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Preface

Photonics as a fiel today covers a huge range from communications to science
and technology applications, including laser manufacturing, biological and chemical
sensing, display technology and optical computing.

For a number of reasons ranging from a higher bandwidth to the inexpensiveness
of optical-fibr materials, components based on electric currents are more and more
complemented or replaced by technology based on light. Relatively cheap, compact
and highly sensitive photonic devices have already been commercialised for a variety
of areas, and are expected to be basic blocks for all-optical integrated circuits. As
the fabrication of photonic devices is still costly and essentially time consuming, the
development of science and technology has grown parallel to the development of
accurate numerical techniques able to perform “modelling” of the devices. Besides
analysis of the structures, the numerical simulation of the performance of the device
makes it possible to perform operations of optimisation and design at an early stage
with significan cost savings. The fiel of numerical modelling has become so impor-
tant that developing the innovative potential of optics and photonics relies today on
sophisticated simulation techniques.

Up to now, there have been many books in the market that deal with numerical
modelling techniques. However, the majority only concentrate on one or two numerical
methods. This book, on the other hand, covers a comprehensive state-of-the art of many
modelling possibilities, ranging from the most innovative techniques in the frequency
domain (e.g. the bidirectional beam propagation method), to ones in time domain (e.g.
the multiresolution time domain and finit volume time domain methods), for future
photonic devices.

Through an extensive number of simulation models and solutions for generic and
more specifi problems, this book focuses on equipping the reader with the sophis-
ticated concepts of computational modelling in a new easy way to build his/her
own codes. Furthermore, it comes with a CD that shows samples of codes, and
some examples to enable the reader to understand various computational modelling
cases.

This book consists of 11 chapters.



xiv Preface

The introduction to the book is given in Chapter 1, where a general overview of
modern photonics and recent advances in computational modelling for new photonic
devices are given.

From Chapter 2 to Chapter 4, beam propagation method (BPM)-based numerical
techniques in the frequency domain are considered. Among them, Chapter 2 presents
the governing equations for the full-vectorial BPM, including the finite-elemen
analysis, the perfectly matched layer (PML) scheme for the treatment of boundary con-
ditions and the imaginary-distance BPM that provides the mode solver. Full-vectorial
BPM is then assessed in Chapter 3, where modal analysis of rectangular waveguides
is given, together with analysis of photonic crystal fibre and liquid-crystal-based
photonic crystal fibres

The bidirectional BPM is presented in Chapter 4. The chapter focuses on the optical
waveguide discontinuity problem, giving the formulation of a numerical method able
to perform its simulation. After deriving the governing equations, the bidirectional
BPM is assessed in several optical examples.

From Chapter 5 onwards, numerical techniques belonging to the area of the time-
domain schemes are presented. Chapter 5 starts with a recent innovative modificatio
of the conventional finite-di ference time-domain (FDTD) method: the complex-
envelope alternating-direction-implicit FDTD. After derivation of the fundamental
equations to solve Maxwell’s equations, assessment of the technique is given in the
specifi problem of photonic crystal cavities.

In Chapter 6, the finite- olume time-domain method is proposed as a novel alter-
native technique to FDTD for the study of electromagnetic problems. The scheme
is presented in detail, providing mathematical formulations, analysis of numerical
stability and dispersion, and an efficien scheme for the treatment of the boundary
conditions. The FVTD is then assessed in Chapter 7 where both linear and nonlinear
devices are investigated.

Further modelling possibilities are given in Chapter 8 with the multiresolution
time domain (MRTD) method. Basic concepts of the multiresolution analyis are
given and its application to the solution of the Maxwell’s equations is explained.
An accurate and innovative extension of the method to the analysis of second-order
nonlinear effects is given. Assessment of the MRTD scheme is presented in Chapter 9,
providing code validation in linear photonic devices. Assessment of the technique for
the study of second-order nonlinear photonic devices follows in Chapter 10. Chapter
11 shows improvement of the nonlinear-MRTD scheme with the inclusion of auxiliary
differential equations that enable the accurate analysis of the linear dispersion of the
media. Chapter 11 also presents validation of the code with the generation of second
harmonics in a planar waveguide and in a one-dimensional photonic crystal.

Salah Obayya
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1

Introduction

1.1 Photonics: The Countless Possibilities of Light Propagation

Following the advances in semiconductor physics that have allowed us to fully ex-
ploit the conducting properties of certain materials, thereby initiating the transistor
revolution in electronics, in the last few decades a new frontier has opened up. The
goal in this case is to control the optical properties of materials. An enormous range
of technological developments would become possible if we could engineer materials
that respond to light waves over a desired range of frequencies by perfectly reflectin
them, or allowing them to propagate only in certain directions, or confinin them
within a specifie volume.

Optical solutions to engineering problems are being increasingly found in many
field of application, including medicine, communication, entertainment, sensing and
homeland security. Already, fibr optic cables, which simply guide light, have revolu-
tionised the telecommunications industry. Laser engineering, high-speed computing
and spectroscopy are just a few of the field next in line to reap the benefit of the
advances in optical materials. Photonics as a fiel covers today a huge range, from
communications to science and technology applications, including laser manufactur-
ing, biological and chemical sensing, display technology and optical computing.

For a number of reasons, ranging from a higher bandwidth to the inexpensiveness
of optical fibr materials, components based on electric currents are more and more
complemented or replaced by technology based on light. Relatively cheap, compact
and highly sensitive photonic devices have already been commercialised for a variety
of areas, and are expected to be basic blocks for all-optical integrated circuits, truly
revolutionising the way we live.

All-optical systems are believed to be the best solution for the realisation of devices
capable of meeting the high-performance characteristics required today and by next-
generation telecommunications. In recent decades, with the advent of photonic crys-
tals (PhCs) technology, the goal of a system capable of all-optical signal processing

Computational Photonics ~Salah Obayya
© 2011 John Wiley & Sons, Ltd



2 Computational Photonics

has made a giant step towards becoming a reality. PhC technology has brought the
possibility of manipulating the light in a way that is basically not possible with con-
ventional optical technology. Moreover, this capability of manipulating light is also
obtained with an efficien y that is far greater than that obtained with conventional
optical devices. However, the complex geometry of devices realised with PhC tech-
nology is still a challenge for fabrication technology, although significan progress
has been made in this field making it possible to fabricate new devices exploiting
such technology. On the other hand, the mass production of these devices is still far
from becoming a reality, and this can pose a serious threat to the development of PhC
technology and, most of all, to the development of all-optical systems for ultra-fast
telecommunication applications. In this aspect, numerical methods can be of vital
help. Generally speaking, the possibility to predict the performance of a device before
its practical fabrication can be a key factor towards the development of new and in-
novative technologies. With the exponential growth of the computational capabilities
of modern personal computers (PCs), numerical methods have experienced a sudden
expansion in all field of engineering. This has made possible the development of new
applications at a rate that was unthinkable just few decades ago.

Up to now, there have been many books on the market that treat numerical modelling
techniques. However, the majority only concentrate on one or two numerical methods.
The main goal of this book is to present a comprehensive state-of-the art of the
latest modelling possibilities for the analysis and design of innovative devices for
next-generation optical communications. Through a thorough analysis of the latest
advances in numerical methods, weaknesses and drawbacks will be addressed in order
to develop new techniques capable of dealing with simulations of optical devices in
an innovative fashion, so as to increase either the accuracy or the efficien y. This aim
will be reached through a deep theoretical analysis which will involve the physics
behind the functionality of the optical device more directly in the core of the numerical
techniques. In this way, the obtained numerical tools will be considered to be more
state-of-the-art computational techniques than mere ‘number-crunching’ algorithms
for the solution of Maxwell’s equations. The gain in terms of efficien y can be usefully
employed for the extension of the methods to dealing with three-dimensional (3D)
problems without requiring a prohibitive amount of computational resources, making
it possible to obtain simulation results closer to reality.

The information in the book will be essential for the reader to perform and excel in
the following:

¢ Understanding the physics of light propagation in various photonic devices.

¢ Understanding Maxwell’s equations, governing the propagation phenomena.

e Grasping basic concepts of general numerical modelling techniques.

¢ Deriving the equations underlying the numerical modelling techniques.

¢ Applying the gained knowledge of computational modelling to modelling photonic
devices.
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These functions range from introductory (understanding the basic concepts) to ad-
vanced levels (application of the concepts to the numerical modelling of photonic
devices).

1.2 Modelling Photonics

The last decade has witnessed dramatic progress and interest in micro- and nano-
fabrication techniques of complex photonic devices. In almost all cases, an accurate
quantitative theoretical modelling of these devices has to be based on advanced
computational techniques that solve the corresponding, numerically very large linear,
nonlinear or coupled partial differential equations.

Photonics is especially suitable for computation because Maxwell’s equations are
practically exact, the relevant material properties are well known and the length
scales are not too small. Therefore, an exciting aspect of this fiel is that quantitative
theoretical predictions can be made from firs principles, without any questionable
assumptions or simplifications The results of such computations have consistently
agreed with experiments. This makes it possible and preferable to optimise the design
of photonic devices on a computer at an early stage, prior the actual fabrication. The
computer becomes the pre-laboratory.

1.2.1 History of Computational Modelling

Many standard numerical techniques for the solution of partial differential equations
have been applied to electromagnetics (EM), and each has its own particular strengths
and weaknesses. High-quality ‘black-box’ software is widely available, including
free, open-source programs. Indeed, computational photonics has matured so much
that many are familiar only with the general principles and capabilities of the different
tools.

In the last decades, a wide variety of numerical techniques have been developed and
utilised for the design and optimisation of optical devices. Most of them have been suc-
cessfully employed for the simulation of novel devices, mostly in two-dimensional
(2D) space domains. Despite their powerful numerical capabilities, all these tech-
niques possess drawbacks which pose limitations in the range of applicability of the
methods to specifi classes of problems. These drawbacks become more severe once
the extension of these techniques to full-vectorial 3D space domains is considered.
These limitations are mainly due to the huge growth in the computational burden
required for 3D problems. Furthermore, if nonlinear phenomena are also taken into
account, the limitations appear to be even more stringent.

Typically, the existing different numerical schemes can be divided into two main
categories: time-domain and frequency-domain methods.
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1.2.2  Frequency Domain

Before 1960, the principal approaches in the area of frequency-domain (FD) based
numerical techniques involved closed-form and infinite-serie analytical solutions,
with numerical results from these analyses obtained using mechanical calculators.
After 1960, the increasing availability of programmable electronic digital computers
permitted such FD approaches to increase significantl in sophistication. Researchers
were provided with a whole new range of capabilities offered by powerful high-level
programming languages, such as Fortran, rapid random-access storage of large arrays
of numbers, and computational speeds orders of magnitude faster than possible with
mechanical calculators. In this period, the principal computational techniques for
Maxwell’s equations included high-frequency asymptotic methods and integral equa-
tions. However, these FD methods have some difficultie and drawbacks. For instance,
while asymptotic analyses are well suited for modelling the scattering properties of
large electrical shapes, such approaches are fin it difficul to deal with nonmetallic
material compositions and the volumetric complexity of a structure. On the other hand,
integral equation methods can deal with material and structural complexity, however
their need to construct and solve systems of linear equations limits the electrical size
of possible models, especially those requiring detailed treatment of geometric details
within a volume.

Although significan progress has been made in solving the ultra-large systems of
equations generated by these FD integral equations, the capabilities of even the latest
of such technologies cannot keep up with many volumetrically complex structures of
recent engineering interest. This also holds for FD finite-elemen techniques, which
generate sparse rather than dense matrices. Moreover, properties of material such
as nonlinearities cannot be easily incorporated into the FD solutions of Maxwell’s
equations, which is a severe constraint, as research today is very active in the field
of active electromagnetic/electronic and electromagnetic/quantum-optical systems,
such as high-speed digital circuits, and microwave and millimetre-wave amplifier
and lasers.

1.2.3  Time Domain

Since the arrival of the digital computer, which has profoundly changed the possi-
bilities, time-domain (TD) modelling has offered efficien and fl xible techniques to
study computational electromagnetic propagation in linear and nonlinear optics.
There are two basic reasons for the success of TD over FD modelling: computa-
tional efficien y and problem requirements. Generally, when broadband information
is analysed, a TD approach is intrinsically a more immediate choice because it pro-
vides a transient response whose bandwidth is limited only by the frequency content
of the source, and the time and space sampling adopted in the numerical approach.
Moreover, the computational efficien y of TD is also derived from its natural ability
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to adapt to parallel computer architectures. In addition, the TD approach can usually
model problems involving time-varying media and components in a more straightfor-
ward way.

A representative example of the rapid growth in TD research is the popularity of
the finite-di ference time-domain (FDTD) method developed by Tafl ve.

There are general steps that need to be carried out in order to perform numerical
modelling in the time domain:

¢ Develop time-dependent integral or Maxwell’s curl equations.

¢ Discretise the equations in space and in time by means of an appropriate grid in
space, and suitable basis and testing functions.

¢ Derive a set of equations that relate unknown with known quantities (starting from
an initial value that usually is given by the source field)

¢ Generate a numerical solution of this initial-value problem in space and time.

1.2.4  Chapter Overview

Following this Introduction, from Chapter 2 to Chapter 4, beam propagation method
(BPM) based numerical techniques in the frequency domain are considered. Amongst
them, Chapter 2 presents the governing equations for the full-vectorial BPM, includ-
ing the finite-elemen analysis, the perfectly matched layer (PML) scheme for the
treatment of boundary conditions and the imaginary-distance BPM that provides the
mode solver. Full-vectorial BPM is then assessed in Chapter 3, where modal analysis
of rectangular waveguides is given together with analysis of photonic crystal fibre
and liquid-crystal-based photonic crystal fibres

The bidirectional BPM is presented in Chapter 4. The chapter focuses on the optical
waveguide discontinuity problem, giving the formulation of a numerical method able
to perform its simulation. After deriving the governing equations, the bidirectional
BPM is assessed in several optical examples.

From Chapter 5, numerical techniques belonging to the area of time-domain
schemes are presented. Chapter 5 starts with a recent innovative modificatio of
the conventional finite-di ference time-domain (FDTD) method: complex-envelope
alternating-direction-implicit FDTD. After derivation of the fundamental equations
to solve Maxwell’s equations, assessment of the technique is driven by the specifi
problem of photonic crystal cavities.

In Chapter 6, the finite- olume time-domain (FVTD) method is proposed as a
novel alternative technique to FDTD for the study of electromagnetic problems.
The scheme is presented in detail, providing mathematical formulations, analysis of
numerical stability and dispersion, and an efficien scheme for the treatment of the
boundary conditions. The FVTD is then assessed in Chapter 7, where both linear and
nonlinear devices are investigated.
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Further modelling possibilities are given in Chapter 8, with the multiresolution
time domain (MRTD) method. Basic concepts of the multiresolution analysis are
given and its application to the solution of Maxwell’s equations is explained. An
accurate and innovative extension of the method to the analysis of second-order
nonlinear effects is given. Assessment of the MRTD scheme is presented in Chapter 9,
providing code validation in linear photonic devices. Assessment of the technique for
the study of second-order nonlinear photonic devices follows in Chapter 10. Chapter
11 shows improvement of the nonlinear-MRTD scheme, with the inclusion of auxiliary
differential equations (ADE) that enable the accurate analysis of linear dispersion of
the media. Chapter 11 also presents validation of the code with generation of second
harmonics in a planar waveguide and in a one-dimensional (1D) photonic crystal.

1.2.5 Overview of Commercial Software for Photonics

The continuous advancement of microwave circuits and electromagnetic devices to-
wards increased functionality and performance requires simultaneous development
of modelling tools that are able to keep up with the growing level of sophistication. In
order to get a deeper insight into the fiel of computational electromagnetics (CEM)
and grasp what is available in the market, the most widely used commercial packages
are listed as follows:

— COMSOL Multiphysics (formerly FEMLAB) is a finit element analysis, solver
and simulation software package for various physics and engineering applica-
tions, especially coupled phenomena, or multiphysics. COMSOL Multiphysics also
offers an extensive interface to MATLAB and its toolboxes for a large variety of
programming, pre-processing and post-processing possibilities.

— FIMMWAVE is a generic full-vectorial mode-finde for waveguide structures.
FIMMWAVE combines both methods based on semi-analytical techniques with
other more numerical methods such as finit difference or finit element.

— CST MICROWAVE STUDIO® (CST MWS) offers fi e solver modules; the Tran-
sient, Eigenmode, Frequency Domain, ‘Resonant: Fast S-Parameter’, ‘Resonant:
S-Parameter, Fields’ (formerly known as Modal Analysis), and the Integral Equa-
tion Solver, each offering distinct advantages in their own domains. There are
numerical advantages offered by the method used in most of the solvers, the finit
integration technique (FIT).

— CrystalWave is a design environment for the layout and design of integrated optics
components optimised for the design of photonic crystal structures. It is based on
both FDTD and finite-elemen frequency-domain (FEFD) simulators and includes
a masque fil generator carefully optimised for planar photonic crystal structures.

— Optiwave is a suite of engineering design tools. Amongst these, there are OptiFDTD,
which is based on the FDTD algorithm with second-order numerical accuracy
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and the most advanced boundary condition — the uniaxial perfectly matched layer
(UPML) boundary condition, and OptiBPM, which is based on the BPM.

— RSoft’s Photonic Component Design Suite allows the design and the simulation of
both passive and active photonic devices for optical communications, optoelectron-
ics and semiconductor manufacturing. FullWAVE is a simulation tool for studying
the propagation of light in a wide variety of photonic structures, including inte-
grated and fibre-opti waveguide devices, as well as circuits and nanophotonic
devices, such as photonic crystals. The software employs the FDTD method for the
full-vector simulation of photonic structures. BandSOLVE is a design tool for the
calculation of photonic band structures for all photonic crystal (PC) devices which
employs the plane wave expansion (PWE) algorithm.

Indeed, commercial EM simulation programs available today provide powerful design
tools, however no single numerical method provides a universal solution, and commer-
cial codes often fail to accurately simulate high-end problems found in cutting-edge
research. Therefore, research in computational EM is still essential to keep up with
the increasing complexity of devices throughout the EM spectrum and has to develop
parallel to fabrication technologies to allow the full establishment of the new photonic
solutions in the market.






2

Full-Vectorial Beam Propagation
Methods

2.1 Introduction

Numerical simulations play an important role for the design and modelling of guided-
wave optoelectronic devices. There are various modelling methods in which not
only a full-vector model, but also an approximate scalar model, are used. In this
chapter, an overview of beam propagation methods (BPMs) [1-4] is introduced. In
addition, the formulation of the wave equations in terms of the electric and magnetic
field is included. Moreover, this chapter includes an introduction to finite-elemen
analysis, followed by the derivation of the finite-elemen BPM. Also, the formulation
of the imaginary-distance full-vectorial finit element BPM scheme proposed in [5]
is extended further to fully treat the vectorial complex modes.

2.2 Overview of the Beam Propagation Methods

Analysis and simulation of electromagnetic wave propagation are essential in the
modelling and design of optical waveguide devices. The BPM [1-4] has been one of
the most popular techniques for modelling and simulation of such optical devices. The
major concept of the BPM is the development of a formula that permits the propagation
of an initial fiel distribution along the axial direction by steps of sufficientl small
length, as shown in Figure 2.1 [4].

Early publications were focused on the solution of the scalar paraxial wave equa-
tion by means of fast Fourier transform (FFT) [6]. However, the formulation of the
FFT-BPM is derived under the assumption that the refractive-index difference in the
transverse direction is very small, therefore the FFT-BPM cannot be applied to struc-
tures with large refractive-index discontinuities. In addition, the FFT-BPM can be

Computational Photonics ~Salah Obayya
© 2011 John Wiley & Sons, Ltd
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Figure 2.1 Propagation of an initial fiel distribution along the axial direction.

only used to study the scalar wave propagation, therefore the vectorial properties of
the guided wave cannot be described.

The finite-di ference (FD) method was firs introduced by Hendow and Shakir [7]
to solve the paraxial scalar wave equation through a cylindrically symmetric struc-
ture. Then, Chung and Dagli [8] introduced the FD-BPM to the Cartesian coordinate
system. The scalar FD-BPM has advantages in terms of efficien y and broader appli-
cability [9, 10]. However, the most serious drawback of the scalar FD scheme is the
complete absence of the vector characteristics that are inherent in light propagation
through inhomogeneous and/or anisotropic media. This was partly removed by the
semi-vectorial BPM (SVBPM) that distinguishes two orthogonal, but otherwise com-
pletely uncoupled, states of polarisation (TE and TM) [2, 11]. The firs approach to
consider the vectorial nature of light was presented in [12] via a FD Crank—Nicolson
scheme. Even though the formulation framework was quite general, the applicability
was restricted only to planar straight waveguides. Since then, many full vectorial BPM
approaches based on the popular finite-di ference method (FDM) have been reported
[13—16]. Due to the inefficien discretisation associated with finit differences, the
FDBPM needs large computational resources, especially in simulating nonuniform
optical waveguides.

Due to its numerical efficien y and versatility, some full-vectorial BPM algo-
rithms have been formulated, based on the finite-elemen method (FEM) [17-21].
Polstyanko et al. [17] investigated the full vector finite-elemen BPM (FE-BPM)
with electric file formulation. However, Obayya et al. [21] formulated the vector
FE-BPM using the transverse magnetic fiel components. In [1], an efficien vector
FE-BPM for transverse anisotropic material was reported in terms of the transverse
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Figure 2.2 Schematic of three dimension optical waveguide.

magnetic-fiel components, with perfectly matched layer boundary conditions and
wide-angle approximation.

2.3 Maxwell’s Equations

Maxwell’s equations are a set of four partial differential equations which describe the
properties of the electric and magnetic field through the medium. In the frequency
domain, the propagation of electromagnetic waves through the waveguide, as shown
in Figure 2.2, is governed by Maxwell’s equations, which can be written as follows

VXE=—jouH 2.1
V x H = jweE (2.2)
V.(eE)=0 (2.3)
V.uH =0 (2.4)

where the vector quantities £ and H are electric and magnetic fiel vectors, respec-
tively, € = g9, and u = pou,. The quantities £ and p defin the electromagnetic
properties of the medium and are the permittivity tensor and the permeability of the
waveguide material, respectively. &9 = 8.854 x 107'? F/m is the permittivity of free
space and o = 4w x 1077 H/m is the permeability of free space. &, and p, are the
relative permittivity tensor and permeability of the waveguide material. In the absence
of the magnetic material, w, is set to unity.

2.4 Magnetic-Field Formulation of the Wave Equation

The total electromagnetic fiel that is supported by a waveguide can be expressed in
terms of only the electric or magnetic fiel components to produce wave equations. In
order to express the wave equation in terms of the magnetic fiel only, the electric fiel

is removed from the derivation by taking the curl of Equation (2.2) and substituting
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using (2.1). The vector wave equation for the magnetic fiel vector, H, can be written
as

Vx(e'VxH)—kH=0 (2.5)

where ky is the free space wave number kg = w’ €. The anisotropic material is
assumed to have one of its principal axes points in the direction of the waveguide.
Under this assumption [22], the permittivity tensor takes the form

e=¢08 =6 [&x &, O (2.6)
0 0 &,

For isotropic waveguides, &, = &,, = &.; and &, = &,, = 0. Using the vector
notation (V x (pA4) = Vo x A+ ¢V x A), the vector wave Equation (2.5) can be
rewritten as follows

V2H +kie,H = —&, ' Ve, x (V x H) (2.7

The transverse component of the vector wave Equation (2.7) can be obtained such
that

V2H, + k3e,H = —¢,' Vg, x (V; x H,) (2.8)

where the subscript ‘¢’ stands for the transverse components and &, is the transverse
component of the dielectric tensor and can be define such that

= _ [&xx Exy
= (8yx 5yy> 29

2.5 Electric-Field Formulation of the Wave Equation

The wave equation can also be expressed only in terms of the electric field In this case,
the magnetic fiel is removed from the derivation by taking the curl of Equation (2.1)
and substituting using (2.2). The vector wave equation for the electric fiel vector, E,
can be written as [3]

V2E 4 g, ki E = V(V.E) (2.10)
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The transverse component of (2.10) is given by

- AE.
V2E, + e.k2E, =V, <vt.E, + = ) (2.11)

Using Gauss’ law V.(¢,E) = 0, dE./dz can be calculated as follows

= €, JdE,
Vt-(grtEwt) +—E +é.—=0 (212)
0z 0z

9= F_ is much smaller than the other

If &, is slowly variant in the z-direction, then =

two terms in (2.12) and therefore one can obtain

IE. _—1_ =
~ —Vi(enEy) (2.13)

0z &z

Using Equations (2.11) and (2.13), the electric-field-dependen wave equation can
be derived as

- —1_ =
V2E, + e tE, =V, (v,.E, + —Vt.(e,,E,)) (2.14)

zz

2.6 Perfectly Matched Layer

To create a practical solver, the effects of the simulation boundaries should be
considered. Basic BPM and FEM boundary conditions set the fiel just outside the
simulation area to zero, simulating a perfectly conducting metal box. The PML [23]
is an artificia absorbing layer for wave equations, commonly used to truncate com-
putational regions in numerical methods to simulate problems with open boundaries,
especially in the FDM and FEM methods. The key property of a PML that distin-
guishes it from an ordinary absorbing material is that it is designed so that the waves
incident upon the PML from a non-PML medium do not reflec at the interface. This
property allows the PML to strongly absorb outgoing waves from the interior of a
computational region without reflectin them back into the interior.

The PML was originally formulated by Berenger in 1994 [23] for use with
Maxwell’s equations, and since that time there have been several related reformula-
tions of PML for both Maxwell’s equations and for other wave equations. Berenger’s
original formulation is called a split-fiel PML, because it splits the electromagnetic
field into two unphysical field in the PML region. A later formulation that has
become more popular because of its simplicity and efficien y is called uniaxial PML
or UPML [24], in which the PML is described as an artificia anisotropic absorbing
material. Although both Berenger’s formulation and UPML were initially derived
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by manually constructing the conditions under which incident plane waves do not
reflec from the PML interface from a homogeneous medium, both formulations were
later shown to be equivalent to a much more elegant and general approach: stretched-
coordinate PML [25, 26]. This approach uses a coordinate transformation in which
one (or more) coordinate is mapped to a complex number which is actually an analytic
continuation of the wave equation into complex coordinates, replacing propagating
(oscillating) waves by exponentially decaying waves. This viewpoint allows PMLs
to be derived for inhomogeneous media such as waveguides, as well as for other
coordinate systems and wave equations.

The wave equation for the magnetic fiel can be modifie to include the parameters
for the PML layers as follows

V x (kV x H) —IZH =0 (2.15)

where k = 1 /¢, and the del operator V in this case is define as

V:ﬁxax£+ﬁyay5+ﬁzazg =VT+ﬁzaza—Z (2.16)

with 7., @1, and i.are the unit vectors associated with the x-, y- and z-directions,
respectively, and «,, @, and o. are parameters associated with the PML boundary
conditions. Since the waves are assumed to propagate along the z-direction, the para-
meter o, is set to unity, while the other PML parameters have to be determined such
that the wave impedance of the PML layer placed around the computational domain
is exactly the same as that of the adjacent medium inside the computational domain.
Hence, the PML medium perfectly matches the computational domain medium, which
will allow the unwanted radiation to leave the computational domain freely without
any reflection The necessary condition can be derived as [19,23]

3rp? 1
=1—j In(— 2.17
Fy  dmndd " (R) @17)

where A is the wavelength, d is the thickness of the PML (kept constant in all
directions), # is the refractive index of the adjacent medium, p is the distance from
the inner PML interface, R is the reflectio coefficien and c is the free-space speed
of light. The parameters «, and «, are set in different regions as follows. Inside
the orthodox computational domain, both «, and «, are set to unity, while for PML
regions normal to the x-direction, a, is set as indicated in (2.17), while «,, is set to
unity, and the situation is reversed for PML regions normal to the y-direction. For
corners, both o, and «, are set as indicated in (2.17). With these PML arrangements
in different regions, any radiation wave will freely leave the computational domain
whatever the angle it hits the PML computational domain boundaries.
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2.7 Finite-Element Analysis

The finite-elemen method [27,28] is a numerical technique for findin approximate
solution of partial differential equations and integral equations. It can be used for
modelling a wide class of problems by breaking up the computational domain into
elements of simple shapes. For this purpose, suitable shape functions are used to
approximate the unknown function within each element. The approximating functions
are define in terms of fiel variables of specifie points called nodes. Therefore, in
the finite-elemen analysis the unknowns are the fiel variables of the nodes. Once the
fiel variables of the nodes are found, the fiel variables at any point can be obtained
by using the shape functions.

2.7.1 Types of Elements

The elements [27,28] can be classifie as 1D elements, 2D elements and 3D ele-
ments, as shown in Figure 2.3. The 1D and 2D elements are suitable for the analysis
of 1D and 2D problems, respectively. The three-noded triangular element is an im-
portant example of a 2D element, while the tetrahedron is the basic element for 3D
problems. The tetrahedron has four nodes, one at each corner, as shown in Figure 2.3(c)
[28].

In the finite-elemen analysis, the selected finit points at which basic unknowns
are to be determined are called nodes. The basic unknowns at any point inside the
element are determined by using approximating functions in terms of the nodal values
of the element. The nodes are either external or internal nodes. The nodes which occur
on the edge surfaces of an element are called external nodes, while internal nodes
occur inside an element. The nodes which occur at the ends of 1D elements or at the
corners in the 2D or 3D elements are also called primary elements. However, the nodes
which occur along the sides of an element, but not at the corners, are called secondary

nodes.
3 4
@
)
6—m——o
1 2
1 2 1 ® &) 2

(a) (d) (©

Figure 2.3 (a) 1D (b) 2D and (c) 3D elements.
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2.7.2  Shape Functions

The finite-elemen analysis is used to fin the fiel variables at the nodes. This can
be done by assuming that any point inside the element basic variable is a function
of values at nodal points of the element. The interpolation or approximating function
[28] is the one which relates the fiel variable at any point within the element to the
fiel variables of nodal points. This is also called shape function. Due to its simple
mathematical implementation, polynomial shape functions are commonly used. In
addition, any function can be well approximated by using polynomial shape functions.
The 1D polynomial shape function of nth order can be given by [28]

u(x) = oy +oox + ozx’ + - + op1x” (2.18)

However, a general form of the 2D polynomial shape function is given
by [28]

u(x,y) =o; +arx + a3y + asx? + osxy + oz6y2 +ogx3 4+ oy (2.19)
V(X,Y) = g1 + QpgoX + g3y + -+ 0 V" (2.20)

It is worth noting that the higher the order of the approximating polynomial, the
lower the error in the fina solution. In addition, it is required to get expansion
polynomials that yield the highest order of approximation with a minimum number
of unknowns associated with the element shape.

2.7.3  Galerkin’s Procedure

Galerkin’s method [28] is used for solving a set of differential equations specifie over
a region with specifi boundary conditions and is briefl explained in this section.
Assuming that the governing differential equation of a specifie region V takes the
following form

Lu)=P (2.21)

where L is a differential operator on a basic unknown u, the required value of # should
satisfy specifie values on the boundary of the region. If u is taken as approximate
solution, then the error £(x) at a point x is given by

E(x)= L(u)— P (2.22)
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where E (x) is the residual at point x. In order to get the required solution, the residual
relative to weighting function w; is set to zero, that is

%wi(LLT— P)YdV =0 fori=1ton (2.23)

v

There are different approaches, depending upon the selection of the weighting
function. In Galerkin’s method [28], Equation (2.23) is taken as

f Y(Lu—P)=0 (2.24)

where 1 is also chosen from the basis function used for constructing the approximate
solution function u. Let

U=y 0,G; (2.25)

i=1

where Q; is the basic unknown vector and G; are basis functions. G; are usually
polynomial in the space coordinates x, y and z. Then, in Galerkin’s method, the
weighting function ¢ is taken as

$=) VG (2.26)
i=1

In the above equation ¢; are arbitrary, except at the points where boundary condi-
tions are satisfied Since v is constructed similar to u, Galerkin’s method leads to a
simplifie method. Thus, in Galerkin’s method, the basis function G; is chosen and
¢; is determined inu = ) 0;G; to satisfy ¢ (Lu) — PdV = 0, where coefficien ¢;

i=1 v

are arbitrary except at specifie boundaries.

2.8 Derivation of BPM Equations
2.8.1 Slowly Varying Envelope Approximation

The slowly varying approximation assumes [15] that, since the simulation follows the
propagation of light in the structure, the optical fiel can be define in terms of its
envelope and rapid phase components, as shown in Figure 2.4 [4], that is

H(x,y,z) = h(x,y, z)e” /%" (2.27)
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Figure 2.4 Envelope and rapid phase of optical field

where h(x, y, z) = hr(x, y, z) + h.(x, y, z) is the magnetic field s envelope, 47 and
h, are the magnetic field s transverse and axial components, which are given by
hy = hyiiy + h,il, and h; = h_il., respectively. In addition, ny is the reference index
which is used to satisfy the slowly varying envelope approximation.

Using the divergence relation V.H = 0 and the wave equation (2.15), one can
obtain, after some mathematical treatments, the following vectorial wave equation in
terms of the transverse component [1]

= 0%h =0hy = = -
kaaTzT - ZVkaa—ZT —kyVr(Vrhr) = Vi X ke Ve X by + (ke + y?ka)hr
Oks Ohr ks Oh:

0z 0z T 0z 0z

=0 (2.28)

where y = jk,n,, l;a, Eb and I;C are the transverse tensors given by

| ko ke
k, = [_ ko ke ] (2.29)
. ok, =
ky =7y~ —k, (2.30)
dz  _
= ok,
ke =k*—y~! (2.31)
0z
Using the slowly varying approximation ‘ : 3hT H < |

simplifie to

= 9°h = oh = = =
ki = ket =k V1(Vrip) = Vi x keaVr  hy + (ke + v kohr = 0

(2.32)
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2.8.2 Paraxial and Wide-Angle Approximations

As shown in Equation (2.32), there is a second-order derivative to be solved in the
x-, y- and z-directions. The calculation of the second derivative in the z-direction is
difficult therefore a Padé approximation is used. The simplest method is to assume
that % ~ 0, which is called the Padé approximation of order zero. This approximation
is accurate when the envelope of the electric fiel changes slowly in the z-direction.
In addition, it can be used for waveguides which are weakly guiding. However, this
approximation is not accurate in the case of structures which guide the light at a large
angle to the assumed propagation direction. Therefore, a higher order of g—i is required,
which is called the higher-order Padé approximation (wide-angle situations).

In order to improve the accuracy of the calculation of the propagation of light at
large angles to the assumed propagation direction, an approximation of % should be
taken into account. However, the memory requirement and computational time for
the simulation are increased.

2.8.3 Discretisation by the Finite-Element Method

The FEM is applied to the transverse variation of Equation (2.32) and the cross section
of the computational domain €2 is divided into N e/ triangles with unknowns N, over
the corresponding nodes. In addition, a set of Lagrangian polynomial basis functions
of firs or second order {l/fj} ,j =1,..., N, are introduced. Moreover, A7(x, y, z) is
defined such that [1]

Npx Np
hr(e,p,2) =Y hy@W;(e. Vi + Y by (@ (x, p)iy (2.33)

j=1 =N+l

where the coefficient 4,; and A,; are the unknown fiel values on the partition nodes.
Then Equation (2.32) can be rewritten in a matrix form, as follows

32{hT} a{hT}

[M] 572 —2y[M] + (K1 + v’ [M]){h7r} = {0} (2.34)
z 0z

Where {/r} represents a column vector containing the unknowns #,; and 4,;, {0}
is the null column vector and [M] and [K] are the global matrices, given by [1]

[M];; = /l?a‘/qu-lzz'dﬁ (2.35)

Q

[K]ij =— /(lzzvr X 1;J‘)-(VT X P)d 2 + /(VT X &j)vT-(]?br‘Zi)dQ
Q Q

— %(VT.%)(IZ%).ﬁdﬂ—i-/lzlzj.%dQ (2.36)
Q2

Q
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where ()T denotes the transpose operation, dS2 introduces all boundaries over the
cross-sectional domain €2, 71 is the outward normal unit vector linked to those bound-
aries and

Y =yji (2.37)

where @ =i, forj=1,...,N,, and 4 =4, forj=N, +1,...,N,.
Matrices [M] and [K] can also be expressed as a summation of element matrices
linked to the x and y coordinates, over all elements e as follows [1]

< (Mg [Mmg)]
M] = . . 2.38
M Z |:[Myx] [Myy] ( )
< [1&e] [K8]
K] = . . 2.39
K] Z |:[ny] [Kyy] ( )
where
[M5,] = k5, [S1] (2.40)
[M:,] = —k;, [S7] (2.41)
[M;,] = =k, [S7] (2.42)
[M5,] = ki [5F] (2.43)
[K;x] = ika[ ] O{)%k;xx [Sg] — 0yl bxy[Se]
- ‘XX(kbxxnx + k/ixyn;)[l‘élz] + ksxx [Sle] (244)
[K5,] =~ KE.[55] — cwry ki [ 5] — ok, 5]
-y (kbxxnx + k;xyn)e/) [Lg] + kixx [Sle] (245)
[Kye ] axayke [ e]T - O‘?kgyx [Sf] B axayk;yy [SX]
— o (kfyon§ 4 ki n$) (L] + kG [ SF] (2.46)
[K5,] = —oke [S5] — avarn ki, [S5] — ek, [S5]
Oy (kbyxni + kgyyn;)[ ] + kgyy [Sle] (2.47)

where kI, k., and k], are the average values of the components k,_, k, andk,.,

respectively over the element e. The sub-indexes (r, s) are the coordinate pair
(x, v) and sub-index / represents b or c¢. In addition, the auxiliary element matrices
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[Sf,2,3,4] and [Li,z] are taken as

[S] =/{we}{we}TdS2 (2.48)
Qe
9 er 9 e\T
[T o
Qe
a{yeyafyey’
[55] =/— e (2.50)
P
9 erv gy e\T
[Sj]:/ {aﬁ} {‘aﬂx} dQ (2.51)
QL’
8 e\T
[25)= [ e ae @52)
Q¢
G
[L5] = [ (v} dr (2.53)
e

where {1/¢} represents a column vector containing the corresponding shape functions.
In addition, ©2¢ and 0€2¢ are the element’s area and boundary respectively and n{ and
n’, are the x and y components of the outward normal unit vector, respectively, linked
to 9Q2°.

Assuming the Padé approximation, Equation (2.34) can be transformed into the
following matrix equation

~ _d{h
N 1K) = (0 (.54
where
~ 1
(1) = (M) = 50K + 2 [M1) 2.53)

The 6-finite-di ference equation can be obtained as
([(M(2)] + 0 Az[K (2)Dh7(z + Az)} = ((M(2)] — (1 = 0)Az[K(2)Dihr(2)}  (2.56)
where Az is the step size along the propagation direction. Equation (2.56), for trans-

verse magnetic fields can be solved by an iterative procedure to get the required
magnetic fields At each iteration step, a matrix equation can be solved by employing



22 Computational Photonics

the ORTHOMIN algorithm [29]. The parameter 6 is introduced to control the scheme
used to solve the finit difference equations. This scheme is unconditionally stable if
0 >0.5.

2.9 Imaginary-Distance BPM: Mode Solver

For modal solution purposes, the imaginary-distance full-vectorial FE-BPM scheme
proposed in [5] is extended further to fully treat the vectorial complex modes, that is,
for the £th mode whose effective index and fiel distribution are assumed to be 7.4,
and {4}, respectively. By relaxing the derivative terms in Equation (2.34) to zero,
the following modal analysis matrix equation for the £th mode can be written as

[K1{he i} = =y [M1{h,1) (2.57)

Following the kth propagation step, and using Equations (2.56) and (2.57), the fiel
distribution of the £th mode yields

=2y — 0.5Azk; (n2;, — n3)
=2y + 0.5Azk? (nz_m,Z —n2)

o

{he it = {hi i}k (2.58)

Assuming that there exist m modes (including radiation modes) in the waveguide,
the propagating field {4}, at the kth propagation step can be written as

(hide =Y Coxlhes) (2.59)
=1

where Cy is the complex amplitude of the £th mode at the kth propagation step. If
the propagation step size, Az, is selected as

(2.60)

then, for a sufficientl large number of propagation steps, {4,}; will converge to the
£th mode eigenvector {A,;}; and its effective index, 7., can be obtained using

n2 _ {ht};[K]k{hl}k
DR 2 b Y MR

2.61)

at the kth propagation step, where the symbol ( )* denotes complex conjugate and
transpose. However, at the start of propagation the value of the effective index of the
desired mode is not known, this being required to determine the step size Az using
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Equation (2.60). So, at the beginning, Az is calculated with the effective index taken
as the largest index of refraction in the structure and, with the iterative adaptation
at each propagation step, the propagating fiel and the calculated effective index are
eventually seen to be converging to the desired mode. The value of the reference index
of refraction, ny, may be arbitrarily chosen. However, ng is chosen as the smallest
index of refraction in the structure so as to make the imaginary part of the complex
step size always positive, and as a result, convergent propagation toward the desired
mode is achieved. Using the above procedure, an arbitrary starting field {A,};, will
converge to the fundamental TE or TM mode depending on whether it is polarised
in the y- or x-directions, respectively. However, to calculate one of the higher-order
modes, such as the ith mode, all the lower-order modes (i — 1) should be filtere out
from the spectrum of the starting field to yield

i—1

thihtnew = thidi =)

=1

{h ) [M]{h:h

—{h 2.62
e MGy e (2-62)

Thus, using Equation (2.62) as a new starting field the propagating fiel will
converge to the desired ith-order mode without converging to any of the lower-order
modes.
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3

Assessment of the Full-Vectorial
Beam Propagation Method

3.1 Introduction

In this chapter, the numerical precision of the vectorial finite-elemen beam pro-
pagation method (VFEBPM) is demonstrated through the analysis of a single op-
tical waveguide [1], a rectangular directional coupler, an electro-optic modulator
and switches. In addition, a comparison between the VFEBPM and the Marcatili
analytical approach [2] is investigated thoroughly. The different modal properties
of the photonic crystal fibr (PCF) [3,4] is also examined, using the imaginary-
distance full-vectorial finite-elemen beam propagation method (IDVFEBM) [4].
Moreover, the liquid-crystal PCF [5] and its application to polarisation rotator is
introduced.

3.2 Analysis of Rectangular Waveguide
3.2.1 Effect of Longitudinal Step Size

To assess the numerical precision of the proposed VFEBPM, it is firs applied to a
single rectangular guide [1] shown in the inset of Figure 3.1. The refractive index of
the core, ng, is taken as 3.26, while that of the substrate, ny, is fxed to 3.20 at the
operating wavelength of 1.3 um. In all simulations, the width of the perfectly matched
layer (PML) is taken as 1.0 pum, the theoretical reflectio coefficient R, as 107!, and
the reference refractive index, ng as the mean value of the core and substrate indexes.
The rectangular waveguide cross section is represented by 7200 first-orde triangular
elements. The waveguide is launched with the fundamental transverse electric (TE) or
transverse magnetic (TM) modal fiel profile obtained from the vector finite-elemen
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Figure 3.1 Effect of the propagation step size on nonphysical power loss for both TE and
TM waves. The inset is a schematic diagram of the rectangular guide under consideration.
(Reproduced with permission from Obayya, S.S.A., Rahman, B.M.A. and El-Mikati, H.A.
(2000) New full vectorial numerically efficien propagation algorithm based on the finit
element method. [EEE J. Lightwave Technol., 18 (3), 409—415. (C) 2000 IEEE.)

method (VFEM) [6]. Figure 3.1 shows the effect of the propagation step size, Az,
on the level of numerical dissipation for the two polarised modes, TE and TM. The
time taken for each simulation point in Figure 3.1 is around 10 min using a SUN 4/85
Workstation. It is suspected that some stable numerical algorithms may not conserve
the propagating beam power. However, it is revealed from Figure 3.1 that for the
range Az < 2.0 um, the nonphysical power loss is less than 0.000 02 dB/mm for both
polarised modes. Therefore, the proposed VFEBPM can be regarded as a stable and
power-conserving technique as well.

Next, the capability of the proposed VFEBPM as a ‘mode solver’ is investigated.
Initially, an arbitrary initial fiel is launched into the considered rectangular wave-
guide, and allowed to propagate along the imaginary axis. The fundamental TE or
TM mode is then evolved [7].

To test the accuracy of the solution, a simple rectangular spatial pulse with a sharp
step rise is launched into the waveguide. For TE excitation, the fiel profil of its
dominant A, component at z = 50 um is shown in Figure 3.2. This fiel profil
resembles the fundamental TE mode after propagating a relatively short distance of
50 um. The variation of the effective indices, n. = B/k, where B is the mode
propagation constant, for both TE and TM modes with the imaginary propagation
distance are also calculated. The effective indices for the TE and TM modes are found
tobe 3.241 25 and 3.241 21, respectively, after propagating a distance of around 40 pum
along the imaginary axis.
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Figure 3.2 The fundamental component /1, fiel profil for the quasi-TE mode at z =
50 um. (Reproduced with permission from Obayya, S.S.A., Rahman, B.M.A. and El-Mikati,
H.A. (2000) New full vectorial numerically efficien propagation algorithm based on the finit

element method. JEEE J. Lightwave Technol., 18 (3), 409—415. (C) 2000 IEEE.)

The same fundamental TE and TM modes have also been rigorously solved by using
the VFEM [6] with 12 800 first-orde triangular elements to discretise the waveguide
cross section. The variation of the percentage errors in calculating the TE and TM
effective indices using the VFEBPM are shown in Figure 3.3. It is revealed from this
figur that the percentage errors were only 0.0012 and 0.0018% for the TE and TM
modes, respectively. This proves the accuracy of the proposed VFEBPM approach.
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Figure 3.3 Variation of the errors in the ney calculation of the fundamental TE and TM
modes with the longitudinal imaginary distance. (Reproduced with permission from Obayya,
S.S.A., Rahman, B.M.A. and El-Mikati, H.A. (2000) New full vectorial numerically efficien
propagation algorithm based on the finit element method. IEEE J. Lightwave Technol., 18

(3), 409-415. (©) 2000 IEEE.)
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Figure 3.4 Effect of the transverse mesh divisions on the coupling lengths of TE and TM
waves. The inset is a schematic diagram of the directional coupler under consideration. (Re-
produced with permission from Obayya, S.S.A., Rahman, B.M.A. and El-Mikati, H.A. (2000)
New full vectorial numerically efficien propagation algorithm based on the finit element
method. IEEE J. Lightwave Technol., 18 (3), 409-415. (C) 2000 IEEE.)

3.2.2  Analysis of Rectangular Directional Coupler

The inset of Figure 3.4 shows a simple rectangular directional coupler consisting
of two vertically coupled rectangular guides. The core index, ng, and the substrate
index, ny, of the directional coupler are taken as 3.26 and 3.20, respectively, and the
waveguide separation, S, is fxed at 0.8 um. In addition, the operating wavelength
is equal to 1.3 um. The effect of the transverse mesh divisions on the two polarised
modes, TE and TM, polarised waves is firs studied. Initially, one of the guides with its
isolated TE or TM fundamental modal fiel profil is launched. The coupling length
can be define as the minimum distance at which a maximum power transfer between
the guides occurs. The effect of transverse mesh divisions on the coupling length for
both TE and TM polarised waves is shown in Figure 3.4, where N is the number of
divisions in either the x- or y-directions. In this case, Az is taken as 0.5 pm. It is
evident from Figure 3.4 that for N > 45, the coupling lengths settle to 357 um and
353 um for TE and TM polarised waves, respectively. For N = 60, in both transverse
directions, the effect of Az on the coupling length for both TE and TM polarised
waves is shown in Figure 3.5. As shown from this figure the coupling lengths for the
two polarised waves are nearly constant for Az < 1.0 um.

In order to test the accuracy of the VFEBPM in calculating the coupling length,
the same directional coupler structure has also been analysed using the VFEM
[6] with 12 800 first-orde triangular elements. The coupling length L. can be
calculated using the propagation constants of the even and odd supermodes obtained by
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Figure 3.5 Effect of the propagation step size (Az) on the coupling lengths of the TE and TM
waves. (Reproduced with permission from Obayya, S.S.A., Rahman, B.M.A. and El-Mikati,
H.A. (2000) New full vectorial numerically efficien propagation algorithm based on the finit
element method. IEEE J. Lightwave Technol., 18 (3), 409-415. (C) 2000 IEEE.)

the VFEM, as follows

T
Le=—— 3.1
=5 G.1)

where §° and B° are the propagation constants of the even and odd supermodes,
respectively. For this coupler, the coupling lengths obtained by using the VFEM
are 356.2 and 354.2 um for TE and TM polarisations, respectively. The percentage
difference between the coupling length results obtained using the VFEBPM and the
VFEM are 0.22 and 0.34% for TE and TM polarisations, respectively, which shows
the high numerical accuracy of the newly developed VFEBPM in calculating the
coupling length for both TE and TM polarisations.

3.2.3  Effect of Structure Geometrical Parameters

The effect of varying the waveguide separation, S, and the core index, n,, of the
rectangular directional coupler, shown in the inset of Figure 3.4, is also considered.
Figure 3.6 shows the variation of the coupling length of the two polarised modes
with the separation, S, at different core index values. In all cases, it may be noted
that the coupling lengths for TE and TM increase exponentially (linear for a semi-
log scale) with increasing S. For lower core indices, cases ‘a’, ny = 3.26 and ‘b’,
ng = 3.3, the polarisation effect on the coupling length is negligible. However, for case
‘c’, ng = 3.4, the coupling length for TM is relatively higher than its TE counterpart.
These features, related to the polarisation effect on the coupling length, cannot be
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Figure 3.6 Variation of TE and TM coupling lengths with the waveguide separation (S)
and the index difference (An) as a parameter. (Reproduced with permission from Obayya,
S.S.A., Rahman, B.M.A. and El-Mikati, H.A. (2000) New full vectorial numerically efficien
propagation algorithm based on the finit element method. /EEE J. Lightwave Technol., 18
(3), 409-415. (C) 2000 IEEE.)

accurately predicted using less accurate scalar BPM algorithms. In all cases, the TE
and TM coupling lengths have been recalculated using the VFEM with 12 800 first

order triangular elements and the differences between these results and those obtained
using the VFEBPM are always less than 0.8%. It is worth noting that the accuracy of
the solutions may be improved by using a fine mesh discretisation.

3.2.4 FV-BPM Versus Analytical Marcatili’s Approach

The Marcatili [2] analytical approach is a simple method to calculate the effective
refractive index of a channel waveguide. In addition, it can be used for studying the
coupling coefficient of a simple channel directional coupler. Figure 3.7 shows a cross
section of the rectangular directional coupler studied by Marcatili [2]. The coupler
cross section is sub-divided into areas of refractive indices from n; to ns. In the vth
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Figure 3.7 Coupler cross section sub-divided for analysis.
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medium (v = 1, 2, 3, 4, 5), the refractive index is 7, and the propagation constants
kyv, kyy, k- are related by

k4, + k2 = o’eunl =k (3.2)

where £ is the axial propagation constant, while k., and k,, are the transverse propa-
gation constants in medium v along x and y directions, respectively. The propagation
constant k, of a plane wave in a medium of refractive index n, can be computed by
k, = 27/M)n,. Marcatili [2] observed that most of the power travels in region 1, a
small part travels in regions 2, 3, 4 and 5, and even less travels in the six shaded
areas. Therefore, the refractive indices in the six shaded areas are not specified The
coupling length L. can also be calculated from [2]

T Zk_fés exp(—c/$s)

- 22 33
e ha 11k 3-3)

where a is the width of the two cores of refractive index, n;, ¢ is the distance between
the two cores and &3 and &5 measure the penetration depths of the fiel components
in media 3 and 5.

For the TM modes of the fundamental component, E,, where the sub-indexes p
and ¢ indicate the number of extrema each component has within the guide, ., &, k.
can be given by [2]

Az + A5\ 7!
kxzﬂ<l+$> (3.4)
a Ta
2 2 -1
qm n2A2+n4A4>
k =—(1+— (3.5)
7 b nn%b
— _o\ 1/2
P2 A+ 45\ /qm\? n3ds +nld,
k=2 — (= 1+ — —(— 1+ =
(1 (a)(+ Ta ) (b> * nn?b
(3.6)

where 4,3 45 are define such that

Az 345 = 3.7)
) 2 )1/2

In addition, &35 can be calculated by

&35 = —— (3.8)

2
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For the TE modes, E7_, k., k,, k. can be given by [2]

pq’
245+ n2ds\ "
kxzﬂ(w—’“ s 5) (39
a nnla
T Ay + A\
ky = ‘% (1 n %) (3.10)
_ _ 1/2
) P2 n§A3+n§A5 z q\2 Ay + Ay 2
= (e ) (1
a nnla T
(3.11)
In addition, &3 5 are define such that
7= =172
A A 1
fy5= 22 |1 - | 2532 (3.12)

a - n§A3 +n§A5
2
mnia
We will now compare the results of the VFEBPM and the Marcatili analytical ap-
proach [2] and those reported by Kumar et al. [8]. A more accurate analysis than the
Marecatili approach [2] has been made in [8], taking the effect of the corner regions
into account through first-orde perturbation theory. In the comparison, a simple rect-
angular directional coupler, as shown in the inset of Figure 3.8, is used. The coupling

10
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Figure 3.8 Variation of coupling length L. as a function of wavelength for a rectangular core
directional coupler witha =b =c¢ = 2.0 um.
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length L, for Ely | 1s calculated with the parameters, ny = 2.211,n, = 1.0, n3 = ny =
ns =22 and a = b = ¢ = 2.0 um. Figure 3.8 shows the variation of the coupling
length as a function of the wavelength. It is evident from this figur that the results
of Marcatili’s approach are larger than those reported by [8] and the VFEBPM. In
Marcatili’s approach [2], the powers in the shaded areas are neglected. In addition,
Kumar et al. [9] showed that Marcatili’s results for a rectangular directional cou-
pler can be improved by taking the effect of corner regions into account. Moreover,
they demonstrated that Marcatili’s approach is not accurate for small values of depth
of channel waveguides [8]. Also, Kuznetsov [10] reported that the expressions of
Marcatili overestimate the coupling coefficient especially in the weaker guiding
cases, by as much as a factor of 2.

3.3 Photonic Crystal Fibre

Figure 3.9 shows a schematic diagram of a photonic crystal fibr (PCF), consisting
of two rings of arrays of air holes arranged in a silica substrate whose refractive
index is taken as 1.45 at a wavelength of 1.55 um, and where d is the hole diameter
and A is the hole pitch. Owing to the symmetry of the structure along both the x-
and y-directions, only one quarter of the structure has been represented using 16 200

silica
o O o o

" | ! IW

Figure 3.9 Schematic diagram of a two-ring PCF of 18 air holes. (Reproduced with per-
mission from Obayya, S.S.A., Rahman, B.M.A. and Grattan, K.T.V. (2005) Accurate finit
element modal solution of photonic crystal fibres Optoelectron. IET Proc., 152 (5), 241-246.
(©) 2005 IET.)
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first-orde triangular elements. In all the simulations, the computational window area
L./2 x L,/2 has been taken to be 10 pm x 10 pm, and this has been terminated by
a PML whose width, #, is 1.0 um and split into fi e divisions, where the theoretical
reflectio coefficient R, is set to 108, The parameters o, and a, are set in different
regions as follows. Inside the orthodox computational domain, both «, and «,, are set
to unity, while for PML regions normal to the x-direction, «, is set, as indicated in
Equation (2.17), while «,, is set to unity, and the situation is reversed for PML regions
normal to the y-direction. For corners, both «, and «,, are set as indicated in Equation
(2.17). Only the fundamental H;, mode has been considered, as it is degenerate with
the H', mode, owing to the rotational symmetry of the structure.

3.3.1 Effective Index of Modes

The variation of the real part of the complex effective index of a two-ring PCF with
the hole pitch, A, at different d/A ratios is shown in Figure 3.10 [4]. It is evident from
this figur that the effective index of the fundamental mode increases monotonically
with increasing hole pitch, A, or decreasing d/A. Figure 3.11 shows the fiel profile

of the dominant H, component of the fundamental /;, mode for a hole pitch value of
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Figure 3.10 Variation of the effective index of a two-ring PCF with the hole pitch, A, with
d/A as a parameter. (Reproduced with permission from Obayya, S.S.A., Rahman, B.M.A.
and Grattan, K.T.V. (2005) Accurate finit element modal solution of photonic crystal fibres
Optoelectron. IET Proc., 152 (5), 241-246. (C) 2005 IET.)
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Figure 3.11 The dominant H,, fiel distributions of the fundamental TE mode for a hole pitch
value of 1.8 um and two different values of d/A: (a) d/A = 0.8 (b) d/A = 0.6. (Reproduced
with permission from Obayya, S.S.A., Rahman, B.M.A. and Grattan, K.T.V. (2005) Accurate
finit element modal solution of photonic crystal fibres Optoelectron. IET Proc., 152 (5),
241-246. (C) 2005 IET.)

1.8 um and two different values of the d/A ratio, 0.6 and 0.8. It is revealed from this
figur that the dominant H, fiel component is more confine in the core region at
d/A = 0.8 than its counterpart at d/A = 0.6. Such a confinemen feature of the mode
to the core region is directly linked to how much the mode is ‘leaking’ into the outer
air-hole region. This effect can be shown more clearly by inspecting quantitatively
the variation of the confinemen loss with the hole pitch for different values of the
d/ A ratio.

3.3.2 Losses

The confinemen loss of the fundamental mode can be computed from the imaginary
part of the complex effective index ns

Confinemen Loss (dB/m) = 8.686 x 10° x k, x Im(n.f) (3.13)

where Im(n.) stands for the imaginary part. Figure 3.12 shows the variation of the
confinemen losses of a two-ring PCF with the hole pitch, A, at different d/ A ratios. As
may be noted from Figure 3.12, the confinemen loss decreases rapidly with increasing
hole pitch A or the ratio d/A. At d/A = 0.9, as the hole pitch A increases from 1.0
to 1.8 pum, the confinemen loss drops from a value of nearly 3100 to 0.023 dB/m,
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Figure 3.12 Variation of the confinemen losses of a two-ring PCF with the hole pitch, A,
with d/A as parameter. (Reproduced with permission from Obayya, S.S.A., Rahman, B.M.A.
and Grattan, K.T.V. (2005) Accurate finit element modal solution of photonic crystal fibres
Optoelectron. IET Proc., 152 (5), 241-246. (C) 2005 IET.)

respectively. Similarly when A = 1.8 pum, the confinemen loss reaches a peak of
nearly 221 dB/m as the ratio d/A is decreased from 0.9 to 0.6.

Next, for three rings of 36 air holes and four rings of 60 air holes, the variations
of the confinemen loss with the hole pitch, A, with the ratio d/A as a parameter are
shown in Figures 3.13 and 3.14, respectively. It can be observed from these figure that
the confinemen loss can be improved by using a bigger hole pitch, A, and/or a bigger
value of d/A (i.e. wider air holes). In addition, the confinemen loss can be decreased
significantl by increasing the number of rings of air holes. In this case, by increasing
the number of air holes, the mode tends to become more confine to the core region.
It is also worth noting that the variations of the effective index with the hole pitch,
A, with the ratio d/A taken as a parameter are almost independent of the number
of rings. The confinemen loss results for two and three rings of air holes obtained
here using IDVFEBPM are in excellent agreement with their counterparts obtained
in [11], using the vector edge elements, and in [12], using the multipole method. The
difference between the confinemen loss results obtained using the IDVFEBPM and
both the multipole and edge-element methods is less than 0.1%. However, the present
IDVFEBPM is formulated in terms of only two transverse magnetic-fiel components.
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Figure 3.13 Variation of the confinemen losses of a three-ring PCF with the hole pitch, A,
with d/A as parameter. (Reproduced with permission from Obayya, S.S.A., Rahman, B.M.A.
and Grattan, K.T.V. (2005) Accurate finit element modal solution of photonic crystal fibres
Optoelectron. IET Proc., 152 (5), 241-246. (C) 2005 IET.)

Therefore, it should be more efficien numerically than the edge-element method that
employs three electric-fiel components [11].

3.3.3  Effective Mode Area

The effects of the hole pitch, A, and the ratio d/A on the effective mode area are now
studied. The effective mode area, 4., 1S related to the effective area of the fibr core
area, which is computed using [13]

2
(ffwdxdy)
Aoy = —2 3.14
T T, dx dy G-19
Q

where H; is the transverse magnetic fiel vector and €2 is the area enclosed within
the computational window. Figure 3.15 shows the variation of the effective mode
area, Ag, of a four-ring PCF with hole pitch, A, at different d/A ratios. It is quite
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Figure 3.14 Variation of the confinemen losses of a four-ring PCF with the hole pitch, A,
with d/A as parameter. (Reproduced with permission from Obayya, S.S.A., Rahman, B.M.A.
and Grattan, K.T.V. (2005) Accurate finit element modal solution of photonic crystal fibres
Optoelectron. IET Proc., 152 (5), 241-246. (C) 2005 IET.)

interesting to note that the effective mode area for a PCF can be tailored easily to suit
different applications. For example, a large mode area can be useful in high power
transmission with less fibr nonlinearity effects [14]. Alternatively, small mode areas
can suit applications where exploitation of enhanced fibr nonlinearity is needed. As
may be seen from Figure 3.15, there is a certain range of hole pitch, A, for which the
effective mode area, A, steadily increases with A ; for example, when the ratio d/A =
0.6, the effective mode area steadily increases with tincreasing A, when it is larger
than 1.0 um. However, the effective mode area, A, rapidly becomes large as the hole
pitch becomes slightly less than 1.0 um. The same effect can also be observed with
d/IA=0.7.

In order to explain this sudden expansion in A, the ‘cutoff’ conditions of the fun-
damental mode require analysis. The fundamental mode reaches the cutoff line when
its effective index becomes equal to the cladding effective index of the fundamental
space-fillin mode (FSM) [15].

The FSM is define as the fundamental mode propagating in an infinitel periodic
array of air holes with no central defect. In this case, only one periodic cell with
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Figure 3.15 Variation of the mode effective area, 4., of a four-ring PCF with the hole
pitch, A, at two different values of d/A ratio, 0.6 and 0.7. (Reproduced with permission from
Obayya, S.S.A., Rahman, B.M.A. and Grattan, K.T.V. (2005) Accurate finit element modal
solution of photonic crystal fibres Optoelectron. IET Proc., 152 (5), 241-246. (C) 2005 IET.)

the appropriate electric and magnetic wall boundary conditions applied, as shown
in Figure 3.16, has been considered using the IDVFEBPM. Figure 3.17 shows the
variation of the effective indices of the fundamental mode propagating in our PCF,
netr, and the FSM (without central defect), npsyv, with the hole pitch, A, for two
values of the ratio d/A. As may be noted from this figure the fundamental mode
reaches the cutoff when the hole pitch is below 1.0 and 0.8 um for d/A = 0.6 and 0.7,
respectively. Therefore, as the fundamental mode approaches the cutoff, its effective
mode area, A, tends to extend to the outer regions of the air holes, which explains the
significan increase in 4. in these ranges of the hole pitch, A. For a curved PCEF, it is
not recommended to a use large hole pitch, A, to achieve a large mode effective area,
as the radiation losses increase in proportion to A3 [15]. Therefore, it is particularly
interesting to exploit the behaviour of the effective mode area near the cutoff hole
pitch in the design of a curved PCF with a large 4.¢ and keep the radiation losses at
moderate levels.
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Figure 3.16 Schematic diagram of a unit cell of the infinitel periodic PCF considered in the
FSM mode calculation. (Reproduced with permission from Obayya, S.S.A., Rahman, B.M.A.
and Grattan, K.T.V. (2005) Accurate finit element modal solution of photonic crystal fibres
Optoelectron. IET Proc., 152 (5), 241-246. (C) 2005 IET.)
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Figure 3.17 Variation of the effective index of the fundamental mode, n.g, and the FSM
mode, ngsyp, of a four-ring PCF with the hole pitch, A, and two values of d/A. (Reproduced
with permission from Obayya, S.S.A., Rahman, B.M.A. and Grattan, K.T.V. (2005) Accurate
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3.3.4 Dispersion

Finally, the chromatic dispersion of the PCF is considered. The chromatic dispersion
D of a PCF may be calculated using

3 9*[Re(ne)]

D =
c oAz

(3.15)

where Re stands for the real part and ¢ is the speed of light in free space. The dispersion
is determined easily using the formula given in (3.15) once the dependence of the
effective index on the wavelength A is determined. The second-order derivative in
(3.15) has been approximated using a central finit difference formula. Also, the silica
material dispersion, using the formulae given by Sellmeier in [16], has been included
in the computations. For four rings of 60 air holes, Figure 3.18 shows the wavelength
dependence of the refractive index of the silica material and also the effective index
of the fundamental mode for different values of d/A. It may be noted from this figur
that the effective index steadily decreases as the wavelength is increased. Therefore,
it is evident that at shorter wavelengths the mode tends to be more confined while at
longer wavelengths the mode becomes less confine to the core region.
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Figure 3.18 Variation of the effective index of a four-ring PCF with the wavelength when the
hole pitch, A, is 1.0 um, with d/A as parameter. (Reproduced with permission from Obayya,
S.S.A., Rahman, B.M.A. and Grattan, K.T.V. (2005) Accurate finit element modal solution
of photonic crystal fibres Optoelectron. IET Proc., 152 (5), 241-246. (C) 2005 IET.)
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Figure 3.19 Variation of the chromatic dispersion of a four-ring PCF with the wavelength
when the hole pitch, A, is 1.0 um with d/A as parameter. (Reproduced with permission from
Obayya, S.S.A., Rahman, B.M.A. and Grattan, K.T.V. (2005) Accurate finit element modal
solution of photonic crystal fibres Optoelectron. IET Proc., 152 (5), 241-246. (C) 2005 IET.)

Figure 3.19 shows the dispersion, D, for a four-ring PCF with A = 1.0 um at
three different values of d/A. In addition, the dispersion, for a four-ring PCF with
d/A = 0.9 at different values of the hole pitch, A, is shown in Figure 3.20. As may
be observed from these figures the peak value of the dispersion strongly depends on
d/ A rather than the hole pitch, A, itself. It can be also noted from these figure that
the zero dispersion point can be obtained at the desired wavelength by changing the
geometrical parameters of the PCF.

3.4 Liquid-Crystal-Based Photonic Crystal Fibre
3.4.1 Design

Figure 3.21 shows a cross section of a triangular lattice soft glass nematic liquid-
crystal-based PCF [5] (NLC-PCF) whose cladding holes have been infiltrate with a
nematic liquid crystal (NLC) of type E7. All the holes have the same diameter d and
are arranged with a hole pitch, A. The NLCs used are anisotropic materials consisting
of rod-like molecules which are characterised by ordinary index n, and extraordinary
index n.. Moreover, the local orientation of the NLCs, as shown in Figure 3.21, is
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Figure 3.20 Variation of the chromatic dispersion of a four-ring PCF with the wavelength
when the hole pitch, d/A, is 0.9 um, with the hole pitch, A, as parameter. (Reproduced with
permission from Obayya, S.S.A., Rahman, B.M.A. and Grattan, K.T.V. (2005) Accurate finit
element modal solution of photonic crystal fibres Optoelectron. IET Proc., 152 (5), 241-246.
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Figure 3.21 Cross section of an NLC-PCF sandwiched between two electrodes and sur-
rounded by silicone oil. The director of the NLC is shown at the right. (Reproduced with
permission from Hameed, M.F.O., Obayya, S.S.A. and Wiltshire, R.J. (2010) Beam propaga-
tion analysis of polarization rotation in soft glass nematic liquid crystal photonic crystal fibers
IEEE Photon. Technol. Lett., 22 (3), 188—190. (C) 2010 IEEE.)



44 Computational Photonics

described by the director, which is a unit vector n along the direction of the average
orientation of the molecules.

Under the application of a static electric field the director’s orientation can be
controlled, since the liquid crystal molecules tend to align their axes according to the
applied field This can be achieved successfully with better fiel uniformity over the
fibre s cross section, as described by Haakestad et al. [17]. In [17], the fibr is placed
between two pairs of electrodes, allowing for the arbitrary control of the alignment
of the NLC director via an external voltage, as shown schematically in Figure 3.21.
In addition, two silica rods of appropriate diameter are used to control the spacing
between the electrodes, and the fibr is surrounded by silicone oil, which has higher
dielectric constant than air. Therefore, the external electric fiel will be uniform across
the fibr cross section, which results in good alignment of the director of the NLC.
In addition, the nonuniform electric-fiel region will be at the edges, away from the
core regions, thus having little effect on the performance of the proposed fibre Other
layouts, such as those described in [18, 19] can also be used to ensure better fiel
uniformity over the fibre s cross section.

The ordinary n, and extraordinary 7. indexes of the E7 material were measured by
Li et al. [20] at different visible wavelengths over a temperature range of 15 to 50 °C
with steps of 5 °C. Then the Cauchy model was used to fi the measured n, and 7.,
which can be described as follows [20]

B. C

ne = Ae + ﬁ + F (3.16)
B, C

ny = A0+7§+TZ (3.17)

where 4., B, Ce, Ao, B, and C,, are the coefficient of the Cauchy model. The Cauchy
coefficient at 7 = 25 °C are 4, = 1.6933, B, = 0.0078 um?, C. = 0.0028 pum®*,
Ay = 1.4994, B, = 0.0070 pm? and C, = 0.0004 pm*. The variation of n, and n, of
the E7 material with wavelength at different temperatures 7" from 15 to 50 °C with
steps of 5 °C is shown in Figure 3.22. It is evident from this figur that #. is higher
than n, at the measured temperature values within the reported wavelength range. In
the proposed design, the relative permittivity tensor &, of the E7 material is taken as
[21]
nisin’ ¢ +ncos’yp (n2—n2)cosgsing 0
g = | 12 —n)cospsing nicos’p +nisinfp 0 (3.18)
0 0 ng
where ¢ is the rotation angle of the director of the NLC, as shown in Figure 3.20.
The in-plane alignment of the NLC can be exhibited under the influenc
of appropriate homeotropic anchoring conditions [21, 22]. Haakestad et al. [17]
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Figure 3.22 Variation of n, and n. of E7 material with wavelength at different temperatures,
T, from 15 to 50 °C with steps of 5 °C. The solid line with closed circles represents the
variation of the refractive index of SF57 material, nsgs7, with the wavelength. (Reproduced
with permission from Hameed, M.F.O., Obayya, S.S.A. and Wiltshire, R.J. (2010) Beam
propagation analysis of polarization rotation in soft glass nematic liquid crystal photonic
crystal fibers IEEE Photon. Technol. Lett., 22 (3), 188-190. (C) 2010 IEEE.)

demonstrated experimentally that in a strong fiel limit, the NLC of type E7 is aligned
in plane in capillaries of diameter 5 um. In addition, Alkeskjold and Bjarklev [23] pre-
sented experimentally in-plane alignment of the E7 material in PCF capillaries of dia-
meter 3 um with three different rotation angles, 0°, 45° and 90° using two sets of
electrodes.

The substrate of the nematic liquid-crystal PCF (NLC-PCF) is a soft glass of type
SF57 (lead silica). The wavelength-dependent refractive index of the SF57 material
is also shown in Figure 3.22. It can be seen from this figur that the refractive index
of the SF57 material is higher than n, and n. of the E7 material which guarantees the
index guiding of the light through the high-index core NLC-PCF.

The Sellmeier equation for SF57-type soft glass [24] is given by

5 , Ay Ay Ay As
Ngpsy = Ao + A12 ot a Tttt (3.19)

where ngps7 1s the refractive index of the SF57 material, 4, = 3.247 48, 4, =
—0.0096 um~2, 45 = 0.0494 um?, A3 = 0.00294 pum*, 4, = —1.4814 x 10~* um®,
and 45 = 2.7843 x 107 um® [24].

The practical techniques that have been used in manufacturing nonsilica PCFs are
capillary stacking [25], drilling [26], built-in casting [26] and extrusion [24,28,29].
Of these, extrusion offers a controlled and reproducible approach for fabricating
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complex-structured PCFs with a good surface quality. In addition, extrusion can be
used to produce structures that could not be created with capillary stacking approaches.
Therefore, most of the nonsilica PCFs in the literature are fabricated by extrusion.
The extrusion approach has been recently extended to soft glasses such as lead silicate
(SF57 glass) [24,28,29] and tellurite [30]. SF57-type soft glass has a low processing
temperature of ~520 °C [31], while the softening temperature for silica glass is
1500-1600 °C. Therefore, it is possible to extrude the PCF directly from the bulk
glass. In addition, lead silicate glasses offer the highest thermal and crystallisation
stability, making them particularly attractive for PCF fabrication.

The fillin of PCFs with liquid or liquid-crystalline materials has already been
demonstrated in the literature [17, 19, 32-34]. Arc-fusion techniques have been
successfully implemented for the infiltratio of central defect cores [33], while
extensive control of the infiltratio process of either core or cladding capillaries can
be achieved by using UV-curable polymers [34]. In [17], all the cladding holes of a
silica PCF were fille with NLC by capillary forces and electrically tunable photonic
bandgap guidance was reported. In addition, a tunable light switch using silica PCF,
whose central defect and cladding holes were fille with NLC was studied by Fang
etal [19].

3.4.2 Modal Hybridness

All the holes of the NLC-PCF have the same diameter d and are arranged with a hole
pitch A = 5 um and a d/A ratio of 0.7. In addition, n, and n. of the E7 material are
fi ed at 1.5024 and 1.6970, respectively, at an operating wavelength A = 1.55 um and
a temperature of 25 °C. The rotational angle of the director of the NLC is taken as 45°
and ngrs7 is fi ed at 1.802 at A = 1.55 um. The dominant H, and nondominant H, fiel
profile of the quasi-TE mode are shown in Figure 3.23(a) and (b), respectively. It can
be observed that the fiel profile of the dominant and nondominant components of the
quasi-TE mode are very similar. The maximum value of H, is 0.998, normalised to the
maximum value of the dominant /,, component. This means that the proposed NLC-
PCF supports highly hybrid modes, which is very useful in designing polarisation
conversion devices. To understand the effect of the infiltratio of the NLC, a soft glass
PCF with air holes will be considered. Figure 3.23(c) shows the dominant H, fiel
components of the quasi-TE mode for a soft glass PCF with a hole pitch of 5 um and
a d/A ratio equal to 0.7. It can be observed from this figur that this fiel profil is
symmetric in nature, as the PCF structure itself is symmetric. The nondominant H,
fiel components of the quasi-TE mode are shown in Figure 3.23(d), which is clearly
antisymmetric in nature and has a maximum magnitude of only 0.019, normalised to
the maximum value of /. The nondominant , fiel profil of the quasi-TM mode
is not shown here, but this profil is similar to the nondominant H, fiel profil of the
quasi-TE mode. Therefore, it should be noted that the infiltratio of the NLC has a
great impact on the hybridness of the modes in the suggested NLC-PCF.



Assessment of the Full-Vectorial Beam Propagation Method 47

3 E
£ £
E E
2 2 15
= I
10
% 15 20 10 15 20
Width(um) Width(um)
(b)
H T ~T
E E 20|90 |0
B
> 2 15
3 2 qua’ %—jo )
10 95 20
10 15 20 s
Width(um) Width(um)
(c) (d)

Figure 3.23 Contour plot of the dominant /, and nondominant H, fiel profile of the
fundamental quasi-TE mode for (a and b) NLC-PCF and (¢ and d) soft glass PCF with air
holes. (Reproduced with permission from Hameed, M.F.O., Obayya, S.S.A. and Wiltshire,
R.J. (2010) Beam propagation analysis of polarization rotation in soft glass nematic liquid
crystal photonic crystal fibers IEEE Photon. Technol. Lett., 22 (3), 188-190. (C) 2010 IEEE.)

3.4.3 Effective Index

The soft glass NLC-PCF shown in Figure 3.21 has been analysed and studied
thoroughly. All the holes of the NLC-PCF have the same radius » and are arranged
with a hole pitch, A, of 2.3 um. In addition, n,, n. and ngrs; are taken as 1.5024,
1.6970 and 1.802 respectively at A = 1.55 um. Moreover, the rotation angle and the
temperature are fi ed at 90° and 25 °C respectively. The variation of the real part of
the complex effective index of the quasi-TM mode with wavelength at different », 0.6
um, 0.7 um, 0.8 um and 0.9 pum, is shown in Figure 3.24. It is evident from this figur
that the effective index of the quasi-TM mode decreases with increasing wavelength
due to less confinemen of the mode through the core region at long wavelengths.
Moreover, the effective refractive index of the cladding region and hence the effective
index of the quasi-TM mode decreases with increasing radius of the infiltrate NLC
hole, as revealed in Figure 3.24.

3.4.4 Dispersion

Figure 3.25 shows the variation of the chromatic dispersion of the quasi-TE and TM
modes with wavelength at different » values. It is evident from this figur that the
dispersion of the quasi-TM modes is negative over all studied wavelength ranges,
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Figure 3.24 Variation of the real part of the complex effective index of the quasi-TM modes
of NLC-PCF with the wavelength at different values of hole radius, 7.

which can be used for dispersion compensation. It should be noted that the negative
dispersion can be obtained using the conventional PCF [35]. However, the negative
dispersion of the proposed design can be tuned using the temperature or an external
electric field Figure 3.25 also reveals that the dispersion of the quasi-TM mode is
less than that of the quasi-TE mode. This can be explained by analysing the dominant
fiel components of the quasi-TE and TM modes, and the direction of the director of
the NLC. The dominant electric-fiel components of the quasi-TE and TM modes are
Ey and E,, respectively. At ¢ = 90°, &, of the E7 material the diagonal of [e, €y, &-:],
where ., = n2, &y, = n? and e,, = n2. It may be observed that ¢, is greater than ¢,
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Figure 3.25 Variation of the dispersion of the quasi-TE and TM modes with the wavelength
at different values of hole radius, r: 0.6 pum, 0.7 um, 0.8 pm and 0.9 pum. (Reproduced
with permission from Hameed, M.F.O., Obayya, S.S.A., Al-Begain, K., et al. (2009) Modal
properties of an index guiding nematic liquid crystal based photonic crystal fibe . IEEE J.
Lightwave Technol., 27 (21), 4754-4762. (C) 2009 IEEE.
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therefore the effective refractive index of the cladding region of the quasi-TM mode
is greater than that of the quasi-TE mode. As a result, the effective index neg of the
quasi-TM mode is greater than that of the quasi-TE mode. In addition, the change of
the effective index n.g of the quasi-TM mode over the reported wavelength range is
less than that of the quasi-TE mode. Consequently, the dispersion of the quasi-TM
mode is less than that of the quasi-TE mode. It can also be observed from Figure
3.25 that the slope of the quasi-TE dispersion can be adjusted until a fla dispersion is
obtained, by changing the radius of the infiltrate NLC cladding holes. It is found that
a fla dispersion of £3 ps/nm.km is obtained over a wide wavelength range from 1.8
to 2.1 um for the quasi-TE mode at » = 0.6 um. However, there is a cross over in the
dispersion curve of the quasi-TM mode at » = 0.6 um at long wavelengths; the mode
starts spreading into the cladding region, which increases the effective mode area. At
r = 0.6 um, the quasi-TM mode spreads dramatically in the cladding region, which
might lead to an increase in the dispersion, as shown in Figure 3.25.

3.4.5 Tunable Liquid-Crystal-Based Photonic Crystal Fibre
Polarisation Converter

As shown in the inset of Figure 3.26, when a TE polarised mode obtained from a
soft glass PCF with air holes is launched directly into the NLC-PCF, the input power
excites two hybrid modes along the polarisation rotator (PR) waveguide. These two
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Figure 3.26 Evolution of the TM powers along the propagation direction at different rotation
angles of the director of the NLC. The solid black lines represent P, at ¢ = 10°, 20°, 30°
and 45°, while the values of P, at ¢ = 60°, 70° and 80° are represented by dotted grey
lines. However, the hole pitch, A, and d/A ratio are taken as 5.0 um and 0.7, respectively.
(Reproduced with permission from Hameed, M.F.O., Obayya, S.S.A. and Wiltshire, R.J.
(2010) Beam propagation analysis of polarization rotation in soft glass nematic liquid crystal
photonic crystal fibers IEEE Photon. Technol. Lett., 22 (3), 188-190. (C) 2010 IEEE.)
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modes become out of phase at a distance equal to L, from the beginning of the PR
section. Therefore, the H, component will be cancelled, while the /, component will
be added which produces a nearly pure TM mode. The calculated value of L, using the
FVFEBPM is 1072 um, which is in excellent agreement with the 1071 um calculated
by the VFEM [6]. The polarisation power factors, P, and P,, are define as the power
carried by the H,, and H, fiel components, respectively, over the PR waveguide cross
section, normalised to the total power. Figure 3.26 shows the variation of the P, power
for the TE input along the axial direction, at different rotation angles of the director
of the NLC. It is evident from this figur that for TE excitation, initially P, is zero and
it slowly increases to a maximum value at z = L ; if the PR section is not terminated
at this position the optical power P, starts decreasing. It should be noted that nearly
99.813% polarisation conversion can be obtained at z = 1072 um when the rotational
angle is equal to 45°. It is also evident from Figure 3.26 that the conversion ratio
increases with increasing rotational angle from 0 to 45° until complete conversion
occurs at ¢ = 45°. The conversion ratio then decreases with increasing rotational
angle. In addition, the hybridness and hence the conversion ratios at ¢ = 10°, 20° and
30° are approximately equal to the hybridness and hence the conversion ratios at ¢ =
80°, 70° and 60°, respectively, as shown in Figure 3.26.

3.5 Electro-Optical Modulators

High-speed integrated electro-optic modulators (EOMs) and switches are the basic
building blocks of modern wideband optical communication systems and the future
trend of ultrafast signal processing technology. Therefore, a great deal of research
effort has been devoted to developing low-loss, efficien broadband modulators in
which the RF signal is used to modulate the optical carrier frequency [36]. The
design of EOMs usually relies on the use of either directional couplers (DCs) [37] or
Mach—Zehnder (MZ) [38] arrangements. In DC-based EOMs, the externally applied
electric fiel affects the refractive index distribution in two coupled waveguides that
are used in such a way that this change is asymmetric, and this also affects the light
propagation in the two guides, the coupling length, the phase matching and hence the
power coupling transfer between them. However, in contrast, in MZ-based EOMs, the
two guides are relatively far apart from each other, with either one or both of the two
guides being affected by the applied field So, at the end of the device, the two waves
emerging from the two guides are either in phase or in anti-phase, and this gives rise
to output switching properties related to the applied electric field

3.5.1 Design of the Electro-Optical Modulator

For electro-optic semiconductor waveguides [39], the refractive-index distribu-
tion becomes a 3 x 3 tensor and depends on the potential distribution as
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follows
B n(x,y) + Anyg(x, y) Anyy(x,y) 0
n(x,y) = A”yx(x’Y) n(xay)+Anyy(x’y) 0
0 0 n(x,y)+ An_.(x, y)

(3.20)

where n(x, y) is the refractive-index distribution of the structure in the case of no
applied modulating fiel and An,, Any, An, and An.. are the changes in the
refractive index occurring due to the electro-optic effect, and these are related to the
applied modulating electric field via
3
n°(x,

Mnece, ) = —ane =" ) anon =0 G

n(x,y)
2

Anyy(x,y) = Anyy(x,y) = raEy(x, y) (3.22)
where 74 is the electro-optic coefficien for selected semiconductor materials, such as
InP and GaAs, and this value has been taken as equal to 1.4 x 107% um/V for GaAs
[40].

A schematic diagram of a deeply etched GaAs [41] EOM is shown in Figure 3.27.
As shown in this figure a 0.2 um 10% AlGaAs layer, a thick GaAs core with height

Wel
|

Xy % AlGaAs Buffer Layer, B (um) ———»

GaAs core, H (um) ———» O

10 % AlGaAs cladding, 0.2 pum ———»

W (um)

5% AlGaAs

GaAs Substrate

Figure 3.27 Schematic diagram of a deeply etched AlGaAs/GaAs semiconductor EOM.
(Reproduced with permission from Obayya, S.S.A., Haxha, S., Rahman, B.M.A. and Grattan,
K.T.V. (2003) Optimization of optical properties of a deeply-etched semiconductor optical
modulator. /[EEE J. Lightw. Technol., 21 (8), 1813-1819. (C) 2003 IEEE.)
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H (um) and a buffer AlGaAs layer with an aluminium concentration of x;% and
height B (um) are all deposited on a 2 um thick 5% AlGaAs spacer layer. The whole
structure is deposited on a very thick insulating GaAs substrate, as shown in Figure
3.27.

The ground electrode, with V' = 0, is placed between the 10% AlGaAs layer and
the substrate, while the hot electrode V' # 0 is deposited on top of the buffer AlGaAs
layer. Several major manufacturers are developing high-speed GaAs EOMs using a
highly doped layer beneath the lower cladding layer as the lower electrode, which
may be connected to a ground metal electrode on the side. In this case a doping
density of 10'8/cm?® has been considered for the 0.1 um thick GaAs lower electrode
and the 2 um thick lower spacer layer. The width of the waveguide is W (um),
while the electrode width is W (um) and the operating wavelength is 1.55 um. As a
deeply etched waveguide structure suffers from lower bending loss, a more compact
system design is possible than for the shallow-etched counterparts. This waveguide
structure is theoretically multimoded when the waveguide width is greater than 2.5
um. However, from a practical point of view, the use of a high-index GaAs substrate
leads to a situation where these higher-order modes suffer very high leakage radiation
losses into the substrate, while the fundamental mode shows virtually no leakage loss
[41,42], and so effectively behaves like a single-moded guide.

Figure 3.28(a) and (b) show the contour plots of the horizontal E, and vertical
E, modulating electric-fiel components when the waveguide width is 5 um, the
electrode width is 4.9 um, the core height is 1.5 um, the buffer thickness is 1.1 um
and the buffer Al concentration is 30%. In this case, the applied voltage is 5 V. It

P

_//—\/_\

1

w
1

'S
1

1

(]
1

Height(xm)
T
Height(um)

1

|

El

T T T T

T rr1r vr
3 4 5 &6

fli 4 5 6 'lI I 8
Width(gm) Width(um)
(a) (b)

r rrr T v 1
1 2 7 8

Figure 3.28 Contour plot of the (a) horizontal modulating fiel component E,, and (b) the
vertical modulating fiel E, when W =5 um, W =49 um, B = 1.1 um, H = 1.5 pm and
x1 =30%. (Reproduced with permission from Obayya, S.S.A., Haxha, S., Rahman, B.M.A. and
Grattan, K. T.V. (2003) Optimization of optical properties of a deeply-etched semiconductor
optical modulator. [EEE J. Lightw. Technol., 21 (8), 1813-1819. (C) 2003 IEEE.)
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should be noted that the E), fiel is symmetric and nearly uniform in the waveguide
core region, whereas the E, profil is asymmetric and nearly zero in this region, with
its two maxima around the left and right corners of the upper electrode. The vector-
fiel profil would be nearly vertical, except near the left and right edges of the upper
electrode.

As can be deduced from Equations (3.20) to (3.22), the H,, (or E,) modes are mainly
affected by refractive-index changes in the x direction, namely An,,, which are directly
proportional to E,,, while the H, (or E,) modes are affected by refractive-index changes
in the y direction An,,, which are zero. Therefore, the /, modes (quasi-TE) will be
considered throughout the rest of the book. However, if an asymmetry has been
brought to the structure, the horizontal fiel component, E,, will not be symmetric,
giving rise to a nonzero An,,, an off-diagonal refractive-index component which can
cause a coupling between the two orthogonal TE and TM modal states.

3.5.2 The Effect of the Core Height

Figure 3.29 shows the variation of the half-wave voltage length product VL with
the core height H when the buffer thickness, B, is 1.1 um and the buffer layer Al
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Figure 3.29 Variation of V, L with the core height, H, for two different values of waveguide
width, W, and electrode width, W. (Reproduced with permission from Obayya, S.S.A.,
Haxha, S., Rahman, B.M.A. and Grattan, K.T.V. (2003) Optimization of optical properties of a
deeply-etched semiconductor optical modulator. [EEE J. Lightw. Technol., 21 (8), 1813—-1819.
(©) 2003 IEEE.)
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concentration, x;, is 30%, for two cases of the waveguide width W and the electrode
width W,,. The refractive indexes considered here are 3.232, 3.377, 3.329 and 3.353
for the upper 30% AlGaAs cladding, the GaAs core, the 10% lower AlGaAs cladding
and the 5% AlGaAs substrate, respectively. The VL quantity is a very important
parameter in designing EOMs and switches and for MZ [38] structures. It is define
as the product of the voltage at which the phase difference between the two branches
of the MZ structure is 180°, and the length of the electrode. Assuming that the two
waveguide branches of the MZ arrangement are sufficientl separated not to have
coupling between their isolated guided modes, VL can be calculated using

Vel = ”A—? AB = B — o (3.23)
where V) is the applied voltage, and 8; and B are the propagation constants of
the fundamental H;; modes of the MZ arms with and without the applied voltage,
respectively. It may be observed from Figure 3.29, that as the core height H increases,
VL also increases. In particular, as H increases from 1.5 to 5.5 um, the corresponding
value of V; L also increases from nearly 9 to 20.5 V.cm. These results are intuitive and
can be justifie simply, as follows. For a particular core height, it may be presumed
that a specifi modulating electric-fiel magnitude (or the applied voltage) is needed
to obtain a phase difference of 180° at the MZ output. However, if the core height is
increased, then it may be anticipated from a simple parallel-plate approximation that,
in order to maintain the same modulating electric-fiel strength in the core area, the
applied modulating voltage has to be increased. In addition, it can be observed from
Figure 3.29 that the variation of ¥, L with the core height is almost independent of the
value of the waveguide width W, as long as the electrode width W is nearly equal
to the corresponding waveguide width, W. In addition, for a core height, H, of 1.5
um, the total etch depth is 3.0 um, and the corresponding V. L is 9.6 V.cm. However,
if the etching depth is reduced to only 2.6 um, the value of VL will increase by
3.6%. This shows that deeply etched waveguides are better than their shallow-etched
counterparts, not only due to better light confinement but also because of the reduced
VL needed to work as modulators.

The variation of V;L with the core height H for three different values of Al
concentration x; of the buffer AlGaAs layer are shown in Figure 3.30. In this case,
the waveguide width, W, is 5 um, the electrode width,W,, is 4.9 um and the buffer
thickness B is 1.1 um. As can be seen from this figure the value of V. L increases as
the core height, H, increases for the three different values of x;. On the other hand,
for a particular core height, H, VL is found to increase slightly as the value of x;
increases from 10 to 30% and ultimately to 100%. These results can be explained
physically as the increase of x; leads to an increase in the refractive-index difference
between the core and buffer layers in such a way that the optical fiel of the mode
Hj, will be pushed slightly downward and away from the hot electrode. This would
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Figure 3.30 Variation of VL with the core height, H, for three different values of Al
concentration of the buffer layer, x;. (Reproduced with permission from Obayya, S.S.A.,
Haxha, S., Rahman, B.M.A. and Grattan, K.T.V. (2003) Optimization of optical properties of a
deeply-etched semiconductor optical modulator. JEEE J. Lightw. Technol., 21 (8), 1813—-1819.
(©) 2003 IEEE.)

lead to slightly less interaction between the modulating electric fiel and the optical
field which would give rise to a slight increase in VL as x| increases.

3.5.3 The Effect of the Electrode Width

The variation of V;L with the electrode width, W, for different values of the wave-
guide width, W, and the core height, H, is shown in Figure 3.31. In these cases, the
buffer layer thickness, B, is 1.1 um, and Al concentration, xi, is 30%. It can be noted
from this figur that for all the three combinations of W and H, as the electrode width
is increased, the corresponding value is found to be monotonically reducing, and until
W approaches the value of the full waveguide width, ¥, the corresponding values of
VL tend to converge to certain values. As a result, the electrode width should not be
narrower than the waveguide width, but rather it could be equal to the waveguide width
to improve the performance and also to facilitate its fabrication. When Wy, is small
compared to W, the modulating electric-fiel profil spreads less in the horizontal
direction, compared with a greater value of W, giving a smaller overlap with the
optical fiel profile This is why the value of the VL product will be higher in the
former case than in the latter. On the other hand, for the same waveguide and electrode
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Figure 3.31 Variation of V; L with the electrode width, W, for three different combinations
of waveguide width, 7, and core height, H. (Reproduced with permission from Obayya, S.S.A.,
Haxha, S., Rahman, B.M.A. and Grattan, K.T.V. (2003) Optimization of optical properties of a
deeply-etched semiconductor optical modulator. IEEE J. Lightw. Technol., 21 (8), 1813—-1819.
(©) 2003 IEEE.)

width values, Figure 3.31 illustrates the difference in the values of V', L when the core
height A is 3 um compared with the case when H is only 1.5 um. In particular, when
W = 5um and W¢ = 4.9um, the value of VL is around 14 V.cm when H is 3 um,
and this value reduces to only 9.5 V.cm when H is 1.5 um. This reduction in VL as H
is reduced is a direct consequence of the increased electric-fiel intensity, and hence
lower modulating voltages are needed to keep the 180° phase difference condition at
the output ports of the MZ structure. It might be envisaged that V; L reduction can be
achieved by designing a waveguide with lower values of the core height H; however,
care should be taken in doing so, as the mode might reach cut off, or the scattering
loss due to roughness or fabrication imperfections around the sidewalls might increase
significantl if extremely low values of H are used. In addition, it can be seen from
this figur that for the same core height, H, the value of VL tends to the same value
as long as the electrode width, W, and the waveguide width, W7, are nearly similar,
irrespective of the value of the waveguide width itself.

3.5.4 The Effect of the Buffer Thickness

Figure 3.32 shows the variations of the ¥, L product with the buffer thickness, B, for
two different values of the core height, H. In this case, the width of the waveguide,
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Figure 3.32 Variation of VL with the buffer thickness, B, for two different values of core
height, H. (Reproduced with permission from Obayya, S.S.A., Haxha, S., Rahman, B.M.A. and
Grattan, K. T.V. (2003) Optimization of optical properties of a deeply-etched semiconductor
optical modulator. [EEE J. Lightw. Technol., 21 (8), 1813-1819. (C) 2003 IEEE.)

W, the electrode width, W, and the Al concentration of the buffer layer x; are 5 um,
4.9 um, and 30%, respectively. As can be seen from this figure the value of VL
reduces as the buffer thickness, B, decreases. In this case, when the buffer thickness
is increased the interaction between the applied modulating fiel and the optical
fiel will be less, as the optical fiel is shifted downward and away from the peak
modulating fiel intensity. Hence, as the buffer thickness, B, is increased in order to
maintain the 180° phase difference between the two waveguide branches of the MZ,
the value of the applied voltage should be increased, leading to a linear increase of
the VL, as shown in Figure 3.32. Also, when the core height is 1.5 um and the buffer
thickness, B, lies in the region 0.5 to 0.4 um, the value of VL drops dramatically to
a level near 7.5 V.cm. Practically speaking, this is a good value for V;; L; however, the
optical losses, as will be seen subsequently, may be large within this range of buffer
thickness.

On the other hand, the variation of VL with the buffer thickness, B, for different
values of the Al concentration of the buffer layer x; is shown in Figure 3.33, where
the value of the waveguide width, W, is 5 um, the electrode width, W, is 4.9 um
and the core height, H, is 1.5 um. For a given buffer thickness, B, the value of VL
is slightly increased as x; increases from 30 to 50% and then to 100%. In particular,
when the buffer thickness, B, is 0.4 um, VL increases from 7.3 to 7.4 V.cm and then
to 7.7 V.cm, as x; increases from 30 to 50% and then to 100%, respectively, which
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Figure 3.33 Variation of VL with the buffer thickness, B, for three different values of Al
concentration of the buffer layer, x;. (Reproduced with permission from Obayya, S.S.A.,
Haxha, S., Rahman, B.M.A. and Grattan, K.T.V. (2003) Optimization of optical properties of a
deeply-etched semiconductor optical modulator. IEEE J. Lightw. Technol., 21 (8), 1813—1819.
(©) 2003 IEEE.)

indicates, at this stage, that the aluminium concentration of the buffer layer has only
a small influenc on the design of optical modulators.

Next, the effects of the buffer layer thickness, B, and the Al concentration x; on the
optical losses will be thoroughly investigated. For this purpose, the top electrode has
been assumed to consist of two metal layers, gold (Au) and Titanium (Ti), each with
a thickness 7 of 0.1 um. The perturbation technique combined with the vector H-fiel
finite-elemen modal solution [43] has been utilised to estimate the optical losses due
to this imperfectly conducting electrode. The variations of the optical losses with the
buffer thickness, B, for different values of the Al concentration x; of the buffer layer
are shown in Figure 3.34. As may be noted from this figure the optical losses are
drastically reduced as either the buffer thickness or the Al concentration of the buffer
is increased, where in either case, the optical fiel will be more confine to the core
and a smaller portion of this fiel will be concentrated near the electrode region with
losses. In particular, for a buffer thickness of 0.5 um and an Al concentration of 30%,
the optical loss has been estimated to be 12 dB/cm, while if the buffer thickness is
increased to 1.0 um, the optical loss is greatly reduced to nearly 1 dB/cm. On the other
hand, instead of increasing the buffer thickness (from B = 0.5 um), if the aluminium
concentration is increased from 30 to 100%, the optical loss decreases significantl
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Figure 3.34 Variation of the optical loss, «, in decibels per centimetre with the buffer thick-
ness for three different values of Al concentration of the buffer layer, x;. (Reproduced with
permission from Obayya, S.S.A., Haxha, S., Rahman, B.M.A. and Grattan, K.T.V. (2003)
Optimization of optical properties of a deeply-etched semiconductor optical modulator. IEEE
J. Lightw. Technol., 21 (8), 1813-1819. (C) 2003 IEEE.)

from 12 to 0.8 dB/cm. It should be noted that the overall optical loss plays a dominant
role in determining the bandwidth of the modulator.

The variation of the microwave index, n,, and of the microwave characteristic
impedance, Z., with the buffer thickness, B, for two different values of the core
height, H, is given in Figure 3.35. In this case, the waveguide width, W, the electrode
width, W, the Al concentration of the buffer layer x; and the electrode thickness ¢
are 5 um, 4.9 um, 30% and 0.1 pum, respectively. Although the present model can
deal with electrodes of finit conductivities, as a reasonable approximation, however,
the doped semiconductor ground lower electrode has been considered as a perfectly
conducting metal electrode in order to simplify the calculations. As shown in this
figure the microwave index, ny,, reduces linearly, while the microwave characteristic
impedance, Z., increases linearly with increasing buffer thickness, for both values
of the core height, H. For velocity matching between the microwave and optical
signals, the value of ny, should be equal to the value of the effective index of the
optical fundamental mode Hj,, (nef), while for impedance matching purposes, the
microwave characteristic impedance should equal to 50 2. If the velocity matching
is examined, it can be deduced easily from Figure 3.35 that it is not possible to fin
a range of values of the buffer thickness, B, for which ny, is within the range of n.g,
for both values of the core height, H. It should be noted that if the electrode thickness
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Figure 3.35 Variation of the microwave index, n,, and the microwave characteristic
impedance, Z., with buffer thickness, B, for two different values of core height, H. (Re-
produced with permission from Obayya, S.S.A., Haxha, S., Rahman, B.M.A. and Grattan,
K.T.V. (2003) Optimization of optical properties of a deeply-etched semiconductor optical
modulator. IEEE J. Lightw. Technol., 21 (8), 1813—1819. (C) 2003 IEEE.)

is increased, then the conductor loss reduces; however, the phase matching between
the microwave and optical waves would deteriorate. To investigate this further, an
additional study of segmented electrodes and/or the use of material such as Ta,Os,
which has a high dielectric constant (¢, = 27) at microwave frequencies and a low
refractive index (n = 2.03) at optical frequencies, may be considered [44]. However,
it is only for H = 3.0 um that values of B higher than 0.9 um can give reasonably
good matching values for Z..

3.5.5 The Effect of the Al Concentration of the Buffer Layer

Next, for a waveguide width, /¥, of 5 um, an electrode width, W, of 4.9 um and
a core height, H, of 1.5 um, Figure 3.36 shows the variation of VL and the buffer
thickness, B, with the Al concentration of the buffer layer, x;, when the electrode
optical losses are fi ed at either 0.2 or 0.5 dB/cm. For each value of x|, an iteration
loop has been implemented into the modal solution program in order to fin the buffer
thickness needed to get the desired level of optical losses. Once the required buffer
thickness is obtained, the corresponding value of VL is then calculated. As may be
observed from this figure for x; = 40% and for a fi ed level of optical loss of 0.5
dB/cm, the required buffer thickness, B, is equal to 0.82 um and the corresponding
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Figure 3.36 Variation of the required buffer thickness, B, and the corresponding VL with
Al concentration of the buffer layer, x;, when the optical loss, «, is fi ed to 0.2 dB/cm or 0.5
dB/cm. (Reproduced with permission from Obayya, S.S.A., Haxha, S., Rahman, B.M.A. and
Grattan, K. T.V. (2003) Optimization of optical properties of a deeply-etched semiconductor
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V. L product is 8.7 V.cm. However, for the same value of x;, if the accepted level
of losses is reduced to 0.2 dB/cm, the design value of the buffer thickness required
would be 0.94 um and the corresponding value of V; L would increase slightly to 9.0
V.cm. It can be observed that by increasing xi, the overall ;L can be reduced for a
given total optical loss.

3.6 Switches

Finally, as an example of a nonidentical directional coupler, an electro-optic LiNbO3
channel coupler modulator [1], shown in the inset of Figure 3.37, is simulated at a
wavelength of 0.85 um. Without any applied modulating signal, the refractive index
of both LiNbO;3 guides, ng, is taken as 2.3, while that of the cladding, ny, is 2.29.
With appropriate electrode design, for nonzero modulating potential, it is assumed
that the index in one guide increases, while the other guide decreases by the same
amount, An/2, and the cladding index remains constant. The effect of the electro-
optically induced index difference, An, on the TE coupling length is shown in Figure
3.37, where the results obtained using the VFEBPM and VFEM [45] are in close
agreement.
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Figure 3.37 Effect of electro-optically induced index difference on the coupling length. The
inset is a schematic diagram of the electro-optic LiNbO channel coupler modulator under
consideration. (Reproduced with permission from Obayya, S.S.A., Rahman, B.M.A. and El-
Mikati, H.A. (2000) New full vectorial numerically efficien propagation algorithm based on
the finit element method. IEEE J. Lightwave Technol., 18 (3), 409—415. (C) 2000 IEEE.)

Without applied modulating potential, An = 0, the two guides are phase-matched,
giving rise to a peak coupling length, 1010 wm, which monotonically reduces with
increasing An as the two guides continue to lose their synchronicity. When the input
power is launched into guide ‘b’, the power evolution in the two guides in the axial
direction, z, is shown in Figure 3.38 for two values of An. For, Arn = 0, full power
transfer from guide ‘b’ to guide ‘a’ can be observed at around 1010 um, while for
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Figure 3.38 The evolution of optical power in the two guides along the axial direction.
(Reproduced with permission from Obayya, S.S.A., Rahman, B.M.A. and El-Mikati, H.A.
(2000) New full vectorial numerically efficien propagation algorithm based on the finit
element method. [EEE J. Lightwave Technol., 18 (3), 409—415. (C) 2000 IEEE.)
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An = 0.000 92, a fraction of the guide ‘b’ power is initially transferred to guide ‘a’
due to their phase mismatch; this power is then returned to guide ‘b’ with virtually
no overall power is transferred to guide ‘a’. It can be noted that, the coupling length,
L., is equal to 505.0 um, half of the value for An = 0. In this case, at z = L, the
optical power couples back to guide ‘b’, as shown in Figure 3.38. With guide ‘a’ as
an output port, the variation of the maximum and output powers, Py.x and P,, with
An are shown in Figure 3.39. The maximum power, Py, is the power transferred to
guide ‘a’ at a device length equal to the coupling length at concerned particular value
of An, while the output power, P,, denotes the power transferred to guide ‘a’ ata fi ed
device length equal to the peak coupling length, L., = 1010 um. The power transfer
results obtained using the VFEBPM are in excellent agreement with those obtained
using the least-squares boundary residual (LSBR) method [45]. As shown in Figure
3.39, the output power is minimum for An values at which L., is an even multiple
of the coupling length, while for An values at which L, is an odd multiple of the
coupling length, the output power reaches a maximum value, but not the unity peak,
as the two guides are strongly phase-mismatched and hence, the full power transfer
is inhibited.
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4

Bidirectional Beam Propagation
Method

4.1 Introduction

In this chapter, the formulation of the finite-elemen solution for optical waveguide
discontinuity problems is presented [1]. The validity and the numerical precision
of the proposed method are evaluated through the analysis of three discontinuity
problems, including a junction between two different waveguide sections, a laser—air
interface and a laser angled facet. In addition, a numerically efficien scalar analysis
of optical fibr facet problems based on the finite-elemen scheme is included [2] and
the simulation results of dealing with various numerical uncoated and coated optical
fibr facet problems will be detailed.

4.2 Optical Waveguide Discontinuity Problem

Optical waveguide discontinuities play a very important role in the design of optical
communication systems, and are quite often faced in situations such as butt-coupled
waveguides, waveguide ends, laser facets and antireflectio coatings [3—5]. Therefore,
an accurate and efficien method for the solution of optical waveguide discontinuities
is highly desirable. There are a number of methods proposed in the literature for
the analysis of optical waveguide discontinuity problems. These methods can be
classified according to their solution strategy, into two groups. In the firs group, the
total fiel on either side of the discontinuity is made up as a weighted summation
of all guided and radiation modes. Then, the continuity of the tangential electric
and magnetic field at the discontinuity plane is enforced using, for example, the
least squares boundary residual (LSBR) [6], a combination of the finit elements
and method of lines (FE-MoL) [7], the finite-elemen method (FEM) with analytical
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techniques [8] or the free-space radiation mode (FSRM) method [9], to solve for the
reflectio and transmission coefficients In this class of methods, the solution accuracy
is enhanced as more guided and radiation modes are included in the fiel summation.
This would be very time-consuming, especially in the case of 3D optical waveguide
problems, where approximating the radiation modes with a continuous spectrum
turns out to be tremendously complicated. Alternatively, in the second group of
discontinuity analyses, the Pade approximations, in the context of the finite-di ference
method, are used to efficientl approximate the square root of the characteristic
matrix of both discontinuity sides [5, 10, 11]. In this group of analyses, although the
numerically intensive modal solution stage on each side is totally avoided, the use
of higher-order Pade approximations requires matrix inversion that would be very
demanding in terms of computer resources, especially in dealing with 3D problems.

In this chapter, a formulation of the finite-elemen solution for the optical waveguide
discontinuity problems [1] is proposed. By ‘lumping’ the mass matrix entries into the
diagonal locations [ 12—14], this matrix renders itself diagonal, and hence, its inversion
and multiplication with the original characteristic matrix will result in a modifie
characteristic matrix as sparse as the original one. Then, upon the application of a
Taylor’s series expansion to represent the square root of the modifie characteristic
matrix, and satisfying the interface boundary condition at the discontinuity plane,
both the reflecte and transmitted field can be efficientl solved for. Therefore, the
presented FEM not only avoids the modal solution stage, but also does not require any
matrix inversion to approximate the square root operator of the characteristic matrix
using higher-order Taylor’s series expansions.

4.3 Finite-Element Analysis of Discontinuity Problems

Consider a 2D optical waveguide discontinuity problem whose schematic diagram is
depicted in Figure 4.1. The transverse and propagation directions are assumed to be
y and z, respectively, and the discontinuity plane is located at z = 0. Supposing that
there is no variation in the x-direction, the following 2D Helmholtz equation for both
sides 1 and 2 can be written as [15]

o (pi Y 0 Y, 2

— | == i— \Pi—— kyqisivri =0 4.1

By(sl- 8y>+saz(p az)+°qsw 1)
with

Yvi=Ey, pi=1, q = ”,2 for TE modes (4.2a)

Vi = Hy, pi=1/n?, ¢ =1  for TM modes (4.2b)
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Figure 4.1 Schematic diagram of a discontinuity between two sides, each with an arbitrary
refractive index distribution #; (x). (Reproduced with permission from Obayya, S.S.A. (2004)
Novel finit element analysis of optical waveguide discontinuity problems. /[EEE J. Lightwave
Technol., 22 (5), 1420-1425. (C) 2004 IEEE.)

. 3A 0 p\2 1 . )
si=1—7 <—) In|{ =), in PML region (4.3a)
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si=1, in non — PML region (4.3b)

where the subscript i is 1 or 2 and corresponds to the quantities in the ith side, F,
and H, are the x-component of the electric and magnetic fields respectively, kg is
the free space wavenumber, 7 is the refractive index distribution, A is the operating
wavelength, s is the PML parameter, p is the distance inside the PML region from
the beginning of the PML and R; is the theoretical reflectio coefficien placed at the
boundary between the PML region and the computational window.

Dividing the cross section into a number of first-orde linear elements and applying
the standard Galerkin’s finite-elemen procedure results in [15]

d>? ;
S KLy = 0 (4.4)

where {y}; is the nodal fiel vector, {0} is the null vector, and [M]; and [K]; are the
global mass and characteristic matrices whose expressions are

=3 [ st (4.5)

SEDD / [Oq,sl{N}{N} P d“;’}d{é‘;} ]dy (4.5b)
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In Equation (4.5) {N} represent the shape function vectors over each element, T is
the transpose and the summation ) _ is performed over all the elements.

e

4.4 Derivation of Finite-Element Matrices

Conventionally, both the guided and radiation modes of each side are found using a
modal solution technique for Equation (4.4), and then, upon matching the transverse
electric and magnetic fiel components across the discontinuity plane, the solutions for
both the reflecte and transmitted field are obtained [7]. However, the modal solution
analysis is very time consuming and is complicated in dealing with radiation modes
with a continuous spectrum. Alternatively, a finite-elemen procedure completely
avoiding the modal solution stage is presented as follows. The global mass matrix of
each side is lumped into a diagonal matrix using the row sum procedure [12—14]. In
this procedure, the diagonal entry of the new lumped mass matrix at a particular row
‘ir’ is the sum of all the entries in that row of the original mass matrix as

Mir,ir = ZMir,jc (46)
jc

where M,-,, i 1s the diagonal entry of the new lumped mass matrix at the irth row,
and the summation in Equation (4.6) is performed over all entries M;,. je in that row.
Having lumped the mass matrix, its inverse is merely the reciprocals of its diagonal
elements. So, multiplying both sides of Equation (4.4) with the inverse of the ‘lumped’
mass matrix leads to

d? ;
L = 0 47
with
[4]; = [M];'[K]; (4.8)

It should be noted that the numerical advantages of lumping the mass matrix is the
elimination of the need for any matrix inversion and also keeping the new characteristic
matrix [A4]; as sparse as the original matrix [K];. This would lead to massive savings
in the use of computer resources, especially in dealing with 3D problems. The formal
solution of Equation (4.7) on each side can be written as

Whe) = e (—jVIAk) h +oxp (VL) 0Th @9)
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where {y*};, and {1/ ~}; are the forward and backward propagating field in each side
at the discontinuity plane z = 0. Assume that the incident fiel is launched from side 1
and applying the interface boundary conditions of the continuity of transverse electric
and magnetic field atz = 0 results in

(PN = p2TAT) (0 = (VAT + VTR ) (W Th (410)
(oian) = (VD + pVAL) (4.11)

where {Y*}1, {¥~}1 and {y T}, are the incident, reflecte and transmitted fields
respectively. So, upon the solution of the linear system of equations in (4.10) and
(4.11), quantities such as the reflectio and transmission coefficient can be determined
once the incident fiel is known.

4.5 Application of Taylor’s Series Expansion

Usually, the square root of the characteristic matrix is evaluated using a Pade
approximation, which is numerically very accurate and efficien [5, 10, 11]. How-
ever, the use of higher-order Pade approximations requires matrix inversion, which
may be computationally intensive, especially in dealing with 3D problems. On the
other hand, the Taylor’s series expansion of the square root of the characteristic ma-
trix around a reference wavenumber §; has been employed here, and its mth-order
approximation is given as

" a; (1AL — BT
V4l = B; UHZ%(%) (4.12)
j=1 i

witha; = 11 ,{:_01 (n —k),j>1,n=1/2 and [{] is the identity unity matrix.

As may be seen from Equation (4.12), the use of the Taylor’s series expansion of
the square root of the characteristic matrix turns out to be merely a series of matrix
multiplications that can be efficientl performed by exploiting the matrix sparisty. In
order to properly deal with the ‘evanescent’ modes generated at the interface between
the two sides, the reference wavenumber has to be a complex valued [11] which can
be straightforwardly implemented if a phasor term has been included so that

Bi = Boie’® (4.13)

where B¢ is the original real-value reference wavenumber normally taken as the
propagation constant of the fundamental mode, and & is a phase angle in the range
0° < ® < 90°. This approach is equivalent to the use of the Pade approximation with
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Figure 4.2 Schematic diagram of a junction between two waveguides. (Reproduced with
permission from Obayya, S.S.A. (2004) Novel finit element analysis of optical waveguide
discontinuity problems. /EEE J. Lightwave Technol., 22 (5), 1420-1425. (C) 2004 IEEE.)

real coefficient and the branch cut of the square root of the characteristic matrix [10].
It will be shown in the following section that introducing @ is mandatory to ensure
the satisfaction of the power balance condition, however it has a very little effect on
the accuracy of the solution.

4.6 Computation of Reflected Transmitted and Radiation Waves
4.6.1 Junction Between Two Optical Waveguides

The firs example considered [1] is a junction between two optical waveguides shown
in Figure 4.2. For the range of waveguide heights considered, both waveguides are
monomoded. The same structure has been considered in [6, 8]. In this example, the
operating wavelength, A, is 1.0 um, the waveguide height of side 1, H,, is fxed at
0.6 um, while the waveguide height of side 2, H5, is taken as 0.4 um.

4.6.1.1 Effect of the Phasor Angle

For an incident mode TMy, Figure 4.3 shows the variation of the total power, Py,
normalised to the incident power, with the phasor angle, ®. The total power is cal-
culated as the sum of both the reflecte and transmitted powers. As may be observed
from Figure 4.3, the power balance condition is fulfille for & > 1°, either for second-
or third-order Taylor’s approximations. On the other hand, Figure 4.4 illustrates the
effect of the phasor angle ® on the values of the reflecte |R|? and transmitted |7'|?
powers of the fundamental mode on sides 1 and 2, respectively. It may be noted from
Figure 4.4 that for ® > 1°, both |R|? and |T|? are almost unchanged with ®, and they
converge to values of 0.16 and 0.61, respectively, which are in excellent agreement
with the results obtained in [6], using the LSBR method employing an expansion of
25 modes on each side.
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Figure 4.3 Variation of the total power, Py, with the phasor angle, ®, for a launched
TMy mode with H, = 0.4 um. (Reproduced with permission from Obayya, S.S.A. (2004)
Novel finit element analysis of optical waveguide discontinuity problems. /[EEE J. Lightwave
Technol., 22 (5), 1420-1425. (C) 2004 IEEE.)
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Figure 4.4 Variation of the transmitted power |7|?> and the reflecte power |R|? of the fun-

damental TM, modes on sides 2 and 1, respectively, with the phasor angle, ®, for H,

0.4 um. (Reproduced with permission from Obayya, S.S.A. (2004) Novel finit element
analysis of optical waveguide discontinuity problems. /EEE J. Lightwave Technol., 22 (5),
1420-1425. (C) 2004 IEEE.)
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Figure 4.5 Variation of the transmitted power | T|? the reflecte power |R|? of the fundamental
TM, modes in sides 2 and 1, respectively, and the radiated power P.,q with the waveguide
height in side 2, H,. (Reproduced with permission from Obayya, S.S.A. (2004) Novel finit
element analysis of optical waveguide discontinuity problems. /[EEE J. Lightwave Technol.,
22 (5), 1420-1425. (C) 2004 IEEE.)

4.6.1.2 Effect of Waveguide Height

Next, the effect of varying the waveguide height in side 2, H», on the reflected |R|?
and transmitted |T|? powers of the fundamental mode in sides 1 and 2, respectively,
and also the radiated power P4 is shown in Figure 4.5. As may be observed from
Figure 4.5, the transmitted power of the fundamental TM mode in side 2 increases
with H, and reaches its peak value of 0.755 when H, is 1.2 um. Consequently, as
the transmission efficien y is enhanced with increasing H;, the radiated power Pyyq
is continuously reducing and settles down to a value of nearly 0.1 as H, > 1.0 um.
On the other hand, the reflecte power of the fundamental mode of side 1 is almost
constant with the change in H5.

The results shown in Figure 4.5 have been obtained using a third-order Taylor’s
expansion and they are almost indistinguishable from those obtained using the LSBR
method [6]. For a TE excitation from side 1, Figure 4.6 shows the variation of the
reflecte power |R|*> and transmitted power |T|? of the fundamental modes in sides
1 and 2, respectively, and the radiation power P,,q with the waveguide height in side
2, H>. As may be seen from Figure 4.6, the behaviour of |R|?, |T|> and P,y is quite
similar to the TM excitation case, except that the maximum transmission efficien y
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Figure 4.6 Variation of the transmitted power | T'|? the reflecte power |R|? of the fundamental
TE( modes in sides 2 and 1, respectively, and the radiated power P,,q with the waveguide height
in side 2, H;. (Reproduced with permission from Obayya, S.S.A. (2004) Novel finit element
analysis of optical waveguide discontinuity problems. IEEE J. Lightwave Technol., 22 (5),
1420-1425. (C) 2004 1IEEE.)

is slightly enhanced to 0.776, while the minimum radiated power drops to 0.079. In
all examples considered here, the computational window is enclosed by two PML
regions each of width 1.0 um, with eight elements and a value of the theoretical
reflectio coefficien at the interface between the PML and the computational window
R, of 1075,

In this example, a computational window of 10.0 um is nonuniformly represented
by 200 line elements. With this discretisation, it took less than 0.5 s to calculate the
reflecte and transmitted power pair on a PC (Pentium IV, 2.66 GHz). On the other
hand, the LSBR with the FEM method [6] employing 25 modes for each side would
require 25 times the execution time and storage requirement compared to the proposed
method.

4.6.2 Laser—Air Facet

The more challenging discontinuity problem of a laser—air facet is also considered [1].
The schematic diagram of the structure is shown in Figure 4.7. The refractive indexes
of the core and substrate are 3.60 and 3.42, respectively, and the operating wavelength
is taken as 0.86 um. For a TEj, mode launched, the variation of the reflecte power
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Alr (n=1)

Figure 4.7 Schematic diagram of a laser—air facet. (Reproduced with permission from
Obayya, S.S.A. (2004) Novel finit element analysis of optical waveguide discontinuity prob-
lems. IEEE J. Lightwave Technol., 22 (5), 1420-1425. (C) 2004 IEEE.)

of the fundamental TEy mode with the waveguide height, H, is shown in Figure 4.8.
It may be observed from this figur that the results of this approach converge very
rapidly with those obtained using the FSRM [9].

As the index difference between the two discontinuity sides is large, it can be
seen from Figure 4.8 that the first-orde Taylor’s expansion, which is equivalent to
the paraxial approximation, is underestimating the values of the reflecte power.
On the other hand, the results obtained using the third-order Taylor’s expansion are
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Figure 4.8 Variation of the fundamental TE; mode reflecte power with the waveguide
height, H, using the present finite-elemen approach with first- second- and third-order Taylor’s
series expansions, and the FSRM. (Reproduced with permission from Obayya, S.S.A. (2004)
Novel finit element analysis of optical waveguide discontinuity problems. IEEE J. Lightwave
Technol., 22 (5), 1420-1425. (C) 2004 IEEE.)
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Figure 4.9 Variation of the fundamental TM,y mode reflecte power with the waveguide
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in excellent agreement with those obtained using the FSRM [9]. For a TMy mode
excitation, the variation of the reflecte power of the fundamental TMy mode with H
obtained using the present finite-elemen approach employing the first- second- and
third-order Taylor’s expansions and the FSRM [9] are shown in Figure 4.9. Again,
this figur shows clearly that the use of the finite-elemen approach with a third-order
Taylor’s expansion gives reflecte power results that are almost indistinguishable
from those obtained using the FSRM [9]. In this example, a computational window of
6.0 um is nonuniformly represented by 180 line elements.

4.6.3 Laser—Air Facet with a Tilt Angle

The design of a laser—air facet with a tilt angle to minimise the reflecte power will also
be considered [1] using the present finite-elemen approach. The schematic diagram
of the structure is shown in Figure 4.10, where the wavelength and other parameters
are the same as in the previous example. In order to apply the finite-elemen approach,
a virtual interface perpendicular to the waveguide cross section replaces the original
tilted interface, as shown in Figure 4.10. Equation (4.10) is solved for the reflecte
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Virtual interface

Figure 4.10 Schematic diagram of a laser—air facet with facet angle, 6. (Reproduced with
permission from Obayya, S.S.A. (2004) Novel finit element analysis of optical waveguide
discontinuity problems. /[EEE J. Lightwave Technol., 22 (5), 1420-1425. (C) 2004 1EEE.)

fiel at the normal ‘virtual® interface, and then its phase front is modifie to be 28,
sin (y — »0), where Bg; is the real-value propagation constant of the launched
fundamental mode, 6 is the facet angle and y, is the centre y-coordinate of the
waveguide core, in order to obtain the reflecte fiel at the real tilted interface. Then,
as in the previous examples, the reflecte power is calculated as the power carried by
the fundamental mode normalised to the incident mode power.

For a waveguide height, H, of 0.4 um, Figure 4.11 shows the variation of the
reflecte power of the fundamental mode, in decibels, with the facet angle, 8, for both
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Figure 4.11 Variation of the fundamental TEy and TM, mode reflecte powers, in decibels,
with the facet angle 6 using the present finite-elemen approach and the BBPM. The waveguide
height, H, is 0.4 pm. (Reproduced with permission from Obayya, S.S.A. (2004) Novel finit
element analysis of optical waveguide discontinuity problems. /IEEE J. Lightwave Technol.,
22 (5), 1420-1425. (C) 2004 IEEE.)
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TE and TM excitations. As may be noted from this figure an increase in the facet
angle has a significan effect on reducing the reflecte power. In particular, for TE
excitation, the reflecte power is reduced from —4.1 to —11.9 dB as the facet angle 6
increases from 0 to 12°. Also, for TM excitation, a reduction in the reflecte power
from —5.95 to —14dB occurs as 6 increases from 0 to 12°. As may be observed also
from Figure 4.11, the results obtained using the present finite-elemen approach with
a third-order Taylor’s expansion are in close proximity to those obtained using the
bidirectional beam propagation method (BBPM) [16].

Next, the variation of the TE, reflecte power, in decibels, with the waveguide
height, H, with the facet angle, 6, as a parameter is shown in Figure 4.12. It can be
noted from this figur that for 6 > 10°, a significan reduction in the reflecte power
occurs for the whole range of the waveguide heights considered. In particular, for
H = 0.7 um and 6 = 15°, reflecte power as low as —30 dB can be obtained.
Similarly, Figure 4.13 shows that the TM reflecte power behaves in a very similar
way to the TE case, for example, the TM reflecte power for H = 0.7 um and 6 =
15° is nearly —34 dB.
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Figure 4.12 Variation of the fundamental TE; mode reflecte powers, in decibels, with the
waveguide height, H, and the facet angle, 8, as a parameter. (Reproduced with permission
from Obayya, S.S.A. (2004) Novel finit element analysis of optical waveguide discontinuity
problems. IEEE J. Lightwave Technol., 22 (5), 1420-1425. (C) 2004 IEEE.)
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Figure 4.13 Variation of the fundamental TM, mode reflecte powers, in decibels, with the
waveguide height, H, and the facet angle, 0, as a parameter. (Reproduced with permission
from Obayya, S.S.A. (2004) Novel finit element analysis of optical waveguide discontinuity
problems. IEEE J. Lightwave Technol., 22 (5), 1420-1425. (C) 2004 IEEE.)

4.7 Optical Fibre Facet Problem

The problems of light scattering at the discontinuity planes of various optical wave-
guides have been considered in the literature using various numerical techniques, for
example [1,4,6,11]. However, the treatment of the optical fibr facet problem has been
dealt with in a relatively few publications. Based on the method of lines (MoL), a rigor-
ous numerical approach has been suggested in [17] to account for the diffraction of the
scalar LP modes of abruptly terminated optical fibers Although accurate, the analysis
has been restricted to the case of uncoated optical fibers Further, the time-consuming
modal-solution process to fin both the guided and radiation modes of both discontinu-
ity sides is inevitable prior to the calculation of the scattered fields On the other hand,
the finite-di ference time domain (FDTD) has been successfully applied to study the
propagation characteristics of optical fiber using an approach that adopts cylindrical
coordinates [18]. However, the FDTD is known to be computationally expensive in
terms of both the time and memory requirements compared to frequency-domain
techniques. The semi-analytical free-space radiation mode (FSRM) method [19]
has been shown to give a very accurate and yet numerically efficien full-vectorial
treatment of both uncoated and coated optical fibr facet problems [19]. The approach
is mainly based on the assumption that the fibr radiation modes are propagating in
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a uniform refractive index region. This assumption has proven valid for transverse
index variation up to 10%, which is the case in most optical fibr situations.

In the next section, an alternative scalar finite-elemen approach [2] is introduced.
Through the application of Galerkin’s finite-elemen procedure, the characteristic
matrix is generated for each side of the discontinuity plane. Conventionally, a lengthy
and tedious modal-solution approach would be followed to fin the guided and
radiation modes by performing an eigenvalue analysis on these matrices. Instead,
the mass matrix is lumped into a diagonal matrix, and its inverse is multiplied with
the original characteristic matrix to produce a new characteristic matrix as sparse
as the original one [1]. Then, the square-root operator of this matrix is approximated
using the Taylor’s series expansion, and through the enforcement of the boundary
conditions at the discontinuity plane, the reflecte and transmitted field can be found
numerically [1]. The numerical advantage of using the Taylor’s series expansion is
the avoidance of matrix inversion to represent high-order approximations as in Pade
approximation analysis [11]. Although the present finite-elemen approach is scalar,
it may be more fl xible than the FRSM method [19] in dealing with situations such as
coated angled fibr facets, where small angles would have a significan influenc onthe
performance of the antireflectio (AR) coating, as will be seen later from the results.

4.8 Finite-Element Analysis of Optical Fibre Facets
4.8.1 Formulation

The schematic diagrams of the coated optical fibr facet problem and the 3D view are
shown in Figure 4.14. As may be noted from this figure the diameter of the fibr core
is D and the refractive indexes of the core and cladding are n¢oe and .4, respectively.
The fibr facet can be either abruptly terminated by air or coated with an AR layer
of thickness dar and refractive index nagr. These parameters are to be chosen in order
to minimise the reflectio to the fibr from the air. First, the problem of scattering of
the scalar LPy; mode from the uncoated fibr facet, as shown in Figure 4.15, will be
considered.

As shown from Figure 4.15, cylindrical coordinates are adopted and the disconti-
nuity plane is located at z = 0. For circularly symmetric structures, such as the one
in hand, and starting from Maxwell’s equations, the scalar wave equation governing
the propagation of the LP,, modes on each side of the discontinuity can be derived
as [17]

PE; 1 9 [(19E; 1 19E;
— = + —S—— +Kn?E; =0 (4.14)
9z2  o; or

o; or al.zr or

where i refers to the quantities in the ith side, »; is the refractive-index distribution, k¢
is the free-space wavenumber and E; is the electric field The parameter «; is related
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permission from Obayya, S.S.A. (2006) Scalar finite-elemen analysis of optical-fibe facets.
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to the perfectly matched layer (PML) boundary condition, and is assumed to follow

1 inside computational window

— — L\’ 4.15
e I (’" ) inside PML (“4.15)
WELE, w

where w is the frequency (= 27w ¢/)), 0 max 18 the maximum conductivity inside the
PML region, W is the width of the PML region and L is the width of the computational
window, as shown in Figure 4.15. Then, by dividing the radial cross section into a
number of first-orde line elements and applying Galerkin’s procedure to Equation
(4.14) leads to

d*{E};
(ML S+ KB = (0) (4.16)

where {E}; is the electric fiel vector, {0} is the null vector, [M]; and [K]; are the
global mass and characteristic matrices of which the expressions are given as

oy = Y [ e (4.17)

_ 2.2 T_L T_ii i T
[K]i —262/ (koni[N][N] a?r[N][N [N15- V] )dr (4.18)

aiz or

In Equations (4.17) and (4.18), [N] represent the shape function vectors over
each element, T is the transpose and the summation ) is carried out over all the

elements. Equation (4.18) gives a proper representatiorel of the characteristic matrix
as long as the singularity caused by » = 0 is avoided. However, as may be noted
from Figure 4.15, the firs element contains the singularity point, » = 0. In this
case, to avoid the singularity, the L’Hopital rule can be used to represent the term
(1/a?)(1/r)(DE;/dr) as Lim,_o(1/r)(dE;/dr) = (3*E;/dr*). Therefore, for the firs
element only, the characteristic matrix will read

20

0
(K] = / (kén?[N][N]T - zaT[N]aT[N]T) dr (4.19)

4.8.2 Derivation of Finite-Element Matrices

In the MoL analysis [17], both guided and radiation modes of both discontinuity
sides are firs obtained, and then, by enforcing the continuity of the transverse
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electromagnetic field at the discontinuity plane, both reflecte and transmitted field
can be calculated. However, to avoid the lengthy and complicated process of per-
forming the modal analysis, an alternative approach is adopted [1]. As explained in
Section 4.4, the global mass matrix, [M], is firs converted into a diagonal matrix by
simply using the ‘lumping’ rule [1,12] in Equation (4.6) (M;,.,, = Y M;, jc), where

the diagonal entry of the new lumped mass matrix M at a particular rcj)\c)v ‘ir’ is the sum
of all entries in that particular row of the original mass matrix, M. The summation
in Equation (4.6) is performed over all columns ‘jc’ of the original matrix where
nonzero entries exist. Then, the inverse of the lumped matrix would lend itself to be
simply another diagonal matrix of which the entries are the reciprocals of the lumped
mass matrix. Then, multiplying both sides of Equation (4.16) with the inverse of the
lumped mass matrix results in

P(E);

7 T LL{E) = {0} with [L]; = [M];'[K]; (4.20)

It should be emphasised that the new characteristic matrix [L] is as sparse as the
original matrix [K], thanks to the lumping of the mass matrix into a diagonal matrix.
The formal solution of Equation (4.20) would be written on each side as

(E)i(2) = exp (—jV/ILhz) (E"); +exp (jVILL) (E7) (421

where {ET1});, and {E~}; are the forward and backward propagating field on each
side at the discontinuity plane z = 0. Assuming an LPy, mode is incident from the
fibr on side 1, as shown in Figure 4.15, and applying the continuity of the transverse
electric and magnetic field atz = 0 leads to

(VIED + VL) B = (VILT - VIEL:) E™ (4.22)
(VL) E™ = (VLI + VLR ) £ (4.23)

where E"® E™f and E™S denote the incident, reflecte and transmitted fields respec-
tively. The solution of the linear system of equations given in (4.22) and (4.23) yields
the reflecte and transmitted field once the incident fiel is known.

4.8.3 Application of Taylor’s Series Expansion

The square-root operator of the characteristic matrix can be evaluated accurately and
efficientl using Pade approximations [11]. However, the calculation of high-order
Pade approximations may be computationally intensive, as it requires the inversion of
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the matrix. Alternatively, Taylor’s series expansion is used here instead to represent
the square-root operator of the characteristic matrix around a reference wavenumber,
B, and the nth order approximation is given by [1]

vI=p(m+y % (HE ) (424)
=1

where the expansion coefficient are givenby a; =1 ],iz_ol (n—k),j>1,n=1/2 and
[/] is the identity matrix. As explained in Section 4.5, the reference wavenumber has
to be chosen as a complex number to truly represent both the guided and evanescent
modes generated at the discontinuity plane and, in turn, to satisfy the power-balance
condition. Therefore, the reference wavenumber is represented as 8 = Be?, where By
is the real-value reference wavenumber and ¢ is taken in the range from 1 to 10° [1,11].

4.9 Iterative Analysis of Multiple Discontinuities

The fibr facet as schematically shown in Figure 4.14 can be either abruptly terminated
by air or coated with an AR layer of thickness dar and refractive index nag. These
parameters are to be chosen in order to minimise the reflectio to the fibr from the
air. As may be noted from Figure 4.14, the diameter of the fibr core is D and the
refractive indexes of the core and cladding are n.y. and njag, respectively.

In order to numerically simulate the wave propagation in the fibr facet termi-
nated by AR layer, an iterative bidirectional beam-propagation algorithm has been
implemented, based on the picture of the wave propagation given in Figure 4.16. The
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Figure 4.16 Picture depicting the wave propagation in coated optical-fibr facet, where n is
the propagation trip number. (Reproduced with permission from Obayya, S.S.A. (2006) Scalar
finite-elemen analysis of optical-fibe facets. IEEE J. Lightwave Technol., 24 (5), 2115-2121.
(©) 2006 IEEE.)
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incident wave is the scalar LPy; mode from the optical-fibr side, and the discontinu-
ity analysis is performed at the interface separating the fibr and the AR coating to
fin the reflected and transmitted-fiel pair. The transmitted fiel is now allowed to
propagate forward inside the AR coating until it reaches the other discontinuity end
separating the AR coating and the air. This forward propagation is performed using
the conventional paraxial BPM. Upon performing the forward propagation in the AR
coating, a discontinuity analysis is carried out at the interface between the AR coating
and the air. As a result, the reflecte fiel is allowed to propagate backward in the AR
coating until it reaches the other end separating the AR coating and the fibre where
the discontinuity analysis is carried out to fin the total reflecte and transmitted
fields On the fibr and air sides, the total reflecte and transmitted field are updated
at the end of each propagation trip by appropriately adding up the contributions from
the scattered fields as shown in Figure 4.16. This process is repeated until a certain
convergence criterion is met. In this work, it has been chosen to stop the propagation
when the difference between the reflect vities calculated in the last two iterations is
less than 0.001 dB.

4.10 Numerical Assessment
4.10.1 Uncoated Fibre Facet

The problem of scattering of the scalar LPy; mode from the uncoated fibr facet [2],
as shown in Figure 4.15 will be investigated first In this study, the core and cladding
indexes of the optical fibr are taken as 1.4516 and 1.4473, respectively, and abruptly
terminated by air. At a wavelength of 1.55 pum, the fibr is excited with the scalar
LPy; mode of which the reflect vity against the core diameter is shown in Figure 4.17.
In all fibr facet examples presented here, the fibr cross section is enclosed in a
15 wm computational window represented by a nonuniform mesh of 500 line elements
and terminated by a PML layer of 1 um width divided into fi e line elements with a
maximum conductivity o m.x of 10.
The reflect vity of the LPy; mode is calculated by using

/rEinc,* Erefdl’

[ rlEm o

where * denotes the complex conjugate, and £, E™" and E™" denote the incident,
reflecte and transmitted fields as shown in Figure 4.15. Also, in all simulations, a
third-order Taylor’s series expansion was used as it gives accurate results. As may
be noted from Figure 4.17, the reflect vity of the scalar LPy; mode increases mono-
tonically with increasing the core diameter. Also, it is interesting to note that these
scalar finite-elemen results are in very good agreement with their scalar counterparts
obtained using the FSRM and reported in [19].

Reflect vity of LPy; mode =

(4.25)
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Figure 4.17 Variation of the scalar LPy; mode reflect vity with the core diameter of an
uncoated optical fibre (Reproduced with permission from Obayya, S.S.A. (2006) Scalar
finite-elemen analysis of optical-fibe facets. IEEE J. Lightwave Technol., 24 (5),2115-2121.
(©) 2006 IEEE.)

Also, shown in Figure 4.18 is the variation of the total reflecte and total transmitted
powers, normalised to the incident power, with the core diameter. The incident, total
transmitted and total reflecte powers are calculated by using

Incident power = Re ( / Eine (,/[L]lEim)* , dr) (4.26)
Reflecte power = Re (/ E™f (\/ [L]lEref)* r dr) 4.27)
Incident power = Re ( f Elrans (,/[L]zEtranS>* r dr) (4.28)

As may be observed from Figure 4.18, the total power (reflecte + transmitted) is
balanced to the incident power within less than 0.05%, which clearly shows that the
power-balance condition is satisfied thanks to the proper treatment of the evanescent
modes generated at the discontinuity plane by using the concept of the complex-value
reference wavenumber.
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Figure 4.18 Variation of the total reflecte (Py.r) and total transmitted (Piqns) powers with
the core diameter of an uncoated optical fibr (power balance). (Reproduced with permission
from Obayya, S.S.A. (2006) Scalar finite-elemen analysis of optical-fibe facets. [EEE J.
Lightwave Technol., 24 (5),2115-2121. (C) 2006 IEEE.)

For a specifi value of the core diameter of 8.7 um, the spectral variation of the
scalar LPy; mode reflect vity in the wavelength range from 1 to 3 um is shown in
Figure 4.19. It could be noted from this figur that the scalar LPy; mode reflect vity
is monotonically decreasing as the wavelength is increased. These results can be
explained by adopting the simple, but less accurate, Fresnel’s formula for predicting
the reflect vity by using

Reflect vity = M (4.29)

(neff + 1)

where n.g is the effective index of the scalar LPy; mode. As the wavelength is
increased, the fundamental LP;; mode becomes less confine to the core and more
spread into the cladding, giving rise to lower values of the effective index negr, and
hence to lower values of the reflect vity, as predicted by Equation (4.29). Once again,
there is an excellent agreement between the results obtained using this finite-elemen
approach and its scalar counterparts reported in [19] using the FSRM method.

4.10.2 Single Antireflectio Layer

The next example, shown in Figure 4.14, is an optical fibr with the same refractive-
index distribution and with a core diameter of 8.7 um, and the facet is coated with
a single quarter-wavelength AR coating [2] with a refractive index of (#.5)*> and a
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Figure 4.19 Spectral variation of the scalar LPy; mode reflect vity from an uncoated optical-
fibr facet. (Reproduced with permission from Obayya, S.S.A. (2006) Scalar finite-elemen
analysis of optical-fibe facets. IEEE J. Lightwave Technol., 24 (5), 2115-2121. (©) 2006
IEEE.)

thickness dag of 1.3/ (4n2'ff), where nqr 1s the effective index of the LPy; mode at the
central design wavelength, taken here as 1.3 um. In order to numerically simulate
the wave propagation in the fibr facet terminated by the AR layer, the iterative
bidirectional beam-propagation algorithm has been used, as shown in Figure 4.16.
At a wavelength of 1.3 um, Figure 4.20 shows the convergence of the calculated
reflect vity of the coated optical fibr with the number of propagation trips using the
presented iterative bidirectional BPM algorithm. As maybe noticed, less than fi e
propagation trips are enough to achieve convergence.

Figure 4.21 shows the variation of the LPy; mode reflect vity with the wavelength
in the case of an AR coated optical fibre As may be seen here, the reflect vity at the
central design wavelength, 1.3 um, is about —63 dB, thanks to the proper selection of a
quarter-wavelength AR coating. The fact that the reflect vity at the central wavelength
is quite small is also quite evident from the reflecte fiel distribution inside the fibre
with and without the AR coating, as shown in Figure 4.22. It may also be noticed
that the results obtained using the finite-element-base bidirectional BPM are in very
good agreement with their scalar counterparts obtained using the FSRM method and
reported in [19], as shown in Figure 4.21, and also as evident from Table 4.1. It
should be mentioned that each of the simulation points for the uncoated and coated
fibr facets, represented by a nonuniform 500 line elements, takes about 20 and 30 s,
respectively, on a PC (Pentium IV, 2.66 GHz).
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Figure 4.21 Spectral variation of the scalar LPy; mode reflect vity from an optical fibr facet
coated with a single AR layer. (Reproduced with permission from Obayya, S.S.A. (2006)
Scalar finite-elemen analysis of optical-fibe facets. IEEE J. Lightwave Technol., 24 (5),
2115-2121. (C) 2006 IEEE.)
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Figure 4.22 Reflecte electric-fiel distribution inside a fibre with and without AR coating.
(Reproduced with permission from Obayya, S.S.A. (2006) Scalar finite-elemen analysis of
optical-fibe facets. IEEE J. Lightwave Technol., 24 (5), 2115-2121. (C) 2006 1EEE.)

Table 4.1 Values of the reflect vity of the fundamental LPy; mode at different wavelengths
for an optical fibe with an AR coating (the same as shown in Figure 4.21), obtained using
the present finite-elemen approach (column 2), and their scalar counterparts reported in [19]
using the FSRM method (column 3). (Reproduced with permission from Obayya, S.S.A.
(2006) Scalar finite-elemen analysis of optical-fibe facets. I[EEE J. Lightwave Technol., 24
(5), 2115-2121. (C) 2006 IEEE.)

Reflect vity (dB), Reflect vity (dB),
Wavelength, A (pm) Present FE Approach FRSM [19]
1.100 —25.547 —25.60
1.250 —38.562 —38.60
1.275 —44.697 —44.70
1.290 —52.385 —52.40
1.300 —62.152 —63.00
1.325 —45.003 —45.00
1.350 —39.218 —39.20
1.400 —33.549 —33.60

1.500 —28.188 —28.20




92 Computational Photonics

0.2

0.18 [

0.16
0.14f
012f

01

Reflectivity

0.08 b
0.06 [

0.04

0.02 |

0 2 4

6[deq]

Figure 4.23 Variation of the reflect vity of the firs four LPy,, modes with the tilt angle, 0,
of the uncoated fibr facet. (Reproduced with permission from Obayya, S.S.A. (2006) Scalar
finite-elemen analysis of optical-fibe facets. IEEE J. Lightwave Technol., 24 (5), 2115-2121.
(©) 2006 IEEE.)

4.10.3 Slanted Interfaces

The case of an uncoated multimode fibr with angled facet [2], as shown in the inset of
Figure 4.23, is also considered using the present scalar finite-elemen approach. At a
wavelength of 1.3 pum, the fibr is selected to have a core diameter of 30 um, and core
and cladding refractive indexes of 1.4516 and 1.44, respectively, to be multimoded. In
order to apply the present finite-elemen approach, a virtual interface perpendicular
to the fibr cross section replaces the original angled facet, as shown in the inset of
Figure 4.23. Then, after performing the discontinuity analysis on this perpendicular
‘virtual® interface, the phase front of the calculated reflecte fiel is modifie to be
2nk,r sin 6, where n is the refractive-index distribution of the fibre and 0 is the
tilt angle, in order to obtain the reflecte fiel at the real angled interface [1]. The
incident fiel isthe LPy; mode, and due to mode coupling, the reflecte fiel spectrum
includes both the fundamental and higher-order modes. The reflect vities of the firs
four LP, modes are calculated, and their variations with the tilt angle 6 are shown in
Figure 4.23. Those reflect vities are calculated by simply performing overlap integrals
of the reflecte fiel and the normalised electric-fiel profile of the firs four LPgy,
modes using expressions similar to (4.24). As can be observed from this figure the
reflect vity of the LPy; mode is monotonically decreasing as the tilt angle 6 increases.
On the other hand, it can be observed from Figure 4.23 that the reflect vity of any
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Figure 4.24 Variation of the reflect vity of the fundamental LPy; mode with the tilt angle 6 of
the angled-facet fibr coated with an AR coating. (Reproduced with permission from Obayya,
S.S.A.(2006) Scalar finite-elemen analysis of optical-fibe facets. IEEE J. Lightwave Technol.,
24 (5),2115-2121. (C) 2006 IEEE.)

higher-order LP,, mode reaches a peak value at a particular tilt angle, and then starts
to monotonically decrease as the tilt angle increases. Also, it can be noted that the
peak value of the reflect vity of any higher-order LP,, mode decreases as m increases,
and its tilt angle tends to increase.

Finally, the case of an angled-facet fibr with an AR coating is investigated. The
parameters of the structure, shown as an inset in Figure 4.24, are the same as those
considered in Figure 4.21. At the central design wavelength of 1.3 pm, the variation
of the reflect vity of the fundamental LPy; mode with the tilt angle 6 is shown in
Figure 4.24. It can be noticed from Figure 4.24 that the reflect vity of the LPy; mode
has drastically changed from —63 to about —21 dB for a tilt angle of only +1°. These
results show clearly that even small tilt angles of the fibr interface can lead to a
deterioration of the performance of the AR coating.

References

[1] Obayya, S.S.A. (2004) Novel finit element analysis of optical waveguide discontinuity problems.
J. Lightwave Technol., 22 (5), 1420-1425.

[2] Obayya, S.S.A. (2006) Scalar finite-elemen analysis of optical-fibe facets. J. Lightwave Technol.,
24 (5),2115-2121.



94 Computational Photonics

[3] Ikegami, T. (1972) Reflect vity of mode at facet and oscillation mode in double-heterostructure
injection lasers. IEEE J. Quantum Electron., 8, 470-476.

[4] Gerdes, B., Lunitz, B., Benish, D. and Pregla, R. (1992) Analysis of slab waveguide discontinuities
including radiation and absorption effects. Electron. Lett., 28 (11), 1013-1015.

[5] Chiou, Y.P. and Chang, H.C. (1997) Analysis of optical waveguide discontinuity problems. /[EEE
Photon. Technol. Lett., 9, 964-966.

[6] Rahman, B.M.A. and Davies, J.B. (1988) Analysis of optical waveguide discontinuities. J. Lightwave
Technol., 6, 52-57.

[7] Kawano, K., Kitoh, T., Kohtoku, M. et al. (1998) Bidirectional finite-elemen method-of-line beam
propagation method (FE-MOL-BPM) for analyzing optical waveguide with discontinuities. /EEE
Photon. Technol. Lett., 10, 244-245.

[8] Koshiba, M., Ooishi, K., Miki, T. and Suzuki, M. (1982) Finite-element analysis of the discontinu-
ities in a dielectric slab waveguide bounded by parallel plates. Electron. Lett., 18 (1), 33-34.

[9] Reed, M., Benson, T.M., Kendall, P.C. and Sewell, P. (1996) Antireflection-coate angled facet
design. IEE Proc. Optoelectron., 143 (4), 214-220.

[10] El-Refaei, H., Betty, 1. and Yevick, D. (2000) The application of complex Pade approximants to
reflectio at optical waveguide facets. [EEE Photon Technol. Lett., 12, 158-160.

[11] Rao, H., Steel, M.J., Scarmozzino, R. and Osgood, R.M. (2000) Complex propagators for evanescent
waves in bidirectional beam propagation method. J. Lightwave Technol., 18, 1155-1160.

[12] Zienkiewicz, O.C. and Taylor, R.L. (2000) The Finite Element Method, Butterworth-Heinemann,
Oxford.

[13] Yamada, T. and Tani, K. (1997) Finite element time domain method using hexahedral elements.
IEEE Trans. Magn., 33, 1476-1479.

[14] Yong, Y.K. and Cho, Y. (1994) Algorithm for Eigenvalue Problems in Piezoelectric Finite Element
Analysis. Proceedings of the IEEE Ultrasonic Symposium, vol. 2, pp. 1057-1062.

[15] Tsuji, Y. and Koshiba, M. (2002) Finite element method using port trauncation by perfectly matched
layer boundary conditions for optical waveguide discontinuity problems. J. Lightwave Technol., 20,
463-468.

[16] Kaczmarski, P. and Lagasse, P.E. (1988) Bidirectional beam propagation method. Electron. Lett.,
24 (11), 675-676.

[17] Imtaar, M. and Al-Bader, S. J. (1995) Analysis of diffraction from abruptlyterminated optical fiber
by the method of lines. J. Lightw. Technol., 13 (2), 137-141.

[18] Shen, G., Chen, Y. and Mittra, R. (1999) A nonuniform FDTD technique for efficien analysis of
propagation characteristics of optical-fibe waveguides. IEEE Trans. Microw. Theory Tech., 47 (3),
345-349.

[19] Vorgul, 1., Vukovic, A., Sewell, P. and Benson, T.M. (2003) Optical fibr facets: A vector analysis.
Proc. Inst. Elect. Eng. Optoelectron., 150 (6), 508-512.



S

Complex-Envelope
Alternating-Direction-Implicit
Finite-Difterence Time-Domain
Method

5.1 Introduction

In this chapter, emphasis will be put on the finite-di ference time-domain technique,
taking into account its advantages and its main drawbacks. In particular, a detailed
description of how those drawbacks have been solved with the advent of the
alternating-direction implicit FDTD (ADI-FDTD) technique and the complex-
envelope ADI-FDTD (CE-ADI-FDTD) technique is given. Also, a comprehensive
analysis of the perfectly matched layer (PML) boundary conditions will be also
given, putting more emphasis on the new formulation of the uniaxial PML (UPML)
boundary conditions for the CE-ADI-FDTD. At the end of the chapter, numerous ex-
amples will be given in order to assess the effectiveness of the new formulation of the
UPML boundary conditions for the CE-ADI-FDTD in the context of photonic crystal
devices. The great improvement in the absorption properties of the proposed boundary
conditions will be shown to be positively reflecte in the excellent enhancement of
the stability properties of the numerical code. In this way, larger time-step sizes can
be employed with negligible impact on the numerical accuracy of the numerical code
and with consequent huge savings in computational resources.

Computational Photonics ~Salah Obayya
© 2011 John Wiley & Sons, Ltd
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5.2 Maxwell’s Equations

All electromagnetics problems can be solved by considering Maxwell’s equations
with appropriate boundary conditions. In their differential form, Maxwell’s equations
are expressed by

Vb= 28 (5.1
X = - .
a
— - D
V.-D=p (5.3)
V.-B=0 (5.4)

where E is the electric field D is the electric flu density, H is the magnetic field B is
the magnetic flu density, p is the electric charge density and Jis the current density.
At firs sight, it can be said that for a given electric charge distribution, p and a current
density, J, solving Equations (5.1)—(5.4) can determine the solution of any given
electromagnetic problem. However, this is not the case because Equations (5.1)—(5.4)
do not form a well-posed problem. It can be easily demonstrated that Equations
(5.1) and (5.4) are not independent, as well as Equations (5.2) and (5.3). In order to
overcome this problem two more vectorial relationships need to be introduced, and
these two relationships are represented by the constitutive relations, written as

D=¢E (5.5)
B=pH (5.6)

where € represents the permittivity and u represents the permeability of the medium.
It has to be mentioned that Equations (5.5)—(5.6) are valid for a linear, isotropic,
homogeneous medium which implies € and w are scalar quantities.

5.3 Brief History of the Finite-Difference Time-Domain
(FDTD) Method

The finite-di ference time domain (FDTD) method is one of the most popular com-
putational techniques employed in the research environment for a wide variety of
applications covering many different areas. The FDTD method was firs proposed by
Yee in 1966 [1] and it represented a simple and accurate yet efficien way to discretise
Maxwell’s equations. However, computer technology was not mature enough to fully
exploit the potential of the method at the time. With the increase in computational
power and its decreasing costs, the FDTD method started to become more and more
attractive and its popularity has grown exponentially since. Tafl ve was one of the
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firs to give a boost to the FDTD method [2] with a rigorous analysis of the numeri-
cal dispersion and anisotropy errors of the method. A couple of years later, the firs
application of the FDTD in the context of electromagnetic analysis was presented by
Holland [3]. In 1981, the firs second-order and numerically stable absorbing boundary
conditions (ABCs) were introduced by Mur [4]. The performance of these new ABCs,
in terms of the absorption of the incoming waves at the boundaries of the compu-
tational domain, was very good when compared with the, at the time, widely used
radiating conditions, with a consequent reduction in the computational domain size
and the computational burden. A few years later, the FDTD method was also used for
the firs time for the simulation of waveguide structures by Choi [5]. In that work, the
efficien y, in terms of CPU time and memory allocation compared to the transmission
line matrix (TLM) method, was shown. In 1990 in work published by Kashiwa and
Fukay [6], the FDTD was for the firs time applied for the modelling of dispersive
media, optimised by Joseph et al. [7] in 1991, and successively extended to the sim-
ulation of nonlinear media by Goorijan and Tafl ve [8]. In similar work conducted
by Ziolkowsky and Judkins [9], the self-focusing phenomenon was analysed with the
use of FDTD and was later extended to the analysis of active materials by Toland
et al. [10]. In innovative work published in 1994, Berenger [11] developed a novel
class of ABCs, the perfectly matched layers (PMLs), an artificia medium surround-
ing the computational domain which acts as absorber of the impinging waves. The
approach developed by Berenger has been shown to be robust and with absorbing
performances much better than any other boundary conditions established at the time.
In 1995, Sacks et al. [12] and Gedney [13] developed the uniaxial perfectly matched
layer (UPML) ABC which represented a physically realisable version of the PML.
Recently, in work published by Chang and Tafl ve [14], the FDTD has been also
extended to the simulation of quantum-mechanical effects with a model of lasing in a
four-level, two-electron atomic system.

5.4 Finite-Difference Time-Domain (FDTD) Method

The FDTD method is a quite general method for the simulation of electromagnetic
devices for all range of frequencies from the microwave to the optical regime. The
power of the method lies in its simple formulation in which no restrictive assumptions
are made in order to preserve its applicability to a wide range of problems. Considering
a 3D space with no electric or magnetic current sources, but with materials that present
electric and magnetic conductivity, Maxwell’s equations are then written as

_ 9H _
VxE= —MOMrW —o*H 5.7

— OF —
VxH= 808r¥ +oFE (5.8)
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where E = (Ex)? E,y EZZ_)T is the electric field H = (fo H,y HZZ_)T is the mag-
netic fiel and where T represents the matrix transpose, & and (1 are the permittivity
and permeability of the free space, respectively, €, and p, are the relative permittivity
and the relative permeability of the medium, respectively, and o and o * are the elec-
tric and magnetic conductivity of the medium, respectively. Equations (5.7) and (5.8)
represent Maxwell’s equations written in differential form and the electric fiel £
and the magnetic fiel H are vector quantities. Each of the two previous equations
represents three scalar equations, one for each electromagnetic fiel component, so
that vectorial Equations (5.7) and (5.8) can be written in the following six scalar
equations:

dE, JE, OH,
— X — 0" H, 5.9
3y 97 Moy 37 o (5.9
aEx 8Ez 8Hy *

- = —popr— — o H, 5.10
oy P Motr— = — 0" Hy (5.10)
IE, OE, dH.

—_ =— —0*H, 5.11
oy Holr——= =0 (5.11)
dH, 9H, AE,

— = = gpe—— + 0 Ey 5.12
a9z g O (5.12)
OH, OH. IE,

- = go&,—2 + 0 E 5.13
bz ox g TR (5.13)
dH, OH, AE.

— L —ge,—— 4+ 0E. (5.14)
ax ay at

Equations (5.9)—(5.14) can be used for the solution of any electromagnetic problem
once the appropriate boundary conditions are given. But for a numerical analysis
Equations (5.9)—(5.14) are of no use in the present form. In order to store the equations
on a computer memory, a process of discretisation in time and in space needs to be
applied to switch from infinit and continuous domains to finit and discretised
domains.

5.4.1 Discretisation in Space and Time: The Yee’s Algorithm and the
Leapfrog Scheme

The basic idea of Yee’s algorithm is to position the electromagnetic fiel components
in specifie places in a unit 3D cell in order to construct a finite-di ference notation
of Maxwell’s equations capable of calculating the time and space derivative with
second-order accuracy [15]. The electric and magnetic fiel components are placed as
shown in Figure 5.1. The position of the electromagnetic fiel components as shown
in Figure 5.1 leads to a series of advantages:
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Figure 5.1 Arrangement of the six electromagnetic fiel components on the Yee cell for a
3D case.

¢ The update of the electric and magnetic fiel components is made considering the
coupled set of Maxwell’s equations instead of evaluating them considering only the
electric or magnetic fiel as happens for the wave equation.

e The electric, £, and magnetic, H, components are placed in such a way that each
single component of a fiel is surrounded by four components of the other field

¢ The continuity relation of the tangential components at the interface between two
different materials is held in a natural and straightforward manner if this interface
is parallel to one of the directions of the unit 3D cell, so that no further relations for
the electromagnetic fiel components have to be forced.

¢ The electric and magnetic fiel components are also placed in an alternate manner
in the discretised time domain in a way that in order to update the electric fiel
components the magnetic fiel components calculated in the previous step are
used, and the updated electric fiel components obtained are then used to update
the magnetic fiel components. This is shown in Figure 5.2, where a 1D case
is considered. This update process is called time-stepping and the electric and
magnetic fiel components are placed in time with a scheme called leapfrog [15].
This scheme permits the numerical wave to propagate in the computational domain
as the simulation is running without any artificia decay due to the time-stepping
process.

H H H 3
—_— 1+2
E E E E
t+1

H H H

l+1§
E E E E i

Figure 5.2 Arrangement of the electric- and magnetic-fiel components with the leapfrog
scheme for a 1D case.
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The collocation of the electromagnetic fiel components described by the Yee cell
in space and by the leapfrog scheme in time permits second-order accuracy to be
achieved in the calculation of space and time derivatives of Maxwell’s equations.

5.4.2  Finite-Difference Notation of Maxwell’s Equations

The finite-di ference notation of Maxwell’s equations is obtained by applying Yee’s
algorithm to Equations (5.9)—(5.14). Starting from Equation (5.9) the finite-di ferent
notation is obtained as follows. First, Equation (5.9) needs to be rewritten in such a
way that the time derivative is be put on the LHS of the equation itself, while the rest
of the equation should be on the RHS

JdH, 1 <8EZ oE
ot Moy

5 Bzy +0*Hx) (5.15)

Following the notation in [15], Equation (5.15) is then dicretised following the
leapfrog scheme for the time derivative and the Yee cell to discretise the space
derivatives

n+1 _ n
Hel; 2y e — Bl e B 1
At Moteli—1/2,j41,k+1
E n+1/2 E n+1/2 E n+1/2 E n+1/2
zlicip st = E2liZip v pn iz etk = EvliZi sk
Ay Az

* n+l/2
+o |i71/2,_/+1,k+1Hx |z'—1/2,j+1,k+1

(5.16)

where At is the time increment or time step, and Ay and Az are the space increments
along the y- and z-axes, respectively. As can be seen from Equation (5.16), the H,
component on the RHS of the equation is evaluated at the time step n + 1 / 2, which
implies that this magnetic-fiel component is collocated in time with the electric-
fiel components, in clear violation of the leapfrog scheme (see Figure 5.2). In order
to solve this problem, the H, component on the RHS is calculated using a linear
approximation

n n+1
H |n+1/2 Hx'i—l/Z,j+1,/c+1 + Hx'i—l/Z,j+l,k+1
X

i—1/2.j+1k+1 = 2 (5.17)
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The substitution of Equation (5.17) into Equation (5.16) yields

n+1 _ n
Hel; 2y e = Helizn i a . 1
At Moteli—1/2, j41,k+1

E n+1/2 E n+1/2 E n+1/2 E n+1/2
Z|i71/2,j+3/2,k+1 - Z|i71/2,j+1/2,k+1 y|i71/2,j+1,k+3/2_ y|i71/2,j+l,k+1/2

Ay Az

n+1 n
Hx'i—l/z,j+1,k+l - Hx|i—1/2,j+1,k+1

*
+0*|ic1/2,j41,k+1 2

(5.18)

and then isolating /1, at the time step n + 1, the following equation is obtained

n+1
Heli D jan
o*ic1/2, j+1.k+1 AL At
2o teli=1/2,4+1.k+1 B Holeli=1/2,j+1.k+1
Al _
14 0" liz1/2,j+1.k+1A8 i=1/2,j+1 k1 14 o i—1/2,j+1 k1AL

2p0teli=1/2,j+1.k+1 20 eli=1/2,j+1,k+1

E n+1/2 E n+1/2 E n+1/2 E n+1/2

Z|i71/2,j+3/2,k+1_ Z|i71/2,j+1/2,k+1 y|i71/2,j+1,k+3/2_ y|i71/2,]'+1,k+1/2

Ay Az

(5.19)

Equation (5.19) is the finit difference form of Equation (5.15). Applying the same
procedure followed for Equation (5.9) to Equations (5.10)—(5.14), the following set
of discretised equations is obtained

n+1
Hyli i1 phs
1 0¥ ij+1/2.441 AL At

B 2pofheli j41/2.k41 o Holheli j+1/2.k+1
o i jr1jp ka1 AL | BT A2k i jr1/2. 441 A2
2000 e, j+1/2,k+1 2000 e li,j+1/2,k+1

E n+1/2 E n+1/2 E n+1/2 E n+1/2

xli idpassn = Exli i prsi zlivipa jrpner = Ezlizi 1o

Az Ax

(5.20)
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The updating process of Equations (5.19)—(5.24) starts with the calculation of the
electric-fiel components at the time step n + 1 / 2 using the electric-fiel components
at the time step n — 1 / 2 and the magnetic-fiel components at the time step n.
Following, the update of the magnetic fiel components at the time step n + 1 is
performed using the magnetic-fiel components at the time step n and the electric-
fiel components just calculated at the time step n + 1 / 2. This procedure is then
repeated for each time step until a steady state is reached or the fi ed maximum
number of time steps is reached.

5.4.3 Numerical Stability

The choice of the time increment and the space increments with which the compu-
tational domain is discretised can affect the velocity of propagation of the numerical
waves in the computational domain with consequences for the numerical accuracy of
the FDTD scheme [15]. Particular attention needs to be paid in the choice of the time
step At in order to avoid the accumulation of numerical error during the process of
time-stepping, which can increase without limit leading to instability of the FDTD
scheme. The analysis of the numerical stability can be performed in two different
ways:

e With the Courant, Friedrich, Levy and Von Neumann criterion which basically
studies the stability relative to the spatial derivatives of the wave equation and the
stability relative to the time derivative of the same equation separately. This implies
a split of the stability analysis into two relatively simple problems to be solved. As a
necessary condition, it is required that the eigenspace of the spatial derivatives must
be a subset of the eigenspace of the stable solutions of the time derivative [15].

e With complex-frequency analysis, in which complex solutions of the dispersion
relation for the FDTD grid are considered [15, 16].

Both analyses lead to a relationship which links the time increment, the time step, to
the space increments, the space steps, which also guarantees the numerical stability
of the FDTD scheme. In order to guarantee the stability of the FDTD scheme, it is
sufficien that

o Ly L L2 (5.25)
Ax?  Ay?2 Az2 T At )

where Ax, Ay and Az are the space steps along the x-, y- and z-axes, respectively, and
At is the time step. It needs to be mentioned that the previous relationship has been
normalised to the speed of light, ¢, in the medium considered in the computational
domain. With simple algebraic manipulation and considering a generic medium inside
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the computational domain, the relationship is finall obtained that bounds the time
step of the FDTD scheme in order to ensure the stability of the numerical method

1
At < (5.26)

- 1 + 1 N 1
c
Ax2  Ay?  Az?

Equation (5.26) is also known as the Courant—Friedrich-Levy stability criterion. As
an example of the application of Equation (5.26), if the Yee cell considered for the
discretisation of the computational domain is cubic with Ax = Ay = Az = A, from
Equation (5.26)

1 1 A
At < = = (5.27)

B R 3 o3
Vatata \/A:

It needs to be mentioned that the previous relationships have been calculated by
considering a computational domain fille with a homogeneous medium. Neverthe-
less, the validity of Equation (5.26) still holds, even if the computational domain is
fille with a nonhomogeneous medium, because it simply represents the worst-case
scenario in the choice of the time step, At. For this reason, the validity of Equation
(5.26) is sufficien to ensure the stability of the numerical scheme for an indefinit

number of time steps. On the other hand, it has to be noted that the stability of the
FDTD scheme is not only affected by the validity of Equation (5.26). Other factors,
such as the boundary conditions (BCs) applied to the computational domain, the
employment of nonuniform meshes for the discretisation of the computational do-
main, dispersive media, nonlinear media and media with loss can affect the stability of
the FDTD method. Nevertheless, huge numbers of simulations run for these cases in
the research environment have shown that the FDTD method can be usefully applied
because the stability of the scheme, even though not for an indefinit number of time

steps, is ensured for thousands of time steps, or at least for the number of time steps
necessary to extract all the essential information from the simulation [15].

5.4.4 Numerical Dispersion

In simulations carried out with the FDTD method it is possible to note that the phase
velocity of the propagating waves involved in the updating of the numerical scheme
can travel in the computational domain with different velocities for each wavelength.
This phenomenon is known as numerical dispersion and it is due to different factors,
such as the wavelength of the travelling wave, the direction of propagation of the
wave inside the computational domain and the resolution of the mesh chosen for the
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discretisation of the computational domain. This is a nonphysical phenomenon and it
is undesirable because it can add delays or phase errors to the propagating wave, which
can lead, as fina results, to pseudo-refraction, nonphysical anisotropy and increased
pulse width [17,18]. Unfortunately, this phenomenon is due to the discretised nature of
the scheme, it is intrinsically related to the Yee cell and it cannot be totally eliminated.
It is important then to understand how this phenomenon can affect the accuracy of the
results obtained with the FDTD method and how it is possible to minimise the effects
of this source of error. The numerical dispersion of the FDTD method is analysed by
comparing the equation for the numerical dispersion obtained for the Yee cell with
the equation for the numerical dispersion for the continuous case [15]. From this
comparison it is possible to get information on how to set the discretisation steps in
space in order to minimise the effects of the numerical dispersion. The equation for
the numerical dispersion for a discretised computational domain is [15]

1. (kAx\T [ 1 . (kay\]T [ 1 . (kAz\7?
aen (U5)] e (5] [ (5]
2
_ [L sin (w_At)] (5.28)
cAt 2

where Ax, Ay and Az are the space steps along the x-, y- and z-axes, respectively,
At is the time step, c is the velocity of light, w is the angular frequency, and &, k,
and k, are the wave-vector components. For a travelling plane wave in a 3D lossless
medium, the dispersion equation is

(,()2
— =k +k +k (5.29)
C

Taking into account the following well-known limit

lim 22— (5.30)

x—>0 X

it is straightforward to see that Equation (5.28) is equal to Equation (5.29), when at
the same time Ax — 0, Ay — 0, Az — 0 and At — 0. This means that the only way
to reduce the effects of the numerical dispersion is to employ very fin meshes and a
very small time step at the same time. But in order to have a quantitative analysis on
how small the space increments have to be in order to limit the dispersion error on
the results obtained by means of the FDTD method, a 2D example will be analysed.
Considering a 2D computational domain discretised using a square Yee cell (Ax =
Ay = A), and supposing a plane wave propagating in this 2D space forms an angle,
a, with the positive direction of the x-axis (ky = k cos(«), and k, = k sin(«)), the
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Figure 5.3 Variation of the normalised phase velocity of a plane wave propagating in a 2D
computational domain with the angle of propagation for three different mesh resolutions.

equation for the numerical dispersion can be rewritten as

sin? (M) + sin? (M) — (A) sin? (w_At) (5.31)
2 2 cAt 2

From Equation (5.31) it is possible to evaluate the wave vector, &, for each direction
of propagation, «, using, for instance, an iterative method [15]. The result of the
procedure is shown in Figure 5.3 for three different resolutions of the mesh used to
discretise the computational domain. From Figure 5.3 it is possible to note that the
phase velocity of the propagating wave is always less than the velocity of the light
and it has two minima for the directions of propagation & = 0° and o = 90° while it
possesses a maximum for o = 45°. This variation of the phase velocity with the angle
of propagation of the wave doesn’t depend on the grid resolution, which confirm
that this numerical dispersion is intrinsic to the Yee lattice. Even though this variation
cannot be eliminated, it is possible to reduce it by simply choosing an appropriate
grid resolution for the computational domain. From Figure 5.3 it can be seen that
with a grid resolution of A = A /20, the variation of the normalised phase velocity is
reduced to 0.3%, which can be considered as a lower bound in order to get accurate
results.

Different solutions to the numerical dispersion problem of the FDTD scheme have
been proposed in the literature. In a work proposed by K. Suzuki ef al. [19] a further
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reduction of the numerical dispersion has been reached by employing an anisotropic
velocity of light which compensates the anisotropy introduced by the Yee lattice. J.S.
Juntunen et al. [18] have proposed the compensation of the anisotropy of the phase
velocity by acting directly in the dielectric properties of the simulated material inside
the computational domain. Both solutions reach the goal of a further reduction in
the anisotropy of the phase velocity introduced by the Yee cell without increasing the
need for the computational resources of the FDTD method. But the main disadvantage
of both solutions is that this reduction is effectively reached for a single frequency
signal, while for signals with a broad spectrum of frequencies their effectiveness is
slightly compromised.

To overcome this problem, high-order schemes have been applied to the FDTD
method [17,20,21]. These high-order schemes also effectively reduce the numerical
dispersion for coarser meshes and furthermore this reduction, even though the analysis
has been formulated for a single frequency signal, has been proven to be effective for
signals with a broader spectrum of frequencies. The main disadvantage of these high-
order schemes is their need for computational resources, which makes them suitable
for problems that require the analysis of relatively big structures, such as electrically
elongated domains for waveguide problems [21].

5.5 Alternating-Direction-Implicit FDTD (ADI-FDTD): Beyond the
Courant Limit

The simple formulation of the FDTD method and its ability to simulate a wide variety
of devices for a large range of frequencies, from the microwave to the optical regime,
have made this method one of the most popular in the research environment. But for
classes of problems such as resonant cavities with very high quality factors, Q, and
structures with geometrical features very small compared to the shortest wavelength
involved, the requirement for computational resources of the FDTD method can be
prohibitive. This is quite intuitive, taking into account that the time steps employed
in FDTD simulations are bounded by Equation (5.26). For this reason, research effort
has been put into findin a way to make the FDTD more efficien for such classes of
problems. These efforts have given birth to the alternating-direction-implicit finite

difference time-domain (ADI-FDTD) method [22—26]. The main advantage of the
ADI-FDTD method over conventional FDTD is that the time-step size that can be
employed is not bounded by the CFL criterion expressed by Equation (5.26). This
property allows a great reduction in the number of time steps necessary to complete
a single simulation with a direct impact on computational resources. However as
a drawback, the time-step size also has effects on the numerical accuracy of the
ADI-FDTD method which, as a matter of fact, puts a limit on larger time-step sizes
[23,24].
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In this method, the electromagnetic-fiel components are still placed in space
following the Yee cell arrangement, as shown in Figure 5.1, but in time do not follow
the leapfrog arrangement. In particular, a single time step is divided in two halves in
which the electromagnetic-fiel components are collocated and not staggered, as in
the conventional FDTD method. Following a similar procedure for the discretisation
process of the Maxwell’s equations, the following set of equations is obtained from
Equations (5.9)—(5.14) for the firs half time step:

I‘l+1/2 _ n At i’l+l/2 n+1/2
Ex|j+1/2,j,k = Ex|i+1/2,j,k + —28Ay <H2|i+1/2,j+1/2,k — HZ|i+1/2,j—1/2,k)
At , )
- 2eAz (Hy‘i+1/2,.f,k+l/2 N HJ’|i+l/2,_i,k71/2) (5.32)
n+1/2 n At .y w12
Bl = Brlisaps 2eAz (H"|i,j+1/2,k+1/2 - Hx'i,j+1/2,k—1/2)
At ; i
- 28A_x (Hz|i+l/2,j+l/2,k - Hzli—1/2,j+l/2,k) (533)
n+1/2 . At n+1/2 n+1/2
Ez|i,_1‘,k+1/2 = Ez|:'1,j,k+1/2 + Yo A (Hy|i+1/2,j,k+1/2 _ Hyii—l/Z,j,k+1/2>
At " .,
 2eAy (HX|l'vJ'+1/2»k+1/2 - Hxlz’,j—l/z,k+1/2) (5.34)
I1+1/2 _ n At n+1/2 n+1/2
Hx|i,j+1/2,k+1/2 = Hx|,»,j+1/z,k+l/2 + m (Ey|i,j+l/2,k+1 _ Eyii,j+1/2,k>
At
a 2eAy (EZ|ZJ'+1»’€+1/2 - EZ'Zj,kH/z) (5.35)
n+1/2 . " At ntif2 12
Hy‘i+1/2,j,k+l/2 = Hx|i+1/2,j,k+1/2 + M—Ax <E2|i+1,j,k+1/2 — EZli,j,k+1/2>
At ; .
 2eAz (EX|"+1/2Jsk+1 - EX|i+1/2,j,k) (5.36)
Hoi o jnpn = Heligip jripn SNy ( xligi/2 ik — xliﬂ/z’j’k)
At , )
 2eAx (Ey‘i+1,j+l/2,k - Ey’i,j+1/2,k) (5.37)

As can be seen from the previous set of equations, some electric- and magnetic-
fiel components are collocated in time and for this reason Equations (5.32)—(5.37)
cannot be explicitly updated. After some algebraic manipulations, for each electric-
or magnetic-fiel component, a tri-diagonal system of equations is obtained, which
can be simply solved with a small overhead of computational resources. After the tri-
diagonal system being solved, the remaining magnetic- or electric-fiel components
are explicitly updated. For the second half time step, the equations that need to be
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solved are the following

Eﬂ?:ll/z,j,k = Ex|?:11//227j’k + ﬁ < z'?—tll//;,j+l/2,k B HZ|?L1//22J_1/2J€)
_ ZSA—Aty (Hy’?:ll/z,j,kﬂ/z - Hy|?++11/2’j’k71/2) (5.38)
n+1 n+1/2 At nt1/2 )2
y|i,j+1/2,k = y|i,j+1/2,k oA ( wli ks — Hx|i‘j+1/z,k,1/2)
- 25ATAtx (Hz|:lill/2,j+l/2,k - Hzl?jll/z’j_i_l/z’k) (5.39)
E-ll 1 = Ez|?,}r,}ﬁ1/z + 2?—Atx (Hy|?:ll//22’j’k+l/2 - Hy}?jll//;,j,k+]/2>
_ 2eAAty (Hx|zr'l,}r41r1/2,k+1/2 - Hx|2j11/2,k+1/2) (5.40)
Hx|?,ﬁ1/2,k+1/z = Hx|2ji/12/2,k+l/z + Z;fi < y‘Zjiﬁz/z,k+1 - y}fj}r/lz/z»
B 2eAAty <E2|1'1ﬁ1,k+1/2 - Ez'?f,}m/z) (5.41)
yi?:11/2~j,k+1/2 - HX|:,:11//22,j,k+1/2 + Zﬁﬁ (Ez|?i1l,/j2,k+1/2 - Ezl?ﬁﬁlﬂ)
B ZeAi (EXWLI/ZJ,HI - Ex|:‘l:11/2,j,k) (5.42)
HZ|?:1]/2J+1/2J¢ = Hx|?:11//22,j+1/2,k + 25—;/ (Ex|?ill//22,j+l,k - Ex|?i1]//22,j,k>
N % (Ey|?—tll,j+1/2,k - Ey|;1jj_1/2,k) (5.43)

For this set of equations, a similar procedure to that employed for the firs half time
step is followed. The time-stepping for the ADI-FDTD is given by the repetition of
the two previous procedures in time.

The semi-explicit nature of the ADI-FDTD algorithm is the key factor in its
unconditional stability [22,25,26], which makes it possible to employ time-step sizes
larger than the limit imposed by Equation (5.26) for the FDTD method. However, the
main drawback of this method is that the numerical accuracy of the results is seriously
affected by the time-step size: the larger the time-step size employed, the larger the
numerical dispersion [23,24]. This drawback puts a limit on the time-step size that
it is possible to employ in this method, which is finall dictated by the degree of
the modelling accuracy of the algorithm. Nevertheless, with the ADI-FDTD it is still
possible to reduce the computational resources needed by using a time-step size up to
eight times larger than the Courant criterion with a good level of accuracy of the results
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[23,24]. For applications regarding resonant structure in which the frequency band-
width of the signal involved is quite narrow, this limit can be extended up to 400 times
the Courant criterion, with a huge saving in terms of computational resources [27].

5.6 Complex-Envelope ADI-FDTD (CE-ADI-FDTD)

With the ADI-FDTD the capabilities of the FDTD method have been extended
beyond the Courant limit with consequent savings in computational resources, making
it suitable for classes of problems involving signals with a relatively narrow band-
width, which, with the conventional FDTD, require quite a large number of time steps
and hence a huge computational burden. However, the huge potential of the ADI-
FDTD is restricted by the large numerical errors obtained when large time-step sizes
are used. For this reason, some research efforts have been spent in order to circumvent
the restriction posed by the numerical dispersion of the ADI-FDTD. One solution that
has proven to be very attractive, especially for the simulation of photonic structure,
has been proposed in [28] in the context of optical device analysis. In this work, a
technique called the complex-envelope alternating-direction-implicit finite-di ference
time-domain (CE-ADI-FDTD) method has been proposed to greatly reduce the
numerical dispersion, even for large time-step sizes. The simple, yet ingenuous, idea
behind this technique is to split the total electromagnetic fiel into fast and the slow
temporal variation components, as shown in Figure 5.4.

The fast temporal variation component is then absorbed into the equations so as to
consider only the solution of the slow temporal variation. Applying this concept to all
six electromagnetic fiel components yields

E.(x,y,z,t) = Ex;(x,y,2,1) e/ Wl (5.44)
E,(x,y,2,8) = Epq (x,y, 2, 1) /™! (5.45)
E.(x,y,z,t) = E.,(x,y,z,t)e/"! (5.46)
H,(x,y,2,t) = Heq (x, y,2, 1) e/"! (5.47)

O (% ¥, 2, O=beny (X, ¥, 2, t)e‘/“’c‘

A ; I
'{"""!1||H|"‘§"ﬁ' gt

Figure 5.4 Example of the split of the total temporal variation fiel in its slow and fast
temporal variations.
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Hy,(x,y,z,t) = Hy (x,y,2,t) e/wet (5.48)
HZ(x’y7Z’ t):Hza (x’y?z’ t)e.]w(‘t (5'49)

where & (x, y, z, t) is the electromagnetic fiel component, ®y, (x, y, z, t) is the
envelope of the electromagnetic fiel component, with ® = F, Hand k = x, y, z,
and e/%< is the fast temporal variation. Substituting Equation (5.44)—(5.49) into
Maxwell’s equations, and after some simple algebraic manipulation, the following set
of equations is obtained

OH.y . 1 (JE., OE,,
+ jocHy = — - (5.50)
at HoMr 8)7 9z
0H,, . 1 0Ey, 0E
Xt jwcHy = — - (5.51)
at Moy \ 0z ax
dH. 1 [dE dE
‘b jw H, = — e _ (5.52)
at Moy dx ay
AE.a . 1 (0H,, 9H,,
+ jweEyy = — [ —= — 5.53
or T e ( 9y 8z (5:53)
IE,, 1 (0H,, 0H.,
i E = — 5.54
o TPy sosr( 0z ox ) (5:54)
dE., 1 (3H,, 9H,,
+jchza = P (555)
ot £0&r ox ay

Applying the ADI-FDTD discretisation scheme to Equations (5.50)—(5.55) for the
firs half time step yields

n+1/2 4 — j(,()cAt n 2At

Hyl: = ——— Hyl;; - .
|l,j+1/2,k+1/2 4 + ]CUCAZ |l,_]+l/2,k+1/2 (4 + ]CUCAt) Lo fr
n+1/2 n+1/2 n n
Ezal; it ksrp = Ezali jiiip _ Ey”}i,j+l/2,k+1 - EJ’“’i,j-H/Z,k (5.56)
Ay Az )
Hy|"H2 _ ATl _ 2A1
Y lit1/2j k12 T 4 g Ar 2R T @ o AT rofe
n+1/2 n+1/2 n n
Exa|i+1/2,j,k+1 - Ex“|i+1/2,j,k B Eza|i+1,j,k+1/2 - Eza|i,j,k+1/2 (5.57)
Az Ax '
H |n+1/2 _ 4 —jO)UAI H |n _ 2At
za i+l/2,j+1/2,k - 4 +]COCAt zali+1/2,j+1/2,k (4 +Ja)cAt) L0
‘n+1/2 _ |n+1/2 ‘n _E }n
Yalivl j+1/2.k valijr1ak  T¥aliv1f2 Lk yaliv1/2,jk (5.58)

Ax Ay
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E[2 4—jocAl o 24t
Y20k T 4 g A I RIE T (4w AL gy
n+1/2 n+1/2 n "
Healivrpp,jerpn = Healivapp jmipn Hyaliip e = Hralisippjum
Ay Az
(5.59)
’n+1/2 _ 4 _ijAt ’n _ 24t
Y2k T 4 4 o, A TTNI2E (44w, AL gge;
n+1/2 n+1/2 "
Hyal; ;v parrn = Healijiipaip _ Hzalisipo, 120 — Hy‘l'i—l/z’f“/zvk
Az Ax
(5.60)
2 4- jol " - 241
MUK T 4 4 j Ar TR (4 4w, AL g,
n+1/2 n+1/2
Hya|i+1/2,j,k+1/2 - W|i—1/2,j,k+1/2 _ Hwlijnpiny = Hralijopanys
Ax Ay
(5.61)

As can be seen from the previous set of equations, the electric- and magnetic-fiel
components cannot be explicitly updated. After some algebraic manipulations, for
each electric- or magnetic-fiel component a tri-diagonal system of equations is ob-
tained which can be simply solved with a small overhead of computational resources.
After the tri-diagonal has been solved, the remaining magnetic- or electric-fiel com-
ponents are explicitly updated. For the second half time step similar equations are
obtained and are solved with a similar procedure. In order to better show how the
tri-diagonal system is set, a 2D formulation of the CE-ADI-FDTD method is fully
derived here for a transverse electric polarisation case with the z-axis as the normal
axis (TE,). With respect to this coordinate system and under the scalar approximation,
the following 2D equations can be derived from Maxwell’s equations considered for
a linear, isotropic, lossless medium

dH, 1 AE.
= — (5.62)
at Mrlbo ay
dH 1 (OE.
2 = (5.63)
at Mo \ 0xX

0E, 1 <8Hy B aHx) (5.64)

ot &gy \ 0x ay
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Figure 5.5 Example of a nonuniform 2D grid and, enlarged, electric- and magnetic-fiel
components placed in a 2D nonuniform Yee unit cell.

The substitution of Equations (5.46)—(5.48) into Equations (5.62)—(5.64) yields [28]

0H 1 JE,
= +jwcHxa = <_ a) (565)
ot Mr Lo ay
0H,, v oo H. = 1 0E., (5.66)
g O Mefbo \ 90X '
0., 1 dH,, 0H,,
+ jw.E., = S —— (5.67)
ot &80 0x ay

The discretisation in space is based on the unit cell of the Yee space lattice allowing
the grid to be nonuniform, as shown in Figure 5.5. Discretisation in time is obtained
by following the ADI scheme. The space cells are nonuniform so as to allow a more
accurate and fl xible representation of the photonic device to be simulated.

Applying the ADI scheme to Equations (5.65)—(5.67), the following set of equations
for the firs half time step are derived

Hxa|zj+ulr/12/2 = oenlijr12Heal? jy1 0 = Benlijrija (Ezal? 1 — Ezall ) (5.68)
Hya|?:11//22,j = dynlivi/2,j Hyalivrp0,; + Bynlitiy2,) (Eza|?:1],(,~2 - Ezal?f/z) (5.69)

Erali 5% = aels Ball + Beliy (Hoal15, = Hoal415) +
— Byelij (Heal? j41/2 = Heal? j_1)2) (5.70)
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while for the second half time step, the following set of equations are obtained

1
Hxa|,j+1/2 - axhlz]+1/2Hxa|,j+1/2 ,Bxhli,j+1/2( za|, J+1 T Ezallw'r ) (5-71)
n+1/2 +1/2 +1/2
|,+1/2j - ayh|i+l/2,jH |,+1//zj + ,Byh|z+1/21 (Eza|:l+1/j - Eza|n / ) (5-72)
1 +1/2 +1/2 +1/2
za|n+ - aell] zaln / + ,Bxeli,j (Hya|?+1//2,j - Hya|?—1//2,j> +

_,Byeli,j (Hxall j+1/2 Hxal,] 1/2) (5.73)

where the coefficient of Equations (5.68)—(5.73) are expressed as

4 — jw. At
Cxhlijr1/2 = Qypligry2,; = elij = 4+ jo.At .
2At
. | (5.74b)
T2 = 4 AT oAy
. 2At (5.74¢)
i = o
VIV T = (43 o AL) apto A
2At
o 5.74d
Breli.; (4 + jw:At) ergohy; ( )
. 2At (5.74¢)
ij = o
YT T 4+ jweAl) ecgohy,

where At is the time step, Ax; and Ay; are the discretisation steps along the x- and
y-directions, respectively, and 4,; and, /,;, as also shown in Figure 5.5, are define as

AX,‘ + Axl’,1

e (5.752)
Ay; + Ay;_
hy = LS 205N, (5.75b)

where N, and N, are the total number of cells of the computational domain along
the x- and y-directions, respectively. The updating process of the firs half time step
starts with the explicit update of Equation (5.68) in order to obtain the new values
of the magnetic-fiel component H,,. Equation (5.69) cannot be explicitly solved
because the electric-fiel component £, is collocated in time with the magnetic-fiel

component H,,, hence still unknown. Substituting Equation (5.70) into Equation
(5.69) and solving the derived equation for H,,, the following equation is obtained

|n+1/2

1 Hor2
_ﬁxe|i+1 J ,+3/21 m + ,Bxe|i+l,j + ,Bxe|i,j ya|i+1/2,j
yhli J
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ne1/2 Oynlitia
_ﬂxeli,ijali,l/z’j = —Hya|?+1/2,_j + O‘e|i+l,jEza|lr'l+1,j - :Bye|[+1,j
T Bonlivryz,)
n n n n n
(H)fa|:‘+1,j+1/2 - Hxa|i+1,j—1/2) - O‘e|i,jEza|l',j + ,Bye|i,j (Hxa|i,j+1/2 - Hxa|i,j—1/2)
(5.76)

As can be seen from the LHS of Equation (5.76), three different values of the com-
ponent H,, in three different positions of the computational domain need to be
calculated, and this calculation needs to be done for every value of ;. In this way, a
system of equations is derived whose coefficient form a tri-diagonal matrix, which
can be efficientl solved in order to obtain the new values of the magnetic-fiel com-
ponent /1, inside the computational domain. Once the magnetic-fiel component H,,
has been calculated, the electric-fiel component £, can be explicitly updated using
Equation (5.70).

A similar procedure needs to be followed for the second half time step. Substituting
Equation (5.73) into Equation (5.71), the following equation is obtained

+1 +1
—Byelijr1Hxal} Ty + ( + Byelij+1 + ﬁye|i,j> Hyali fh1p

Bxnlij+1,2

41 Axnlij+1/2 41 nt1)2
_,Bye|i,ija|,r~ij,1/2 = —Hxa|?7j+]/2 - O‘eli,j+1Eza|i,j+| - ,Bxe|i,j+l
: Bunli,j+1/2
n+1/2 n+1/2 n+1/2
(Hya|i+1/2,j+1 - Hya|i—1/2,j+1> + O‘e|iquza|i,j + ﬂxe|i,j
n+1/2 n+1/2
(H)’a|i+1/2,j - Hya|i—1/2,j> (5.77)

As can be seen from the LHS of Equation (5.77), three different values of the compo-
nent H,, in three different positions of the computational domain need to be calculated,
and this calculation needs to be done for every value of i. In this way, a system of
equations is derived whose coefficient form a tri-diagonal matrix, which can be effi
ciently solved in order to obtain the new values of the magnetic-fiel component H,,
inside the computational domain. Once the magnetic-fiel component H,, has been
calculated, the magnetic-fiel component H,,, and the electric-fiel component £,
can be explicitly updated using Equations (5.72) and (5.73), respectively.

5.7 Perfectly Matched Layer (PML) Boundary Conditions

The analysis of scattering problems of electromagnetic waves propagating in optical
waveguides is a problem usually studied in infinitel extended regions. Because the
FDTD method relies in the finite-di ference expression of Maxwell’s equations, it can
operate only in a finit number of points which represent the computational domain.
This introduces a problem for allocation of computational resources for simulation
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of scattering problems because only a finit amount of points of the computational
domain can be stored in a computer memory. Much effort has been diverted in the
research environment to searching for a way to simulate an infinitel extended space
in a computer memory, and all these efforts have led to the determination of different
types of boundary conditions (BCs). These BCs can be grouped into two distinct
types, analytical boundary conditions [29—33] and absorbing boundary conditions
[11]. Amongst the analytical boundary conditions, the scheme proposed by Mur [4]
has been mainly utilised because of its accuracy in the simulation of the propagation
of outgoing waves from the computational domain. Amongst the absorbing boundary
conditions, the scheme proposed by Berenger [11] is the most employed [34-38].

The innovative idea proposed by Berenger is the introduction of a nonphysical
absorbing layer to terminate the FDTD computational domain which absorbs all elec-
tromagnetic waves impinging on it. This nonphysical medium is capable of absorbing
all electromagnetic waves on a wide range of frequencies, with any polarisation and
for all angles of incidence. For these matching properties this medium is called a
‘perfectly matched layer’ (PML). The formulation derived by Berenger for the PML
relies on the splitting of the electromagnetic-fiel components of Maxwell’s equations
in such a way that each component is split into two sub-components that are orthog-
onal to each other. In this way it is possible to assign an appropriate loss parameter
to each of these components. A brief mathematical treatment of the derivation of the
properties of this nonphysical medium is discussed here. In order to do so, a 2D space
is considered whose schematic is represented in Figure 5.6.

This 2D space is divided in two half-spaces: free space for x < 0, indicated as
medium 1 and a medium with losses for x > 0 indicated as medium 2. A uniform
plane wave with TE; polarisation is considered and it is propagating from medium
1 (free space) towards medium 2 (lossy medium), as shown also in Figure 5.6. The
electric permittivity and magnetic permeability of medium 1 are &1 = g9 and p; =
Wo, respectively, while the electric permittivity, magnetic permeability, electric and

€1 =¢p € *
2 Mo G ©
Uy =Uo 2
reflected wave transmitted wave
free space
medium 1

lossy medium
y medium 2

incident wave x=0
X

Figure 5.6 Schematic diagram of a 2D TE, polarised plane wave impinging on a medium
with loss.




CE-ADI-FDTD Method 117

magnetic conductivity for the medium 2 are €5, i, o and o, respectively. With
respect to the geometry shown in Figure 5.6, the incident TE, polarised plane wave
is described as

f]mc _ Hoe*(jﬂixﬂﬂ,iy)ﬁz (5.78)

where flmc is the incident magnetic field Hj is the amplitude of the magnetic field
B. and ,8; are the propagation constant components of the plane wave along the x- and
y-directions, respectively, and #. is the unit normal vector of the z-axis. Considering
that at the interface between the two media the plane wave is partially reflecte back
to region 1 and partially transmitted in region 2, the total electromagnetic fiel in
region 1 (x < 0) is

i, = Hy <1 n Feﬂﬁ;‘) e UBXHIBNG (5.79)

(O3] weéq

! i i i gi igi v igi
B = [_ﬁ (14 e ii, + P (1-Ter) ﬁy} Hoe UPSHIB)(5.80)

where E| is the electric field  is the frequency of the plane wave, I' is the reflectio
coefficient and u, and i/, are the unit normal vectors of the x- and y-axes, respectively.
Maxwell’s equations in a sinusoidal regime for a TE, polarised plane wave propagating
in medium 2 can be expressed as

OH.
s (1 +-Z )E - (5.81)
Jweo ay
o 0H,
jwe (1 + ng()) E,=—— (5.82)
* IE, OF
jous (14 -2 ) =& 22 (5.83)
JoRo dy  ox

where the electric and magnetic conductivities, o and o *, are normalised with respect
to the electric permittivity &y and the magnetic permeability w, respectively. Equa-
tions (5.81)—(5.83) are then rewritten considering the splitting of the magnetic-fiel
component, H,

Hz = Hzx + sz (584)
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and with the use of the following variables

si=1+ — (5.85a)
J W&o
oX
st=14— (5.85b)
J @R
with i = x, y obtaining
0 (H. + H.
jweys E, = 8 (M + Hey) (5.86)
dy
d (Hzx + H;
jwers, E, = O (s + Hey) (5.87)
ax
. * 8Ey
joussiHy = ——— (5.88)
ox
oF
Jous H,, = — (5.89)
¥y 3y

The next step is to determine a solution for Maxwell’s equations for the electromag-
netic wave propagating inside the medium with loss. Differentiating Equation (5.86)
with respect to y and Equation (5.87) with respect to x and substituting into Equations
(5.88) and (5.89), respectively, the following two equations are obtained

1 91090
2
— H,=————(H,, + H. 5.90
(O TEY:)) 5 9x 5, 9 ( + y) ( )
1 01290
2
— H,=—————(H, + H, 591
W e M), s; 3y 5, 9y ( x y) ( )

The summation of Equations (5.90)—(5.91) leads to the following wave equation

1919 1919 ’
———— H 4+ ————H. + 0’6, H, =0 (5.92)
s 0x s¢ 0x sy 0y sy dy

Equation (5.92) has the following solution
H, = HOTe*(j«/SxS;‘ X+ /SyS5ByY) (593)

with the dispersion relation given by (8, ) + (,By)2 = (k). The substitution of Equa-
tion (5.93) into Equations (5.86)—(5.87) leads to the following equations for the
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electric-fiel components

E, = H()T& S_;e*(jq/stfﬂxx+j4/sysfl3;=)’) (5.94)
V Sy

wér

Ey — HOT& /S_;Ckef(j\/ stfﬁxx‘i’jq/sysﬁﬁyy) (595)

wér Y Sy

The reflectio and transmission coefficient can be obtained by imposing the conti-
nuity of the tangential components of the electromagnetic fiel at the interface

Bs Bx |sy

weq weéy \ Sy

= (5.96)
i *

ﬁx + /3x S_x

we] Wy V Sy

with B, = ,3; = ki sinf;,and s, = sy =1 The aim is to determine the characteristics
ofsy, 5§, s, and s;‘ in order to eliminate all reflectio at the interface of the absorbing
medium. From Equation (5.96) it can be noted that if &; = &, and s, = s} then
B = BL, which implies that the reflectio coefficien I' = 0 and, consequently, the
transmission coefficien 7 = 1, and these relations stand for all angles of incidence
6;. It should be noted from the definitio of'the variables s, and s} that the relationship
sy = sy implies o, / gy =0, / Wo. The transmitted fiel in medium 2 is then

H. = Hye UssBextisBy) — pp o= (Bx+ishiy) g=omer cos()x (5.97)
E = Hyn sin(6;) o (FBix+jsBly) g—omer cos(@;)x (5.98)
E, = Hyn cos (6;) o~ (BxtisBLy) g=omer cos(br)x (5.99)

From Equations (5.97)—(5.99) it is possible to see that the transmitted fiel is propa-
gating inside the medium with loss with the same phase velocity of the incident field
while it is attenuating along the normal direction with a factor of o7 cos(6;) and
these properties are satisfie for every angle of incidence 6;.

A similar procedure can be repeated for TM, polarised plane waves. In this case
the splitting of the electromagnetic fiel components is applied to the electric fiel
E. = E.; + E,. In this way, applying the matching condition ;| = > and s, = s},
which implies o, / g =0 / o, the condition g8, = ,B)’; is satisfie and consequently
' =0and 7 = 1. It should be noted that all these relations still stand for all angles
of incidence 6;.

In conclusion, a medium with loss that satisfie the properties previously described
and o, /e9 = o / 110, with the conditions &; = &, for TE. polarised waves and 1| =
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Figure 5.7 Schematic diagram of a 2D computational domain surrounded by four layers of
PML boundary conditions.

o for TM; polarised waves, is a medium perfectly matched and perfectly absorbing
for all electromagnetic waves impinging in its interface, in a way that no reflection
can be generated at its interface. Furthermore, from Equations (5.97)—(5.99) it can
be noted that the transmitted wave in the PML propagates with same speed of the
incident wave while attenuating during propagation along the normal direction (the
x-axis in the geometry considered in Figure 5.6). With these considerations, the FDTD
grid can be surrounded by layers of this nonphysical and absorbing medium (PML)
with the absorbing properties previously described and perfect electrical conductor
(PEC) walls to terminate the whole computational domain, as shown in Figure 5.7
for a 2D case. In a general 3D case, six layers of PML are needed to truncate
the computational domain, and all the electromagnetic-fiel components need to be
treated with the splitting technique obtaining a set of 12 equations

(sosr + Gysr) E. = Hzx + H.,) (5.100)
(eoer + ozer> E. = « + H,.) (5.101)
(s — + Gzer> E,. = — (Hy + H;:) (5.102)
<808r— - ax8r> Ey = _5 (Hzx + H.y) (5.103)

3
<808r + axsr) B = o (Hyx + H,:) (5.104)



CE-ADI-FDTD Method 121

(eosr% + o*ysr) E,, = —% (ny + sz) (5.105)
B . 9
(Moﬂra +o0; m) Hyy, = ~3 (E-x + E-y) (5.106)
9 . 9
(uoura + 0] u) H,. = e (Eyx + Ey2) (5.107)
B] . 9
(Moﬂra + o m) Hy = - (Exy + Ey:) (5.108)
B i B
(Moﬂrg + o, Mr) Hy = I (sz + Ezy) (5.109)
9 . B
<Mour5 + 0 ur) Hy == (Eyx + E,-) (5.110)
B] . ]
<uour5 +0; u) H., = % (Exy + E.:) (5.111)

The matching conditions are similar to those previously derived and in particular
o; /€0 =0} [ o, with i = x, y, z, &) = &, for TE. polarised waves (where the sub-
script 2 stands for the PML and the subscript 1 stands for the medium adjacent the
PML) and u; = u, for TM, polarised waves.

5.8 Uniaxial Perfectly Matched Layer (UPML) Absorbing Boundary
Condition

The formulation introduced by Berenger employing the splitting technique for the
electromagnetic-fiel component permits the definitio of a mathematical model for
a nonphysical medium with well-define electric and magnetic properties that is
perfectly matched for all waves impinging in its interface. The way in which its loss
terms are define makes this medium an anisotropic medium, if such a medium could
physically exist. Based on this consideration, it is then possible to defin a medium
that is anisotropic and uniaxial which is characterised by well-define tensors for the
electric permittivity and magnetic permeability. This new approach leads to a different
formulation for an absorbing layer to be used with FDTD grids for simulations in
open regions. The absorbing layer obtained with this approach is called a uniaxial
perfectly matched layer (UPML). The formulation for the UPML is different from the
formulation for the PML, even if it relies on a basic concept similar to the concept
used for the PML formulation. The main advantage of the UPML formulation is that
it doesn’t need any splitting of the electromagnetic-fiel component, even though the
absorbing properties remain unchanged. Referring to the geometry of Figure 5.6, a
TE, polarised plane wave is propagating in free space towards an uniaxial medium
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whose interface is at x = 0 and whose electric and magnetic tensors are given by [15]
€ = &5, [l = W5 With

B stt0 00
s=| 0 s O (5.112)
0 0 s,

where s, is define as in Equation (5.85), and ¢, and u; are the electric permittivity
and the magnetic permeability, respectively, of the uniaxial medium. The plane wave
is completely transmitted in the uniaxial medium without any reflectio generated at
the interface, regardless its frequency and its angle of incidence. Such a medium is
basically identical to the PML medium introduced by Berenger and it is define as a
UPML because of its uniaxial anisotropy. For the TE, polarised plane wave considered
here, the reflectio coefficien is I' = 0 and the transmission coefficien is 7' = 1 so
that the expressions for the transmitted electromagnetic-fiel components are

H, = Hye Us:Bix+isBy) — p o=(IBix+iBiy) g=ome cos@)x (5.113)
Ey = — Hysyn; sin (6;) eGP +ishLy) g=omen cos(6)x (5.114)
E, = Hyn cos (6;) e UPtishi) gmomer cosx (5.115)

where 6; is the angle of incidence relative to the x-axis. From Equations
(5.113)—(5.115), it can be noted that the transmitted fiel is propagating with the
same phase velocity inside the absorbing medium, while attenuating along the
direction normal to the interface with a factor of o&y cos(6;). It can be seen that
this characteristic is similar to that described for the PML. By comparison of Equa-
tions (5.113)—(5.115) with Equations (5.97)—(5.99), it can be seen that the propagation
characteristics of the two electromagnetic field are identical. In particular, it can be
noted that the tangential electric- and magnetic-fiel components, H. and E,, are
identical in the two approaches while the normal components, E,, differ by a factor
sy. Comparing the normal components of the transmitted fiel obtained from the two
different approaches with the respective incident fiel components, it can be seen that
in the PML formulation, the £, component is continuous at the interface x = 0, while
in the UPML formulation £ is discontinuous with D, = es_ ! E . continuous. This can
be explained by considering that the two formulations use two different formulations
of the divergence theorem. Although different, these two formulations guarantee the
same matching and absorbing properties for the transmitted waves.

Each side of the FDTD grid can be bounded with a layer of UPML. But there are
regions in which the UPML itself is not uniaxial in the strict sense of the definition
These regions are the corner regions, as shown in Figure 5.7 for a 2D case and in
Figure 5.8 for a 3D case. From this figure it can be seen that in the corner regions there
is superposition of different UPML layers. In this case the expression of the tensor
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Figure 5.8 Detail of the PML boundary conditions applied for a 3D computational domain.

that multiplies the electric permittivity and magnetic permeability for this medium is
given by

_ sth0 00 s, 0 0 s lsy 0 0
S5=10 s O[]0 s 0f=] 0 ss' 0 (5.116)
0 0 s, 0 0 s, 0 0 SxSy

with s, and s, define as in Equation (5.85), while for the 3D case, the tensor at the
corner region is define as

SyS2

0 0
syt o0 s, 0 0 s, 0 0 Sk gs
§=0Sx0-05y_10-0s20=0S0
0 0 sc|] [0 0 s, |O 0O st Ogsxsy
Sz
(5.117)

5.9 PML Parameters

The performance of the PML absorbing boundary conditions can be influence by
the parameters which fi the absorption rate of the wave that is propagating inside
the PML itself. These parameters are identifie with the electric and magnetic con-
ductivity o and o *, respectively. The performance of the PML has also been derived
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by Berenger [11], applying the transmission-line concept to the PML formulation. In
this formulation, each layer of PML is terminated by a layer of PEC and the reflec
tion coefficien R has been calculated considering that, upon reaching the PEC layer,
the propagating wave is reflecte back to the computational domain, affecting the
accuracy of the results of the simulation. The reflectio coefficien has been derived
as

R (9) = e 2omerd cos(®) (5.118)

where 6 is the angle of incidence of the wave on the PML, d is the width of the
PML layer, and 1 and o are the impedance and the electric conductivity of the PML
layer, respectively. As can be seen from Equation (5.118), the reflectio from the
PML is exponentially reduced as the width, d, and the conductivity, o, increase. It
is obvious that for increasing width, d, of the PML layer the computational burden
increases and for this reason it is clear that the choice of the conductivity, o, is crucial
in order to obtain good performance of the PML in terms of low reflection For this
reason, choosing really high values for the electric and magnetic conductivities o
and o* inside the PML layer seems to be a good choice in terms of good absorption.
Nevertheless, it has to be taken into account that high values of the electric and
magnetic conductivity for the PML layer introduce a high discontinuity at the interface
between the computational domain and the PML layer. This discontinuity is indeed
a source of reflection which affect the accuracy of the simulation results. A solution
to this problem has been proposed in [11, 15] in which a variation of the electric and
magnetic conductivity profile along the transverse direction has been adopted. As
an example, geometrical scaling of the electric conductivity o along the transverse
direction x is obtained by the following formula

o (x) = opg"/™ (5.119)

where oy is the electric conductivity at the interface between the computational domain
and the PML layer, g is the scaling factor and Ax is the space discretisation. Modifying
Equation (5.118) in order to take into account the variation of o along the transverse
direction, x, it is possible to calculate the reflectio error

R (9) — e—ZntfoAx(gN_l)cos(é‘)/ln(g) (5120)

where N is the number of cells of the PML layer. From Equation (5.120) it is possible
to derive a relationship for the value of the electric conductivity at the interface
between the PML and the computational domain o

__ In(R(0)In(g)
 2neAx gV —1)

(5.121)
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In practical applications, the values of the maximum reflectio error at normal
incidence, R (0), and the scaling factor, g, need to be fi ed in order to calculate
the value oy. Once oy is calculated then the scaling of the electric conductivity o is
performed inside the PML layer using Equation (5.119).

5.10 PML Boundary Conditions for CE-ADI-FDTD

In conventional FDTD, PMLs have been extensively used because of their excellent
absorption properties that give a robust way to terminate the computational domain.
PMLs have been also incorporated into the CE-ADI-FDTD method, which has been
used to simulate integrated photonic devices. However, problems with the numerical
stability of the CE-ADI-FDTD algorithm have been reported due to the accumulation
ofreflectio coming from the PML in the computational domain [28]. Here, a different
PML approach will be considered which has been previously proposed in [39] in
the context of the ADI-FDTD algorithm. Considering Equations (5.9)—(5.14) and
applying a 2D case for TE, polarisation, the following 2D Maxwell’s equations are
obtained

0H, . 0E.
Mor—— + 0" H, = — (5.122)
at ay
0H, oF,
r—— +o'H, = 5.123
Mol g F O = 55 (5.123)
O | op, = 2 OM (5.124)
Eo& oL, = —— — —— .
AFY ax  dy
Applying the CE formulation to Equations (5.122)—(5.124) yields
T, o Wc xa — — .
dH, 0E.
Hopte— 2 + (0 + jeeptopts) Hya = —= (5.126)
za . 0H,, 0H,,
£0&r + (0 + jwcgoer) Bz = - — (5.127)
ot ax ay

Next step is to apply the PML formulation to Equations (5.125)—(5.127) in which the
envelope of the electric fiel F,, is split in two sub-components as follows

EZd = Ezax + Ezgy (5128)
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The substitution of Equation (5.128) into Equations (5.125)—(5.127) yields

0Hyq . AE.,
lwmj;—+®;+1%meHm=—-w (5.129)
OH IE.
I‘LO'U“TTW + (6; + ja)L‘/fLOI/Lr) Hya = axa (5.130)
8Ezax BHa
€0&r + (0x + joceosr) Ezgy = — (5.131)
ot 0x
IE, dH.
swrafy+05+wawJEmy=— %? (5.132)

Applying the ADI-FDTD discretisation scheme to Equations (5.129)—(5.132), the
following set of equations can be obtained for the firs half time step

Hxalﬁﬁ/f/z = oxnlij+12Hxal? 110 = Benlij+12 (Ezalf,jﬂ - Ezal?,j) (5.133a)
Hya|?:1l//22,_,- = ynli+1/2,j Hyaliv1/0,; + Bynli+iy2,) (Ezal?:ll,/jz - Eza|:-l,_4,~rl/2) (5.133b)
Eerdl!" = elij Ecally + Beliy (HoalI5, = ool (5.133¢)
Eopali 5% = yeli jEeyally = Byelij (Heal? 41 = Heal? ;1) (5.133d)

The coefficient of the PML equations are calculated using either a forward or a
backward differencing approximation instead of the linear approximation used in the
conventional implementation of the PML scheme. In this way it is possible to collocate
the fiel component on the LHS of the equation at the same time step of the fiel
component on the RHS of the same equation. This procedure yields the following
coefficient for the firs half time step:

4 — jw At

4+ (ja)c+2 O )At
Er€o
v

o
4 — (ja)c+2 )At
Mrlho

44 jo.At

4 — (ja)c +2:: ) At
_ reQ
aye|w. = rEY (5.134c)
4 — jw.At
Aypliv1y2,; = oF )
“— | At

4+ (jw +2
Mrlho

(5.134a)

axeli,j =

leh|i,j+1/2 = (5.134b)

(5.134d)
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2At
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Similar expressions can be derived for the coefficient of the PML equations for the

second half time step
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The arrangement proposed here for CE-ADI-FDTD equations with PML boundary
conditions leads to a stable algorithm even with large Courant numbers, as will be
clearly shown in the examples presented in the next section.

5.11 PhC Resonant Cavities

Before proceeding to the analysis of photonic crystal (PhC) cavities, the modifie
PML boundary conditions will be tested in order to verify the effectiveness of their
absorption properties, thus avoiding numerical instability. The structure considered
for this test is a 5 x 5 square PhC cavity consisting of dielectric rods with refractive
index ny4s = 3.4 in air, as shown in Figure 5.9.

First, simulations have been carried out with a uniform mesh and with different
values of time step in order to test the effect of the time-step value on the stability
of the developed CE-ADI-FDTD code. The discretisation step was fi ed at 17.73 nm
and 10 cells of the PML layer have been used to truncate the computational domain
on all sides of the PhC cavity, as shown in Figure 5.9. Although the CE-ADI-FDTD
code has been developed to rely on nonuniform mesh, to test the stability properties
of the proposed method a uniform mesh has been utilised only in this test. Using
the Courant criterion formula and the discretisation steps for the x- and y-directions
utilised for this simulation, the maximum time step that it is possible to use with a
conventional FDTD is calculated to be Atc; = 0.042 fs. The source used to excite the

=34 r=02a a=0.58652 pm

ods

Figure 5.9 Schematic diagram of the simulated 5 x 5 dielectric rods photonic crystal cavity
with PML boundary conditions.
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PBG cavity is a Gaussian-shaped source in space and in time and it is define as

Eao(x,y.0) = () () () (5.136)

where 7 and T are the delay and the width of the Gaussian pulse in time, respectively,
X0 and X are the displacement and the width of the Gaussian pulse along x direction,
respectively, and yy and Y are the displacement and the width of the Gaussian pulse
along y direction, respectively. For all simulations 7'y and 7y were set to 30 and 90 fs,
respectively, xo and yy were set to the coordinates of the centre of the PBG cavity, X
and Yy were fi ed to a/2, where a is the lattice constant of the PhC as shown in Figure
5.9, and the angular frequency, w., of the source was fi ed to 1.256 x 10'° rad/s
(X = 1.5 um). The soft-source technique has been used in order to insert the source
in the computational domain [15]. The time-domain variation of the electric fiel

at the centre of the cavity was recorded. In Figure 5.10 the time-domain responses
of the envelope of the electric fiel obtained with the developed CE-ADI-FDTD and
the approach used in [28] are plotted, both obtained with a time-step size fi ed to
20 times the Courant limit. As can be clearly seen from this figure the approach
used in [28] gives rise to instability at the very early stages of the simulation, while

proposed
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Figure 5.10 Time variation of the envelopes of the electric fiel recorded at the centre
of the 5 x 5 square lattice cavity obtained with the new CE-ADI-FDTD approach and
with the approach in [28]. (Reproduced with permission from Pinto, D. and Obayya, S.S.A
(2007) Improved complex envelope alternative direction implicit finit difference time domain
method for photonic bandgap cavities. IEEE J. Lightwave Technol., 25 (1), 440-447. (C) 2007
IEEE.)
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the proposed CE-ADI-FDTD leads to the formation of the fundamental resonant
mode of the cavity and looks very stable. Further simulations carried out with the
same computational domain and utilising the approach used in [28] have shown that
the maximum Courant number which gives stable results is equal to 5, while with
the proposed CE-ADI-FDTD, larger Courant numbers can be applied, obtaining
at the same time faster results and reduction in required computational resources.
An explanation of this behaviour can be attributed to the superior performance in
terms of absorption properties of the PML layers developed with the new approach.
The increased absorption of the PML layers, even for very large Courant numbers,
avoids the accumulation of reflectio in the computational domain, which can iter-
atively add to build up instability in the simulation, and leads to an unconditionally
stable algorithm. In order to verify the effect of the time-step size on the numerical
dispersion of the results, the fast Fourier transform (FFT) of the time-domain re-
sponses of the electric fiel inside the PhC cavity for all three simulations have been
computed. Figure 5.11 shows the results of this procedure. As can be seen from this
figure all the results obtained are in very good agreement with the data obtained with
a conventional FDTD simulation from which the normalised frequency, a/A, of the
fundamental resonant mode of the 5 x 5 PhC cavity has been calculated to be 0.378.
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Figure 5.11 Spectral distributions of the resonant mode energy for the 5 x 5 square lattice
cavity obtained with different simulations using different time steps. (Reproduced with per-
mission from Pinto, D. and Obayya, S.S.A (2007) Improved complex envelope alternative
direction implicit finit difference time domain method for photonic bandgap cavities. /[EEE
J. Lightwave Technol., 25 (1), 440-447. (C) 2007 IEEE.)
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For simulations carried out with time steps fi ed to 5 and 10 times the Courant limit,
respectively, the shift of the calculated normalised frequency of the resonant mode
has been found to be negligibly small. Moreover, for a Courant number of 20, the
proposed CE-ADI-FDTD gives a normalised frequency of the resonant mode that is
shifted by only 0.2% from that obtained using conventional FDTD.

5.12 5 x 5 Rectangular Lattice PhC Cavity

The fundamental TE resonant mode of the 5 x 5 cavity, shown in Figure 5.9, will be
considered. For all simulations, nonuniform mesh has been utilised in such a way that
the computational domain grid contains more points in the centre of the cavity where
the electromagnetic fiel of the resonant mode of the cavity is trapped. The structure
has been discretised by a nonuniform mesh of 153 cells along the x- and y-directions
in such a way that the minimum step size considered to discretise the structure is
fi ed at 17.73 nm. Furthermore, 10 cells of PML have been used to terminate the
computational domain. The structure is excited with an electric-fiel profil given by
Equation (5.136). In Figure 5.10, the time variation of the envelope of the electric
fiel inside the cavity is shown and Figure 5.11 shows the spectral distribution of the
resonant mode energy. The normalised frequency, a/A, can be easily determined from
Figure 5.11 to be 0.3789. The electric-fiel distribution of the resonant mode in the
cavity is shown in Figure 5.12, obtained after running the code for 1024 fs.

Nrods = 3.4 r=02a a=0.58652 um

Figure 5.12 Electric-fiel profil of the resonant mode inside the 5 x 5 square lattice cavity.
(Reproduced with permission from Pinto, D. and Obayya, S.S.A (2007) Improved complex
envelope alternative direction implicit finit difference time domain method for photonic
bandgap cavities. I[EEE J. Lightwave Technol., 25 (1), 440-447. (C) 2007 IEEE.)
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The quality factor, O, of the resonant mode can be calculated from the time-variation
of the field FE,, as the ratio of the energy stored to the energy lost after one cycle using
[40]

T |E.
|E|* — |Eesr|?

0= (5.137)

where T represents the time cycle of the resonant mode. For this structure, the resonant
wavelength is A,,; =1.548 um and the time cycle is 7 = 5.16 fs, so the quality factor
has been found to be O = 184. The mode area, 44, i also calculated using [41]

B [(¢E* - E)ds
Amod = m (5.138)

where ¢ is the permittivity of the dielectric medium in which the cavity is formed,
[eE™ - E]nax represents the maximum energy stored inside the cavity, and the integra-
tion is performed over the entire computational window. For this structure, the mode
area was found to be (0.311)%. These results of the resonant wavelength, the quality
factor and the mode area, obtained with the newly developed CE-ADI-FDTD code are
in excellent agreement with their counterparts reported in [40,42] and obtained using
different finite-elemen time-domain methods. Furthermore, the CE-ADI-FDTD can
easily run on normal desktop computers. For example, it took 15 minutes to run the
5 x 5 cavity for a mesh of 153 cells in both the x- and y-directions and for 1200 time
steps on a PC (Pentium IV, 3 GHz with 1 GB of RAM). In order to clarify this point,
it should be mentioned that for a 7 x 7 photonic crystal cavity the proposed CE-ADI-
FDTD was only about twice as fast as the conventional FDTD algorithm, even when
the Courant number employed for the former was about 20. One would expect an
execution time much faster than that, but it should be noted that the CE-ADI-FDTD
algorithm relies on the computation of complex numbers, while the FDTD algorithm
is based on real numbers. Thus, the employment of a time step much larger than
the maximum fi ed by the CFL limit can greatly reduce the total number of time
steps necessary to run the simulation; on the other hand, the use of complex numbers
increases the execution time of each single time step. For this reason, the total gain in
execution time is slightly less than expected.

Figure 5.13 shows the calculation of the quality factor, O, and the normalised
frequency of the resonant mode for different sizes of the square cavity. It has to be
mentioned that for all simulations a Courant number equal to 10 has been used, which
has been shown to be a perfect compromise between accuracy and execution time.

It can be see that there is good agreement between the results reported here using
CE-ADI-FDTD and their counterparts reported in [42, 43] using a finite-elemen
frequency-domain approach. As noted from this figure for cavities bigger than
5 x 5, the normalised frequency is almost the same (*0.378), while the QO factor
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Figure 5.13 Variation of the normalised resonant frequency and quality factor of the resonant
mode with the cavity size. (Reproduced with permission from Pinto, D. and Obayya, S.S.A
(2007) Improved complex envelope alternative direction implicit finit difference time domain
method for photonic bandgap cavities. IEEE J. Lightwave Technol., 25 (1), 440-447. (C) 2007
IEEE.)

is exponentially increased. Also, the mode area variation with cavity size is shown in
Figure 5.14. As may be observed from this figure the mode area tends to be almost
unchanged when the cavity size is bigger than 3 x 3 rods. This phenomenon can be
explained by considering that the electric-fiel profil of the resonant mode is mostly
contained in the defect of the photonic crystal for cavity sizes bigger than 5 x 5. For
this reason, adding external layers of rods does not affect the fiel distribution inside
the cavity.

5.13 Triangular Lattice PhC Cavity

Next, the developed CE-ADI-FDTD code will be tested for different PhC cavities.
In the following examples, a hexagonal cavity arrangement, shown in Figure 5.15,
is considered. The lattice constant of the PhC is ¢ = 0.7254 um, the radius of the
dielectric rods is » = 0.378 a and the refractive index of the rods is 7,045 = 3.0 [40].
As firs example, a four-ring PhC cavity without a central rod will be investigated.
The source used to excite all the structures considered from now on was a Gaussian-
shaped pulse expressed by Equation (5.136). The coordinates of the peak of the
Gaussian shape xy and y, were set to the cavity centre coordinates, while the parameters
representing the width of the Gaussian shape along the x- and y-directions, X, and
Yy, were both fxed to a/2, with a the lattice constant of the PhC. The parameters of
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Figure 5.14 Variation of the mode area of the resonant mode with cavity size. (Reproduced
with permission from Pinto, D. and Obayya, S.S.A (2007) Improved complex envelope alter-
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Figure 5.15 Schematic diagram of a four-ring hexagonal photonic crystal cavity [40].
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Figure 5.16 Spectral distribution of the resonant mode energy for the four-ring hexagonal
photonic crystal cavity. (Reproduced with permission from Pinto, D. and Obayya, S.S.A
(2007) Improved complex envelope alternative direction implicit finit difference time domain
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the Gaussian pulse at time 7y and Ty were fi ed to 90 fs and 30 fs, respectively, while
the angular frequency w,. was set to 1.256 x 10'3 rad/s (A = 1.5 um). A detector was
placed in the cavity centre in order to store the time-domain variation of the electric
fiel and, upon using the FFT, the spectral energy density of the resonant mode was
computed. The result of this procedure is shown in Figure 5.16.

The narrow spectral width of that resonance curve shows the high selectivity and
quality factor of this hexagonal cavity compared to the square case, a property that
is also confirme by the tight confinemen of the electric-fiel profil of the resonant
mode in the PhC cavity, shown in Figure 5.17.

This high selectivity property of this type of cavity is confirme by Figure 5.18,
which shows the quality factor and the normalised frequency of the resonant mode
for different numbers of rings surrounding the cavity.

From this figure it can be noted that the normalised frequency of the resonant mode
remains nearly unchanged as the number of rings is greater than two. Further, a huge
increase in the quality factor of the hexagonal ring cavity can also be observed thanks
to the arrangement of a large number of dielectric rods. Figure 5.19 shows the mode
area computed for different cavity sizes using Equation (5.138).

As may be noted from this figure the mode area decreases as the size of the cavity
is increased. However the rate of decrease of the mode area becomes smaller as the
cavity size increases.

Next, a hexagonal four-ring cavity with a dielectric rod located in the centre of the
cavity is considered. The radius of the central rod is 7.,q = 0.1a, where a is the lattice
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n =3.0 a=0.7254 um

Figure 5.17 Electric-fiel profil of the resonant mode inside the four-rings triangular lattice
PhC cavity.

constant of the PhC, and the refractive index of the rod is varied from 1.2 to 3.4.
For each cavity type, the normalised frequency of the resonant mode, and the quality
factor were computed. Figure 5.20 shows the variation of the normalised frequency

and the quality factor with the refractive index of the central rod, calculated for these
cavities.
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Figure 5.18 Variation of the normalised resonant frequency and quality factor of the resonant
mode with the number of rings. (Reproduced with permission from Pinto, D. and Obayya,
S.S.A (2007) Improved complex envelope alternative direction implicit finit difference time

domain method for photonic bandgap cavities. IEEE J. Lightwave Technol., 25 (1), 440-447.
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Figure 5.20 Variation of the normalised resonant frequency and quality factor of the resonant
mode with the refractive index of the central defect rod. (Reproduced with permission from
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From this figure a shift in the normalised frequency of the resonant mode towards
lower frequency as the refractive index of the central rod increases can be observed.
These results can be intuitively justifie as follows. The localised mode obtained by
using a lattice defect consisting of removing dielectric material (“air defect’) presents
a normalised resonance frequency near the ‘air band’ (upper edge of the bandgap).
On the other hand, the localised mode obtained by using lattice defect consisting
of adding dielectric material (‘dielectric defect’) presents a normalised resonance
frequency near the ‘dielectric band’ (lower edge of the bandgap) [44]. This property
can be used to tune the resonant mode of the cavity inside the range of the bandgap by
properly choosing the refractive index of the central rod, as can be seen from Figure
5.20.

5.14 Wavelength Division Multiplexing

Wavelength division multiplexing (WDM) is a technology used for multiplexing
signals in optical fibre The technology is based on separating the light in the optical
fibr into distinctive channels according to the colour of the light, in other words,
distinctive wavelength channels. The idea is that every channel transmits the same
amount of data as a single fibr that has not been multiplexed.

WDM and frequency division multiplex (FDM) operate on similar principles, where
WDM corresponds to wavelengths of light in optical fibr and FDM corresponds to
electrical analogue transmission. As opposed to electrical FDM, WDM of optical
fibr is highly reliable as it is completely passive.

A WDM system consists of a transmitter and receiver, a multiplexer and a
demultiplexer, respectively. The transmitter takes several signals and sends them
across a single channel, while the receiver separates these signals into distinctive
channels. Ideally, such a system would have a switching device that simultaneously
transmits and receives signals; such a device is known as an add-drop multiplexer.

The main advantage of the WDM technique in telecommunication is that it allows
the capacity of the network to be increased without the need to change the backbone of
the fibr network. This is made possible through implementing WDM and deploying
optical amplifier throughout the optical network. This capacity increase is achieved
by upgrading the transmitters and receivers of the network, thereby allowing for many
generations of technological advancement in the optical infrastructure without laying
more fibre

The WDM optical spectrum is divided into several distinct wavelengths that do not
overlap, and each wavelength corresponds to a single communication channel, thus
providing several WDM channels in the same fibr and greatly utilising the fiber s
huge bandwidth. With such large bandwidth potential, research on WDM devices has
increased with the aim of employing WDM-based optical backbones for the Internet.
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The conventional WDM systems were dual-channel 1.31/1.55 pum systems includ-
ing both the minimum dispersion window and minimum attenuation window. The
WDM consists mainly of two types:

e Coarse WDM (CWDM), where the wavelengths are spaced well apart. This results
in lower costs of optical transmitters and receivers, however this is at the cost of the
number of wavelengths, which is relatively small.

e Dense WDM (DWDM), where the wavelengths are tightly spaced, providing a large
number of wavelengths, but greatly increasing the cost of transmitters and receivers.

DWDM and CWDM are based on the same principle of using multiple wavelengths
in a single fibre differing mainly in the spacing between wavelengths, and the number
of channels.

In communication systems, WDM devices show the ability to improve coherence
without losing the quality of transmission, are tightly compact (micrometre scale) and
practical to fabricate on integrated optical circuits. This is where photonic crystals
have much potential, as PhC-based WDM for different wavelength selective-filterin
techniques have been recently realised. Such devices include filter adjacent to wave-
guides, using coupling techniques [45, 46] or cavities [47-52] for the purpose of
achieving PhC-based wavelength multiplexing and demultiplexing. Figure 5.21
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Figure 5.21 (a) Selected frequency (fnorm = 0.387) propagates in both waveguides WG1 and
WGQG2. (b) Selected frequency (fnorm = 0.387) propagates in only in waveguide 2. (c) Other
frequencies, (fhorm = 0.406) only propagate in waveguide 1. (Reproduced with permission
from IET from ‘Improved Design of Photonoic Crystal Based Multiplexer/Demultiplexer
Devices’, Special Issue of IET Optelectronics (C) IET 2010.)
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illustrates an electric fiel propagating along a PhC waveguide, where both cou-
pling length and cavity techniques have been used carefully to select the widely used
communication wavelength A = 1.55 um.
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6

Finite-Volume Time-Domain
Method

6.1 Introduction

In this chapter a detailed description of the finite- olume time-domain (FVTD)
numerical modelling technique will be presented. The FVTD method has attracted
a great deal of attention in numerical modelling, but it has been mainly used for
computational flui dynamics applications and very limited research efforts have
been directed towards the use of this technique in computational electromagnetic
problems. The beauty of FVTD is that it combines the versatile and fl xible mesh-
ing capabilities of the finite-elemen time domain (FETD) method, in addition to
being explicit (no solution of a large system of equations is required), where only
fiel updates are performed at each time step, as in the finite-di ference time-domain
(FDTD) method. For this reason, a numerically efficien FVTD formulation based on
the nondiffusive scheme for the calculation of the flu interaction will be suggested
for the analysis of optical wave propagation in photonic bandgap (PBG) devices. The
uniaxial perfectly matched layer (UPML) absorbing boundary condition will be rig-
orously incorporated into the FVTD formulation to mimic ‘reflectionless boundaries
of the computational domain. In the last part of the chapter, a brief description of
nonlinear optical phenomena will be given with a detailed analysis of the inclusion
of nonlinear modelling in the FVTD and the FDTD methods.

Computational Photonics ~Salah Obayya
© 2011 John Wiley & Sons, Ltd
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6.2 Numerical Analysis

The analysis starts from the coupled Maxwell’s equations for an isotropic, lossless

medium without electric or magnetic sources

oF —
g&r— — VX H=0
ot

0H ,
MOMrW‘l_VXE:O

(6.1)

(6.2)

where € is the electric permittivity of free space, ¢, is the relative permittivity of the
medium considered, (¢ is the magnetic permeability of the free space, w, is the relative

permeability of the medium considered, £ = [E,C E, EZ]T is the electric field

H=[H. H, H ]T is the magnetic fiel and T is the matrix transpose operation.

Equations (6.1) and (6.2) represent a system of six equations expressed as

0E, 0H. 0H,
£0&r — + =0
ot dy 0z
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E0€ — =
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0E. 0H, O0H,
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OH, 9E, IE,
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Equations (6.3)—(6.8) can be rewritten in conservative form as [1]

oU  9F (V) L (U) L 0)

ay —0
o T Tox 3y 9z

(6.3)

(6.4)

(6.5)

(6.6)

(6.7)

(6.8)

(6.9)
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el 0
0 wul
F;3 (U) are written as

where, o = [ } with / the 3 x 3 identity matrix, and 17, F (lj), F (lj),

E, —H. H,

E, H, 0 —H,
- | E - —H - H, - 0
U=lg| B @=| o' | RWU)= E | B U)=1 _ E,

H, —E, 0 E,

_HZ_ i E, 1 _—Ex_ i 0 ]
Equation (6.9) can be rewritten in condensed form as
U -
o~ +divF (U)=0 (6.10)

where F (U) =[F; (U) F»(U) F5(U)]. This notation is fundamental for the
derivation of the FVTD scheme. Considering a generic volume, V, Equation (6.10) is
then integrated over this volume obtaining

U -
/a—dV—i—/divF (U)dV =0 (6.11)
y 0t v

Through the use of the divergence theorem, Equation (6.11) can be rewritten as
U 0 =
f a—dV+/F(U*) +a,dS =0 (6.12)
y 0t s

where S represents the surface enclosing the volume 7, a, is the outward pointing
normal unit vector of the surface S, and U* = [ E} E} EX HY H} H; ]T de-
notes the electromagnetic fiel components at the surface S. In order to make possible
the integration of Equation (6.12) into practical applications, the entire volume V is
partitioned into small volumes V;. In the literature there are two main formulations
used for the partitioning of a domain when a triangulation is given: the cell-centred
formulation and the cell-vertex formulation [1,2]. In the former, the electromagnetic
fiel components are collocated at the barycentres of the cells, while in the latter
the electromagnetic fiel components are placed at the nodes of the cells. Figure 6.1
shows an example of a 2D cell-centred formulation. From this figure it can be clearly
seen that the single volume V; corresponds to the single cell (a triangle in this case)
of the triangulation.
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Figure 6.1 Finite-volume partition for a 2D computational domain using a cell-centred for-
mulation.

In Figure 6.2, an example of a cell-vertex formulation for a 2D computational
domain is shown. From this figur it can be clearly seen that the single volume V;
corresponds to polygons obtained by connecting the barycentres of the cells to which
the node belongs. Each of these formulations used to partition the computational
domain has advantages and disadvantages. As an example, the boundary conditions
in the cell-centred formulation are taken into account in a more straightforward

Figure 6.2 Finite-volume partition for a 2D computational domain using a cell-vertex for-
mulation.
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manner because the boundary corresponds to a face of the volume into which the
computational domain is partitioned, while for the cell-vertex formulation particular
faces have to be defined On the other hand, in the cell-vertex formulation the extension
of the FVTD scheme to a higher order is done in a much simpler way than for the
cell-centred formulation.

Once the computational domain is partitioned in volumes V;, which possess a
boundary surface S; consisting of a number of planar faces, Equation (6.12) is applied
to each of these volumes in a discretised form expressed as

aIVI Z" 1Sk F (UF) - 7, (6.13)

where | V;| is the volume of the ith volume, | S| is the area of the kth planar surface
that surrounds the ith element, m; is the number of planar surfaces surrounding the
volume V;, U; is the value of U at the centre of the ith element, U}'is the value of
U at the centre of the kth planar surface, n;; represents the unit normal of the kth
planar surface of the ith volume, and F (U,:‘) - 1i;x represents the flu at the centre of
the kth planar surface. Figure 6.3 showns a schematic of the flu interactions for an
elementary volume in a 2D cell-centred formulation.

Figure 6.3 Flux interaction for a volume, 7, in a 2D computational domain discretised with
a cell-centred formulation. (Reproduced with permission from Pinto, D. and Obayya, S.S.A.
(2008) Nonlinear finit volume time domain analysis of photonic crystal based resonant
cavities. IET Optoelectron., 2 (6), 254-261. (C) 2008 IET.)
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6.3 The UPWIND Scheme for Flux Calculation

Different solutions have been proposed in the literature in order to evaluate the flu

interaction for each volume into which the computational domain is discretised. One of
the most employed schemes is the UPWIND scheme [1]. In this scheme, a relationship
between the electromagnetic-fiel components at the centre of the element and the
electromagnetic-fiel components at the centre of the corresponding boundary planar
surface is formulated. In order to do so, the set of unit normal vectors of a single
volume V; is considered in order to parameterise R>, so as to express each point of R>

as a linear combination of this set. In formulas this is expressed as

m;

Rm; > (;;:1’. . .’%‘mi) =X = Zskﬁik S R}

k=1
In this way Equation (6.9) can be expressed as

Equation (6.14) can be rewritten in a more compact form as

1ZA(n,k)—

where the 6 x 6 matrix 4 (n;;) is define as

OF 08 0F, 08 | 0F3 08

A (n;
) =30 % T30 3y T 30 9

In this way the matrix 4 (n;) is given by

0 0 0 0 n, n,
0 0 0 —n, 0 Ny
—. | o 0 0 n, —ny 0
Am)=1"o . 4, 0 0 0
n, 0 —ny 0 0 0
| —ny  ny 0 0 0 0 ]

‘Z AR 0 | DR B5 | OF 05) 9U
U ax AU ay oU 0z /) d&;

(6.14)

(6.15)

(6.16)

6.17)

It can be clearly seen that the product 4 (n;) U defines in this case, the flu interac-
tion of the face S; associated with the unit normal n; = (nx n,n; ) Introducing the
notation A4 (1;) = o~ ' 4 (n;), for each matrix A (n;) it is possible to calculate the six
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real eigenvalues given by

<o

The matrix 4 (n;) can be written in the form 4 = PA P~ where

and

=

1 1 1 1
NCITERWN T VEU ./8M)
0 0 0 0 0
0 0 0 0 0
1
0 0 0 0
JVEU .
0 0 0 0
JVEU .
0 0 0 - 0
VEMU |
0 0 0 0 -
JVER
Ny, NyMy Nyl nyny
ce ce ce ce
nyn; ni + nﬁ nyn; njzc + ng
ce ce ce ce
n,zc + ni nyn; ni + ni nyn;
ce ce ce ce
—ny, —n; —n, —n;
My 0 My 0
0 ny 0 Ny

where ¢ = 1/, /e is the speed of light in the medium.
From Equation (6.15), considering the variation of the vector U along the direction

of n; gives

U
3

U

—A(l’l)—

(6.18)

(6.19)

(6.20)

(6.21)

With the help of the decomposition used for 4 (12;) and introducing the vector V=
P~'U, Equation (6.21) can be written as a system of six independent scalar equations

0,

ot

v _
“on

(6.22)
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where j =1, ..., 6. The solutions for each of these equations are any differentiable
functions of the type f (A;# — &n). This means that the value of ¥ at § = &, the
boundary face of the cell, along the direction n; at time 7 is equal at the value of V;
at & = &, the centre of the cell, at time ¢ — s/A;, where s = |€" — &y|. On the other
hand, if the cell size is very small compared to the shortest wavelength involved,
the propagation time needed to cover the distance s can be neglected with very good
approximation. This estimation implies

Vi) =V (6.23)

This relationship holds for any direction of propagation and hence for all unit normals.
For stability reasons [1, 3], the only waves considered in the following analysis are
those propagating in the positive direction of n; which implies that only positive
eigenvalues need to be considered. In fact the matrix A4 (77;) can be rewritten as

An;)=PAP ' =P(AT+A")P'=PATP '+ PA P!
=Am)" + A(n;)” (6.24)
where A" is the diagonal matrix of positive eigenvalues of 4 (77;), and A~ is the

diagonal matrix of the negative eigenvalues. With this notation, the matrix A (;)* is
given by

A=
_(ni + n?) c —nyn,c —NyNC 0 n;je —ny /e
—nynyc (n§ + nf) c —nyn;c —n;/e 0 ny/e
—Ny n;C —nyn.c (n§ + ni) c n, /e —n /e 0
0 —n; /1 ny, /i (ni + n?) c —nyn,c —NyN,C
n;/u 0 —ny /] —nyn,c (ni + nz) c —nyn.c
—n, /1 ny /U 0 —Nn,C —nyn.c (ni + ni) c |

(6.25)

It is possible to note that by substituting ¢ with —c, an explicit expression for 4 (1;)~
can be obtained and, furthermore, the following relationship is obtained

A(m)” = —A(=n)* (6.26)

Finally, considering Equation (6.23), noticing that ¥ = P~'U and multiplying both
sides of Equation (6.23) by PA™, the relationship between the values of the electro-
magnetic fiel components at the centre of the cell, U, and the corresponding values
at the surface S;, U™ is obtained

A" U = A(m)* U* (6.27)
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Equation (6.27) can be expressed in terms of electromagnetic-fiel components,
obtaining

Yﬁ,-xl?—ﬁ,-x(r?,-xl—?):YﬁixE*—ﬁ,-x(ﬁ,-xI-;*) (6.28)

where Y = /¢ / w. Equation (6.28) has to be applied at both of volume elements

whose common interface is the surface S;. In this way, considering volume 1 on the
left side and volume 2 on the right side, the following equations are obtained

Y'm x E¥ — i x (y x HY) = Y'n; x E' —i; x (i x H') (6.29)
YzﬁixE**-l—;?ix(;ZxI-;**):Yzﬁixbjz—i—ﬁix(ﬁl-xl-;z) (6.30)

where Y! and Y? are the characteristic admittances of the left and right volumes,
respectively, E £ and H! are the electric and magnetic field at the centre of the left
volume, respectively, £ 52 and H? are the electric and magnetic field at the centre
of the right volume, respectively, £* and H™* are the electric and magnetic field
at the boundary surface of the left volume, respectively, and £** and H** are the
electric and magnetic field at the boundary surface of the right volume, respectively.
Equations (6.29)—(6.30), in conjunction with appropriate continuity conditions can
be used for the calculation of the flu es necessary for the updating process of the
FVTD algorithm.

6.3.1 Dielectric Contrast

For a dielectric contrast, Equations (6.29)—(6.30) are used with the continuity rela-
tionships of the tangential components of the electric and magnetic field expressed
as

x E* = n; x E™ (6.31)
n; x H* =ny x H™ (6.32)

Considering Equations (6.31)—(6.32) together with Equations (6.29)—(6.30) the fol-
lowing equations are obtained

;ZXE_’*zﬁl-xE**zﬁ( < (Y'E' + Y2E?) — i, x (m; x (H' — i)
(6.33)
}le—f*:ﬁix}?**:ﬁ( < (Z2H + Z'H') — i x (s x (B> — E))



152 Computational Photonics

where Y and Z are the characteristic admittance and the characteristic impedance of
the volume, respectively, and the superscripts 1 and 2 refer to the left and the right
volumes, respectively. Taking into account that

F(U) - = ["?XXE@'] (6.35)

Equations (6.33)—(6.34) can be rewritten using the flu splitting formalism as
F(UY) -m=F(U%) -m=a'T' A ()t U + 2T22 ()" UF (6.36)

where T is a 6 x 6 transmission matrix expressed as

272
1 2
=% JOFZ Syl (6.37)
Y+ 7?2

It can be noted that Equation (6.36) represents a relationship between the flu es and
the electromagnetic-fiel components at the centre of the volumes. Taking this into
account Equation (6.13) can be finall expressed as

8Ul‘ 1 i ~ — ~ = "
@ = IS (@ T A G O+ @A T A Gy UF) (639)

6.3.2 Perfect Electric Conductor
In this case Equation (6.28) is used in conjunction with the condition
nx E* =0 (6.39)
which gives
mox H* =Y x (m; x E) +m x H (6.40)

From Equation (6.40) is then possible to obtain the relation between the flu es and
the electromagnetic-fiel components at the centre of the volume

F(U)-m = alTeecl 4 () + U1
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where Tppc is the 6 x 6 transmission matrix obtained from 7' considering that the
impedance of a perfect electric conductor tends to zero, or in formula

7l .= lim T'! 6.41
rec = Jim, (641

The 6 x 6 transmission matrix Tpyc is explicitly expressed as

[2 0 0 0 0 0]
02 0 0 0O
0 02000
o
Tpge = 0O 00 0 0O (6.42)
0O 000 00
(00 0 0 0 0]
6.3.3 Perfect Magnetic Conductor
In this case Equation (6.28) is used in conjunction with the condition
nx H* =0 (6.43)
which gives
m x E* = Zn; x (m; x H) +nm; x E (6.44)

From Equation (6.44) is then possible to obtain the relation between the flu es and
the electromagnetic fiel components at the centre of the volume

F(U)-n; = alTomcl A (m;) + U1

where Tpy,c is the 6 x 6 transmission matrix obtained from 77 considering that the
admittance of a perfect magnetic conductor tends to zero, or in formula

Tl = lim T' 6.45
PMC = S ( )

The 6 x 6 transmission matrix Tpy,c is explicitly expressed as

(6.46)

1
Tove =

SO OO OO
SO OO OO
SO OO OO
SO O O OO
N OO O OO

S OO OO
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6.3.4 Numerical Stability

As with every explicit numerical scheme, the FVTD method is not an unconditionally
stable numerical method. Particular attention needs to be paid to the choice of the time
step, At, in order to ensure the stability of the numerical scheme. In [1] a thorough
stability analysis of the FVTD method is reported for structured and unstructured
schemes. This analysis is based on the Von Neumann method [4] with which the
evolution of the numerical error of the scheme is studied over time. The aim of this
study is to fin the appropriate values of the parameters of the scheme in order to
obtain a decreasing behaviour of the error or, at least, to maintain it at a constant
value. Essentially, the stability of the numerical scheme is guaranteed if the following
relationship is verifie
e+ oo
lle™ |l 4D
where ¢ indicates the error. For a 3D structured grid with discretisation steps Ax =
Ay = Az = A, the application of the Von Neumann method leads to the following
relationship for the maximum time step possible for the numerical scheme to be stable

A
dr < o~ (6.48)

where c is the speed of light in the medium.

For a 3D unstructured grid, the Von Neumann method is applied on an explicit
scheme of spatial order 1 [1], leading to the following relationship between the time
step d¢ and the cell size of the discretised computational domain

1 Vi
dr < - mm(znl, ||Sk|> (6.49)

where V; is the volume of the elementary cell, Sy is the area of the kth planar boundary
face of the volume V;, m; is the number of planar faces surrounding the volume V;
and c is the speed of light in the medium. The verificatio of Equation (6.48) for
FVTD schemes developed on structured grids, or Equation (6.49) for FVTD schemes
developed for unstructured grid is sufficien to guarantee the stability of the numerical
scheme for all time steps.

6.4 Nondiffusive Scheme for the Flux Calculation

The upwind scheme described in the previous section has been shown to suffer
from numerical diffusion [5], which is necessary in the context of computational
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Figure 6.4 Schematic diagram of a 2D computational domain with the position of the
electromagnetic-fiel components on the elementary volumes.

flui dynamics in order to avoid the exponential growth of nonphysical oscillations
artificiall introduced by the numerical scheme. On the other hand, in the context
of computational electromagnetics, this numerical diffusion creates a nonphysical
dissipation of the electromagnetic energy inside the computational domain, which can
lead to inaccurate results for simulations requiring a running time equivalent to several
cycles of the main frequency signal. In [5], a different scheme for the calculation of
the flu interaction between cells in the FVTD scheme has been proposed for the
simulation of electromagnetic problems. This scheme doesn’t suffer from numerical
diffusion, making it suitable for the simulation of electromagnetic structures and
problems involving highly resonant structures. The core of this scheme consists in a
different approach in the calculation of the electromagnetic-fiel components at the
centre of the boundary faces surrounding the elementary cell necessary for the flu
calculation, as shown in Figure 6.4 for a 2D computational domain.

The electromagnetic-fiel component U}, at the centre of the segment interface
between the elements i and j is calculated using a linear approximation

l7i+l7k

Up =2

(6.50)
In this way, applying this scheme to Equation (6.13), the following equations are
obtained

n+1

E!
g |V ————L + Z Fi2 =0 (6.51)
Hn+3/2 . HnJrlﬂ

wi Vil ———— -y Oy = (6.52)
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with
FiH2 = Ny, i er /i (6.53)
éylzzﬁgézf{;EZf- (6.54)

where
Nix = || Na, (6.55)

with
Ni, = nige Ny + iy Ny + gz N- (6.56)

where #;; = (n,-kx Niky Nikz )T is the outward normal unit vector of the kth planar
face and the matrices N,, N, and N, are explicitly expressed as

- 0 0 0 - 00 —1 - 0 1 0
Ne={o o 1], Ny=(oo0o o], N=|-10 0
0 -1 0 10 0 0 0 0

Equations (6.51)—(6.52) represent three equations each of which represent the
updating equation for each of the six electromagnetic-fiel components. These
equations can be explicitly solved and furthermore it can be seen that Equa-
tions (6.51)—(6.52) represent a scheme which employs a leapfrog pattern for updating
in time of the electromagnetic-fiel components. In fact, from Equation (6.51) it can
be clearly seen that in order to obtain the electric-fiel components at the time step
n + 1, only the magnetic-fiel components at the time step # + 1/2 and the electric-
fiel components at the time step n are used. Likewise from Equation (6.52), it is
possible to note that to update the magnetic-fiel components at the time step n +
3/2, only the electric-fiel component at the time step » 4+ 1 and the magnetic-fiel
components at the time step n + 1/2 are employed.

6.5 2D Formulation of the FVTD Method

In this paragraph a 2D formulation of the FVTD using the nondiffusive scheme
is derived. The scheme is based on a cell-centred formulation and the elementary
cells are constituted by triangles. In this way, elementary volumes, V;, are replaced
by elementary surfaces, S;, while the boundary planar surfaces, Sy, surrounding the
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Figure 6.5 Elementary triangular volumes employed for the FVTD method. On the left, an
elementary volume for a 3D computational domain is shown. On the right, an elementary
volume for a 2D computational domain is derived.

volumes, V;, are replaced by segments, /;, which are the sides of the elementary
triangles, as shown in Figure 6.5.

The 2D space considered here for this derivation can be obtained from a 3D space in
which the z-direction is homogeneous in such a way that all derivatives along the z-axis
are identically equal to zero. This condition is reflecte in Equations (6.51)—(6.52)
by forcing all elements of the matrix N, to 0

d
— =0 N, =
0z =

S OO
oS O O
S OO

The substitution of Equations (6.53)—(6.54) into Equations (6.51)—(6.52),
considering the condition previously expressed about the 2D space, leads to the
following equations

En+1 Hn+1/2 +Hn+l/2

& IS —L Ev —Ey + Z 1A (—n,.ky > =0 (6.57)
En+1 Hn+1/2 +Hn+1/2

£ ISi] ="+ Z el <nl~kx > =0 (658)

En+l Ezz Hn+1/2 +Hn+1ﬂ H;lJrl/Z +Hn+1/2
& 18| ———= +Z|zk| Miky 5 — ik > =0

(6.59)
n+3/2

) _ n"'l/‘Z 3 EI’H-I En+l
i 18] S S (P ) =0 (6.60)
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Hﬂi+3/2 _ Hni+1ﬂ 3 En+l + En+]
il Si| = - Z il { nie === ] =0 (6.61)
n+3/2 n+1/2 3 1 1 n+1 n+1
PR e M - M_nmu o
At 7 2
(6.62)

As can be clearly seen, Equations (6.57)—(6.62) can be collected in two groups of
dependent equations with common electromagnetic-fiel components. For instance,
in Equations (6.59)—(6.61) only the electromagnetic-fiel components E., H,, H, are
involved, while in Equations (6.57), (6.58), (6.62) only E\, E,, H. electromagnetic-
fiel components are considered. The existence of these two independent sets of
equations reflect the fact that in a 2D space two distinct polarisations are involved,
which concurrently exist without any mutual interaction, if considered in structures
composed of isotropic materials. In the literature, these two distinct polarisations are
referred as transverse electric (TE) and transverse magnetic (TM) polarisations. At
this point, clarificatio of the classificatio of TE and TM polarization is required. In
the literature there are two different ways to associate the TE or TM polarisations for a
certain set of equations. Considering z as homogeneous direction, in most textbooks on
microwave theory TE polarisation is usually associated with electromagnetic field
whose main components are E,, E,, H., while TM polarisation is associated with
electromagnetic field whose main components are H,, H,, E.. In textbooks on PhCs,
the classificatio of TE and TM polarisation is linked to the axis of periodicity of
the crystal itself. For instance, considering a 2D PhC whose axes of periodicity
are x and y, TE polarisation refers to electromagnetic field whose electric-fiel
component is perpendicular to the plane formed by the two axes of periodicity, while
TM polarisation refers to electromagnetic field whose magnetic-fiel component is
perpendicular to the periodicity plane. Following this definitio of the two different
polarisations, for a PhC a TE-polarised wave is an electromagnetic fiel whose main
components are H,, H,, E.. Consequently, a TM-polarised wave contains E,, E,, H.
as the main components. It is clear now that these two different ways to classify
TE and TM polarisations are in contrast with each other. Therefore, in order to
avoid confusion, throughout the whole book the convention used for PhCs will be
followed.

Equations (6.59)—(6.61) are considered for TE polarisation and can be rewritten in
explicit form as

n+l _ mn _
Ezi - Ezi

3 1 Hn+l/2+Hn+1/2 Hyn+1/l+Hn+l/2
€ |S kg | kl Riky P — PMikx B

(6.63)
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3
At En~+1 En-‘rl
HPP = 1R - Sl ( gy o (6.64)
wi |Si 1 2
En+l +En+1
P = HP | 5 leu( o~ (6.65)
1

The update process starts with the computation of the electric fiel E, using the value
of the same fiel at the previous time step and the old values of the magnetic-fiel
components H, and H,. Once the electric fiel has been updated, the calculation of the
new values of the magnetic-fiel components is performed using the magnetic-fiel
components values at the previous time step and the newly updated electric field
This process is repeated either for a fi ed number of time steps or until steady state is
reached.

Equations (6.57), (6.58)—(6.62) are considered for TM polarisation and can be
rewritten in explicit form as

Hn+l/2 Hn+l/2
Exft = EY +—Z|lk| Riky ki (6.66)
&i |Sil 2
3 n+1/2 n+1/2
H, + H,
EMl = Er — Ll niger 6.67
i Vi |S Z [kl < ik 5 ) ( )
En+1 +En+1 Enl+1 +En+1
Hzri+3/2 HZ[ |S | Z Ilkl ( Ny —— 2K > _ nikxyfyk

(6.68)

The update of Equations (6.66)—(6.68) is performed in a similar way to the update
process for the TE polarisation case.

6.5.1 Numerical Stability

The analysis of the numerical stability of the method is based on the determination
of the variation of the total discrete electromagnetic energy of the scheme. In [5] it
has been proven that the scheme conserves exactly the total discrete electromagnetic
energy when a metallic cavity is simulated. This implies that the scheme is eftectively
stable and nondiffusive. Furthermore, a stability analysis has been carried out when
first-orde boundary conditions are applied to the computational domain [5]. For this
case the stability and nondiffusivity of the scheme have also been proven. However, in
order to maintain the stability of the scheme, some restrictions on the maximum time
step it is possible to employ for a given problem have to be applied. These restrictions
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take into account different scenarios which can be represented by the computational
domain, and are expressed as

Vivi .
V internal interface At? < 16S_Sk min (&g i, & i)
i Ok
. i
V metallic interface At < 4E (6.69)
V absorbing interface At <4—L
C; Sl'

6.6 Boundary Conditions

The analysis of scattering problems of electromagnetic waves propagating in
optical waveguides is usually studied in infinitel extended regions. On the other
hand, the FVTD method works only with a finit number of volumes which represent
the computational domain. This introduces a problem for the simulation of scatter-
ing problems because in a computer memory only finit regions can be simulated.
This problem has been brilliantly solved with the advent of the boundary conditions
which can artificiall simulate open-space regions within a finit discretised space.
In the context of the FVTD method, the most used boundary conditions were the
‘Silver—Miiller’ boundary conditions also known as ‘radiation boundary conditions’
until the advent of the PML boundary conditions, which present better performance
in terms of absorption of the outer propagating waves.

6.6.1 Silver—Miiller Boundary Conditions

In the FVTD method, the most frequently used boundary conditions applied on the
outer boundary are the Silver—Miiller conditions [5, 6]. These boundary conditions
belong to the family of boundary conditions referred to in the literature as local non-
reflectin or radiation boundary conditions. These local conditions are less accurate
than exact or global outer boundary conditions based on boundary integral equations
[7]. However, they are very easy to implement and require less computer resources.
The computational volume is truncated by introducing a surface, Sy, enclosing the
computational domain. Consider a cell, V, with a face, S, which belongs to the surface,
So, and the electromagnetic fields E* and H*, def ned on S, with unit normal, 7, as
shown in Figure 6.6.

The Silver—Miiller conditions, applied to the outer boundary, force the flu on the
outer boundary to apply to outgoing waves only. This condition is represented by the
following:

DX B ux (i x HY) =0 (6.70)
o
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*

E “«.__ outer
~ b ary
boundary

Figure 6.6 Schematic diagram of an outer boundary for the application of the Silver—Miiller
boundary condition.

This condition ensures that waves which are normal to the artificia boundary are not
reflected whereas other waves are only partially reflected For this reason, in order
to avoid high reflections the outer boundary has to be placed sufficientl far away
from the core of the computational domain so as to assume the incident waves on the
boundary are local plane waves.

6.6.2 PML Boundary Conditions

The UPML has been previously implemented in the context of conventional FDTD,
and was shown to be very efficien and robust [8]. In this section, the incorporation of
the UPML boundary conditions has been considered in the context of FVTD scheme.
The FVTD formulation can be applied to the Maxwell’s equations for the flu density,
D, and the magnetic flux B

oD —

— —VxH=0 (6.71)
.

0B —

E'FVXE:O (6.72)

Applying the nondiffusive FVTD scheme to Equations (6.71)—(6.72) the following
discretised equations are obtained

4 D" — Dy +Y "N /A 0 (6.73)
i ik = .
At k=1 2
B{z+3/2 _ grtin m _ EMTL_ pntl
Vil == ) N =0 (6.74)

where |V;| represents the volume of the ith elementary cell and ]Vik is define by
Equation (6.55).
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The update of the electric field E, and the magnetic field H, is obtained through
the proper constitutive relationships as define in [8] in the context of the UPML
formulation

D, = so6, 2 E, (6.75)
Sx
by = 808rs—xEy (6.76)
Sy
D. = o6, L E. (6.77)
Sz
- SZ -
By = pour—H,y (6.78)
Sy
- Sy -~
By = popur—H, (6.79)
Sy
B. = pop 2 H. (6.80)
Sz
where s,, s, 5. are define as
Ox
Sy =14 — (6.81)
J W&o
Oy
sy =14~ (6.82)
JWeo
0.
s, =14 — (6.83)
JwEo

It needs to be noted that Equations (6.75)—(6.80) are define in the frequency do-
main. In order to make them useful for a time-domain method, they have to be
transformed into their time-domain equivalents. Following the procedure suggested
in [8], the transformation of Equations (6.75)—(6.80) in their equivalent time-domain
equations is easily obtained with a few mathematical manipulations. For instance,
considering Equation (6.75), with the explicit expression for the quantities s, and s,,
and multiplying both sides by jw, the following equation is obtained

Ox = . Oy -
<ja) + —) D, = gps, (]a) + —> E, (6.84)
&0 &o

The transformation of Equation (6.84) into time domain leads to

an Oy 8Ex oF}
%D, = ey, ey 6.85
ot e 808(8t+eo ) (059
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Following the same procedure for Equations (6.76)—(6.80), similar equations are
obtained. Their discretisation in time is then performed using a leapfrog arrangement,
which leads to the following equations:

ntl 2e0 — o At g 1
T 2ep4or At L Qg0+ orAl) e
[(2e0 + 0;At) D! — (289 — 0 At) D] (6.86)
H.,,+3/2 _ 289 — o At H.n+1/2 1
! 2¢0 + oAt ! (eg + o At) 1
[ @00 + 0y 0) B/ — (200 — oy0) B V7 (6.87)

with k =z, x,y,j =x, y, zand where o is the conductivity of the UPML layers. For the
conductivity in the UPML layers, a geometrical grading has been chosen [8], and the
maximum value of the conductivity o y.x of the UPML absorber has been calculated
using the relationship [9]

= () (557) () @
Wuypml 2 L

where ¢g and ¢ are the free space permittivity and the light velocity in free space,
respectively, Wypm is the width of the UPML layer, p is the order of geometrical
grading and I'y, is the theoretical reflectio coefficien of the UPML absorber.

6.7 Nonlinear Optics

A brief overview on nonlinear optics is given here. In Chapter 10 a complete analysis
of nonlinear optics will be given. Nonlinear optics is a branch of optic science which
deals with nonlinear phenomena in material systems due to the presence of light,
which modifie the optical properties of the material itself. In order to observe non-
linear phenomena, high-intensity electromagnetic field are needed and this explains
why nonlinear optics is a relatively young branch of optic science. In fact, the firs
demonstration of a working laser was given by Maiman in 1960 [10] and soon after the
firs work on nonlinear optics was carried out by Franken et al. in 1961, who observed
and discovered the firs second-harmonic generation (SHG) nonlinear process [11].
It is understood that the term nonlinear refers to the fact that the phenomena depend
in a nonlinear manner upon the intensity of the applied electromagnetic field As an
example, the intensity of the fiel generated at the second harmonic frequency, due to
the SHG nonlinear phenomenon, depends quadratically on the strength of the applied
fiel at the fundamental frequency (FF).
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The description of nonlinear phenomena is usually done with the introduction of
the polarisation P(¢) of a material which is related to the applied optical fiel E(¢),
where the symbol ‘~’ represents fast-varying field in time. Considering P(¢) and
E(¢) to be scalar quantities, the polarisation P(¢) in the optical response is usually
described as a power series in the fiel E(¢)

Pty = xDOE®) + xPOE (1) + xVOE @)+ ... = PD(0) + PP(1)
+ PO+ ... (6.89)

where x((¢) is the linear susceptibility, x ®(¢) is the second-order nonlinear sus-
ceptibility and x®)(¢) is the third-order nonlinear susceptibility. P (¢) and P3(¢) are
also known as the second-order nonlinear polarisation and the third-order nonlinear
polarisation, respectively. It should be mentioned that because of the vectorial nature
of E(t) and P(¢), the quantities x V(¢), x®(¢) and x®)(¢) are not scalars, but tensors.
Infact, x (V(¢) is a second-rank tensor, x ?)(¢) is a third-rank tensor, x ®)(¢) is a fourth-
order tensor, and so on. Furthermore, in Equation (6.89) it has been assumed that the
polarization, P(¢), depends only upon the instantaneous values of the electric fiel
E(t), which implies lossless and dispersionless properties of the medium involved in
the nonlinear optical process [12].

The importance of the polarization, P(¢), in nonlinear optics can be fully understood
considering that the wave equation in nonlinear optics media is usually expressed as
[12]

. n>’E  4mx 9*PM(1)
VE(M) - —— = ——~2 6.90
) c? 012 ¢z 9t (6.90)

where 7 is the linear refractive index of the medium and c is the speed of light in
free space. Equation (6.90) is an inhomogeneous differential equation in which it
can be clearly seen that the term PY:(¢) acts as source of new components of the
electromagnetic field

6.8 Nonlinear Optical Interactions

The interaction between incident light and optical nonlinear media can give rise to
a variety of different nonlinear phenomena. Each of these phenomena is related to
the applied electromagnetic fiel through Equation (6.89) by means of the different
susceptibilities. For this reason, each susceptibility is responsible for a particular
class of nonlinear phenomena. For instance, the second-order nonlinear susceptibility
x @(t) accounts for nonlinear phenomena such as second harmonic generation (SHG),
sum-frequency generation (SFG), difference-frequency generation (DFG) and optical
parametric oscillation.
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6.8.1 Second Harmonic Generation (SHG)

SHG describes a nonlinear optical process in which two photons interact with a
nonlinear medium generating a new photon with double the energy, and thus light
travelling with double the frequency. This nonlinear process is characteristic of optical
materials which possess nonzero second-order nonlinear susceptibility x ) (¢).

A laser beam is used as a source to excite a nonlinear material which presents a
second-order nonlinearity described by x?(¢). The source can be described as

E(t)= Ee /" +c.c. (6.91)

where E is the amplitude of the electric fiel and e’ describes the fast-varying time
domain part of the electric fiel with angular frequency w. From Equation (6.89), it
is possible to derive the following expression

PO(t) = 2y PEE* + (P B2V + c.c) (6.92)

From Equation (6.92), it is possible to note that P?)(¢) is composed of two different
terms, the firs at zero frequency and the second at angular frequency 2w. The frst
term leads to the generation of an electric static fiel within the nonlinear material and
this process is also known as optical rectificatio (OR). The second term leads to the
generation of an electromagnetic radiation at angular frequency 2w and this process
is also known as SHG. It has to be mentioned that in studying optical propagation,
P(t) in Equation (6.92) has to be substituted into Equation (6.90), which represents
the wave equation. For this reason, it is clear that P?)(¢) acts as a source in Equation
(6.90) which implies that an electric fiel at angular frequency 2w is travelling inside
the nonlinear material. Figure 6.7 shows a schematic diagram of the SHG process,
explained in terms of a black box and energy levels.

6.8.2 Third Harmonic Generation

Third harmonic generation describes a nonlinear optical process in which three
photons interact with a nonlinear medium generating a new photon with triple the

0] : )

(a) (b)

Figure 6.7 (a)Block diagram and (b) energy-level description of the SHG nonlinear process.
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Figure 6.8 (a) Block diagram and (b) energy-level description of the third harmonic gener-
ation nonlinear process.

energy, and thus light with triple the frequency. This nonlinear process is characteris-
tic of optical materials which possess nonzero second-order nonlinear susceptibility
x (). Figure 6.8 shows a schematic diagram of the third harmonic generation process
explained in terms of a black box and energy levels.

In order to show the nonlinear process of third harmonic generation associated with
third-order nonlinear susceptibility, x®(¢), a monochromatic fiel is applied to the
nonlinear material system

E(t) = E cos (wt) (6.93)

Assuming the material possesses only nonzero x ®)(¢), the polarization, P(¢) within
the nonlinear material consists of only the third-order nonlinear polarisation P)(¢)

POW) = xVEN ) (6.94)

Using the identity
3 1 3
cos” (wt) = 2 cos (Bwt) + 7 cos (wt) (6.95)
and substituting in Equation (6.94) yields
53y — L, 0 p3 3 Gy
PP = ZX E’ cosBwt) + ZX E° cos (wt) (6.96)

The firs term of Equation (6.96) leads to the generation of an electromagnetic radiation
at angular frequency 3w and this process is also known as third harmonic generation.
Similarly to the SHG process, it should be mentioned that P®)(¢) in Equation (6.96)
has to be substituted into Equation (6.90), which represents the wave equation. For
this reason, it is clear that P®)(¢) acts as a source in Equation (6.90), which implies
that an electric fiel atangular frequency 3w is travelling inside the nonlinear material.
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6.8.3 Intensity-Dependent Refractive Index

The second term in Equation (6.96) describes a nonlinear contribution at the frequency
of the source field This nonlinear effect leads to a phenomenon also known as the
intensity-dependent refractive index, which is usually described by

n=mngy+nyl (6.97)

where ng is the linear refractive index of the material, 7, is the nonlinear refractive
index and / is the intensity of the incident wave. The nonlinear refractive index n;
is linked to the third-order nonlinear susceptibility, x*(¢), through the following
relationship

127
no=——x0) (6.98)
ngc

where c is the speed of light in a vacuum. The intensity of the incident fiel is related
to the amplitude of the electric field E, through the relationship

[ =12 (6.99)

8
It is clear from Equation (6.97) that the intensity-dependent refractive index is a
local phenomenon in the sense that only the part of the material which is affected by
the incident electric fiel experiences a change in the value of the refractive index.
This leads to a local inhomogeneous refractive index which affects the propagating
electromagnetic field In fact, from Equation (6.97), if n, > 0, it can be seen that
the refractive index of the material increases as the intensity of the propagating
electromagnetic fiel increases. This particular phenomenon is also known as self-
focusing and it consists of focusing lens behaviour of the nonlinear material with
respect to electromagnetic radiations, as shown in Figure 6.9.

A
(3)

I

Figure 6.9 Schematic diagram of the intensity-dependent refractive index phenomenon. The
two arrows represent two light rays propagating inside a nonlinear material. If x® > 0, the
two rays are focusing.
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6.9 Extension of the FDTD Method to Nonlinear Problems

In order to consider a 2D problem, the z-axis has been chosen as the homogeneous
direction, while the x-axis has been considered as the direction of propagation. With
these assumptions, for TE modes, the principal electromagnetic fiel components are
E., H, and H,. Under the scalar approximation, the following 2D TE equations can
be derived, as reported in [8,13]:

dH, 1 AE.
= (6.100)
at Mo 3y
dH, 1 OE.
— = — (6.101)
at Lo 0x
aD, dH, OH
=2 _ = (6.102)
ot ox ay
D. =¢E. (6.103)

where p is the permeability of free space, and ¢ is the permittivity of the dielectric
medium. The constitutive relationship (6.103) is considered here to model the non-
linearity, this being an instantaneous Kerr-type nonlinearity and this is considered in
the permittivity of the dielectric medium

& = &p&r = 801’!2 =&y (n() + o |E|2)2 (6104)

where g is the permittivity of free space, n is the linear part of the nonlinear refractive
index of the nonlinear dielectric medium, « is the nonlinear coefficien ofthe nonlinear
refractive index of the dielectric medium, and in this relationship it has units of m?/V?,
and where E is the electric field Substituting Equation (6.104) into Equation (6.103),
the following relationship can be derived

D,
E. = (6.105)

g0 (no + a |E.?)°

Next, the discretisation in space is performed based on the unit cell of the Yee space
lattice, as shown in Figure 6.10, while the discretisation in time is obtained following
the leapfrog arrangement [8]. In this way, a set of discretised equations in space and
in time are obtained. Using the notation introduced in [8] and considering the position
of the electromagnetic-fiel components in a 2D grid, as shown in Figure 6.10, the
discretisation of Equations (6.100)—(6.103) yields

n+1/2 n+1/2
At Belnipsnip = Bl (6.106)

Ko Ay

n+1 _ n _
Helitip; = Heliyip,



Finite-Volume Time-Domain Method 169

—
H, (i+1/2,j+1)

Hy (i+1,j+1/2)

E, (i+1/2,j+1/2)
[ A

H, (ij+1/2)

Y H, (i+1/2,))
-
X

Figure 6.10 Electromagnetic fiel components placed in a 2D Yee’s cell.

n+1p2 PERY))

At Eifp mp — EZliZip jp
H|"  =H" .+ — -/ -/ (6.107)
Yl j+12 Y, j+12 o Ay
+1/2 -1/2
DZ|:’+1/2,j+1/2 = Dz|zr'l+1/2,j+1/2+
6.108
At Hy|?+1,j+1/2 - Hy|?,j+1/2 . Hx|?+1/2,j+1 — HX|?+1/2’/' ( )
Ax Ay
D |n+1/2
| .
B2 +1/2,j+1/2 (6.109)

i+1/2,j+1/2 = N2
12
€0 \ Moli+1/2, 74172 + olivryz w12 | Ezlip1/2 41,2

The updating process starts with the calculation of the new values of the magnetic-
fiel components at all the grid points of the computational domain, using Equations
(6.106)—(6.107). By means of the values obtained, the D, fiel component is computed
in the same way using Equation (6.108). Subsequently, new values of the electric-
fiel component are calculated with reference to Equation (6.109). This approach
avoids the necessity of updating the values of the dielectric material of the simulated
device, arising due to the nonlinear effects caused by the applied electromagnetic
field because the nonlinear effects are directly applied to the electric-fiel component
E, through the computation of Equation (6.109). In this equation it should be noted
that the value of £, from the previous time step is used to calculate the value of E,
in the subsequent time step through a Newton-iteration procedure. This approach is
justifie because the former value of E, is a very good approximation of the new
value of E,, arising because of the application of the Courant—Friedrichs—Lewy
(CFL) condition for the FDTD time-stepping procedure. Furthermore, solving all the
electromagnetic-fiel components of the TE mode instead of solving only the main
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electric-fiel component derived from the wave equation produces a stable method
for the simulation of nonlinear devices, as will be clearly demonstrated in the Chapter
7. Additionally, this approach avoids the extra computational effort necessary to solve
the nonlinear matrix equation that would be obtained if the value of £, determined at
the same time step were used on both sides of Equation (6.109), as proposed in the
literature [15].

6.10 Extension of the FVTD Method to Nonlinear Problems

Starting from Maxwell’s equations and the constitutive relationships between electric
flu density and electric field and magnetic flu density and magnetic fiel

aD .

= _VxH=0 (6.110)

at

3B .

¥+VXE=0 (6.111)
D = so&,E (6.112)
B = pourH (6.113)

it is possible to rewrite the Equations (6.110) and (6.111) in a conservative form as
in[1]

M L (V) L (V) LE (U)

=0 (6.114)
ot ax ay a9z

where =[D, D, D. B, B, Bl U=[E. E, E. H, H,
H.1", Fl(U) 0 H -H, 0 —E EJI, LU =-H 0 Hc E.
0 —E.]%, F3( ): [H, —H. 0 —FE, E, 0]", and T represents the
transpose matrix operator. Equation (6.114) can be rewritten in condensed form as

% +divF (U) =0 (6.115)

where F (U) = [F1 (U) F (U) F; (U) ] This notation is fundamental for the
derivation of the FVTD scheme. Considering a generic volume, V, Equation (6.115) is
then integrated and through the use of the divergence theorem the following equation
is obtained

/—dV+/ (U*)-d,dS =0 (6.116)
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where S represents the surface enclosing the volume, V, a, is the outward pointing
normal unit vector of the surface S, and U* = [E;‘ EY EX HY H; H ]T
denotes the electromagnetic-fiel components at the surface, S. In order to make pos-
sible the integration of Equation (6.116) in practical applications, the entire volume,
V, is partitioned into small volumes, V;, each of one with a boundary surface, S;. Each
of these surfaces is composed of a number, m;, of planar faces with outward unit nor-
mal, 7;;. The partition of the entire volume has been performed using a ‘cell-centred’
formulation [1]. In a 2D computational domain each volume is represented by a tri-
angle, while planar faces are represented by its sides. Applying Equation (6.116) to
the discretised computational domain leads to the following discretised equation

aM; m; —N -

|V,-|?=Zk:1 IS¢ F(U}) - ik (6.117)
where | ;| is the volume of the ith element, | Si| is the area of the kth planar surface that
surrounds the ith element, M; is the value of M at the centre of the ith element, U 'is
the value of U at the centre of the kth planar surface, and F (U,f) - 1, represents the
flu at centre of the kth planar surface. In order to calculate the flu for each volume
element, the scheme proposed in [5] has been employed so as assure the scheme
does not suffer from numerical diffusion. Applying the aforementioned scheme to
Equation (6.117) the following equations are obtained

Dln-‘rl _ Dln m o — I_IiYH-l/Z _ H]:l+l/2
IVZ-IA—tJer=l Ni, 5 =0 (6.118)
Bin+3/2 _ BinH/Z m — E;z+1 _ EZ+1
il N =2 N =0 (6.119)
where ﬁﬁik = n[kxl\_fx + nikyﬁy + n,-kZ]\_fz, with
_ 0 0 O B 0 0 —1 _ 0 1 0
Ne=(0 0 1], N=]|0 0 0|, ,=1—-1 0 0
0 -1 0 1 0 O 0 0 0

and with nn;;, = (n ikx Miky Nikz )T the outward normal unit vector of the kth planar face.
The discretisation of Equations (6.112) and (6.113), equations for the calculation of
the new values of the electric and magnetic fiel necessary for the update procedure
of D and B, leads to the following two relationships

=2 (6.120)
T goey '
B~n+1/2
7 B (6.121)

Moy
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The constitutive relationship (6.112), and its discretised version (6.120), is used here
to model the nonlinearity (instantaneous Kerr-type), through the permittivity of the
dielectric medium [16]

(_V |E|2)
A
e=g +As [ 1—e\ °F (6.122)

where ¢; is the linear relative permittivity of the nonlinear medium, Ae; is the maxi-
mum variation of the nonlinear permittivity, y is a nonlinear coefficien related to the
nonlinear parameter n, through the relationship y = cey €; n, in which c is the speed
of the light and ¢ is the free space permittivity, respectively, and E is the electric
field Substituting Equation(6.122) into Equation (6.120), the following relationship
can be derived

D"
E" = l (6.123)

l ( V|E§’\2)
Agy
eole+Ae |1 —e

Equation (6.123) is then solved through an iterative procedure.

The updating process starts with the calculation of the new values of the magnetic
flu density, B, components at all grid points of the computational domain using
Equation (6.119), after which the new values of the magnetic field H, components
can be computed using Equation (6.121). By means of the values obtained, the
electric flu density, D, components are updated using Equation (6.118). Subsequently,
new values of the electric-fiel component are calculated with reference to Equation
(6.123). This approach avoids the necessity of updating the values of the dielectric
material of the simulated device, arising due to the nonlinear effects caused by the
applied electromagnetic field because the nonlinear effects are directly applied in the
electric-fiel component, £, through the computation of Equation (6.123). It should be
noted that even though Equation (6.123) is solved using a Newton-iteration procedure,
the additional cost to the computational burden is negligible because in order to assure
the numerical stability of the scheme, the time step is bounded by the relationship
[1,5]

1. | Vil
df < —min| —=—— (6.124)
c i 1 Sk
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where V; is the volume of the ith element, S; is the surface in which the volume, V7,
is enclosed, c is the speed of light in the dielectric medium contained in the volume,
V:, and m; is the number of planar faces into which the surface, S, is divided. For all
simulations, the time-step size was small enough to guarantee the solution of Equation
(6.123) with only a few iterative steps.
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7

Numerical Analysis of Linear and
Nonlinear PhC-Based Devices

7.1 Introduction

In this chapter the finite- olume time-domain (FVTD) method combined with the
uniaxial perfectly matched layer (UPML) boundary conditions will be employed for
simulations of photonic bandgap (PBG)-based devices. The formulation of the method
relies on triangular elements that allow accurate representation of curved surfaces by
means of an unstructured mesh, and avoiding the staircase problem always present
for methods based on a Cartesian grid. Furthermore, the effectiveness of the UPML
absorbing boundary rigorously incorporated into the FVTD formulation will be clearly
demonstrated through examples. The aim of those results will be the assessment of
the method and the demonstration of its powerful capabilities in dealing with photonic
crystal devices. Moreover, in this chapter the FDTD and FVTD techniques have been
used for the analysis of nonlinear devices. A brief theoretical background to nonlinear
optical processes was introduced in the previous chapter, with a detailed analysis of
how this nonlinearity has been inserted in the FVTD and FDTD techniques. Numerical
examples will be presented in order to assess the accuracy of the two numerical
techniques.

7.2 FVTD Method Assessment: PhC Cavity

The firs structure analysed is a photonic crystal (PhC) cavity consisting of a 7 x 7
square lattice of dielectric rods with refractive index, #1045 = 3.4 in air (n = 1.0), with
lattice constant, a = 0.586 52 um, and rod radius, » = 0.2a, as shown in Figure 7.1(a).
From this figur it can be also clearly seen that the cavity defect consists of a missing
rod in the crystal pattern. Furthermore, this PhC cavity can sustain only TE resonant
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Figure 7.1 (a) Schematic diagram of a 7 x 7 PhC resonant cavity with (b) an example of the
discretised computational domain. (Reproduced with permission from Pinto, D. and Obayya,
S.S.A. (2008) 2D Analysis of multimode photonic crystal resonant cavities with the finit
volume time domain method. Opt. Quantum Electron., 40 (11-12), 875-890. Copyright 2008
Springer Science and Business Media.)

modes [1] where TE modes have the electric-fiel component parallel to the rods,
while the magnetic-fiel components are in the plane of Figure 7.1(a). This structure
has been considered in order to assess the accuracy of the FVTD method with mesh
size. Different simulations have been carried out with the same structure discretised
with different mesh sizes and for all these simulations the resonant wavelength, A,
and the quality factor, O, of the resonant cavity have been computed. In Figure 7.1(b),
an example of the discretised computational domain is shown.

It has to be mentioned that, in order to exclude any influenc derived from possible
reflection from the newly formulated UPML boundary conditions, whose absorption
properties will be analysed in detail in the next section, the computational domain has
been set large enough to ensure that any possible reflection are negligible. The source
used to excite the structure was a Gaussian pulse modulated in time by a sinusoidal
function with the shape of a 2D Gaussian bell, expressed as

Eoy.t)=e (5 e (7)o (5) sinrfin) 7.1)

where x; and X, are the position of the peak and the width
of the Gaussian bell in the x-direction, respectively, yo and Y, are the position
of the peak and the width of the Gaussian bell in the y-direction, respectively, #y and
Ty are the time delay and the time width of the Gaussian pulse, respectively, and f;
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Figure 7.2 Gaussian bell used to excite the 7 x 7 PhC cavity.

is the central frequency. The time-domain parameters of the Gaussian pulse were
fi ed to Ty = 30 fs and ¢y = 37 in order to excite the structure with a signal with an
appropriate bandwidth, while the central frequency was set to f; = 199.86 THz (A, =
1.5 um). For all simulations, x¢ and y, were set to the coordinates of the centre of the
PhC cavity, while X, and Y were fi ed to a/2 where a is the lattice constant. Figure
7.2 shows an example of the Gaussian bell used to excite the PhC cavity.

A detector was inserted at the centre of the PhC cavity in order to store the time-
domain evolution of the electric-fiel component from which the resonant wavelength,
Ares, and quality factor, O, were calculated using [2]

2
_ |®,|
|, * — | Dy 7|

0= (7.2)

where @, represents the main electromagnetic fiel component of the resonance at
time ¢, @, r represents the same component at time ¢ + 7 and T is the time cycle of
the resonant mode. The results of all simulations are summarised in Figure 7.3.

From this figur it can be clearly seen that the results reach a stable behaviour when
the mesh size is denser than 20 points per lattice constant.

In particular, for a mesh size of 35 points per lattice constant, the resonant wave-
length has been calculated to be A = 1.549 um, while the quality factor has been
computed to be Q = 1450. Figures 7.4 and 7.5 also show the envelope of the time-
domain variation of the electric fiel inside the PhC cavity and its energy-density
spectrum in the frequency domain, which has been obtained though FFT of the time-
domain variation. The relatively high Q obtained for this 7 x 7 PhC cavity can be
clearly seen from the slow decay of the time-domain variation of the electric field
shown in Figure 7.4 and from the strong confinemen of the electric fiel inside the
cavity itself, shown in Figure 7.6.

Furthermore, these results are in strong agreement with their counterparts already
published in the literature in which other computational methods have been used [3].
Based on the results obtained from this analysis, all the simulations have been carried
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Figure 7.3 Variation of the resonant wavelength, A5, and quality factor, O, with the mesh
density of the discretised computational domain. (Reproduced with permission from Pinto,
D. and Obayya, S.S.A. (2008) 2D Analysis of multimode photonic crystal resonant cavities
with the finit volume time domain method. Opt. Quantum Electron., 40 (11-12), 875-890.
Copyright 2008 Springer Science and Business Media.)
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Figure 7.4 Time-domain variation of the electric fiel inside the 7 x 7 PhC resonant cavity.
(Reproduced with permission from Pinto, D. and Obayya, S.S.A. (2008) 2D Analysis of
multimode photonic crystal resonant cavities with the finit volume time domain method. Opt.
Quantum Electron., 40 (11-12), 875-890. Copyright 2008 Springer Science and Business
Media.)
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Figure 7.5 Energy-density spectrum of the time electric fiel inside the 7 x 7 PhC resonant
cavity. (Reproduced with permission from Pinto, D. and Obayya, S.S.A. (2008) 2D Analysis
of multimode photonic crystal resonant cavities with the finit volume time domain method.
Opt. Quantum Electron., 40 (11-12), 875-890. Copyright 2008 Springer Science and Business
Media.)

3-
o[
i o o
NN O
i o o
£ of o) o)
. o o
e o
of o o
_3:1 | | P 1 1
-3 2 -1 0 1 2 3

Figure 7.6 Electric-fiel distribution of the resonant mode of the 7 x 7 PhC resonant cavity.
(Reproduced with permission from Pinto, D. and Obayya, S.S.A. (2008) 2D Analysis of
multimode photonic crystal resonant cavities with the finit volume time domain method. Opt.
Quantum Electron., 40 (11-12), 875-890. Copyright 2008 Springer Science and Business
Media.)
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out with computational domains discretised using a mesh density of 20 points per
lattice constant.

7.2.1 UPML Effectiveness

In further work, a thorough investigation on the effects of the UPML parameters on
the resonant wavelength, A..s, and quality factor, O, has been carried out. As a firs
analysis, the distance between the PhC resonant cavity and the UPML layer has been
varied from a minimum of 0.1 um to a maximum of 2.0 um. For the conductivity in the
UPML layers a geometrical grading has been chosen and the maximum value of the
conductivity o m.x of the UPML absorber has been calculated using the relationship

_{ €o<o p+1 1
o= (i) (57 (=(5) &

where &y and ¢ are the free space permittivity and the light velocity in free space,
respectively, wypm 18 the width of the UPML layer, p is the order of geometrical grading
and 'y, is the theoretical reflectio coefficien of the UPML absorber. The parameters
of the UPML have been fi ed to constant values: wypm = 0.75 um, p =3 and I'y, =
107>, The parameters of the source, expressed by Equation (7.1), have been fi ed to
the values used for the previous example and have been used for all the simulations
carried out in this investigation. For all simulations, the resonant wavelength, A5, and
quality factor, O, have been calculated and the results are depicted in Figure 7.7.

As can be clearly seen from this figure for distances higher than 0.5 um, the
influenc of the UPML absorber on the resonant wavelength, A, and the quality
factor, O, is negligible, as the cavity parameters assume almost a constant value.

Next, the effect of the UPML thickness on the cavity parameters has been
investigated. In Figure 7.8, the conductivity of the UPML layer for different UPML
thicknesses is depicted and, as can be clearly seen from this figure the thicker the
UPML layer the smoother the grading of the conductivity, o. A different simulation
had been run for each thickness of the UPML layer and for all of them the cavity
parameters have been computed. All the other parameters of the UPML have been
fi ed to constant values throughout all simulations: the distance between the UPML
and the structure, d = 0.5 um, p = 3 and I'y, = 107> The results of this procedure
are shown in Figure 7.9.

As can be observed from this figure the convergence of the cavity parameters to
the values obtained in the previous example is obtained for UPML layers thicker than
0.75 um. An explanation of this behaviour can be given considering the shape of
the grading of the conductivity, o, in the UPML layer. For a thickness of 0.5 um the
conductivity, o, assumes a faster transition from zero to the maximum value calculated
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between the UPML absorber and the PhC cavity. (Reproduced with permission from Pinto,
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Variation of the conductivity of the UPML absorber for different thicknesses
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time domain method. Opt. Quantum Electron., 40 (11-12), 875-890. Copyright 2008 Springer
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Figure 7.9 Variation of the resonant wavelength, A5, and quality factor, O, with the UPML
thickness. (Reproduced with permission from Pinto, D. and Obayya, S.S.A. (2008) 2D Analysis
of multimode photonic crystal resonant cavities with the finit volume time domain method.
Opt. Quantum Electron., 40 (11-12), 875-890. Copyright 2008 Springer Science and Business
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by Equation (7.3) which, as the last result, gives a higher discretisation error for the
UPML layer in the computational domain for a fi ed discretisation step.

The effects of the theoretical reflectio coefficien 'y, on the cavity parameters
have been analysed below.

The theoretical reflectio coefficien has been varied from a maximum value of
1073 to a minimum value of 10~!°, while all the other parameters of the UPML
have been set to constant values: d = 0.5 um, p = 3 and wypy = 0.75 pum. Figure
7.10 shows the conductivity of the UPML layer for different values of the theoretical
reflectio coefficient

For all simulations the resonant wavelength, A, and quality factor, O, have been
calculated and the result of this procedure is shown in Figure 7.11.

From this figur it can be clearly seen that a value of the theoretical reflectio
coefficient 'y, lower than 10~> can assure a good level of absorption of the radiated
electromagnetic waves and, as a direct consequence, a good level of accuracy of the
results. An explanation of this behaviour can be given by direct inspection of Figure
7.10. From this figur it can be seen that for the theoretical reflectio coefficient
I'yy = 1073, the maximum value of the conductivity, o, is lower with respect to
the other curves; this implies a lower absorption rate of the electromagnetic waves
propagating inside the UPML layer which are not completely absorbed before reaching
the end of the UPML layer and are reflecte back to the computational domain.
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Figure 7.12 Variation of the conductivity of the UPML absorber for different order, p, of
the polynomial grading. (Reproduced with permission from Pinto, D. and Obayya, S.S.A.
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As a last example, the effects of the polynomial order, p, of the grading of the
UPML layer on the cavity parameters have been investigated. Different values of
the polynomial order, p, have been tested for the UPML layer while all the other
parameters have been maintained at constant values: d = 0.5 um, = 10> and Wupml =
0.75 pwm. Figure 7.12 shows the conductivity of the UPML layer for different values
of the polynomial order.

For all simulations the quality factor, O, and the resonant wavelength, A5, have
been calculated and the results are shown in Figure 7.13.

From this figur it can be clearly seen that for a polynomial order, p, higher than
2 the cavity parameters converge to constant values. From the simulations carried
out for the investigation of the effects of the UPML parameters on the PhC cavity
characteristics, optimum settings for best performance of the UPML layers have been
extracted and have been used for all simulations. The optimum values for the UPML
layers have been set to d = 0.5 um, wypym = 0.75 um, I'y, = 10~ and p = 3.

7.3 FVTD Method Assessment: PhC Waveguide

As a last test for assessing the effectiveness of the absorption of the UPML bound-
ary conditions (BC), a PBG waveguide has been investigated. The PBG waveguide
consists of dielectric rods arranged by a square lattice with periodicity, @ = 0.58 um,
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refractive index, n,04s = 3.4 in air (n = 1.0) and radius, » = 0.18a, which possesses
a photonic bandgap for TE polarisation that extends from 0.302 to 0.443 in terms of
normalised frequency (a/A) [4]. A schematic of this structure is shown in Figure 7.14.

The computational domain has been divided in 150 888 volumes and the time step
taken as d = 0.0154 fs; the UPML thickness has been fi ed to 1.5 um and it has been
divided into an approximate number of 30 volumes. The order of the profil function,
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Figure 7.14 Schematic diagram of the PBG waveguide.
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Figure 7.15 Electric-fiel profil of the TE mode inside the PBG waveguide (a) launched
into waveguide at ¢ = 20 fs, (b) propagating inside the PBG waveguide at ¢t = 80 fs, (¢)
impinging on the UPML ABC at ¢t = 140 fs and (d) at # = 200 fs absorbed by UPML ABC.
(Reproduced with permission from Pinto, D. and Obayya, S.S.A. (2008) Accurate perfectly
matched layer finite- olume time-domain method for photonic bandgap devices. I[EEE Photon.
Technol. Lett., 20 (5), 339-365. (C) 2008 IEEE.)

p, has been set to 3, while the theoretical reflectio coefficient 'y, has been fi ed to
1075

A Gaussian-shaped pulse in space with normalised frequency from = 0.387 (A =
1.5 um), modulated by a Gaussian pulse in time, has been launched into a PBG
waveguide. The propagation of the TE mode inside the PBG waveguide at different
times is shown in Figure 7.15. As may be clearly observed from these figures the
mode is nicely propagating inside the PBG waveguide, and as it approaches the UPML
region, it is clearly absorbed. The reflectio coefficien due to the UPML has been
calculated for this structure and it is shown in Figure 7.16. As can be clearly seen
from this figure the reflectio from the UPML is as low as —50 dB over the entire
range of frequencies of the source, proving the excellent absorbing properties of the
UPML boundary conditions.

7.4 FVTD Method Assessment: PBG T-Branch

Below, a PBG T-branch, whose schematic is shown in Figure 7.17, has beenis
analysed with the PBG material having same the characteristics as the PBG waveguide
considered in the previous example [4].

The source used was a Gaussian-shaped source in space and in time, as expressed
in Equation (7.1). The centre normalised frequency was set to fhom = 0.387 (A =
1.5 um) and the parameters of the Gaussian pulse in time were set in order to excite
the structure with a wideband signal. This structure has been discretised using 109
608 volumes and the time step was about df = 0.0122 fs. The entire simulation took
almost 2 hours to run on a desktop PC (Pentium IV, 3 GHz with 1 GB of RAM). As
can be clearly seen from Figure 7.18, the results obtained with the developed FVTD
are in very good agreement with those published in [4].
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of the propagating pulse inside the PBG waveguide. (Reproduced with permission from Pinto,
D. and Obayya, S.S.A. (2008) Accurate perfectly matched layer finite- olume time-domain
method for photonic bandgap devices. IEEE Photon. Technol. Lett., 20 (5), 339-365. (C) 2008
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7.5 PhC Multimode Resonant Cavity

In further work, a different PhC resonant cavity has been considered. The structure
consists of a dielectric slab with refractive index, n, = (11.4)"2, in which air holes
(n = 1.0) of radius, » = 0.45a have been drilled with a triangular pattern with lattice
constant, a = 0.650 225 um, as shown in Figure 7.19. From this figur it can be clearly
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Figure 7.17 Schematic diagram of a PBG T-junction.
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Figure 7.18 Spectra of the normalised reflecte and transmitted power in the PBG T-brunch
shown in the inset. (Reproduced with permission from Pinto, D. and Obayya, S.S.A. (2008)
Accurate perfectly matched layer finite- olume time-domain method for photonic bandgap
devices. IEEE Photon. Technol. Lett., 20 (5), 339-365. (C) 2008 IEEE.)

observed that the cavity defect is represented by a missing air hole at the centre of the
PhC. For all simulations, the structure has been discretised using an unstructured mesh
with a density of points sufficien to place a minimum of 10 points along the diameters
of the dielectric rods, while the UPML layers were set using the optimum values of
the parameters obtained from the performance analysis of the previous section. The
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Figure 7.19 Schematic diagram of a three-ring hexagonal PhC resonant cavity. (Reproduced
with permission from Pinto, D. and Obayya, S.S.A. (2008) 2D Analysis of multimode photonic
crystal resonant cavities with the finit volume time domain method. Opt. Quantum Electron.,
40 (11-12), 875-890. Copyright 2008 Springer Science and Business Media.)
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Figure 7.20 Magnetic-fiel distribution of the ‘monopole’ resonant mode inside the three-
ring hexagonal PhC resonant cavity. In the inset, the profil of the source used to excite the
resonant mode.

main characteristic of this PhC resonant cavity is that it can sustain different TM
resonant modes [3]. In order to extract all the parameters of each resonant mode, it is
necessary to isolate each single mode in order to avoid beating amongst the different
modes, which, as an ultimate result, makes it impossible to obtain useful data to use
for post-processing analysis. To accomplish this, a strategically chosen source profil
has been used in order to excite each single resonant mode. The firs resonant mode
analysed was the ‘monopole’ resonant mode.

To excite this mode, the magnetic fiel H, has been excited with a source, expressed
by Equation (7.1), shaped like a Gaussian bell positioned at the centre of the cavity
(xo = yo = 0) with the width along the x- and y-axes fxed to Xp = a/3 and ¥, =
a/3, respectively, as shown in the inset of Figure 7.20. This source profil has been
multiplied by a Gaussian pulse in time modulated by a sinusoidal carrier with fre-
quency set to f; = 193.41 THz (A,= 1.55 um). The parameters of the Gaussian pulse,
T and ¢y, were set to 30 fs and 90 fs, respectively, in order to excite the PhC resonant
cavity with a wide range of frequencies. A detector has been inserted at the centre of
the cavity to store the time-domain evolution of the magnetic field H.. Exciting the
PhC cavity with this particular source assures the resonance of only one mode inside
the cavity itself. This assumption is confirme by Figure 7.20, in which the magnetic
fiel profile H,, obtained from the simulation is shown.

As can be clearly seen from this figure the resonant fiel profil presents a single
peak at the centre of the PhC cavity from which the name ‘monopole’ derives. In
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Figure 7.21 Magnetic fiel distribution of the ‘quadrupole’ resonant mode inside the three-
ring hexagonal PhC resonant cavity. In the inset, profil of the source used to excite the
resonant mode.

this way, from the time-domain data stored by the detector it has been possible to
extract all the necessary parameters of the resonant mode. For the ‘monopole’ mode
the resonant wavelength has been calculated to be A5 = 1.545 um, while the quality
factor has been computed to be Q = 779.

A similar procedure has been followed for the extraction of the parameters of the
‘quadrupole’ resonant mode. For this mode, the source consists of four Gaussian bells,
with alternate signs for the peak values, placed at specifi points inside the PhC cavity,
as shown in the inset of Figure 7.21. The parameters of the Gaussian bells were fi ed
to xo! = —a/3, y,' =0, Xy! = a/5 and Y,’ = a/5 for the firs Gaussian bell, x)> = 0,
o’ = al2, Xy’ = al5 and Y,* = a/5 for the second Gaussian bell, x)°> = a/3, y)> =0,
Xy® = a/5 and Y,® = a/5 for the third Gaussian bell and x* = 0, yy* = —a/2, X)? =
a/5 and Y,? = a/5 for the fourth Gaussian bell.

The parameters of the Gaussian pulse in time and the carrier frequency were set
to the same values of the previous example. In Figure 7.21 the magnetic fiel profil
inside the computational domain is shown. From this figure it can be clearly seen
that the ‘quadrupole’ mode is the only resonant mode that has been excited. From the
time-domain variation of the magnetic fiel it has been possible to extract the resonant
wavelength and the quality factor of the selected mode, which have been calculated
to be Ares = 1.639 um and Q = 1660, respectively.

The last mode to be selected from the PhC resonant cavity is the ‘hexapole’ resonant
mode. The source used for this example is a superposition of six Gaussian bells, with
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Figure 7.22 Magnetic-fiel distribution of the ‘hexapole’ resonant mode inside the three-ring
hexagonal PhC resonant cavity. In the inset, profil of the source used to excite the resonant
mode.

alternate signs for the peak values, placed at strategic points inside the PhC cavity, as
shown in the inset of Figure 7.22. The parameters of the Gaussian bells were chosen
to be xo! = —a/3, y! = a/4, Xy! = a/7 and Y,! = a/7 for the firs Gaussian bell,
xo’° =0, v’ = al2, Xy> = a/7 and Y,° = a/7 for the second Gaussian bell, x,° = a/3,
o’ = al4, Xy = a/7 and Y,? = a/7 for the third Gaussian bell, x,? = a/3, y,? = —a/4,
Xy* = a/7 and Y,? = a/7 for the fourth Gaussian bell, x)° = 0, y)° = —a/2, X, =
a/7 and Y,’ = a/7 for the fift Gaussian bell and x,° = —a/3, y,° = —a/4, Xy® = a/7
and Y® = a/7 for the sixth Gaussian bell. The time-domain parameters of the source
were fi ed to the same values used for the two previous examples. Figure 7.22 shows
the magnetic fiel profil inside the PhC cavity.

From this figure the profil of the ‘hexapole’ resonant mode can be observed,
which confirm that the source used for this simulation has excited only the “hexapole’
mode. Furthermore, from the time-domain evolution of the magnetic fiel the resonant
wavelength and the quality factor have been computed to be Ars = 1.422 um and
0O = 3223, respectively.

7.6 FDTD Analysis of Nonlinear Devices

Before proceeding with the analysis of a nonlinear periodic structure, a nonlinear slab
waveguide, shown in Figure 7.23, will firs be considered [5].
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Figure 7.23 Schematic diagram of a nonlinear slab waveguide [5].
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This waveguide comprises a linear dielectric material core with refractive index,
ny = 1.5, followed by a nonlinear dielectric material with a nonlinear part of the
nonlinear refractive index, @ = 100 m?/V2, which is a typical value for a nonlinear
coefficien adopted in the literature [5], and width set to w = 1.5 um. It should
mentioned that for this example the nonlinearity has been modelled using

2
& =¢gp& = 801’12 = &9 (no + |E|2) (7.4)

where g is the permittivity of the space, ny is the linear part of the nonlinear refractive
index of the nonlinear dielectric medium, « is the nonlinear coefficien of the nonlinear
refractive index of the dielectric medium, and in this relationship it has units of m?/V?2,
and where E is the electric field The structure is surrounded by air (n = 1.0). The
structure was excited, as shown below, using a CW source with the shape of the
fundamental TE( mode profil

(v, 1) = Po () sin (27 fot) (7.5)

where @ represents the main electromagnetic-fiel component, in this case the electric-
fiel component E., fo = 0.6 x 10'> Hz is the modulation frequency and ®¢(y) is the
fundamental TE(, mode profile The power of the TEy mode launched in the structure
was normalised to 1 W/m. Because of the relatively low value of the nonlinear
coefficien of the nonlinear media and the low value of the power of the source
employed for this example, a weak nonlinear effect is expected to influenc the
electromagnetic fiel of the fundamental mode propagating inside the nonlinear slab
waveguide. Figure 7.24 shows the electric fiel component, £, inside the nonlinear
slab waveguide obtained with the method developed here and with an FDTD code
that solves the wave equation. As clearly observed, the FDTD approach developed
here gives an electric-fiel distribution that is more accurate than the one obtained
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Figure 7.24 Electric-fiel component, £, in a nonlinear slab waveguide at 7' = 50 fs calcu-
lated with FDTD for wave equations and FDTD for all TE electromagnetic-fiel components.
(Reproduced with permission from Pinto, D., Obayya, S.S.A., Rahman, B.M.A. and Grat-
tan, K.T.V. (2006) FDTD analysis of nonlinear bragg grating based devices. Opt. Quantum
Electron., 38 (15), 1217-1235. Copyright 2006 Springer Science and Business Media.)

by solving the wave equation through an explicit FDTD procedure. The accuracy of
the developed method can be observed in the absence of spurious oscillations of the
electric fiel amplitude of the E, component. As may be observed from the same
figure these spurious oscillations lead to amplitude fluctuation of the £, component
,which is evident in the electric-fiel distribution obtained through explicit FDTD
updating of the wave equation. On the other hand, the results of the FDTD approach
developed here compare well with those obtained using a hybrid implicit—explicit
FDTD scheme [5].

In order to emphasise the self-phase-modulation (SPM) effect, the structure shown
in Figure 7.23 was excited with the fundamental TEy, mode profil modulated by a
Gaussian pulse in time, as shown below

2t—1, 2
&, (v.1) = @y () sin @ fory e 77) 7.6)
where @ represents the main electromagnetic-fiel component, in this case the electric-
fiel component, E., fo = 0.6 x 10'> Hz is the modulation frequency, Ty = 5.0 fs
is the width in time (which also determines the bandwidth of the signal) and 7y =
3Ty is the time delay of the above-mentioned pulse. The time-domain variation of
the propagating electric fiel was monitored at different points inside the waveguide.
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Figure 7.25 Spectral distribution of the electric fiel observed at three different points in
the nonlinear slab waveguide. (Reproduced with permission from Pinto, D., Obayya, S.S.A.,
Rahman, B.M.A. and Grattan, K.T.V. (2006) FDTD analysis of nonlinear bragg grating based
devices. Opt. Quantum Electron., 38 (15), 1217-1235. Copyright 2006 Springer Science and
Business Media.)

Following the use of a fast Fourier transform (FFT) of these data, spectra of the
time-domain responses were obtained and are shown in Figure 7.25.

As can be seen from this figure spectral broadening, arising due to the SPM effect,
is evident. It can also be noted that this spectral broadening becomes larger and the
spectral peak is shifted towards lower frequencies as the pulse propagates further
inside the nonlinear waveguide. Figure 7.26 shows the electric-fiel profil at¢= 50
fs at the centre of the waveguide, inside the nonlinear part, during its propagation. In
this figure the effect of the SPM can most noticeably be seen in the compression of
the pulse at the back and the rarefaction at the front.

An analysis of nonlinear periodic media will next be performed. The nonlinear
periodic structure considered firs is a Bragg reflecto (BR), consisting of alternating
layers of linear and nonlinear media with a periodicity equal to A and number of
periods equal to N, as shown in Figure 7.27. The waveguide width is w = 1.6 pm,
the refractive index of the waveguide and the BR linear medium is n,, = 2.0, the
linear part of the nonlinear refractive index of the BR is ny = 2.03 and the nonlinear
parameter, «, is variable. Also for this example the nonlinearity has been modelled
using Equation (7.4).

The structure is surrounded by air (r = 1.0). It is well known from previous work
[6] that in the BR region, composed of linear dielectric media, waves travelling in
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Figure 7.26 Electric-fiel profil at + = 50 fs inside the nonlinear part of the waveguide.
(Reproduced with permission from Pinto, D., Obayya, S.S.A., Rahman, B.M.A. and Grat-
tan, K.T.V. (2006) FDTD analysis of nonlinear bragg grating based devices. Opt. Quantum
Electron., 38 (15), 1217-1235. Copyright 2006 Springer Science and Business Media.)

opposite directions with propagation constants, + 8, at an angular frequency, w, are
coupled. In this case the Bragg condition is expressed by

21
2B =K = ~ (7.7)

where K is the grating wavenumber. The wavelength that satisfie Equation (7.7) is
given by

A = 2nerA (7.8)

Figure 7.27 Schematic diagram of a nonlinear Bragg reflecto (BR).



196 Computational Photonics

where n¢r is the modal index of the planar waveguide. The small reflection caused by
each discontinuity in the layered media of the BR add constructively in the backward
direction. At wavelength, A, the coupling between the opposite travelling waves inside
the BR is maximised, and, as a result, the transmission is minimised. In this example,
A is fi ed at 0.99 um, and for the waveguide considered here n.g = 1.9806. With
these data, using Equation (7.8) the periodicity of the BR is A = 0.25 um. The linear
case (@ = 0 m?/V?) was firs considered for three different numbers of periods of
the BR, N =10, N = 20 and N = 30. The fundamental TE; mode profile modulated
by a Gaussian pulse in time whose expression is given by Equation (7.6), was used
to excite the structure and the frequency fy was set to 300 THz (A = 0.99 um).
The parameters of the Gaussian pulse were set to the values used for the previous
example. The time-domain responses of the incident and reflecte electric field were
monitored for each of the three cases given for the number of periods of the BR. The
FFT of both the incident and the reflecte time-domain responses was performed in
the calculation of the reflectio coefficient Figure 7.28 shows the reflectio coefficien
spectra calculated for the three different cases mentioned above. In the same figur

0.6
FDTDN=10
05 = = = =FDTDN=20
FDTDN=30
i L] AnalyticalN =10
04k /\ * AnalyticalN = 20
? L Analytical N = 30

)
[

Reflection coefficient

Wavelength [jum]

Figure 7.28 Variation of the reflectio coefficien of a linear BR with wavelength for three
different values of number of periods, N. (Reproduced with permission from Pinto, D., Obayya,
S.S.A., Rahman, B.M.A. and Grattan, K.T.V. (2006) FDTD analysis of nonlinear bragg grating
based devices. Opt. Quantum Electron., 38 (15), 1217-1235. Copyright 2006 Springer Science
and Business Media.)
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analytical data points have been added in order to verify the accuracy of the FDTD
approach developed here for the linear case. Very good agreement can be noted
between the data points obtained from the FDTD simulations and the analytical data.
As can be seen from this figure the reflectio coefficien and the selectivity of the
BR both increase with the number of periods. This can be explained by noting that by
increasing the number of periods, the coupling between the forward and the backward
travelling waves inside the BR becomes stronger.

Next, nonlinear media were added to the previous BR structure with the nonlinear
part of the nonlinear refractive index given by & = 500 m?/V2. The fundamental TE,
mode profil modulated by a Gaussian pulse with the same values of the parameters
used for the linear structure was used as an excitation source, and its power was set
to 5 W/m.

Simulations were carried out for three different values of the number of periods of
the BR structure, N = 10, N = 20 and N = 30. The time-domain responses of the
incident and the reflecte electric fiel were monitored and the reflectio coefficient
for the three different structures were computed using the same procedure utilised
for the linear BR. Figure 7.29 shows the reflectio coefficien spectra calculated for

1.2
i N N=10
1 ;‘k ———_~=20
F N=30

o
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Figure 7.29 Variation of the reflectio coefficien of a nonlinear BR with the wavelength
for three different values of number of periods, N. (Reproduced with permission from Pinto,
D., Obayya, S.S.A., Rahman, B.M.A. and Grattan,K.T.V. (2006) FDTD analysis of nonlinear
bragg grating based devices. Opt. Quantum Electron., 38 (15), 1217-1235. Copyright 2006
Springer Science and Business Media.)
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Figure 7.30 Sinusoidal steady-state amplitude of a nonlinear BR with N = 20 excited with
a continuous wave of frequency f/ = 300 THz and power P = 5 W/m. (Reproduced with
permission from Pinto, D., Obayya, S.S.A., Rahman, B.M.A. and Grattan, K.T.V. (2006)

FDTD analysis of nonlinear bragg grating based devices. Opt. Quantum Electron., 38 (15),
1217-1235. Copyright 2006 Springer Science and Business Media.)

these structures. As can be noticed from this figure the reflectio coefficien and
the selectivity of the BR increase as the number of periods increases. Furthermore,
a shift in the peak wavelength of the reflectio coefficien towards higher values
may also be noted as the number of periods, N, increases. It can be also observed
that the reflectio coefficient obtained with the nonlinear BR are higher than their
counterparts obtained with a linear BR. Figures 7.30 and 7.31 show the contour plots
of the sinusoidal steady-state amplitude of the electric fiel at the interface between
the waveguide and the nonlinear BR.

The sinusoidal steady-state amplitude has been obtained through a numerical inte-
gration of the time-domain signal over one period, as shown in the work of De Pourcq
and Eng [7]. The characteristic of a sinusoidal source when its steady-state condition
is reached can be expressed as

f(t)=a+ Acos(wt + ¢) (7.9)

where a represents the DC component, and 4, w, and ¢ represent the maxi-
mum amplitude, the angular frequency and the initial phase of the sinusoidal
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Figure 7.31 Sinusoidal steady-state amplitude of a nonlinear BR with N = 20 excited with
a continuous wave of frequency f = 254 THz and power P = 5 W/m. (Reproduced with
permission from Pinto, D., Obayya, S.S.A., Rahman, B.M.A. and Grattan, K.T.V. (2006)
FDTD analysis of nonlinear bragg grating based devices. Opt. Quantum Electron., 38 (15),
1217-1235. Copyright 2006 Springer Science and Business Media.)

steady-state signal, respectively. These values can be calculated from following
relationships

| t0+T
- f f()dt =a (7.10)
e A

7 / f(t)cos(wt)dt=500s¢ (7.11)
e A

- / S @O)sin(@)dr = == sing (7.12)

to



200 Computational Photonics

where T represents the period of the sinusoidal function, and ¢y represent an initial time
for the integration. To obtain the steady state, the total field-scattere fiel approach for
the excitation source was implemented [8]. The number of periods of BR considered
in this example was N = 20, the power of the source was set to 5 W/m, and the
frequency of the sinusoidal signal was fi ed at /' = 300 THz, a value at which the
reflectio coefficien of the BR has its maximum (= 0.84). The source section was
placed at 7 um, while the BR interface was placed at 9 um. From Figure 7.30, the high
reflect vity of the nonlinear BR can be clearly observed on the formation of a strong
standing-wave pattern whose peaks are evident in the region where the incident and
reflecte waves are contrarily propagating.

Figure 7.31 shows a contour plot of the sinusoidal steady-state amplitude of the
electric fiel obtained using sinusoidal signal frequency fi ed at f = 254 THz, at
which the reflectio coefficien of the nonlinear BR has a low value (= 0.12). The
standing wave is still present, but its peaks are less pronounced than was evident from
the previous case. Next, the reflectio coefficien for a nonlinear BR was calculated for
different numbers of periods N, and for different levels of power of the incident pulse.

For all the simulations carried out, the TEy fundamental mode profil was used,
as expressed by Equation (7.6). The parameters of the Gaussian pulse used to
modulate the signal source in time were set to 79 = 5 fs and 79 = 37, and the
centre wavelength was fi ed at Ay = 0.99 pum. Time-domain responses of the incident
and reflecte fiel were monitored for all time steps, and the FFT approach was ap-
plied to time-domain data. The reflectio coefficien was calculated as the peak value
of the division performed between the FFT of the reflecte and incident fields All
results are summarised in Figure 7.32. From this figure it may be seen that fora fi ed
value of the number of periods, N, the reflectio coefficien value increases with the
power of the incident source. Furthermore, the reflectio coefficien seems to reach a
saturation value once the power of the incident source becomes higher than 10 W/m.
Moreover, for a fi ed level of power it can be noted that the reflectio coefficien
increases as the number of periods, &V, increases. Figure 7.33 shows the variation of
the wavelength of the peak of the spectrum of the reflectio coefficien with the power
of the incident signal for three different numbers of periods, N, of the Bragg grating.

As can be seen from this figure the shift towards lower frequency is greater as
the nonlinear effect become stronger. An explanation for the values of the reflectio
coefficien being greater than unity can be founded in the SPM effect in nonlinear
media. The spectral broadening, as can be seen from Figure 7.25, and the shift of
the reflectio coefficien peak towards lower frequencies, as can be noted in Figure
7.33, induces a band of frequencies for the reflecte signal to gain in magnitude with
respect to the same band of frequencies for the incident signal.

In further work, stacks of Bragg resonators have been investigated, and Figure 7.34
shows a schematic of the analysed structure. The resonator is composed of two BRs
separated by a phase-shift area made up of nonlinear material.
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Figure 7.32 Reflection-coe ficien variation with the power of the incident fundamental
TE(y mode for three different numbers of periods, N, of a nonlinear BR. (Reproduced with
permission from Pinto, D., Obayya, S.S.A., Rahman, B.M.A. and Grattan, K.T.V. (2006)
FDTD analysis of nonlinear bragg grating based devices. Opt. Quantum Electron., 38 (15),
1217-1235. Copyright 2006 Springer Science and Business Media.)

The refractive index of the linear media is n,, = 2.0, the linear part of the nonlinear
refractive index is 7y = 2.03, while the nonlinear coefficien is « = 500 m?/V?; the
number of periods of the two BRs is firs set to Ny = N, = 20, the periodicity of
the BRs is A = 0.25 um, and the width of the phase shift area is / = A/2. The structure
is surrounded by air (n = 1.0). The TE, fundamental mode profil was used, while
the parameters of the Gaussian pulse used to modulate the signal source in time and
the centre wavelength were set to the values used for the analysis of the BR structure.
Two different simulations were carried out using two different levels of power of the
input signal, and in order to obtain the reflectio coefficien for this structure the same
procedure utilised for the BR was used.

Figure 7.35 shows the variation of the reflectio coefficien with respect to the
wavelength. The data obtained are in good agreement with their counterparts reported
in the literature [5] using a hybrid implicit-explicit FDTD scheme, which requires the
solution of a system of equations at each time step. In contrast, the FDTD approach
presented employs an efficien and explicit way of updating the fiel quantities. Figure
7.36 shows the variation of the reflectio coefficien with the wavelength for different
values of the number of periods V| and N, of the two BRs excited with the fundamental
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Figure 7.33 Wavelength variation of the reflectio coefficien peak with the power of the
incident fundamental TE(, mode for three different numbers of periods, N, of a nonlinear
BR. (Reproduced with permission from Pinto, D., Obayya, S.S.A., Rahman, B.M.A. and
Grattan, K.T.V. (2006) FDTD analysis of nonlinear bragg grating based devices. Opt. Quantum
Electron., 38 (15), 1217-1235. Copyright 2006 Springer Science and Business Media.)

TE( mode with the power level set to 5 W/m. As can be seen from this figure the
reflect vity increases strongly with the addition of more periods to the BR structure. It
can also be noted that a shift of the entire spectra towards higher wavelengths occurs
as the number of periods increases, a result that can be related to a more intense SPM
effect in the nonlinear material.

Figure 7.34 Schematic diagram of stacks of Bragg reflectors



Numerical Analysis of Linear and Nonlinear PhC-Based Devices 203

12 P=1Wim
N |- - - -P=s5wm
¥ o P=1Wim[102]
B b * P=5Wim[102]
" }*-.
08 ! [

0.6

04

Reflection coefficient

1
Wavelength [um]

05 T4

Figure 7.35 Variation of the reflectio coefficien with the wavelength of stacks of BRs
for two different values of power of the incident fundamental TEy, mode. (Reproduced with
permission from Pinto, D., Obayya, S.S.A., Rahman, B.M.A. and Grattan, K.T.V. (2006)
FDTD analysis of nonlinear bragg grating based devices. Opt. Quantum Electron., 38 (15),
1217-1235. Copyright 2006 Springer Science and Business Media.)

7.7 FVTD Analysis of Nonlinear Photonic Crystal Wires

The structure analysed will be a photonic crystal wire (PhW) (whose width has been
fi ed to w = 0.38 um in order to ensure single mode operation) consisting of a
dielectric waveguide with refractive index, n, = 3.48, surrounded by air (n; = 1.0). A
row of eight air holes has been added to the waveguide to form the photonic crystal.
The lattice constant is ¢ = 0.3162 um and the hole radius is » = 0.23a, while the
distance between the two central holes is varied in order to form a cavity whose size
is ¢ = a, as shown in Figure 7.37.

Firstly, the structure was analysed in a linear regime. The source used to excite the
structure was a Gaussian pulse modulated in time by a sinusoidal function with the
shape of the fundamental mode profil of the waveguide, as expressed in Equation
(7.6), where @ represents the main electromagnetic-fiel component, which in this
example is the magnetic-fiel component, H,. The time-domain parameters of the
Gaussian pulse were fi ed to Ty = 30 fs and 7y = 37 in order to excite the structure
with a signal of an appropriate bandwidth, while the central frequency was set to f =
193 THz (A = 1.55 um). Different detectors were strategically inserted into the
structure: a detector was inserted at the input section of the structure in order to record
the time-domain variation of the incident field another was inserted at the output
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Figure 7.36 Variation of the reflectio coefficien with the wavelength of stacks of BRs for
four different values of the numbers of periods, N and N,. (Reproduced with permission from
Pinto, D., Obayya, S.S.A., Rahman, B.M.A. and Grattan, K.T.V. (2006) FDTD analysis of
nonlinear bragg grating based devices. Opt. Quantum Electron.,38 (15),1217-1235. Copyright
2006 Springer Science and Business Media.)

section in order to record the time domain variation of the transmitted field the last
detector was inserted at the centre of the cavity in order to store the time-domain
variation of the resonant field Figure 7.38 shows the time-domain variation of the
magnetic field H,, inside the cavity of the structure.

From this figur the resonance of the electromagnetic fiel can be clearly seen,
shown by the slow decrease of the magnetic fiel after reaching its maximum peak.

r o a
|/ N
(&

n

Figure 7.37 Schematic diagram of a linear PhW cavity. (Reproduced with permission from
Pinto, D. and Obayya, S.S.A. (2008) Nonlinear finit volume time domain analysis of photonic
crystal based resonant cavities. IET Optoelectron., 2 (6), 254-261. (C) 2008 IET.)
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Figure 7.38 Time-domain variation of the magnetic fiel inside the linear PhW cavity. (Re-
produced with permission from Pinto, D. and Obayya, S.S.A. (2008) Nonlinear finit volume
time domain analysis of photonic crystal based resonant cavities. I[ET Optoelectron., 2 (6),
254-261. (C) 2008 IET.)

Using FFT, it was possible to calculate the resonance frequency of the cavity. The
result of this operation is shown in Figure 7.39. The results observed from Figure
7.38 are confirme by this figur in which a clear sharp peak can be identifie
at wavelength A = 1.515 um. For the analysed structure the time cycle was 7' =
5.05 fs and, with the use of Equation (7.2), the quality factor was computed to be
0 =190.

The FFTs of the incident and transmitted field have been used to compute the
transmission coefficien (calculated as the ratio of the transmitted and incident fields
of the structure. The result of this operation is shown in Figure 7.40. From this figur
it can be seen that the maximum transmission coefficien is about 0.5, which means
that half of the energy stored in the cavity is lost in radiation. An explanation for
this phenomenon can be found in the mode mismatch of the different sections of the
structure [9].

Next, the previous structure was modifie in order to insert nonlinear material into
the centre of the cavity, as shown in Figure 7.41.

The reason why the nonlinearity has been considered only at the centre of the cavity
is the fact that most of the electromagnetic fiel is strongly confine in the cavity itself,
as can be clearly seen in Figures 7.42—7.44.
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Figure 7.39 Energy-density spectrum of the resonant mode inside the linear PhW cavity.
(Reproduced with permission from Pinto, D. and Obayya, S.S.A. (2008) Nonlinear finit
volume time domain analysis of photonic crystal based resonant cavities. I[ET Optoelectron.,
2 (6),254-261. (C) 2008 IET.)

1 - T T !

09

e o
N @
:
L

c
[+1]

Transmission coefficient
o o
A

o
£

o
[

o
-

"

i —— L
1.55 1.6 1.65 1.7 1.75
A, um

e

.35 1.4

Figure 7.40 Spectrum of the transmission coefficien for the linear PhW cavity. (Reproduced
with permission from Pinto, D. and Obayya, S.S.A. (2008) Nonlinear finit volume time
domain analysis of photonic crystal based resonant cavities. /[ET Optoelectron., 2 (6),254-261.
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Figure 7.41 Schematic diagram of a nonlinear PhW cavity. (Reproduced with permission
from Pinto, D. and Obayya, S.S.A. (2008) Nonlinear finit volume time domain analysis of
photonic crystal based resonant cavities. IET Optoelectron., 2 (6), 254-261. (C) 2008 IET.)
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Figure 7.42 Field distribution of the magnetic-fiel component, /., inside the PhW cavity.
(Reproduced with permission from Pinto, D. and Obayya, S.S.A. (2008) Nonlinear finit

volume time domain analysis of photonic crystal based resonant cavities. /[ET Optoelectron.,
2 (6), 254-261. (C) 2008 IET.)
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Figure 7.43 Field distribution of the electric-fiel component, E,, inside the PhW cavity.
(Reproduced with permission from Pinto, D. and Obayya, S.S.A. (2008) Nonlinear finit
volume time domain analysis of photonic crystal based resonant cavities. I[ET Optoelectron.,
2 (6),254-261. (C) 2008 IET.)

- MAX

0

O0OO0O®MM®OOO

Figure 7.44 Field distribution of the electric-fiel component, E,, inside the PhW cavity.
(Reproduced with permission from Pinto, D. and Obayya, S.S.A. (2008) Nonlinear finit
volume time domain analysis of photonic crystal based resonant cavities. /ET Optoelectron.,
2 (6), 254-261. (C) 2008 IET.)
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For this reason, the nonlinear interaction takes part in the cavity, while the other
sections of the structure give negligible contributions to nonlinear effects. In this
way, it is also possible to save computational resources for the update process of
the electromagnetic-fiel components. The nonlinearity considered is a Kerr-like
instantaneous nonlinearity modelled by

yIE?
6 = &1+ Ac, (1 G >) (7.13)

where ¢ is the linear relative permittivity of the nonlinear medium, Aegg is the maxi-
mum variation of the nonlinear permittivity, y is a nonlinear coefficien related to the
nonlinear parameter, n,, through the relationship y = cgg &) ny, in which ¢ is the speed
of the light and g is the free-space permittivity, respectively, and E is the electric
field The nonlinear parameters of the material have been set to n, = 1.43 x 10°Y
m?/W and Agg = 0.31[10,11].

The expression of the source used to excite this structure is given by Equation (7.6),
with the parameters of the Gaussian pulse and central frequency having the same
values used for the linear case, while three different amplitudes of the magnetic field
H, were set. The incident and transmitted time-domain variation of the electromag-
netic fiel for each case have been recorded in order to calculate the transmission
coefficien of the structure. The result of this procedure is shown in Figure 7.45. From
this figure the shift of the transmission coefficien peak with the different source
magnitudes can be clearly observed.

Finally, each peak corresponds to the resonant wavelength of the cavity mode
of the structure excited with different amplitudes of input magnetic field It can be
also noted that the peak is shifted towards longer wavelengths (lower frequencies)
as the amplitude of the magnetic fiel increases, while the peak of the transmission
coefficient can be considered to be 0.5 with good approximation for all cases.

The resonant wavelength and the quality factor have been also computed for all
cases. All these results are summarised in Figure 7.46.

This figur confirm the shift towards longer wavelengths of the cavity resonance
as the amplitude of the exciting magnetic fiel increases, passing from A = 1.515 um
for the linear case to A = 1.527 pum for the maximum value of the magnetic field
H. = 5.4 x 10% A/m. The growing shift of the resonant wavelength towards longer
values can be explained by a stronger nonlinear effect due to the increasing amplitude
of the magnetic fiel applied to the structure. This deduction is also confirme in
[12], in which a different configuratio of PhC cavity, realised with dielectric material
exhibiting a Kerr-nonlinearity, was experimentally studied in the context of optical
bistability. The quality factor, O, on the other hand, decreases as the peak of the
magnetic fiel increases, passing from a value of Q = 190 for the linear case to
0O = 180 for the maximum magnetic fiel value, H, =5.4 x 108 A/m. Furthermore, in
order to assess the initial assumption of considering the nonlinearity only at the centre
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Figure 7.45 Spectra of the transmission coefficient of the nonlinear PhW cavity for three
different amplitudes of the magnetic field (Reproduced with permission from Pinto, D. and
Obayya, S.S.A. (2008) Nonlinear finit volume time domain analysis of photonic crystal based
resonant cavities. [ET Optoelectron., 2 (6), 254-261. (C) 2008 IET.)
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Figure 7.46 Resonant wavelength, A, and quality factor, O, for different amplitudes of H. for
the nonlinear PhW cavity. (Reproduced with permission from Pinto, D. and Obayya, S.S.A.
(2008) Nonlinear finit volume time domain analysis of photonic crystal based resonant
cavities. IET Optoelectron., 2 (6), 254-261. (C) 2008 IET.)
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Figure 7.47 Schematic diagram of a nonlinear PhW cavity with external tapers. (Reproduced
with permission from Pinto, D. and Obayya, S.S.A. (2008) Nonlinear finit volume time
domain analysis of photonic crystal based resonant cavities. IET Optoelectron., 2 (6), 254-261.
(©) 2008 IET.)

of the cavity, a simulation was carried out extending the nonlinear material along the
entire PhW structure. For this example, the source parameters have been fi ed to the
same values as the previous examples, while the maximum amplitude of the magnetic
fiel has been setto H. = 5.4 x 10 A/m. The resonant wavelength, A, and the quality
factor, O, have been computed to be 1.5271 um and 179.9, respectively, results that
differ from the ones previously obtained considering a smaller nonlinear region by
less than 0.01%, which, ultimately, confir the validity and the good accuracy of
the data calculated when considering the nonlinearity to be only at the centre of the
resonant cavity.

In further work, modification were made to the previous structure in order to
increase the transmission coefficient Following the procedure suggested in [9], an
external taper were added at the input and output sections of the structure, as shown
in Figure 7.47.

The external taper consists of two air holes with gradually increasing radius and
distance between hole centres. The radius of the firs hole is fi ed to 7; = 51.93 nm
and the distance from the centre of the second hole of the taper is @; = 262 nm, while
the radius of the second hole is fi ed to r, = 63.94 nm and the distance from the
firs holes of the structure is a, = 280 nm. Also for this example, the source used to
excite the structure is given by Equation (7.6) with the parameters of the Gaussian
pulse and central frequency of the same values as used for the previous example,
while two different amplitudes of the magnetic field H,, have been set. Through
the recorded incident and transmitted time-domain variations of the electromagnetic
field the resonant wavelength, quality factor and transmission coefficien have been
calculated for both cases. In Figure 7.48 the spectra of the transmission coefficien
for both cases is shown. From this figure the resonant wavelength for the linear case
can be identifie at A = 1.536 um, while for the nonlinear case it is A = 1.543 pum.

It can be also noted that for the linear case the transmission coefficien peak has
been increased up to about 0.66 compared to the previous structure without taper,
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which shows a peak of about 0.5, as can be seen in Figure 7.45. This increase can
be attributed to the added taper, which performs an adiabatic conversion of the mode
from the fundamental mode of the waveguide to the (nonpropagating) Bloch mode of
the mirror of the cavity [9]. Further increase in the transmission coefficien peak can
be expected with increasing of number of sections of the external taper and with the
realisation of taper sections inside the resonant cavity also. With the use of Equation
(7.2), the quality factors, O, have also been calculated. For the linear case the quality
factor has been found to be Q =427, while for the nonlinear case it has been calculated
to be O = 419. The increasing values of the quality factors can be also attributed to

the external tapers added to the structure which also reduce, as the ultimate result, the
overall losses of the cavity.
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Multiresolution Time Domain

8.1 Introduction

In the past, EM wave interactions with nonlinear optical materials have been modelled
with a variety of different numerical methods such as the bi-directional beam propa-
gation method (Bi-BPM) [1], the coupled-mode theory [2, 3] and the method of lines
[4]. In the last decade, research efforts have addressed in particular the development of
accurate and efficien finite-di ference time-domain (FDTD) schemes that, unlike the
just-cited techniques, can provide a full-wave description of all quadratic nonlinear
phenomena in generic and even complex structures such as photonic crystals. In this
sense, FDTD has proved to be a robust and fl xible method that can be implemented
in a relatively straightforward way. Its scheme can be easily adapted to the analysis
of complex geometric features, dealing also with many different material properties.
For all these reasons, various modification and extensions of the conventional FDTD
scheme have been proposed in order to optimise its performance and numerical effi

ciency. These include hybrid methods, higher-order FDTD methods and Berenger’s
perfectly matched layer (PML) method, which allow the computational window to
be terminated with boundaries that are very close to the structure under investigation
[5]. Significan progress has also been made in the development of FDTD algorithms
for the analysis of electromagnetic propagation in nonlinear and dispersive materials
[5-7].

However, despite its many capabilities, the FDTD technique suffers from a high
numerical phase velocity error which puts a serious limit to the accurate modelling of
phase-sensitive nonlinear frequency-conversion phenomena, such as second harmonic
generation (SHG), which will be treated in Chapter 10. Being associated with high
numerical dispersion, a fin grid resolution in space is needed to minimise phase error
and thus ensure accurate results: a cell size of 15-20 times less than the minimum free
space simulated wavelength (Anin/15-20) is typically required [5]. The requirement
of fin grid resolution also implies a stricter limit on the choice of time-step size, At,
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as these two values are directly linked under the stability condition. Therefore, a large
number of unknowns, together with a small Az, results in an intensive use of computer
resources. The FDTD limitations on the choice of the step size in space become
particularly strict in nonlinear applications where a very large range of frequencies has
to be investigated in one time simulation. Looking at the SHG problem, FDTD requires
a discretisation in space of Ag,/15-20, where Ag, represents the second harmonic
wavelength generated at half the wavelength of the pump. In this context, the need for
an alternative time-domain technique that can alleviate some of the above problems has
become stronger. The multiresolution time domain (MRTD) method shows excellent
potential for fulfillin this requirement. The main purpose of the MRTD method
is to reduce the computational burden required for a determined accuracy of the
electromagnetic solution by use of a grid density close to the Nyquist sampling rate
(2-3 grid points per wavelength). Applying the multiresolution analysis, with the
use of scaling and wavelet functions, in the context of the method-of-moments-based
discretisation of Maxwell’s equations, is the foundation of the MRTD scheme. By
relying on a higher order of approximation of the spatial derivatives, as it will be shown
in this chapter, numerical dispersion in MRTD only arises from the approximation
used for the derivatives in time, which is the same as in FDTD. Hence, MRTD
is a computationally efficien solution to the numerical phase error associated with
FDTD and allows a decrease in the points per wavelength into which the problem is
discretised. Therefore, the basics of MRTD technique are presented here and used in
Chapter 10 to provide an efficien and yet accurate modelling tool for phase-sensitive
nonlinear optical problems. Besides the advantages in saving computational resources,
MRTD provides also a unifie and higher-order field- xpansion scheme for both the
FDTD and method-of-moments (MoM) methods. From this point of view FDTD can
be considered as the simplest version of the MRTD scheme.

8.2 MRTD Basics
8.2.1 Multiresolution Analysis: Overview

The MRTD technique for solving the Maxwell’s equations was firs proposed by
Krumpholz and Katehi in 1996 [8]. They proposed the use of wavelet expansion
that, at that time, had become very popular in many field as a way to increase both
the efficien y and the accuracy of numerical methods, in the context of the method
of moments for solving electromagnetic wave interaction problems. The technique
that they originally proposed in [8] is very fl xible and can be considered a generic
discretisation scheme to be used with different types of wavelet. Typically, the wavelet
scheme adopted in MRTD is orthonormal with scaling functions and a mother wavelet.
The scaling functions generate the mother wavelet from which all the other wavelets
are derived. The use of wavelet expansion makes it possible to talk about numerical
accuracy in terms of ‘levels’ of wavelet resolution. Each level consists of a set of
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functions that is added to the expansions to increase the discretisation accuracy [9].
The scaling functions ¢; (x) are define by

%@)=¢(£§—i> (8.1)

A wavelet coefficien v/ , (x) is represented as

v, 0 =2y (27 (= —i) - ) 8:2)

where 7 is the wavelet resolution and p is an integer in the range [0; 2"—1]. Each level
of resolution, 7, consists in 2" wavelets that are misplaced in space by Ax / 2",
The following relationships defin scaling functions and wavelet coefficient [10]

[orem=5, (83)
[, =0 viijrp (3.4)
[ 1,05, 0 = 805.8, (8.5)
&Jz{é ;;; (8.6)

From the theory of wavelet expansion and multiresolution decomposition, it is known
that a set of subspaces {V;};,c, is a multiresolution approximation of L’(R) if the
following hold [11]

LVscVy,cVvayachvyechchcbVs---

Ur=12®
ieZ

Mri=o

ieZ

where Z represents the set of all integers, while L?(R) is the set of all square integrable
functions.

All of these properties allow us to achieve the wanted level of accuracy by
increasing/decreasing the wavelet resolution.
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8.2.2 MRTD Scheme

The basic concept of MRTD is to represent firs the electric and magnetic field
as expansions in scaling/wavelet functions in space and time and then to apply the
method of moments to the conventional Maxwell’s equations.

For example, for a 1D scheme with arbitrary order of resolution up to 7yax, the
expression used to expand each fiel component in scaling and wavelet functions is
the following

Fmax 2" —1

Fe() =Y @) | nF %0 )+ D) aFLS w7, (x) (8.7)

r=0 p=0

where nFl.x’d’ and , lerﬁ are the expansion coefficient and represent the magnitudes
of the scaling and wavelet functions. Discretisation is performed both in space and
in time. In time, pulse functions /%, (¢) are used in order to ensure causality. These
functions in fact don’t overlap in representing a given time step and thus prevent a
past event being determined by a future one. Finally, i indicates the position in space
along the x-direction. When a 2D or 3D system is considered, the products of all
scaling/wavelet functions in each dimension must be calculated.

For any wavelet basis adopted, the number of expansion coefficient for a given
resolution ry,y, is determined by the formula

D+ Z Fmax,i
Number of coefficient =2 == (8.8)

where D represents the dimensionality of the system under investigation. The number
of basis functions calculated through the previous formula gives the number of equiv-
alent grid points [12]. The fiel coefficient in [8] are offset by half a cell to build a
scheme in space that is similar to the conventional Yee-FDTD scheme.

It should be noted that like in FDTD, the update equations in MRTD are fully
explicit. This means they are easy to implement but, on the other hand, the time step
must again be chosen below a stability limit, as will be discussed in detail in this
chapter. In particular, discretisation in time, based on pulse functions, results in a
leapfrog arrangement analogous to the one in FDTD, with £ and H field that are
offset by half a time step. Once the fiel offset is chosen, the MRTD update scheme
is obtained by applying the method of moments.

8.2.3 Method of Moments

As one of the finite-di ference-based time-domain techniques, MRTD can be derived
from the MoM when specifi expansion and testing functions are applied [13]. The
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MoM was proposed in the past in order to solve equations that can be expressed in
the following compact form

L (E ﬁ) _ (i, p) —0 (8.9)

A full explanation of the method can be found in [14]. It consists in representing firs

the unknown function as a sum of unknown coefficient multiplied by known basis

functions. The second step is error testing by means of a series of chosen test functions.

With the number of test functions equal to the number of unknowns, a system of linear

equations whose solutions allow us to determine the wanted coefficient is generated.
A brief explanation of the procedure for a 1D problem will be considered

ab (x)
f)=— (8.10)
X
where f(x) and b(x) represent the unknown and known functions, respectively.
First, the function f(x) is expanded as follows:
N
S0 =) ane, (x) (8.11)

n=0
where a, are unknown expansion coefficient and c,(x) are the basis functions, which

are known. Next, a set of testing functions w,(x) is chosen and the following inner
product is considered

(@n, [) = (wy, b') = fw (x) £ (x)dx (8.12)

A system of linear equations can be generated as

ap(w,c1) ay{wy, ) ... ay{wi,cy) (1, 2')
ap(wy,c1) ay{wy, ca) ... ay{ws,cy) (w2, V)

= (8.13)
ap(wy,c1) a{wy,c2) -+ an{oy,cn) (a)N" b)

and solved to calculate the unknown coefficients a,,.
When the following property for the testing functions holds

(wna cn> = 8m,n (814)
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the matrix becomes diagonal, the scheme is explicit and each coefficien can be
calculated as

ay = (wy, b') (8.15)

In particular, when the testing functions are the same as the basis functions and
Equation (8.14) is true, (the set of basis functions is orthonormal), the method is
named Galerkin’s procedure.

8.3 MRTD Update Scheme
8.3.1 Approximation in Time: Testing with Pulse Functions

The MRTD update in time is define by the choice of scaling/testing functions that
give the localisation of the expansion coefficient in time. In order to build an explicit
scheme, the expansion in time is performed through pulse functions whose derivatives
yield Dirac delta functions located at the edges of the pulses

8hn+alt/2(t) = 5(t—nAl) —8(t —(n+ 1) A1) (8.16)

Representation of this series of derivatives as Delta functions is given in Figure 8.1.
If these derivatives at time steps n + 1/2 represent B (and H) coefficients from

Maxwell’s equations we can represent D (and E) at time steps, n, with the pulse

functions at the bottom of Figure 8.1. The expansion of the £ fiel in time is

S O
BN

n+1/2 l
n n+l

Figure 8.1 Representation of the derivatives of the basis functions in time when #4,, are pulsed
functions.
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expressed by
N
EG. D= hy(EF) (8.17)
n=0

where , E () is the wavelet/scaling discretisation in space at time step n. For the B
fiel the expression is similarly written as

N
BF, 1) =) hur1p(Dnr12B (7) (8.18)
n=0

From the inner products with the pulses, %,, the following are obtained

(hy(),E ([, 1)) = At,E (¥) (8.19)
<hn o). $> — 1B () = v 2B () (8.20)

By applying these inner product operations to both sides of Maxwell’s equations, the
update relations of the field can be derived. For instance, for the component B,, the
following is written

0B, oF 0F,
hy, — ) = (h,, —2 — 8.21
<"31> <n32 3y> (®2D
- - InEy(F)  9,E.(F)
wi12By F) — yo1 0By (F) = At | —2— — (8.22)
0z oy
Then, solving for the new term, , 41 B, (¥), the following is found:
. - InEy(F)  9,E.(F)
n12By () = y_12Bx (r) + At [ - Byz - 5y (8.23)

which represents the update equation for the component B, and calculates the new
fiel attime n + 1/2 from the value at previous time step n — 1/2.

8.3.2  Approximation in Space: Testing with Wavelet/Scaling Functions

The basis functions in 3D space are expressed as I' (x) I (v) I (z), where I" represents
either ¢ scaling functions, or ¥ , wavelet functions, with/ = i, j, k as the directional
index in the three space directions. In order to perform an approximation of the
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derivatives in the space domain, the test functions are applied together with the time
differentiated functions in Equation (8.23).

It is convenient to represent the discretisation of the fiel in vectorial notation [15]
that is a generalised form for any wavelet basis: all the wavelet/scaling coefficient
are written as

- X009 =
n+12B; 7§

X, Yop
”“/zBi,j,k,O,O

) sl
n+ /284, j K Fiax 2, 27max 2 — 1

va‘p‘/f(/’
n+1/25; j k.0,0,0,0

n+1/2Bx i jk = (8.24)
X, oy Y
n+1/2Bivjvk,rmax.yvzrmax V-1
BXJ//IM/
n+1/25; ; k.0,0,0,0,0,0
x, ¥
— n+1/zBisjsksrmax X ’zl‘max.x 7lvrmax,ys2rmax ¥ 71vrmax,za2rmax z—1 -
Another vector, I, is define as follows
[ @i x)o; (V) (2) ]
Vio () @ (V) ¢r (2)
@i (X) @07 V) V-1 (2)
20 @)Y (1N ()
Cijk = . (8.25)
@i (x) wjt‘;z;zx a1 OV (2)
,'(?0 (x) W?o ) W}?o (2)
| w:n;:)r(n:x x—1 (x) w;’?;:ml:lx v —1 (y) w]:?;:mzax z—1 (Z) _
thus
wi12Be ) =Y T i1 2B j (8.26)

i)k

The update equation for the B component can be derived by taking an inner
product of Equation (8.23) with each wavelet/scaling coefficient The update
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equation becomes
At
nt172Bxijk = n-172Bx,ijk + m
B,( Bx
[Z Uz nEyijbim + Y Ug unEi ,+m,k} (8.27)
m m

where U represents the matrix of the inner products between the E basis functions and
the B basis functions. It has to be noted that £ and B components are offset only along
the direction of differentiation of the £ field The index, m, refers to the position in
space amongst all the neighbouring cells whose total number depends on the choice
of the basis functions.

The size of U matrices is equal to 23+ mex 7 mayHrma: 5 23+ maxrHmaxy +rmasz and it
can be calculated before the actual start of the simulation. Its generic form is expressed
by the following

<F1F1$ zan > <F1F17 on .. FIFI’ Zan
a’721-‘2|m 3le—‘z|m
Ao <F1 U, =) \nl =5
Ul = (8.28)
8Fl—‘le aFrL|m
(F1 e, za—n> <F1 Po, =5

where F is the fiel that has to be updated and F, is the fiel on which this up-
date depends. m represents the offset in the direction of differentiation, 9 / on is the
derivative in space with n = y, z, if Equation (8.27) is considered as example. In this
case the (2,2) entry in Equation (8.28) is made explicate as follows when the fiel
offsets in x-, y- and z- directions are called s, s, and s, respectively

d
Ugyon = <¢fo () @jrs, (V) Q. (2) a—w;?o () @45, (V) P (Z)> =
: ; z (8.29)
= [I[ 20 () @jts, (V) Prts. (2) = (V0 () @5, ) 0k (2)) IxDydz
Separating the integral by direction
d
T30 ) is, 0 @k, (2) o= (W () 9745, (0 01 (2)) BxDydz = (8.30)

= [0 )W () x [ 9jas, () @15, )0 [ @pps, () 2D
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It is known the orthogonality of the basis functions, therefore

(Pk (Z)

f W0 ()P0, () o f 015, () 0145, () By f oiss, ()
@i (Z)
Z

=sv-ay [ g @ (8.31)
From Equation (8.31), it can be seen that only one integral has to be evaluated. Its value
depends on the choice of the basis functions so it can be solved either analytically or
numerically. However, these values can be tabulated referring to each basis functions
family and thus they don’t have to be calculated for each simulation. Through this pro-
cedure all the update equations for the components B and D can be similarly derived.

8.3.3 Media Discretisation

After updating the B and D components, the actual H and E field have to be calculated
by means of the constitutive relationships and depend on the media characteristics.
Generally material properties are a function of position inside the computational
domain. In this chapter, isotropic materials, in some applications also dispersive and
nonlinear, are considered. Assuming a medium with magnetic permeability © = po,
the only constitutive relationship to be taken into account is the one to obtain the £
fiel from an update of D and it can be written as

E@F# )=

1
Yo (8.32)

where ¢ (7, t) represents the space- and time- dependent permittivity tensor of the
medium. Equation (8.32) can be discretised by means of the scaling and pulse
functions in space and in time respectively, following the Galerkin’s method already
described in the previous paragraphs. The permittivity tensor, €, that links the flu
density vector to the electric fiel is given by

e (7, 1) 0 0
e(F 1) = 0  &@FEn 0 (8.33)
0 0 & (F, 1)

The constitutive relation is written in the form of scalar equations as
D, =&, (F, 1) E, (8.34a)
D,=¢,(F,)E, (8.34b)
D, =¢,(r,t)E, (8.34¢)
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Discretisation of these equations is considered for the case of expansion in scaling
functions in space only, for simplicity. The fiel expansions are expressed by

+00
FeG= Y, wFf, i @ens (0en ()6 ) (8.352)
k,,m,n=—00
“+o00
E,G.0= ) kB o061 0)en () (8.35b)
k,,m,n=—00
+00
FG.0= ) b, e @e) on ) @) (8.35¢)

k,l,m,n=—00

where F, (7, t) = [E, (7, 1), D, (7, 1)], with r = x, y, z. The coefficient (F}’, , are

I,m,n
the fiel expansion coefficient in terms of scaling functions. The indices /, m, n and

k describe the localisation in space and time. In time, the function /,(¢) is given by

t
he(t)=h (E - k) (8.36)

with

1 for 1] <1/2
h(t)y=41/2 for |t]=1/2 (8.37)
1 for |f]>1/2

In space, the scaling function is define as

Pm (X) =@ (Aix - m) (8.38)

After substituting the fiel expansions into Equations (8.34a—c) and sampling them
with pulse functions in time and scaling functions in space, it is assumed that

& (7. 1) =& (x) & (¥)&r (2) & (2) (8.39)
Sampling Equation (8.34a) with @12 (x), @ (), @x (2) and Ay (¢) brings to

+00
¢ _ ? s ¢ 9
kD pmn = § : €)1 2.0112 € D €(2)y 0 € (Z)z,k’k’El’il/Lm’,n/

k,I',m' ,n'=—0oc0

(8.40)
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where the coefficient ¢ (r)};,, and & ()} 1, represent the integrals

+00
1
cOi =5 [ n e )om )0 (341
+00
1
Oh =5 [ e @ (842)

8.3.4 Numerical Dispersion

In order to choose the space and time-step size properly, numerical dispersion and
stability need to be considered for MRTD.

Due to numerical dispersion, there is a variation of the wavenumber, &, with the
angular frequency, w. Under the assumption of a linear, nondispersive, isotropic
medium, by substitution of the solution for a monochromatic plane wave into
Maxwell’s equations, the following dispersion relationship is derived

k=+2 (8.43)
C

with

(8.44)

In a 3D space, a wavevector, 12, is define in a Cartesian system as
k= ke +kyj + kk (8.45)
where

k= k2 + K2+ k2 (8.46)

From these parameters, phase velocity v, and group velocity v, are define

vp = :l:— = :l:c (847)

vy = = ¢ (8.48)
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From Equation (8.48), it can be seen that wavelength and frequency have a linear
relationship, and that phase and group velocity are independent of frequency.

Referring to a numerical scheme, these relationships become more complex as
an effect of the discretisation adopted in space and time. Time is considered as a
sequence of discrete time steps and space is a multiple of cells that, although small,
make the waves propagate in the directions define by the grid rather than in any other
direction. This makes the propagation velocity dependent on direction and frequency.
Compared to the dispersion equation for FDTD, (that is equivalent to MRTD with
Haar scaling functions only), it is demonstrated that increasing the resolution by one
level effectively doubles the resolution of the scheme. Thus, the generic relationship
can be obtained simply dividing the space step by 2'*! as follows [12]

L (AN [2met ke Ax \T L [2 Ay \T
—SsSm| — = sin + sin
C At 2 Ax 2rma"~“ +2 Ay Zrmax.y +2

+ 2rmax.:+] . kZ AZ 2
m
Az S 2rmax,z+2
(8.49)

The given dispersion analysis can be generalised for any wavelet basis and resolution
of wavelet with the following

2
1 fwat\T [ 2meett Lz‘l " ke Ax
—Smy|{ — = s1n -
cAt 2 Ax — “ D max.x+2
2
2rmax,y+l ky Ay
8.50
+ |: A~ ( a(l)sin 2rmw +2) (8.50)
2
2o+ z szz
+ AZ a ( ) SIH 2rmax,z+2

8.3.5 Numerical Stability

For the case MRTD with expansion in scaling functions only (scaling-MRTD), the
condition for numerical stability is [9]

1
At < (8.51)

oL (L L
a —
=0 ue \Ax?  Ay? = AZ?
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Considering the 2D case in the xz-plane, the limit becomes

A
At <s— (8.52)
€o

where

1

§=——F——— 8.53
V2315 a() (859

where A = Ax = Az in an uniform mesh, ¢ is the speed of the light and the Courant
number, s, represents the stability factor in two dimensions and depends on the order
of the adopted basis functions [16]. The result is that the time limit for the MRTD
scheme is smaller than for FDTD with the same cell grid size. However, although the
single time step is smaller, it should be noted that generally MRTD allows a much
coarser grid than FDTD so that the computational efficien y improves overall.

It has been demonstrated in [12] that the generic formula, valid for any MRTD
basis and any level of wavelet resolution, is expressed as

At < (8.54)

1 1 1

+ +
Ax 1\’ Ay 2 Az \?
2rmax,x+l 2rmax,y+1 2rmax,z+1

Li—1 1
> lal | —
i=0 ne

8.4 Scaling MRTD
8.4.1 Choice of Basis Functions: Cohen-Daubechies-Feauveau Family

The main purpose of the MRTD scheme is to minimise the number of unknowns,
which is the number of grid points per wavelength, without deteriorating the accuracy
of results. Practically, this means producing a better approximation of the fiel through
accurate wavelet expansion, which minimises the numerical dispersion error of the
algorithm for a given grid resolution. If ¥, is the wavelet at level / and shifted
by m /2! units, while ¥, ,, represents its dual, they both must hold the orthogonality
relationship

(Wim, Yim) =8 (1 =1')8 (m —m) (8.55)

When ¢ =1Z1,m, the wavelets are called orthonormal. The common requirements are
for the wavelet basis to be regular (smooth) with regard to the degree of differentiability
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of a function, and with vanishing moments define by

my(n) = fx"w (x)dx (8.56)

where 7 indicates the generic n™ moment [17].

In particular, it has been found that a good approximation demands 1, ,, to have as
many vanishing moments as possible, and 1 ,to be as smooth as possible. It is also
required that the scaling/wavelet functions have minimal support in order to reduce
the number of computations needed. If specificall the set of orthonormal wavelet
families is considered, the two conditions of regularity and minimal support are found
to be in conflic [17].

The oldest and simplest scaling/wavelet family is the Haar basis functions. When
these basis functions are applied to an MRTD scheme, an algorithm very similar to
the Yee FDTD scheme can be generated [18]. The main advantages in the use of Haar
functions refer to their finit domain, so that they don’t overlap from one cell to the next
one, and the simplicity of performing derivatives and integral calculations due to their
pulse nature. Besides that, their main disadvantage is the lack of smoothness that brings
a higher numerical dispersion compared to other existing wavelet families. The MRTD
method that Krumpholz and Katehi proposed in 1995 is based on Battle-Lemarie
scaling/wavelet functions that are derived by B-spline functions [8]. They have been
shown to have very good regularity properties, but suffer from having noncompact
support. There is a theoretically infinit number of terms in the update equations and
thus, a truncation of the sequence of coefficient inthe summation calculations (usually
8—12 on each side) is needed with consequences in terms of arithmetic precision that
could even destroy properties, such as zero moments and orthogonality [19]. The
property of having an exact number of interpolating coefficient or compact support is
achieved by Daubechies orthogonal wavelets [20,21], where the number of vanishing
moments is maximised. Cohen—Daubechies—Feauveau (CDF) biorthogonal scaling
functions have been chosen to develop the MRTD scheme here. In the literature,
it was found that this family of functions satisfie the requirements of the MRTD
scheme as it shows the maximum number of vanishing moments for a given support,
good regularity and compact support [16]. Thanks to these properties, the sequence of
MRTD coefficient in the update equations is rigorously finite while a good level of
regularity is still kept. The CDF notation (¢, §) is adopted to indicate the lengths of the
reconstruction and decomposition filter of the family. Through this work, ¢ for the
fiel expansions of order (2,4) have been chosen from the CDF family. This order of
functions relies on a total number of coefficient equal to fi e (compact support) and
shows a good compromise between higher-order accuracy and the increased number
of operations required.

In [16], an extensive study of the numerical dispersion characteristics of the CDF-
MRTD scheme compared to other wavelet families is given. Dogaru and Carin showed
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that numerical dispersion depends on many factors, such as the spatial resolution, the
Courant number, the number of level of wavelets used to expand the field and
the angle of electromagnetic propagation. However, generally, it is found that the
MRTD scheme allows a grid resolution at least two times coarser than FDTD when
the same level of accuracy is required. Another important aspect is that dispersion
performances are heavily influence by the adopted Courant number. The choice of
a Courant number smaller than the required limit for stability means better results
in terms of numerical dispersion. As a consequence of this, when the same Courant
number is taken, the low-order CDF (2,4) family can achieve better accuracy than
the case in which both the scaling and the firs level of wavelet are included, which
implies a stricter stability limit on the time-step size.

8.4.2  Derivation of Update Scheme

For the analysis of a 2D problem in the xz-plane, assuming the y-axis as the homo-
geneous direction and the x-axis as the propagation direction, the fundamental
electromagnetic components of a TE mode are E,, H,, H., and from Maxwell’s
equations, the following 2D scalar equations can be derived:

0H, 1 9E,

= —— 8.57
at o 0z ( 2)
0H, 1 0F
=———" (8.57b)
dt Lo 0Xx
oE 1 (0H, 0H,
— = — (8.57¢)
ot o0& \ 0z 0x

where (g is the permeability of the free space and ¢, is the relative dielectric constant
of the medium.

With respect to the unit cell shown in Figure 8.2, the electromagnetic field are
expanded as a combination of scaling functions in space and Haar functions in time
using

+00
He(x,z,t)= Y oH3 ) 0010 @) @) (@hy (1) (8.58a)
n,i,j=—00
“+o00
p— Z,(ﬂ
H.(x,2,00= Y wH {100 () @412 (h (0) (8.58b)
n,i,j=—00
+00

Ey(x,z,1)= Z wr12E7 0 0 10 @12 () @412 g (1) (8.58¢)

n,i, j=—00



Multiresolution Time Domain 229

z, D z, @
H H i1 | Az

ij+1/2 (o)

E’
i+1/2,+1/2

H\'.tb

i+1/2,+1
l Y

Ax

Figure 8.2 Electric and magnetic expansion coefficient fiel as placed inside the MRTD
unit cell in the case of only scaling functions (S-MRTD). (Reproduced with permission from
Letizia, R. and Obayya, S.S.A. (2009) Efficien second harmonic generation through selective
photonic crystal-microcavity coupling. IEEE J. Lightwave Technol., 27 (21), 4763—4772.
(© 2009 IEEE.)

where 7, i, j, are the discrete indexes in time and in space, respectively, ¢ is the scaling
function chosen from the CDF(2,4) family, 4 is the Haar function and represents the
sampling intime, 41,2 E; ;" 2120 H:Y .o lej";l 1, are the expansion coefficients
The discretisation in space follows a scheme that 1s very similar to Yee’s scheme. As
shown in Figure 8.2, the components placed in a cell, on which the update iteration
takes place, are expansion coefficients The actual fiel at the time step ¢y in a point
(x0, zo) has to be calculated from

+00

Ey(x0, 20, t0) = Y wEN 00 (x0) 9 () (8.59)

i",j'=—00

where i/, j/ and n’ are the indexes in space and time, respectively. Due to the finit
support of CDF scaling functions, only a few terms of the previous summation have
to be considered.
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Substituting the fiel expansions in the form of Equations (8.58a—c) into the scalar
Maxwell’s Equations (8.57a—c) and testing them with the dual of the biorthogonal
scaling function, @,, (with m = i, j) in space and pulse functions in time, and follow-
ing the method-of-moments procedure, the following field-updat equations can be
obtained

L1
At u
X0 pxe .9
w5 = i — oAz Z aOns12E 10 i—1-1 (8.602)
I=—Lg
N
9 pgze 7.9
nrt H g = 0+ oAx > a®urinEl i (8.60b)
I=—Lg

At

. _ .
n+1/2Ei+1/2,j+1/2 = ”*1/2Ei+1/2,j+1/2 e —
E0€i+1/2,j+1/2

1 x. 1 .
X Z a(l) <_E”I_Ii+§f/2,j+1/2 + A_ani—(f—l,Hl/z) (8.60c)

where L, called the stencil size, represents the effective support of the basis function,
which determines the number of expansion coefficient considered in the summation
and it is equal to 5 for CDF (2,4), the connection coefficient a(/), [22], are obtained
numerically by Equation (8.61) and their values for the assumed scaling functions are
given in Table 8.1 [16].
The CDF functions have the advantage of making use of a compact support (finit

number of nonzero coefficient in the MRTD scheme) so a(/) is exactly equal to zero
for/>L; — 1 and [ < Ls. For [ < 0, the a(/) values are known from the symmetry

Table 8.1 Connection coefficient and courant number at the stability
limit in two dimensions. (Reproduced with permission from Letizia, R. and
Obayya, S.S.A. (2008) Efficien multiresolution time-domain analysis of
arbitrarily shaped photonic devices. IET Optoelectron., 2 (6), 241-253.

© 2008 IET.)

! CDF(2,2) CDF(2,4)

1 1.229 166 7 1.291 813 4
2 —0.093 750 0 —0.137 134 8
3 0.028 761 7 0.028 761 7
4 0 —0.003 470 1
5 0 0.000 008 0

s 0.5300 0.4839
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relation a(—0l) = —a(l — 1)

dp 1)
+00 i 5 Li—1
i (X)) ——————dx = D)Siy1iv 8.61
[ ow— PR 8.61)

By virtue of their interpolation property, as biorthogonal wavelets, the expansion
coefficient for CDF families on which the updating takes place, can be taken as
physical fiel values with negligible error [16]. For instance, the fiel E, at an arbitrary
point in space (xg = i Ax, zg = jAz) at time #) = nAt is given by

E, (x0, 20, t0) = / / E,(x,z,1)8(x — x0)8(z — 20)8(t — to)dxdzdt = ,,Elyf
(8.62)
that allows the fiel coefficien to be taken as the fiel value.
This allows the building of a simple algorithm in which the computational overhead
of the total fiel reconstruction is reduced.
Figure 8.3 shows a sketch of the update process in a 1D space: the compo-
nent ,E¥ at position i is calculated from a number of components ,_ 1 H? in the

range [i —Ls+1 / 2;i+Lg—1 / 2] that is determined by the stencil size Ly and are
weighted by the connection coefficient a(/).

In order to ensure the numerical stability of the MRTD scheme, the time step At
has to be smaller than a certain limit as

A
At <s—, (8.63)
Co
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- 8.64
YT AYE a0 (8:64
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i-L+1/ i+L-1/2
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n-1/2 ; ; i

X Z a(l)
n e—O—O0—0© 00— 0—0F
i

Figure 8.3 Scheme of the update process in a 1D space for S-MRTD with compact basis
functions determined by the stencil size L.
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where A = Ax = Az in an uniform mesh, ¢ is the speed of the light and the Courant
number, s, represents the stability factor in two dimensions and is equal to 0.4839
for S-MRTD with CDF (2,4) (Table 8.1). Numerical experiments have revealed that
although this value is enough to guarantee the stability of the algorithm, it cannot
guarantee a good accuracy of the results with coarser meshes. Smaller values of s,
typically fi e times less the stability limit, can significantl improve the accuracy
of the method, even for coarser spatial discretisation. In the spirit of the numerical
comparison performed in [18], it has been found that the value s = 0.1 is the most
suitable to ensure numerical stability and also a high level of accuracy.

8.4.3 UPML in S-MRTD

One of the most important challenges in the fiel of computational modelling has
been the introduction of absorbing boundary conditions (ABCs) at the grid boundary,
allowing the simulation of an infinit region. Amongst all the possible techniques,
here the 2D-S-MRTD scheme is presented in conjunction with the UPML absorbing
boundary condition which efficientl terminates the boundaries of the space domain in
an absorbing artificia material medium. Starting from the traditional scalar equations
of UPML reported in the literature for FDTD [5,22], and already introduced in Chapter
7 for the termination of the FVTD scheme, they are now implemented in the framework
of the MRTD technique. Therefore, UPML derivatives in space are discretised by
testing them with the scaling functions through Galerkin’s procedure, while a second-
order central difference scheme is adopted for the derivatives in time. This procedure
leads to a two-step update scheme for each fiel component. Considering the TE
propagation and the geometry of the grid (Figure 8.2), the following discretised
equations are derived

Li—1 Y,
> 1 E- .
X0 X0 n=1/2541/2 j+1+1/2
nBilin = n-1Bifin; — AL Z a(l) ( Az (8.65a)
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289 — o At 1 X0
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where ¢ is the permittivity of the medium, o, and o are the electric conductivity of
the UPML layers, whose profil takes the following form

Omax i"

o; (i) = qm

(8.68)

where i = x, z, d is the depth of the UPML and m stands for the order of the polynomial
variation. The choice of o, that minimises the reflectio from boundaries is [15]

m+1)

N — 8.69
Omax 1507TA\/8_1— ( )

where A is the uniform spatial discretisation adopted.
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MRTD Analysis of PhC Devices

9.1 Introduction

Validation of the MRTD scheme developed and presented in the previous chapter
is given here for the analysis of linear photonic devices. First of all, the rigorous
implementation of the uniaxial perfectly matched layer (UPML) scheme at the lattice
boundaries has been considered for validation in order to ensure efficien truncation
of the computational domain with negligible artificia reflections To this aim, the
reflectio coefficien from the UPML boundary is studied in a planar waveguide first
and then in a PhC-based waveguide. The obtained results are then compared to those
performed by the same boundary scheme when implemented into the conventional
FDTD method. Once the absorbing boundary condition has been validated and the
required parameters have been set, the numerical accuracy and efficien y of the MRTD
scheme are thoroughly investigated for Bragg resonators (1D-PhC) and PhC-optical
filter for linear applications. Specificall , a comparison between MRTD performance
and FDTD results is given for a Bragg resonator with different grid resolutions. This
particular case proves the computational efficien y of MRTD over FDTD, which
allows significan reduction in the required CPU running time when the same level of
accuracy is required.

9.2 UPML-MRTD: Test and Code Validation
9.2.1 UPML in Planar Waveguide

As a firs example, the simple slab waveguide shown in Figure 9.1 [1], has been
considered, where the width is w = 0.450 um and the core and the cladding have
refractive indices of ncoe =3.6 and n, =3.42, respectively. The propagation of the
fundamental TE, mode in the x-direction is performed with the aim of demonstrating
the robustness of the UPML boundary condition incorporated into S-MRTD. The

Computational Photonics ~Salah Obayya
© 2011 John Wiley & Sons, Ltd
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3

w=0.450um |

Figure 9.1 Schematic diagram of the planar waveguide simulated where ng = 3.42, neore =
3.6 and w = 0.45 um, [1].

source fiel is expressed as

—19)?

Ey souce (2, 1) = Etg, (2)sin 2u fot)e (9.1)

where Etg,is the profil of the fundamental TE; mode, Ty = 15 fs is the bandwidth of
the Gaussian profil in time, #) = 60 fs represents its delay and Ag = ¢ / fo =0.86 um
is the central wavelength.

Figure 9.2 shows the time evolution of the pulse energy, normalised to the input
pulse, when the waveguide is assumed to be surrounded by a 20-cell UPML. The
results obtained from varying the parameter m in the many simulations performed in
this work show that, in most of the cases, for a 20-cell UPML medium, the best value
for m is 2.5. The results are obtained by adopting uniform mesh with cell size Ax =
Az = A =30 nm and time-step size Az = 0.01 fs. As may be noticed from Figure 9.2
and from Figure 9.3, which shows the electric-fiel patterns at different time intervals,
once the pulse has completely been injected, the fiel propagates with constant power
along the waveguide until it reaches the UPML edge in the longitudinal direction
(x). At this point, it rapidly decreases to a negligible value, showing that the UPML
boundary condition performs stably and rigorously.

Then, the reflectio coefficien due to a 15- and 20-cell UPML boundary truncating
the output of the waveguide has been calculated and compared to the one obtained
by running simulations for UPML in a conventional FDTD scheme with the same
mesh A [2]. The time variation of the electric fiel has been stored at the reference
point (Figure 9.1). By means of an FFT of both the incident and reflecte field at
this point, their spectral distribution ratio has been calculated to obtain the reflectio
coefficien variation with the wavelength. As shown in Figure 9.4, over the range of
wavelengths around the input A, the reflectio detected from S-MRTD simulations is
significantl lower than the one obtained with FDTD in both 15- and 20-cell UPMLs.
In particular, it should be noted that the developed UPML scheme in the S-MRTD
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Figure 9.2 Time evolution of the pulse energy using UPML-MRTD scheme. (Reproduced
with permission from Letizia, R. and Obayya, S.S.A. (2008) Efficien multiresolution time-
domain analysis of arbitrarily shaped photonic devices. IET Optoelectron., 2 (6), 241-253.
(©) 2008 IET.)
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Figure 9.3 Time evolution of the electric-fiel pattern along the waveguide when the UPML
boundary condition is used to truncate the computational window. (Reproduced with per-
mission from Letizia, R. and Obayya, S.S.A. (2008) Efficien multiresolution time-domain
analysis of arbitrarily shaped photonic devices. IET Optoelectron., 2 (6), 241-253. (C) 2008
IET.)
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Figure 9.4 Variation of the UPML reflectio coefficien with the wavelength using both
FDTD and MRTD methods for 15- and 20-cell UPMLs. (Reproduced with permission from
Letizia, R. and Obayya, S.S.A. (2008) Efficien multiresolution time-domain analysis of
arbitrarily shaped photonic devices. IET Optoelectron., 2 (6), 241-253. (C) 2008 IET.)

algorithm can bring reflection from computational domain boundaries down to less
than —60 dB.

9.2.2 UPML in PhC Waveguide

In order to test the UPML scheme in a more complicated structure than the planar
waveguide seen in the previous chapter, a PhC waveguide is considered next. The
structure, whose schematic is shown in Figure 9.5, is a pillar-type PhC waveguide
in which pillars made of GaAs (n = 3.4) are surrounded by air. The arrangement
has periodicity a = 0.58 um and fillin factor »/a = 0.18, where 7 is the radius of
the pillars. The TE Gaussian pulse given in Equation (9.1) with delay 7, = 30 fs,
bandwidth 7y = 90 fs, central wavelength of 1y = ¢ / Jfo =1.5 pm and where Etg,
represents the profil of the fundamental TE, mode in the waveguide that has been
injected. The wavelength range of the source signal belongs to the photonic bandgap
of the periodic structure, thus it can propagate along the line defect.

As shown in Figure 9.5, a detector is used to record the incident electric fiel
and the reflecte fiel from the UPML boundary. The FFT of the recorded temporal
data and the ratio between reflecte and incident fiel give the value of the reflectio
coefficien from the boundary. In the case under investigation here, reflection coming
back from the UPML boundary at the right end of the waveguide are calculated for
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Figure 9.5 Schematic diagram of a pillar-type PhC-waveguide excited with a Gaussian
pulse at 1.5 um in order to test the efficien y of UPML-MRTD scheme. (Reproduced
with permission from Letizia, R. and Obayya, S.S.A. (2008) Efficien multiresolution time-
domain analysis of arbitrarily shaped photonic devices. IET Optoelectron., 2 (6), 241-253.
(©) 2008 IET.)

different cases. Figure 9.6 shows the evolution of the reflectio coefficien obtained
by varying the depth of the UPML boundaries. From this figure it can be seen that
for a UPML depth of 1.74 pum, the reflectio coefficien is less than —40 dB at the
central wavelength Ag.

In Figure 9.7, the performance of the UPML is analysed for different values of o ax
adopted in the polynomial scaling. For o nax A = 0.0175/m, reflectio coefficien is as
low as —40 dB.

9.3 MRTD versus FDTD for the Analysis of Linear Photonic Devices
9.3.1 Bragg Resonators: Comparison with Analytical Approach

After studying the stability of the proposed method, the Bragg resonator (BR) problem
is considered next. The Bragg grating reflecto is an example of a 1D-PhC that
serves as a reflecto for frequencies within a photonic bandgap. In particular, it find
application in devices such as the distributed Bragg reflecto (DBR) laser and the
distributed feedback (DFB) laser.

Considering a medium of refractive index, 7, containing a region of length, L, in
which the perturbed refractive index varies periodically with spatial period, A, and
indices in the range n &+ n for n; / n < 1. This region comprises a distributed Bragg
phase grating that couples oppositely travelling waves with propagation constants,
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Figure 9.6 Variation of reflectio coefficien with the depth of the UPML boundaries.
(Reproduced with permission from Letizia, R. and Obayya, S.S.A. (2008) Efficien mul-
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w=1.60pm

Figure 9.8 Schematic diagram of Bragg resonators (BR) with A = 0.25 pm and N = 20 [4].

+8, at angular frequency, . The Bragg propagation constant is define by

2= K = 2% 9.2

where K represents the grating number. The Bragg condition is satisfie when 8 = Sg.
The Bragg wavelength is Ag = 271A and the Bragg frequency is wg = ¢K /271 where
71 represents the modal index for the planar guide. At this frequency, the coupling
between oppositely travelling waves is maximised, and the transmission is minimised,
as the many small reflection from each phase perturbation add constructively in the
backward direction. The coupling produces a transmission stopband, centred at wg,
in which transmission is forbidden [3].

Figure 9.8 shows the schematic diagram of the BR considered, where the waveguide
is designed with a core of refractive index, n. = 2, and a width, w = 1.60 um,
surrounded by air (n, = 1.0), [4]. The added Bragg resonators consist of N = 20
periods and for a central wavelength Ao = 0.99 pm, the periodicity A is equal to 0.25
um and ny = 2.03 is the refractive index of the BR. This structure has been discretised
with A = Ax = Az = A/4 and the adopted time step is Az = 0.02 fs. A Gaussian
pulse modulated by the fundamental TE( mode profile Equation (9.1), is injected as
excitation with parameters 7o = 5 fs and 7o = 15 fs.

The reflectio coefficien spectra from the BR has been calculated and compared
to the results obtained by conventional FDTD for the analysis of the BR, as shown in
Figure 9.9. It may be observed from Figure 9.9 that the results from S-MRTD are in
good agreement with their FDTD counterparts [4], even though a resolution of only
four cells per period A has been used, whereas FDTD has required a resolution of 10
cells per period in order to achieve the same level of accuracy. A comparison of the
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Figure 9.9 Variation of the TE reflectio coefficien with the wavelength using both MRTD
method and FDTD with grid resolution Ad = Ax = Az of A/2 and A/5 respectively. (Re-
produced with permission from Letizia, R. and Obayya, S.S.A. (2008) Efficien multiresolu-
tion time-domain analysis of arbitrarily shaped photonic devices. IET Optoelectron., 2 (6),
241-253. (C) 2008 IET.)

CPU running time shows that for the case of MRTD, there is a saving equal to 1/2 of
that required by FDTD for the same level of accuracy.

Figure 9.10(a) shows the electric fiel pattern at the interface between the waveguide
and the BR when a sinusoidal continuous wave has been injected and has reached
a steady state. The wavelength of the sinusoidal wave is fi ed at A = 0.99 um,
which corresponds to the maximum reflectio coefficien for the BR, Ag. The source
is injected at a length of 19 um and the BR interface is placed at 32 um. Figure
9.10(b) shows the fiel pattern as obtained in the case of a continuous wave input at
a wavelength of A = 1.18 um, at which the reflectio coefficien has a value of 1073,
The amplitude of the electric fiel in this case has been normalised to the maximum
amplitude recorded in the case of maximum reflection It can be seen that the standing-
wave pattern is still present, but with peaks that are much lower than in the previous
case. The accuracy of the proposed approach has increased over the conventional
FDTD as a result of the high-order spatial finit difference employed. Multiresolution
analysis, combined with the second-order leapfrog finite-di ferences in time, based
on Haar scaling functions, allowes for a much coarser spatial discretisation. In order
to quantify the more linear dispersion characteristic of the S-MRTD scheme, the
variation of the maximum reflectio coefficien and its wavelength Ag with respect
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Figure 9.10 Sinusoidal steady-state amplitude ofreflecte fiel ofthe BR with N =20 excited
with a continuous wave: of wavelength A = 0.99 um, (a); and excited with a continuous wave
of wavelength A = 1.18 um, (b). (Reproduced with permission from Letizia, R. and Obayya,
S.S.A. (2008) Efficien multiresolution time-domain analysis of arbitrarily shaped photonic
devices. IET Optoelectronics, 2 (6), 241-253. (C) 2008 IET.)
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Table 9.1 Relative Error (%) for MRTD and FDTD compared to analytical solution at
different spatial discretisations. (Reproduced with permission from Letizia, R. and Obayya,
S.S.A. (2008) Efficien multiresolution time-domain analysis of arbitrarily shaped photonic
devices. [ET Optoelectron., 2 (6), 241-253. (C) 2008 IET.)

Maximum Reflectio

Coefficien Error Wavelength Peak Error
A/Ad MRTD FDTD MRTD FDTD
10 1.5 3 0.3 1.1
8 3.8 4.5 0.8 1.4
6 3 7.8 1.6 1.9
4 12 13.7 0.9 3.4

to different grid resolution values has been investigated for both the MRTD and the
FDTD. The cell size varies from a resolution of 10 cells per period to one of four
cells per period. The results obtained from both the S-MRTD and the FDTD schemes
are reported in Table 9.1, where the analytical values of the maximum reflectio
coefficient calculated at A = 0.99 um, is taken as a reference value to express the
relative error. As expected, for both methods, when adopting a bigger stencil in space,
the error increases. However, the S-MRTD code still shows greater accuracy than the
FDTD in each case. Moreover, a slight shift of the peak reflectio coefficien from the
BR wavelength of 0.99 pm has been observed and reported in Table 9.1 for each cell
size value. Again, the proposed method shows better accuracy compared to FDTD. In
particular, this difference becomes more evident and significan as the grid resolution
decreases towards coarser values.

9.3.2 PhC-Based Optical Filter

Here, the design of a PhC-based optical filte is considered. The structure, whose
schematic diagram is given in Figure 9.11, consists of a single microcavity coupled
to a straight waveguide based on a PBG structure [5—15]. The periodic square array
consists of dielectric rods with refractive index, n,,4s = 3.4 in air, a lattice constan,t a
= 0.58 um, and rod radius, r;,4s = 0.18a. The crystal shows the photonic bandgap only
for TE modes that extends in the range of 0.302 <wa / 21 ¢ <0.443 where wa / 2rc
represents the normalised frequency [15].

A source fiel of expression similar to Equation (9.1) is injected into the waveguide
with parameters 7T = 15 fs, #p = 50 fs and central wavelength 1y = ¢ / fo=1.45 um.
The geometry of the structure is discretised with a mesh of cell size Ax = Az= A =
29 nm that leads to a simulation time interval Af =~ 0.01 fs. Placing a detector at the
output port, the time variation of the electric fiel has been recorded and by means of
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Figure 9.11 Schematic diagram of the PhC microcavity coupled to a waveguide. (Repro-
duced with permission from Letizia, R. and Obayya, S.S.A. (2008) Efficien multiresolu-
tion time-domain analysis of arbitrarily shaped photonic devices. IET Optoelectron., 2 (6),
241-253. (C) 2008 IET.)

FFT, its spectral distribution has been calculated and normalised to the input. Figure
9.12 shows the resulting transmission coefficien obtained in three different cases:
the microcavity is formed in a lattice of [1 x 1], [2 x 2] or [3 x 3] rods with a
single-rod-missing defect in the middle of the waveguide. It can be noted from Figure
9.12 that from all the frequencies that propagate inside the waveguide, only the one
in which the microcavity shows resonance (at a normalised frequency of 0.39) can
pass through to be observed at the output port. The others are forbidden to propagate
and reflec back to the input port. Thus, the structure realises an optical filte tuned at
the resonance frequency of the PhC-microcavity. By increasing the number of rods
that assist the cavity, it can be seen that the transmission becomes sharper and more
selective as the quality factor increases as well.

Next, in order to investigate the tuning capability of the optical filte at a particular
frequency, the effect of varying the single-defect radius (74) that forms the microcavity
shown in Figure 9.13, while the number of rods surrounding it is kept to three, will
be analysed. Figure 9.14 shows the variation of the resonance frequency and quality
factor, Q, calculated by the formula in Equation (6.3), of the cavity with 4.

|E,?

7'[—
|E/|* = |Esr |

0= 93)

It can be seen that by increasing the size of the defect rod, a shift towards lower
frequencies is possible, whereas the quality factor rises to higher values. In particular,
it the radius of the defect rod under the actual filling- actor value of the PhC was
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Figure 9.13 Schematic diagram of the PhC microcavity coupled to the waveguide when the
single defect consists of a rod of smaller radius 4. (Reproduced with permission from Letizia,
R. and Obayya, S.S.A. (2008) Efficien multiresolution time-domain analysis of arbitrarily
shaped photonic devices. IET Optoelectron., 2 (6), 241-253. (C) 2008 IET.)
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varied in order to ensure the resonance mode had the same mode profil inside the
cavity. In Figure 9.15 the shift of the transmission spectra peak with the value of 74,
increasing this value from zero (rod-missing) to 0.08a and then 0.11a, is reported. As
it can be seen, the transmission resonance has shifted to a normalised frequency of
0.3508 and 0.336, respectively.
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MRTD Analysis of SHG
PhC Devices

10.1 Introduction

In recent years, there has been a great deal of attention dedicated to nonlinear optical
conversion in photonic-crystal-based devices as they have been found to be very
promising for the future of modern telecommunications. Nonlinear processes such as
second harmonic generation (SHG), can be exploited, in addition to the possibilities
offered by PhC technology to open a new way of generating short and coherent
wavelengths, not directly covered by laser sources, for innovative ultra-fast all-optical
circuits. FDTD modelling of nonlinear frequency-conversion processes requires that
the spatial interval in the propagation direction be a small fraction of the shortest
generated wavelength to limit the phase velocity error typical of FDTD schemes. This
constraint often results into an excessive cost in memory capacity and computational
time. Moreover, in SHG problems, the energy coupling between the propagating EM
fiel (fundamental wave) and the generated fiel (second harmonic wave) strongly
depends on the phase shift between the two interacting fields If this phase difference
is not accurately estimated, the calculation of the amount of coupled energy and
other relevant parameters will also be inaccurate. Therefore, in the fiel of nonlinear
photonics, it is crucial to rely on higher-order approximation schemes such as MRTD
that are capable of better accuracy than standard FDTD, while the computational
burden is also minimised.

Keeping in mind these considerations, this chapter starts with the validation of
the proposed nonlinear MRTD code in the cases of SHG in PhC waveguides and
compound PhC structures for selective frequency doubling. Next, a new and more
efficien design for selective SHG in nonlinear 2D photonic crystal-based devices is
proposed. It will be shown that fin selection of the SH wave is obtained by exploiting
the filterin properties of waveguide-microcavity coupling solutions.

Computational Photonics ~Salah Obayya
© 2011 John Wiley & Sons, Ltd
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10.2 Second Harmonic Generation in Optics
10.2.1 Introduction

A wide range of designs for all-optical signal processing using the PBG
property of PhCs can be found in the literature, [1-5]. It is known that in a PhC,
the electromagnetic-fiel distribution can be manipulated in order to create local fiel
enhancement in one dielectric or in another. In nonlinear optics, this localisation of the
field canbe exploited to enhance nonlinear effects that strongly depend on the strength
of the local field Near the photonic bandgap, low-frequency modes concentrate the
energy in the high-refractive-index regions, whereas the high-frequency modes con-
centrate their energy in the low-refractive-index regions [1]. Therefore, if a periodic
pattern is excited with a strong fundamental light source with wavelength close to the
low-frequency photonic bandgap edge, the fiel will concentrate in the high-index
medium, which can show a large value of nonlinear susceptibility. This strong fiel
localisation can significantl assist nonlinear interactions of the fundamental fiel
with the photonic crystal. Recently published work shows that the use of PhC-based
devices for nonlinear processes, such as the generation of a second harmonic, is one
of the most promising applications of this new design technology [6—11, 12].

10.2.2 Nonlinear Polarisation Vector

When a dielectric material is excited by an electric field a small (compared to atomic
dimensions) displacement of positive and negative charges is caused. Every molecule
of the material is characterised by an induced dipole moment and the material is
‘polarised’. This induced array of dipoles radiates its own electric fiel that is added to
the incident field If the frequency of the external fiel is very far from the resonance
frequencies of the material, the polarisation, define as the sum of all the dipole
moments, depends linearly upon the external field The polarisation vector, P, is
expressed as function of the external electric field £, by means of the susceptibility,
X, as follows

Pi(@)=¢0-Y  Xij (@) Ej (@), i,j=(x,72) (10.1)
J

in which the three components in space have been separated and the frequency
dependence is expressed. From Equation (10.1) it can be seen that if the tensor, x, is
not diagonal, generally P is not parallel to the electric fiel imposed. If the electric
fiel becomes strong enough, the relationship (10.1) doesn’t hold anymore and it
needs to be generalised into the following

P(w)=¢- xV(w)- E () + PN" () (10.2)
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in which a nonlinear polarization term, PN (w), has been included in the linear
relation. The relationship between the vectors P and £ define the system and describes
all the properties of the material to which it refers. Generally, in nonlinear optics, this
optical response is described by expressing the polarization, P, as a power series of
the fiel strength, E, as

P=eoxVE +eoxPE* + eoxPE> + - - (10.3)

where g is the dielectric constant in free space and x ) where n = 1,2, 3. .., repre-
sents the susceptibility of order #.

Nonlinear susceptibilities are also strictly related to the structural symmetry of the
material. As a consequence, all materials having a centre of inversion symmetry show
all elements of all even-order susceptibility tensors identically equal to zero. Thus, it
is not possible to realise even-order nonlinear processes in these types of materials.

For simplicity, the propagation of a sinusoidal wave in an isotropic and nonlinear
medium, for which Equation (10.3) holds, is considered. The electric fiel is expressed
as

E . .
E = Eycos(ot) = 70 (7 + eI (10.4)

If terms depending on susceptibilities of order greater than three are neglected, the
induced polarisation can be written as

Eo , . : EX . ,
P(t) = & (X“)?‘) (/" +e7/") + X(Z)TO (X 4+ e7¥ 4 2)

3
+X(3)% (e3jwt +e—3jwt _|_3e2jwte—jwt + 36—2jwtejwt)) (10.5)

thus

1 3
P(1) = ¢ [EX(Z)E(% + <X(1) + ZX(3)E(2’> Eqcos(wt)
1 1
+ EX(Z)ES cos Qwt) + ZXG)ES cos (3a)t)] (10.6)
Equation (10.6) shows that the polarisation, P, parallel to the electric field E, as the

medium is assumed to be isotropic, consists of four terms with angular frequencies
of 0, w, 2w and 3w, respectively.
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Therefore, it is possible to represent the terms of which the polarisation vector
consists in the frequency domain as follows

1
P(0) = e05 xPE? (10.7a)
3
P(w) = & <x‘” +7 X<3>E§> Eq cos (wt) (10.7b)
1 Q) 2
PQRw) = Esox Ejcos (2wt) (10.7¢)
1
PQw) = 2 x P E;] cos Bwt) (10.7d)

where P(0) refers to the term with zero frequency that does not lead to the generation
of electromagnetic radiation, but to a process of optical rectificatio (also called the
inverse Pockels effect), in which a static electric fiel is created within the nonlinear
crystal. The terms P(2w) and P(3w) instead represent the sources of the second
and third harmonics, respectively. Finally, the term P(w) consists of both the linear
response at the frequency of the input signal, represented by g9 x (" Eg cos (wt), and a
term that depends on the third-order susceptibility, x . The latter term can be used to
vary the refractive index of the medium, making possible self-focusing of the beam.

The system just assumed is very simplifie compared to reality. To generalise the
model, we need to consider the vector nature of the field and that the dielectric
susceptibilities are tensors in anisotropic materials. In the generic case of anisotropic
and nonlinear medium, the relationship between P and £ becomes

Pi=co | Y XyEj+ Y XAEiEc+ Y xouEExE+-- |, i jkl=xy.z
j ok Jikl
(10.8)

where P; represents the i-component of polarisation vector, P, and E; the j- component
of electric-fiel vector, E. In anisotropic materials, the nonlinearity, x " of order  is
a tensor with rank n + 1 and consists of 3"*! elements.

The polarisation vector plays a crucial role in the description of nonlinear processes.
By varying with time, in fact the polarisation can act as source for new components
of the electromagnetic field If, for instance, the wave equation is considered for the
case of nonlinear optical medium, we have

V25 () n’ ’E(t) 4w 9*P\
R L T

(10.9)
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where 7 is the linear refractive index and ¢ represents the speed of light in free space.
This expression can be interpreted as an inhomogeneous wave equation in which
the term PNY, which is related to the nonlinear response of the medium, gontrols
the electromagnetic propagation. In particular, it says that when the term 92 PN /9¢?
is nonzero, the charges are accelerated and, according to Larmor’s theorem, they
generate electromagnetic radiation.

Typically, every nonlinear light-matter interaction can be expressed in terms of the
nonlinear contribution to the polarisation vector, as described by Equation (10.2).

10.2.3  Physics of Second Harmonic Generation

The demonstration of optical second harmonic generation by the irradiation of a
quartz crystal with a ruby laser in 1961 [13] marked the beginning of a new fiel
of nonlinear optics. Nonlinear polarisation allows power to be exchanged between
waves at different frequencies. Thus, SHG can be seen as a particular type of frequency
mixing. A single pump wave, the fundamental wave at frequency w, is incident on
a nonlinear medium that exhibits second-order nonlinearity and generates a wave
at double the frequency, the second harmonic 2w. Second harmonic generation is
described schematically in Figure 10.1.

Frequency conversion in optics can even be understood as the modulation of the
refractive index by an electric fiel at a given optical frequency, or frequencies,
through a second-order nonlinearity. The modulated index then produces sidebands at
the optical frequency, yielding harmonics, and sum and difference frequencies [14].

In Figure 10.2 the difference between linear and nonlinear response is shown at a
steady state: when the response is nonlinear, the polarisation keeps the same period

20
(a)

_________________________ 20

y (b)

Figure 10.1 Schematic description of second harmonic generation process: (a) geometry of
SHG; (b) energy-level diagram describing SHG.
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as the electric field but the sinusoidal variation is lost. It is possible to break down
the polarisation vector into its Fourier components, as shown in Figure 10.3.

If the material is lacking a symmetry inversion property, it has nonzero second-order
nonlinearity and thus it is possible to obtain a nonzero second-harmonic component
with generation of a new electromagnetic fiel at frequency 2w. The amplitude of this
fiel is always orders of magnitude less than the incident or the transmitted fields
However, there are several methods that can be used to enhance the generation of
a second harmonic. All these methods refer to the concept of the phase matching
condition.

It can be demonstrated that conversion efficien y is proportional to a particular
term according to the following [14]

P®  sin® (AkL/2)
2w X 2
P (AkL/2)

. Ak =% —2k° (10.10)



MRTD Analysis of SHG PhC Devices 255

Optlcal polarlsatlon

T

Fundamental polarisation

AW
S IRVAVAVAT

Second harmonic polarisation

AAAAAAA
WWW\\’"’”

Constant polarisation
0 [ S— — ——

-0.5
-1
-15 f (d)

time

Figure 10.3 Analysis of the nonlinear polarisation wave: (a) total nonlinear polarisation;
(b) firs harmonic of the P expressed through Fourier series; (c) second harmonic at frequency
2w; (d) constant component at frequency zero.

where £ is the wave vector of the incident field £>“ is the wave vector at the second
harmonic, L is the interaction length of the dielectric material considered and P and
P?® represent the power of the fundamental and second harmonic waves, respectively.
It is clear from Equation (10.10) that the optimal work condition to maximise the
conversion efficien y is Ak = 0, and thus k*® = 2k®. If the latter condition does not
hold, the phase mismatch between fundamental and second harmonic makes the two
waves travel with different phase velocities. As a consequence of this, in some sections
of the structure the fundamental wave is summed in phase with the generated second
harmonic, whereas in others the overlap between the two waves is destructive. This
oscillating response does not allow a consistent interaction between the fundamental
and the generated waves. Therefore, the conversion efficien y is maximised when the
two waves can travel at the same phase velocity, even if their frequency is different.
Perfect phase matching for SHG with collinear beams leads to the following:

n(w)=nQw) (10.11)
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n, 'n,

Figure 10.4 Schematic diagram of a 1D periodic layered structure (1D-PBG). Propagation
is along the horizontal direction.

This condition can’t be naturally achieved due to the chromatic dispersion effects
that materials show: the refractive index is a monolithically growing function with
frequency. With regard to this problem, through the last decades, research efforts have
made it possible to defin several techniques that allow phase matching to be satisfied
They will be presented in the following paragraphs.

10.2.4  Phase Matching Through Effective Index for Periodic Structures

A way to modify the topological dispersion of the medium to compensate chromatic
dispersion is presented here. The basic idea is to introduce a periodic modulation of
the linear refractive index of the medium to induce a phase-matching condition for
SHG typically by means of a uniform Bragg grating. Generally, photonic bandgap
structures offer this opportunity.

An enhancement of the SHG efficien y in periodic structures such as in Figure
10.4 was proposed for the firs time in the early 1970s. The firs generator of a
second harmonic based on a PBG structure was proposed in 1997 by Scalora et al.
[15], who showed that conversion efficien y was greatly enhanced, compared to that
obtained in a bulk medium of the same length, by aligning the fundamental fiel
with the maximum wavelength at the edge of the first-orde bandgap and the second
harmonic with the maximum wavelength at the edge of the second-order bandgap.
These numerical results were experimentally demonstrated by Dumeige et al. who
used a 1D PhC device constituting a stack of NV alternated layers of AlGaAs and AlOx
[16]. Generally, a structure consisting of N levels which alternates two materials with
high index contrast is considered. The levels are transparent both at the fundamental
and the second-harmonic frequency and only one level has significan second-order
nonlinearity. The incident fiel is perpendicular to the stack which is isotropic in
the plane of the structure. Under this condition, the calculation of the transmission
coefficient 7, and reflectio coefficient R, of the fundamental and SH waves is a
scalar problem that was solved analytically by Sprung et al. [17]. T depends on N, on
the transmission coefficien of the unit cell, 7}, and on the Bloch phase, 8, which are
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properties of the infinit structure of the unit cell. The relationship is the following

Ly [sinVBT
T _1+[ Sin(ﬂ)] (r,'—1) (10.12)

The complex effective index method [18-20], based on the effective dispersion
relationship, helps in understanding the properties of a finit multilayer stack and
allows the calculation of the effective refractive index of the structure. To derive an
explicit dispersion relationship for a structure of finit length, using the transfer matrix
method, a generic complex transmission coefficien is define [21]

t=x+jy=Te* (10.13)
where +/T is the transmission amplitude, ¢, = tan~! (y / x) 4 mm is the total phase
accumulated as light propagates through the material and m represents an integer.

Considering an analogy with the case of a homogeneous medium, the total phase
associated with the transmitted fiel is expressed as

¢r = k(w) D = (w/c)negs (w) D, (10.14)
with k£ (w) representing the effective wave vector and ng the effective refractive index
associated to the multilayer stack of length D.

As aresult of a transmission spectrum with the presence of gaps, the effective index

is expected to be complex. The imaginary part should be large inside the gap to allow
scattering losses. Thus, the following expression for +/7 is assumed

VT =|t| = e 7P (10.15)
where y = (w/c) n; and n; is the imaginary component of the field The complex trans-

mission matrix is written as ¢ = " V7% = ¢ = x + jy. Therefore the following
expression is derived

io=ig +In/T =i (fﬁeffz)) (10.16)
C
where still ¢, = tan~! (y/x) £ m. Equation (10.16) becomes
heir = (c/wD) [ — (i /2) In (x* + »%)] (10.17)

From Equation (10.17), it can be understood that at resonance, where 7 = x2 +
y? = 1, the imaginary part of the index is identically zero. It is also possible to defin
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the effective index as the ratio between the speed of light in vacuum and the effective
phase velocity of the wave in the medium as follows

f(w) = gnff () (10.18)

Equation (10.18) expresses the effective dispersion relationship for the structure
and it generally holds without referring to a specifi periodicity [21].

For periodic structures, phase-matching conditions are automatically satisfie if
the fundamental and SH field are tuned at the resonance peaks on the right side of
the respective transmission spectrum [15]. The effective index can be expressed for a
periodic structure consisting of N periods as

Aot = ﬁ {tan—‘ [z tan (NB) cot (B)] + int [%ﬂ + %] n} (10.19)

where f is the phase constant of an infinit structure with the same unit cell as the
finit structure under examination. Equation (10.19) also tells something more about
the localisation of the resonances at which phase-matched mixing of three waves is
possible. A structure consisting of 20 periods of layers A/4 — A/2 is considered as
example. This design allows the field at the band edges to be tuned in order to achieve
the PM condition and, at the same time, it results in high mode densities for all the
fields Transmittivity is a periodic function with Bloch phase, §, with period equal to
/N and with N resonances belonging to a pass band in the range § € [0, 7], for the
firs pass band and 8 € [z, 277 ] for the second pass band, and so on. It is interesting to
note that at the resonances of 8 (w) = w//N, T is in fact independent of T}, and thus
it does not depend on any of the geometric and optic local properties. In the case of
the SHG process, if the fundamental fiel is allocated to the firs peak on the right of
the first-orde bandgap in the transmission characteristic, the phase constant at A 1 is

(N-1)
= 10.20
Bl@)=n— (1020)
Substituting Equation (10.20) into (10.19), the following is obtained
N, 1
int [—ﬂ + —] —x(N-1) (10.21)
b4 2

which represents the phase of the fundamental field
The phase-matching condition for SHG leads to

2k (w) = kT Qw) (10.22)
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where £ represents the effective wave vector. Equation (10.22) can be written for
the phase constants as

2B (w) = B (2w) (10.23)

that, with regards to the second harmonic fiel phase, leads to

1 N, 1
2N —1) = ~tan~ [z tan (NB) cot (B)] + int | 2L + 1| T (10.24)
2 T 212
From Equation (10.24), the following is derived
tan~! [z tan (NB) cot (B)] = = 2N — 2 — M) (10.25)

where M is the integer part on the RHS in Equation (10.24). The tangent function is
define intherange[—m/2; /2], thus Equation (10.25) is satisfie under the condition
M—-2N+2=0.

Therefore, the phase constant is given by

T(2N -2)

BQw) = =

(10.26)

Relation (10.26) describes the phase-matched condition for the second harmonic
fiel (SHF): it should be tuned at resonance (2N — 2), that is the second resonance
far from the second band edge.

The reasons for the enhancement in SHG efficien y are found firs of all in the
increased modal density near to the band edges; furthermore there is a strong overlap
of modes and the small group velocities allow for longer interactions [22].

In general, the approach presented above can be helpful when phase matching is
required in a wave-mixing nonlinear process.

In Figure 10.5, the numerical and experimental results of SHG in a 1D PBG
structure obtained in 2001 by Centini et al. are illustrated as an example [23].

It was shown that enhancement of the second-order interaction is possible by
exploiting the high density of modes, the strong fiel localisation and the increased
coherence length near the photonic band edge. Pioneering work in this sense was
firs done by Trull ef al. in 1995 [24] and Martorell and Corbalan in 1997 [25], who
studied SHG in defective PhCs, both theoretically and experimentally. However, in
this initial study, SH was obtained by the nonlinear interfaces between layers that
would not allow conversion efficien y high enough to bring the design into practical
applications. Later, in 2001, Shi et a/. proposed a defective PhC with nonlinear layers
for which numerical simulations registered an increment of SHG efficien y up to fi e
orders of magnitude compared to the past [26]. In this kind of defective PhC, the



260 Computational Photonics

1.0 — ' 1.0 : -

os -\ A—ﬁ e
0.4J'\Jf'd‘\" 0al . ‘l"i A —
o ERE N VW

750 760 | 770 780 7901500 1550 1600 1650

33 l L _ i
_;;,_._ = : ] i | 6

3.2 i T

Transmission

ey wl,

PR

Effective Index
L]

: i =
3.1 : A % .’_‘..,t:_.‘..__.‘ = 3 8
' TMAMAAMAL AL
700 750 800 850 900 1400 1450 1500 1550 1600
Wavelength in nm

b L

”

Figure 10.5 Calculated (circles) and measured (solid lines) transmission spectra around
fundamental and SH wavelength (indicated by vertical narrows), (top view). Density of modes
(DOM) (solid line) and effective refractive index (dashed line), (bottom view) [23].

phase condition for SHG is different from the one in a bulk nonlinear crystal or in
a periodic dielectric system. From the transmission spectra it is evident that there is
a resonance peak localised at the incident frequency (fundamental) belonging to the
PhC bandgap. This can be explained by the existence of some localised states inside
the defect that correspond to specifi frequencies allowed inside the forbidden gap;
because of the finit periods of the PhC, these states couple with the surrounding free
space and decay as resonance states.

The results of SHG efficien y from this structure are compared to the ones obtained
by a periodic structure with waves tuned at the band edges. As it is localised at one of
the defect states inside the bandgap, the fundamental fiel intensity was found to be
increased as happens at the edges of the bandgap inside a periodic structure. However,
the phase condition in these two cases is very different. In the case of a periodic
structure with waves tuned to the band edges, the phase-matching condition is crucial
and must be satisfie for an efficien conversion process. In Shi’s design this condition
isnot essential to achieve efficien SHG. A detailed analysis of a 2D PhC structure with
a defect for SHG was proposed by Shi in [12] with the fundamental wave propagating
parallel to the plane of the structure. In this case, the 2D PhC structure consists of 17
periods with @ = 0.5 um and a fundamental wave, A ; = 1.362 pum, that corresponds
to a defect mode inside the PhC. As a consequence, the fundamental wave is well
confine inside the defect (PhC microcavity). Furthermore, it can be noted that the
coherence length of the structure is longer than the total dimensions of the PhC in
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the propagation direction, thus no phase-matching condition is necessary to achieve
efficien SHG.

Up to now, research work on SHG in PhC-based structures has shown that con-
version efficien y in these structures is still quite low if it is compared to results
achievable in bulk or waveguides that require dimensions on the scale of millimetres or
centimetres. However, the possibilities offered by PhC technology for the development
of SHG devices, making nonlinear effects available for integration onto microchips,
have strongly driven the research efforts in this direction. Different designs for SHG
in PhC waveguides and microcavities are currently under intense investigation for the
enhancement of generation efficien y [27-32].

10.3 Extended S-MRTD for SHG Analysis
10.3.1 TE/TE Coupling

The nonlinear process coupling the TE fundamental wave/ TE second harmonic in the
S-MRTD scheme is considered first Assuming the 2D problem in the xz-plane, the
y-axis as the homogeneous direction and the x-axis as the direction of propagation, the
fundamental electromagnetic components of the TE mode are E,, H, and H.. From
the discretised Maxwell’s equations, we fin the following set of equations

L—1

W 0 = 0t HY ) — ﬁ [;Ya OFIRYEY r P
(10.27a)

NIV § ST

Ljr1a =t T = n12E7 1 a1

(10.27b)
n+1/zDier(q/2,j+1/2 = nf1/2DiyJ‘r“;/2JH/2
b : N 1 Z,0
+At ,;S a(l) <_Enl—li+l/2‘j[| + E"I_Iill,]dr]/z)

(10.27¢)

Equation (10.27c) allows the calculation of D¢ at time step (n + 1/2) from the
values of H*¥ and H>? at time step (). The constitutive relationship then, accounting
for second-order nonlinearity, is

Dy = g0t Ey + Pnry (10.28)
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Assuming a x® = x,,® nonlinear medium and instantaneous second-order non-
linearity, the only y-component of the nonlinear polarisation, Pyy,, is nonzero and
given by

Pxy = €oxsy B2 (10.29)

The nonlinear effect can then be included inside the permittivity of the dielectric
medium as follows. Using Equations (10.28) and (10.29), the constitutive relationship
can be rewritten as

D, = eot.E, (10.30)
where
e = oo + XD E, | (10.31)

Substituting Equation (10.31) in (10.30), the following relationship for the £-fiel
is obtained

D
E, = z (10.32)

&0 [800 + X%Ey]

Adopting Equation (10.32), the following updating equation is derived and inserted
into the S-MRTD algorithm in order to calculate the E-fiel component

Y,
"+1/2Di+1/2,j+1/2

n+1/2Ez'yJ:€/2,j+1/2 = (10.33)

o)) V.9
€0 [800 + Xiv12, 412 '1—1/2Ei+1/2,j+l/2]
where

@ _ ™
Xit1/2,j+12 = X22 L2 (10.34)

and it represents the nonlinear susceptibility value at the grid point of coordinates
G+ 172,74+ 172).

It should be noted that in Equation (10.33), the latest value of £”-¥ is obtained by
iteration using the new value of D”>¢ and the old value of E”-¢ itself.
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10.3.2 TE/TM Coupling (x® Tensor)

A TE polarised input wave is considered with E-fiel components in the xz-plane
and the fundamental A component in the longitudinal y-direction. SHG from TM-
polarised harmonic waves can be achieved with epitaxial growth of the Alzgo,Gazgo, As
crystal on [001]-orientated GaAs substrate by aligning the x-axes along the principal
axes of the crystal [110]. The x® tensor has the following components

0 0 0 0 00
x@=10 0 0 ¥2 0 0 (10.35)
0 x> 0 0 0 0

where it is assumed that X3(§) = Xz(i) = 1 (arbitrary units). Due to the form of the non-

linear susceptibility tensor, the only nonzero component of the nonlinear polarisation
vector is Pyr, and it is given by

Pyi: = e0xVE; (10.36)

and realises a TE/TM coupling of the fundamental/SH waves, respectively.
The discretised equation for the update of the nonlinear polarisation states

2
n+1Pi,jLZ = SOXi(,zj) (n+1E,y’j(p> (10.37)

From Equation (10.37) the following equations for the D-fiel components can be
written

x.@ _ x.0
"+]/2Di+1/2,j+1/2 = 50800i,jn+1/2Ei+1/2,j+1/2 (10.38a)

2
z,¢ _ z,.9 ) V.9
n+172D: 0 2 10 = €08ccijnt1/2E 1 o 10 T €0X K12, 412 <n+1/2Ei+1/2,j+1/2)
(10.38b)

Using Equations (10.38), the update equations for the £- fiel components for the
generated TM polarisation can be derived as

1

E0€c0,i+1/2,7+1/2
1

E0€c0,i+1/2,7+1/2

2
2 V.9
— 80X;‘+1/2,j+1/2 <n+1/2Ei+1/2,j+1/2) (1039b)

X9 _ x.0
nt12E: D i = (n+1/2Dl-+1/2yj+1/2> (10.39a)

2,0 _ Z,¢
n+1/2Ei+1/2,j+1/2 - (n+1/2Di+1/z,j+1/2>
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From this point, the updates of the components D, D. and H,, follows the S-MRTD

equations for the case of TM polarised fiel propagation and are written as

L1
At :
1Dy =Dl + Az Y aWuwnpH | (1040a)
=1,
At [ &
w1 D = a D — Ax Z aO) 12 B[ 1o 10 | (10.40b)
=1,
”+1/21—Il+1/2 j+1/2 = n— 1/21—11+1/2 j+1/2
Li—1
At : 1
s IZX_; a(l) ( nE ot Ax 1Ez'z’—w1,j+1/2>

(10.40¢)

while the set of Equations (10.27), combined with Equation (10.41) below, solves the
field for TE polarisation

%
n+1/2Di+1/2,j+1/2

n+1/2E3)4:q/2,j+1/2 = (10.41)

E0€00

The solution of the equations is obtained through the following iterative process:

. Calculation of the updated values of H, and H, with Equations (10.27a-b), using

the E-fiel value at the previous time step.

. Substitution of the updated magnetic-field component into Equation (10.27.c) to

calculate the new value of D,..

. Next, calculation of the £, component using Equation (10.41).

Once the field for TE polarisation have been updated, the following steps are

iterated to simulate the coupling with the TM-polarised harmonic:

W

Updating of nonlinear term of the polarisation, Py, through Equation (10.37).

. At the same time step, calculation of components D, and D, from Equations

(10.38a—b) respectively.

Updating of electric-fiel components E, and £, with Equations (10.39a-b).
Finally, through Equations (10.40a—c), the set of new components for TM polari-
sation is calculated.
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.

Observation point

Figure 10.6 Schematic diagram of 2D straight nonlinear PhC waveguide. The lattice para-
meters are: @ = 1 um, &g = 11.56 and radius = 0.475a. (Reproduced with permission from
Letizia, R. and Obayya, S.S.A. (2009) Efficien second harmonic generation through selective
photonic crystal-microcavity coupling. IEEE J. Lightwave Technol., 27 (21), 4763-4772.
(©) 2009 IEEE.)

10.4 SHG in PhC-Waveguides
10.4.1 PBG Property: Calculating the PhC Dispersion Diagram

First of all, in order to test the validity of the presented MRTD approach, the nonlinear
PhC waveguide analysed through condensed node spatial network method in [33] will
be considered.

The structure, shown in Figure 10.6, is an air-hole-type photonic crystal waveguide
in which circular holes, arranged in a square lattice, are drilled into a GaAs slab
(es = 11.56) which presents a nonlinear coefficien Xz(? = 565pm/V. The photonic
crystal has periodic lattice of periodicity ¢ = 1 pm and a fillin factor »/a = 0.475
where 7 is the radius of the holes.

Before proceeding with the analysis of the PhC waveguide through the non-
linear MRTD scheme, the PBG of the periodic lattice has been calculated around
the normalised frequency (wa / 2mc) of 0.281 for TE polarisation modes. In order
to calculate the dispersive diagram of the periodic structure when no defects are
included, an FDTD algorithm combined with periodic boundary conditions (PBC)
using a wrap-around approach has been used [34]. As the periodic arrangement is
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Figure 10.7 (a) Unit cell, and (b) irreducible Brilluoin zone for a rectangular lattice with
period a.

rectangular, the total computational domain consists of the lattice unit cell, Figure
10.7(a), whose irreducible Brillouin zone is shown in Figure 10.7(b).

Due to the 2D translational symmetry of PhCs, the fiel quantities can be expressed
from Bloch’s theorem as

F(x+a,z)=e/%F(x,z) (10.42)
F(x,z+a)=e /% F(x,2) (10.43)

where F'represents the fiel components for £ and H. The PBCs are enforced by taking
the values of the fiel at the lower/left edge, multiplying them by a complex factor,
k. .a, that represents the required phase shift in the x and z-directions respectively,
and assigning the result to the upper/right boundary.

Figure 10.8 shows the band diagram for TE polarisation obtained by simulating a
unit cell with periodic boundary conditions applied. As may be observed from this
figure there is a photonic bandgap for the TE modes in the normalised frequency range
from 0.2142 to 0.306. Starting from this periodic structure, a waveguide is obtained by
removing a row of circular holes (single-missing-hole line defect). The computational
domain of [15a x 15a] is discretised with an average Ax, z = 40 nm and a temporal
step size of At = 0.05 fs has been adopted to ensure the code stability. To generate an
SH inside this waveguide structure, a sinusoidal TE wave at the normalised frequency
of 0.281 with amplitude 10° V/m modulated by a raised cosine in space, has been
injected as a source. It should be noted that the fundamental frequency belongs to
the photonic bandgap so that it is tightly confine inside the line defect and it can
propagate along the PhC.

10.4.2  Propagation Properties and SHG Efficienc

Figure 10.9 shows the time evolution of the electric fiel at an observation point
placed at the output end of the PhC waveguide. By using the FFT of these
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Figure 10.8 Transmission coefficien of the periodic lattice of Figure 10.16 where the PBG
extends from 0.2142 to 0.306 in the normalised frequency domain. (Reproduced with per-
mission from Letizia, R. and Obayya, S.S.A. (2009) Efficien second harmonic generation
through selective photonic crystal-microcavity coupling. IEEE J. Lightwave Technol., 27 (21),
4763-4772. (C) 2009 IEEE.)
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Figure 10.9 Time variation of the electric fiel recorded at the observation point inside the
PhC waveguide. (Reproduced with permission from Letizia, R. and Obayya, S.S.A. (2009)
Efficien second harmonic generation through selective photonic crystal-microcavity coupling.
IEEE J. Lightwave Technol., 27 (21), 4763—-4772. (C) 2009 1EEE.)
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Figure 10.10 Normalised spectral distribution of both fundamental and SH waves inside the
PhC waveguide. (Reproduced with permission from Letizia, R. and Obayya, S.S.A. (2009)
Efficien second harmonic generation through selective photonic crystal-microcavity coupling.
IEEE J. Lightwave Technol., 27 (21), 4763—4772. (C) 2009 IEEE.)

time-domain data, the spectral distribution of the electric fiel is calculated and
normalised to the fundamental spectrum peak input. The result of this procedure is
shown in Figure 10.10.

As maybe noted from this figure the second harmonic of the input frequency is
generated inside the waveguide as result of the nonlinear interaction between the
electric fiel and the nonlinearity of the medium. The SHG efficien y is calculated
using

E 2
_ [Eshlinax Shlzma" (10.44)
| E|

max

Eff

where |Eg|max and |Ef|y.c represent the maximum value of electric fiel for the
fundamental and SH waves, respectively. The calculated efficien y is about 19% and
agrees well with the efficien y results shown in [33]. In this case, the second harmonic
fiel (SHF) is mixed with the fundamental fiel (FF), which is also still propagating in
the waveguide. Furthermore, the second harmonic wave is not well guided inside the
structure as its frequency does not belong to the photonic bandgap of the waveguide.
This is confirme in Figure 10.11, where the electric field-profil of both the funda-
mental and SH waves are shown along the transverse section of the PhC waveguide.
It can be noted from Figure 10.11 that the fundamental frequency mode is strongly
guided inside the core (line defect), whereas the SH wave penetrates for some rows
inside the periodic pattern at the edges as the photonic bandgap guiding principle does
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transversal section of the PhC waveguide. (Reproduced with permission from Letizia, R.
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not hold at its frequency. This results in a weak guidance of the SH wave and in the
spread of some of the total SH energy through the PhC cladding.

10.5 Selective SHG in Compound PhC-Based Structures
10.5.1 Introduction

Due to the relatively small size of PhC devices, it has been clearly demonstrated that
achieving high conversion efficien y in PhC devices is relatively difficul [6-11, 12].
In particular, the generation of harmonics in a PhC waveguide can encounter some
problems due to the absence of a photonic bandgap at high frequencies. This will
result in very weak guiding of the generated wave. As the photonic bandgap guiding
process is compromised at these frequencies, instead of being confined it tends to
spread outside the core into the periodic arrangement.

However, as an attempt to enhance the conversion efficien y and selectivity of the
SH wave, Satoh et al. [10] have proposed, for the firs time, a compound nonlinear
PhC structure that can convert an input frequency into its second harmonic by using
the nonlinear property of the medium. Two different nonlinear PhC waveguides, built
in two different periodic lattices, are coupled together through a tapered section to
achieve selection of only the second harmonic frequency at the output of the second
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waveguide. The compound arrangement firs of all provides the PhC waveguide with
the ability to guide the second harmonic and secondly, the stopband characteristics
forbid the fundamental wave to propagate. Thus, selection of the only the second
harmonic at the output of the generation structure is realised.

Simulation results from the 2D frequency converter proposed in [10] will be given
as further validation of the numerical code.

However, this approach suffers from a low value of frequency conversion efficien y
due to the radiation losses encountered in the tapered waveguide region, and that
significantl reduces the power of the second harmonic at the output of the PhC
waveguide. Moreover, the fundamental frequency is not completely suppressed at the
output waveguide.

10.5.2  Selective SHG: Coupling PhC Waveguides Through
a Tapered Section

The structure for the 2D frequency converter proposed in [10] by Satoh’s group is
considered to further investigate the validity of the developed code. The structure, in
Figure 10.12, consists of two different pillar-type PhC waveguides placed together to
allow only the SH wave as output. The parameters are the same as the structure in
Figure 10.6 for the input region, used now to assist the harmonic generation, while
the lattice period is changed to half in the output waveguide (a; = a/2). This, due
to the PBG property, will prevent the fundamental wave propagating in the output
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Figure 10.12 Schematic diagram of a frequency converter consisting of two different PhC
waveguides coupled through a tapered section. The output waveguide takes place in a lattice
having a; = a/2. The input waveguide is excited with a Gaussian pulse at wa/27c = 0.381.
(Reproduced with permission from Letizia, R. and Obayya, S.S.A. (2008) Efficien multires-
olution time-domain analysis of arbitrarily shaped photonic devices. IET Optoelectron., 2 (6),
241-253. (©) 2008 1ET.)
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Figure 10.13 Spectral distribution of the electric fiel recorded at the detector point in output
at x = 22 um from the input section. Efficien y of selective SHG is calculated at about 2%.
(Reproduced with permission from Letizia, R. and Obayya, S.S.A. (2008) Efficien multires-
olution time-domain analysis of arbitrarily shaped photonic devices. IET Optoelectron., 2 (6),
241-253. (C) 2008 IET.)

waveguide. In order to assist the coupling between the two PhC waveguides, a tapered
section is arranged at the interface.

The structure is excited with a Gaussian pulse TE polarised of 7y = 30 fs and
To = 90 fs at a normalised frequency of 0.381 and an amplitude of 10° V/m. A
detector is placed inside the output waveguide at x = 22 um from the input source. In
Figure 10.13, the FFT of the recorded time data in this point is shown. It is apparent
that only the generated second harmonic wave can be found in the output as the PBG
characteristic of the second PhC waveguide acts like a mirror for the fundamental
frequency. This can be clearly noted in Figures 10.14 and 10.15, where the evolution
of both the fundamental and second harmonic waves is shown along the longitudinal
direction of the frequency converter. The SHG efficien y calculated is about 2%,
again, this value agrees well with the results reported in [10].

10.6 New Design for Selective SHG: PhC Microcavity Coupling
10.6.1 Introduction

The coupling of two PhC waveguides through a tapered section enables the collection
of the SH from the generation waveguide and address it into the output waveguide
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Figure 10.14 Fundamental electric-fiel variation along the longitudinal direction of the two
waveguides that make up the frequency converter. The fundamental frequency is prevented
from propagating inside the output photonic crystal waveguide. (Reproduced with permission
from Letizia, R. and Obayya, S.S.A. (2008) Efficien multiresolution time-domain analysis of
arbitrarily shaped photonic devices. IET Optoelectron., 2 (6), 241-253. (C) 2008 IET.)

while the fundamental wave is reflecte back. However, due to the radiation losses
encountered in the taper, the whole SHG efficien y deteriorates [10]. Moreover, the
fundamental wave can still partially propagate in the output waveguide section leading
to a low-quality selection of the SH wave. Alternatively, a new and more efficien
design for an SH converter, whose schematic is shown in Figure 10.20, is suggested
here. The basic idea is that in addition to the original waveguide where SH conversion
takes place, there is another side-coupled PhC waveguide, designed to allow only the
propagation of the SH wave.

10.6.2 Stopband Properties

As seen in the previous chapters, the photonic bandgap property is directly related to
the lattice constant of the periodic structure. Therefore, by scaling down the lattice
constant from 1 to 0.5 um, the PBG of the new periodic structure is expected to be
in the frequency band of the SH wave. By following this concept, the side-coupled
PhC waveguide is designed in a lattice of periodicity a; = 0.5 um. By carrying out a
simple FDTD analysis to fin out the dispersion diagram for the new unit cell with
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period a;, it can be easily verifie that a PBG lies in the range 0.4 < wa/2mc < 0.55.
Therefore, the generated SH wave belongs to the PBG of the second periodic lattice
and hence it will have a better confinemen inside its line defect. As shown in Figure
10.16, this second PhC waveguide is placed in parallel to the firs PhC waveguide to
form a compound structure that generates SH in two stages as follows:

First stage — the SH wave is generated in the firs PhC waveguide as a
result of nonlinear interaction of second order.

Second stage — the SH wave is filtere and dropped from the firs wave-
guide to the second waveguide in order to achieve as high selectivity and
efficien y as possible.

The dimensions of the new structure are [11a x 11la] for the firs region plus
[12a; x 22a,] for the second region, where a; = a/2, witha = 1 um. Spatial average
discretisation is chosen to be Ax, z = 50 nm and time interval is fi ed at Az = 0.06 fs.
Initially, the two PhC waveguides coupled in this compound structure are simulated
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Figure 10.16 Schematic diagram of a frequency converter consisting of two different and
coupled PhC waveguides. The secondary waveguide is in a lattice of period a; = a/2. The
primary waveguide is excited with a Gaussian pulse at wa/2wc¢ = 0.2257. (Reproduced with
permission from Letizia, R. and Obayya, S.S.A. (2009) Efficien second harmonic generation
through selective photonic crystal-microcavity coupling. /[EEE J. Lightwave Technol., 27 (21),
4763-4772. (C) 2009 1IEEE.)

to understand how the field are coupled into the secondary waveguide. A Gaussian
pulse, with width in time 7y = 600 fs and delay #, = 1500 fs at a centred normalised
frequency of 0.2257 with amplitude 10° V/m, and modulated in space by a raised
cosine, is injected as source. The time variation of the electromagnetic fiel has been
recorded at a detector point placed at the output end of the secondary waveguide.
Figure 10.17 shows the spectral distribution of both the fundamental and SH waves
at the output, normalised to the spectrum of the fundamental wave launched into
the primary waveguide. It is apparent that at the output waveguide the coupled SH
signal is very weak and it is still mixed with a significan portion of the fundamental
wave. Therefore, a specifi design engineered to enhance the coupling of the SH wave
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Figure 10.17 Transmission of the electric fiel at the output end of the secondary waveguide
in the case with no cavity. (Reproduced with permission from Letizia, R. and Obayya, S.S.A.
(2009) Efficien second harmonic generation through selective photonic crystal-microcavity
coupling. [EEE J. Lightwave Technol., 27 (21), 4763-4772. (C) 2009 IEEE.)

into the secondary waveguide and avoid interference from the fundamental frequency
propagating in the primary waveguide, is needed.

10.6.3 Coupling Waveguides and Cavities

In order to design PhC based photonic integrated circuits, it is essential to understand
and control the coupling of light between a PhC cavity and a PhC waveguide [35, 36]
or between two PhC waveguides [37]. When a PhC resonant cavity is attached at a
side oif a PhC waveguide, like a tuned stub is used in microwave engineering, the
system behaves like wavelength filte . Following this concept, a pair of waveguides
can be coupled to a cavity to build a very sharp filte through resonant tunnelling.

The filterin characteristics of all these systems are determined by the geometry
of the cavity that is attached to the waveguide and correspond to a specifi frequency
response of the resonator itself. In order to drop a wavelength from a waveguide, it
is necessary to couple a single-mode cavity that is tuned at that specifi wavelength
and that, through resonance, is able to drop the signal from the waveguide and couple
it back to the same waveguide or send it to a second waveguide. In Figure 10.18, the
process of resonance tunnelling is displayed: the signal which is dropped to waveguide
2 corresponds to the resonant single-mode of the cavity [38].
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Figure 10.18 Sketch of selective coupling of two waveguides through a single-mode resonant
cavity tuned at Ag. The mode that propagates inside waveguide 1 at wavelength Ay is dropped
by the resonator and sent into waveguide 2. All the other wavelengths (A;) that are different
from the resonance mode carry on propagating along waveguide 1.

Furthermore, Figure 10.19 shows two generic cases of coupling waveguides to
resonators: the case of side coupling in Figure 10.19(a) with the cavity placed at
the side of the infinit waveguide, and then the case of two half waveguides that are
coupled together via resonant tunnelling through the centre cavity, Figure 10.19(b).
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Figure 10.19 Sketch of two generic cases of coupling between waveguides and resonators:
(a) side coupling, and (b) resonant coupling in which two waveguides are coupled by a high
O cavity.
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Figure 10.20 Schematic diagram of the frequency converter proposed, which consists of
two different PhC waveguides and coupled through a row of microcavities. (Reproduced with
permission from Letizia, R. and Obayya, S.S.A. (2009) Efficien second harmonic generation
through selective photonic crystal-microcavity coupling. IEEE J. Lightwave Technol., 27 (21),
4763-4772. (C) 2009 1EEE.)

10.6.4 Enhancement of Efficienc and Selectivity Through
Selective PhC Microcavities

To enhance the performance of the suggested compound structure, a new arrangement
is proposed and shown in Figure 10.20. In order to transfer the SH into the output
PhC waveguide and avoid the losses due to its weak guidance inside the primary
waveguide, a row of PhC microcavities is arranged as a coupling region between the
two waveguides. These microcavities are realised by single-hole point defects inside
the square lattice, finel tuned to resonate at the SH frequency. The aim of adding
microcavities is to build an optical filte able to maximise the SH transfer to the
secondary waveguide. Coupled resonator optical waveguides (CROWs) can be found
in the literature in the design of narrow-band resonance filter or add/drop structures
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[36—46]. The concept of coupling the waveguide to a tuned microcavity is applied
here for the firs time, to the best of the author’s knowledge, to design a high-efficien y
SHG-based frequency converter. The basic concept behind this kind of structure is
that by placing a point defect, the microcavity, near to a PhC waveguide, a PhC-based
resonance filte can be realised. The main advantage of this arrangement is that the
dropping frequency of the filte can be tuned simply by engineering the single-defect
microcavity. In the proposed converter the same concept is applied and the dropping
frequency of the filte in this example is the SH frequency generated in the primary
waveguide. The PhC microcavity resonating at the SH frequency is able to trap this
frequency from the primary waveguide and drop it into the secondary waveguide
where it can propagate by means of the PhC’s engineered stopband characteristics. In
particular, by chaining a row of side resonators instead of only one, the filte efficien y
can be greatly improved.

10.6.5 PhC-Microcavity Design

A preliminary study of the cavity properties has been carried out to investigate the
resonance frequency and the mode profil inside the cavity itself. The resonator is
obtained by removing a single-hole point defect in a lattice of [7a; x 7a;]. By varying
the point-defect geometric properties, the resonance frequency can be controlled and
tuned to the desired value [2]. In this work, the lattice period of the PhC surrounding
the single-hole defect, a5, is varied in order to design a microcavity exactly tuned to
the SH frequency of 0.4515. The cavity is excited with a point source that evolves in
time as a Gaussian pulse of amplitude 1 V/m, #yp = 50.6 fs and T, = 20 fs. By taking
the FFT of the recorded time variation of the electric fiel at the centre of the cavity,
the spectral distribution of the resonant mode has been calculated. Figure 10.21 shows
the variation of the normalised resonance frequency with a,/a, and it can be noted
from this figur that when a; = 0.54, the cavity resonates exactly at the SH frequency
(normalised frequency 0.4515). For a; = 0.5a, the spectral energy distribution of the
resonant mode is shown in Figure 10.22 and its contour profil in the plane of the
structure is reported in Figure 10.23. The quality factor, O, of the PhC microcavity is
calculated using [47]

2
. |E|

2 2

|E|” — |Et7]

0= (10.45)

where E; is the electric fiel taken at a particular time step ¢, T is the time cycle
of the resonant mode and E,, 7 is the recorded electric fiel after one cycle. In this
microcavity the time cycle is 7 = 7 fs and the quality factor has been calculated to be
0 =222.
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Figure 10.21 Variation of the resonant frequency with a,/a where a; is the PhC microcavity
period and ¢ = 1 pm. (Reproduced with permission from Letizia, R. and Obayya, S.S.A.
(2009) Efficien second harmonic generation through selective photonic crystal-microcavity
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Figure 10.22 Spectral energy density of the electric fiel inside the microcavity. The cavity
shows only a resonant mode at the SH normalised frequency of 0.4515. (Reproduced with
permission from Letizia, R. and Obayya, S.S.A. (2009) Efficien second harmonic generation
through selective photonic crystal-microcavity coupling. IEEE J. Lightwave Technol., 27 (21),
4763-4772. (C) 2009 IEEE.)
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Figure 10.23 Contour profil of the resonant mode on the plane of the cavity. (Reproduced
with permission from Letizia, R. and Obayya, S.S.A. (2009) Efficien second harmonic gen-
eration through selective photonic crystal-microcavity coupling. [EEE J. Lightwave Technol.,
27 (21), 4763-4772. (C) 2009 IEEE.)

In order to maximise the efficien y, the cavities are carefully placed along the
propagation direction. It is expected that the location of the microcavities plays a
crucial role in determining the efficien y at the output of the secondary waveguide as
a consequence of the phase matching condition between the pump and the generated
wave. Along the primary waveguide in fact, the velocity phase difference between the
two waves will change, affecting the efficien y of nonlinear frequency conversion.
Figure 10.24 shows the variation of the amplitude of the SHF and FF along the
propagation direction in the primary waveguide when the total length is 42 pm. From
this figure it is clear that the SH wave reaches its maximum at distance x = 6.3 pm
from the source section. Thus, cavity 3 is placed at this value along the longitudinal
direction of the compound structure.

10.6.6 Simulation Results

Next, the effect of inserting one cavity, two cavities and a row of fi e cavities
on the overall device performance will be investigated. A detector point is placed
in the middle of the microcavity and from the FFT of the recorded time-domain
data, the spectral distribution, normalised with respect to the injected mode energy,
is calculated.
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Figure 10.24 Variation of fundamental (dashed line) and second harmonic fiel amplitude
(solid line) along the propagation direction for a PhC waveguide of length 42 um. The SH
wave reaches its maximum at distance x = 6.3 um from the source. Cavity 3 in the compound
structure is carefully placed at this distance along the propagation direction x. (Reproduced with
permission from Letizia, R. and Obayya, S.S.A. (2009) Efficien second harmonic generation
through selective photonic crystal-microcavity coupling. IEEE J. Lightwave Technol., 27 (21),
4763-4772. (C) 2009 1EEE.)

Figure 10.25 shows the results when only one microcavity is placed, cavity 1. It
can be noted that, compared to the previous case, without a cavity, the conversion
efficien y has lowered to about 1.5% while, in terms of selectivity, no significan
change is recorded. However, the situation changes when the order of filterin is
increased by adding a second microcavity. Thus, both the fundamental and the SH
normalised spectra are computed for the case of two resonators, cavity 1 and cavity 2,
with a separation distance of three periods and the results are shown in Figure 10.26.

Comparing Figures 10.25 and 10.26, it is clearly demonstrated that inserting the
second microcavity has resulted in an improvement in the selectivity of the filte and
also an enhancement of the SH efficien y which has increased to about 2.8%.

Finally, the case of fi e microcavities is considered. Compared to the previous
results, Figure 10.27 shows the variations of the fundamental and SH normalised
spectra as observed at the centre of cavity 3. It can be noted that only 0.5% of the
fundamental fiel can be detected in the resonator and the efficien y has significantl
increased to about 8.5%. Therefore, placing a row of microcavities to side-couple
the PhC waveguide can dramatically improve the selection of the SH frequency. This
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Figure 10.25 Normalised spectra of the fundamental and SH waves at the output in the case
of one cavity (cavity 1). (Reproduced with permission from Letizia, R. and Obayya, S.S.A.
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Figure 10.26 Normalised spectra of the fundamental and SH waves at the output in the
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Figure 10.27 Normalised spectra of the fundamental and SH waves at the output in the
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value of 8.5% SHG efficien y in photonic crystal waveguides is about three times
higher than the best value reported in the literature [10].

Figure 10.28 shows that when the observation point is taken at the output of the
primary waveguide, the pump wave propagates independently and that there is still
a portion of the SH wave, about 5%, that will need a longer simulation time to be
coupled. The separation between microcavities is a critical parameter in determining
the overall selectivity and efficien y of SH at the output. If the separation between
microcavities increases, the quality factor of individual cavities should increase; how-
ever, due to the relatively weak interaction between these microcavities, the overall
selectivity would deteriorate. Based upon different numerical experiments that have
been carried out through this work, it has been found that a separation of three periods
gives the best filterin performance.
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11

Dispersive Nonlinear MRTD for
SHG Applications

11.1 Introduction

In this chapter, the MRTD approach based on the expansion in terms of only
scaling functions (S-MRTD) is successfully extended for nonlinear SHG applica-
tions in dispersive media. Chromatic dispersion of materials makes the dielectric
characteristics of the media vary with frequency. As a result, two or more waves
at different wavelengths propagate into the medium with different phase velocities
creating a phase mismatch that cannot be ignored in SHG processes; on the contrary
it can significantl affect the entity of converted SH power. Therefore, in order to
accurately describe SHG processes, the numerical scheme should include a model
of the material dispersion of the medium and account for the deriving change in the
refractive index.

In FDTD schemes, analysis of dispersive materials has been carried out through
two main methods: the piecewise linear recursive convolution technique [1] and the
auxiliary differential equation (ADE) scheme [2]. In this chapter, the ADE-MRTD
scheme with Lorentz chromatic dispersion model to reproduce the characteristic linear
susceptibility of the medium is proposed. First, the equations are derived in the case
of TE/TE coupling between fundamental and second harmonic waves and then the
case of TE/TM coupling, which also performs a polarisation conversion, is presented.

Validation of the developed ADE-MRTD scheme is given for the generation of
the second harmonic in a planar asymmetric waveguide. A comparison between the
ADE-FDTD and the proposed ADE-MRTD scheme shows that numerical dispersion
of the latter scheme increases more slowly than in FDTD and, as a result, accuracy
can be ensured, even though the mesh discretisation is coarse. Looking at the CPU
running time required by the two different numerical codes, it is evident that the
accuracy obtained by FDTD with a fin mesh can be equally well performed by using
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fewer points in MRTD. This shows that the ADE-MRTD code is again more efficien
overall than ADE-FDTD.

Next, a more challenging example is reported to show the potential and ability
of nonlinear dispersive MRTD in a case of TE/TM coupling. Results show that the
nonlinear ADE-MRTD scheme ensures the accurate analysis of SHG processes in
photonic devices, while coarse meshes are allowed. Therefore, MRTD can be an
efficien and promising alternative modelling technique to the more popular FDTD
for the computation of nonlinear optical devices.

11.2 Dispersion Analysis
11.2.1 Introduction

In its original formulation, MRTD doesn’t deal with the dispersive nature of mate-
rials. This can be negligible in some traditional electromagnetic problems such as
microwave plane wave scattering at single frequencies from complicated structures.
However, when the interaction of light with optical materials is studied, linear dis-
persion must be taken into account to ensure accurate results. This is especially true
for TD simulations with pulsed excitations and a wideband frequency response, and
for nonlinear problems involving two frequencies very distant one from each other,
such as the SHG process. Thus, the variation of the material’s permittivity and/or per-
meability with frequency occurring at low-intensity £ and H field must be included
in the MRTD equations. With regard to this problem, the algorithm proposed from
Chapter 8 to Chapter 10 has been extended for the modelling of Lorentz media by
means of an ADE scheme, developed by Kashiwa and Fukai in 1990 [2]. The ADE
technique consists in the solution of a differential equation deriving from the consti-
tutive relationship and is second-order accurate in the space stencil Ax. The stability
and phase-error properties of the ADE, when applied to conventional FDTD schemes,
have been deeply investigated in the past few years [3]. It has been found that the
overall scheme for the study of dispersive medium is generally more dispersive than
the standard FDTD and their accuracy depends strongly on how well the chosen time
step resolves the shortest timescale. Therefore, it is expected that for the analysis of
dispersive media, the size of chosen time and space steps become even more crucial
in determining the accuracy of the results.

11.2.2 Dispersive Materials: Lorentz Model

In general, the macroscopic propagation characteristics of a medium depend on the
frequency, due to a phenomenon called chromatic dispersion that is experimentally
measurable. The phase velocity of propagating waves varies with frequency as a result
of the monotonically increasing variation of the refractive index.
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The relationship linking the variation of optical properties in dielectric materials
and semiconductors to the strength of the electric fiel is linear through first-orde
susceptibility, x1, and is expressed as

P (o) = eoxV (@) E () (11.1)

where P represents the polarisation vector at relatively low illumination intensity. With
high -intensity light as a source, a nonlinear response of the material can occur and
the chromatic dispersion will become the linear contribution at the total polarisation
vector, P.

The Lorentz model [4] provides a definitio for the linear susceptibility, x !, so
that the effect of P with frequency can be included in the determination of the £ fiel
by means of a constitutive relationship. Lorentz media defin a complex function in
the frequency domain that is characterised by one or more pairs of complex-conjugate
poles. For the case of a single-pole-pair medium, the linear susceptibility becomes

2
Agpwy,

Xp () = (11.2)

wy +2jws, — w?

where Ag, = &, , — €x,, TEpresents the variation of the relative permittivity due to
the Lorentz pole pair from the value at zero and infinit frequency, respectively, w), is
the frequency of the pole pair and §, is the damping coefficient By inverse Fourier
transformation, the function yx (¢) in time domain can be derived as

2

Aspa)p sr
Xy () = ——2L o=l sin ( o, — 5§,t> U (t) (11.3)
Jw? — 82
p~ °p
From the generic expression of x for a number, P, of pole pairs, the relative

permittivity can be define by the following

P 2
Agpw,

&e(w) = € + (11.4)
P

— w? +2jws, — ?

11.2.3 Auxiliary Differential Equations

According to the constitutive relationship for the linear case, the following holds

D = gpecE + PL (11.5)
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where P is the linear polarisation term that is modelled through Lorentz scheme with
a single pole pair as

PL(@) = gox.” (0) E (w) (11.6)
with

(& — €00) @)

w2 +2jws, — w?

x (@) = (11.7)

where ¢, and e, refer to the relative permittivity at zero and infinit frequency,
respectively.
Substituting the expression (11.7) into Equation (11.6), the ADE is finall obtained

aP.  9*P.

2 _ 2 _
a)pPL+28pW+W_8OAewa, Ae =& — €0 (11.8)

and it is discretised through central differences into
1 -1 1 -1
W R 428 R - AL N P =2 P+ P
g TS0 2At Af?

12N
2
=sole; o, ElY; (11.9)

Thus, the explicit relation for PL|241¢1 is

PL|Z;-FI =a;; P + Bij PL|:{;1 + v EI; (11.10)
where
2 — A0 .
o = ——2 (11.11a)
1+3p’iyjAt
8,1 At —1
Bij =37 (11.11b)
p’j’j t+1
goAg; jw? . At
Yij = Sl A (11.11c)

146, ,At
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11.3 SHG-MRTD Scheme for Dispersive Materials
11.3.1 TE/TE Coupling

The nonlinear process coupling the TE fundamental wave/TE second harmonic in
S-MRTD scheme is considered first Assuming the 2D problem in the xz-plane, the y-
axis as homogeneous direction and x-axis as direction of propagation, the fundamental
electromagnetic components of a TE mode are E), H, and H.. As seen in Chapter 8,
Equations (8.70a—c) hold.

The constitutive relationship accounting for linear dispersion and second-order
nonlinearity is modifie as

D, = goeE) + Pry + Priy (11.12)
Using Equations (11.12) and (8.72), the constitutive relationship can be rewritten as
D, = gosE, + P, (11.13)

where
&=Pm+@%ﬂ (11.14)

Substituting Equation (11.14) in (11.13), the following relationship for the £ fiel is
obtained
D, — P
E, = Y ? (11.15)
&0 [eoo + Xéz)Ey]

Adopting Equation (11.15), the following updating equation is derived and inserted
into the S-MRTD algorithm in order to calculate the E-fiel component

D? _ PLy
n+1/255 0172 4172 = n+1/24 54172, 412

V.9
”+1/2Ei+1/2,j+l/2 = 2 o (11.16)
£o [8"0 T Xixij2 4172 "*1/2Ei+1/2,j+1/2]
where
P =iy P+ Bjn P+ i ELY (11.17)
n+145 5 = Qijnty i, jn—147 j Vijnkti ; .
and
2 )
Xiv1/2,j+1/2 = X22 (11.18)

i+1/2,j+1/2
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and it represents the nonlinear susceptibility value at the grid point of coordinates
G+ 12,74+ 172).

11.3.2 TE/TM Coupling (x® Tensor)

A TE polarised input wave is considered with E-fiel components in the xz-plane
and the fundamental H component in the longitudinal y-direction. An SHG with TM-
polarised harmonic waves can be achieved with epitaxial growth of an Alzg, Gasge, As
crystal on [001]-orientated GaAs substrate by aligning the x-axes along the principal
axes of the crystal [110]. The x ® tensor is shown in Equation (10.35) and the nonlinear
polarisation vector is expressed by Equation (10.36).

From the discretised equation for the update of the nonlinear polarisation (10.37)
and the constitutive relationship (11.12), the following equations for the D-fiel
components can be written

X,0 _ X,Q
n+12D; 51 o 10 = €0800, i+ 12E L o 10 T n+1/2Pz+1/2 j+172 (11.19a)

Z,9 _ En%
n+1/2D:0 2 410 = €0800 nv12E 1 o s 10 T "+1/2P1+1/2 12

2
(2 .
Te0Xiv1/2,j+172 (”+1/2E3)+(/{/2,j+1/2> (11.19b)
where
n+1P —Olzjn wa‘i‘,Ban IP X(p+yi,ani}fp (11203)
n+1P —O[ljn sz+:31]n 1PLZw+Van Z(p (1120]3)

Using Equation (11.20), the update equations for the E- fiel components for the
generated TM polarisation can be derived as

1
X0 _ X, Lx,p
n+12E 0 v p = ottt PRy (n+1/2Di+1/2,j+1/2 - n+1/2Pi+1/2,j+1/2)
(11.21a)
Ez,go _ 1 Dz,(p PLz,go
n+1/255 40172, j+1/2 — —80800 12541/ n+1/255 0172, 54172 = n+1/24 540172, 5412
@ EVY ’ 11.21b
—E0Xit1/2,j+1/2 \nH1/2E541 /2, 412 (11.21b)

From this point, the update of the components Dy, D. and H, are expressed by the set
of Equations (10.40.a—) while the set of Equations (10.27a—c) solves the field for
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TE polarisation with fundamental electric component calculated by

DY _ pLy
n+1/255 40172 j4+172 = n+1/25541/2,j41/2

n+1/2Eiyﬁ/2,j+1/2 = (11.22)

E0€0

The solution of the equations is obtained through the following iterative process:

1. Calculation of the updated values of H, and H, with Equations (10.27a-b), using
the E£-fiel value at the previous time step.

2. Substitution of the updated magnetic-fiel components into Equation (10.27¢) to
calculate the new value of D,

3. At the same time step, Pp, update through Equation (11.17).

4. Next, calculation of the £, component with Equation (11.22).

Once the field for TE polarisation have been updated, the following steps are iterated
to simulate the coupling with the TM-polarised harmonic:

5. Updating of nonlinear polarisation term of polarisation, Py, through Equation
(10.37).

6. At the same time step, calculation of components D, and D, from Equations
(11.19a-b) respectively.

7. Calculation of Pr, and Py, through Equation (11.20a) and Equation (11.20b).

. Updating of the electric-fiel components £, and E, with Equations (11.21a-b).

9. Finally, Equations (10.40a—c) are used to update the set of components for TM
polarisation.

o]

11.4 Simulation Results
11.4.1 SHG in a Planar Waveguide

In order to test the validity and efficien y of the nonlinear S-MRTD code proposed for
the analysis of SHG, the asymmetric waveguide shown in Figure 11.1 is considered
first The device consists of a core that has width L., = 0.44 um and refractive index
Heore = 3.6, between substrates with index n = 3.1 and with air as cladding (n = 1)
[5].

The propagation of the fundamental TE, mode in the x-direction is performed
by launching a CW at a fundamental wavelength of A, = 1.55 um modulated by
the TE-mode profil in space. As a result of the nonlinearity of the dielectric mate-
rial, x® = 200 pm / V, generation of the second harmonic is expected at wavelength
Ash = 0.775 pm.

By performing post-processing numerical filterin of the electric fiel recorded at
the detector point, Figure 11.2 shows the variation of the electric fiel with time for
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z
‘| detector
X

Figure 11.1 Schematic diagram of the planar waveguide simulated where n¢oe = 3.6, sub-
strate has index n = 3.1, cladding is in air (n = 1) and L¢ore = 0.44 pum.

both the fundamental and the second harmonic waves, (continuous and bold lines,
respectively). It can be noted from this figur that the numerical method is stable. From
the FFT of these temporal data, the frequency response normalised to the fundamental
spectrum peak is obtained and shown in Figure 11.3. The figur shows the second

harmonic generated at wavelength 775 nm with efficien y |Ej;|* / ‘ E f‘z ~ 30%,

Jlﬂ R
m o

| | | I L
575 600 625 650
Time [fs]

Figure 11.2 Time variation of fundamental (fin line) and second harmonic wave (bold line)
recorded at the detector point of the waveguide. (Reproduced by permission from Obayya,
S.S.A. (2010) Novel Auxiliary Differential Equation-Multiresolution Time Domain Scheme
for Dispersive Nonlinear Photonic Devices. J Quantum Electron., 46 (5), 837-845. (C) 2010
IEEE.)
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Figure 11.3 Normalised spectra of fundamental and SH wave for MRTD with discretisation
Ax = Az = 110 nm. (Reproduced by permission from Obayya, S.S.A. (2010) Novel Aux-
iliary Differential Equation-Multiresolution Time Domain Scheme for Dispersive Nonlinear
Photonic Devices. J Quantum Electron., 46 (5), 837-845. (C) 2010 IEEE.)

where Eg, and Ej represent the electric-fiel components of fundamental and SH
waves, respectively.

Aiming to validate these results, the same structure has been simulated by using a
nonlinear FDTD algorithm and a much fine mesh which applies to a cell size Ax =
Az = 20 nm. Frequency-domain variation of the electric fiel stored at the detector
point is shown in Figure 11.4. As can be clearly seen from this figure the second
harmonic is generated from the input source with an efficien y that agrees well with
the value obtained by means of the S-MRTD method combined with a coarser grid.

In order to investigate the improved computational efficien y of S-MRTD over
conventional FDTD, an extensive study of the effect of varying the cell size has
been carried out. Simulations have been performed varying the cell size in the range
[Leore/22; Leore/4] that in nm corresponds to [20 nm; 110 nm]. Figure 11.5 reports the
value of SHG efficien y as calculated for each different mesh resolution with both
FDTD and S-MRTD methods. The figur clearly shows a quite stable response of
the MRTD code to the different grid sizes with very little effect on the efficien y
of generation. On the other hand, the FDTD scheme suffers significantl from the
choice of an inappropriate cell size leading to mistaken values of SHG efficien y. In
particular, it has been seen that it is the amplitude of the generated SH found in the
output that gradually decreases as the cell size is enlarged, whereas the fundamental
wave keeps quite a similar value. This can be explained by recalling the requirement
for a discretisation of A,/15-20 in the FDTD scheme, where A, represents the second
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Figure 11.4 Normalised spectra of fundamental and SH wave for FDTD with discretisation
Ax = Az = 20 nm. (Reproduced by permission from Obayya, S.S.A. (2010) Novel Aux-
iliary Differential Equation-Multiresolution Time Domain Scheme for Dispersive Nonlinear
Photonic Devices. J Quantum Electron., 46 (5), 837-845. (C) 2010 IEEE.)

harmonic wavelength. When the cell size increases, in fact, high frequencies are the
firs to be affected by the FDTD numerical dispersion, thus a specifi grid resolution
can still be small enough to describe frequencies at the fundamental wavelength, but
it is already over the limit for the second harmonic window.

To complete the study, CPU running time was recorded for each of the previous
simulations and results are shown in Figure 11.6 to compare the computational costs

100
- ——=a—— FDTD
s —e— S-MRTD
>
=
£
S50
=
=
O
T
w
N
1

L L 1 L L L n
0 0.1 0.2
Cell size [A/L_]

Figure 11.5 Comparison of SHG efficien y variation with unit cell size A for FDTD and
S-MRTD scheme.
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Figure 11.6 Comparison of CPU running time variation with unit cell size A for FDTD and
S-MRTD scheme.

of S-MRTD and FDTD. As expected, the running time for the MRTD scheme is
longer for each case, with a difference compared to FDTD that increased as the cell
size becomes smaller. This fact is due to the limit on the choice of Az imposed
for stability reasons that is stricter in the MRTD scheme than in FDTD. However
the situation changes if the results of Figures 11.5 and 11.6 are combined together.
Accuracy comparable to FDTD with smaller cell sizes can be achieved by S-MRTD
by using the largest one. This means that with the same level of accuracy, the CPU
running time for S-MRTD becomes smaller than that required by conventional FDTD,
proving the actual efficien y of the presented method, Table 11.1.

11.4.2 SHG in 1D Periodic Structure

Next, second harmonic generation is investigated through the ADE-S-MRTD scheme
in the more challenging problem of a high-contrast grating added to the waveguide,

Table 11.1 Relative Error (%) for MRTD and FDTD vs CPU running time. (Reproduced by
permission from Obayya, S.S.A. (2010) Novel Auxiliary Differential Equation-
Multiresolution Time Domain Scheme for Dispersive Nonlinear Photonic Devices.

J Quantum Electron., 46 (5), 837-845. (C) 2010 IEEE.)

Relative Error on SHG Efficien y A/Lcore CPU Running Time (minutes)

FDTD <3% 0.05 25
S-MRTD <3% 0.25 12
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Figure 11.7 Schematic diagram of the 1D photonic bandgap structure with number of
periods, N. (Reproduced by permission from Obayya, S.S.A. (2010) Novel Auxiliary Dif-
ferential Equation-Multiresolution Time Domain Scheme for Dispersive Nonlinear Photonic
Devices. J Quantum Electron., 46 (5), 837-845. (C) 2010 IEEE.)

while dispersion analysis is added to allow a complete description of the process.
This periodic structure was proposed in a modelling exercise in the COST-P11 project
(http://w3.uniromal.it/energetica/). This type of device consists practically in a 1D
photonic bandgap structure and is used in the SHG process because of its ability
to modify topologically the dispersion characteristic in such a way that the phase
matching condition through the waveguide is achieved when the effective index
of the device at the fundamental frequency is equal to the effective index at the
second harmonic frequency [6, 7]. The result is a great enhancement of the SHG
conversion efficien y. Furthermore, the intensity of the field is increased by means
of the resonances inside the 1D periodic structure [6].

The structure analysed to achieve SHG and TE/TM coupling , consists of a periodic
grating in a planar waveguide, as shown in Figure 11.7. The dielectric structure made
of Aly3Gag7As with refractive indices of ng = 3.28 at the fundamental wavelength
Ar=1.55 pm and ng, = 3.50 at the second harmonic wavelength Ag, = 0.775 pm, is
surrounded by air (n = 1).

The waveguide that couples the input/output of the device has width d = 0.18 um
and the grating consists of NV periods, where each period a = 0.18 um is formed
by a dielectric part (L; = 0.135 um) and air (L, = 0.045 pum). With this design
the waveguide supports a single TE mode for the fundamental Af = 1.55 um (only
one electric component with out-of-plane direction, E)), and a single TM mode for
the second harmonic at Ay, = 0.775 um (only one magnetic component with out-of-
plane direction, ,). A normalised nonlinear coefficien is considered, x ¥ = 1, that
allowsTE/TM coupling.

AlGaAs chromatic dispersion is accurately introduced by the Lorentz model for
the linear susceptibility with parameters: eo, = (3.549)%, Ae = (&5 — £50) = 4, w, =
27 - 108.51 x 10'%rad /s, and §, = 10 %w,,. The dispersion curve of the real part
of the dielectric refractive index that is obtained with Lorentz model is shown in
Figure 11.8.



Dispersive Nonlinear MRTD for SHG Applications 299

3.50054

o
n

Second harmonic

3.27996

Fundamental

Refractive index (real part)

3 i " " 1 . L 1 L
{i. 5 1 1.5
wavelength [pum]

Figure 11.8 Lorentz model of dispersion curve for the real part of Aly3;Gag;As refractive
index. The curve reports ng, = 3.500 54 at the second harmonic Ay, = 0.775 pum and ng =
3.279 96 at fundamental Ay = 1.55 um. Both values approximate well the experimentally
calculated indices, which are 3.50 and 3.28, respectively. (Reproduced by permission from
Obayya, S.S.A. (2010) Novel Auxiliary Differential Equation-Multiresolution Time Domain
Scheme for Dispersive Nonlinear Photonic Devices. J Quantum Electron., 46 (5), 837-845.
(©) 2010 IEEE.)
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Figure 11.9 Spatial fiel distribution at the phase-matched SH wavelength for the case of
N =20 (thick line); the thin line represents the normalised profil of the refractive index along
the x-direction. (Reproduced by permission from Obayya, S.S.A. (2010) Novel Auxiliary Dif-
ferential Equation-Multiresolution Time Domain Scheme for Dispersive Nonlinear Photonic
Devices. J Quantum Electron., 46 (5), 837-845. (C) 2010 IEEE.)
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Figure 11.10 SHG conversion efficien y calculated for N = 20.

The structure is discretised with cell size A = Ax = Az = d/8 and the adopted
time step is Az = 0.008 fs. A Gaussian pulse modulated by the fundamental TE mode
profile E7g (z) in Equation (11.12), is injected as excitation with bandwidth in time
To =20 fs, delay ty = 80 fs and Af = co/fp = 1.55 um is the central wavelength

—19)°

E, fsource (2, 1) = B (2)sin @ fot)e (11.23)

The spatial fiel distribution against the profil of the refractive index along the x-
direction, at a phase-matched SH wavelength for the case of N = 20 is displayed in
Figure 11.9. Next, Figure 11.10 shows the calculated SHG efficien y after N = 20
periods in the second harmonic wavelength range. Results are in agreement with what
is reported in the literature [7].
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