@f,b}) < ‘:) = (afa,+ bl b,y). (14.29)

2

These are calculation rules, which_shou_ld be familiar to the reader from vector calcula-
tions. If we substitute in (14.29) ¢, = ¢1, ¢, = ¢, we obtain

Pror=1 (14.30)
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and correspondingly,

q;l ¢o,=1. (14.31)

Thus the wavefunctions are normalised. With ¢; = ¢ and ¢, = ¢1, we have

p0:=0, (14.32)

i.e. the wavefunctions are mutually orthogonal.

With (14.24), we have the first part of the solution of the entire problem. The repre-
sentation of the operators for the x and y directions of the angular momentum is
naturally still open. Because we are talking about angular momenta, it seems reason-
able to require the usual commutation relations for angular momenta (10.14). We do
not wish to go into the mathematics of the problem here. For the purposes of this book,
it is sufficient simply to choose 3, and §, appropriately. It turns out that

R0 1
§.=— 14.33a
' 2<1 0) (14.33)
and
hR{0 —i
§,=— 14.33b
7 2<i o> ( )

are suitable. If we calculate §% = §§+ §y2+ §z2 with the matrices (14.24, 33a and 33b), we
obtain after a short calculation

2
§2= A3 03 h2-3— 10 _ hzi- (unit matrix) .
4 \0 3 4\0 1 4

Therefore, it we apply § 2 to any spin function ¢, in particular to Pm, it will always yield
§2¢ms = h2%¢ms .
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