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Preface

Introduction

If you were stranded on a desert island with only your laptop (and presumably a large
solar panel), what software would you want to have with you? For me the answer
definitely includes the latest version of Wolfram Mathematica. Whether you are a
scientist, engineer, or mathematician, a Wall Street quant, a statistician or program-
mer, or even an artist or musician, you will be a better one if you have this tool at your
disposal. Of course, having a tool and knowing how to use it well are quite different
things. That is why I wrote the Mathematica Cookbook.

[ am a big fan of O’Reilly cookbooks, as these books are designed to help you solve
real-world problems. Mathematica is an ideal candidate for a cookbook because it
is so vast, deep, and full of traps for the novice. I was ecstatic to learn that O’Reilly
was looking to publish a Mathematica cookbook and even more excited when I was
chosen to be its author. T have been a user of Mathematica since version 3.0. Although
that was over 13 years ago, I still remember the frustration of trying to solve prob-
lems in this system. I don’t mean this in a derogatory way. The frustration a newbie
experiences when trying to learn Mathematica comes from the knowledge that you
are sitting in front of a highly advanced computational platform that eventually will
magnify your productivity tenfold—if you can only wrap your mind around its unfa-
miliar idioms. If you are a new (or even not-so-new) user of Mathematica today, you
are simultaneously in a better and a much worse position than I was with version 3.0.
You are in a better position because Mathematica 7.0 is vastly more powerful than 3.0
was back then. Not only has the number of available functions doubled, but Math-
ematica has fundamental new capabilities including dynamic interactivity, curated
data sources, parallel processing, image processing, and much more. You are in a
worse position because there is much more to learn!

As Mathematica grows, it remains largely unchanged in its core principles. This book
is designed to help you master those core principles by presenting Mathematica in
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the context of real-world problems. However, my goal is not just to show you how to
solve problems in Mathematica, but to show you how to do so in a way that plays to
Mathematica’s strengths. This means there is an emphasis on symbolic, functional,
and pattern-based styles of programming. Mathematica is a multi-paradigm pro-
gramming language; you can easily write code in it that a Fortran or C programmer
would have little trouble following. However, the procedural style that this entails is
not likely to give you good performance. More importantly, it will often cause you to
write more code than necessary and spend more time adapting that code to future
problems. Stephen Wolfram has said that a correct Mathematica program is often a
short Mathematica program. There is much truth to this. The truth comes from the
idea that good Mathematica programs leverage the capabilities of the vast built-in
library of both general-purpose and highly specialized functions. Programming in
Mathematica is a search for the right combination of primitives. My hope is that this
cookbook will play a role as your guide.

MathematicaCookbook.com

One risk of authoring a cookbook is that it is almost inevitable that something some-
one finds important will be left out. With Mathematica, this risk is a certainty be-
cause even as [ wrote the book, Mathematica’s capabilities grew. However, even if you
drew a line at, say, version 6.0, you would find that there are still many topics that I
do not cover in the book, for various reasons. To remedy this and to create a living
resource that I hope the Mathematica community will help nourish, I am launching
http://mathematicacookbook.com. Here you will find recipes that did not make it into
this book, and more importantly, you will be able rate recipes, contribute your own,
or provide alternative implementations to those found in the book or on the site.

Structure of This Book

The Mathematica Cookbook is not necessarily meant to be read from start to finish
like a conventional book (although you are certainly welcome to do so!). Having said
that, the chapters are organized in a purposeful way. Chapters 1 through 8 present
general techniques that all users of Mathematica should know. These chapters are
largely self-contained, but sometimes it is necessary to use features in one chapter
that are covered more deeply in another. Cross-references within each recipe should
prevent you from getting stuck. However, keep in mind that a cookbook is not the
same as a tutorial, and you should also make frequent use of the Mathematica refer-
ence, tutorials, and guides that are integrated into Mathematica’s help system. Chap-
ters 9 through 14 cover specific domains of Mathematica application. If you are the
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type of person who learns best by examples from your area of expertise, you will ben-
efit from seeing the techniques of the first chapters leveraged in problems related to
physics, engineering, calculus, statistics, music, finance, and more. Finally, Chapters
15 through 19 cover important techniques, extensions, and tools that make Math-
ematica unrivaled as a technical software development tool.

Chapter 1 covers numerics. For the most part, Mathematica simply does the right
thing when computing numeric results, as you would expect. In pure mathematics,
numbers are formal objects that are well behaved, but when you represent numbers
in a finite discrete device like a computer, often you will need to understand issues of
precision and accuracy in order to get reasonable results on certain classes of prob-
lems. Further, numbers have different representations in Mathematica (Integers, Ra-
tionals, Complex, and some exotic types like Intervals). Then there is an issue of input
and presentation: Mathematica supports different base representations and different
display formats. This chapter has recipes that cover all these issues, and it is wise to
have some familiarity with them before using any of the numeric algorithms.

Functional programming is a style of Mathematica development that most seasoned
users prefer. Chapter 2 dives deeply into functional programming, Mathematica style.
Because Mathematica was designed to support multiple development paradigms, its
functional programming abilities are not as pure as languages like Haskell. This is ac-
tually a big plus, because if you are using Mathematica chances are you are solving a
problem, and it’s the solution rather than the aesthetics that is foremost in your mind.
Mathematica programmers prefer the functional style because it leads to efficient
programs. It also leads to elegant programs. In the context of programming, elegant
means the combination of brevity, power, and clarity. There is an amazing sense of
intellectual satisfaction that comes from finding a concise functional solution, and
this feeling creates the positive feedback that will draw you into Mathematica. How-
ever, this style is often mysterious to people who come to Mathematica from other
languages like Fortran, C, Mathlab, or Microsoft Excel. I think this chapter will help
you discover the rewards of the functional style.

Chapter 3 presents Mathematica data structures, which are largely built on the foun-
dation of lists. From lists, Mathematica derives matrices and higher order tensors,
sparse matrices, and more. Knowing how to manipulate these structures is essential
for almost any application of Mathematica. This is obvious if you are doing linear
algebra, but list processing is integral to almost every facet of use. This chapter also
shows how to implement other types of data structures, such as a dictionary that
leverages the fast associative look-up that is part of Mathematica’s evaluation engine.

Pattern-based programming revolves around pattern matching and transformation.
Chapter 4 introduces Mathematica’s rich pattern-based techniques. Patterns are not
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a feature of most mainstream languages, but they are tremendously powerful and
essential if you hope to accomplish anything nontrivial in Mathematica. Of all the
techniques at your disposal, pattern matching and replacement is the one most likely
to yield the “wow” reaction you get when you see a seemingly simple looking piece of
code do something not so simple. To whet your appetite, here is one of my favorites.
In[190]:= runEncode[l List] := Map[{#,1}&,1] //.
{head__, {x_,n_}, {x, m}, tail __} = {head, {x, n+m}, tail}

In this little ditty by Frank Zizza (which won a programming contest at the 1990
Wolfram conference), the goal is to take a list and return the list in run length encoded
form. Don’t worry if this code seems cryptic; it won'’t after you have recipes from
Chapters 2 and 4 under your belt. For example, input {1, 1, 2, 2, 2, 1, 3, 3, 3, 3}
should produce {{1, 2}, {2, 3}, {1, 1}, {3, 4}

In[191]:= runEncode[{1, 1, 2, 2, 2,1, 3, 3, 3, 3}]
OUt[191]= {{112}) {2)3}1 {1, 13, {31 41}

Although you can create small solutions to this problem in languages like Python or
Ruby, I find this solution compelling because it contains no explicit looping construct
and, once you learn to read it, contains a very explicit statement of the problem.

Chapter 5 covers string manipulation, which is more important than you might think
for a language that is primarily associated with numeric and symbolic mathematics.
Mathematica has a rich set of string manipulation primitives that include all the typi-
cal functions you expect (Stringlength, StringReplace, StringInsert, and so forth),
plus an extension of its pattern language specifically designed for strings and includ-
ing regular expression-based transformations.

The next two chapters explore one of Mathematica’s best capabilities, integrated graph-
ics. Chapter 6 dives into two-dimensional plots and graphics. There are many packages
that let you create plots, but few are so seamlessly integrated into the same development
environment where you write code. This integration is an amazing productivity tool.
[ frequently find myself using Plot and other graphing functions simply as a means
to help me understand an equation or algorithm I am developing and not necessarily
because I am creating a presentation to be viewed by others. The fact that functions
like Plot, ListPlot, and ParametricPlot give good results with little effort means they
can become part of your day-to-day interaction with Mathematica. But if you need pro-
fessionally designed graphics for an important paper or presentation, you will not be
disappointed, because there are options to customize every aspect of the presentation.

Chapter 7 builds on the preceding chapter by moving into the more sexy domain of
3D graphics and plots. Plotting in 3D provides you with additional visualization and
interaction capabilities. All 3D graphics can be rotated, panned, and zoomed inter-
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actively. There are also many sophisticated options that let you adjust every aspect
of the plot, including shading, mesh, coloring, camera angles, how light reflects off
the surface, and so on. Not every user will want to tweak all of these settings, but if
you are a graphic artist or aficionado you will have a lot of fun once you master all
the options. This chapter will give you a leg up on this important dimension of Math-
ematica’s power.

Chapter 8, the first of the special-purpose chapters, covers image processing. Native
image processing functions were added in Mathematica 7.0, and you can have quite a
bit of fun transforming images programmatically as you do by hand with software such
as Photoshop. This chapter also shows some advanced image-processing techniques
for which I wrote a large part of the algorithms in Mathematica rather than relying on
the built-in functions. This provides readers who are interested in image processing
with a guide to approaching image algorithm development in Mathematica, and also
provides some deeper insight for those who know little about these algorithms

Chapter 9 will give you respite from all the eye-candy by providing some ear-candy.
You may not know it, but Mathematica is quite the musician, and I was happy to have
John Kiehl, a professional musician and recording studio owner, write this chapter for
you. Mathematica can turn functions into sound to play notes, chords, and electronic
versions of a variety of musical instruments. Further, it can import MIDI files and oth-
er audio formats. You can even perform various operations on sound such as Fourier
transforms. There really are few limits, and John is an experienced guide who provides
lots of recipes for the musically inclined to expand upon and the not-so-musically in-
clined to educate themselves with (or just play with for fun). This chapter is available for
your immediate listening pleasure at http://www.oreilly.com/catalog/9780596521004.

Chapter 10 returns to more mathematical fare by exploring Mathematica’s formidable
abilities in symbolic math. This chapter focuses on algebraic manipulation and solu-
tions to equations. Many of the recipes show techniques for massaging results pro-
duced by Mathematica into equivalent but sometimes more desirable forms.

Symbolic and numerical calculus is what most people think about when they think
about Mathematica, and Chapter 11 dives into Mathematica’s formidable (many say
unrivaled) capabilities in this domain. Here you will see recipes related to computing
limits, derivatives, integrals, vector calculus, and the solutions to differential equa-
tions. The chapter also covers the increasingly important domain of discrete calculus,
including sums, products, and difference equations.

There is high probability that the average technical person will need to do some sta-
tistics! Puns aside, Chapter 12 has recipes that will help you get a handle on Math-
ematica’s formidable statistical capabilities, which rival those of specialized stats
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packages. This chapter has recipes for common statistical measures, probability dis-
tributions, data fitting, interpolation, and more sophisticated tools like ANOVA. Tt
also introduces stochastic simulation.

Chapter 13 enters the realm of applied math by showcasing physics and engineering.
These domains are extremely broad, so rather than attempting to cover a large swath,
I cherry pick recipes that show applications of the mathematical tools discussed in
preceding chapters. I also include recipes that demonstrate general techniques for
organizing programs that have many variables. In addition, this chapter shows how
educators and others can draw on Mathematica’s access to curated data related to
physics, chemistry, and biology.

Chapter 14 jumps bravely into the risky business of numerical finance. The goal of
this chapter is to show quants and others interested in mathematical finance how
to leverage Mathematica’s strengths in applying common financial algorithms. This
chapter presents problems of mild to moderate sophistication so that the illustration
of Mathematica techniques is not lost in the complexity of modern computational
finance. A large part of this chapter is the result of the efforts of Andreas Lauschke,
who is expert in both computational finance and Mathematica.

Version 6.0 brought new excitement to the Mathematica world with the addition of dy-
namic interactivity. For the first time a Mathematica user had the capability to create
notebook output that changed in response to changes in underlying variables. In many
ways this ability parallels the new types of dynamic web pages that emerged around the
same time (so-called Web 2.0)—but I digress. Chapter 15 introduces the primitives un-
derlying this new dynamic interactivity. Amazingly, there are just three main ingredients
to this capability: Manipulate, Dynamic and DynamicModule. As with many of Mathematica’s
advanced features, you will master the easy use cases immediately, because the primi-
tives just do the right thing. More advanced application will require some steep learning,
but this chapter has many recipes that will help you get there. For your immediate grati-
fication, this chapter is available at http://www.oreilly.com/catalog/9780596521004.

Computers with multiple cores (processing elements) are commonplace; there is a
good chance you own a computer with at least two cores, and if you bought one re-
cently, perhaps even four or more. My Mac Pro has eight. Mathematica stays ahead
of this trend by bundling Parallel Processing with version 7.0. Chapter 16 contains
recipes that show you how to use these features. Mathematica makes it easy to add
parallelism to your programs, but this does not mean your algorithms will run four
times faster if you have four processors. To get any speed increase at all, you need to
understand how the parallel primitives work and how they can be tuned. The recipes
in this chapter show you how to configure parallelism, parallelize existing serial pro-
grams, and also implement more sophisticated parallel techniques like Map-Reduce
and parallel pipelines.
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As powerful as Mathematica is, there are times when you need something else. Chap-
ter 17 will show you how to interface Mathematica with other languages and pro-
grams. Here, programmers will learn how to integrate code written in C, Java, and
NET languages. This chapter also has recipes for integrating Mathematica with da-
tabase systems and third-party tools like spreadsheets.

Chapter 18, “Tricks of the Trade,” includes material that every Mathematica user
should know but that did not quite fit anywhere else in the book. Here T introduce
recipes on performance, packaging, stylesheets, and other important techniques.

Last but by no means least, you will want to know how to debug your way out of
those nasty situations where you just can’t figure out why you are getting strange er-
ror messages or bizarre results. Chapter 19 presents debugging techniques and, pos-
sibly more important, unit testing techniques. An important part of this chapter is
Wolfram Workbench, the alternative development environment based on Eclipse (an
open source IDE designed to be customizable to different languages).
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Conventions Used in This Book

The following typographical conventions are used in this book :

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program ele-
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

)
+
o This icon signifies a tip, suggestion, or general note.
LA
' og.
TS

This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you're reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
not require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Mathematica Cookbook by Salvatore
Mangano. Copyright 2010 O’Reilly Media, Inc., 978-0-596-52099-1.”
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If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Enabled

S f Safari Books Online is an on-demand digital library that lets you
aﬁ[' easily search over 7,500 technology and creative reference books
and videos to find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library
online. Read books on your cell phone and mobile devices. Access new titles be-
fore they are available for print, and get exclusive access to manuscripts in devel-
opment and post feedback for the authors. Copy and paste code samples, organize
your favorites, download chapters, bookmark key sections, create notes, print out
pages, and benefit from tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To
have full digital access to this book and others on similar topics from O’Reilly and
other publishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

North Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)

707 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http:/f'www.oreilly.com/catalog/9780596521004
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at:

http://www.oreilly.com
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CHAPTER 1
Numerics

Jenny I've got your number

I need to make you mine

Jenny don’t change your number
Eight six seven five three oh nine
Eight six seven five three oh nine
Eight six seven five three oh nine
Eight six seven five three oh nine

Tommy Tutone, “867-5309/Jenny”

1.0 Introduction

Numerical Types

Mathematics is a huge, almost all-encompassing subject, and the average layperson
often fails to appreciate the types of exotic objects that are in the mathematician’s
domain. Yet every person on the street perceives math is about numbers. So even
though numbers only scratch the surface of math and Mathematica, it makes sense
to begin with their representation.

Mathematica supports four numerical types: Integer, Rational, Real, and Complex. In
the following examples we use Mathematica’s comment notation (*comment*).

1 (*The integer one*)

172 (*The rational one half*)

1.2 ~ 8 (*The real 1.2 x 10"8%)

3+21I (*The complex number 3+2i*)

There is no need to take my word that these expressions have the specified types.
You can ask Mathematica to tell you using the function Head[], which returns the
head of an expression (i.e., head of a list).

In[2]:= Head[1]
Out[2]= Integer




In[3]:= Head[1/2]
Out[3]= Rational

In[4]:= Head[1.2 "~ 8]
Out[4]= Real

In[5]:= Head[3 + 21I]
Out[5]= Complex

Although Mathematica does not internally store numbers as lists, it provides the illu-
sion that a number has a head indicating its type. This is consistent with the fact
that everything in Mathematica is an expression and every expression must have a
head. It is also common for Mathematica to use the head to indicate type when con-
structing more complex objects. See Recipe 1.5, for example. If you are confused by
this, for now, just think of Head as returning a type name when presented with an
atomic expression (expressions that can’t be divided into subexpressions).

Exact and Approximate Results

Mathematica is unique in comparison to most mathematical tools and programming
languages in that it will usually produce exact results unless you tell it otherwise.
The following examples show the difference between exact and approximate results.
Recipes 1.1 and 1.2 show you how to make Mathematica use the appropriate form.

Exact results are displayed in their entirety when possible or symbolically when full
display would be impossible due to the infinity of the exact representation.

In[6]:= 3 " 1000

Out[6]= 1322070819480806636890455259752144365965422032752148167664920368226 -
828597346704 899540778313 850608 061963909 777696872 582355950954 582 100 -
618911865342725257953674027620225198320803878014774228964841274390 -
400117588618041128947815623094438061566173054086674490506178125480 -
344405 547054397038895817465368254916136220830268563778582290228416 -
398307 887896918 556404084 898937609373242171846359938695516 765018940 -
588109060426089671438864102814350385648747165832010614366132173102 -
768902 855220001

In[7]:= Sqrt[2]

out[7]= /2

Approximate numeric results are represented in machine precision floating point by
default. On most modern computers, this means double-precision floating-point
numbers, which contain a total of 64 binary bits, typically yielding 16 decimal digits
of mantissa. You can also specify numbers with greater than machine precision (see
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Recipe 1.1) but there is a performance cost: Mathematica must switch from the na-
tive hardware-based floating-point algorithms to software-based ones.

In[8]:= 3. " 1000
Out[8]= 1.322070819480807 x 10*"’

In[9]:= Sqrt[2.]
out[9]- 1.41421

By adding a decimal point to a number, you force Mathematica to treat it as approxi-
mate. These approximate numbers will be machine precision by default, but there
are several ways to force higher precision. Recipes 1.1 and 1.2 in this chapter will
elaborate on these differences.

Numerical Expressions

The previous examples show simple numerical expressions. In practice, Mathemat-
ica follows general mathematical notation, but in many cases this means that there
are multiple ways to express the same thing. Let’s consider each of the com-
mon operations that arise in algebra. There are several ways to express multiplica-
tion, division, and other arithmetic operations. A single space between expressions
(e.g., variables, numbers) implies multiplication, as is the typical convention
among mathematicians. You can evaluate typeset mathematics using special sym-
bols, such as x. You can also use Full Form (e.g., Plus, Times, Divide), but for arith-
metic this is unnecessarily verbose.

In[10]:= 9 + 8
out[10]= 17

In[11]:= Plus[9, 8]

Out[11]= 17
In[12]:= 9 x 8
out[12]= 72

In[13]:= a=9;b=38;
ab
out[14]= 72

In[15]:= Times[9, 8]

Out[15]= 72
In[16]:= 8/9
8
out[16]= -
9
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In[17]:=

O | oww | ®

out[17]=

In[18]:= Divide[8, 9]
8

Out[18]= -
9

The various representations are known as “forms” in Mathematica (e.g., InputForm,
OutputForm, TraditionalForm, etc.). Recipe 1.7 shows you how to control what form
is used for output of results. Controlling what form is used for input is a function of
using the various features of the Mathematica frontend (palettes, shortcut keys,
etc.). This book will not discuss the use of the frontend, since its main focus is pro-
gramming, and there are numerous other resources (the best being the integrated
help system) for mastering the frontend.

Numerical Approximations

Mathematica is famous for its symbolic abilities; however, when it comes to numeri-
cal methods it is also no slouch! The core functions for numerical solutions are NSum,
NProduct, NSolve, NIntegrate, and NDSolve. These are covered in Chapters 10 and 12.

1.1 Controlling Precision and Accuracy

Problem

You want numerical results that are to a specified numerical precision and accuracy.

Solution

Use N[] to convert from exact to approximate form while controlling precision and
accuracy to the desired amount.

In[19]:= N[1/5]
out[19]= 0.2
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You can explicitly specify the precision as a second argument to N[ ].

In[20]:= N[1/17, 10]
Out[20]= 0.05882352941

You can also explicitly specify both the precision and accuracy, but this is less com-
mon. You might do this to guarantee a fixed number of decimal places independent
of the size of the actual number.

In[21]:= N[{17, 1/17}, {Infinity, 10}]

Out[21]= {17.000000000, 0.0588235294}

To drive this point home, I ask you to consider the following. The first column uses
fixed precision, whereas the second uses infinite precision and fixed accuracy.

In[22]:= Table[With [{x=10"n+ 1/17}, {N[x, 10], N[x, {Infinity, 10}]}],
{n, 0, 5}] // TableForm
Out[22]//TableForm=

1.058823529 1.058823529

10.05882353 10.058823529

100.0588235 100.058823529

1000.058824 1000.058823529

10000.05882 10000.0588235294

100000.0588 100 000.0588235294

Discussion

For most purposes, treat precision as the total number of digits in the decimal repre-
sentation of a number and accuracy as the total number of digits after the decimal.
As such, precision is a measure of relative uncertainty (given a precision p a larger
number will have more uncertainty than a smaller number). Accuracy is an absolute
measure of uncertainty because the number of places after the decimal is indepen-
dent of the magnitude of the number. Typically you only need to control precision
in most applications.

There are two common syntaxes for using N[]. You already saw the functional
syntax in the solution section. The second uses Mathematica’s postfix notation. See
the sidebar “Mathematica Expressions” on page 6 for a discussion of postfix and
other notations.

In[29]:= Sqrt[2] //N

Out[29]= 1.41421
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Mathematica Expressions

Mathematica contains quite a bit of syntactic sugar that gives users the flexibility to enter
expressions in a variety of ways. Developers of traditional languages (C+, Java, Ruby, etc.)
are not typically used to this much flexibility. The flexibility stems partly from
mathematics itself, which often provides many notations to express the same concepts. It
also derives from Mathematica’s aim to be a platform for publishing mathematical
ideas as much as a computer-aided mathematics tool and programming language.

At this point in the book, I do not go over all possible ways Mathematica can display
input and output. Rather, I introduce the reader to four basic syntaxes for
Mathematica expressions. This was a point of confusion for me when I first learned
Mathematica, so I believe it is best to attend to it now.

Functional notation
This is the most common notation. When we use N[value,precision], we are
using the functional notation for N.

Infix notation
Infix notation is most common for operators such as +, -, *, etc. However, infix
notation can be used for any function f by using the syntax ~f~.

Postfix notation
Some operators, like ! for Factorial[], use postfix notation, but as we already
saw with N, postfix notation can be generally applied for function f using //f.

Prefix notation
Some operators, like - (unary Minus), use prefix notation, but there is also a
general way to use prefix notation for any function f using the syntax f@.

Here are some examples using N. Notice that when you use prefix or postfix and
need to supply an argument, you must use Mathematica’s syntax for pure functions
where # is used as a placeholder for the input and & is added as a postfix operator
alias for Function[].

N[1/2, 10] (*Functionx)

0.5000000000

1/2 ~N~ 10 (*Infixs)

0.5000000000

1/2//N (xPostfixx)

0.5

1/2 //N[#, 10] & (xPostfix with argumentx)

0.5000000000

Nel/2 (xPrefixx)

0.5

N[, 10] 8@1/2 («Prefix with argumentsx)

0.5000000000
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It is common to use this notation to force Mathematica to convert an exact or sym-
bolic result to an approximate result as the last step in a computation. When you
use postfix notation, you can explicitly specify the precision, but it is a bit awkward.
In[30]:= Sqrt[2] //N[#, 10] &
Out[30]= 1.414213562

When you don’t specify precision, Mathematica uses MachinePrecision, which is a
built-in symbol that denotes the precision native to your computer’s floating-point
capabilities. The numerical value of MachinePrecision is stored in a variable
$MachinePrecision.

In[31]:= $MachinePrecision
Out[31]= 15.9546

There is another notation that is less common but you may come across it in Mathe-
matica output. If a literal number is displayed with a trailing ~ (backtick) followed
optionally by a number, this indicates the number is either in machine precision or
is in the precision specified by the number following the backtick.

In[32]:= 20" (%20 in machine precision«)
Out[32]= 20.

In[33]:= 20720 (%20 with high precision of 20 digitsx)
Out[33]= 20.000000000000000000

In a complex expression with a lot of high-precision numbers, you can avoid specify-
ing each precision individually by using SetPrecision[].
In[34]:= SetPrecision[20. + 1/3  12.3 / 37.8 + Pi, 20]

(*All numbers will be set to a precision of 20.x)
Out[34]= 23.250058262055400604

You may find it surprising that $MachinePrecision is not an integer.
The reason stems from the formal definition of precision, which is

: derived from considering a number x and its uncertainty dx and using
the expression - Log[10, dx/x]. Accuracy is defined as - Log[10, dx].
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If you have an expression and need to know the precision or accuracy, you can use
the following functions.

In[35]:= Precision[2.]

Out[35]= MachinePrecision

In[36]:= Precision[2720]
out[36]= 20.

Exact results have infinite precision.

In[37]:= Precision[Sqrt[2]]
Out[37]=

In[38]:= Precision[Sqrt[2.]]
Out[38]= MachinePrecision

In[39]:= Accuracy[2.]
Out[39]= 15.6536

You are not guaranteed the accuracy you specify if the precision is too small.

In[40]:= Accuracy[N[30, {20, 20}]]
Out[40]= 18.5229

With enough precision, however, you will get accuracy.

In[41]:= Accuracy[N[30, {30, 20}1]
Out[41]= 20.

And precision can even be specified as infinite!

In[42]:= Accuracy[N[30, {Infinity, 20}]]
out[42]= 20.

Mathematica also defines two internal variables: $MinPrecision, whose default value
is minus infinity, and $MaxPrecision, whose default value is plus infinity.

In[43]:= {$MinPrecision, $MaxPrecision}
Out[43]= {0, =}

You can control precision within a complex calculation (without using N[] on every
intermediate result) by changing these values; however, you should only do so
within a Block (a local context). For example, compare the difference between a cal-
culation with automatic precision for intermediate results to the same calculation
with fixed precision (obtained by making $MinPrecision == $MaxPrecision).
Note that we must still start out the calculation with base values of at least

8 | Chapter 1: Numerics



$MinPrecision, otherwise the value will revert to the lowest precision, as explained
in Recipe 1.2.

In[44]:= SetPrecision[ (1 +Exp[Sqrt[2] + Sqrt[3]]) / 2"25, 32]
Out[44]= 7.226780742612584668840452114476x 10"

In[45]:= Block[{$MinPrecision = 32, $MaxPrecision=32},
SetPrecision[ (1 + Exp[Sqrt[2] + Sqrt[3]]) /2”25, 32]]
Out[45]= 7.2267807426125846688404521144759 x 1077

However, unless you have a very specific reason to control precision yourself, it is
generally best to let Mathematica automatically handle this for you.

See Also
The Wolfram documentation for N[ ] is here: http://bit.ly/XVe2E.

Discussions of precision and accuracy can be found at hitp://bit.ly/15qq2N and
http://bit.ly/icrhl.

The most thorough discussions of precision and accuracy in Mathematica can be found in
Chapter 8 of An Introduction to Programming with Mathematica (Cambridge University
Press) and The Mathematica GuideBook for Numerics (Springer).

A nice essay by David Goldberg called “What Every Computer Scientist Should
Know About Floating-Point Arithmetic” can be found at http://bit.ly/1E]23y.

1.2 Mixing Different Numerical Types

Problem

You need to predict what Mathematica will do with expressions containing mixed
types and representations.

Solution

The general rule of thumb is that the least precise type will determine the type of the result.

Mixing exact values and symbols

When expressions containing exact numeric values (integers and rationals) are
mixed with symbols, Mathematica will keep all results in the most general form, pos-
sibly reducing rationals to integers but leaving symbolic values in symbolic form.
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In[46]:= (2Pi)/3 + Pi/3

out[46]= =

In[47]:= Sqrt[Sin[2PiE] / 1/2E*2]

Out[47]=

Mixing exact values and approximate values

When an approximate value is used in an otherwise symbolic expression, it forces
Mathematica to convert to approximate values.

In[48]:= (2.0Pi) /3 + Pi/3
Out[48]= 3.14159

In[49]:= 1. + (2Pi)/3 + Pi/3
out[49]= 4.14159

Mixing values of different precision and accuracy

When you mix values of different precision and accuracy, the lower precision and ac-
curacy will determine the result. For multiplication, the precision of the result will
be exactly the minimum of the precision of each term, whereas the accuracy will be
somewhat less.

In[50]:= x = N[Sqrt[2], 30] * N[Sqrt[3], 10]

Out[50]= 2.449489743

In[51]:= Precision[x]
Out[51]= 10.

In[52]:= Accuracy[x]
Out[52]= 9.61092

For addition, the accuracy of the result will be exactly the minimum of the accuracy
of each term; the precision will be somewhat more.

In[53]:= x = N[Sqrt[5], {Infinity, 30}] + N[Sqrt[7], {Infinity, 10}]
Out[53]= 4.8818192886

In[54]:= Precision[x]
Out[54]= 10.6886

In[55]:
Out[55]

Accuracy [x]
10.
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Discussion

When mixing exact values with inexact values, it is possible to gain precision.

In[56]:= Precision[N[Sqrt[2], 20]]
out[56]= 20.

In[57]:= Precision[2 + N[Sqrt[2], 20]]
Out[57]= 20.3828

The gain in precision will be greater when the magnitude of the exact number domi-
nates that of the inexact number, as we see in this generated table.

In[2]:= TableForm[Table[
{2”n + N[Sqrt[2], 20], Precision[2”n + N[Sqrt[2], 20]]}, {nmn, 0, 10}],
TableHeadings —» {None, {"Result", "Precision"}} ]
Out[2]//TableForm=

Result Precision
2.4142135623730950488 20.2323
3.4142135623730950488 20.3828
5.4142135623730950488 20.583
9.4142135623730950488 20.8233
17.4142135623730950488 21.0904
33.4142135623730950488 21.3734
65.4142135623730950488 21.6652
129.4142135623730950488 21.9615
257.4142135623730950488 22.2601
513.4142135623730950488 22.56
1025.4142135623730950488 22.8604

See Also

The most thorough discussions of Mathematica’s numerical rules can be found in
Chapter 8 of An Introduction to Programming with Mathematica and The Mathemat-
ica GuideBook for Numerics.
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1.3 Representing Numbers in Other Bases

Problem

Your application calls for a different numerical base than 10.

Solution

Mathematica uses notation of the form base*"digits to represent numbers in differ-
ent bases. There must not be any internal whitespace in this representation.

In[59]:= 2""101 («Binaryx)
Out[59]= 5

In[60]:= 16""FFFF (+Hexidecimalx)
out[60]= 65535

Discussion

In addition to expressing numbers in other bases, you can convert numbers to other
bases with BaseForm[digits, base]. The base must be an integer between 2 and 36
when using either ** or BaseForm[ ]. Mathematica uses the letters a through z to repre-
sent digits higher than 10.

In[61]:= BaseForm[2""1010101, 16]
Out[61]//BaseForm=
5516

If you do math in another base, the output will still default to decimal, but you can
use BaseForm to convert the output of a function to hex.
In[62]:= 16""A0 + 16""OF // BaseForm[#, 16] &
Out[62]//BaseForm=
aﬁ(,

In[63]:= Hash["Hello, my name is Sal", "MD5"] // BaseForm[s, 16] &
Out[63]//BaseForm=
227514445323902792284692296881,4

You can also convert real and complex numbers to other bases.

In[64]:= 123.777 // BaseForm[#, 16] &
Out[64]//BaseForm=
7b.C6'F16
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In[65]:= 12.1 + 67.21 // BaseForm[#, 16] &
Out[65]//BaseForm=
C.199316 + 43.33315 i

See Also

Recipe 1.5 shows how to extract digits of a number in alternate bases.

1.4 Extracting the Digits of a Number
Problem

You want to extract the individual digits of a number to manipulate them individually.

Solution
The functions IntegerDigits[] and RealDigits[] make this task easy.

IntegerDigits[] returns a list of digits in base 10. See the “Discussion” section,
next, for additional options.

In[66]:= IntegerDigits[12345]

Out[66]= {1; 2: 3) 4) 5}

RealDigits[] returns a two-item list with the first item being the digits in base 10
and the second being the position of the decimal point. See the “Discussion” section
for additional options. First consider the digits display with N[ ] alone.

In[67]:= N[1/31]
Out[67]= 0.0322581

Notice how RealDigits[] automatically extracts more precision to return the num-
ber of digits necessary to get to the point at which they begin to repeat in the deci-
mal expansion.

In[68]:= RealDigits[N[1/31], 10]
Out[68]= {{3,2,2,5,8,0,6,4,5,1,6,1,2,9,0,3}, -1}

Discussion

Both RealDigits[] and IntegerDigits[] take the desired base and the number of de-
sired digits (length) as optional second and third arguments, respectively.

In[69]:= 121
Out[69]= 479001600
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In[70]:= IntegerDigits[12!, 10, 5]
Out[70]= {O) 1: 6) 0) O}

In[71]:= 12! // BaseForm[#, 16] & (xConsider 12! in base 16.x)
Out[71]//BaseForm=
1c8cfc004¢

In[72]:= IntegerDigits[12!, 16] (*Notice how IntegerDigits
with base 16 gives the digit values in base 10.x)
Out[72]— {1; 12) 8) 12) 15: 12) OJ 0}

In[73]:= IntegerDigits[12!, 16] // BaseForm[#, 16] &
(*But you can easily force them to base 16.x)
Out[73]//BaseForm=

{1165 C165 8165 C165 T165 C165 O16, O16}

RealDigits can take an additional fourth argument that specifies where in the deci-
mal expansion to start. If b is the base, then the fourth argument n means to start the
counting at the coefficient signified by b*n. The following examples should clarify.
In[74]:= N[Pi, 10] (#Pi to 10 digits of precision.x)
Out[74]= 3.141592654

In[75]:= RealDigits[Pi, 10, 3]
(xExtract first three digits. Decimal place is indicated as 1.x)
out[75]= {{3,1,4}, 1}

Start at 107-2 = 0.01, or the second digit after the decimal.

In[76]:= RealDigits[Pi, 10, 3, -2]
(xExtract third to fifth digit. Decimal place is indicated as -2.x)
OUt[76]= {{4; 1) 5}) ’1}

Start at 10°-5 = 0.00001, or the fifth digit after the decimal.
In[77]:= RealDigits[Pi, 10, 3, -5]
OUt[77]= {{91 2) 6}) -4}

In[78]:= N[Pi, 10] // BaseForm[#, 2] &
Out[78]//BaseForm=
11.0010010000111111011010101000100,

Here we get the digits of pi in base 2.
In[79]:= RealDigits[Pi, 2, 5, -2]
0Ut[79]= {{O; 1) O) 0; 1}) _1}

Here is an interesting application in which IntegerDigits is combined with the
Tuples function and a bit of pattern matching to get all n digits without calling
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IntegerDigits[] more than once. We used Short to elide the full list. (Short places
<<n>> in the output to indicate n missing items.)

In[80]:=

Tuples [IntegerDigits [43210], 4] // Short[#, 4] &

0ut[80]//Short=
{{4,4,4,4}, {4,4,4,3}, {(4,4,4,2}), {4,4,4,1}, {4,4,4,0}, {4,4,3,4)},

{4,4,3,3}, {4,4,3,2}, {4,4,3,1}, {4,4,3,0}, {4,4,2, 4},
{4,4,2,3}, {4,4,2,2}, {4,4,2,1}, {4,4,2,0}, {4,4,1, 4},
{4,4,1,3}, {4,4,1,2}, {4,4,1,1}, {4,4,1,0}, {4,4,0, 4},

{4,4,0,3}, {4,4,0, 2}, «<579>, {0, 0, 4, 2}, {0, 0, 4, 1}, {0, 0, 4, 0},

{0, 0, 3, 43, {0,0, 3, 3}, {0,0, 3,2}, {0,0, 3,1}, {0,0, 3,0},
{0, 0, 2, 4y, {0,0, 2,3}, {0,0, 2,2}, {0,0, 2,1}, {0,0,2,0},
{0, 0, 1, 43, {0,0,1, 3}, {0,0,1, 2}, {0,0,1, 1}, {0,0, 1,0},
{0, 0, 0, 43, {0, 0,0, 3}, {0,0,0,2}, {0,0,0,1}, {0,0,0,0}}

If you do not want the cases with leading zeros, you can use DeleteCases as follows.

In[81]:=

DeleteCases [Tuples [ IntegerDigits [43210], 4],

{z_/32==0, n_}] // Short[u, 4] &

Out[81]//Short=

{{4,4, 4,4}, {(4,4,4,3}, {4,4,4, 2}, {4,4,4,1}, {4,4,4,0},
{4, 4, 3,3}, {4,4,3, 2}, {4,4,3,1}, {4,4,3,0}, {4,4, 2,4},
{4, 4,2,3}, {4,4,2,2}, {4,4,2,1}, {4,4,2,0}, {4,4,1, 4},
{4, 4,1,3}, {4,4,1, 2}, {4,4,1,1}, {4,4,1,0}, {4,4,0, 4},

{4) 4) o) 3}) {4) 4) O) 2}) <<454>>) {11 O) 4) 2}1 {1) O) 4) 1}) {1)

{1,0, 3, 43}, {1,0, 3, 3}, {1,0, 3, 2}, {1, 0, 3, 1}, {1, 0, 3, 0},
(1,0, 2,4}, {1,0, 2,3}, {1,0, 2,2}, {1, 0, 2, 1}, {1, 0, 2, 0},
{1, 0,1, 4y, {1,0,1, 3}, {1,0,1, 23, {1,0, 1, 1}, {1,0, 1, 0},
{1,0,0,4y, {1,0,0, 3}, {1,0,0, 2}, {1,0,0, 1}, {1,0,0,0}}

The inverse of IntegerDigits[] is FromDigits[].

In[82]:
Out[82]=

In[83]:
out[83]=

FromDigits [IntegerDigits [987654321] |
987654321

FromDigits [IntegerDigits [987 654321, 2], 2] (xBase 2x)
987654321

{4) 4) 3) 4})

o) 4) O})

FromDigits[] has the added capability of converting strings and roman numerals.

In[84]:=
Out[84]=

In[85]:=
out[85]=

FromDigits["4750"] + 1
4751

FromDigits [ "MMXIX", "Roman"] - 10
2009
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IntegerString[] is used to convert back to string form. I use InputForm only so the
quotes are displayed.

In[86]:= IntegerString[4750] // InputForm
Out[86]//InputForm=
"4750"

In[87]:= IntegerString[2009, "Roman"] // InputForm
Out[87]//InputForm=
"M X

1.5 Working with Intervals
Problem

You need to compute with data subject to measurement errors and you need the
greatest possible estimate on the final error.

Solution

As an alternative to doing math directly on numbers, Mathematica allows you to do
math on intervals that define the uncertainty in a value.

In[88]:= Clear[errorl, error2, mass, velocity, kineticEnergy] ;
errorl = 0.01; error2 = 0.005;
mass = Interval[{1.10 - errorl, 1.10 + errorl}];
velocity = Interval[{7.50 - error2, 7.50 + error2}];
kineticEnergy = 1/2 mass velocity " 2

Out[92]= Interval[{30.6154, 31.2604}]

By representing them as intervals, we express the idea that there are some known er-
rors in the measurement of the value of mass and velocity. We would like to under-
stand what that means in terms of the value we compute for kinetic energy.

You can see that the resulting error range is magnified by the combination of each er-
ror and the squaring.

In[93]:= Subtract e@e kineticEnergy[[1]] //

Abs (xThis computes the size of the interval.x)
Out[93]= 0.645
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If there were only a single interval of uncertainty, the range would be smaller.

In[94]:=

out[98]=

In[99]:=
0ut[99]=

Discussion

Clear[errorl, mass, velocity, kineticEnergy];
errorl = 0.01;

mass = Interval[{1.10 - errorl, 1.10 + errorl}];
velocity = 7.5;

kineticEnergy = 1/2 mass velocity”2
Interval[{30.6562, 31.2188}]

Subtract ee kineticEnergy[[1]] // Abs
0.5625

Intervals are objects with head Interval and a sequence of one or more lists that
represent segments of the interval. Typically there is one list, but non-overlapping
intervals can be expressed using two or more lists.

In[100]:=
0ut[100]=

In[101]:=
out[101]=

Interval[ {1, 2}]
Interval[{1, 2}]

Interval[ {1, 2}, {3, 4}]
Interval[{1, 2}, {3, 4}]

Intervals will automatically reorder themselves so that the least value is first.

In[102]:=
0ut[102]=

In[103]:=
0ut[103]=

Interval[{2, 1}]
Interval[{1, 2}]

Intexrval[ {4, 3}, {2, 1}]
Interval[{1, 2}, {3, 4}]

Naturally, the standard mathematical operations for scalars work on intervals as well.

In[104]:=
0ut[104]=

In[105]:
Out[105]

In[106]:

0ut[106]=

In[107]:=
0ut[107]=

Interval[ {1, 2}] + Interval[{3, 4}]
Interval[ {4, 6}]

Interval[{1, 2}] Interval[{3, 4}] (*Implied multiplicationx)
Interval[ {3, 8}]

Interval[{1, 2}] / Interval[{3, 4}]
1 2 }

3

Sqrt[Interval[{1.0, 2.0}1]

Interval[{1., 1.41421})

Interval
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There are also functions specifically for working with intervals. IntervalUnion[]
gives the interval representing set of all points of the input intervals. IntervalInter-
section[] gives the interval in common among the inputs and IntervalMemberQ[ ]
tests if a value belongs to an interval.

There are some cases in which Mathematica functions can return intervals. Consider
the problem of finding the limit of an oscillating function at a critical value.

In[108]:= Clear[x];
Limit[Sin[x] + 1/2Cos[x], x - Infinity]

3 3
Interval H——, —H
2 2

In[110]:= Limit[2Sin[1/x] + 1/2Cos[x], x —» 0]

3

0ut[109]

Out[110]= Interval

See Also

Papers and FAQs (as well as a movie) related to the theory of interval math can be
found at http://bit.ly/IbXoE.

1.6 Converting Between Numerical Types

Problem

You have a number of one type and need it represented in another type.

Solution

Conversion from rational to integer happens automatically, when possible.
In[111]:= Head[4/2]
Out[111]= Integer

Conversion of rational to integer can be forced by using Floor[], Ceiling[], and
Round[]. (Numbers of the form x.5 are rounded toward the nearest even integer.)
In[112]:= Floor[5/2]
out[112]= 2

In[113]:= Ceiling[5/2]
out[113]= 3
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In[114]:= Round[5/2]
out[114]= 2

In[115]:= Round[7/2]
out[115]= 4

We already saw in Recipe 1.1 how N[] can be used to convert exact values and sym-
bolic constants to approximate real numbers. Rationalize[] is how you convert
from approximate values to exact.

In[116]:= Rationalize[3.14159]
314159

Out[116]=
100000
The single argument version of Rationalize will only succeed if a sufficiently close
(see “Discussion” section, next) rational number exists.
In[117]:= Rationalize[3.1415927]
out[117]= 3.14159

You can provide a second argument specifying your tolerance for error, in which
case the operation will always succeed.

In[118]:= Rationalize[3.1415927, 10"-8]
121033

Out[118]=
38526

And you can force an exact rational by indicating a maximum error of zero.

In[119]:= Rationalize[3.1415927, 0]

31415927
out[119]= ———
10000000

Discussion

On the surface, the solutions here are rather simple. In day-to-day usage, numeric
conversion will not present many challenges. However, there are subtle issues and
interesting theory underlying the apparent simplicity. Let’s consider rounding. Sup-
pose you need to round a set of numbers, but the numbers still must satisfy some
constraint after the rounding. Consider percentages or probabilities. One would
want percentages to still add to 100 and probabilities to still sum to 1. Another con-
text is in statistics, where we want to round while preserving certain statistical
properties, such as the variance. Various forms of stochastic rounding can be used
in these cases. One form of stochastic rounding that gives good results is the unbi-
ased rounding rule. According to this rule, a number of the form x.v is rounded up
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with the probability v/10 and rounded down with probability (10-v)/10. So, for
example, 10.5 would have equal probability of going to 10 as to 11, whereas 10.85 would
have probability of 0.85 of rounding up and 0.15 of rounding down.

In[120]:= UnbiasedRound[x_] := Block[{whole = Floor[x], v},

v = 10 * (x - whole); whole + Floor[ v/10 + RandomReal[]]]
In[121]:= Table[UnbiasedRound[10.5], {20}]
out[121]= ({11, 11, 10, 11, 10, 10, 10, 11, 11, 11, 10, 11, 11, 10, 10, 11, 11, 11, 11, 11}

In[122]:= Table[UnbiasedRound[10.1], {20}]
out[122]= {10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 10, 10, 10, 10, 11, 10, 10, 10}

In[123]:= Table[UnbiasedRound[10.8], {20}]
out[123]= {11, 11, 11, 10, 11, 11, 11, 11, 11, 10, 11, 10, 11, 11, 10, 11, 11, 11, 11, 11}

The main disadvantage of stochastic rounding is that the results are not repeatable.

See Also

An Examination of the Effects of Rounding on the Quality and Confidentiality of Tabu-
lar Data by Lawrence H. Cox and Jay J. Kim (http://bit.ly/I7]dA).

1.7 Displaying Numbers in Alternate Forms

Problem

You don’t like the format that Mathematica chooses to display a particular numeri-
cal result.

Solution

Use one of the alternative forms: AccountingForm, EngineeringForm, NumberForm,
PaddedForm, and ScientificForm. The default form is usually the most compact way
to represent the number, but if you are outputting values that have specific user ex-
pectations or if you are trying to convey a specific accuracy, you may want to force a
different form.

In[124]:= number = 3.50 * 1000000
Out[124]= 3.5x10°

Accounting form does not use scientific notation and shows negative numbers in
parentheses. Here it is traditional to use the form as a postfix (//) operation.
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In[125]:= number // AccountingForm
Out[125]//AccountingForm=
3500000.

In[126]:= -number // AccountingForm
Out[126]//AccountingForm=
(3500000.)

Alternatively, NumberForm allows you to control the digits of precision and the num-
ber of digits after the decimal.

In[127]:= NumberForm[number, {6, 4}]
Out[127]//NumberForm=
3.5000 x 10°

Discussion

Forms have an extensive set of options to provide fine-grained control over the out-
put. Here I use AccountingForm to display a column of numbers. DigitBlock specifies
the grouping factor and NumberPadding allows control of the characters used to pad
out the display on the left (shown here as spaces) and right (shown as zeros).

In[128]:= AccountingForm[Column [ {100 000.00, 1000000.00, 10000000.00} 7],
{9, 1}, DigitBlock - 3, NumberPadding » {" ", "0"}]
Out[128]//AccountingForm=
100,000.00
1,000,000.00
10,000,000.00

Contrast this to AccountingForm without the options.

In[129]:= AccountingForm[Column[{100000.00, 1000000.00, 10000000.00}] ]
Out[129]//AccountingForm=
100000.
1000000.
10000000.

PaddedForm is convenient when all you want to do is pad out a number with specific
characters on the left and right. This is often a useful operation prior to conversion
to a string to generate fixed-length identifiers.
In[130]:= PaddedForm[lO, 8, NumberPadding -» {"0", ““}]
Out[130]//PaddedForm=
000000010

1.7 Displaying Numbers in Alternate Forms | 21



In[131]:= id = ToString[PaddedForm[10, 8, NumberPadding -» {"0", ""}]]
Out[131]= 000000010

EngineeringForm forces exponents in multiples of three, provided an exponent of at
least three is required.
In[132]:= {10.0, 100.0, 1000.0, 10000.0, 100000.0, 1000000.0} // EngineeringForm
Out[132]//EngineeringForm=
{10., 100., 1. x10%, 10. x10°, 100. x10°, 1. x10°}

ScientificForm always shows numbers with one digit before the decimal and adjusts
the exponent accordingly.
In[133]:- {10.0, 100.0, 1000.0, 10000.0, 100000.0, 1000000.0} // ScientificForm
Out[133]//ScientificForm=
{1.x10%, 1.x10%, 1. x10%, 1. x10%, 1. x10°, 1. x10°}

You can use the option NumberFormat to get precise control of the display. NumberFor-
mat specifies a function (see Chapter 2 for details) that accepts up to three arguments
for the mantissa, base, and exponent. Here is an example that displays numbers like
a calculator might. Here, the function uses Row to format the mantissa and exponent
(it ignores the base).

In[134]:= ScientificForm[1.77 x 105, NumberFormat - (Row[ {#1, "E", #3}] &) ]
Out[134]//ScientificForm=
1.77E5

See Also

You can find information and examples on all these forms and their options in the
Wolfram documentation under tutorial/OutputFormatsForNumbers.
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CHAPTER 2

2.0 Introduction

Functional Programming

A man builds a city

With banks and cathedrals

A man melts the sand so he can
See the world outside

(You’re gonna meet her there)

A man makes a car

(She’s your destination)

And builds a road to run them on
(Gotta get to her)

A man dreams of leaving

(She’s imagination)

But he always stays behind

And these are the days
When our work has come asunder
And these are the days
When we look for something other

Many books on Mathematica tout its capabilities as a multiparadigm language.
Although it’s true that Mathematica supports procedural, recursive, rule-based, func-
tional, and even object-oriented styles (to some degree), I believe it is the functional
and rule-based styles that are most important to master. Some gurus may go a step
further and say that if you do not master the functional style then you are not really
programming in Mathematica and your programs will have a far greater chance of
being inefficient and clumsy. I won’t be so dogmatic, but until you are an expert it’s
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best to stick with an approach that many Mathematica experts prefer. A practi-
cal reason to learn the functional style is that most of the recipes in this book
use either functional or rule-based styles and sometimes mixtures of both. This chap-
ter is intended as a kind of decoder key for readers who want to master the func-
tional style and get a deeper understanding of the solutions throughout this book.
There are also a few recipes at the end of the chapter that are not about functional
programming proper, but rather techniques specific to Mathematica that allow you
to create flexible functions. These techniques are also used throughout later recipes

in the book.

The hallmark of the functional style is, of course, functions. Every high-level programming
language has functions, but what makes a language functional is that functions are first-
class entities (however, see the sidebar “What Is a Functional Programming Language . . .”
on page 31 for more subtle points). This means you can write higher-order functions
that take other functions as arguments and return functions as values. Another
important feature of functional languages is that they provide a syntactic method of
whipping up anonymous functions on the fly. These nameless functions are often re-
ferred to as “lambda functions,” although Mathematica calls them pure functions.

Unless you are already a convert to functional programming, why a functional ap-
proach is considered superior may not be obvious to you. A general consensus
among software developers is that given two correct solutions to a problem, the sim-
pler solution is the superior one. Simplicity is sometimes difficult to define, but one
metric has to do with the length of the solution in lines of code. You will find, al-
most without exception, that a high-quality functional solution will be more concise
than a high-quality procedural solution. This stems partly from the fact that looping
constructs disappear (become implicit) in a functional solution. In a procedural pro-
gram, code must express the loop, which also introduces auxiliary index variables.

Functional programs are often faster, but there are probably exceptions. Ignoring the
fact that Mathematica has a built-in function, Total, for a moment, let’s contrast a
procedural and functional program to sum an array of 100,000 random values.

In[1]:= array = RandomReal[{-1, 1}, 100000];

In[2]:= (*Procedural solution using For loopx)
(sum = 0;
Do[sum += array[[i]], {i, 1, Length[array]}];
sum) // Timing
Out[2]= {0.21406, 90.6229}

In[3]:= (*Functional solution using Foldx)
Fold[Plus, 0, array] // Timing
Out[3]= {0.008291, 90.6229}
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As you can see, the functional solution was about an order of magnitude faster.
Clearly the functional solution is shorter, so that is an added bonus. Of course, one
of the tricks to creating the shortest and the fastest programs is exploiting special
functions when they exist. In this case, Total is the way to go!

In[4]:= Total[array] // Timing

Out[4]= {0.000193, 90.6229}

If you come from a procedural background, you may find that style more comfort-
able. However, when you begin to write more complex code, the procedural style be-
gins to be a liability from a complexity and performance point of view. This is not
just a case of shorter being sweeter. In a very large program, it is common to intro-
duce a large number of index and scratch variables when programming procedu-
rally. Every variable you introduce becomes a variable whose meaning must be
tracked. I wish I had a dollar for every bug caused by a change to code that used in-
dex variable i when j was intended! It should come as no surprise that eliminating
these scratch variables will result in code that is much faster. In fact, in a typical pro-
cedural language like C, it is only through the efforts of a complex optimizing com-
piler that these variables disappear into machine registers so that maximum speed is
obtained. In an interpreted language like Mathematica, these variables are not opti-
mized away and, hence, incur a significant overhead each time they appear. By adopt-
ing a functional approach, you get almost the equivalent of optimized machine code
with the pleasure of interactive development.

There are a lot more theoretical reasons for adopting a functional approach. Some in-
volve the ability to prove programs correct or the ability to introduce concurrency. I
will not make those arguments here because they usually have only marginal value
for practical, everyday development and they hinge on a language being purer than
Mathematica. Readers who have interest in learning more should refer to some of
the excellent resources listed in the “See Also” section on page 30.

The Elements of Functional Programming

Many functional programming languages share core primitive functions that act as
the building blocks of more sophisticated functions and algorithms. The names of
these primitives vary from language to language, and each language provides its own
twists. However, when you learn the set of primitives of one functional language,
you will have an easier time reading and porting code to other functional languages.

2.0 Introduction | 25



Table 2-1. Primary functional programming primitives

Function

Map [f, expr]

Apply [f, expr]

Apply [f, expr, {1}]

Fold[f, x, {al, a2, a3, ...}]

FoldList[f, x,
{al, a2, a3, ...}]
Nest [f, expr, n]

NestList [f, expr, n]

=

Operator

/@

@@

@@@

Description

Return the list that results
from executing the function f
on each element of an expr
Return the result of
replacing the head of a list
with function f

Applies f a level 1 inside
list. In other words,replace
the head of all elements.

If list has length 0,return
X,otherwise return

f[f[f(x, al], a2], a3]..

Return the list

{% fIx, a1, f[f(x, al],aZ},...}
Return the result of

FIF[F[... frexpr]...]]] (i.e. f
applied n times)

Return the list

{x, flexpr], f[flexpr]], ...}
where f repeats up to n times

In the Mathematica documentation, you will see the verb apply (in its
various tenses) used in at least two senses. One is in the technical sense

of the function Apply[f,expr] (i.e., change the head of expr to f) and

the other in the sense of invoking a function on one or more

arguments (as in “applied” in the definition of Nest[], “gives an
expression with f applied n times to expr”). Clearly, changing the head
of the expression n times would be no different from changing it once,
so it should be unambiguous in most cases. See Recipe 2.1 for syntax
variations of the latter sense of function application.

There are other important Mathematica functions related to functional program-
ming, but you should commit to memory the functions in Table 2-1, because they
arise repeatedly. You should especially get used to the operator notations for
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Map (/@) and Apply (@@) because they arise frequently (not only in this book but in
others and in sample code you will find online). If you are unfamiliar with
these functions, it is worthwhile to experiment a bit. One important exercise is to
use each function with a symbol that is not defined and a list of varying structure so
you can see the effects from a structural point of view. For example, pay close atten-
tion to the difference between /@ and @@@. Each iterates the function across the list,
but the results are quite different.

’__ In this code, zz is purposefully undefined so you can visualize the
@ effect of the operators. The ability of Mathematica to handle undefined
symbols without throwing errors is both a source of power and a

source of frustration to the uninitiated.

In[5]:= zz /e {1, {1}, {1,2}}

out[5]= {zz[1], zz[{1}], zz[(1, 2}]}

In[6]:= zz ee {1, {1}, {1,2}}

out[6]= zz[1, {1}, {1, 2}]

In[7]:= zz eee {1, {1}, {1, 2}}

out[7]= {1, zz[1], zz[1, 2]}

In[8]:= Fold[zz, 0, {1, {1}, {1, 2}}]

Out[8]= zzlzz[zz[0, 1], {1}], {1, 2}]

In[9]:= FoldList[zz, 0, {1, {1}, {1, 2}}]

out[9]= (0, zz[0, 1], zz[zz[O, 1], {1}],
zz[zz[zz[0, 17, {1}1, {1, 2}1}

In[10]:= Nest[zz, {1, {1}, {1, 2}}, 3]

Out[10]= zz[zz[zz[{1, {1}, {1,2}}]]]

In[11]:= Nestlist[zz, {1, {1}, {1, 2}}, 3]

out[11]= ({1, {1}, {1, 2}}, zz[(1, {1}, (1, 2}}],
zz(zz[{1, {1}, {1, 2}}]1],
zz(zz[zz[{1, {1}, {1, 2}}]]1]}

DownValues and UpValues

Mathematica has a flexible facility for associating symbols and their definitions.
Most of the time you need not be concerned with these low-level details, but some
advanced Mathematica techniques discussed in this chapter and elsewhere in the
book require you to have some basic understanding. When you define functions of
the form f[args] := definition or f[args] = definition you create downvalues for the
symbol . You can inspect these values using the function DownValues[f].
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In[12]:= ClearAll[f]

f[0] := 1
f[1]1:=1
f[n_Integer] t=n«+ f[n-1]
In[16]:= DownValues[f]
out[16]= {HoldPattern[f[0]] :>1, HoldPattern[f[1]] > 1,

HoldPattern|[f[n_Integer||=nfin-17}

The results are shown as a list of patterns in held form (see Recipe 4.8). The order of
the definitions returned by DownValues is the order in which Mathematica will search for a
matching pattern when it needs to evaluate an expression containing f. Mathematica has a
general rule of ordering more specific definitions before more general ones; when
there are ties, it uses the order in which the user typed them. In rare cases, you may
need to redefine the ordering by assigning a new order to DownValues[f].

In[17]:= (*This reassignment won't affect usage of f,
but illustrates the technique.x)

DownValues [f] DownValues [f] [[{2, 1, 3}]]
out[17]= {HoldPattern[f[1]] =1, HoldPattern[f[0]] 1,

I
HoldPattern[f[n_Integer||:>nfin-17}

There are some situations in which you would like to give new meaning to functions
native to Mathematica. These situations arise when you introduce new types of ob-
jects. For example, imagine Mathematica did not already have a package that sup-
ported quaternions (a kind of noncommutative generalization of complex numbers)
and you wanted to develop your own. Clearly you would want to use standard math-
ematical notation, but this would amount to defining new downvalues for the built-
in Mathematica functions Plus, Times, etc.

Unprotect[Plus,Times]

Plus[quaternion[al_,bl_,c1_,d1_], quaternion[a2_,b2_,c2_,d2_]] := ...
Times[quaternion[al_,bl_,cl1_,d1_], quaternion[a2_,b2_,c2_,d2_]] := ...
Protect[Plus,Times]

If quaternion math were very common, this might be a valid approach. However,
Mathematica provides a convenient way to associate the definitions of these opera-
tions with the quaternion rather than with the operations. These associations are
called Upvalues, and there are two syntax variations for defining them. The first uses
operations called UpSet (=) and UpSetDelayed (*:=), which are analogous to Set (=)
and SetDelayed (:=) but create upvalues rather than downvalues.

Plus[quaternion[al_,bl_,cl1_,d1_], quaternion[a2_,b2_,c2_,d2_]] *:= ...
Times[quaternion[al_,bl_,cl ,d1_], quaternion[a2_,b2_,c2_,d2_]] *:= ...
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The alternate syntax is a bit more verbose but is useful in situations in which the
symbol the upvalue should be associated with is ambiguous. For example, imagine
you want to define addition of a complex number and a quaternion. You can use
TagSet or TagSetDelayed to indicate that the operation is an upvalue for quaternion
rather than Complex.

quaternion /: Plus[Complex[r_, im_], quaternion[al_,bl_,c1_,d1_]] := ...
quaternion /: Times[Complex[r_, im_], quaternion[al_,b1l_,cl1_,d1_]] := ...

Upvalues solve two problems. First, they eliminate the need to unprotect native
Mathematica symbols. Second, they avoid bogging down Mathematica by forcing it
to consider custom definitions every time it encounters common functions like Plus
and Times. (Mathematica aways uses custom definitions before built-in ones.) By
associating the operations with the new types (in this case quaternion), Mathematica
need only consider these operations in expression where quaternion appears. If both
upvalues and downvalues are present, upvalues have precedence, but this is some-
thing you should avoid.

Function Attributes

Mathematica will modulate the behavior of functions based on a set of predefined
attributes, which users should already be familiar with as those often required
to achieve proper results in users’ own functions. The functions Attributes[f],
SetAttributes[f,attr], and ClearAttributes[f,attr] are used to query, set, and
clear attributes from functions. In the following subsections, I'll review the most im-
portant attributes. Refer to the Mathematica documentation for attributes to review
the complete list.

Attributes must be assigned to symbols before functions are defined
for the symbols.

Orderless

This tells Mathematica that the function is commutative. When Mathematica encounters
this function, it will reorder arguments into canonical order (sorted in ascending or-
der). Orderless also influences pattern matching (see Recipe 4.1) since Mathematica
will consider reordering when attempting to match.
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Flat

Use Flat to tell Mathematica that nested applications of the function
(f[f[x,y],2z]) can be flattened out (f[x,y,z]). In mathematics, flat functions are
called associative.

Listable

It is often convenient to define functions that automatically map across lists. See
Recipe 2.3 for more information.

HoldFirst

Mathematica defines a function Hold which prevents its argument from being evalu-
ated. The attribute HoldFirst allows you to give this feature to the first argument of
a function. All remaining arguments will behave normally.

HoldRest

This is the opposite of HoldFirst; the first argument is evaluated normally, but all
remaining arguments are kept in unevaluated form.

HoldAll

All arguments of the function are kept unevaluated. This is equivalent to using both
HoldFirst and HoldRest.

See Also

An excellent animated introduction to the core Mathematica functions can be found
at http://bit.ly/3cuB4B.

See guide/FunctionalProgramming in the documentation for an overview of Mathe-
matica’s functional programming primitives.

A classic paper on the benefits of functional programming is Why Functional Pro-
gramming Matters by John Hughes (http://bit.ly/4mRBYO).

Another classic is A Tutorial on the Universality and Expressiveness of Fold by Gra-
ham Hutton (PDF available at http://bit.ly/ZYDiH).

Further discussion of upvalues and downvalues can be found at tutorial/TheStandard-
EvaluationProcedure and tutorial/AssociatingDefinitionsWithDifferentSymbols in the
documentation.
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What Is a Functional Programming Language and
How Functional Is Mathematica?

Anyone who has spent time in mail groups frequented by programmers knows they
like to argue. One of the favorite arguments centers around the “best programming
language.” Derivatives include “what language is the most [insert characteristic
here]” arguments. For example, what language is the most “object-oriented,” “self-
documenting,” or in our case, “functional.” The problem is that such characteristics
rarely have an objective, a priori definition; rather, their definitions emerged out of
research in actual language use. Since each researcher is interested in different
features, the definitions become fuzzy. It is thus difficult to give a precise definition
of “functional” with which every computer scientist and programmer will agree.
However, to help you discover more on your own, I provide some generally agreed-
on features that are important to the theory of functional programming and discuss
Mathematica’s support for these features. The usefulness of features rather than the
cachet of labels (like “functional”) is likely the primary concern of readers of
cookbooks!

All functional languages emphasize the evaluation of expressions to produce values
rather than commands or statements that are executed for their side effects.
Consider the language C, which has functions but also other statements (for, if-then-
else, while, goto, etc.) that execute without producing a return value (although
values may be computed and stored in variables as side effects of these statements).
In a functional language, all constructs, even conditional logic constructs and
looping constructs, are executed to compute some value, and they should generally
be executed only for the value and not for other side effects. Most of Mathematica’s
functions produce a value, but there are exceptions, and these exceptions can lead to
problems. The obvious example of this is the “function” Do[]. If Do[] appears in a
context where a value is expected, it will evaluate to null. Since no one needs to set
up a loop to produce null, it is clear that Do[] exists for producing some side effect.
Thus Do[] is certainly not functional. Even expressions that produce values can have
side effects in Mathematica, which leads to the next consideration.

Functional languages that are, by design, free of side effects are called pure functional
languages. One hallmark of a pure functional language is single-assignment, where a
variable within a given scope can only get a value once. Examples include Haskell and
Erlang, but not Mathematica, because in most cases, a variable can be reassigned (one
exception is variables introduced by With[]). If you make a concerted effort to avoid
multiple assignment, you will be rewarded with programs that are often easier to
debug; in this book, I'll often ignore this advice if it results in a simpler example of
the particular recipe in question.
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Another feature is the so-called lambda function or anonymous function. There is a
rich mathematical theory called lambda calculus that underlies this idea, but from a
practical point of view, whipping up a function on the fly is a very nice thing in a
language centered around functions. Whenever you write something like {#1+#2}8&
(i.e., an anonymous function that takes two arguments and produces a list
containing their sum), you are using Mathematica’s syntax for a lambda function or,
in Mathematica speak, a Function[].

Functional languages are also distinguished as being strict versus nonstrict. In a strict
language, arguments to functions are evaluated immediately, whereas nonstrict
languages use lazy evaluation to evaluate expressions passed as arguments only
when those values are needed. Mathematica is generally a strict language and does
not provide for automatic lazy evaluation. However, some nonstrictness exists by
the availability of Hold and the attributes HoldAll, HoldFirst, and HoldRest. These are
not the same as lazy evaluation: they allow expressions to be passed in unevaluated
form, but the programmer largely controls whether a held expression gets evaluated
(e.g., by using ReleaseHold[] in the case of an explicit Hold[]).

Another rather technical feature of modern functional languages is their support for
currying. This is a feature that applies a function to multiple arguments individually.
For example, a function of two arguments, A and B, is applied to A, returning a new
function that is then applied to B to return a value. This definition can clearly be
extended to functions that take any number of arguments. Some languages that
explicitly support currying are Haskell and ML. You will not find references to
currying in Mathematica documentation, but the feature is essentially present, and I
discuss it in Recipe 2.15.

Finally, modern functional languages often support closures (a function executed in
an environment that can access previously bound local values) and continuations (a
value representing the rest of a computation that can be completed later). Closures
are discussed in Recipe 2.14.

2.1 Mapping Functions with More Than
One Argument

Problem

You need to map a function over a list containing sublists whose values are argu-
ments to the function.
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Solution

Use a Map-Apply idiom. A very simple example of this problem is when you want to
sum the sublists.

In[18]:= MaP[ (APP1y[P1U5, 1:t]) & {{1,2,3}, {4,5,6,7,8}, {9,10,11, 12}}]
Out[18]= {6, 30, 42}

This can be abbreviated to:

In[19]:= Plusee# & /e {{1, 2, 3}, {4, 5, 6, 7, 8}, {9, 10, 11, 12}}
Out[19]= ({6, 30, 42}

Discussion

Although the solution seems very simple, this problem arises quite frequently in
more complicated guises, and you should learn to recognize it by studying some of
the following more interesting examples.

Consider a structure representing an order for some product with the form order[sku,
qty,price]. Now imagine you have a list of such orders along with a function for
computing the total cost of an order. Given a list of orders, you want to produce a
list of their costs. The situation is a bit tricky because our function does not care
about the sku, and rather than a list of lists we have a list of order[]. Even with these
differences you still have the same basic problem. Recall that Apply does not necessar-
ily require an expression whose head is List; it will work just as well with any head,
such as order. Also, using compOrderTotCost we can easily preprocess each order to
extract just the elements needed.

In[20]:= compOrderTotCost[qty_, price_] := qty » price
Map[ (Apply [compOrderTotCost, Rest[#]]) &, {order["skul", 10, 4.98],

order["sku2", 1, 17.99], order["sku3", 12, 0.25]}]
Out[21]= {49.8,17.99, 3.}

This solution is still a bit contrived because both qty and price within order were
adjacent at the end of order, so Rest made it easy to grab the needed values. The
real world is rarely that accommodating. Let’s complicate the situation a bit by intro-
ducing another element to order that represents a discount percent: order[sku,
disc%,qty,price]. Here you use Apply with a function that takes slot specifications
(#n) to pick out the proper arguments. The convention is that #n stands for the nth
argument and # by itself is short for #1.
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In[22]:= compDiscOrderTotCost[qty_, price_, disc_] :=
qty » price » (1.0 - disc/100.0)
Map[ (Apply [compDiscOrderTotCost [#3, #4, #2] &, #]) &,
{order["skul", 5, 10, 4.98],
order ["sku2", 0,1, 17.99], order["sku3", 15, 12, 0.25]}]
Out[23]= {47.31,17.99, 2.55}

There is another version of Apply that takes a level specification as a third argument.
If we use this version, we can often get the same effect without explicitly using Map.

In[24]:= Apply[Plus [##] &, {{1, 2,3}, {4,5,6,7,8}, {9,10,11,12}}, {1}]
Out[24]= {6, 30, 42}

Here we apply Plus using level specification {1} that restricts Apply to level one only.
This uses ## (slot sequence) to pick up all elements at this level. There is also a short-
cut operator, @@@, for this case of applying a function to only level one. In this case,
you can also dispense with ## to create a very concise expression.

In[25]:= Plus eee {{1, 2, 3}, {4, 5, 6, 7, 8}, {9, 10, 11, 12}}
Out[25]= {6, 30, 42}

You will need slot sequence if you want to pass other arguments in. For example,
consider the following variations.

In[26]:= Plus[1, ###] & eee {{1, 2, 3}, {4, 5, 6, 7, 8}, {9, 10, 11, 12}}

out[26]= {7, 31,43}

This says to produce the sum of each list and add in the element (hence, you use the
second element twice in the sum).

In[27]:= Plus[#2, ##] & eee {{1, 2, 3}, {4, 5, 6, 7, 8}, {9, 10, 11, 12}}
out[27]= {8, 35, 52}

This leads to a simplified version of the discounted order example.

In[28]:= compDiscOrderTotCost[ #3, #4, #2] & @eee {order["skul", 5, 10, 4.98],
order["sku2", 0,1, 17.99], order["sku3", 15, 12, 0.25]}
Out[28]= {47.31,17.99, 2.55}

If the lists are more deeply nested, you can use larger level specifications to get the re-
sult you want. Imagine the order being nested in an extra structure called envelope.

In[29]:= Apply[compDiscOrderTotCost[ #3, #4, #2] &,
{envelope[1, order["skul", 5, 10, 4.98]11],
envelope[2, order["sku2", 0,1, 17.99]1,

envelope[3, order["sku3", 15, 12, 0.25]1}, {2}]
Out[29]= {envelope[1, 47.31], envelope[2, 17.99], envelope[3, 2.55]}
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The same result is obtained using Map-Apply because Map takes level specifications as
well.

In[30]:= Map[ (Apply [compDiscOrderTotCost[ #3, u4, #2] &, #]) &,
{envelope[1, order["skul", 5, 10, 4.98]1],
envelope[2, order["sku2", 0,1, 17.99]1,
envelope[3, order["sku3", 15, 12, 0.25]]1}, {2}]
Out[30]= {envelope[1, 47.31], envelope[2, 17.99], envelope[3, 2.55]}

Of course, you probably want to discard the envelope. This can be done with a part
specification [[Al1,2]], which means all parts at the first level but only the second ele-
ment of each of these parts.

In[31]:= Map[ (Apply [compDiscOrdexTotCost[ #3, 4, 12] &, #]) &,
{envelope[1, order["skul", 5, 10, 4.98]],
envelope[2, order["sku2", 0,1, 17.99]],
envelope[3, order["sku3", 15, 12, 0.25]11}, {2}] [ [All, 2]]
Out[31]= {47.31, 17.99, 2.55}

The following does the same thing using only Map, Apply, and a prefix form of Map
that brings the level specification closer. There are a lot of # symbols flying around
here, and one of the challenges of reading code like this is keeping track of the fact
that # is different in each function. I don’t necessarily recommend writing code this
way if you want others to understand it, but you will see code like this and should
be able to read it.
In[32]:= Part[#,2] & /e
Map [compDiscOrderTotCost[ #3, #4, #2] &ee # &, #, {2}] &e
{envelope[1, order["skul", 5, 10, 4.98]1],
envelope[2, order["sku2", 0, 1, 17.99]],

envelope[3, order["sku3", 15, 12, 0.25]]}
out[32]= {47.31,17.99, 2.55}

With some practice, this expression translates rather easily to English as “take the
second element of each element produced by applying compDiscOrderTotCost at level
two over the list of enveloped orders.”

See Also

Slots (#) and slot sequences (##) are discussed in tutorial/PureFunctions in
the documentation.
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2.2 Holding Arbitrary Arguments

Problem

You want to create a function that holds arguments in different combinations than
provided by HoldFirst and HoldRest.

Solution

Use Hold in the argument list. Here I create a function called arrayAssign whose ob-
jective is to accept a symbol that is associated with a list, an index (or Span), and a
second symbol associated with another list. The result is the assignment of the ele-
ments of array?2 to arrayl that are specified by index. For this to work, arguments a
and b must remain held but aIndex should not.

In[33]:= arrayl = Table[0, {10}]; array2 = Table[1, {10}];
arrayAssign[Hold [a_Symbol], aIndex_, Hold [b_Symbol], bIndex_] :=
Module[{},
a[[aIndex]] = b[[bIndex]];
a[[aIndex]]]
(*Assign elements 2 through 3 in array 2 to array 1.x)
arrayAssign[Hold [array1], 2 ;; 3, Hold[array2], 1] ;
arrayl
out[36]= {0, 1,1,0,0,0,0,0,0,0}

Discussion

The attributes HoldFirst, HoldRest, and HoldAll fill the most common needs for creat-
ing functions that don’t evaluate their arguments. However, if your function is more
naturally implemented by keeping other combinations of variables unevaluated,
then you can use Hold directly. Of course, you need to use Hold at the point of call,
but by also putting Hold in the arguments of the implementation, you ensure the func-
tion will only match if the Holds are in place on the call and you also unwrap the
hold contents immediately without causing evaluation.

See Also

The attributes HoldFirst, HoldRest, and HoldAll are explained in the “Introduction”
on page 30.
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2.3 Creating Functions That Automatically Map
Over Lists

Problem

You want to write functions that act as if they are being called Map[f, list].

Solution

A Mathematica attribute called Listable indicates a function that should automati-
cally be threaded over lists that appear as its arguments.

In[37]:= SetAttributes|[myListableFunc, Listable]
myListableFunc[x_] := x + 1
myListableFunc[ {1, 2, 3, 4}]

Out[39]= {2, 3,4,5}

Discussion

Log and D are examples of built-in Mathematica functions that are listable. Listability
also works for operators used in prefix, infix, and postfix notation.

In[40]:= {10, 20, 30}"{3, 2, 1}

Out[40]= {1000, 400, 30}

In[41]:= {1/2,1/3,1/5,Sqrt[2]} //N
out[41]= {0.5, 0.333333, 0.2, 1.41421}

Listable has a performance advantage over the explicit use of Map, so is recom-
mended if the function will often be applied to vectors and matrices.

In[42]:= Timing[Log[RandomReal[{1, 1000}, 1000000] ]] [[1]]

Out[42]= 0.057073

In[43]:= Timing[Map[Log, RandomReal[{1, 1000}, 1000000]]] [[1]]
Out[43]= 0.14031
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2.4 Mapping Multiple Functions in a Single Pass

Problem

You want to map several functions over elements of a list in a single pass.

Solution

There is no need to make multiple passes over a list when using Map[]. In this example we
compute a table that relates each number to its square and cube in a single pass.

In[44]:= {#, #"2, #"3}& /e {1,7,3,8,5,9,6, 4,2} //TableForm
Out[44]//TableForm=

11 1

7 49 343
39 27
8 64 512
5 25 125
9 81 729
6 36 216
4 16 64
2 4 8

Here we map several functions over a generated list and add the individual results;
structurally, this is the same solution.
In[45]:= Sin[#]"2 +#Cos[2#] & /e Table[N[1/iPi], {i, 16, 1, -1}]
Out[45]= {0.219464, 0.23456, 0.251693, 0.271252, 0.293712, 0.319635, 0.349652, 0.384378,
0.424127, 0.468077, 0.511799, 0.539653, 0.5, 0.226401, -0.570796, 3.14159}

Here, since Table is already being used, it would be easier to write Table[With[{p =
N[1/1i Pi]}, Sin[p]~2 + p Cos[2 pl], {i, 16, 1, -1}], but that misses the point.
[ am using Table because I need a list, but imagine the list was a given. Map applies to cases
for which you are given a list and need to create a new list, whereas Table is better
used when you are generating the list on the fly.

Discussion

Once you become comfortable with functional programming, you will find all sorts
of really nice applications of this general pattern. Here is a slick little demonstration bor-
rowed from the Mathematica documentation for visually identifying the first 100 primes.
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In[46]:= Grid[Partition[If[PrimeQ[#], Framed[#], #] & /@ Range[100], 20] ]

ll l l 910“121415161820
21 6 27 283032 33 34353638 39 40
out[46]= H Iy .44 45 46“48 49 50 51 5254 55 56 57 58 60
Hez 4656668 69 7072747576 77 7880
81 82 84 85 86 87 8890 91 92 93 94 95 9698 99 100

In the following, I apply the technique twice to create a presentation that shows the
first 12 regular polygons, with the number of sides and the interior angles in degrees
displayed in the center.
In[47]:= angles = Table[i2Pi/n, {n, 3, 14}, {i, 0, n - 1} ];
Graphics [ {EdgeForm[ {Thin, Black}],
FaceForm[White], Polygon[#], Inset[{Length[#],
(Pi - VectorAngle[#[[1]], #[[2]]]) /Degree}]}] & /e
Map[N[{Sin[#], Cos[#]}] &, angles, {2}] //
Partition[#, 4] & // GraphicsGrid [#, Frame » All, ImageSize ->500] &

out[47]=

(14, 154.286)

The first step is to generate a list of lists using Table. The innermost list (rows below)
contains n equally spaced angles about a circle where n varies between 3 and 14. We
can see this by inspecting angles in tabular form. Here, using Map is superior to Table
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if you want to use the computed table of angles in further steps in the computation.
In my case, [ just want to display them.

In[48]:= TableForm[angles, TableSpacing - {1, 2} ]

Out[48]//TableForm=
0 27 47
3 3
7 37
0 - b —
2 2
0 27 47 671 8
5 5 5 5
b 27 47 57
0 = — - =
3 3 3 3
0 27 4 67 8 10 7 127
7 7 7 7 7 7
7 7 3 57 37 Tn
0o = - — — —
4 2 4 4 4
0 27 47 2 8 10 7 4 14 16 7
9 9 3 9 9 3 9 9
7T 27 3 4 6 71 T 8 9
0 = - = — 7 — — — —
5 5 5 5 5 5 5 5
0 2 4 61 8 10 127 14 16 18 71 20 7t
11 11 11 11 11 11 11 11 11 11
b s i 2 57 T 47 37 5 117
0 = - — - = 7T — — — —
6 3 2 3 6 6 3 2 3 6
0 27 4 671 87 10 12 14 7 16 7t 18 it 20 7t 227 24t
13 13 13 13 13 13 13 13 13 13 13
0 7 3 47 57 6 . 8 9 107 11 127 13n
7 7 7 7 7 7 7 7 7 7 7 7

Since Polygon requires points, I compute them by mapping the Sin and Cos functions
in parallel over each sublist by giving a level specification of {2} to Map. I show only
the first three results below for sake of space.

In[49]:= Map[N[{Sin[#], Cos[#]}] &,
Table[i2Pi/n, {n, 3,14}, {i,0, n-1} ], {2}1[[1;;31] // Column
{{0., 1.}, {0.866025, -0.5}, {-0.866025, -0.5}}
{{0., 1.}, {1.,0.}, {0., -1.}, {-1.,0.}}
{{0., 1.}, {0.951057, 0.309017}, {0.587785, -0.809017},
{-0.587785, -0.809017}, {-0.951057, 0.309017} }

Out[49]=

The next pass uses the technique to create both the polygon and the inset with the
number of sides and the interior angles. The use of Partition and GraphicsGrid is
solely for formatting purposes.
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See Also

See Recipe 2.5 for a variation of Map called MapIndexed that gives you the position of
an element as a second argument.

2.5 Keeping Track of the Index of Each Item
As You Map

Problem

You want to apply a function over a list as with Map (/@), but the function requires
the position of the item in the list in addition to its value.

Solution

Use MapIndexed instead of Map. Keep in mind that MapIndexed wraps the index in a

list, so a common idiom is to use First[#2] to access the index directly. To show

this, I first use an undefined function ff before showing a more useful application.
In[50]:= Clear[ff];

MapIndexed [ff[#1, First[#2]] &, {a, b, c, d, e}]
0Ut[51]= {‘H:[a) 1} b} 'H:[bx 2} > 'F'F[C) 3] > 'H:[d) 4} > 'H:[ex 5} }

Imagine you want to raise the elements of a list to a power based on its position.
You could not easily do this with Map, but MapIndex makes it trivial.

In[52]:= MapIndexed [#1”First[#2] &, {2, 0,7, 3}]

out[52]= (2,0, 343, 81}

This is not so contrived if you consider the problem of converting a list to a
polynomial.

In[53]:= Plus @@ MapIndexed[#1 x"First[#2] &, {2, 0, 7, 3}]
out[53]= 2x+7x +3x*

Discussion

Although MapIndexed is used less frequently than Map, it is a godsend when you need
it, since it avoids the need to return to a procedural style when you want the posi-
tion. I think you might agree the following procedural implementation is a bit uglier.
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In[54]:= Block[{poly =0,
list = {2,0,7,3}},
Do[
poly = poly + list[[i]] x"i,
{i, 1, Length[list]}
E
poly]
Out[54]= 2x+7 x>+ 3xt

You may find it curious that MapIndexed wraps the position in a list, forcing you to
use First to extract the index. There is a good reason for this convention: MapIn-
dexed easily generalizes to nested lists such as matrices where the position has multi-
ple parts. Here we use a variant of MapIndexed that takes a level specification as a
third argument indicating the function ff should map over the items at level two.
Here two integers are required to specify the position; thus, the list convention
immediately makes sense.

In[55]:= MapIndexed[ff[#1, #2] &, {{a, b, c}, {d, e, f}, {g, h, i}}, {2}]
out[55]= {{ffla, {1, 1}], Ff[b, {1, 2}], Ff[c, {1,3}]},

(ff[d, {2, 1}1, ff[e, {2, 2}, FF[F, {2,3}]},

{ff[g, (3, 13], Ff(h, {3, 23], ff[i, (3,3}1}}

As an application, consider a function for reading the positions of pieces on a chess-
board. The board is a matrix with empty spaces designated by 0 and pieces desig-
nated by letters with subscripts B for black and W for white. We implement a func-
tion piecePos that can convert a piece and its position into a description that uses
algebraic chess notation.
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In[56]:= Clear[piecePos]
chessboard = {
{9, 9,0, 0, 0, 0, 0, 0},
{9, 0,0, 0, 0, 0, 0, 0},
{9, 9, 0, 0, 0, 0, 0, 0},
{9, 0,0, 0, 0, 0, 0, 0},
{Ng, Py, Ny, 0, 0, 0, 0, 0},
{0, o, 0, 0, 0, 0, 0,03},
{0, 0, 0y, 0, 0, 0, 0, 0},
{KBJ 0: 0, 0: 0: 0, 0: 0}
1

toColor [B] = "Black";
toColor [W] = "White";
toPos[{x_, y_}] :=
Module[{file = {“a", "b", "c", "d", "e", "f", "g", "h"}},
file[[y]] <> ToString[x]]

piecePos[P._, pos_] :

{toColor[c], " Pawn
{toColor[c], " Knight ", toPos [pos]}

» toPos[pos]}

piecePos|N , pos_] :

piecePos B, pos_] := {toColor[c], " Bishop ", toPos[pos]}

{toColor[c], " Rook ", toPos[pos]}

piecePos[R._, pos_] :
piecePos[Q._, pos_] := {toColor[c], " Queen

{toColor[c], " King ", toPos[pos]}

» toPos[pos]}

piecePos[K. , pos_] :

piecePos[0, _] := Sequence[]

MapIndexed will allow us to use piecePos to describe the whole board. Here, piecePos
converts an empty space to any empty sequence, which Mathematica will automati-
cally remove for us. Flatten is used to collapse unneeded nesting inherited from the
chessboard’s representation as a list of lists.
In[68]:= Flatten[MapIndexed[piecePos, chessboard, {2}], 1]
out[68]= {{Black, Knight , a5}, {White, Pawn , b5},
{White, Knight , c5}, {White, Queen , c7}, {Black, King , a8}}

2.6 Mapping a Function over a Moving Sublist

Problem

You have a list and wish to apply some operation over a moving window of fixed
size over that list.
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Solution

Ignoring available special functions of Mathematica for a moment, you can attack
this problem head-on by using Table in conjunction with a Part and Span (i.e.,
[[start;;end]]) to create the moving window (sublist) and Apply the desired func-
tion to each sublist. For example, use Mean if you want a moving average.

In[69]:= array =RandomReal[{0, 10}, 20] ;

In[70]:= Table[Meanee {array[[i;;i+411}, {i,1, 16}]
Out[70]= {3.13108, 3.27291, 4.31676, 5.41289, 5.98751, 5.6219, 5.8349, 5.52834,
5.87892, 4.7862, 5.5245, 5.36589, 4.35811, 4.09389, 4.66446, 3.87226}

Here is a variation using Take.

In[71]:= Table[Mean ee {Take[array, {i,i+4}]}, {i, 1,16}]
Out[71]= {3.13108, 3.27291, 4.31676, 5.41289, 5.98751, 5.6219, 5.8349, 5.52834,
5.87892, 4.7862, 5.5245, 5.36589, 4.35811, 4.09389, 4.66446, 3.87226}

A nonmathematical example uses the same technique to create successive pairs.

In[72]:= Table[Listeearray[[i;;i+1]], {i,1,16}]

Out[72]= {{5.14848, 4.21272}, {4.21272, 0.968604},
(0.968604, 2.94497}, {2.94497, 2.38062}, {2.38062, 5.857621,
(5.85762, 9.43197}, {9.43197, 6.44928}, {6.44928, 5.81804},
(5.81804, 0.552592}, {0.552592, 6.92264},
(6.92264, 7.89915}, {7.89915, 8.20219}, {8.20219, 0.354432},
(0.354432, 4.24409}, {4.24409, 6.12958}, {6.12958, 2.86026} }

Discussion

The solution illustrates the basic idea, but it is not very general because the function
and window size are hard coded. You can generalize the solution like this:

In[73]:= moving[f_, expr_, n_] := Module[{len = Length[expr], windowEnd },
windowEnd = Min[n, len] - 1;
Table [Apply [f, {expr[[i;; i +windowEnd]]1}], {i, 1, len - windowEnd}]]

Note that there is a built-in function, MovingAverage, that computes both simple and
weighted moving averages. There is also a MovingMedian. You should use these in-
stead of the solution given here if they are appropriate for what you need to compute.

Two special functions in Mathematica, ListConvolve and ListCorrelate, present the most
general way to perform computations on sublists. These functions contain a myriad
of variations, but it is well worth the added effort to familiarize yourself with them. I
will present only ListConvolve because anything you can compute with one you can
compute with the other, and the choice is just a matter of fit for the specific problem.
Let’s ease in slowly by using ListConvolve to implement a moving average.
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In[74]:= movingAvg[list_, n_] := ListConvolve[Table[1/n, {n}], list]

In[75]:= movingAvg[array, 5]

Out[75]= {3.13108, 3.27291, 4.31676, 5.41289, 5.98751, 5.6219, 5.8349, 5.52834,
5.87892, 4.7862, 5.5245, 5.36589, 4.35811, 4.09389, 4.66446, 3.87226}

The first argument to ListConvolve is called the kernel. It is a list that defines a set of
values that determines the length of the sublists and factors by which to multiply
each element in the sublist. After the multiplication, each sublist is summed. This is
shown more easily using symbols.

In[76]:= ListConvolve[{1, 1}, {a, b, c, d, e}]

Out[76]= {a+b,b+c,c+d,d+e}

Here I use a simple kernel {1,1}, which implies sublists will be size 2 and each ele-
ment will simply be itself (because 1 is the identity). This yields a list of successive
sums. In the moving average, the kernel was simply 1/n repeated n times since this
results in the mean.
In[77]:= ListConvolve[{1,1}/2, {a, b, c, d, e}]
a b b cc dd e
ut[77]= {=+ = =+ =y mr oy -+ )
2 2 2 2 2 2 2 2
It’s easy to see how using an appropriate kernel gives a weighted moving average,
but I won’t continue in this vein, because my goal is to demonstrate the generality of
ListConvolve and, as I already said, MovingAverage does the trick.

The first bit of generality comes from Mathematica adding a third argument to List-
Convolve that can be an integer k or a list {kL,kR}. Since using just k is equivalent to
using {k,k}, I'll only discuss the later case. It is best to start with some examples.
In[78]:= ListConvolve[{1, 1}, {a, b, c, d, e}, {1, 1}]
Out[78]= {a+e,a+b,b+c,c+d,d+e}

In[79]:= ListConvolve[{1, 1}, {a, b, c, d, e}, {1, -1}]
Out[79]= {a+e,a+b,b+c,c+d,d+e,a+e}

Hopefully you can guess the meaning of {kL,kR}; kL tells ListConvolve how much to
overhang the kernel on the left of the list, and kR tells it how much to overhang the
kernel on the right. Hence, it tells ListConvolve to treat the list as circular. The de-
fault value is {-1,1}, which means no overhang on either side.

Sometimes you do not want to treat the lists as circular, but rather as padded; hence,
ListConvolve takes a fourth argument that specifies the padding.

In[80]:= ListConvolve[{1, 1}, {a, b, c,d, e}, {1, -1}, 1]
Out[80]= {l+a,a+b,b+c,c+d,d+e,1+e}
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I've rushed through these features a bit because the Mathematica documentation
can fill you in on the details and because my real goal is to arrive at the version of
ListConvolve that takes a fifth and sixth argument. This takes us back to the theme
of this recipe, which is the idea of mapping arbitrary functions over moving sublists.
Thus far, ListConvolve has been about mapping a very specific function, Plus,
across a sublist defined by a kernel, which defines both the length of the sub-
list (matches length of kernel) and a set of weights to Times the individual ele-
ments (the elements of the kernel). The fifth argument allows you to replace
Times with an arbitrary function, and the sixth argument allows you to replace
Plus with an arbitrary function.

Here is the pair extraction function from the solution implemented using ListCon-
volve, shown here but using strings to emphasize that we don’t necessarily need to
do math. I replace Times with the function #28, which simply ignores the element
from the kernel, and I replace Plus with List because that will form the pairs.

In[81]:= list = {"'FOO", "bar", "baz", "bing"};
ListConvolve[ {1, 1}, list, {-1, 1}, {}, #2 &, List]
out[82]= {{foo, bar}, {bar, baz}, {baz, bing}}

But sometimes you can make nice use of the kernel even in nonmathematical con-
texts. Here we hyphenate pairs using StringJoin with input kernel strings {"-",""}
(consider that "" is the identity for string concatenation).

In[83]:= ListConvolve[{"-", ""}, list, {-1, 1}, {}, StringJoin, StringJoin]

out[83]= {foo-bar, bar-baz, baz-bing}

Let’s consider another application. You have a list of points and want to compute
the distances between successive pairs. This introduces a new wrinkle because the in-
put list is two levels deep. ListConvolve assumes you want to do a two-dimensional
convolution and will complain that the kernel does not have the same rank as the
list. Luckily, you can tell ListConvolve to remain on the first level by specifying a fi-
nal (seventh) argument.

In[84]:= points = RandomReal[{-1, 1}, {20, 2}];

ListConvolve[ {1, 1}, points, {-1, 1}, {}, #2 &, EuclideanDistance, 1]
out[85]= {1.49112, 0.764671, 0.789573, 0.941825, 0.933473, 1.05501,

1.21181, 0.827185, 1.25728, 0.365742, 0.62815, 1.88344, 0.741821,
1.13765, 0.719799, 0.643237, 1.60263, 0.93153, 1.33332}

Taking three points at a time, you can compute the area of successive triangles and
draw them as well!
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In[86]:= triarea[{xA_, yA_}, {xB_, yB_}, {xC_, yC_}] :=
Abs [ (xB#yA - xAxyB) + (XC#yB - xBxyC) + (xA+yC - xCxyA)] /2
ListConvolve[ {1, 1, 1}, points, {-1, 1}, {}, #2 &, triarea, 1]
Out[87]= {0.549352, 0.064558, 0.31907, 0.228057, 0.308535, 0.561063,
0.0457104, 0.126488, 0.164337, 0.104572, 0.107751, 0.581687,
0.333659, 0.408676, 0.220177, 0.457996, 0.679265, 0.550845}

In[88]:= ListConvolve[{1, 1, 1}, points,
{-1, 1}, {}, 128, Polygon[ {##}] &, 1] // Graphics|
{EdgeForm[Black], FaceForm[White], Opacity[0.5], #}, ImageSize » Small] &

out[88]=

There is something a bit awkward about ListConvolve use cases where we essentially
ignore the kernel. Readers familiar with the function Partition will immediately see
a much shorter variation.

In[89]:= triarea eee Partition[ points, 3, 1]

Out[89]= {0.549352, 0.064558, 0.31907, 0.228057, 0.308535, 0.561063,
0.0457104, 0.126488, 0.164337, 0.104572, 0.107751, 0.581687,
0.333659, 0.408676, 0.220177, 0.457996, 0.679265, 0.550845}

Partition and ListConvolve have many similar features, and with a bit of program-
ming, you can implement ListConvolve in terms of Partition and vice versa. The
one observation I can make in favor of ListConvolve is that it does the partitioning
and function application in one fell swoop. This inspires the following compromise.

In[90]:= partitionApply[func_, list_, n_] :=
ListConvolve [Array[l &, n], list, {-1, 1}, {3}, #2 &, func, 1]
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Above, Array is used to generate a kernel of the required size where 18 is the func-
tion that always returns 1.

In[91]:= partitionApply[triarea, points, 3]

Out[91]= {0.549352, 0.064558, 0.31907, 0.228057, 0.308535, 0.561063,

0.0457104, 0.126488, 0.164337, 0.104572, 0.107751, 0.581687,
0.333659, 0.408676, 0.220177, 0.457996, 0.679265, 0.550845}

But, lo and behold, the function we are looking for is actually buried inside the De-
veloper™ package! It’s called Developer™ PartitionMap.
In[92]:= Developer” PartitionMap [triarea @e # &, points, 3, 1]
Out[92]= {0.549352, 0.064558, 0.31907, 0.228057, 0.308535, 0.561063,
0.0457104, 0.126488, 0.164337, 0.104572, 0.107751, 0.581687,
0.333659, 0.408676, 0.220177, 0.457996, 0.679265, 0.550845}

See Also

I highly recommend reviewing the documentation for Partition, ListConvolve, and
ListCorrelate in succession to get insight into their relationships. I spent a lot of
time in my early Mathematica experience understanding how to use Partition but
viewing ListConvolve and ListCorrelate as mysterious. If you find a need to use Par-
tition in one of its advanced forms, you might be working on a problem where List-
Convolve or ListCorrelate applies.

ListConvolve and ListCorrelate are frequently used in image-processing applica-
tions. See Recipe 8.5. Also see Recipe 2.12, in which I use it for a traveling salesper-
son problem.

2.7 Using Prefix and Postfix Notation
to Produce More Readable Code

Problem

A complicated piece of functional code can become deeply nested and, as a result,
hard to read. You want to collapse some of these levels of nesting without introduc-
ing intermediate variables. Of course, readability is in the eye of the beholder, so a
closely related problem is making sure you can understand this style when you see it
in the wild.
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Solution

Many Mathematica veterans prefer a functional style of programming that makes
liberal use of prefix notation, which uses the @ symbol to compose functions, and
postfix notation, which uses //. Let’s consider a simple program that looks for
primes of the form 2" + 1 up to some limiting value of nmax.
In[93]:= somePrimes[nmax_] :=
Select[Union[Flatten[Table[{2*n -1, 2*n + 1}, {n, 0, nmax}]]], PrimeQ];
somePrimes [
5]
Oout[94]= {2,3,5,7,17, 31}

As a first step, you can eliminate some levels of nesting by using @.
In[95]:= somePrimes[nmax_] :=
Select [Union@Flatten@Table[{2”*n -1, 2*n + 1}, {n, 0, nmax}], PrimeQ]

somePrimes [5]
Out[96]: {21 3) 5,7,17, 31}

You can further emphasize that this program is about finding primes by using func-
tional composition with Select. This brings the PrimeQ test to the front.
In[97]:= somePrimes[nmax_] := Select[#, PrimeQ] & @
Union@FlatteneTable[{2*n -1, 2*n + 1}, {n, 0, nmax}]
somePrimes [
5]
out[98]= (2, 3,5,7,17,31}

The use of postfix is perfectly valid on the left-hand side, although you are less likely
to see this style widely used.

In[99]:= somePrimes@nmax_ :=
Select [#, PrimeQ] & @ Union@Flatten@Table[{2"n -1, 2*n + 1}, {n, 0, nmax} ]

A functional purist might go further and make somePrimes a pure function, but most
would agree this goes way too far in this instance! Still, you should know how to
read code like this, because you will come across it, and there are cases where it
makes sense.

In[100]:= Clear[somePrimes];
somePrimes = (Select[#, PrimeQ] & @
Unione@FlatteneTable[{2"n -1, 2"n + 1}, {n, 0, #}]) &;
somePrimes [
5]
out[102]= {2, 3,5,7,17, 31}
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Discussion

The uninitiated could make an argument that the first form of somePrimes was more
understandable to them than any of the later ones. First, let me say that there is
no reward in heaven for coding in a specific style, so don’t feel the need to conform
to a particular fashion. Your programs won’t run faster just because you use a terser
syntax. Having said that, I now defend the merits of this particular style. Let me re-
peat the version that I think strikes the right balance.

In[103]:= Clear[somePrimes];
somePrimes [nmax_] :=
Select [#, PrimeQ] & @ Union@FlatteneTable[{2”*n -1, 2"n + 1}, {n, 0, nmax}]

First, use of symbols like @ should not be a real barrier. After all, such symbolic
forms of expression are pervasive. Every first grader knows what 1 + 1 or $15 means. Sym-
bolic operators are not inherently mysterious after you are exposed to them.

However, the primary goal and claim is readability. This expression can be read as “select
the primes of the union of the flattening of the table of pairs {2*n-1, 2”n+1} with n ranging
from 0 to nmax”. As I stated in the solution, the most relevant aspect of this program is that
it selects primes. Having a language that gives you the freedom to express programs in a
way that emphasizes their function is really quite liberating in my opinion.

The flip side of emphasis by pushing functions forward is deemphasis by pushing an-
cillary detail toward the end. This is one of the roles of postfix //. Common uses include
formatting and timing. Here the main idea is taking the last value of somePrime[500].
The fact that you are interested in the timing is likely an afterthought, and you may
delete that at some point. Placing it at the end makes it easy to remove.

In[105]:= Last@somePrimes[500] // Timing
Out[105]= {0.113328, 170141183460469231731687303715884105727}

Likewise, formatting is a convention that does not change meaning, so most users
tag formatting directives at the end.
In[106]:= 10.00 + 12.77 - 36.00 - 42.01 // AccountingForm
Out[106]//AccountingForm=
(55.24)

Note that @ has high precedence and associates to the right, whereas // has low prece-
dence and associates to the left. The precedence is suggested by the way the front-
end typesets expressions with @ containing no space to suggest tight binding, while
// expressions are spaced out to suggest loose binding and lower precedence.

In[107]:= aebec//fed//e
out[107]= e[f[d][a[b[c]]]]
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It’s worth mentioning that Postfix and Prefix will convert standard functional form
to the shortened versions.

In[108]:= Prefix[f[1]]
out[108]= Prefix[1]

In[109]:= Postfix[f[1]]
Out[109]= Postfix[1]

See Also

Additional perspectives on this notation can be found in the essay The Con-
cepts and Confusions of Prefix, Infix, Postfix and Fully Nested Notations by Xah Lee
at http://bit.ly/t6 GoC.

Readers interested in functional programming styles should google the term Point-
free to learn how the ideas discussed here manifest themselves in other languages,
such as Haskell.

2.8 Defining Indexed Functions

Problem

You want to define a family of functions differentiated by an index or indices.

Solution
Use indexed heads or subscripts.
In[110]:= ClearAll[f] ;
FI11[x, y_] := 0.5 = (
FL21[x_,y_] := 0.5 % (x -
fI31[x5y_] = 0.5 % (y - x
In[114]:= Table[f[RandomInteger[{1, 3}1] (3, 2], {i, 6}]
out[114]= (2.5, -0.5, -0.5, -0.5, 2.5, 0.5}

The mathematician in you might prefer using subscripts instead.
In[115]:= ClearAll[f] ;
fi[x,y_] = 0.5+ (x +y)
fa[xLy_] = 0.5% (x - y)
f3[xLy_] = 0.5 (y - x)
In[119]: fkandomInteger[{l,S)] [3,2]
out[119]= 0.5

2.8 Defining Indexed Functions | 51



Discussion

In Stan Wagon’s Mathematica in Action (W .H. Freeman), there is a study of iterated
function systems that are nicely expressed in terms of indexed functions. This is a
variation of his code that takes advantage of the new RandomChoice function in
Mathematica 6. The fernlike structure emerges out of a nonuniform distribution of
function selections.

In[120]:= ClearAll[f]
F111 [y )]
fr21[{x.y }] -

Dot [{{0.85, 0.04}, {-0.04, 0.85}}, {x, y}] + {0, 1.6}
Dot[{{-0.15, 0.28}, {0.26, 0.24}}, {x, y}] + {0, 0.44}
f[31[{x_, y_}] := Dot[{{0.2, -0.26}, {0.23, 0.22}}, {x, y}] + {0, 1.6}
f[41[{x_, y_}] := Dot[{{0.0, 0.0}, {0.0,0.16}}, {x, y}]
ff[p_] := f[RandomChoice[{85,7,7,1} -» {1,2,3,4}]1]I[p]
fern[n_] :=

Graphics[{AbsolutePointSize[O.S] , Point /@ NestList[ff, {0, 0}, n]},

PlotRange » {{-3, 3}, {-1,11}}, AspectRatio - 0.83, ImageSize » Small]

In[127]:= fern[10000]

You are not restricted to indexing functions by integers. Here are some variations
that are possible.

In[128]:= gI1,11[x_,y_] := x + 2y

glweird] [x_, y_] := Exp[Sin[x] Tan[y]]
g[1+2I]:=x + 2yl
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2.9 Understanding the Use of Fold As an
Alternative to Recursion

Problem

You want to understand and create programs that use Fold[] as an alternative to ex-
plicit recursion.

Solution

Consider the following simple recursive definition for a summation function.
In[131]:= mySum[{}] := O
mySum[1_] := First[1l] + mySum[Rest[1]]

In[133]: mySum[ {1, 2, 3, 4, 5}]
Out[133]= 15

This function can easily be translated to a nonrecursive implementation that uses
Fold[].

In[134]:= mySum2[l ] := Fold[#l + #28&, 0, 1]

In[135]:= mysum[(lx 2) 3: 4) 5}]
out[135]= 15

Discussion

The function Fold[f, x, {al,a2,...,aN}] computes f[f[f[x,al],a2],...,aN]. It is
a simple enough definition to understand, but it is not always clear to the uniniti-
ated when such a function might be useful. It turns out that there is a relation-
ship between Fold and certain common kinds of recursive functions. Consider the
following abstract recursive structure.

gl{}] = x
g[1l_] = f[First[1], g[Rest[1]]

When a function g has this recursive structure in terms of another function f, then it can
easily be translated into a nonrecursive function using Fold, provided f is associative. If f is
not associative, then you may need to reverse the list 1 before passing to Fold.

g[1_] = Fold[f[#1,#2]&,x,1]
Here is an example that shows that the functionality of Map can be implemented in
terms of Fold. First start with your own recursive definition of Map.

In[136]:= myMap[_, {}1 := {}
myMap[f_, 1_] := Prepend [myMap[-F, Rest[1]1], f[First[l] ]]
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The translation requires reversing the list because prepending the application of f to
a list is clearly not associative.

In[138]:= myMap2[f ,1 ] :=Fold[Prepend[#1, f[#2]] &, {}, Reverse[l]]
Here is a test of the recursive implementation, first on an empty list, then on a
nonempty one.

In[139]:= myMap[Sqrt, {}]

out[139]= {}

In[140]:= myMap[Sqrt, {1, 2,3, 4}]

out[140)= {1, J2,403, 2}

Now the Fold version.

In[141]:= myMap2[Sqrt, {}]
out[141]= {}

In[142]:= myMap2[Sqrt, {1, 2, 3,4}]

out[142]- {1, J2,43, 2)

Before considering more useful applications of Fold, I need to clear up some poten-
tial confusion with folding implementations from other languages. In Haskell, there
are functions called foldl and foldr, which stand for fold left and fold right, respec-
tively. Mathematica’s Fold is like foldl.

In[143]:= (*This is like Haskell's foldr.«)

foldr[f_, v_, {}] :=vV

foldr[f_, v_, 1 ] := f[First[l], foldr[f, v, Rest[1l]]]
(*This is like Haskell's foldl and Mathematica's Fold.x)
foldl[f_,v_, {}] := vV

foldl[f_, v_, 1 ] := foldl[f, f[v, First[1]], Rest[1]]

In[145]:

These various folds will give the same answer if the function passed is associative
and commutative.

In[147]:= foldr[Plus, 0, {1, 2,3}]

out[147]= 6

In[148]:= foldl[Plus, 0, {1,2,3}]
out[148]= 6

In[149]:= Fold[Plus, 0, {1, 2,3}]
Out[149]= 6
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To visualize the difference between foldr and foldl, consider the trees produced by
using the List function. Trees labeled b and c are the same, confirming the equiva-
lence of Haskell’s foldl and Mathematica’s Fold.

In[150]:= Grid[Partition[MapIndexed [TreeForm|s, ImageMargins - 1,
ImagePadding - 0, PlotLabel -» Extract[{"a", "b", "c"}, #2] ] &,
{foldr[List, {}, {1, 2, 3}], foldl[List, {}, {1, 2, 3}],
Fold[List, {}, {1, 2, 3}1}], 2, 2, {1, 1}, SpanFromLeft]]
a b

List List

List List

List List

0ut[150]=

List

List

List

;
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You can use the relationship between Fold and recursion to analyze more compli-
cated use cases. For example, the Mathematica documentation provides an example
of using Fold to find all the unique sums of a list of numbers.

In[151]:= Fold[Union[#1, #1 + #2] &, {0}, {1, 2, 7}]
Out[151]= {OJ 1, 2) 31 7, 8) 91 10}

When T first saw this, it was not immediately obvious to me why the solution
worked. However, by converting to the recursively equivalent solution, it is easier to
analyze what is happening.

In[152]:= uniqueSums[{}] := {0}

uniqueSums[1_] :=
Union[ {First[1]}, uniqueSums[Rest[1]], First[1l] + uniqueSums[Rest[1]]]
In[154]:= uniqueSums[{1, 2, 7}]
Out[154]= {01 1) 2) 31 7, 8) 91 10}

The first rule is obvious. The sum of the empty list is zero. The second rule says that
the unique sums of a list are found by taking the union of the first element of the
list, the unique sums of the rest of the list, and the sum of the first element and the
unique sums of the rest of the list. The last part of the union (First[1] + uniqueSums
[Rest[1]]) provided me with the key insight into why this example worked. It is a
sum of a scalar and a vector and provides the sum of the first element with all other
combinations of sums of the remaining elements. It is obvious that the recursive
translation, as written, is suboptimal because the recursive call is made twice (this
could easily be fixed with a local variable), but the point here was to use the recur-
sive function as a tool to analyze the meaning of the Fold implementation.

See Also

Foldlist is a variant of Fold that returns all intermediate steps of the Fold in a list.
Refer to the Mathematica documentation for details.

Nest and NestList also repeatedly apply a function to an expression, but the repeti-
tions are controlled by an integer n. See Recipe 2.11.

NestWhile and NestWhilelist apply a function as long as a test condition remains
true. See Recipe 2.11.
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2.10 Incremental Construction of Lists

Problem

You need to build up a list piece by piece during an iterative or recursive
computation.

Solution

An obvious solution to this problem is to use the function AppendTo[s, elem]; how-
ever, AppendTo should be avoided for performance reasons. Instead, use Reap and
Sow. Here is a simple factorial function that collects intermediate results using Reap
and Sow.

In[155]:= factoriallist [n_Integer /3 nz 0] := Reap [factoriallistSow[n] ]
factoriallListSow[0] := Sow[1]
factoriallistSow[n_] := Module[{fact}, Sow[ n * factoriallistSow[n -1]]]
In[158]:= factoriallist[8]
Out[158]= (40320, {{1,1, 2, 6, 24, 120, 720, 5040, 40320} } }

Discussion

Reap and Sow cause confusion for some, possibly because there are few languages
that have such a feature built in. Simply think of Reap as establishing a private queue
and each Sow as pushing an expression to the end of that queue. When control exits
Reap, the items are extracted from the queue and returned along with the value com-
puted by the code inside the Reap. I don’t claim that Reap and Sow are implemented
in this way (they might or might not be), but thinking in these terms will make you
more comfortable with their use.

Reap and Sow are often used as evaluation-monitoring functions for numerical algo-
rithms. FindRoot, NDSolve, NIntegrate, NMinimize and NSum allow an optional Evaluation-
Monitor or StepMonitor where Reap and Sow can come in handy.
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In[159]:= Module[{x, y, f= Function[{x, y}, (x"3 - y"Z) "2] }, Reap[
NMinimize [f[x, y],

{{x, -5, 5}, {y, -5, 5}}, EvaluationMonitor :> Sow [ {x, y}]]]]

out[159]= {{2.93874x107°, {x$2657 - 0.0781025, y$2657 - 0.0218272} } ,

({{1.52468, 1.3307}, {1.82813, 0.663518}, {4.35202, 4.76188},

(-0.999213, ~2.76766}, {0.338596, —0.885272}, {0.0351429, -0.218087},
(-0.861351, ~0.65889}, {-1.15094, -2.43406}, {0.855774, 0.389512},
{0.552321, 1.0567}, {0.392027, ~0.39978}, {-0.428604, -1.00738},
{0.534679, 0.0402892}, {-0.107509, ~0.658156}, {0.374132, —0.134322},
{0.0172481, 0.0473707}, {-0.170141, 0.270946}, {0.356237, 0.131136},
{-0.000646785, 0.312828}, {0.280437, -0.0225345],
{-0.0585518, -0.106299}, {-0.321741, —0.0363943},
£0.129893, ~0.0259995}, {0.205693, 0.127671}, {0.139632, 0.0691781},
{0.252276, ~0.00419199}, {0.0760051, 0.03448}, {0.0662664, —0.0606976},
{0.12129, 0.0367092}, {0.0674026, 0.0971887}, {0.11427, 0.00479757},
£0.0830251, 0.0663916}, {0.106459, 0.0201961}, {0.0908364, 0.0509931},
{0.102553, 0.0278953}, {0.147838, 0.0301245}, {0.0939635, 0.0333911},
{0.0752265, 0.0245773}, {0.0521947, 0.0185113}, {0.0666367, 0.0300731},
{0.0935742, 0.0284398}, {0.0748372, 0.0196259}, {0.0931849, 0.02348841},
{0.0797161, 0.0243051}, {0.0886953, 0.0237606}, {0.0819609, 0.024169},
{0.100698, 0.0329828}, {0.0813024, 0.0229651}, {0.0929156, 0.027236},
{0.0846996, 0.0249357}, {0.0901769, 0.0264692}, {0.0860689, 0.0253191},
{0.0737971, 0.0198445}, {0.0785637, 0.0221984}, {0.0908355, 0.027673},
{0.0780567, 0.0218016}, {0.085562, 0.0249223}, {0.0838124, 0.0242413},
{0.0780567, 0.0218016}, {0.0780567, 0.0218016}, {0.0781026, 0.0218272},
{0.0781025, 0.0218272}, {0.0781025, 0.0218272}, {0.0781025, 0.0218272},
{0.0780567, 0.02180161}, {0.0780567, 0.0218016}, {0.0780545, 0.021807},
{0.0780545, 0.021807}, {0.0780545, 0.021807} } } }

Reap and Sow also can be used to build up several lists by specifying tags with Sow and
patterns that match those tags in Reap. Here you create a three-way partitioning func-
tion using an ordering function by sowing values with tags -1, 0, or 1, depending on
the relation.
In[160]:= partition[l , v_, comp_] := Flatten /eReap[
Scan|[
Which [comp [#, v], Sow[#, -1],
comp[v, #], Sow[#, 1], True, Sow[#, 011 &, 1],
{-1,0,1}1[[2]]
In[161]:= partition[{3,5,7,9, 2, 4,6, 8, 3, 4}, 4, Less]
Out[161]= ({3, 2,3}, {4, 4}, {5,7,9,6, 8}}

Our queue analogy easily extends to this case by assuming Reap establishes a sepa-
rate queue for each pattern and Sow chooses the matching queue.
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See Also

Reap and Sow are used in the tree traversal algorithms in Recipe 3.11.

2.11 Computing Through Repeated
Function Application

Problem

You want to understand the types of computations you can perform using the Nest
family of functions (Nest, NestList, NestWhile, NestWhilelist).

Solution

Many problems require repeated application of a function for a specified number of
times. One example that is familiar to most people is compounded interest.

In[162]:= compoundedInterest[principal_, rate_, years_, n_] 1=

Nest[# (1.0 + rate/n) &, principal, years n]

As expected, the principal grows in value quicker the more times the interest is com-
pounded per year.

In[163]:= Table[compoundedInterest[1000, 0.05, 10, n], {n, {1, 2,4, 12, 365}}]
Out[163]= {1628.89, 1638.62, 1643.62, 1647.01, 1648.66}

Another classic application is fractals. Here I use Nest to generate one side of
the Koch snowflake. The rule for creating the snowflake is to take the line seg-
ment, divide it into three equal segments, rotate copies of the middle segment
Pi/3 and -Pi/3 radians from their ends to form an equilateral triangle, and
then remove the middle section of the original line segment. This is imple-
mented literally (but not efficiently) by iterating a replacement rule using Nest. We
cover these rules in Chapter 4.
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In[164]:= Clear[koch, snowflake]
koch[Line[x_]] := With[{s = ScalingMatrix[{1/3,1/3}],
rl = RotationMatrix [Pi/ 3], r2 = RotationMatrix[-Pi /3] },
{ Line[x.s], Line[x.rl.s + {{1/3, 0}, {1/3,0}}1,
Line[x.T2.s + {{1/2, -0.289}, {1/2, -0.289}}1,
Line[s.x + {{2/3, 0}, {2/3,0}}1}]
snowflake[n_] := With[{g = Graphics[{Line[{{0, 0}, {1,0}}1}1},
Nest[# /. Line[x_] :» koch[Line[x]] &, g, n]]
GraphicsGrid [
{ {snowflake[1], snowflake[3]}, {snowflake[2], snowflake[4]}}]

A hdl
RPNOES A

out[167]=

Discussion

If you are interested in the intermediate values of the iteration, NestlList is the an-
swer. Suppose you want to see all rotations of a shape through d radians. Here I use
NestList to rotate clockwise and translate a square with a dot in its corner through
angle d until at least 2P1 radians (360 degrees) are covered.

In[168]:- allRotations[shape_, d_] := With[{n = Ceiling[2Pi/d]},
Graphics [NestList [Translate [Rotate [#, -d], {1.5, 0}] &, shape, n] ]]
allRotations[{Red, Rectangle[], Black, Point[{0.90, 0.1}]1}, Pi/6]

A P A Y P A Y P2 Y P2 Y

NestWhile and NestWhilelist generalize Nest and NestlList, respectively, by adding a
test predicate to determine if the iterative application of the function should con-
tinue. In addition to the test, an upper limit can be specified to guarantee the itera-
tion terminates in a given number of steps if the test does not terminate it first. Here
is an application that searches for a tour in a traveling salesperson problem (TSP)
that is less than some specified distance. The cities are numbered 1 through n, and
the distances are represented as a sparse matrix.
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In[170]:= (+Make random set of cities.x)

makeCities[n_] :=

SparseArray [Flatten|

Table[{i, j} » If[i==J, O, RandomReal[{1, 50}1], {i, 1, n}, {j, 1, i}]]]

(*Given set of cities, and two particular cities,
return distance between.x)
distance[cities_, c1_, c2_] :=

With[{il =Max[cl, c2], i2 =Min[cl, c2]}, cities[[il, i2]]]
(*Given a tour, compute the total distance traveled

if you visit each city and return to the first.x)
totalDistance[cities_, tour_] :=

Total[ListConvolve[ {1, 1}, tour,

{-1, -1}, tour, #2 &, distance[cities, #1, #2] &] ]

(*Make an initial tour where cities are visted in

ascending order of city number.x)

makeOrderedTour [cities_] := Range[Length[cities] ]
(*Randomly sample tours until a tour is less

than specified distance or maxTries is exceeded.x)
findTourLessThan[cities_, distance_, maxTries_] :=

Module[{n = Length[cities] },

NestWhile [RandomSample[#, n] &, makeOrderedTour [cities],
totalDistance[cities, #] >= distance &, maxTries] ]

The algorithm is not very intelligent, but it nicely demonstrates NestWhile. First I
make a random set of 10 cities and see the distance of the ordered tour.

In[175]:= cities = makeCities[10];
dist = totalDistance[cities, makeOrderedTour [cities]]
Out[176]= 273.898

Now I see if I can find a better tour that is better than 80% of the ordered tour in
100,000 tries.
In[177]:= findTourlLessThan[cities, 0.80 dist , 100000]

0U't[177]= {9: 5) 10: 2) 6) 8: 3) 7) 1: 4}
You can see that it was successful!

In[178]:= totalDistance[cities, %]
Out[178]= 300.754
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See Also
The replacement rules used in the Koch snowflake are covered in Chapter 4.
In Recipe 12.16, NestList is used to drive a simulation.

The TSP example used ListConvolve to compute the distance of a tour. See Recipe 2.6.

2.12 Building a Function Through Iteration
Problem

You want to construct a higher-order function from explicit iteration of a lower-or-
der function.

Solution

This is a good application for Nest. For example, you can pre-expand terms in New-
ton’s method for +/n .

In[179]:= Clear[f, X5 Y5 Zy N, terms];
makeSqrtNewtonExpansion [n_, terms_Integer: 4] i=
Function|[x,

Evaluate [Together [Nest [Function[z, (z+n/z) /2], X, terms]]] ]
In[181]:= sqrt2 = makeSqrtNewtonExpansion[2, 4]
Out[181]= Function [x$, (256 +15360 x$% + 116480 x$* +

256256 x$° + 205920 x$° + 64064 x$' + 7280 x$™* + 240 x$M + x$') /
(16 x$ (2 +x$7) (4+12x87 +x$*) (16 + 224 x$? + 280 x$* + 56 x$° + x$°) ) |

We are left with a function that will converge quickly to sqrt[2] when given an initial
guess. Here we see it takes just four iterations to converge.

In[182]:= FixedPointlList[sqrt2, 1°40]

Out[182]= {1.000000000000000000000000000000000000000,
1.41421356237468991062629557889013491012,
1.4142135623730950488016887242096980786,
1.414213562373095048801688724209698079 }

Discussion

Code generation is a powerful technique; the solution shows how Function and Nest
can be used with Evaluate to create such a generator. The key here is the use of
Evaluate, which forces the Nest to execute immediately to create the body of the
function. Later, when you use the function, you execute just the generated code
(i.e., the cost of the Nest is paid only during generation, not application).
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Fold can also be used as a generator. Here is an example of constructing a continued
fraction using Fold adapted from Eric W. Weisstein’s “Continued Fraction” from
MathWorld (http://bit.ly/35rx]F).
In[183]:= continuedFraction[{a0_, 1_List?MatrixQ}] :=
a0 + Fold[#2[[1]] / (#1 +#2[[2]]) &, O, Reverse[1]]
continuedFraction[{a0_, {}}] :=a0
In[185]:= continuedFraction[{a[0], Table[{b[i], a[i]}, {i,4}]}] /.
x_[y_] = Subscript[x, y]

by

Out[185]= ao +

2.13 Exploiting Function Composition and
Inverse Functions

Problem

You want to compose one or more functions to produce a new function, with the
added ability to easily invert the new function.

Solution
Use Composition to build a new function f1[f2[f3...[x]]] from f1, 2, f3... and
InverseFunction to convert the composition to ...f31[f2 1 [f11[x]]].

In[186]:= f = Composition[Exp, Cos]

Out[186]= Composition[Exp, Cos]

In[187]:= result =f[0.5]
Out[187]= 2.40508

In[188]:= Exp[Cos[0.5]]
out[188]= 2.40508

If the composed functions are invertible, you can compute the inverse of the
composition.

In[189]:= InverseFunction[f] [result]
out[189]= 0.5
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Discussion

The Mathematica 6 documentation for Composition is not very compelling. It lists
the following examples of usage:

In[190]:= (*Create a sum of numbers to be displayed in held form.=x)
Composition [HoldForm, Plus] @@ Range[20]
1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20
0ut[190]= 1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20

Out[191]= 1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20

In[192]:= (+Tabulate square roots of values without using auxiliary variables.x)

TableForm|Composition[Through, {Identity, Sqrt}] /e {0, 1.0, 2.0, 3.0, 4.0} ]
Out[192]//TableForm=

0 0
1. 1.
2. 1.41421
3. 1.73205
4. 2.

Although these are certainly examples of usage, they are not compelling because the
same results can be achieved without Composition and, to my tastes, more simply.

In[193]:= HoldForm[Plus[##]] & @@ Range[20]
Out[193]= 1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20

This is an example of Recipe 2.4.

In[194]:= {Identity[#], Sqrt[#]}& /e {0, 1.0, 2.0, 3.0, 4.0} // TableForm
Out[194]//TableForm=

0 0
1. 1.
2. 1.41421
3. 1.73205
4. 2.

For some time I thought that Composition was just a curiosity that might appeal to
some mathematically minded folks on aesthetic grounds but otherwise did not add
much value. This was before I understood how Composition can work together
with InverseFunction. When you have an arbitrary composition of functions, In-
verseFunction will produce an inverse of the composition by inverting each compo-
nent and reversing the order of application. In the case of the example in the preceding
“Solution” section, you get the following:

In[195]:= InverseFunction[Composition[Exp, Cos]]
Out[195]= Composition[ArcCos, Log]
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Unfortunately, mathematical functions often are not invertible, so this particular ex-
ample will not always work given an arbitrary list of functions. But the really cool
thing is that the functions need not be mathematical or perfectly invertible as long as
you tell Mathematica you know what you’re doing by defining the inverses of your
custom functions!

You can see that Mathematica has no idea what the inverse of RotateRight is, even
though it is obvious that for a list it is RotatelLeft.

In[196]:= InverseFunction[RotateRight][{1, 2, 3}]
Out[196]= RotateRight™ [{1, 2, 3}]

But you can define your own version and its inverse by using upvalues (see
“DownValues and UpValues” on page 27).

In[197]:= ClearAll[reverse, rotateRight];
rotateRight [list_List] := RotateRight[list]
(*Define an UpValue for inverse of rotateRight.x)
InverseFunction[rotateRight] ~:= RotatelLeft[#1] &
reverse[list_List] := Reverse[list]
(*Clearly, reverse is its own inverse.=)
InverseFunction[reverse] ":= reverse[#] &

Now, given an arbitrary composition of these functions, we are guaranteed the abil-
ity to produce its inverse with no effort at all! T find that compelling, don’t you?

In[202]:= trl = Composition[reverse, rotateRight, rotateRight];

In[203]:= v = trl[{1, 2,3,4,5,6}]
Out[203]— {4; 3) 2) 1; 6) 5}

In[204]:= InverseFunction[trl] [v]
Out[204]= {1: 2: 3) 4: 5: 6}

The obvious implication of this simple example is that if you define a set of func-
tions and inverses, then given an arbitrary composition of those functions, you will
always have the undo operation handy. Further, you get partial undo via Drop.

In[205]:= (*Drop one level of undo.x)
Drop [InverseFunction[trl], 1] [v]
Out[205]= {61 1) 2) 31 4) 5}

In Recipe 2.7 we discussed composing functions using prefix operator @. The follow-
ing illustrates the relationship:

In[206]:= Composition[fl, f2, f3] [x] === flef2ef3ex
Out[206]= True
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See Also

Composelist returns the list of results computed by successive compositions of a
given list of functions. See the Mathematica documentation.

2.14 Implementing Closures

Problem

You want to create expressions with persistent private state, behavior, and identity, but
Mathematica does not directly support Lisp-like closures or object-oriented programming.

’__ The techniques described in this section fall a bit outside garden-
“—@ variety Mathematica; some purists may frown on using techniques that
make Mathematica feel like a different language. They might argue
that Mathematica has enough features to solve problems and that
users are better off mastering these rather than trying to morph the
language into something else. I think this advice is generally sound.
However, Mathematica is a system for multiparadigm programming as
well as a system for research and exploration. So if you are interested,
as I am, in exploring software development concepts for their own
sake, I think you will find this recipe useful in stimulating new ideas
about what Mathematica can do.

Solution

Create a symbol called closure with attributes HoldAll and with the form closure
[var_List, val List, func_List]. Create an evaluation function for closures that ex-
ecutes in a private environment provided by Block and returns the result and a new
closure that captures any state changes that occurred during the evaluation.

In[207]:= SetAttributes[closure, HoldAll];
SetAttributes [evaluate, HoldFirst];
evaluate[f_, closure[vars_, vals_, funcs_]] := Block[vars, vars = vals;
Block [funcs, {f, closure[vars, Evaluate[vars], funcs]}]]

You can now use this machinery to create a counter.

In[210]:= ClearAll[makeCounter, counter];
makeCounter [init_] := With[{v = init}, closure[{x}, {v},
{incr = Function[x = x + 1], decr = Function[x = x -1],
reset = Function[v, x =v], read = Function[x]}]]
counter = makeCounter[0]
Out[212]= closure[{x}, {0}, {incr= (x=x+1) &,
decr = (x =x-1) &, reset = Function[v, x=v], read = x &} ]
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From a syntactic point of view, the implementation is only half done, but it is usable
(see the folllowing “Discussion” for the icing on the cake).

In[213]:= {val, counter} = evaluate[incr[], counter]; val
out[213]= 1
When you evaluate again, you see that the state change persisted.

In[214]:= {val, counter} = evaluate[incr[], counter]; val
out[214]= 2

Notice that even though the closure contains a free variable x, changes to x in the
global environment do not impact the closure.

In[215]:= x = 0;
{val, counter} = evaluate[incr[], counter]; val
Out[216]= 3

However, you can reset the counter through the provided interface. You can also
decrement it and read its current value.

In[217]:= {val, counter} = evaluate[decr[], counter]; val

out[217]= 2
In[218]:= {val, counter} = evaluate[reset[7], counter]; val
out[218]= 7
In[219]:= {val, counter} = evaluate[read[7], counter]; val
out[219]= 7

Discussion

In computer science, a closure is a function that closes over the lexical environment
in which it was defined. In some languages (e.g., Lisp, JavaScript), a closure may oc-
cur when a function is defined within another function, and the inner function refers
to local variables of the outer function. Mathematica cannot do this in a safe way (as
discussed here), hence the solution.

The solution presented is a bit awkward to use and read and, thus, would be easy to
dismiss as a mere curiosity. However, we can use an advanced feature of Mathemat-
ica to make the solution far more compelling, especially to those readers who come
from an object-oriented mind-set. One problem with the solution is that you need to
deal with both the returned value and the returned closure. This is easy to fix by
defining a function call that hides this housekeeping.

In[220]:= SetAttributes[call, HoldAll];
call[f_, c_] := Module[{val}, {val, c} = evaluate[f, c]; val]
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This simplifies things considerably.

In[222]:= val = call[decr[], counter]
Out[222]= 6

But we can go further by adding some syntactic sugar using the Notation facility.

In[223]:= << Notation®
Notation[c_ = func_ < call[func_, c_]];

Now you can write code like this:

In[225]:= counter = incr[]
out[225]= 7

In[226]:= counter = reset[0]
Out[226]= 0

In[227]:= counter = incr[]
Out[227]= 1

You can use an existing closure to create new independent closures by creating a
clone method. This is known as the prototype pattern.

In[228]:= clone[closure[vars_, vals_, funcs_117 :=
clone [closure [vars, vals, funcs], vals]
clone[closure[vars_, vals_, funcs_], newVals_] :=
With[ {v = newVals}, closure[vars, v, funcs]]

In[230]:= counter2 = clone[counter] (xClone existing state.x)
Out[230]= closure[{x}, {1}, {incr= (x=x+1) &,

decr = (x =x - 1) &, reset = Function[v, x =v], read = x &} ]

In[231]:= counter3 = clone [counter, {0}]

(*Clone structure but initialize to new state.x)
Out[231]= closure[{x}, {0}, {incr= (x=x+1) &,

decr = (x =x - 1) &, reset = Function[v, x =v], read = x &} ]

You can see these counters are independent from the original counters (but they do
share the same functions, so they don’t incur much additional memory overhead).
In[232]:= counter2 = incr[]
out[232]= 2
In[233]:= counter3 = incr[]

out[233]= 1

In[234]:= counter = read[]
Out[234]= 1
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It is instructive to compare this solution with other languages that support closures.
In JavaScript, a closure over an accumulator can be created like this:
javascript

function counter (n) {

return function (i) { return n += i }

}

Let’s see what happens if we attempt the same approach in Mathematica.

In[235]:= Clear[makeCounter];
makeCounter[n_Integer] := Function[i, n += i]
counter = makeCounter[0];

In[238]:= counter[1]

AddTo: :rvalue :
0 is not a variable with a value, so its value cannot

be changed. >

out[238]= 0+=1

This was doomed from the start because 7 is not a free variable that can be closed
over by Function. But let’s try something else.
In[239]:= Clear[makeCounter, state];
makeCounter[n_Integer] := Block[{state = n}, Function[i, state += i]]
counter = makeCounter[0];

In[242]:= counter[1]

AddTo::rvalue :
state is not a variable with a value, so its value

cannot be changed. >

Out[242]= state+=1

This fails because state is only defined while the block is active, because Block is a
dynamic scoping construct and closures require lexical scoping. You might recall that
Module is a lexical scoping construct; perhaps we would have better luck with that.

In[243]:= Clear[makeCounter, state];
makeCounter[n_Integer] := Module[ {state = n}, Function[i, state += i]]

counter = makeCounter[0];

In[246]:= counter[1]
Out[246]= 1

In[247]:= counter[1]
out[247]= 2
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This seems to work, but it has a flaw that you can see if you inspect the value of
counter.

In[248]:= counter
Out[248]= Function[i$, state$2811 +=1i$]

The variable we called state has now morphed into something called state$<some
number>. The point here is that Module implements lexical scope by synthesizing a
global variable that is guaranteed not to be defined already, but that variable is not
protected in any way and could be changed by the user. This is not esthetically pleasing
and is not at all what is happening in the JavaScript or Lisp equivalents.

The solution in this recipe uses a different tactic. It uses the HoldAll attribute to cre-
ate a container for the lexical environment of the closure. Because the variables and
functions are held in unevaluated form, it makes no difference if there are global
symbols with the same names. When it comes time to evaluate the closure, the evaluate
function builds up a Block on the fly to create local instances of the variables and an-
other Block to create local instances of the functions. It then binds the stored values
of the variables and functions to these locals and calls the appropriate locally de-
fined function.

What practical value are closures within the context of Mathematica? Clearly, creat-
ing a counter is too trivial. However, even the simple counter example shows some
promising features of this technique. First, had we implemented the counter as a sim-
ple global variable, it could be used accidentally for some purpose inconsistent with
the behavior of a counter. By encapsulating the counter in the closure, we restrict ac-
cess to its state and the interface exposed by the closure becomes the only way to ma-
nipulate it. Further, the interface can be easily inspected because it is carried around
inside the closure.

Mathematica 6’s Dynamic feature provides the context for a compelling application
of closures. Let’s say you want to create a graphic that can be dynamically updated
under programmatic control (rather than user control, for which you would use Ma-
nipulate instead). One way to do this is to define variables for all the aspects of the
graphic that you need to change and wrap the graphic in a Dynamic function.
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In[249]:= rectX =1; rectY = 2; rectAngle = 10 Degree; circR = 1;
DynamicModule[{g},

g = Graphics [ {Thick, Green, Rotate[Rectangle[ {0, 0}, {rectX, rectY}],
rectAngle], Red, Disk[{0, 0}, circR] }, ImageSize -» Small] ;
Dynamic |

g]]

0ut[250]=

You then write Mathematica code that manipulates the variables as necessary to dy-
namically update the drawing. This is all well and good for a simple example with
two shapes and four degrees of freedom, but imagine if you were doing this as part
of a simulation that had hundreds of shapes with hundreds of degrees of freedom.
Clearly, you would want a way to encapsulate all those variables behind an interface
that made sense for the simulation. This closure facility can do just that.

In[251]:= ClearAll[shapeCtrl]
shapeCtrl = closure[ {rectX, rectY, rectAngle, circR}, {1, 2, 10 Degree, 1},
{rotate = Function[a, rectAngle += a],
grow = Function[r, rectX = r; rectY == r],
rectCorner = Function|[ {rectX, rectY}],
angle = Function[rectAngle],
radius = Function[circR]}]
out[252]= closure[{rectX, rectY, rectAngle, circR},
{1, 2,10°, 1}, {rotate = Function|a, rectAngle +=a],
grow = Function[r, rectX x=1; rectY «x=1],

rectCorner = {rectX, rectY} &, angle = rectAngle &, radius = circR &H
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In[253]:= closure[{rectX, rectY, rectAngle, circR},
{1,2,10°,13}, {rotate = Function[a, rectAngle += a] ,
grow = Function[r, rectX %= r; rectY x=1r],
rectCorner = {rectX, rectY} &, angle = rectAngle &, radius = circR &} ]
out[253]= closure[{rectX, rectY, rectAngle, circR},
{1, 2,10°, 1}, {rotate = Function|a, rectAngle +=a|,
grow = Function[r, rectX «=1; rectY «=1],
rectCorner = {rectX, rectY} &, angle = rectAngle &, radius = circR &H

Here you define a closure, called shapeCtrl, over the same graphic but expose only
two functions, rotate and grow, that are capable of changing the state. The other
functions are strictly for returning the values for use in the graphic. You now specify
the dynamic graphic in terms of the shape controller closure.
In[254]:= Dynamic[Graphics [{Thick, Green, Rotate|
Rectangle[ {0, 0}, shapeCtrl = rectCorner[]], shapeCtrl = angle[] ] , Red,
Disk[{0, 0}, shapeCtrl = radius[]]}, Frame - True, PlotRange » A1l] ];

By its nature, dynamic content does not lend itself to static print demonstration, but
we compensate by showing the result of each transform in the figure.

D191} ow[ienj Qw[1e)=

Original shapeCtrl = rotate[20] shapeCtrl = grow[1.5]

Figure 2-1. Transformations snapshots of the graphics

It could be argued that this recipe has crossed the boundary of the traditional defini-
tion of a closure and moved toward the capabilities of object-oriented programming.
This is no accident, since there is a relationship between closures and objects, in that
closures can be used to implement object-oriented programming, and languages like
C++ can implement closures in terms of objects with operator(). However, a
full-blown, object-oriented implementation would have to provide additional fea-
tures not implemented by this recipe. Inheritance is the most obvious, but there are
others (e.g., different access levels for functions and data). I prefer to think of this im-
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plementation as souped-up closures rather than dumbed-down objects, but you can
think of them in whichever way makes the most sense to you. My feeling is that
more traditional closures that act like single functions don’t provide enough bang
for the buck. In any case, the simpler, traditional form can be implemented in terms
of the richer form demonstrated in this recipe. Here is one way to do it.

In[255]:= (*First define a closure with a
single function and assign to a variable.x)

incr = closure[{x}, {0}, {incr = Function[x = x + 1]}]
Out[255]= closure[{x}, {0}, {incr = (x=x+1) &}]

In[256]:= (*Then define a function pattern in terms of the same closure

but with a Blank where the state variables would reside.x)

closure[{x}, {_}, {incr = Function[x = x + 1]}] [] := call[incr[], incr]
In[257]:= (*Now, whenever the variable is used like a function,

it will invoke the call on the closure.x)

incr[]
Out[257]= 1

In[258]:= incr[]
out[258]= 2

In[259]:= incr[]
Out[259]= 3

See Also

The Wikipedia entry for closures (http://bit.ly/T9vhN) is a good place to start learn-
ing more about this concept because it contains links to some useful papers and im-
plementations in other languages.

2.15 Currying in Mathematica

Problem

You want to emulate the ability of other functional languages to automatically con-
vert functions of multiple arguments into higher-order functions with a single
argument.

This recipe is more of theoretical interest to functional programming
"—@ aficionados than of practical use for everyday Mathematica

development. The techniques employed are of more general interest,
but you may need to consult Chapter 4 if you are unfamiliar with
patterns and replacement rules.
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Solution

Mathematica does not support implicit currying like Haskell does, but you can use
this solution to create functions that curry implicitly. Refer to the next section,
“Discussion,” if you are unfamiliar with currying.

In[260]:=

In[262]:=
0ut[262]=
In[263]:=

out[263]=

In[264]:=

Out[264]=

In[265]:=

Out[265]=

In[266]:=

0ut[266]=

Discussion

Clear[f, f1, f2]; Curry[f_, x_] :=
Module [ {expr}, expr = Hold[If[ValueQ[f[x]], f[x], Curry[z, =] &]] //.
g [a_l[b__]1->gla,b]l /.z-f[x]; ReleaseHold[expr]]
flxLysz] t=x+y+
z
(xCreate f1 by currying f.x)
f1 = Curry[f, 10]
Curry [f[10], unl] &

(#f2 now can be created by implicit currying f1.x)
f2 = f1[20]
Curry [f[10] [20], =1] &

(#f2 evaluates because all three arguments become available.x)
f2[30]
60

(#f1 evaluates if the remaining two arguments are supplied.x)
f1[20, 30]
60

(*And the curried syntax works as well.x)
£1[20] [30]
60

Currying is the process of transforming a function that takes multiple arguments
into a function that takes just a single argument and returns another function if any
arguments are still needed. In languages that implicitly curry, you can write code as

follows:
In[267]:=
0ut[267]=

In[268]:=
out[268]=

In[269]:=
0ut[269]=

f1 = £[10]
£110]

£2 = f1[20]
£[10] [20]

£2[30]
£[10] [207 [30]
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This is legal in Mathematica, but notice that when all three arguments are supplied,
the function remains in unevaluated curried form. This is not the effect that you typi-
cally want. It is possible to manually uncurry by using ReplaceAllRepeated (//.) to
transform the curried form to normal form.

In[270]:= f2[30] //.g_[a_1[b_ - gla, b]

out[270]= 60

The function Curry in the solution works as follows. It builds up an expression that
says, “See if the specified function (first argument) with the specified parameters
(second argument) will evaluate (ValueQ); if so, evaluate it. Otherwise, return the
curried version of the function within a lambda expression using the Curry function
itself.” To add to the trickery, this expression needs to be built up in the context of a
Hold to keep everything unevaluated until it can be transformed into a format where
the ValueQ test and evaluation are in uncurried form. However, the lambda function
part must remain in curried form, so we use z as a placeholder for a second round
ReplaceAll (/.) that injects the curried form, instead of z.

I'll be the first to admit this is tricky, but if you are tenacious (and perhaps look
ahead to some of the recipes in Chapter 4), you will be rewarded with a deeper under-
standing of how powerful Mathematica can be at bootstrapping new behaviors. One
way to get a handle on what is happening is to execute a version of Curry that does not re-
lease the Hold. This allows you to inspect the result at each stage before it is evaluated.

In[271]:= CurryHold[f , x_] :=
Module [ {expr}, expr = Hold[If[ValueQ[f[x]], f[x], Curry[z, =] &]] //.
g_[a_1[b_] ->g[a,b] /.z~F[x]]
When the Hold is released, ValueQ[f[10]] will return false, so we will return a Func-
tion (&) that curries £[10] with yet to be supplied arguments ##1.

In[272]:= CurryHold[f, 10]
Out[272]= Hold[If[ValueQ[f[10]], f[10], Curry[f[10], x=1] &] ]

When this Hold is released, ValueQ will also fail because there is no two-argument ver-
sion of f, and we get a further currying function on f[10][20] that is ready for more
arguments ##1.

In[273]:= CurryHold[f1, 20]

Out[273]= Hold[If[ValueQ[f[10, 2017, f[10, 20], Curry [f[10] [20], #t1] &] ]

Finally, by supplying a third argument, we get an uncurried function f[10,20,30]
that will evaluate; so ValueQ succeeds, and the uncurried version is evaluated.

In[274]:= CurryHold[f2, 30]
out[274]= Hold[If[ValueQ[f[10, 20,3017, f[10, 20, 30], Curry[f[10] [20] [30], #t:1] &] ]
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A useful addition is a function that creates a self-currying function without supply-
ing the first argument.

In[275]:= makeCurry[f ] := Curry[f, ##] &

In[276]:= f0 = makeCurry[f]
Out[276]= Curry[f, 1] &

In[277]:= f0[10] [20] [30]
Out[277]= 60

So now that you've suffered through this magic act, I expect you’d like to be told
that there is some neat application of currying. However, as I mentioned in the warn-
ing on page 73, currying is largely of theoretical interest. This is true even in lan-
guages where it occurs transparently. For example, many new Haskell programmers
don’t think in terms of transformations from functions to higher-order functions,
but rather, in terms of producing new functions that are specializations of existing
functions (i.e., the new function is produced by binding the first argument of the gen-
eral function). The reason Haskell was designed with currying functions is that its
designers were concerned with formal proofs of correctness. Such proofs are easier
when all functions can be thought of as having a single argument and producing a
single result. If you’re a mathematician, you may find these ideas interesting; please
see the references in the “See Also” section on page 77.

[ should emphasize that the goal of this recipe was to achieve implicit currying. Ex-
plicit currying is easy. In fact, explicit currying should really not be called currying at
all, but rather, should be called partial function application. For example, if you
want to manually create a function that hard codes the first parameter of f to 10, sim-
ply write f[10, ##]& . You can automate creation of such functions with the follow-
ing code:

In[278]:= explicitCurry[f_, v_] := Function[f[v, ##t]]
In[279]:= f1 = explicitCurry[f, 10];

f2 = explicitCurry[f1, 20];
In[281]:= f1[20, 30]

Out[281]= 60

In[282]:= f2[30]
Out[282]= 60

The obvious difference between implicit and explicit currying is the need to explic-
itly use the currying function each time, hence the name “explicit.”
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See Also
Information on currying in Haskell can be found at http://bit.ly/2eABAm.

You will be impressed by the expressiveness of Mathematica by comparing the
amount of code in this recipe with the code to implement implicit currying in
scheme (http://bit.ly/otB90).

Theoretical ideas about the relationship between proofs and programs can be found
at http://bit.ly/2YrkxI.

2.16 Creating Functions with Default Values

Problem

You want to create functions with optional arguments that specify default values.

Solution
The simplest way to define a function with default values is to use the syntax x_: default
or x_h:default.

In[283]:= someFunc [argl_Integer, arg2_Integer : 0] := argl * 2 + arg2

In[284]:= someFunc[10]

Out[284]= 100

In[285]:= someFunc[10, 1]
Out[285]= 101

Another technique is to register a global default value with Mathematica using De-
fault. This facility is used by many built-in Mathematica functions, such as Plus.
You can use Default to query or set defaults for your own functions. Defaults can apply
to multiple arguments or specific arguments.

In[286]:= Default[Plus] (*Missing arguments to Plus default to zero.x)

out[286]= O

In[287]:= Plus[]
out[287]= 0

In[288]:= Plus[1]
out[288]= 1
If you ask for a default that is undefined, the function will not evaluate.

In[289]:= ClearAll[myFuncWithDefault]; Default [myFuncWithDefault, 2]
Out[289]= Default[myFuncWithDefault, 2]

2.16 Creating Functions with Default Values | 77



You must define the default before defining the function that uses it.

In[290]:= Default[myFuncWithDefault, 2] = 0
out[290]= 0

In[291]:= Default[myFuncWithDefault, 2]
out[291]= O

An argument whose default has been registered with Default is specified as x_. (the
trailing period signals the default).
In[292]:= myFuncWithDefault[x_, y_.] := x"y - x+y
When you inspect the definition of a function, it shows the registered defaults.
In[293]:= Definition[myFuncwithDefault]
0ut[293]= myFuncWithDefault[x_,y .] :=x' -x+y
myFuncWithDefault /: Default [myFuncWithDefault, 2] =0

In[294]:= myFuncWithDefault[4]

out[294]= -3
In[295]:= myFuncWithDefault[10, 1]
Out[295]= 1

Discussion

Unlike in some other languages, in Mathematica, the arguments with default values
need not be at the end.

In[296]:= someFuncZ[argl_Integer : 1, argZ_Integer] := argl * 2 + arg2

In[297]:= someFunc2[10]
Out[297]= 11

someFunc2[10, 1]
101

In[298]:
Out[298]

Ambiguities are resolved by assigning values to the leftmost argument that matches.

In[299]:= someFunc3[arg1_Integer : 1, arg2_Integer : 0] := 2argl + arg2

In[300]:= someFunc3[10]

0ut[300]= 20

In[301]:= someFunc4[argl String : "test", arg2_Integer : 1] := StringTake[argl, arg?]
In[302]:= someFunc4[3] (3 does not match String

so it is assigned to the second default.x)
Out[302]= tes
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Having this much flexibility is sometimes useful, but if you are writing a library of
functions to be used by others, it is probably best to place all parameters with de-
faults at the end.

You may be wondering why Mathematica provides two distinct methods to specify
default values. The flippant answer is that Mathematica provides at least two ways
to do everything! But there are useful differences. For functions you write for your
own use, the arg : default does the job in most cases. The advantage of the De-
fault method is that it separates the default definition from the function definition.
This allows users to alter the defaults if they do so before loading the module contain-
ing your functions, and if you code your module to only define defaults if existing de-
faults are not already defined.

BeginPackage[ "SomePackage™ "]

yourFunction::usage = "This function works miracles.”

Begin[ "~ Private "]

(*If there are not already defaults defined, define them.*)
If[DefaultValues[yourFunction] == {},

Default[yourFunction] = 0,

Null];

yourFunction[a_,b_,c_.,d_.] := ..
End[]

EndPackage[ ]

2.17 Creating Functions That Accept Options

Problem

You need to write a function that can be customized by the user in a variety of ways.

Solution

Set up default values for the function by registering them with Options[yourFun].
Then write the function to accept an optional OptionsPattern[] as the last argu-
ment. Use the companion function OptionValue[option] to retrieve the effective
value of option. I'll illustrate this technique by implementing a quick sort algorithm.
There are two obvious ways to customize a quick sort. First, you can allow
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the user to specify the comparison function. Second, you can allow the caller to cus-
tomize the function used to select the pivot element.

This quick sort is in no way as performant as Mathematica’s Sort[], so

"—@ I don’t recommend using it. [ introduce it solely to illustrate a custom

function with options.

By default, use the first element to pivot and the Less function for comparisons.

In[303]:= Options[gsort] = {pivot - First, compare - Less} ;

The options, by convention, are accepted as the last parameter.

In[304]:= gqsort[l_List, opts : OptionsPattern[]] :=
Module [ {pivotFunc, compareFunc},
{pivotFunc, compareFunc} = {OptionValue[pivot], OptionValue[compare]} ;
Reap[qsort2[1, pivotFunc, compareFunc]][[2, 1]]]

Function gsort2 does most of the work after options are resolved. The partition is
from Recipe 2.10.

In[305]:= gsort2[{}, _, _1 := {}
gsort2[{a_}, _, _] := Sow[a]
qsort2[1_List, pivot_, comp_] :=
Block[ {11, 12, 13}, {11, 12, 13} = partition[1, pivot[1], comp];
gsort2[11, pivot, comp];
Scan[Sow, 127;
gqsort2[13, pivot, comp] ]

Prior to version 6, Optionvalue[] did not exist. The idiomatic solution used Re-
placeAll (/.) to first apply user-specified options and then the default options. You
may still encounter this idiom in older code.

{pivotFunc, compareFunc} = {pivot, compare} /. opts /. Options[qsort];

Let’s test the function with and without options.

In[308]:= unsorted = RandomInteger[{-100, 100}, 50]

out[308]= {42, 77, 50, 98, -89, 49, 21, 70, 2, -39, 41, -100, 32, -19, -36, 99, 43,
37, 34, 35, -98, 58, -10, -38, -80, 25, 40, -26, 3, 62, -13, 5, 15, -40,
83, -74, -43, 31, 78, -89, 15, 60, 67, -55, -7, -45, —16, -91, 21, 16}

In[309]:= qsort[unsorted]

Out[309]= ({-100, -98, -91, -89, -89, -80, -74, -55, 45, -43, -40, -40, -39, -38,
-36, -26, -19, -16, -13, -10, -7, 2, 3, 5, 15, 15, 16, 21, 21, 25, 31,
32, 34, 35, 37, 41, 42, 43, 49, 50, 58, 60, 62, 67, 70, 77, 78, 83, 98, 99}

80 | Chapter 2: Functional Programming



gsort [unsorted, compare - Greater]

{99, 98, 83, 78, 77, 70, 67, 62, 60, 58, 50, 49, 43, 42, 41, 37, 35, 34, 32,
31, 25, 21, 21, 16, 15, 15, 5, 3, 2, -7, -10, -13, -16, -19, -26, -36,
-38, -39, -40, -40, -43, -45, -55, -74, -80, -89, -89, -91, -98, -100}

In[310]:
0ut[310]

In[311]:= (*Always pivoting on the first element leads to bad performance
if lists are already sorted, so a random selection of pivot
points might be safer (although there are no guarantees).*)

gsort [unsorted, pivot - RandomChoice]
Out[311]= {-100, -98, -91, -89, -89, -80, -74, -55, -45, -43, -40, -40, -39, -38,
-36, -26, -19, -16, -13, -10, -7, 2, 3, 5, 15, 15, 16, 21, 21, 25, 31,
32, 34, 35, 37, 41, 42, 43, 49, 50, 58, 60, 62, 67, 70, 77, 78, 83, 98, 99}

In[312]:= (*Here we specify both pivot and comparison using custom functions.x)
gsort [unsorted, pivot - (Part[s, Floor[Length[#] /2]] &),
compare - (Less [Abs [#1], Abs [#2]] &) |
out[312]= {2, 3,5, -7, -10, -13, 15, 15, -16, 16, -19, 21, 21, 25, -26, 31, 32, 34,
35, -36, 37, -38, -39, -40, -40, 41, 42, 43, -43, -45, 49, 50, -55, 58,
60, 62, 67, 70, -74, 77, 78, -80, 83, -89, -89, -91, 98, -98, 99, -100}

Discussion

Options are a better choice than default values (Recipe 2.16) when there are many
different options (the Graphics function of Mathematica is a good example) or when
the default option values are fine for most users and you don’t want to clutter the
function interface with low-level details.

Sometimes you are not interested in using options directly in your function, but
merely want to pass them on to other built-in Mathematica functions. You need to
be careful to pass only options that are applicable. The function FilterRules pro-
vides a convenient way to solve this problem. The Mathematica documentation pro-
vides a nice example of a function that solves a differential equation and then plots
the solution.
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In[313]:= Clear[x,y, x0, x1] ;
odeplot[de_, y_, {x_, x0_, x1_}, opts: OptionsPattern[]] =

Module[ {sol},
sol =
NDSolve[de, y, {X, x0, x1}, FilterRules[{opts}, Options[NDSolve]] ];
If[Head[sol] === NDSolve,
$Failed,

Plot [Evaluate[y /. sol], {x, x0, x1},
Evaluate [FilterRules[ {opts}, Options[Plot]]] ]

In[315]:= odeplot[{y''[x] + y[x] == 0, y[0] = 1, y'[0] = O}, y[x],
{x, 0, 10}, Method -> "ExplicitRungeKutta", PlotStyle - Dashed]
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Without FilterOptions you would get an error.

In[316]:= Clear[x,y, x0, x1] ;
odeplotBad[de_, y_, {x_, x0_, x1_}, opts: OptionsPattern[]] =

Module | {sol},
sol = NDSolve[de, y, {x, x0, x1}, opts];
If[Head[sol] === NDSolve,
$Failed,

Plot [Evaluate[y /. sol], {x, x0, x1}, opts]

]
]
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In[318]:= odeplotBad[{y"''[x] + y[x] == 0, y[0] =1, y'[0] = 0}, y[x],
{x, 0, 10}, Method -> "ExplicitRungeKutta", PlotStyle - Dashed]

>>

NDSolve::optx : Unknown option PlotStyle in
NDSolve[{y[x] +y”[x] =0, y[0] =1, y"[0] =0}, y[x],
{x, 0, 10}, Method -
ExplicitRungeKutta, PlotStyle - Dashing[ {Small, Small}]].

Out[318]= $Failed

When writing or working with functions that use options, keep in mind that Mathe-
matica’s convention is to give precedence to options that appear earlier in the list. So

if two options conflict, the first wins.

In[319]:= Plot[Sin[x], {x, -Pi, Pi}, PlotStyle - Dashed, PlotStyle - Thick]

(*Dashed wins. %)

1.0

QUE[319]= vt

0.5

- -1.0
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CHAPTER 3
Data Structures

Well I live with snakes and lizards
And other things that go bump in the night

3.0 Introduction

Higher mathematics is rich in structures and formalisms that take mathematics be-
yond the realm of numbers. This chapter includes a potpourri of recipes for data
structures and algorithms that arise in linear algebra, tensor calculus, set theory,
graph theory, and computer science. For the most part, lists form the foundation for
these structures. Mathematica gains a lot of mileage by representing sets, vectors,
matrices, and tensors using lists because all the generic list operations are available
for their manipulation. Of course, a list, a set, and a tensor are very distinct entities
from a mathematical point of view, but this distinction is handled by special-
purpose functions rather than special-purpose data structures.

List Functions

The foundation of most data structures in Mathematica is the list. It is difficult to do
much advanced work with Mathematica unless you are fluent in its functions for list
processing. To this end, the initial recipes revolve around basic list processing. A list
in Mathematica is constructed using the function List[eleml,elem2,...,elemN] or,
more commonly, with curly brackets {eleml,elem2,...,elemN}. There is no restric-
tion on the nature of these elements. They could be mixtures of numbers, strings,
functions, other lists, or anything else Mathematica can represent (like graphic or
sound data).




The first thing you need to know about lists is how to generate them. Table is the
workhorse function for doing this. It has several variations that are most easily ex-

plained by example.

In[1]:=

(*Ten copies of an expr; in this case, the constant 1x)
Table[1, {10}]

Out[1]= {1,1,1,1,1,1,1,1,1,1}
In[2]:= (+The result of evaluation expr for i 1 to 10%)
Table[i*2, {i, 10}]
out[2]= {1,4,9, 16,25, 36, 49, 64, 81, 100}
In[3]:= (*The result of evaluation expr for i 2 to 10x)
Table[i®2, {i, 2, 10}]
out[3]= {4,9, 16, 25, 36, 49, 64, 81, 100}
In[4]:= (xThe result of evaluation expr for i 2 to 10 by steps of 2x)
Table[i, {i, 2,10, 2}]
out[4]= {2, 4,6, 8,10}
In[5]:= (*2 x 3 matrix of constant 1x)
Table[1, {2}, {3}]
out[5]= {{1,1,1},{1,1,1}}
In[6]:= (*Tensor of rank threex)
Table[i+j*2+k"3, {i,0,2}, {j, 0,2}, {k, 0,2}] // MatrixForm
Out[6]//MatrixForm=
0 1 4
1 2
8 9 12
1 2 5
2 3 6
9 10 13
2 6
3 7
10 11 14

In addition to Table, Mathematica has several special-purpose list constructors:
Range, Array, ConstantArray, DiagonalMatrix, and IdentityMatrix. These functions
are less general than Table but are clearer and simpler to use when applicable. For ex-
ample, consider IdentityMatrix and its Table equivalent.
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In[7]:= IdentityMatrix[3] // MatrixForm
Out[7]//MatrixForm=
100
010
001

In[8]:= (*Equivalent to IdentityMatrixx)
Table[If[i = j, 1, 0], {i, 1, 3}, {j, 1, 3}] // MatrixForm
Out[8]//MatrixForm=
100
010
001

Sometimes using a special-purpose list constructor is more verbose. Consider these
equivalent ways of generating an array of ten 1s. Here, 18 is the function that always
returns 1.

In[9]:= Array[18&,10] == ConstantArray[1, 10]
Out[9]= True

Once you have one or more lists, you can compose new lists using functions like
Append, Prepend, Insert, Join, and Riffle.

In[10]:= listl = Range[10]
out[10]= {1,2,3,4,5,6,7,8,9,10}

In[11]:= list2 = listl ~2
out[11]= {1, 4,9, 16, 25, 36, 49, 64, 81, 100}

In[12]:= (*Add elements to the end.x)
Append[listl, 11]
0Ut[12]= {1; 2) 3) 4; 5) 6) 7; 8) 9) 10) 11}

In[13]:= (*Add elements to the front.«)
Prepend[listl, 0]
OUt[13]: {OJ 1) 2) 31 4) 5) 61 7) 8) 91 10}

In[14]:= (Insert elements at specific positions.x)

Insert[listl, 3.5, 4]
Out[14]= {1; 2: 3) 35) 4) 5: 6) 7) 8: 9) 10}

In[15]:= (=Negative offsets to insert from the endx)

Insert[listl, 3.5, -4]
Out[lS]: {11 2) 3) 41 5) 6) 71 3'51 8) 9) 10}

In[16]:= (*You can insert at multiple positions {{il},{i2},...,{iN}}.*)
Insert[listl, 0, List /e Range|[2, Length[list1]]]
out[16]= {1,0,2,0,3,0,4,0,5,0,6,0,7,0,38,0,9,0, 10}
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In[17]:= (*Join one or more lists.x)
Join[listl, list2]
out[17]= (1,2, 3,4,5,6,7,8,9,10,1, 4,9, 16, 25, 36, 49, 64, 81, 100}

In[18]:= (=Riffle is a function specifically designed to interleave elements.«)
Riffle[list1, 0]
Out[18]= {1,0,2,0,3,0,4,0,5,0,6,0,7,0,8,0,9,0, 10}

The flip side of building lists is taking them apart. Here you will use operations like
Part, First, Last, Rest, Most, Take, Drop, Select, and Cases.

In[19]:= (=Part is frequently accessed via its operator [[expr]] equivalent.x)
listi[[3]] == Part[listi, 3]
Out[19]= True

In[20]:= (=Accessing the first element. Lisp
programmexrs call this operation car.x)
First[listl]
out[20]= 1

In[21]:= (*Accessing the last elementx)
Last[listl]
Out[21]= 10

In[22]:= (*All but the first element. Lisp programmers call this operation cdr.=x)
Rest[listl]
Out[22]= {2: 3) 4’) 5, 6) 7) 8, 9) 10}

In[23]:= (*All but the last element«)
Most [listl]
0Ut[23]= {11 2) 3) 41 5) 6) 71 8) 9}

In[24]:= (xThe first three elementsx)
Take[list1, 3]
out[24]= {1, 2,3}

In[25]:= (*All but the first threex)
Drop[listl, 3]
OUt[ZS]: {4, 5, 6) 7, 8) 9) 10}

In[26]:= (xThe elements in which some criterion is satisfied,
in this case odd elementsx)

Select[listl, 0ddQ]

{1,3,5,7,9}

out[26]
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In[27]:= (*The elements matching a patterns)
Cases[listl /3, a_Integer - 3a]
out[27]= {3,6,9}

See Chapter 5 for more information on patterns.

You rearrange and restructure lists using functions such as Reverse, Rotateleft,
RotateRight, Flatten, Partition, Transpose, and Sort.

In[28]:= Reverse[listl]
Out[28]= (10,9, 8,7,6,5,4,3,2,1}
In[29]:= Rotateleft[listl]

Out[29]= {2) 3: 4,5, 6) 7, 8) 9) 10) 1}

In[30]:
0ut[30]

RotateRight [list1]
{10, 1, 2,3,4,5,6,7,8,9}

Partition and Flatten are very versatile functions for creating and removing struc-
ture. Flatten can be thought of as the inverse of Partition. Here, repeated partition-
ing using Nest converts a list to a binary tree.

In[31]:= bifurcate[list_] :=
Nest [Partition[#, 2] &, list, Floor [Log[2, Length[list]]]]

(structured = bifurcate[listl]) // TreeForm
Out[32]//TreeForm=

List
|
List

List List

List List List List

] 2] o] L] [s] [e] [2) [

In[33]:= Flatten[structured]
out[33]= (1,2,3,4,5,6,7,8}
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Flatten can also take a level that tells it to flatten only up to that level.

In[34]:= Flatten[structured, 1] // TreeForm
Out[34]//TreeForm=

List

List List

List List List List

/ Vool
(1] [2] (o] [e] [s] [e] [2] [¢]

In[35]:= Flatten[structured, 2] // TreeForm
Out[35]//TreeForm=

List

List List List List

2] [z B (o] o] [e] ] [

In[36]:= Flatten[structured, 3]
out[36]= {1,2,3,4,5,6,7,8)

Many of these functions have advanced features, so you should refer to the
Mathematica documentation for each to understand their full capabilities. I will use
these functions frequently throughout this book without further explanation, so if
you are not already familiar with them, you should take some time to experi-

ment on your own.
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Set Functions

A set in Mathematica is nothing more than a list that is normalized to eliminate
duplicates upon application of a set operation: Union, Intersection, or Complement.
To determine duplicates, Mathematica uses an option called SameTest, which by de-
fault is the function SameQ or ===. The function Subsets constructs a list of all sub-
sets. MemberQ is used to test membership, but this function is far more general, and 1
will revisit it in Chapter 4.

In[37]:= Union[listl, list2]

out[37]= {1,2,3,4,5,6,7,38,9,10, 16, 25, 36, 49, 64, 81, 100}

In[38]:= Intersection[listl, list2]
out[38]= {1,4,9}

In[39]:= (=Complement can be used with
Intersection to implement Set Difference.x)
Complement [listl, Intersection[listl, list2]]
Out[39]= {2,3,5,6,7,38,10}

Complement [list2, Intersection[listl, list2]]
(16, 25, 36, 49, 64, 81, 100}

In[40]:
Out[40]

In[41]:= (=Generating all subsetsx)
Subsets[{a, b, c}]
out[41]= {{}, {a}, {b}, {c}, {a, b}, {a, ¢}, {b, c}, {a, b, C}}

In[42]:= MemberQ[list2, 4]
Out[42]= True

Vector Functions

A vector is also represented by a list, but Mathematica has a special representation
called a SparseArray that can conserve space when a vector contains many zero en-
tries (see Recipe 3.8). Matrices and tensors are naturally represented as nested lists;
these likewise can use SparseArrays.

Vector math is supported by the fact that most mathematical operations have the at-
tribute Listable, meaning that the operations automatically thread over lists.
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In[43]:= (*Multiplication and subtraction of a vector by a scalarx)

3 % listl -3
out[43]= {0, 3,6, 9,12, 15, 18, 21, 24, 27}

In[44]:= (xListable is the relevant property.x)

Intersection[Flatten[Attributes [ {Times, Plus, Minus, Divide, Power}]]]
Out[44]= {Flat, Listable, NumericFunction,

Oneldentity, Orderless, Protected, ReadProtected}

Same-sized vectors and matrices can also be added, multiplied, and so on, in
an element-by-element fashion.

In[45]:= Range[10] " Range[10, 1, -1]

out[45]= {1, 512, 6561, 16384, 15625, 7776, 2401, 512, 81, 10}

Vector-specific operations are also supported. Some of the more advanced opera-
tions are in a package called VectorAnalysis™, including CrossProduct, Norm, Div,
Grad, Curl, and about three dozen others. Use ?VectorAnalysis™* after loading the
package to see the full list.

In[47]:= u = {-1,0.5,1}; v = {1, -0.5,1};

In[48]:
out[48]= -0.25

u.v

In[49]:= Noxm[u]
out[49]= 1.5

In[50]:= Orthogonalize[{u, v}]
Out[50]= {{-0.666667, 0.333333, 0.666667}, {0.596285, -0.298142, 0.745356} }

In[51]:= Projection[u, v]
out[51]= {-0.111111, 0.0555556, -0.111111}

CrossProduct is not built in, so you must load a special package.
In[52]:= Needs["VectorAnalysis™"]

In[53]:= CrossProduct[u, v]
out[53]= {1.,2.,0.}
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Matrix and Tensor Functions

Vectors and matrices are familiar to most scientists, engineers, and software develop-
ers. A tensor is a generalization of vectors and matrices to higher dimensions. Specifi-
cally, a scalar is a zero-order tensor, a vector is a first-order tensor, and a matrix is a
second-order tensor. Tensors of order three and higher are represented in Mathemat-
ica as more deeply nested lists. Here is an example of a tensor of order four. Note
that the use of subscripting in this example is for illustration and is not integral to
the notion of a tensor from Mathematica’s point of view. (Mathematicians familiar
with tensor analysis know that subscripts and superscripts have very definite mean-
ing, but Mathematica does not directly support those notations [although some
third-party packages do].)

In[54]:= (tensor4 = Table[Subscript[a, i, j, k, 1],
i, 1,2}, {i, 1,2}, {k, 1,2}, {1, 1,2}]) // MatrixForm
Out[54]//MatrixForm=
a1,1,1,1 a1,1,1,2 a1,2,1,1 a1,2,1,2
(31,1,2,1 a1,1,2,2 ] (31,2,2,1 a1,2,2,2 ]

a2,1,2,1 92,1,2,2

az,1,1,1 92,1,1,2 a2,2,1,1 92,2,1,2
a2,2,2,1 92,2,2,2

In[55]:= (=Using Part with a single index yields a third-order tensor.=x)

tensor4[[1]] // MatrixForm
Out[55]//MatrixForm=

ai,1,1,1 a1,1,2,1
a1,1,1,2 a1,1,2,2

a1,2,1,1 a1,2,2,1
a1,2,1,2 a1,2,2,2
In[56]:= (*Using Part with two indices on a fourth-

order tensor yields a second-order tensor (i.e., a matrix).x)

tensor4[[1, 111 // MatrixForm
Out[56]//MatrixForm=

[31,1,1,1 a1,1,1,2 ]

a1,1,2,1 a1,1,2,2

In[57]:= (Using Part with three indices yields a vector.«)
tensor4[[1, 1, 2]]
Out[57]= {31,1,2,1) a1,1,2,2}

In[58]:= (*And all 4 indices gives a scalar.x)
tensor4[[2, 1, 2, 2]]
Out[58]= a2,1,2,2
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The recipes in this chapter deal mostly with vectors and matrices, but many opera-
tions in Mathematica are generalized to higher-order tensors. A very important func-
tion central to linear algebra is the Dot product. In linear algebra texts, this is often
referred to simply as vector multiplication. The Dot product only works if vectors and
matrices have compatible shapes.

In[59]:= Dot[{x1, x2, x3}, {y1, y2, y3}]
Out[59]= x1yl+x2y2+x3y3

In[60]:= Clear[x,y];
Dot [Table[Subscript[x, i, j], {i,1,3}, {j, 1, 2}],

Table[Subscript|[y, i, j], {i, 1,2}, {j,1,3}]] // MatrixForm
Out[61]//MatrixForm=

X1,1 Y1,1 + X1,2 ¥2,1 X1,1¥Y1,2 + X1,2 ¥Y2,2 X1,1 ¥Y1,3 + X1,2 ¥2,3
X2,1 ¥Y1,1 + X2,2¥2,1 X2,1¥Y1,2 +X2,2Y2,2 X2,1¥1,3 +X2,2Y2,3

X3,1¥1,1 +X3,2Y2,1 X3,1¥Y1,2 +X3,2¥2,2 X3,1Y1,3+X3,2Y2,3

Inner[f,ml,m2,g] is a function that generalizes Dot by allowing a function f to take
the place of multiplication and g to take the place of addition. Here are some
examples.

In[62]:= Inner[List, Table[i"j, {i, 1,4}, {],1,3}],
Table[j: it, {i, 1,3}, {j,1,4}], Max] // MatrixForm
Out[62]//MatrixForm=
6 12 36 144
8 12 36 144
27 27 36 144
64 64 64 144

In[63]:= Inner[List, Table[i+j, {i, 1,3}, {i,1,2}],
Table[ixj, {i,1,2}, {j,1,3}], List] // MatrixForm
Out[63]//MatrixForm=

N
N
I
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In[64]:= Inner[List, Table[ixj, {i, 1,2}, {j,1,2}],
Table[i+3j, {i, 1,2}, {j,1,2}], Join] // MatrixForm

Out[64]//MatrixForm=
1 1
2 3
2 2
3 4
2 2
2 3
4 4
3 4

In[65]:= Inner[And, Table[i < j, {i, 1,3}, {j,1,3}],
Table[j < i, {i,1,3}, {j,1,3}],0r] // MatrixForm
Out[65]//MatrixForm=
True True False
True True False
False False False

3.1 Ensuring the Most Efficient Representation
of Numerical Lists

Problem

You are performing very mathematically intense computations on large vectors, ma-
trices, or higher-order tensors and want the most efficient representation in terms of
speed and space.

Solution

Make sure your lists are packed arrays by not mixing numerical types. This means ar-
rays of integers should work exclusively in integers or exclusively in machine preci-
sion floating point. Use of uniform types is necessary but not sufficient for getting
packed arrays. Mathematica tries to automatically use packed arrays when generat-
ing large lists of numbers, but sometimes subtle coding differences prevent it from
packing the result.

Here are two very similar pieces of code, but the first generates an unpacked
representation and the second generates a packed one.
In[66]:= arrayl= N[Table[i % Pi, {i, 0, 500000}]1;
Developer” PackedArrayQ [arrayl]
Out[67]= False
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In[68]:= array2 = Table[i » Pi, {i, 0.0, 500000.0}];
Developer PackedArrayQ[array2|
Out[69]= True

The difference is that the first Table generates a table in symbolic form and then con-
verts it to real numbers with N. So, although the final array meets the uniform criteria,
N will not pack it. In the second version, I force Table to create a list of real numbers
right off the bat by using real bounds for the index i. This makes N unnecessary and
causes Table to return a packed result.

Discussion

To get some insight into the superiority of packed arrays, we can ask Mathematica
to tell us the size of each array from the solution.
In[70]:= Grid[{{"", "size", "per elem"},
{"array1", ByteCount[array1], N[ByteCount [arrayl] /Length[array1]]},
{"array2", ByteCount[array2], N[ByteCount [array2] /Length[array2]]}},
Alignment - Right, Frame - A11]

size |per elem
Out[70]= |arrayl [12000056 | 24.0001
array2 | 4000132 | 8.00025

As you can see, the space saved is considerable. Essentially, packed is giving you the
equivalent of a C or Fortran array. Space savings is not the only reason to work with
packed arrays. Many operations are considerably faster as well. Here you see that
multiplication of packed arrays is an order of magnitude faster than unpacked!
In[71]:= Mean@Table[Timing[arrayl«array2] [[1]], {100}]
Out[71]= 0.0909364

In[72]:= MeaneTable[Timing[array2«array2] [[1]], {100}]
Out[72]= 0.00625822

When you can get an order of magnitude improvement, it is a good idea to take it,
because life is short!

The Developer™ package has a function to pack an unpacked array, although it is
preferable to alter your coding style as we’ve discussed here to get packed arrays.

In[73]:= arrayl = Developer ToPackedArray [arrayl] ;
Developer PackedArrayQ [arrayl]
Out[74]= True
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’__ If you have a very large packed array and assign a value to one of the

"—@ elements that differ from the packed type, this assignment will be

expensive relative to a normal assignment. Mathematica will be forced

to copy the entire array into unpacked form before the assignment can
be made.

See Also

The Developer™ package also has a function Developer FromPackedArray for
converting a packed form back to the normal representation. Evaluating
?"Developer™*" allows you to peruse all the functions in this package, but many are
undocumented.

3.2 Sorting Lists

Problem

You need to sort a list based on standard ordering (Less) or a custom-ordering rela-
tion. One common reason for sorting is to enable binary search.

Solution

Use Sort or SortBy, depending on how the ordering relation is specified. By default,
Sort uses less than (<) to order elements.

In[76]:= list = RandomInteger[{-100, 100}, 107];

In[77]:= Sort[list]
out[77]= {-73, -50, -45, -43, -20, 2, 42, 50, 66, 84}

In[78]:= Sort[list, Greater]
out[78]= {84, 66, 50, 42, 2, -20, -43, -45, -50, -73}

SortBy does not use an ordering relation, but rather uses a function whose output is
passed to Less.

In[79]:= SortBy[list, Abs]
out[79]= {2, -20, 42, -43, -45, -50, 50, 66, -73, 84}

Discussion

If you need to sort lists containing objects more complicated than scalars, you
will need to be comfortable with expressing the order relation function. Here
are some examples.
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In[80]:= data = {
{"21 Mar 2007 14:34:30", 10.1, 12.7, 13.3},
{"21 Jun 2005 10:19:30", 10.3, 11.7, 11.7},
{"21 Aug 2006 15:34:01", 11.7, 16.8, 8.6},
{"21 Aug 2006 09:34:00", 11.9, 16.5, 8.6}
b
(*Sort the data by the time entry,
which must be converted to an absolute time to be properly ordered.x)
Sort[data,
Less [AbsoluteTime [ {#1[[1]], {"Day", "MonthNameShort", "Year", "Time"}}],
AbsoluteTime [ {#2[[1]],

{"Day", "MonthNameShort", "Year", "Time"}}]] &] // TableForm
Out[81]//TableForm=
21 Jun 2005 10:19:30 10.3 11.7 11.7
21 Aug 2006 09:34:00 11.9 16.5 8.6
21 Aug 2006 15:34:01 11.7 16.8 8.6
21 Mar 2007 14:34:30 10.1 12.7 13.3

For practical sorting, you will never need to look beyond Sort, because it is both fast
and flexible. However, if you are interested in sorting from an algorithmic perspec-
tive, Mathematica also has a package called Combinatorica™, which contains some
sorting routines that use specific algorithms (SelectionSort, HeapSort).

In[82]:= Needs["Combinatorica™"]

In[83]:= SelectionSort[list, Less]
out[83]= ({-73, -50, -45, -43, -20, 2, 42, 50, 66, 84}

Of course, there is probably no practical reason to use SelectionSort since its asymp-
totic behavior is 0(n*2), whereas Sort uses a 0(n log n) algorithm. You can count
the number of comparisons each sort makes using a custom comparison function.
The framed number is the comparison count.

In[84]:= (xThe sorted list and count of comparisons with Sortx)
Block[ {count = 0}, {Sort[list, (count ++; Less[#1, #2]) &], Framed [count]}]

out[84]= {{773, 50, ~45, -43, -20, 2, 42, 50, 66, 84}, | 26 }

In[85]:= (=Comparisons consistent with n log nx)
Log[2.0, Length[list]] » Length[list]
out[85]= 33.2193

98 | Chapter 3: Data Structures



In[86]:= (*The sorted list and count of comparisons
with SelectionSort. Roughly twice the comparisonssx)
Block[ {count = 0},
{SelectionSort[list, (count++; Less[#1, #2]) &], Framed [count] }]

out[86]= {{773, 50, -45, 43, -20, 2, 42, 50, 66, 84}, | 55 }

In[87]:= (=Although better than worst casex)
Length[list] "2
Out[87]= 100

Heap sort is 0(n log n), but the Combinatorica® implementation is somewhat
crippled because the ordering operation cannot be customized.

In[88]:= HeapSort[list]
out[88]= ({-73, -50, -45, -43, -20, 2, 42, 50, 66, 84}

If you are keen to do this experiment with HeapSort, you can easily make a customi-
zable version, since the source code is available.

In[89]:= genericHeapSort[{}, _] := {}

genericHeapSort [p_List, ordering_] :=

Module [ {heap = genericHeapify [p, ordering], min},
Append [Table[min = First [heap]; heap[[1]] = heap[[n]];
heap = genericHeapify [Drop [heap, -1], 1, ordering]; min,
{n, Length[p], 2, -1}], Max[heap]]] /; Length[p] >0
(*HeapSort is implemented in terms of a function Heapify,
which we must customize to inject our ordering.sx)
genericHeapify [p_List, ordering_] =
Module|[{j, heap = p}, Do [heap = genericHeapify[heap, j, ordering],
{3» Quotient[Length[p], 2], 1, -1}]; heap]
genericHeapify[p_List, k_Integer, ordering_] :=
Module[{hp =p, i=k, 1, n=Length[p]},
While[ (1=21i) sn, If[1<n8ordering[hp[[1+1]11, hp[[1]1], 1++];
If [ordering [hp[[1]], hp[[i]1]1,
{hp[[i]1, hp[[111} = {hp[[11]1, hp[[i]11};i=1,1i=n+1];]; hp]
In[93]:= Block[{count = 0},
{genericHeapSort [list, (count++; Less[#1, #2]) &], Framed[count]}]

out[93]= {{773, 50, 45, 43, -20, 2, 42, 50, 66, 841, | 39 }

It is unfortunate that we have to hack HeapSort to give it customizable ordering
function. When you develop your own general-purpose functions, it pays to
consider facilities that allow you and other users to customize the details while

3.2 Sorting Lists | 99



leaving the essential algorithm intact. This is the essence of what is called
generic programming. Chapter 2 has several recipes that demonstrate how to create
more generic functions.

One application of sorting is performing efficient search. The Combinatorica™ pack-
age provides the function BinarySearch, which requires a sorted list. BinarySearch re-
turns the index of the first occurrence of a search key, if found. If the key is not
found, it returns index + 1/2, indicating that the key belongs between index and in-
dex + 1 if it were to be inserted.

In[94]:= list2 = Range[1, 20, 2]

out[94]= {1,3,5,7,9,11,13,15,17, 19}

In[95]:
0ut[95]

BinarySearch[list2, 7]
4

In[96]:= BinarySearch[list2, 6]
7

out[96]= -
2

In[97]:= (*An example of how BinarySearch might be used to
conditionally insert new elements into a sorted listx)
value = 6;
pos = BinarySearch[list2, value];
If[IntegerQ[pos], pos, pos = Ceiling[pos];
list2 =Insert[list2,value,pos];pos];

list2
out[100]= {1,3,5,6,7,9,11, 13,15, 17, 19}

See Also

Recipe 3.3 discusses how to determine sorted order without rearranging the ele-
ments of the list.

A good overview of various sorting algorithms can be found at http://bit.ly/2bRckyv.

3.3 Determining Order Without Sorting

Problem

You need to know how the elements of a list are ordered without actually sorting
them. This may be because it is too expensive to keep multiple copies of the data in
various orderings.
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Solution

Use Ordering to get a list of offsets to the elements in the order they would appear if
sorted.

In[101]:= unsorted = RandomInteger[{90, 99}, 10]
out[101]= {98, 90, 91, 98, 98, 91, 99, 99, 97, 96}

In[102]:= Ordering[unsorted]
Out[102]= {2, 3,6,10,9,1,4,5,7, 8}

Discussion

Ordering has two variations. The first takes an integer that limits how many posi-
tions are returned. If you specify n, then the first n are returned; if you specify -n, the
last n are returned. This option makes Ordering more useful than Sort when you
don’t need the entire list sorted.

In[103]:= Ordering[unsorted, 3]
out[103]= {2, 3, 6}

In[104]:= Ordering[unsorted, -3]
out[104]= {5, 7, 8}

The second variation takes both an integer and an ordering relation.
In[105]:= Ordering[unsorted, Length[unsorted], Greater]
Out[lOS]: {81 7) 5) 41 1) 9) 10) 6) 31 2}

Given an ordering, it is easy to create a sorted version of the list.
In[106]:= unsorted [ [Ordering [unsorted] ] ]
out[106]= {90, 91, 91, 96, 97, 98, 98, 98, 99, 99}

Unfortunately, Ordering does as many comparisons as a full sort even if you only
want the first few orderings.
In[107]:= Block[{count = 0},
{ordering[unsorted, 3, (count++; Less[#1, #2]) &], Framed[count] }]

out[107)= {(2,6,3), |23 |}

In[108]:= Block[{count = 0},
{ordering[unsorted, 6, (count++; Less[#1, #2]) &], Framed[count] }]

Out[108]= {{2) 6) 3) 10) 9) 5}) 23 }
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A heap would be superior in such an application, but rolling your version of Order-
ing is unlikely to yield superior results due to optimizations that go beyond minimiz-
ing comparisons. After all, it takes Ordering less than a second to do its work on a
million integers on my relatively low-powered laptop.

In[109]:= Timing[Ordering[RandomInteger[{1, 999999}, 1000000], 2]]
out[109]= {0.255152, {314075, 337366} }

See Also

Recipe 3.2 discusses sorting.

Orderedq tests if a list is ordered, and Order compares two expressions, returning
-1 (Less), 0 (Equal), or 1 (Greater).

3.4 Extracting the Diagonals of a Matrix

Problem

You want to extract the diagonal, subdiagonal, superdiagonal, or antidiagonal of a
matrix.

Solution

In versions prior to Mathematica 6, use Tr with List as the combining function (the
default combining function of Tr is Plus).

In[110]:= (matrix = {{1, 2, 3}, {4, 5,6}, {7,8,9}}) // MatrixForm
Out[110]//MatrixForm=
123
456
789

In[111]:= Tr[matrix, List]
out[111]= {1, 5,9}
Mathematica 6 introduced the function Diagonal, which makes this recipe trivial.

In[112]:= Diagonal [matrix]
Out[112]= {1,5,9}
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You can extract the antidiagonal using either of the following expressions:
In[113]:= Diagonal [Map [Reverse, matrix] ]
Out[113]= {3, 5,7}

In[114]:= Tr([Map[Reverse, matrix], List]
out[114]= {3,5,7}

Discussion

The Diagonal function is more versatile than Tr in that it allows you to select off the
main diagonal by proving an index.

In[115]:= Diagonal [matrix, 1]
out[115]= {2, 6}
In[116]:= Diagonal [matrix, -1]

Out[116]= {4, 8}

Although the solutions implementation of antidiagonal is simple, it is not the most
efficient: it reverses every row of the input matrix. An iterative solution using Table
is simple and fast.

In[117]:- AntiDiagonal[matrix_] := Module[{len = Length[matrix]},
Table [matrix[ [i, len - i+1]]1, {i, 1, len}]]

In[118]:= bigMatrix = Table[ixj, {i, 0, 5500}, {j, 0, 5500}];
In[119]:= Timing[AntiDiagonal [bigMatrix]][[1]]

Out[119]= 0.001839

In[120]:= Timing[Diagonal [Map[Reverse, bigMatrix]]][[11]

Out[120]= 0.230145

It is always good to test a new version of an algorithm against one you already know
works.

In[121]:= AntiDiagonal[bigMatrix] == Diagonal [Map[Reverse, bigMatrix] ]
Out[121]= True

3.5 Constructing Matrices of Specific Structure

Problem

You want to construct matrices of a specific structure (e.g., diagonal, identity,
tridiagonal).
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Solution

Mathematica has built-in matrix constructions for the most common kinds of matrices.

In[122]:= IdentityMatrix[5] // MatrixForm
Out[122]//MatrixForm=
10000
01000
00100
00010
00001
In[123]:- DiagonalMatrix[Range[4]] // MatrixForm
Out[123]//MatrixForm=
1000
0200
0030
0004

Discussion

Although identity and diagonal matrices are quite common, there are other kinds of
matrices that arise frequently in practical problems. For example, problems involv-
ing coupled systems often give rise to tridiagonal matrices. SparseArray and Band are
perfect for this job. These are discussed in Recipe 3.8. Here, the use of Normal to con-
vert sparse form to list form is not essential because sparse arrays will play nicely
with regular ones.
In[124]:= triDiagonal[sub_List, main_List, super_List] /;
{Length[sub], Length[super]} + 1 == {Length[main] , Length[main]} :=
Module[{},
Normal [SparseArray [ {Band[{2, 1}] - sub,
Band[{1, 2}] - super, Band[{1, 1}] »main}, Length[main]]]]
In[125]:= triDiagonal[sub_?NumericQ, main_?NumericQ, super_? NumericQ, n_Integer] i=
Normal [SparseArray [
{Band[ {2, 1}] - sub, Band[ {1, 2}] - super, Band[ {1, 1}] - main}, n]]
In[126]:= triDiagonal[{-1, -1, -1}, {2, 2, 2, 2}, {1, 1, 1}] // MatrixForm

Out[126]//MatrixForm=
2 1 00
-1 2 10
0 -1 2 1
0 0 -12
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Tridiagonal matrices are always invertible.

In[127]:= Inverse|triDiagonal[{-1, -1, -1}, {2, 2, 2,2}, {1, 1, 1}]]
2 5 2 1 5 10 4 2

oot27)= {0 2 U 20 2 )

2 4 10 5 1 2 5 12
o w e el

There are also functions to transform a given matrix to another. Mathematica 7 in-
troduced LowerTriangularize and UpperTriangularize to create triangular matrices
from a given matrix.

In[128]:= With[{m = Array[18&, {4, 4}]}, Row[{LowerTriangularize[m] // MatrixForm,
UpperTriangularize[m] // MatrixForm}]]

1000 1111

1100 0111

1110 0011

1111 0001

out[128]=

These functions take an optional second parameter k, where positive k refers to sub-
diagonals above the main diagonal and negative k refers to subdiagonals below the
main diagonal. This points to another way to arrive at a tridiagonal matrix from a
given or synthesized matrix.

In[129]:= UpperTriangularize[
LowerTriangularize [Array [# &, {4, 4}], 1], -1] // MatrixForm
Out[129]//MatrixForm=
1100
2220
0333
0044

See Also

Certain important transformation matrices are accommodated by ScalingMatrix,
RotationMatrix, and ReflectionMatrix. See Recipe 2.11 for a usage example.

3.6 Constructing Permutation and Shift Matrices
Problem

You want to construct a matrix that will permute or shift the rows or columns of an
input matrix.
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Solution

A permutation matrix is a permutation of the identity matrix. It is used to permute
either the rows or columns of another matrix.

In[130]:= permutationMatrix[list_] := IdentityMatrix[Length[list]][[list]]
In[131]:= (ml = Table[2i +j, {i,1,3}, {j,1,3}]) // MatrixForm

Out[131]//MatrixForm=
345
567
789
In[132]:= (xCreate a permutation matrix that

permutes the second and first row or column.x)

(pl = permutationMatrix[{2, 1, 3}1) // MatrixForm
Out[132]//MatrixForm=

010
100
001

In[133]:= (mlpl = Dot[ml, p1]) // MatrixForm (xPermute columns.x)
Out[133]//MatrixForm=

435

6 57

879

In[134]:= (plml =Dot[pl, ml]) // MatrixForm (xPermute rows.x)
Out[134]//MatrixForm=
567
345
789

Whereas a permutation matrix permutes rows or columns, a shift matrix shifts rows
or columns, replacing the empty elements with zeros. A shift matrix is simply a ma-
trix with 1s on the superdiagonal or subdiagonal and Os everywhere else. This can
easily be constructed using the DiagonalMatrix function.
In[135]:= shiftMatrix[n_, dir_] := DiagonalMatrix[Table[1, {n - Abs[dir]}], dir]
In[136]:= Dot[shiftMatrix[4, 2], Table[1, {i, 1,4}, {j, 1, 4}]] // MatrixForm
Out[136]//MatrixForm=
1111
1111
0000
0000
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In[137]:= (*Shift columns right.x)

Dot[ml, shiftMatrix[3, 1]] // MatrixForm
Out[137]//MatrixForm=

03 4
056
078

In[138]:= (*Shift columns left.«)

Dot [ml, shiftMatrix[3, -1]] // MatrixFoxm
Out[138]//MatrixForm=

450
6 70
890

In[139]:= (*Shift rows up.=)

Dot [ shiftMatrix[3, 1], ml] // MatrixForm
Out[139]//MatrixForm=

567
789
000

In[140]:= (*Shift rows down.x)
Dot [ shiftMatrix[3, -1], ml] // MatrixForm

Out[140]//MatrixForm=
000
345
56 7

Discussion

A generalized permutation matrix has the same zero entries as the corresponding
permutation matrix, but the nonzero entries can have values other than 1.

In[141]:= generalizedPermutationMatrix[values_List, perm_List] :=
Dot[DiagonalMatrix[values], permutationMatrix[peIm]]
In[142]:= generalizedPermutationMatrix[{3, -1, 4}, {2, 3, 1}] // MatrixForm
Out[142]//MatrixForm=
03 0
00 -1
40 0

You can easily enumerate all n! permutation matrices of size n.

In[143]:= allPermutationMatrices[n_] :=
permutationMatrix[#] & /@ Permutations [Range[n] ]

3.6 Constructing Permutation and Shift Matrices | 107



In[144]:= Grid[Partition[MatrixForm /e allPermutationMatrices[4], 6]]
100 000 0 1 00 10

Out[144]=

O O O P P OO O kP OO O F» O o O
O O kP O O Ok O O O O O O O -,
O O O OO KFr O O O O Fr OFr OO
O O r O OO KFr O O O O B O o Oo
O O kP O O O O Fr kP OO O F»r O o O
O O O kP O O kP O OO, O O O - O
P O O O kP O O O kP O O O O O O -,
O P O O O kP OO OO O Fr »r O O O
O O kP O O O O Fr O PP, OO O -, O O
O O O kP O O kP O OO, O O O -, O

O O kP O O O P O O O O O O O
O P O O O kP OO O O O Fr O O -
P O O O O O O O, O O O - O
P O O O kP O O O O O O Fr O O -,
O P OO O O O Fr P OO O =, O O
O O O Fr OFr OO OFr OO O Fr O
O P OO OFr OO OFr OO0 O O O
P O O O OO O kr OO Fr O O O Fr O
O O O Fr P OO O BFr OO O +»r OO
P O O O Fr OO O RFr O OO O O O
O r OO0 OO O Fr OO Fr O O O K
O O O Fr OFr OO O Fr O O O Fr O
O P OO O Fr OO O Fr OO O o o
P O O O kP O O O O O O Fr O F O

It is also easy to detect if a matrix is a row permutation of another matrix: simply re-
move each row from ml that matches m2 and see if you are left with no rows. Of
course, you must also check that the matrices are the same size. A check for column
permutation is just a check for row permutations on the transpose of each matrix.
In[145]:= isRowPermutation[ml_, m2_] :=
Length[ml] == Length[m2] && Fold[DeleteCases[#1, #2] &, m1, m2] == {}
isMatrixPermutation[ml_, m2_] := isRowPermutation[ml, m2] ||
isRowPermutation [Transpose[ml], Transpose [m2] ]

You can verify this on some test cases.

In[147]:= (+Obviously a matrix is a permutation of itself.x)

isMatrixPermutation[ml, m1]
Out[147]= True

In[148]:= (xTest a row permutation.x)
isMatrixPermutation[ml, piml]
Out[148]= True

In[149]:= (xTest a column permutation.x)
isMatrixPermutation[ml, mlpl]
Out[149]= True

In[150]:= (A matrix and its tranpose are not permutations unless symmetric.x)
isMatrixPermutation[ml, Transpose [m1] ]
Out[150]= False

You may be thinking that matrix permutations via linear algebra will only apply to
matrices of numbers, but recall that Mathematica is a symbolic language and,
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thus, not limited to numerical manipulation. Here we do a Dot product on a matrix
of graphics!
In[151]:= greenRook = Import |
FileNameJoin [ {NotebookDirectory[], "..", "images", "greenRook.gif"}]];
redSq = Import[FileNameJoin[{NotebookDirectory[],

..", "images", "redSq.gif"}]];
greenSq = Import[FileNameJoin [ {NotebookDirectory[],
"..", "images", "greenSq.gif"}]];
piece[i_, j_] := Which[i = j, greenRook, 0ddQ[i + 3],
redSq, True, greenSq] ;
(board = Table[piece[i, j], {i, 1,4}, {j,1,4}]) // MatrixForm
Out[155]//MatrixForm=

B

HEEC
Bl
HCE
ENR

In[156]:= Dot[board, permutationMatrix[{2, 3, 1, 4}]] // MatrixForm
Out[156]//MatrixForm=

D) |
HEELC
HECE
ENNN

This chess demo lacks some aesthetics (the squares move along with the rooks), but
it does illustrate the generality of the permutation matrix.
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3.7 Manipulating Rows and Columns of Matrices

Problem

You want to add, remove, or modify entire rows or columns of a matrix in place.

Solution

Many operations on lists (including higher-order lists such as matrices) do not
modify the input list but rather produce a new list with the change. For example,
Append[myList,10] returns a list with 10 appended but leaves myList untouched.
Sometimes you want to modify the actual value of the list associated with a symbol.

In[157]:= (xCreate a 5 x 5 zero matrix.x)
(x = Table[0, {5}, {5}]) // MatrixForm
Out[157]//MatrixForm=
000O0O

o O O o
o O O o
o O O o

In[158]:= (*Set the second column to {1,2,3,4,5}.%)
x[[All, 2]] = Range[5];

In[159]:= x // MatrixForm
Out[159]//MatrixForm=
01000

o O O O
v AW N
o O O O

In[160]:= (*Set the third row to 3.%)
x[[3, All]] = 3;
In[161]:= x// MatrixForm
Out[161]//MatrixForm=
01000

o O w o
v AW N
o O w o

In[162]:= (*Set 3 x 3 interior to 9.x)
x[[2554,2554]1]1 = 9;
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In[163]:= x// MatrixForm
Out[163]//MatrixForm=

0

o O w o

1

[, BERN< Ve JNe]

0

o VW VW WV

o VW VW W o
O O w O O

You may also want to add elements, rows, and columns.

In[164]:= (*Add a row.=)

AppendTo [ x, Range[10, 14] ] ;

In[165]:= x // MatrixForm
Out[165]//MatrixForm=

0

o O w o

10

In[166]:= (*Add a column

In[167]:= x // MatrixForm

1

vl W W WO

11

Out[167]//MatrixForm=

0

o O w o

Discussion

1

[, BENe RN BNe]

o W W W o

12

o W W W o

o W VW W o

13

o v VW v o

O O w O O

14

of 9s.%)
DO[APPendTO[X[ [i1i1, 91, {i, 1, 6}]

O O w o o

O W VW VW VW O

Destructive operations should generally be avoided because they can lead to annoy-
ing bugs. For one thing, they make code sensitive to evaluation order. This type of
code is harder to change. Further, you need to keep in mind that these operations
are being performed on symbols rather than lists. What does this mean? Let’s in-
spect the attributes of AppendTo to gain a bit of insight.

In[168]:= Attributes[AppendTo]
Out[168]= {HoldFirst, Protected}
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The relevant attribute here is HoldFirst. This means that the expression passed as
the first argument is passed in unevaluated form. This has implications when you
want to write your own functions that destructively change the value of a symbol.
Consider trying to implement your own AppendTo.

In[169]:=
In[171]:=
out[171]=

In[172]:=

out[172]=

In[173]:=
out[173]=

ClearAll[myAppendTo] ;

myAppendTo[x_, val_] := x = Append[x, val]
Attributes [myAppendTo]

{1

x = {} ; myAppendTo[x, 10]

Set::shape: Lists {} and {10} are not the same shape. >

{10}

x

{3

First notice that this generated an error message and that X did not change.
This occurred because X was evaluated before the call, and you ended up evaluating
AppendTo[List[], 10], which is illegal. You can remedy this by using HoldFirst.

In[174]:

In[175]:
out[175]

In[176]:
out[176]=

SetAttributes [myAppendTo, {HoldFirst} ]
myAppendTo [x, 10]
{10}

x
{10}

Now it works. As a general rule, you need to use attributes HoldFirst, HoldRest, or
HoldAll, as appropriate, to pass expressions in unevaluated form to your own func-
tions. This is covered in Chapter 2, “Introduction,” on page 30, and in Recipe 2.2.

3.8 Using Sparse Arrays to Conserve Memory

Problem

You need to work with very large arrays or matrices but most of the entries are dupli-
cates (typically 0).
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Solution

Mathematica has direct support for sparse arrays and higher-order tensors using the
SparseArray function. The sparse array is built from a rule-based specification that
maps positions to values.

In[177]:= (%1000 x 1000 sparse matrixs)

ml = SparseArray[{{1, 1} -1, {1000, 1000} -» -1, {500, 750} - 5}]
Out[177]= SparseArray [<3>, {1000, 1000} ]

You can also specify the positions and values in separate lists. Here is a sparse vector
using this technique.

In[178]:= vl = SparseArray[({1, 3, 9, 81, 6561} - {5, 10, 15, 20, 25}]
Out[178]= SparseArray[<5>, {6561} ]

You can also convert a standard matrix to a sparse one.

In[179]:= dense = DiagonalMatrix[Range[1000] ] ;

In[180]:= sparse = SparseArray[dense]
Out[180]= SparseArray[<1000>, {1000, 1000} ]

As you can see, the memory savings is considerable.

In[181]:= ByteCount[dense] - ByteCount[sparse]
Out[181]= 3987416

In[182]:= ClearAll[dense]

Discussion

Very large but sparsely populated matrices arise often in applications of linear alge-
bra. Mathematica provides excellent support for sparse arrays because most opera-
tions that are available for list-based matrices (or tensors in general) are available for
sparse array objects.

Mathematica does not have sparse equivalents of the convenience functions
IdentityMatrix and DiagonalMatrix, but they are easy to synthesize using Band,
which specifies either the starting position of a diagonal entry or a range of positions
for a diagonal.

In[183]:= (*100 x 100 identity matrix«)

identity = SparseArray[Band[{1,1}] - 1, {100, 100}]
Out[183]= SparseArray [<100>, {100, 100} ]
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In[184]:= (+100 x 100 diagonal matrix with

the values {1,2,3,...,100} on the diagonalx)

diagonal = SparseArray[Band[{1, 1}] - Range[100], {100, 100} ]
Out[184]= SparseArray[<100>, {100, 100} ]

A general sparse diagonal function looks like this.
In[185]:= sparseDiagonal[list , k_] :=
SparseArray [Band [If[k >0, {1, 1+k}, {1-k, 1}]] - list,
(Length[list] + Abs[k]) {1, 1}]
You can also produce sparse versions of the permutation matrices from Recipe 3.6.
In[186]:= sparsePermutationMatrix[list_] :=
SparseArray[Band[{1, 1}] - 1, Length[list] {1, 1}] [[list]]

antiDiag = sparsePermutationMatrix [Range[100, 1, -1]]
Out[187]= SparseArray[<100>, {100, 100} ]

See Also

Recipe 3.5 showed how to use SparseArray and Band to create tridiagonal matrices.

3.9 Manipulating Deeply Nested Lists Using
Functions with Level Specifications

Problem

You need to extract, delete, modify, or transform content deep inside a nested list.

Solution

A level specification (or levelspec) is the key for surgically manipulating lists that con-
tain many levels. Most of Mathematica’s functions that deal with lists have varia-
tions that take levelspecs. Position is one such function. Consider a list of integers
that has values nested up to eight levels.

In[188]:= deep = {1, {2,3,4,5, {1,6,1,7},
{1, {{{{3, 8}, 1}, {1}}, 1}}, 1, 1, 1,9, 10, 11}, 12};
Depth[
deep]
out[189]= 8
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In[190]:= deep // TreeForm

Out[190]//TreeForm=
List
Lig 12
— =
213]4 List Lisj1|1]1]9|10 11

1161 7]|]List

Lis] 1

Lisy List

Llisj1]1

If you use Position to search for 1, you get a list of all positions that have the value
1. You can verify this using Extract.
In[191]:= Position[deep, 1]
out[191]= ({1}, {2, 5,1}, {2, 5,3}, {2,6,1}, {2,6,2,1,1,1,1},
{2,6,2,1,1,2}, {2,6,2,1,2,1}, {2,6, 2, 2}, {2, 7}, {2, 8}, {2,9}}

In[192]:= Extract[deep, Position[deep, 1]]
Out[192]= {1: 1) 1) 1, 1) 1) 1, 1) 1) 1, 1}

Suppose you do not want the 1s at every level. This is where levelspecs come in handy.

Use a single positive integer n to search at all levels up to and including n.

In[193]:= (*Only search up to level two.x)
Position[deep, 1, 2]
Out[193]: {{1}1 {21 7}) {21 8}1 {2) 9}}

Enclosing the level {n} in a list restricts search to that level.

In[194]:= (*Only search at level two.x)
Position[deep, 1, {2}]
Out[194]= {{2; 7}: {2) 8}) {21 9}}

The list notation {n,m} restricts search to levels n through m, inclusively.

In[195]:= (xSearch at levels three through five.x)
Position[deep, 1, {3, 5}]
Out[195]— {{2) 5,1}, {2) 5, 3}) {2) 6) 13, {2) 6) 2) 2}}
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Negative level specification of the form -n looks for objects that themselves have
depth n.

In[196]:= Position[deep, 1, -1]
Out[196]= {{1}1 {2) 5) 1}1 {2) 5) 3}1 {2) 6) 1}1 {2) 6) 2) 1) 1) 1) 1})
{2) 6) 2) 1) 1) 2}) {2) 6) 2) 1) 2) 1}) {2) 6) 2) 2}) {2) 7}) {2) 8}) {2) 9}}

In[197]:= (+See the discussion for why this is empty and must be empty.x)
Position[deep, 1, -2]
out[197]= {}

Discussion

We used Position to get a feel for level specifications because it is easy to judge,
based on the length of each position sublist, the depth of each item found. However,
you may be surprised that the last example was empty. It is easy to mistakenly think
that negative level specification means searching from the bottom of the tree up be-
cause this seems analogous to the way negative indices work in functions like Part.
This is not the case. A negative level specification means only looking for items with
specified depth after dropping the minus sign. Any scalar (like 1) has depth 1, includ-
ing complex numbers.

In[198]:= {Depth[1], Depth[3.7], Depth["foo"], Depth[1+71I]}

out[198]= {1,1,1,1}

From this, it follows that a scalar will never be found by using a negative depth value
less than -1.

Another important function for illustrating the use of level specifications is Level. Its
function is to retrieve all objects at the specified level(s).

In[199]:= Level[deep, {2}]

out[199]= {2,3,4,5, {1,6,1,7}, {1, {{{{1,8},1}, {1}},1}},1,1,1,9,10, 11}
Objects at level {2} may have a variety of depths.

In[200]:= Depth /e Level[deep, {2}]

Out[200]= {1; 1,1,1,2,6,1,1,1,1,1, 1}
Objects at level {-2} will only have a single depth by definition.

In[201]:= Level[deep, {-2}1]

Out[201]= {{1; 6: 1) 7}) {11 8}) {1}}

In[202]:= Depth /e Level[deep, {-2}]
out[202]= (2,2, 2)
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A picture helps reinforce this. Note that each tree has two levels.

In[203]:= GraphicsRow[TreeForm /@ Level [deep, {-2}], ImageSize » Large]

List List List

out[203]=

Note the difference between {-2}, meaning exactly depth 2, and -2, meaning depth
2 or more.

In[204]:= Depth /e Level[deep, -2]
Out[204]= {21 2) 3) 21 4) 5) 61 7}

Once you have mastered level specifications, the functions Apply, Cases, Delete,
DeleteCases, Extract, FreeQ, Level, Map, MapIndexed, MemberQ, Position, Replace,
and Scan take on more power and precision because they each have versions that use
levelspecs.

Here are some examples in which we extract, delete, and modify the contents of a
deeply nested expression. This time we use an algebraic expression.

In[205]:= Clear[x, y];
deepAlg = 1 + (x+y) - 2x"2 + (x +y) "3 + E*(x+y);
deepAlg = Factor [deepAlg * deepAlg - deepAlg]
out[207]= (1+ex*y+x—2x2+x3+y+3x2y+3xy2+y3)
2%

<1+ex+y+x—2xz+y+ (X+y)3)72x2 (—(1+ex+y+X—ZX2+y+ <X+y>3> +

(1 s ax_2% 4 y+ (X . y>3>ex*y+x+y+(x+y)3)

In[208]:= Depth [deepAlg]
Out[208]= 8
In[209]:= (*The three x's at levels two through threex)

Extract [deepAlg, Position[deepAlg, x, {2, 3}]]
0ut[209]= (X, X, X, X}
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In[210]:= (+Delete the x's at two and three.x)
Delete[deepAlg, Position[deepAlg, x, {2, 3}]]
0ut[210]= (4+eY -2x* +y+3x’y+ 3y +y’)
(1*@X+y’zxz+y+ <X+y)3>*2x2 (*(1+ex*y+x—2xz+y+ (X+Y>3)2X2 n

(1+@Y+x-2x+y+ (x+ y)s)‘exw*x*y*(mwa)
In[211]:= (*Change those x's to z's.x)
Replace [deepAlg, x -z, {2, 3}]

Out[211]= (—(1+QX*Y+X72X2 iy (X+y)3)2x2 .

(1 e ex-2x vy (x + y)3>ex*y+X+y+<X+y>3)

<1+ex+y—2xz+y+ <X+y>3+z)7zx2

(1+e-2X +y+3Xy+y +2+3y 2+72)

In[212]:= (*Sure enough, there are now four z's.x)
Count[%, z, {2, 3}]
Out[212]= 4

In[213]:= (*Replace any subexpression with depth three with z.x)
Replace [deepAlg, _-z, {-3}]
Out[213]= (1+x+y+32)z(1+x+x3+y+y3+4z)
<—<1+X+y+3z)z+ (1+X+y+32>x+y+22>
In[214]:= (*Square all subexpressions of depth three.x)
Map[#28&, deepAlg, {-3}]
Out[214]= (1 s e a4t ay+9xtyl oy 19X y4)

<1+ezx+2y+x+4x4+y+ (X+y)6)4X4

[—(1+e2x+2y+x+4x4+y+ (X+y)6)4x4+

eZ X+2y

(1+e®* i x+ax +y+ (x+y)°) +><+>’+(X+y>f’J

See Also

Chapter 2, “Functional Programming,” has recipes that deal with the specifics of
Apply, Map, MapIndexed, and Scan.

2]

Chapter 4, “Patterns,” has recipes that deal with the specifics of Cases,
DeleteCases, FreeQ, MemberQ, and Replace.
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3.10 Implementing Bit Vectors and Using
Format to Customize Their Presentation

Problem

You want to manipulate a vector of bits in a space-efficient fashion. You also want
to give these vectors a concise default display format.

Solution

You can use Mathematica’s ability to represent arbitrarily large integers as a means
of implementing bit vectors. Using Mathematica’s UpValue convention (see Chapter 2,
“DownValues and UpValues,” page 27) you can make bit vectors adopt the familiar
interface used by lists. When you create custom data structures like this, you can
give them an output format that hides the details of their internal representation.

In[215]:= (*Make a bit vector from a list of bit value.=)
makeBitVector [bits_List] :=
bitvec [FromDigits [Reverse [bits], 2], Length[bits] ]
(*Make a bit vector of a specified
length. Values are initialized to 0.x)
makeBitVector[1_: 32] := bitvec][0, 1]
(»Set bit at index to 0 or 1.x)
setBit [bitvec[n_, 1_], index_Integer, 1] :=
Module [ {n2 = BitSet[n, index - 1]}, bitvec[n2, Max[1, BitLength[n2]]]]
setBit [bitvec[n_, 1], index_Integer, 0] :=
bitvec [BitClear[n, index - 1], 1]
SetAttributes [setBitOf, HoldFirst]
setBit0f [name_Symbol, index_Integer, bit_/; bit===0 || bit===1] :=
name = setBit[name, index, bit]
(»xGet the first bit value.x)
bitvec /: First[bitvec[n_, _]] := BitGet[n, 0]
(xGet the rest of the bits after the first as a new bit vector.x)
bitvec /: Rest[bitvec[n_, 1 ]] := bitvec[Floor[n/2],1-1]
(xGet bit at index.x)
bitvec /: Part[bitvec[n_, _], index_Integer]| := BitGet[n, index - 1]
(*Get the length of the bit vector.sx)
bitvec /: Length[bitvec[n_,1_1] :=1
bitvec /: BitlLength[bitvec[n_,1_ 1] :=1
(*Perform bitwise AND of two vectors.x)
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bitvec /: BitAnd[bitvec[nl_, 11 ], bitvec[n2_, 12_]] :=
bitvec [BitAnd[n1, n2], Max[11, 12]]
(*xPerform bitwise OR of two vectors.x)
bitvec /: BitOr[bitvec[nl_, 11_], bitvec[n2_, 12_]] :=
bitvec [BitAnd[n1, n2], Max[11, 12]]
(*Return the complement (NOT) of a bit vector.x)
bitvec /: BitNot[bitvec[n_,1_]] :=
bitvec [BitAnd [BitNot[n], 271 -17], 1]
(*Create a format to print bit vectors in an abbreviated fashion.x)
Format [bitvec[n_, 1 1] :=
"bitvec" [“<" <> ToString [BitGet[n, 0] <> "..." <>
ToString [BitGet[n, 1-1]] <> ">", 1]

Here are some examples of usage.

In[229]:= bv = makeBitVector[{1, 0,0, 0, 1}]

Out[229]= bitvec[<1...1>,5]
In[230]:= bv[[2]]

Out[230]= 0

In[231]:= bv = setBit[bv, 2, 1]
Out[231]= bitvec[<1...1>,5]
In[232]:= bv[[2]]

out[232]= 1

In[233]:= bv = setBit[bv, 500, 1]
Out[233]= bitvec[<1...1>, 500]
In[234]:= bv2 = Rest[bv]

Out[234]= bitvec[<1...1>, 499]

In[235]:= bv3 = BitNot[makeBitVector[{1,0,0,0,1}]]
Out[235]= bitvec[<0...0>, 5]
In[236]:= bv3[[1]]
Out[236]= O
Discussion

Even if you have no immediate application for bit vectors, this recipe provides a les-
son in how you can create new types of objects and integrate them into Mathemat-
ica using familiar native functions.
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See Also

See tutorial/DefiningOutputFormats in the Mathematica documentation for more
details on Format.

3.11 Implementing Trees and Traversals
Using Lists

Problem

You want to model tree data structures in Mathematica and operate on them with
standard tree-based algorithms.

Solution

The simplest tree is the binary tree, and the simplest model of a binary tree in Mathe-
matica is a list consisting of the left branch, node value, and right branch.

In[238]:= (MakeTree constructs either an empty
tree or a tree with only a root element.x)
makeTree[] := {}
makeTree[value_] := {{}, value, {}}
(*Functions for extracting the parts of a nodex)
getTreeValue[tree ] := tree[[2]]
getTreeleft[tree_] := tree[[1]]
getTreeRight [tree_] := tree[[3]]
(*We insert elements into a tree using < ordering relation.s)
insertTree[{}, value_] := {{}, value, {}}
insertTree[tree_, value_] := I-F[value < getTreeValue[tree],
{insertTree[getTreeLeft[tree], value],
getTreeValue[tree], getTreeRight [tree] },
{getTreeLe-Ft [tree], getTreeValue[tree],
insertTree [getTreeRight [tree], value] }]
(*Given the above primitives, it is easy to define
some common algorithms.=)
listToTree[list_List] := Fold[insertTree[#1, #2] &, makeTree[], list]
(*A preorder traversal is also known as depth-first.x)
preorder [tree_] := Reap[preorder2[tree]] [[2, 1]]
preorder2[{}] := {}
preorder2[tree_] := Module[{}, Sow[getTreeValue[tree] ]|;
preorder2 [getTreeleft [tree] |;
preorder2 [getTreeRight [tree] | |
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postorder [tree_] := Reap[postorder2[tree]][[2, 1]]
postorder2[{}] := {}
postorder2 [tree_] := Module[{},

postorder2[getTreeleft [tree] | ;

postorder2[getTreeRight [tree] | ;

Sow[getTreeValue [tree] ] |

(*An inorder traversal returns the values in sorted order.=x)
inorder [tree_] := Reap[inorder2[tree]][[2, 1]]
inorder2[{}] := {}
inorder2[tree_] := Module[{},

inorder2[getTreeleft [tree] | ;

Sow [getTreeValue [tree] | ;

inorder2 [getTreeRight [tree] ] ]
(%A level order traversal is also known as breadth first.x)
levelorder[tree_] := Reap[levelorder2[{tree}]1]1[[2,1]]
(#Breadth first is commonly implemented in terms of
a queue that keeps track of unprocessed levels. I model
the queue as a list.x)
levelorder2[{}] := {} (*Stop on empty queue.x)
levelorder2[{{}}] := {} (*Stop on queue with empty tree.x)
levelorder2 [queue_] :=Module[{front = First[queue],

queue2 = Rest[queue], (xPop front of queue.x),

left, right},

Sow [getTreeValue [front]|; (Visit node.x)

left = getTreeleft[front];

right = getTreeRight [front];

queue? = If[Length[left] = 0, queue2, Append[queue2, left]];

(*Append left if not empty.=x)

queue2 = If[Length[right] = 0, queue2, Append[queue, right]];

(*Append right if not empty.x)

levelorder2[queue] |

In[259]:= nodes = RandomInteger[{1, 100}, 18]
out[259]= {62, 97, 36, 82, 76, 84, 58, 32, 79, 16, 89, 15, 45, 72, 90, 32, 12, 9}
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In[260]:= (tree = listToTree[nodes]) //
TreeForm [n, PlotRangePadding —» 0, ImageSize —» 450] &
Out[260]//TreeForm=

s e] [0] [
ez e o 2
(o] 1 [ ] ) (B ] e

In[261]:= preorder[tree]
out[261]= {62, 36, 32, 16, 15, 12, 9, 32, 58, 45, 97, 82, 76, 72, 79, 84, 89, 90}

In[262]:= postorder[tree]
out[262]= {9, 12, 15, 16, 32, 32, 45, 58, 36, 72, 79, 76, 90, 89, 84, 82, 97, 62}

In[263]:= inorder[tree]
out[263]= {9, 12, 15, 16, 32, 32, 36, 45, 58, 62, 72, 76, 79, 82, 84, 89, 90, 97}

In[264]:= levelorder[tree]
out[264]= {62, 36, 97, 32, 58, 82, 16, 32, 45, 76, 84, 15, 72, 79, 89, 12, 90, 9}

Discussion

The tree implementation in the solution is a bit simplistic, but it is intended to illus-
trate basic concepts. One way to generalize the implementation is to allow a differ-
ent ordering function. It makes sense to keep the ordering with each instance of the
tree. For this, it is best to use Mathematica options, which are a standard conven-
tion for optional values. You need to redefine the functions for creating trees and ac-
cessing their parts, but once you do that, the existing algorithm implementations
will still work.
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In[265]:= ClearAll [makeTree, getTreeValue,
getTreeleft, getTreeRight, insertTree, listToTree] ;
(*Use the explicit head Tree to hold the
representation and the options.x)
makeTree[opt : OptionsPattern[Ordering - Less]] :=Tree[{}, opt]
makeTree[value_, opt : OptionsPattern[ordering - Less]] t=
Tree[{{}, value, {}}, opt]
(*Functions for extracting the parts of a node are now overloaded for top-
level Tree form.=x)
getTreeValue[Tree[tree_, _ ]] := getTreeValue[tree]
getTreeValue[tree_] := tree[[2]]
getTreeLeft [Tree[tree_, 1] := getTreeleft[tree]
getTreeleft[tree_] := tree[[1]]
getTreeRight [Tree[tree_, 1] := getTreeRight[tree]
getTreeRight [tree_] := tree[[3]]
(#Insert extracts the ordering option
using the replacement rule and passes it to
the function that implements the insert.sx)
insertTree[Tree[tree_, opts_], value_] :=
Tree[insertTree[tree, value, ordering /. opts], opts]
insertTree[{}, value_, _] := {{}, value, {}}
insertTree[tree_, value_, ordering_| :=
If[ordering[value, getTreeValue[tree]],
{insertTree[getTreeleft [tree], value, ordering],
getTreeValue[tree], getTreeRight [tree] },
{getTreeLeft [tree], getTreeValue[tree],
insertTree[getTreeRight [tree], value, ordering]}]
listToTree[list_List, opt :OptionsPattern[Ordering - Less]] :=
Fold[insertTree [#1, #2] &, makeTree[opt], list]

In[278]:= tl1 = listToTree[RandomInteger[{l, 100}, 20], ordering - Greater];

inorder[t1]
out[279]= {92, 92, 91, 84, 78, 71, 68, 56, 56, 54, 41, 39, 38, 35, 34, 32, 21, 16, 11, 2}
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Another enhancement is to generalize the so-called visit function of the traversal
algorithms.

In[280]:= ClearAll[inorder, inorder2];
inorder[tree_, visit_ : Sow ] :=Flatten[ Reap[inorder2[tree, visit]]]
inoxder2[{}, _]1 := {}
inorder2[tree_, visit_] := Module[{},
inorder2 [getTreeleft [tree], visit];
visit[getTreeValue[tree] |;
inorder2 [getTreeRight [tree], visit] |

This allows the caller the option of not receiving all the nodes. For example, rather
than Sow, you can pass in a function that writes the values to a file or a filter as we do
here.

In[284]:= inorder[t1, If[0ddQ[#], Sow[#], #] &]

out[284]= {91, 71, 41, 39, 35, 21, 11}

See Also

More information on trees and tree traversal can be found in any computer science
data structures book or at http://bit.ly/7xP6jQ.

3.12 Implementing Ordered Associative Lookup
Using a Red-Black Tree

Problem

You need better-than-linear associative lookup and storage to increase performance
of a program. You also need the elements to remain ordered.

Solution

A red-black tree is a popular balanced tree algorithm used as the foundation for asso-
ciative data structures. To implement a red-black tree in Mathematica, you create a
representation of the tree and functions for creating, reading, updating, and deleting
(CRUD). This implementation will use a head rbTree containing a tree and an order-
ing relation. The tree is modeled as either an empty list or a quadruple consisting of
a color (red or black), a left subtree, an element, and a right subtree. By default, we
use the function Less as the ordering relation. Storing the ordering relation as part of
the tree allows for trees of varying element content.
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In[285]:= (+Make an empty tree with default ordering.x)
makeRBTree[] := rbTree[{}, Less]
(*Make an empty tree with a custom ordering.=)
makeRBTree[ordering ] := rbTree[{}, ordering]
(*Make a tree with given root and ordering.=x)
makeRBTree[{color_, left_, elem_, right_}, ordering_] :=
rbTree[{color, left, elem, right}, ordering]

Before we can do much with these trees, we need a method for inserting new el-
ements while keeping the tree well ordered and balanced. For this, we create a top-
level insert function implemented in terms of several low-level functions that main-
tain all the constraints necessary for a red-black tree.

In[288]:- insertRBTree[rbTree[struct_, ordering_|, elem_] :=
makeRBTree [ makeBlack [ insertRBTree2 [struct, elem, ordering] ], ordering]

In[289]:= (*This implementation method does ordered
insertion and balancing of the tree representation.

Note: empty subtrees {} are considered implicitly black.x)
insertRBTree2[{}, elem_, ] := {red, {}, elem, {}}
insertRBTree2 [ {color_, left_, elem2_, right_}, eleml_, ordering_] :=

Which [ordering [eleml, elem2],

balance[color, insertRBTree2[left, eleml, ordering], elem2, right],

ordering [elem2, eleml],

balance[color, left, elem2, insertRBTree2[right, eleml, ordering]],

True, {color, left, elem2, right}]
In[291]: (#This is a helper that turns a node to black.x)
makeBlack[{color_, left_, elem_, right_}] := {black, left, elem, right}

In[292]:= (*Balancing is handled by a transformation function that

matches all red-black constraint violations
and transforms them into balanced versions.x)

balance[black, {red, {red, leftl_, eleml_, rightl_}, elem2_, right2_},
elem3_, right3_] :=
{red, {black, left1, eleml, right1}, elem2, {black, right2, elem3, right3}}

balance [black, {red, leftl_, eleml_, {red, left2_, elem2_, rightl }},
elem3_, right2_] :=
{red, {black, leftl, eleml, left2}, elem2, {black, left2, elem3, right2}}
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balance [black, leftl , eleml_,
{red, {red, left2_, elem2_, rightl }, elem3_, right2_}] :=
{red, {black, leftl, eleml, left2}, elem2,
{black, righti, elem3, right2}}
balance [black, leftl , eleml_,
{red, left2_, elem2_, {red, left3_, elem3_, rightl }}] :=
{red, {black, lefti, eleml, left2}, elem2, {black, left3, elem3, right1}}
balance[color_, leftl , eleml , rightl ] :=
{color, left1, eleml, rightl}

List-to-tree and tree-to-list conversions are very convenient operations for inter-
facing with the rest of Mathematica.

In[296]:= (xGiven a list create an rbTree of the elements.x)
listToRBTree[list_List] :=
Fold[insertRBTree [#1, #2] &, makeRBTree[], list]
listToRBTree[list_List, ordering | :=
Fold[insertRBTree[#1, #2] &, makeRBTree[ordering], list]
(*Given a tree convert to a list while retaining ordering.x)
rbTreeToList [rbTree[tree_, ] :=
Flatten[tree /. (red | black) - Sequence[], Infinity]
rbTreeFind [rbTree[{}, _1, ] := {}
rbTreeFind [rbTree[tree_, ordering_], elem_] :=
rbTreeFind2[tree, elem, ordering]
rbTreeFind2[{color_, left_, elem2_, right_}, eleml_, ordering | :=
Which[ordering[eleml, elem2], rbTreeFind2[left, eleml, ordering],
ordering[elem2, elem1], rbTreeFind2 [right, eleml, ordering] ,
True, {elem2} ]
rbTreeMax2[{_, _, elem_, {}}] := elem
rbTreeMax2[{_, _, _, right_}] := rbTreeMax2|[right]
removeRBTree[rbTree[{}, ordering |, elem ]| := rbTree[{}, ordering]
removeRBTree [rbTree[tree_, ordering ], elem_] :=
makeRBTree [ makeBlack [ removeRBTree2 [tree, elem, ordering]], ordering]
removeRBTree2[{}, 1 := {}

$
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removeRBTree2 [ {color_, left_, elem2_, right_}, eleml_, ordering ] :=
which[ordering[eleml, elem2],
balance[red, removeRBTree2[left, eleml, ordering], elem2, right],
ordering[elem2, eleml],
balance[red, left, elem2, removeRBTree2[right, eleml, ordering]],
True, Which[right == {}, left,
left == {}, right,
True, With[{max = rbTreeMax2[left]},

balance[red, removeRBTree2[left, max, ordering], max, right]]]

Discussion

There are several ways to approach a problem like this. One reasonable answer is to
implement associative lookup outside of Mathematica using a language like C++
and then use MathLink to access this functionality. Here we will take the approach
of implementing a red-black tree directly in Mathematica.

A red-black tree implemented in C may typically be hundreds of lines of code, yet
we achieve an implementation in Mathematica with less than a hundred, including
comments. How is this possible? The main idea is to exploit pattern matching as
much as possible. Note particularly the function balance. This function directly im-
plements the most tricky part of a red-black-tree implementation in a traditionally
procedural language by stating the balancing rules in a form that is very close to the
way the algorithm requirements might specify them. Let’s take one of the versions as
an example.

balance[black, {red, {red, leftl_, eleml_, rightl_}, elem2_, right2_}, elem3
_, right3_] :=
{red, {black, leftl, eleml, rightl}, elem2, {black, right2, elem3, right3}}

The above says: “If you find a black node (elem3) with a red left child (elem2) that
also has a red left child (eleml), then convert to a red node with two black children
(eleml and elem3, in that order). This is a case where the code speaks more clearly
and precisely than any English translation. With a slight bit of editing, the code itself
translates into a graphical view of before and after. I can’t think of another general
programming language where you can code and visualize an algorithm with so little

added effort!
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In[309]:= TreeForm[{black, {red, {red, leftl, eleml, rightl}, elem2, right2},
elem3, right3} , ImageSize - Medium]
TreeForm|[ {red, {black, leftl, eleml, rightl}, elem2,
{black, right2, elem3, right3}}, ImageSize - 450]

0ut[309]//TreeForm=
List
black List elem3 right3
/N
red List elem2 right2
red leftl eleml rightl
Out[310]//TreeForm=
List
See Also

A solution to associative lookup that is more in the spirit of Mathematica can be
found in Recipe 3.13.

This recipe was inspired by the book Purely Functional Data Structures by Chris
Okasaki (Cambridge University Press), in which Haskell is used to demonstrate
that data structures can be written under the constraints of a pure functional pro-
gramming language.

Wikipedia provides a good basic explanation of and references to more sources for
red-black trees (http://bit.ly/3WEqrT).
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3.13 Exploiting Mathematica’s Built-In
Associative Lookup

Problem

You want to create a dictionary to associate keys with values, but you want Mathe-
matica to do most of the work.

Solution

Harness the same mechanism Mathematica uses to locate the downvalues of a sym-
bol to create the dictionary.

Here I outline the basic idea for the solution and defer the actual implementation to
the discussion. The idea is simply to exploit something that Mathematica must
already do well: look up a symbol’s downvalues. It must do this well because it is
central to Mathematica programming. Imagine you want to create a table of values
associating some U.S. zip codes with towns. A reasonable way to proceed is as follows:

In[311]:= zipcode[11771] = {"Oyster Bay", "Upper Brookville",
"East Norwhich", "Cove Neck", "Centere Island“};
zipcode[11772] = {"Patchogue", "North Patchogue", "East Patchogue"};
(*And so on...x)
zipcode[11779] = {"Ronkonkoma", "Lake Ronkonkoma"};

Now, when your program needs to do a lookup, it can simply call the “function”
zipcode.

In[314]:= With[{zip =11771},

Pr:i.nt["The number of towns in ",

zip, " is ", Length[zipcode[zip]], ";"];]

The number of towns in 11771 is 5.

This is so obvious that few regular Mathematica programmers would even think
twice about doing this. However, this use case is static. Most associative data struc-
tures are dynamic. This is not a problem because you can also remove downvalues.

In[315]:= zipcode[11779] =.
Now there is no longer an association to 11779. Mathematica indicates this by return-
ing the expression in unevaluated form.

In[316]:= zipcode[11779]
Out[316]= zipcode[11779]
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But this is still not enough. An associated data structure should also tell you all the
keys and all the values it knows. Again, Mathematica comes through.

In[317]:= DownValues [zipcode]
out[317]= {HoldPattern[zipcode[ll 77111 =
{Oyster Bay, Upper Brookville, East Norwhich, Cove Neck, Centere Island},
HoldPattern[zipcode[11772]] =
{Patchogue, North Patchogue, East Patchogue} }

So all the building blocks are present in the core of Mathematica to create a dynamic
dictionary-like data structure. All that is needed is the creation of some code to
neatly tie these pieces together into a general utility.

Discussion

The first function we need is a way to construct a dictionary. In the solution, we use
a symbol that makes sense for the problem at hand, but in a generic implementation
what symbol is used is not significant so long as it is unique. Luckily, Mathematica
has the function Unique to deliver the goods. We initialize the dictionary by creating
a downvalue that maps any value to the empty list. The symbol is wrapped up in the
head Dictionary and returned to the caller.
In[318]:= makeDictionary[] :=
Module [ {name},
name = Unique["dict"] ;
Evaluate[name] [k_] := {};
Dictionary [name]

]

You will also want a way to get rid of dictionaries and all their content. Remove does
the trick.

In[319]:- destroyDictionary[Dictionary[name_, _ 1] :=
If[ValueQ[name[_]], Remove[name] ; True, False]
Although we said that there is no need to know the symbol used internally, there is

no harm in providing a function to retrieve it. Further, our implementation will use
this function so that it is easier to change the internal representation in the future.

In[320]:= dictName[Dictionary[name_, _]] := name
The most important function, dictStore, allows the association of a value with a

key. We assume, as in the solution, that more than one value may be needed for a
given key, so we store values in a list and prepend new values as they are added.

In[321]:= dictStore[dict Dictionary, key_, value_] :=
Module [ {d = dictName[dict]}, d[key] = Prepend[d[key], value] ]
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The function dictReplace is like dictStore, except it guarantees value is unique.
That is, there are no duplicates of value, although there might be other values for
the key.

In[322]:- dictReplace[dict_Dictionary, key_, value_] :=
Module[{d = dictName[dict]}, d [key] =d [key] U {value}]

In contrast, the function dictRemove ensures that there are no instances of value
associated with the key (although, again, there might be other values for the key).

In[323]:= dictRemove[dict Dictionary, key_, value_] :=
Module [ {d = dictName[dict]}, d[key] = Complement [d[key], {value}]]

If you want all values removed, then use dictClear.

In[324]:= dictClear[Dictionary[name_, _]] :=

If[ValueQ[name[_]1, Clear [name] ; Evaluate[name] [k_] := {}; True, False]

Maintaining the dictionary is all well and good, but you also need to be able to re-
trieve values. The function dictLookup is the easiest to implement because it gets
Mathematica to do all the work by simply asking for the downvalue in the usual way.

In[325]:- dictLookup[Dictionary[name_, ], key_] := name[key]

Sometimes you might not care what the value is but rather if the key exists at all.
Here I use ValueQ, which returns true if the evaluation of an expression returns
something different than the expression itself (hence, indicating there is a
value). In this implementation, I don’t care that the value may be the empty list {}
because dictHasKeyQ is only intended to tell the caller that the key is present.

In[326]:= dictHasKeyQ[Dictionary[name_, _ ], key_] :=ValueQ[name key] ]
This function tells you that the key is present but has no values.
In[327]:= dictKeyEmptyQ[Dictionary[name_, _ ], key_] := name[key] === {}

In some applications, you may want to know the set of all keys; dictKeys provides
that. It works by using DownValues, as shown in the solution, but transforms the re-
sults to extract only the keys. Most is used to exclude the special downvalue
name[k_], which was created within makeDictionary. The use of HoldPattern follows
from the format that DownValues uses, as seen in the solution section. Here, Evaluate
is used because DownValues has the attribute HoldAll.

In[328]:= dictKeys [dict_Dictionary] := Most [DownValues [Evaluate [dictName [dict]]]] /.
HoldPattern[a_:» _List] > a1, 1]

Another useful capability is to get a list of all key value pairs; dictKeyValuePairs
does that.
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In[329]:= dictKeyValuePairs[dict Dictionary] :=
Most [DownValues [Evaluate [dictName [dict]]]] /.
HoldPattern[a_:» values_List] :» {a[1, 1], values}

Before I exercise this functionality, a few general points need to be made.

You may be curious about the pattern Dictionary[name_, ] since the representa-
tion of the dictionary, per makeDictionary, is clearly just Dictionary[name]. As you
probably already know (see Chapter 4 if necessary),  matches a sequence of zero
or more expressions. Using this pattern will future proof the functions against
changes in the implementation. For example, I may want to enhance Dictionary to
take options that control aspects of its behavior (for example, whether duplicate val-
ues are allowed for a key or whether a key can have multiple values all together).
Keep this in mind when creating your own data structures.

A collection of functions like this really begs to be organized more formally as a
Mathematica package. In fact, you can download such a package, with the source
code, at this book’s website, http://oreilly.com/catalog/9780596520991/. 1 cover pack-
ages in Recipe 18.4.

Here is how I might code the zip codes example from the solution if I needed the full
set of create, read, update, and delete capabilities that Dictionary provides.

In[330]:= zipcodes = makeDictionary[];
dictStore[zipcodes, 11771, #] & /e {"Oyster Bay",
"Upper Brookville", "East Norwhich", "Cove Neck", "Centere Island“};
dictStore[zipcodes, 11772, #] & /e
{"Patchogue”, "North Patchogue", "East Patchogue"};
dictStore[zipcodes, 11779, #] & /@ {"Ronkonkoma", "Lake Ronkonkoma"} ;
In[334]:= dictLookup[zipcodes, 11771]
Out[334]= {Centere Island, Cove Neck, East Norwhich, Upper Brookville, Oyster Bay}

In[335]:= dictLookup[zipcodes, 99999]
Out[335]= {}

Ask if a key is present.
In[336]:= dictHasKeyQ[zipcodes, 11779]
Out[336]= True
Get all the zip codes stored.
In[337]:= dictKeys[zipcodes]
out[337]= {11771, 11772, 11779}

In Recipe 3.12, “Red-Black Trees,” quite a bit more coding is required to get a
similar level of functionality. This recipe is relatively easy because it leverages one
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of Mathematica’s strengths. This is an important lesson when working with Mathe-
matica (or any language). Always look for solutions that play to the language’s
strengths rather than using hack solutions designed for other programming environ-
ments. To be fair, the red-black-tree implementation has features that would be
more difficult to support in this recipe. Specifically, we could control the ordering of keys
with red-black tree, but here keys are ordered according to Mathematica’s conventions
(which are conveniently in line with the expectations one would have for a dictionary).

3.14 Constructing Graphs Using the
Combinatorica’ Package

Problem

You are solving a problem modeled as a graph and need to create that graph for use
with Combinatorica™ package’s algorithms.

Solution

If your graph is almost complete, construct a complete graph and remove unwanted
edges.

In[338]:= Needs["Combinatorica™"]
In[339]:= gl = CompleteGraph[6];
gl = DeleteEdges[gl, {{1,5}, {1,3}}];
ShowGraph [g1, VertexNumber - True, ImageSize » Small]
2 T
Out[341]= 3
4 5
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If your graph is sparse, construct directly.

In[342]:= ShowGraph[FromUnorderedPairs[{{l, 2}, {1, 43, {2, 3}, {3, 6}, {4,6}}],

VertexNumber - True, ImageSize » Small]

2 1

out[342]= s

4 5.

Use MakeGraph if your graph can be defined by a predicate.
In[343]:= ShowGraph [MakeGraph[Range[14] , | CoprimeQ[#1, #2] 8& 1l # #2 &,

Type -> Undirected] » VertexNumber - True,

VertexStyle - Directive [PointSize[0.01]], ImageSize - Small]

out[343]= 7
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Discussion

Graphs can also be constructed from combinations of existing graphs by using
GraphUnion, GraphIntersection, GraphDifference, GraphProduct, and GraphJoin. In the
examples given here, I always use two graphs, but the operations are generalized to
multiple graphs.

GraphUnion always creates a disjoint graph resulting from the combination of the
graphs in the union.
In[344]:= ShowGraph[GraphUnion[CompleteGraph[3], CompleteGraph([3, 2]1,
VertexLabel - True]
1

Out[344]

GraphJoin performs a union and then links up all the vertices from the correspond-
ing graphs.

In[345]:= ShowGraph[GraphJoin[CompleteGraph[3], CompleteGraph[3, 2]],
VertexLabel - True]

Out[345]=
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GraphIntersection works only on graphs with the same number of vertices and
produces a graph where the input graphs have edges in common.
In[346]:= gl =DeleteEdge[CompleteGraph[5], {1, 2}];
g2 =DeleteEdge [CompleteGraph[5], {2, 3}];
ShowGraphArray [ {gl, g2, GraphIntersection[gl, g2]}, VertexLabel -» True]
1

1 1
2 2
Out[348]= 5 5 5
4 4 4

GraphDifference creates a graph with all the edges that are in the first graph but not
in the second.

In[349]:= g1 = CompleteGraph[5];

g2 =DeleteEdges [CompleteGraph[5], {{1, 2}, {2, 3}, {2, 5}, {4, 5}}];
ShowGraphArray [ {g1, g2, GraphDifference[gl, g2]}, VertexLabel - True]

1 1 1
2
Out[351]= 5 >5
3
4 4 4

GraphProduct creates a graph by injecting copies of the first graph into the second at
each vertex of the second and then connecting the vertices of the injected graphs.

Unlike a numerical product, this operation is not commutative, as demonstrated in
Out[354] on page 138.

3.14 Constructing Graphs Using the Combinatorica’ Package | 137



In[352]:= gl= CompleteGraph[3];
g2 = CompleteGraph[3, 2];
ShowGraphArray [ {{gl, g2}, {GraphProduct g1, g2], GraphProduct [g2, g1] }},
VertexLabel - True, ImageSize » Medium]

1

>

out[354]=

Another way to construct graphs is from alternate representations, such as adja-
cency matrices and adjacency lists. Out[355] on page 139 shows a graph constructed
from an adjacency matrix obtained from GraphData. Normal is used to convert Sparse-
Matrix, since Combinatorica does not recognize sparse-matrix representations.
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In[355]:= ShowGraph [FromAdjacencyMatrix [Normal |
GraphData [ "CubicalGraph”, "AdjacencyMatrix"]]], ImageSize -» Small]

A~

Out[355]= @

Combinatorica also supports directed graphs and graphs with weighted edges. Using
SetEdgeleights alone gives random real weights in the range [0,1]. SetEdgeWeights
also accepts WeightingFunction and WeightRange options. You can also explicitly
specify the weights in a list, which will be assigned to the edges in the same order as
returned by the function Edges.
In[356]:= SeedRandom[1];
g1 = RandomGraph [5, 0.3, Type - Directed] ;
gl = SetEdgelleights [g1,
WeightingFunction » RandomInteger, WeightRange » {1, 10} ] H
g2 = MakeUndirected[gl];
(*The number of weights must match
the number of edges or you'll get garbage!x)
g2 = SetEdgeWeights[g2, {1, 2,3,4,5,6,7}];
SetGraphOptions [g2, Type - Directed];
GraphicsRow [ { ShowGraph[
SetEdgeLabels [gl, GetEdgeWeights[gl] ], ImagePadding - { {40, 0}, {0, 0}}],
ShowGraph [ SetEdgeLabels [g2, GetEdgeWeights [g2] ],
ImagePadding - {{40, 0}, {0, 0}}]},
BaseStyle » {FontSize » 10}, ImageSize - Medium]
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out[362]= 6

See Also

The definitive reference to Combinatorica is Computational Discrete Mathematics:
Combinatorics and Graph Theory with Mathematica by Sriram Pemmaraju and
Steven Skiena (Cambridge University Press). This reference is essential if you intend
to use Combinatorica in a serious way, because the documentation that comes bun-
dled with Mathematica is very sparse.

Mathematica has an alternate graph package called GraphUtilities™ that represents
graphs using lists of rules (e.g., {a-»b, a—c, b—c}). There is a conversion func-
tion to Combinatorica™ graphs. Search for GraphUtilities in the Mathematica
documentation.

3.15 Using Graph Algorithms to Extract
Information from Graphs

Problem

You want to test a graph for specific properties or find paths through a graph with
specific properties or which satisfy specific constraints.

Solution

There are many graph theoretic functions in the Combinatorica™ package related to
shortest paths, network flows, connectivity, planarity testing, topological sorting,
and so on. The solutions and following discussion show a sampling of some of the
more popular graph algorithms.
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Out[363]a shows a graph generated from a complete graph with select edges re-
moved. The graph in Out[363]b is the minimum spanning tree of Out[363]a,
and Out[363]c is the shortest path spanning tree.

In[363]:=
Module[{g, edges},
(#Start with a complete graph.x)
g = CompleteGraph[20];
(*Generate some edges to remove.x)
{dummy, {edges}} = Reap|
Do[If[Mod[j, i] <7, Sow[{d, j}], Null], {i, 1, 20}, {3, i+1,15}]];
(g =DeleteEdge[g, #]) & /e edges;
(*Weight the edges randomly. x)
SeedRandom[1]; (xMake random edge weights repeatable.x)
SetEdgeleights [g] ;
(*Demonstrate MinimumSpanningTree and ShortestPathSpanningTree.x)
GraphicsRow [ {ShowGraph[g, PlotLabel - "a"],
ShowGraph [MinimumSpanningTree [g], VertexNumber - True, PlotLabel - "b"],
ShowGraph [ ShortestPathSpanningTree[g, 1],
VertexNumber - True, PlotLabel - "c"]}, ImageSize - 450]
]
Out[363]=
Discussion

Properties of graphs can be tested using a variety of functions, such as HamiltonianQ
(which has a cycle that visits each vertex once), EulerianQ (which has a tour that
traverses each edge once), AntisymmetricQ, ReflexiveQ, UndirectedQ, SelfLoopsQ, and
so on. There are over 40 such predicates in Combinatorica.
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In[364]:= gl =Hypercube[3]; g2 = CompleteGraph[4, 2];
GraphicsRow [ {ShowGraph[g1,
PlotLabel - "HamiltonianQ == " <> ToString[HamiltonianQ[gl]]],
ShowGraph[gZ, PlotLabel » "HamiltonianQ == " <>
ToString [HamiltonianQ[g2]]]}]

HamiltonianQ == True HamiltonianQ == False

0ut[365]= %

In[366]:= GraphicsRow|

{showGraph[g1, PlotLabel - "EulerianQ == " <> ToString[EulerianQ[gl]]],
ShowGraph [g2, PlotLabel - "EulerianQ == " <> ToString[EulerianQ[g2]]]}]
EulerianQ == False EulerianQ == True

0ut[366]= %

A directed graph with no cycles is called a directed acyclic graph (DAG). The transi-
tive closer of a DAG is the supergraph that adds directed edges from ancestors to
descendants.

In[367]:= g = CompleteBinaryTree[7];
e = Reverse[Edges|[g], {2}];
g = DeleteEdges[MakeDirected[g], e];

{AcyclicQ[g], TopologicalSort [TransitiveClosure[g]]}
Out[370]= {Truex {1, 2, 31 4,5,6, 7}}
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Out[371] shows the tree and its transitive closure. When you display highly con-
nected graphs (like the transitive closure) with vertex labels, it often helps to use
opacity or font control to make sure vertex labels are not obscured by the edges.
In[371]:= Module[{opts},
opts =
Sequence [VertexLabel - True, BaseStyle » {Fontleight - Bold, FontSize - 12},
LabelStyle -> {FontWeight - Medium},
VertexStyle - Disk[0.005], EdgeStyle -> Opacity[0.4] ] 5
GraphicsRow|
{showGraph[g, opts, PlotLabel - "Tree"], ShowGraph[TransitiveClosure[g],
opts, PlotLabel - "TransitiveClosure"]}, ImageSize - 450] |

Tree TransitiveClosure
A A

out[371]=

/3 .5 76 \7 n \s /6 N7

See Also

See Chapters 7 and 8 in Computational Discrete Mathematics: Combinatorics and
Graph Theory with Mathematica by Sriram Pemmaraju and Steven Skiena.
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CHAPTER 4
Patterns and Rule-Based Programming

You are an obsession

I cannot sleep

I am your possession
Unopened at your feet
There’s no balance

No equality

Be still I will not accept defeat

[ will have you

Yes, I will have you

T will find a way and I will have you
Like a butterfly

A wild butterly

L will collect you and capture you

Animotion, “Obsession”

4.0 Introduction

In Chapter 2, I argue that the functional style of programming is the preferred way
to solve problems in Mathematica. Although functions form much of the brawn,
pattern matching provides the brains. In fact, functions and patterns should be
thought of as partners rather than competitors. By mastering both functional pro-
gramming and pattern-based programming, you will be able to use Mathematica to
its fullest potential. In fact, once you get the hang of pattern-based solutions they
may become a bit of an obsession.

If you have done any programming that involves text manipulation, you have no
doubt been exposed to regular expressions, a concise syntax for describing
patterns in text and manipulating text. Mathematica’s pattern syntax general-
izes regular expressions to the domain of symbolic processing, which allows
you to manipulate arbitrary symbolic structures. Patterns and rules are at the
foundation of Mathematica’s symbolic processing capabilities. Symbolic integration,

145



differentiation, equation solving, and simplification are all driven by the pat-
tern primitives explained in this chapter.

In the context of Mathematica, a pattern is an expression that acts as a template
against which other expressions can be matched. Some of the most useful patterns
contain variables that are bound to values as a result of the matching process. How-
ever, many times just knowing that a pattern matched is sufficient. Patterns are cen-
tral to specifying constraints in function arguments (e.g., Integer). They also play
roles in parsing, replacing, and counting, as we show in the recipes here. I defer the
role of patterns in string manipulation to Chapter 5.

Rules build on patterns by specifying a mapping from a pattern to another expres-
sion that uses all or parts of the matched results. Rules pervade Mathematica, as you
will see in this chapter’s recipes and throughout this book. It’s safe to say that Mathe-
matica would be almost as crippled by the removal of rules as it would be by the re-
moval of the definition for Plus.

The rest of this introduction gives a brief overview of the most important primitives
associated with pattern matching. This will make the recipes a bit easier to follow if
you are new to these concepts. The recipes will explore the primitives more deeply,
and as usual, you should refer to the Mathematica documentation for subtle details
or clarification.

Blanks

The most basic pattern constructs are Blank[] (), BlankSequence[] (_ ), and
BlankNullSequence[] (__ ). Blank[] matches any expression (_), whereas Blank[h]
(_h) matches any expression with head h. BlankSequence (__) means one or more;
BlankNullSequence means zero or more. Thus,  h means zero or more expressions
with head h. Here MatchQ tests if a pattern matches an expression.

In[1]:= MatchQ[a, _]
Out[1]= True

In[2]:
out[2]

MatchQ[a[1], _a]
True

In[3]:= (*By itself a has head Symbol.x)

MatchQ[a, _a]
Out[3]= False

In[4]:= MatchQ[{1, 2}, _List]
Out[4]= True
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Blanks are more powerful when you can determine what they are matched against
so you can use the matched value for further processing. This is most often done us-
ing a prefix symbol (e.g., x_, x_, x__ ). This syntax should be familiar since it is
most commonly used for function arguments. However, as shown in this recipe,
there are other contexts where binding symbols to matches comes into play.

In[5]:= (*fl will match when called with a single integer argument.=x)
f1[n_Integer] := {n}
(#f2 will match when called with one or more integers.sx)
f2[n_Integer] := {n}
(#f3 will match when called with zero or more integers.sx)
3[n__Integer] := {n}
In[8]:= f1[10] (*Matchx)
out[8]= {10}
In[9]:= f1[10, 20] (*No match«)
out[9]= f1[10, 20]
In[10]:= f2[10, 20] (*Matchx)
out[10]= {10, 20}
In[11]:= f2[] (*No matchx)
out[11]= f2[]
In[12]:= f3[] (*Matchx)
out[12]= {}
In[13]:= f3[1,2, "3"] (xNo matchx)
out[13]= f3[1, 2, 3]
Alternatives

Sometimes you need to construct patterns that match two or more forms. This can
be done using Alternatives[pl,p2,...,pn] or, more commonly, using vertical bar

pl|p2]...|pn.

In[14]:=
out[14]=

Cases[{a, r,t,i,c,h,0,k,e}, a|e|i|o|u]
{a, i,0,¢€}

This form can also appear in functions.

In[15]:=

Clear[f]
f[x_Complex | x_Real | x_Integer] := x

4.0 Introduction | 147



In[17]:= f /@ {1,3.14,10+31, 1/2, "foo"}

out[17]= {1,3.14,10 +3 j,-F[;], f[foo]}

Repeats

You use Repeated[p] or p.. to match one or more instances of some pattern p; you
use RepeatedNull[p] or p... to match zero or more instances of p.
In[18]:= Cases[{{O0, O, 0}, {O, O, 1}, {O, 1, O}, {0, 1,1},
{1, 0,03, {1, 0,1}, {1, 1, 0}, {1,1,1}}, {1..,0..}]
0Ut[18]= {{1: 0: 0}) {1: 1: 0}}

In[19]3— CaSES[((O, 0, 0}, (0) 0, 1}, (0) 1, 0}, (0) 1, 1},
{1, 0,03, {1,0, 1}, {1,1, 0}, {1,1,1}}, {1...,0...}]
Out[l9]— {{O: 0) 0}) {1: 0) 0}) {1: 1) 0}) {1: 1) 1}}

PatternSequence

Repeated (p..) matches a very specific sequence, whereas BlankSequence (x__) is
very general. Sometimes you need to match a sequence of intermediate specificity.
PatternSequence was introduced in Mathematica 6 to help achieve this. The follow-
ing means f is a function that takes exactly two expressions.

In[20]:= Clear[f];

f[x : PatternSequence[_, 1] := Power[x]
In[22]:= f[1] (*No match, too fewx)
out[22]= f[1]

In[23]:= f[2, 3] (*Matchx)
out[23]= 8

In[24]:= f[2, 3, 4] (*No match, too manyx)
out[24]= fI2,3, 4]

Above, PatternSequence is not strictly necessary because f[x_,y ] := Power[x,y] is the
more conventional notation, but consider these more interesting use cases.

f[0 | PatternSequence[]] := O (*Matches either f[0] or f[]*)

f[p : PatternSequence[_, ], ] := {p} (*Names the first two elements of a
sequence and discards the rest*)

f[p : Longests@PatternSequence[a,b]..,rest__] (*The longest repeated
sequence of a,b*)
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Except

Often, it is easier to describe what you don’t want to match than what you do. In
these cases, you can use Except[p] to indicate matching for everything except what
matches p.

In[25]:= Cases[{a, 1, t, i, c, h,0,k, e}, Exceptfa|e|i]|o|u]]

Out[25]= {1, t: G, h) k}

Conditions and Pattern Tests

Conditions allow you to qualify a pattern with an additional test that the matching
element must pass for the match to succeed. This is a powerful construct because it
extends the degree of control over the matching process to any criteria Mathematica
can compute.
In[26]:= Cases[{{0, 0, 0}, {0, 0, 1}, {0, 1, 0}, {0, 1, 1},
{1, 0, 0}, {1, 0, 1}, {1, 1,0}, {1,1,1}}, b__/; Total[b] > 1]
out[26]= {{0, 1,1}, {1,0,1}, {1,1,0}, {1,1,1}}

Pattern tests also qualify the match, but they apply to the entire pattern and, there-
fore, don’t require pattern variables. The following lists all primes less than 259 + 2
of the form 2"+ 1.
In[27]:= Cases[Union[Flatten[Table[{2"n -1,2"n+1}, {n, 0,50}1]1, _?PrimeQ]
out[27]= {2, 3,5,7,17, 31, 127, 257, 8191, 65537, 131071, 524287, 2147483 647}

In[28]:= Cases[Union[Flatten[Table[{2"n -1,2"n+1}, {n, 0,50}]1]1,
2 (1 < 1278)]
out[28]= {(0,1,2,3,5,7,9,15,17, 31, 33, 63, 65}

A common mistake is to write the last example in one of two ways that

"—@ will not work:

In[29]:= Cases[Union[Flatten[ Tabl e[{2"n - 1, 2*n + 1},
{n, 0, 50}]]1], _?2(#1 < 127)&] (*wrong!*)

out[29]= {}

In[30]:= Cases[Union[Flatten[ Tabl e[{2"n - 1, 2*n + 1},
{n, 0, 50}]]1], _?#1 < 127& (*wrong!*)

out[30]= {}

I still make this mistake from time to time, and it’s frustrating; pay
attention to those parentheses!
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Rules

Rules take pattern matching to a new level of expressiveness, allowing you to per-
form transformations on matched expressions. Rules are an integral part of Mathe-
matica internal operations and are used in expressing solutions to equations (see
Recipe 11.6), Options (see Recipe 2.17), and SparseArrays (see Recipe 3.8). Rules are
also the foundation of Mathematica’s symbolic abilities. With all these applications,
no serious user of Mathematica can afford to ignore them.

In[32]:= (xHere we use a rule to replace all (/.)
occurrences of x with the numerical value of Pi.x)
X - X*2 +x*3 -x "4 + x*5 /. x> N[Pi]

Out[32]= 232.889

In[33]:= (=Convert matching binary digit list to integers. You need
to use RuleDelayed since b is not defined until the match.x)
Cases[((o, o, o}, {0, o, 13, {0, 1, 03}, {0, 1, 1}, {1, O, O},
{1, 0, 1}, {1, 1, 0}, {1, 1, 1}}, b: {1 .., O ..} > FromDigits[b, 2]]
Out[33]= {4, 6}

A good way to gain insight into the difference between - and = is to consider replace-
ments of a randomly generated number.
In[34]:= («With Rule, RandomInteger[] is evaluated
immediately so is constant while the rule is applied.=x)
{X, X, X, X} /. X - RandomInteger[{0, 100} ]
out[34]= {2,2,2,2}

In[35]:= («With RuleDelayed, it is newly evaluated on each match.x)
{X, X, X, X} /. Xx:> RandomInteger[{0, 100} ]
Out[35]= {36, 37, 62, 23}

See Also

The tutorial of pattern primitives is a useful resource: tutorial/PatternsAndTransfor-
mationRules. Committing most of these to memory will strengthen your Mathemat-
ica skills considerably.
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4.1 Collecting Items That Match
(or Don’t Match) a Pattern

Problem

You have a list or other expression and want to find values that match a pattern.
You may also want to transform the matching values as they are found.

Solution
Use Cases with a pattern to produce a list of expressions that match the pattern.

In[36]:= list = {1, 1.2, "test", 3, {2}, x + 1};
Cases[list, Integer]
out[37]= {1, 3}

Use a rule to transform matches to other forms. Here the matched integers are
squared to produce the result. This added capability of Cases is extremely powerful.
In[38]:= Cases[list, x_Integer :> x2]
out[38]= {1, 9}

Wrapping the pattern in Except gives the nonmatching values.

In[39]:= Cases[{1, 1.2, "test", 3, {2}, x + 1}, Except[_Integer] ]
Out[39]= (1.2, test, {2}, 1+x}

Note the use of colon syntax when capturing the value matched using Except with a
rule-based transformation. Here I use a rule that demonstrates that the type of ob-
ject produced does not need to be the same as the type that matched (i.e., all results
here are symbols).
In[40]:= Cases[{1, 1.2, "test", 3, {2}, x + 1}, x : Except[_Integer]| :» Head[x] ]
out[40]= {Real, String, List, Plus}

Discussion

Cases will work with any expression, not just lists. However, you need to keep in
mind that Mathematica will rearrange the expression before the pattern is applied.
In[41]:= Cases[x +y-2"24+2"3+x"5, _"_]
out[41]= {¥, 2}
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You may have expected z*2 or -z*2 to be selected; examining the FullForm of the ex-
pression will reveal why it was not. FullForm is your friend when it comes to debug-
ging pattern matching because that is the form that Mathematica sees.
In[42]:= x+y-2z"2+2z"3+x"5// FullForm
Out[42]//FullForm=
Plus[x, Power X, 5], y, Times -1, Power [z, 2] ], Power[z, 3]]

Providing a level specification will allow you to reach down deeper. Level specifica-
tions are discussed in Recipe 3.9.

In[43]:= Cases[x+y-z"2+2"3+x"5, * ,2]

out[43]= {X°, 2%, 7’}

You can also limit the number of matches using an optional fourth argument.
In[44]:= Cases[x +y-2"2+2z"3+x"5, _* ,2, 1]
out[44]= {x°}

Take into account the attributes Flat and Orderless when pattern matching. Flat
means nested expressions like Plus[a,Plus[b,c]] will be flattened; Orderless means
the operation is communicative, and Mathematica will account for this when pat-
tern matching.

In[45]:= Attributes[Plus]
Out[45]= {Flat, Listable, NumericFunction, OneIdentity, Orderless, Protected}

Here we select every expression that contains b +, no matter its level or order in the
Input expression.

In[46]:= Cases[{a+b,a+c,b+a,a"2+b,Plus[a, Plus[b, c]]}, b+ _]
out[46]= {a+b,a+b, a2+b,a+b+c}

Hold will suppress transformations due to Flat and Orderless, but the pattern itself
is still reordered from b + ato a + b. In Recipe 4.8 we show how to prevent this us-
ing HoldPattern.

In[47]:= Cases[Hold[a+b,a+c,b+a,a”2+b, Plus[a, Plus[b, c]]], b+a]
Out[47]= {a+b}

An alternative to Cases is the combination of Position and Extract. Here Position lo-
cates the items, and Extract returns them. This variation would be more helpful
than Cases, for example, if you needed to know the positions as well as the items,
since Cases does not provide positional information. By default, Position will search
every level, but you can restrict it with a levelspec as I do here.
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In[48]:= list= {1, 1.2, "test", 3, {2}, x+1};
positions = Position[list, Integer, {1}];
Extract[list, positions]

{1, 3}

0ut[50]
One useful application of this idiom is matching on one list and extracting from a
parallel list.

In[51]:= names = {"Jane", "Jim", "Jeff", "Jessie", "Jezebel"};
ages = {30, 20, 42, 16, 69} ;
Extract [names, Position[ages, x_/; x> 30] ]

out[53]= {Jeff, Jezebel}

See Also

Recipe 3.9 also discusses Position and Extract in greater detail.

4.2 Excluding Items That Match
(or Don’t Match) a Pattern

Problem

You have a list or other expression and want to exclude elements that do not match
a pattern.

Solution

DeleteCases has features similar to Cases but excludes elements that match.

In[54]:= DeleteCases[{1, 1.2, "test", 3, {2}, x + 1}, _Integer]
OUt[54]— {12) test, {2}) 1+ X}

Wrapping the pattern in Except makes DeleteCases work like Cases for the non-
inverted pattern.

In[55]:= DeleteCases[{1, 1.2, "test", 3, {2}, x + 1}, Except[_Integer] |

Out[55]= {1, 3}

Cases and DeleteCases can be made to return the same result by using Except, but Cases
should be used when you want to transform the items that remain (see Recipe 4.1).

In[56]:= DeleteCases[{1, 1.2, "test", 3, {2}, x + 1}, Except[_Integer]] ==

Cases[ {1, 1.2, "test", 3, {2}, x + 1}, _Integer]
Out[56]= True
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Discussion

Most of the variations supported by Cases discussed in Recipe 4.1 apply to Delete-
Cases as well. In fact, given the existence of Except, one could argue that DeleteCases
is redundant. However, given the context of the problem, usually either Cases or
DeleteCases will be easier to understand compared to using pattern inversions. Also,
Except has some limitations since pattern variables like x_ can’t appear inside of an
Except.

Use levelspecs to constrain deletions to particular portions of an expression tree.
Here is an expression that is nine levels deep.

In[57]:= expr = JSqrt[x+Sqrt[x]] dx

1 1

ut[57]= —/ \/x +x L3+2 x+8x)+—mg“+2J;ﬂQ x ex]
12 8

In[58]:= Depth[expr]

out[58]- 9

You can delete roots at level four.

In[59]:= DeleteCases[expr, Sqrt[_], {4}]
1+2 \/: +2 \/: + X }

You can also delete roots at levels up to four.

1 1
Out[59]= —\/; (-1+8x) + — Log
12 8

In[60]:= DeleteCases[expr, Sqrt[_], 4]
1

——(—1+8x)+EL%{1+2J;7+2 Jx ox |
8

12

0ut[60]

Or, you delete roots at every level.

In[61]:= DeleteCases[expr, Sqrt[_], Infinity]
1 Log([5]

Out[61]= — (-1+8x) +
12

8

Just as Extract plus Position is the equivalent of Cases (discussed in Recipe 4.1),
Delete plus Position is the equivalent for DeleteCases. Again, remember that Position
looks at all levels unless you restrict it.
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In[62]:= list = {1, 1.2, "test", 3, {2}, x + 1};
Column|[{
Delete[list, Position[list, Integer]],
Delete[list, Position[list, Integer, {1}]]
{1.2, test, {1}, x}

Outl63]= 1 5 test, (21, 1+x)

This leads to a way to get the results of Cases and DeleteCases without executing the
pattern match twice.
In[64]:= list = {1, 1.2, "test", 3, {2}, x + 1};
positions = Position[list, Integer, {1}];
Column([ {
Extract[list, positions],
Delete[list, positions]

}
{1, 3}

Out66l= 1 5 test, (2}, 1+x)

4.3 Counting Items That Match a Pattern

Problem

You need to know the number of expressions that match a pattern by matching the
expressions themselves or their position.

Solution

Use Count to count matching elements in an expression or at particular levels in an
expression. Counting literal matches is perhaps the simplest application of Count.
In[67]:= Count[{a, 1, a, 2, a, 3}, al]
out[67]= 3

By default, Count works only on level one (levelspec {1}), but you can provide alter-
nate levelspecs as a third argument.

In[68]:= expr =1+3I+4+Ix+x"2+y"x;
{ Count [expr, x],
Count [expr, x, Infinity]}
out[69]= {0, 4}
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Count can be derived from Position or Cases, so these are handy if you need the
matching items (or positions) in addition to the count.

In[70]:= Length[Cases[{a, 1, a, 2, a, 3}, a]]
out[70]= 3

In[71]:= Length[Position[{a, 1, a, 2, a, 3}, a, {1}]]
out[71]= 3

Discussion

Other counting functions include LeafCount and Tally. It is difficult to emulate Leaf-
Count using Count because LeafCount treats complex numbers in their FullForm (e.g.,
Complex[1,1] has LeafCount == 3) but using FullForm on an expression does not pro-
vide the right answer.

In[72]:= {LeafCount[expr], Count[FullForm[expr], _?AtomQ, Infinity, Heads - True]}
out[72]= {17, 14}

You need to eliminate the complex numbers using ReplaceAll before performing the
count, so LeafCount is rather unique.

In[73]:= {LeafCount[expr], Count|
expr /. Complex[r_,i_]:» complex[r, i], _?AtomQ, Infinity, Heads - True]}
out[73]= (17,17}

Tally counts equivalent elements in a list using SameQ or a user-supplied equality
test. It works only on lists, so you’ll need to convert expressions with other heads to
List before using Tally. The output is a list of pairs showing the element and its
count.

In[74]:= Tall)'[{a: X, @, X, 3,3, b, Y}]
0Ut[74]= {{ax 4}) {x, 2}1 {b) 1}) {y: 1}}

In[75]:= Tally[FlatteneApply[List, expr, {0, Infinity}]]
out[75]= {{5+31, 1}, {i, 1}, {x, 4}, {2, 1}, {y, 1}}

Here is an example using a different equivalence relation (congruence module 7).

In[76]:= Tally[Prime[Range[lOO]], Mod[#1, 7] == Mod[#2, 7] &]
out[76]= {{2, 18}, {3, 18}, {5, 18}, {7, 1}, {11, 14}, {13, 16}, {29, 15}}

See Also

Level specifications are covered in detail in Recipe 3.9.
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4.4 Replacing Parts of an Expression

Problem

You want to transform the parts of an expression designated by an index.

Solution
Use ReplacePart, which can use indices or index patterns to limit the scope of a

replacement.

In[77]:= (=Replace elements at position three and position seven.x)
ReplacePart[{a, b, c, d, e, f, g, h, i}, {3 » 3, 7 > 11}]
0Ut[77]= {ax b) 3) d: €, 'F) 11) h) l}

In[78]:= Range[0, 20, 2]
out[78]= {0, 2, 4,6, 8, 10, 12, 14, 16, 18, 20}

Place an x at prime-numbered positions. Note that the position is being tested for
primality, not for value.

In[79]:= ReplacePart[{a, b, c,d, e, f, g, h, i}, {i_?PrimeQ :> x}]
0Ut[79]= {ax Xy X, d: X, 'F) X, h) 1}

If you want access to the value as well, you can use the position to index into the list.

In[80]:= With[{list={a,b,c,d, e, f, g, h,i}},
ReplacePart[list, {i_?PrimeQ :> Framed[hst[[l]]])]]

o o[} i

Discussion
On first encounter, you might think ReplacePart and part assignment are redundant.
In[81]:= listl = {1,2,3,4, 5, 6};
list1[[{1,3}1] = 99;

listl
0Ut[83]= {99) 2,99,4,5, 6}

This seems similar to what is achieved using ReplacePart.

In[84]:= listl = {1,2,3,4, 5, 6};
list2 =ReplacePart[listl, {1-99,3-99}]
Out[85]: {99) 2) 99) 4,5, 6}
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However, there are a multitude of differences. First, ReplacePart does not modify
the list but creates a new list with modified values.

In[86]:= {listl, list2}
OUt[86]= {{1, 2) 3) 4,5, 6}) {99) 2) 99) 4,5, 6}}

A related difference is that assignment is meaningful only to symbols, not expres-
sions. In contrast, ReplacePart can use either as input.

In[87]:= {1,2,3}[[2]] = 99

Set::setps: {1, 2, 3} in the part assignment is not a symbol. >

out[87]= 99

Another important difference is that it is harmless to specify an index that does not
match. ReplacePart simply returns a new list with the same content. Contrast this to
part assignment, where you get an error.

In[88]:= ReplacePart[{1, 2,3}, 10> 99]

out[88]= {1, 2,3}

In[89]:= listl[[10]] = 99

Set::partw: Part 10 of {1, 2, 3, 4, 5, 6} does not exist. >

out[89]= 99

Part assignment gains flexibility by supporting ranges and lists of position, whereas
ReplacePart uses index patterns.

In[90]:= listl = Range[10] ;
In[91]:= ReplacePart[Range[10], i_? (# > 3 && # < 7 &) »99]
out[91]= {1, 2,3,99,99,99,7,8,9, 10}

In[92]:= listl[[4;;6]]1 = 99;
listl
out[93]= {(1,2,3,99,99,99,7,8,9,10}
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ReplacePart works on arbitrarily nested expressions, including matrices. Also note
that the index patterns can be referenced on the right side of rules.

In[94]:= ReplacePart[IdentityMatrix[S] , {1, i} > i] // MatrixForm

Out[94]//MatrixForm=
10000
02000
00300
00040
00005

The following use case performs a transpose.

In[95]:= matrix = Table[x, {10}, {x, 1, 10}];
ReplacePart [matrix, {i_, j_} :> matrix|[[j, i]] ] // MatrixForm

0ut[96]//MatrixForm=
11 1 1 1 1 1 1 11
2 2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4 4 4
55 55 5 5 5 5 5 5
6 6 6 6 6 6 6 6 6 6
7 7 7 17 717 7 71 71 71 7
g8 8 8 8 8 8 8 8 8 8
99 9 9 9 9 9 9 9 9
10 10 10 10 10 10 10 10 10 10

In[97]:= ReplacePart[Expand[ (x +3) “31, {3,2} :> z]
0ut[97]= 27+27x+x +92

See Also

Chapter 3 covers list manipulation in detail, including the use of Part.

4.5 Finding the Longest (or Shortest)
Match for a Pattern

Problem

A replacement rule is not working the way you think it should. In particular, it
seems to work on only part of the expression. Often this is an indication that you
need greedy matching provided by Longest.

4.5 Finding the Longest (or Shortest) Match for a Pattern | 159



Solution

By default, sequence patterns like a__and a___ act as if they are surrounded by
Shortest. This means they match as little as possible to still be consistent with the
entire pattern. The following repeated replacement seems like it should shuffle items
in the list until all equal values are adjacent. It almost works, but a 3 and a 1 stub-
bornly remain in place. This happens because on the final passa___ matches noth-
ing (which is shortest), b_matches 1, c_ matches 1, b_ matches the third 1, and
d___ matches the remainder. This results in a null transformation, so Replace-
Repeated stops.
In[98]:= {1, 3, 1, 4, 1, 3, 4, 2, 7, 1, 8} //.

{{fa_,b,c_,b,d_}->{b,b,ac,d}}
0Ut[98]= {1) 1: 1) 3) 4: 3) 4) 2: 7) 1) 8}

Contrast this to the same transformation using Longest. Here we force a___ to
greedily gobble up as many elements as it can and still keep the rest of the pattern
matching.
In[99]:= {1, 3, 1,4, 1,3,4,2,7,1, 8} //.
{{rongest[a__1, b_, c_, b_,d_} -> {b, b, a, c, d}}
out[99]= (1,1,1,1,3,3,4,4,2,7,8}

Forcing a__ to match as much as it can and yet still satisfy the rest of the pattern re-
sults in all sequences of identical elements separated by one or more other elements
(b, c_, b)tobefound.

Discussion

Readers familiar with regular expression will recognize the solution example as illus-
trating the difference between greedy and nongreedy matching. This difference is the
source of infinite frustration to pattern writers because, depending on your test case,
nongreedy patterns can appear to work most of the time. Always consider what will
happen if patterns like a__ match only one item and a___ matches nothing. Often
this is what you want, but almost as often it is not!

A reasonable question to ask is why there is a Shortest if it is the default. For string
patterns (see Chapter 5), the default is reversed. You may also use Shortest to docu-
ment that it is your intent, but you should probably limit this to portions of the pat-
tern that are up front.

Also keep in mind that if multiple Shortest or Longest directives are used, the ones
that appear earlier are given higher priority to match the shortest or longest number
of elements, respectively.
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In[100]:= {1, 2, 3,4,5} /. {Shortest[a__], Shortest[b__]1} - {{a}, {b}}
Out[100]= {{1}) {21 3) 4) 5}}

In[101]:= {1,2,3,4,5} /. {Longest[a_], Longest[b_1} - {{a}, {b}}
Out[101]= {{1, 2) 3) 4}, {5}}

See Also

Mastering Regular Expressions by Jeffrey E. F. Friedl (O’Reilly) has an extensive dis-
cussion of greedy versus lazy matching that is relevant to understanding Longest and
Shortest. This book is a good investment if you also make use of Mathematica’s
regular expression syntax for string manipulation.

4.6 Implementing Algorithms in Terms of Rules

Problem

You need to implement an algorithm that can be viewed as a transformation from a
start state to a goal state.

Solution

Many problems are elegantly stated in a few simple transformation rules. Here 1
show some simple examples; the discussion will try a few more ambitious tasks.

Imagine you have a graph of vertex-to-vertex connection rules. This is the notation
used by GraphPlot and the functions in the GraphUtilities™ package.

In[102]:=
In[103]:= Clear[a, b, c,d, e, f, g, h, X, ¥, 2];
graph = {a> b, b>e, b>f,fo>g, anc, and,e>g};
graph2 = {a»b, b>c, c»d, d»e,boh, hsc,c>g,g->d, d- 1,
foe,hoi, i->g,i-)f,a-»x,x-»y,x-»z,y-»z,z-»a};
In[106]:= GraphPlot [graph, VertexLabeling - True, DirectedEdges - True]

C

AN

0ut[106]= a ————

L
% T~

\/

d
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The idea in this solution is to find a path from the from node to some intermediate
node x, and from x to some node y, and then add the path from—y if it does not al-
ready exist. Continue this until the graph no longer changes (hence FixedPoint).
Then check if from—to is present using MemberQ.

In[107]:= hasPath [graph_, from_, -From_] := True
hasPath[graph_, from_, to_] :=
Module [ {graph2 = graph, pat1},
patl= {a_ , from » x, b__, x_>y,c_} /;
| MemberQ[graph2, from-y] :» {from-y, x> y, from »x, a, b, c};
MemberQ[FixedPoint [ (graph2 = ReplaceAll[# , patl]) &, graph2], from - to] ]

You can test hasPath on the graph in Out[106] on page 161.
In[109]:= hasPath[graph, a, g]
out[109]= True

In[110]:= hasPath[graph, b, d]
Out[110]= False
Here is an exhaustive test of the vertex c in the graph in Out[113].

In[111]:= {hasPath[graphZ, C, 11],11}& /@ (graphz /. Rule[v_, _] = v)

Out[111]= {{False, a}, {False, b}, {True, c}, {True, d}, {False, b}, {False, h},
{True, c}, {True, g}, {True, d}, {True, f}, {False, h}, {False, i},
{False, 1}, {False, a}, {False, x}, {False, x}, {False, y}, {False, z}}

Here is a related function to compute the transitive closure of a graph.

In[112]:= transitiveClosure[graph_] :=

Module [ {graph2 = graph, pat1},
patl= {a__, w_->x,b_,x »>y,c_}/;
! MemberQ[graph2, w-y] 8& w =1=y > {a,w > X, b, x> y, ¢, woy};
FixedPoint [ (graph2 = ReplaceAll[# , patl]) &, graph2] ]

In[113]:= GraphPlot [graphz, VertexLabeling - True, DirectedEdges - True]

out[113]= ! Y ¥ N

x
b—<—a/.\y
\2/
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Here you compute the transitive closure of Out[113].

In[114]:= transitiveClosure[graphz]

Out[114]= {a%b, bsc,c->d,d»e,bsh,h>c,c>g,g->d,d>1, f-e,
h-i,i-sg,i>f,a>x,x>y,x>2z,y>2z,z>a,a->c,a-h,
b-d,a-»d,b>g,a>g,c>e,bse,ase,c>f,b>f,a>",
b-i,a-»i,h->g,h-e,h>f,g>f,asy,a>z,x>a,y-a,z-¢,
X->¢y->¢ z->h,x>h,y->h,z->d,x>d,y->d,z->g,x->8,y-8g,

ze&xe&ye&zeﬂxeﬂyeﬂzeLxeLyeLzeﬂ

Out[115] is the plot of the transitive closure of the simpler graph from Out[106] on
page 161.

In[115]:= GraphPlot[transitiveClosure[graph],

VertexLabeling—aTrue,DirectedEdges-eTrue]

c f
Out[115]= a ——p»— g P<—— b

Discussion

The hasPath and transitiveClosure functions share a common property. They are im
plemented by repeated transformation of the input until some goal state is achieved.
The search terminates when there are no more available transformations, as deter-
mined by FixedPoint. TransitiveClosure uses the final state as the result, whereas
hasPath makes one more match using MemberQ to see if the goal was reached.

Although rule-driven algorithms tend to be small, they are not always the most effi-
cient. HasPath finds all paths from the start node before making a determination.

4.6 Implementing Algorithms in Terms of Rules | 163



The hasPath2 implementation here uses Catch-Throw to exit as soon as the solution
is found.

In[116]:= hasPath2[graph_, from_, to_] :=
Module [ {graph2 = graph, pat1, pat2},
patl = {__, from » to, __} > Throw[from - to];
pat2 = {a__, from > x_, b__, x_->y,c_}/;
! MemberQ[graph2, from-y] :» {from -y, from-x, x>y, a, b, c};
Catch[FixedPoint[ (graph2 = ReplaceAll[#, {patl, pat2}]) &, graph2]];
MemberQ [ graph2, from - to] |
In[117]:= monsterGraph = Table[i - i+1, {i, 500}];

In[118]:= Timing[hasPath[monsterGraph, 1, 250]]
Out[118]= {6.15429, True}

In[119]:= Timing[hasPath2 [monsterGraph, 1, 250]]
0ut[119]= {0.519091, True}

The main components of this solution are:

1. Localization: Module[ {rules, start, next, final}, .. ]

2. Rules: Enumeration of the rules with tests against next (graph2 plays the role of
next in the examples). An optional Throw rule detects success for early termination.

3. Repetition: next = ReplaceAll[next, rules]

4. Stopping criteria: final = FixedPoint[ .., start]. Assignment to final allows
the result to undergo some post processing. In the examples, final was implicit.
If a Throw rule is used, FixedPoint should be wrapped in a Catch.

5. Postprocessing: Extract results from final. Here MemberQ is used to test if the
path was found.

If you have trouble following one of these solutions, Mathematica will show its work
if you use FixedPointList. For example, here is the expansion of the steps in hasPath.

In[120]:= explainHasPath[graph_, from_, from_] := {from- from}
explainHasPath[graph_, from_, to_] :=
Module [ {graph2 = graph, pat1},
patl= {a_ , from » x, b__, x_>y,c_} /;
| MemberQ[graph2, from-y] :» {from-y, x> y, from »x, a, b, c};
FixedPointList [ (graph2 = ReplaceAll[# , patl]) &, graph2] ]
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In[122]:= explainHasPath [graph, a, g] // TableForm
Out[122]//TableForm=

a-b
a—e
asg
a-f
a-f

b-e
b-e
e->g
b-f
b-f

b f
a-b
a—e
a-b
a-b

fog
b-f
b-e
a->g
a->g

a—-cC
fog
a-b
e->g
e->g

a-d
a—cC
b-f
a—e
a—e

e->g
a-d
fog
b-se
b-e

e-g
a—->cC
fog
fog

a-d
a—->C
a—cC

a-d
a-d

This shows each step in the transition from the original graph to the one with all in-
termediate steps filled in. Try to work out how the rule took each line to the next
line. Only by working through examples like this will you begin to master the

concepts.

See Also

FixedPoint usually finds application in numerical methods that use iteration, such as
Newton’s method (see Recipe 2.12), but any algorithm that computes until an equi-
librium state is reached can use FixedPoint.

4.7 Debugging Infinite Loops When Using

ReplaceRepeated

Problem

Mathematica went into an infinite loop when you used //. (ReplaceRepeated), and
the reason is not immediately obvious.

Solution

ReplaceRepeated is often very handy but also dangerous because it only terminates
when the result stops changing. The simplest thing to do is to test ReplaceRepeated
with the option MaxIterations set to a reasonably small value (the default is 65,536).

In[123]:= ReplaceRepeated[{1, 2}, {a_, b_} » {{a}, {b}}, MaxIterations - 10]

ReplaceRepeated: :rrlim:

Exiting after {1, 2} scanned 10 times. >

Out[123]= {{COCCOOOOLT I ), (OO ULLL2 b
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It should be clear that this will never terminate. Any transformation that adds struc-
ture is doomed. However, sometimes the end result obtained when clamping
iterations does not immediately reveal the problem. In such cases, it helps to see
the whole sequence of transformations. You can do that using NestlList and
ReplaceAll to emulate a ReplaceRepeated with a small number of iterations that re-
turn the result after each iteration.

In[124]:= NestlList[ReplaceAll[#, {a_, b_} » {b, a}] &, {1, 2}, 10]
Out[124]— {{1) 2}: {2) 1}) {11 2}) {2) 1}: {1) 2})
{2, 1}, {1, 23, {2, 1}, {1, 2}, {2, 1}, {1, 2}}

Here the problem is an oscillating transformation that will never settle down. You
could probably see that by inspection, but seeing each step makes it obvious.

Discussion

Sometimes applying the debugging techniques in the solution can still leave you
stumped. Here is an example that one would expect to terminate based on the fact
that NumberQ[ Infinity] is false.

In[125]:= ReplaceRepeated[{1,a, 2, b, 3, c},
{_?NumberQ - F[Infinity]}, MaxIterations -> 10]

ReplaceRepeated: :rrlim:
Exiting after {1, a, 2, b, 3, c} scanned 10 times. >

out[125]= {F [DirectedInfinity[F[DirectedInfinity|
F[DirectedInfinity|F[DirectedInfinity [F[DirectedInfinity|
F[DirectedInfinity [F [DirectedInfinity[F[DirectedInfinity|
Fpsrectedtntinity#(=1111111)1)11111)1]-
a, F[DirectedInfinity [F[DirectedInfinity [F [DirectedInfinity|
F[DirectedInfinity [F [DirectedInfinity |
F[DirectedInfinity [F [DirectedInfinity[F[DirectedInfinity|
Fpsrectedtnrinity#(=1111111)1)11111)1)-
b, F[DirectedInfinity [F [DirectedInfinity [F [DirectedInfinity|
F[DirectedInfinity [F [DirectedInfinity |
F[DirectedInfinity [F [DirectedInfinity[F[DirectedInfinity|

F[DirectedInfinity (Fleo] 1| [ J]]]J]]]]]]] ] e}
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In situations like this, you should try applying FullForm to the output to see what
Mathematica sees rather than what it shows you.
In[126]:= FullForm[%]
Out[126]//FullForm=
List [F [DirectedInfinity|
F[DirectedInfinity [F[DirectedInfinity [F[DirectedInfinity |
F[DirectedInfinity [F [DirectedInfinity[F[DirectedInfinity [F|
DirectedInfinity[F[DirectedInfinity|
Fsxectedtatinity (1)) 11111111111 111111,
a, F[DirectedInfinity [F[DirectedInfinity [F[DirectedInfinity |
F[DirectedInfinity [F [DirectedInfinity[F[DirectedInfinity|
F[DirectedInfinity[F[DirectedInfinity [F[DirectedInfinity |
Fosxectedtetinity (1)) 1111111 1111] 11111,
b, F[DirectedInfinity[F [DirectedInfinity[F[DirectedInfinity|
F[DirectedInfinity [F [DirectedInfinity[F[DirectedInfinity|
F[DirectedInfinity[F[DirectedInfinity [F[DirectedInfinity |

F[pirectedInfinity (1] [ ] ][] ]]1]]T1] 1], €]

Do you see the problem? It is near the end of the output. If you can’t see it, consider
this.
In[127]:= FullForm[Infinity]
Out[127]//FullForm=
DirectedInfinity[1]

The full form of Infinity contains the integer 1, which is being matched and replaced
with F[DirectedInfinity[1]] and so on, ad infinitum. In this simple case, Replace-
Repeated was not needed because ReplaceAll would do the trick. If Replace-
Repeated is necessary, break the process into two steps, first using a proxy for
the construct that has the hidden representation that is messing you up. Here I use
Inf instead of Infinity.

In[128]:= {1,a,2,b, 3, c} //. {_?NumberQ- F[Inf]} /. Inf -» Infinity
Out[128]= {F[ew], a, F[w], b, F[w], c}

See Also

You can find a realistic example of the Infinity problem at the Wolfram Math-
Group Archives: http://bit.ly/20RAuZ.

4.7 Debugging Infinite Loops When Using ReplaceRepeated | 167



4.8 Preventing Evaluation
Until Replace Is Complete

Problem

You are trying to transform an expression, but the structure you want to transform
is disappearing due to evaluation before you can transform it.

Solution

Use Hold and ReleaseHold with the replacement.

This does not work the way you probably intended.

In[129]:= 1 +1+1+1+1 /. {152, Plus -> Times}
Out[129]= 5

This preserves the structure until the transformation is complete, then allows it to
evaluate.

In[130]:= ReleaseHold[Hold[1 + 1 + 1 + 1 + 1] /. {12, Plus -> Times}]
out[130]= 32

A related problem is wanting the left side of a replacement rule to remain unevalu-
ated. In this case, you need to use HoldPattern.

This is equivalent to ReleaseHold[Hold[1 + 1 + 1+ 1+ 1] /. 4 :>2+2+2+ 2 ].

In[131]:= ReleaseHold[Hold[1 + 1 + 1 + 1 + 1]7/. 1+1+1+1 :>2 + 2+ 2 +2]
out[131]= 5

In[132]:= (+This works as intended by preserving the structure of the pattern.x)
ReleaseHold [
Hold[1 + 1 + 1 + 1 + 1] /. HoldPattern[1+1+1+1] :> 2 + 2 + 2 +2]
out[132]= 9

Discussion

Keep in mind that HoldPattern[expr] differs from Hold[expr]. From a pattern-matching
point of view, HoldPattern[expr] is equivalent to expr alone except it prevents
evaluation. Hold[expr] includes the Hold as part of the pattern.
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In[133]:= GO = "gone";

In[134]:= Hold[1 + 2 + 3] /. HoldPattern[l + 2 + 3] :> GO
Out[134]= Hold[GO]

In[135]:= Hold[1 + 2 + 3] /. Hold[1 + 2 + 3] :> GO

out[135]= gone

See Also

Chapter 2 discusses Hold in more detail.

4.9 Manipulating Patterns with Patterns

Problem

You need to transform a pattern expression using patterns.

Solution

Use Verbatim to allow a pattern to match another pattern. Here Verbatim tells
Mathematica to treat the expression literally.

In[136]:= x_ - 1/. Verbatim[x_] = y_
out[136]= y_-1
Here we want to split up a pattern variable into the name and the head it matches.

In[137]:= x_Integer /. Verbatim[Pattern] [name_, head_] :» {name, head}
out[137]= {x, _Integer}

Discussion

The key to understanding the solution is to consider the FullForm of pattern variables.

In[138]:= {FullForm[x_], FullForm[x_], FullForm[x__ ], FullForm[x_Integer]}
Out[138]= {Pattel’n [x, Blank[]], Pattern[x, BlankSequence[]],
Pattern[x, BlankNullSequence[] ], Pattern[x, Blank [Integer] |}

Without Verbatim, the first example in the first part of the solution would go wrong.

In[139]:= > 1/.x_ >y

x_
out[139]= y_
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The second part of the solution would fail because a pattern can’t have another pat-
tern as its name.

In[140]:= x_Integer /. Pattern[name_, head_] :» {name, head}

Pattern::patvar :
First element in pattern Pattern[name , head ] is

not a valid pattern name. >

Out[140]= x_Integer

Verbatim[expr] says “match expr exactly as it appears.” You will not use Verbatim of-
ten unless you find yourself writing Mathematica code to transform Mathematica
code, as you might if you were writing a special interpreter or code to rewrite Mathe-
matica code containing patterns in some other form.

See Also

The Mathematica Programmer II by Roman Maeder (Academic Press) uses Verbatim
during the development of an interpreter for a Prolog-like language.

4.10 Optimizing Rules

Problem

You have a large list of frequently used rules and want to speed up processing.

Solution
Use Dispatch to create a dispatch table and use that in place of the rules.

In[141]:= rules = {In-F-> Infinity, sin - Sin, cos - Cos, tan - Tan, pi - Pi}

Out[141]= {Inf -, sin- Sin, cos - Cos, tan - Tan, pi -}

In[142]:= dispatch = Dispatch[rules]

Out[142]= Dispatch[{Inf - o, sin- Sin, cos - Cos, tan - Tan, pi - 7}, -DispatchTables -]

In[143]:= cos[2pie] + sin[e"2] - sin[cos[3z]] /. dispatch
Out[143]= Cos[2 7 6] +Sin[ez] - Sin[Cos[32]]
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Discussion

If you do a lot of multiple-rule transformations, it is convenient to store all the rules
in a single variable. This common practice makes maintenance of your code simpler
since there is only a single definition to maintain for all rules. However, the penalty
for doing this is that the performance of a replace decreases as the number of rules
increases. This is because each rule must be scanned in turn, even if it ends up being
inapplicable to a given transformation. Rule dispatch tables optimize rule dispatch
so it is mostly independent of the number of rules.

To test this claim, I generate a list of 5,000 rules, called monsterRuleSet, and then
optimize it to create monsterDispatch. The timing on the monsterRuleSet is very
poor, whereas the dispatched version is lickety-split.

In[144]:= monsterRuleSet = Table[i - i+ 1, {i, 5000}];
monsterDispatch = Dispatch[monsterRuleSet];

In[146]:= Timing[{1} //. monsterRuleSet]
Out[146]= {3.29176, {5001} }
In[147]:= Timing[{1} //. monsterDispatch]

Out[147]= {0.005828, {5001} }
Peering into the implementation, you can see that the secret to Dispatch’s success is
a hash table.

In[148]:= monsterDispatch[[2]] // Short
Out[148]//Short=

{HashTable[1, 5000, 1, { {10, 2856}, {}, {3110, 3440}, {}, {1245}, <<4989>>,
(3060}, {10083, {912}, {879, 3696, 4165, 4971}, (545, 676, 4204} 11}

4.11 Using Patterns As a Query Language

Problem

You want to perform SQL-like queries on data stored in Mathematica.

Solution

Consider data of the sort one might encounter in a relational database but encoded
in Mathematica form. This example is taken from the classic introduction to
databases by C. J. Date.
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In[149]:= S = {
supplier[ "S1", "Smith", 20, "London"],
supplier["S2", "Jones" , 10 , "Paris"],
supplier["S3", "Blake" , 30 , "Paris"],
supplier[ "S4", "Clark", 20, "London"],
supplier[ "S5", "Adams" , 30 , "Athens"]

s

° - {

part["P1", "Nut", "Red", 12, "London"],
part[ "P2", "Bolt" , "Green", 17, "Paris"],
part["P3" , "Screw", "Blue", 17, "Rome"],
part["P4" , "Screw", "Red", 14, "London"],
part[ "P5", "Cam", "Blue", 12, "Paris"],
part[ "P6" , "Cog", "Red", 19, "London"]
b
mv = {

inventory[ "s1", "P1", 3007,

inventory[ "S1", "P2" , 2007,

inventory[ "S1", "P3", 400],

inventory[ "sS1" , "P4" , 200],

inventory[ "s1", "P5", 100],

inventory[ "S1", "P6" , 1007,

inventory[ "S2" , "P1", 3007,

inventory[ "S2" , "P2" , 400],

inventory[ "S3", "P2" , 200],

inventory[ "S4" , "P2", 2007,

inventory[ "s4" , "P4" , 300],

inventory[ "S4" , "P5" , 400]

}s
Simple queries can be done using Cases alone.
In[152]:= (*Find suppliers in Paris.x)
Cases[S, supplier[_, , , "Paris"] ]
Out[152]= {supplier[S2, Jones, 10, Paris], supplier[S3, Blake, 30, Paris]}
In[153]:= (*Find suppliers in Paris with status greater than 10.x)

Cases[S, supplier[_, , status_/; status > 10, "Paris"] ]
Out[153]= {supplier[S3, Blake, 30, Paris]}
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Queries involving joins can be implemented with the help of Outer.

In[154]:= (Find suppliers and parts located in the same city.x)
Flatten [Outer |
Cases|{{#1, #2}}, {supplier[sid_, _, city_|, part[pid_, ,city ]} =
colocated[sid, pid, city]] &, S, P]]

Out[154]= {colocated[S1, P1, London], colocated[S1, P4, London],

colocated[S1, P6, London], colocated[S2, P2, Paris],

colocated[S2, P5, Paris], colocated[S3, P2, Paris],
colocated[S3, P5, Paris], colocated[S4, P1, London],
colocated[S4, P4, London], colocated[S4, P6, London] }

In[155]:= (*Find suppliers who have the same status.«)
Flatten[Outer[Cases[ { {#1, #2}},
{supplier[sidl_, ,s_, _], supplier[sid2_, ,s_, 1} /;
Order[sidl, sid2] ==1 :» same[sidl, sid2,s]] &, S, S]]
Out[155]= {same[S1, S4, 20], same[S3, S5, 307}

Discussion

If the data you need to query resides in a database, it makes more sense to let that
database do the query work before the data is imported into Mathematica. If this is
not the case, Mathematica can easily do the job, even for rather sophisticated
queries. Here are some simple examples with SQL equivalents.

Find all pairs of cities where a supplier in the first city has inventory on a part in the
second city.
SELECT DISTINCT S.CITY, P.CITY
FROM S, INV, P
WHERE S.SID = INV.SID
AND INV.PID = P.PID;
In[156]:= query = {supplier[sid , _, _, cityl ], inventory[sid , pid_, _I,
part[pid_, _, _, _, city2 ]|} = cities[cityl, city2];
Union [Flatten [Outer[Cases [ { {#1, #2, #3}}, query] &, S, INV, P]]] //
TableForm
Out[157]//TableForm=
cities[London, London]
cities[London, Paris]

[

(
cities[London, Rome]
cities[Paris, London]
[

cities[Paris, Paris]
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In this case, ReplaceRepeated can be used to implement GROUP BY. The idea is to con-
tinually search for pairs of items that match on the grouping criteria and combine
them according to some aggregation method, in this case the sum of qty. Since each
replacement removes an inventory item, we are guaranteed to terminate when all
items are unique. A final ReplaceAll is used to extract the relevant information. The
use of Null in the replacement rule is just for aesthetics, conveying that when you
aggregate two inventory records you no longer have a valid record for a particu-
lar supplier.

SELECT PID, SUM(QTY)
FROM INV
GROUP BY PID;
In[158]:= INV //.
{Longest [i1__ 1, inventory[ _, p_,ql_], i2__, inventory[_, p_, q2_1,
i3__} = {i1, inventory[Null, p, q1+q2], i2, i3} /.
inventory[s_, p_, q_] = totals[p, q] // TableForm
Out[158]//TableForm=
totals [P1, 600]
totals P2, 1000]
totals [P3, 400]
totals [P4, 500]
totals [P5, 500]
totals [P6, 100]

Suppose you want the names of suppliers who have inventory in the part P1. This in-
volves integrating information from S and INV. This can be done as a join, but in
SQL it can also be done via a subquery. You can emulate that using rules. Here MemberQ
implements the semantics of the SQL IN.

SELECT NAME
FROM S
WHERE SID IN
( SELECT SID
FROM INV
WHERE PID = 'P2')

In[159]:= Cases[S, supplier[sid_, sname_, ] /; MemberQ[
Cases[INV, inventory[sidl_, "P2", _] = sidl],
sid] > sname]

Out[159]= {Smith, Jones, Blake, Clark}

In the examples given, I have demonstrated queries for which the data is in rela-
tional form. One feature of relational form is that it is normalized so that each col-
umn can hold only atomic data. However, Mathematica is not a relational database,
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so data can appear in just about any form with any level of nesting. This is no prob-
lem because patterns are much more flexible than SQL. Sdill, I find it easier to put
data in a tabular form before trying to extract information and relationships with
other collections of data. Let’s consider an example that is more in the Mathematica
domain.

GraphData and PolyhedronData are two extensive data sources that are bundled with
Mathematica 6 and later versions. The relationship between these data sources is
that each polyhedron has an associated graph. In PolyhedronData, the property that
ties the two sources together is called SkeletonGraph. In database jargon, Skeleton-
Graph is a foreign key to GraphData, and thus, allows us to investigate relationships be-
tween polyhedra and their associated graphs. For this example, I want to consider
all graphs that are both Eulerian and Hamiltonian with their associated polyhedron
being Archimedean. (An Archimedean solid is a highly symmetric, semiregular,
convex polyhedron composed of two or more types of regular polygons meeting in
identical vertices.)

In[160]:= Archimedean = Cases[{ToString[#],
PolyhedronData[#], PolyhedronData[#, "SkeletonGraphName"],
PolyhedronData[#, "Archimedean"]} & /@ PolyhedronData[] ,
{name_, image_, graph_, True} :»> archimedean [name, image, graph]];
Graphs = Cases [{ToString[u] , GraphData[#], GraphData[#, "Eulerian"],
GraphData[#, "Hamiltonian"] } & /@ GraphData[] ,

{name_, image_, True, True} :» graphEorH[name, image]];
It’s often a good idea to see how many results you received.

In[162]:= {Length[Archimedean], Length[Graphs]}
out[162]= {13, 676}

In[163]:= results =
Flatten [Outer [Cases [ {{#1, #2}}, {archimedean [pname_, pimage_, gname_],
graphEorH [gname_, gimage ]}
r [gname, pname, gimage, pimage] | &, Archimedean, Graphs]] ;

There are exactly 4 cases out of 13 Archimedean polyhedra that meet the criteria of
having both Eulerian and Hamiltonian graphs.

In[164]:= TableForm[results /. { r[gname_, pname_, gimage_, pimage_] =

{{gname, gimage} /. Graphics[a__] :» Graphics[a, ImageSize - 100],
{pname, pimage} /. Graphics3D[b__] > Graphics3D[b, ImageSize - 100]}}]
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Out[164]//TableForm=
CuboctahedralGraph Cuboctahedron

IcosidodecahedralGraph

SmallRhombicosidodecahedralGraph

SmallRhombicuboctahedralGraph
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You might find more intuitive ways to solve this problem, but the solution given em-
phasizes pattern matching. You could also use Intersection with an appropriate
SameTest, as shown here. The r @@@ serves only to put the result in the same form as
we used previously and is not strictly needed.

In[165]:= results = r eee
Intersection[Archimedean, Graphs, SameTest -> (#1[[3]1] == #2[[1]] &)];

See Also

The supplier-parts database is a classic example borrowed from An Introduction to
Database Systems: Volume 1, Fourth Edition, by C. J. Date (Addison-Wesley).

4.12 Semantic Pattern Matching

Problem

You want to work with patterns that reach beyond syntactic (structural) relation-
ships to consider semantic relationships.

Solution

This solution is a simplified adaptation of concepts from “Semantica: Semantic Pat-
tern Matching in Mathematica” by Jason Harris, published in the Mathematica Jour-
nal, Volume 7, Issue 3, 1999.

Pattern matching in Mathematica is strictly structural. Consider the following func-
tion f.
In[166]:= Clear[f]
SetAttributes [f, HoldFirst];
f[x_Integer~2] := 1

Clearly, 322 matches the first version of the function. However, neither f[9] nor
f[10] are in the correct form, so they fail to match, even though in the second
case 9 == 3"2.

In[169]:= {f[3"~2], f[9], f[10]}
out[169]= {1, f[9], f[10]}
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All hope is not lost. By exploiting patterns, you can create a semantic match that
uses Condition, which is commonly abbreviated as /;.
In[170]:= Clear[f];
SetAttributes [f, HoldFirst];
f[x_/; IntegerQ[x] 8% (Reduce[z"2 == x, {z}, Integers] =!= False)] := 1

Now both the first and second cases match but not the last.

In[173]:= {f[3"2], f[9], f[10]}
out[173]= {1, 1, f[10]}

Discussion

Mathematica deals with structural patterns simply because, in general, it is impossi-
ble to determine if two expressions are semantically equivalent. In the 1930s, Godel,
Turing, Church, and others performed the theoretical work that underlies this unfor-
tunate truth. Still, there are many restricted cases for which semantic matching can
succeed, as demonstrated in the solution.

4.13 Unification Pattern Matching

Problem

You want to emulate unification-based matching, a la Prolog.

Solution

Unification is more powerful than Mathematica pattern matching in that it allows
pattern variables on both sides of the match. We can’t use normal pattern variables
for this purpose, so we use the syntax $[var] to denote unification variable.
In[174]:= ClearAll [unify]

SetAttributes[$, HoldAll]

Options [unify] = {bindings » {}};

unify[x_, y_,opt__] :=

Block[{$bindings = bindings /. {opt} /. Options[unify]},

Module [ {unify0, boundQ, lookup},
SetAttributes [unify0, Orderless];

boundQ[x1_] := Module[{}, (x1 /. $bindings) =1= x1];

lookup[x1_] := Module[{}, x1 /. $bindings];
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(»If both variables are bound, then match if values match.x)
unify0[$[x1_1, $[yl_]] /; boundQ[x1] 8& boundQ[y1] :=
Module[{}, lookup[x1] === lookup[y1]];

(*»If one variable matches,
then bind the other to the same value and unify again.x)
unify0[$[x1_], $[yl_]] /; boundQ[x1] :=

Module [ {xval}, xval = lookup[x1];

AppendTo [$bindings, y1 - xval]; unify0[xval, $[y1]]];

(*»If neither variable is bound,
then eliminate variable by binding first to second.x)
unify0[$[x1_], $[y1_]] :=

Module|[{}, AppendTo[$bindings, x1 - y1]; True];

(*Unify a bound variable to an

expression by unifying its value to the expression.x)
unify0[$[x1_1, y1_] /;boundQ[x1] :=

Module[{}, unify0[lookup[x1], y1]];

(*Unify an unbound variable

to an expression by binding to the expression.x)
unify0[$[x1_1, y1_] := Module[{},

AppendTo [$bindings, x1 - y1]; True];
(*Atoms unify if they are the same.x)
unify0[x1_?AtomQ, y1_?AtomQ] :=Module[{}, x1 ===y1];
(*Compound expressions unify if they have the same head and
the same length and their corresponding elements unify.x)
unify0[x1_, y1 | /; Head[x1] === Head[yl] &%

Length[x1] == Length[yl] :=

Module[{u}, And @e Thread[u[x1, y1], Head[x1]] /. u- unify0];
(*Otherwise failx)
unify0[x1_, y1 ] := False;

If[unify0[x, y], {True, $bindings /. $[a_] =» a}, {False, {}}]]]

Test unify on various expressions:

In[178]:= unify[1, 1]
Out[178]= {True, {}}

In[179]:= unify[$[x], 1]
Out[179]= {True, {x->1}}
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In[180]:=
0ut[180]=

In[181]:=
out[181]=

In[182]:=
out[182]=

In[183]:=
0ut[183]=

In[184]:
out[184]=

unify[1, $[x]]
{True, {x—->1}}

unify[f[$[x], a], f[b, $[y]]]
{True,{x—sb,y—sa}}

unify[f[$[x], a], f[b, $[x1]]
{False, {}}

unify [f[$1x1, g[$[y]]], f[g[31, $Ix1]]
{True,{x—»g[S],y—»S}}

unify [f[g[$[y]]], F[$[x1]]
{True, {x-gly|}}

Here you pass in a preexisting binding so the unification fails.

In[185]:=
Out[185]=

Discussion

In[186]:=

In[189]:=
0ut[189]=

See Also

unify[1, $[x], bindings » {x > 2}]
{False, {}}

Clear [unifyN]
unifyN[x_, y_] := unify[x, y]
unifyN[x_,y ,z_] := Module[{t, b2},
{t, b2} = unifyN[x, z]; If[t, unify[x, y, bindings > b2], {t, b2}]]

unifyN[f[$[w], 2, 3, 4], F[1, $[x1, 3, 4], F[1, 2, $[y], 4], f[1, 2, 3, $[21]]
{True, {w>1,2-4,y-3,x->2}}

Maeder’s Mathematica Programmer II goes much further than this recipe by imple-
menting a large subset of Prolog. It also allows you to use normal pattern syntax by
rewriting the variables using techniques discussed in Recipe 3.10.
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CHAPTER 5
String and Text Processing

Someone will call

Something will fall

And smash on the floor
Without reading the text
Know what comes next

Seen it before

And it’s painful

Things must change

We must rearrange them

Or we’ll have to estrange them
All that I'm saying

The game’s not worth playing
Over and over again

Depeche Mode, “The Sun and the Rainfall”

5.0 Introduction

Users who come to Mathematica for its superior mathematical capabilities are pleas-
antly surprised to find strong abilities in programming areas outside of mathematics
proper. This is certainly true in the area of textual and string processing. Mathemati-
ca’s rich library of functions for string and structured text manipulation rivals Java,
Perl, or any other modern language you can tie a string around.

The sections in this introduction provide information on some of the basic tools of
strings and string manipulation.

Characters and Character Encodings

Mathematica uses Unicode internally, but externally (e.g., when saving a notebook)
it uses ASCII codes, encoding non-ASCII characters in a special form.

For example, lowercase Greek letters and other non-ASCII characters are encoded
using backslash-bracketed character names (\[name]).

181



n_n

In[1]:= alpha = "a
Out[1]= o

The function ToString will translate strings using different encoding schemes.

In[2]:= ToString[alpha, CharacterEncoding - "ASCII"]
out[2]= \[Alpha]

The default character encoding used by Mathematica is stored in $CharacterEncoding,
and the native character encoding of the underlying operating system Mathematica
is running is stored in $SystemCharacterEncoding. All available encodings are stored

in $CharacterEncodings.
In[3]:= $CharacterEncoding
Out[3]= UTF-8

In[4]:= $SystemCharacterEncoding
Out[4]= UTF-8

In[5]:= Partition [$CharacterEncodings, 4] // TableForm

Out[5]//TableForm=
AdobeStandard ASCIT CP936
CP950 Custom EUC-JP
IBM-850 15010646-1 1S08859-10
1508859-13 1S08859-14 1508859-15
1508859-1 1508859-2 1508859-3
1S08859-5 1S08859-6 1508859-7
1S08859-9 ISOLatinl ISOLatin2
ISOLatin4 ISOLatinCyrillic Klingon
MacintoshArabic ~ MacintoshChineseSimplified MacintoshChineseTraditional
MacintoshCyrillic MacintoshGreek MacintoshHebrew
MacintoshKorean  MacintoshNonCyrillicSlavic MacintoshRomanian
MacintoshThai MacintoshTurkish MacintoshUkrainian
Math2 Math3 Math4
Mathematical Mathematica2 Mathematica3
Mathematica5 Mathematica6 Mathematica7
ShiftlIs Symbol Unicode
WindowsANSI WindowsBaltic WindowsCyrillic
WindowsGreek WindowsThai WindowsTurkish

Notice how UTF-8 needs two bytes to display alpha.

In[6]:= ToString[alpha, CharacterEncoding - "UTF8"]
out[6]= Iz

ToCharacterCode gives the numerical representation.

In[7]:= ToCharacterCode[ToString[alpha, CharacterEncoding-> "UTF8"]]

out[7]= {206, 177}

CP949

EUC

1508859-11
1S08859-16
1S08859-4
1508859-8
ISOLatin3

koi8-r
MacintoshCroatian
MacintoshIcelandic
MacintoshRoman
Mathl

Math5
Mathematicad
PrintableASCII
UTF8
WindowsEastEurope
ZapfDingbats
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You can map from character codes back to characters using FromCharacterCode[].

In[8]:= FromCharacterCode[ {87, 88, 89, 90}1]
Out[8]= WXYZ

The mapping may not be one-to-one for certain encodings.

In[9]:= FromCharacterCode[ {206, 177}, "UTF8"]
out[9]= «

String and Regular Expressions

A great deal of Mathematica’s prowess in text processing comes from its rich support
for pattern matching. There are two basic classes of string patterns: string expres-
sions and regular expressions. Introduced in version 5.1, each has a similar expres-
sive power. The advantage of StringExpression is that it is less cryptic because it
uses more words than symbols to express patterns. The advantage of RegularExpression is
that it is more standardized with other languages such as Perl, Ruby, Java, and so on.
Non-Mathematica programmers, especially those with a background in Unix, are
more likely to understand regular expressions, although these expressions are cryp-
tic to the uninitiated. You should become familiar with both if you plan to do much
string manipulation. If you program frequently in languages outside of Mathematica,
master the regular expression syntax. If you work strictly in Mathematica, choose the one
that most appeals to you. If you learn the string expression syntax, you will have a
leg up on learning Mathematica’s more general pattern-matching syntax, which is
used in many contexts outside text processing. You can also mix string expressions
and regular expressions into compound patterns.

String expressions

StringExpressions are mostly written using the infix operator ~~, which is a syntactic
shortcut for the StringExpression[] function. StringExpression uses Mathematica’s
blanks notation (e.g., , ,and ) to represent wild cards. See Chapter 4 for more
on blanks.

Match "xy" followed by any character.
In[10]:= "xy" ~~ _;
In[11]:= StringMatchQ["xyz", "xy" ~~ _]
Out[11]= True

In[12]:= StringMatchQ["xyzz", "xy" ~~ _]
Out[12]= False
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Match "xy" followed by one or more characters.
In[13]:= "xy" ~~ _;
In[14]:= StringMatchQ["xyzz", "xy" ~~ _]
Out[14]= True

In[15]:= StringMatchQ["xy", "xy" ~~ _]
Out[15]= False

Match "xy" followed by zero or more characters.
In[16]:= "xy" ~~ __;
In[17]:= StringMatchQ["xyz", "xy" ~~ _ ]
Out[17]= True

In[18]:= StringMatchQ["xy", "xy" ~~ __]
Out[18]= True

Patterns can be associated with variables so that the matching portion can be re-
ferred to in a subsequent expression. For example, the following pattern will match
if the string begins and ends with the same sequence of characters.

In[19]:= StringMatchQ["xyx", x__ ~~
Out[19]= True

e x_]

In[20]:= StringMatchQ["Hello. I said, hello", x__~~ __ ~~x_, IgnoreCase - True]
Out[20]= True

In[21]:= StringMatchQ["123ABC323“, x : NumberString ~~ _  ~~ x_]

Out[21]= False

In[22]:= StringMatchQ["123ABC123", x : NumberString ~~ _  ~~ x_]

Out[22]= True

Table 5-1 shows some of the common raw ingredients for string expressions. If you
have already read Chapter 4 on pattern matching, you can see that all the same con-
structs are available for strings. The full set of string expression primitives can be
found in tutorial/WorkingWithStringPatterns.
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Table 5-1. Common string patterns

Pattern Description

"\"string\

"a literal string of characters”
"any single character"
"any substring of
one or more characters"”
"any substring of
zero or more characters”

"X XX "substrings given the name x"
"x:pattern” "pattern given the name x"
"pattern.." "pattern repeated one or more times"
"pattern..." "pattern repeated zero or more times"
"pattl|patt2]..." "a pattern matching

at least one of the patt-i"
"patt/;cond" "a pattern for which

cond evaluates to True"
"pattern?test” "a pattern for which test

yields True for each character”

"Except [pattern] "matches anything except pattern”
"Whitespace" "a sequence of whitespace characters"
"NumberString" "the characters of a number"

"DatePattern[spec] "the characters of a date"

"charobj" "an object representing a
character class (see below)"

Table 5-2 shows some of the common raw ingredients for regular expressions. The full set
of regular expression primitives can be found in tutorial/WorkingWithStringPatterns.
Here c or cn, where n is a number, is a placeholder for an arbitrary character, and pn
is a placeholder for an arbitrary regular expression.

5.0 Introduction | 185



Table 5-2. Common regular expressions

Regular expression Description
"[clc2c3]" "Matches any of the characters cl1, c2, or c3.
"[cl-c2]" For example, [AEIOUaeiou] matches vowels."

"Matches characters cl through c2. For example,
[a-z] matches all lowercase letters."
"[*clc2c3]" "Matches any characters EXCEPT c1, c2, c3. For
example, ["AEIOUaeiou] matches nonvowels."
C* "Zero or more occurrences
of character c. Greedy version."
c+ "One or more occurrences
of character c. Greedy version."

e "The character c or nothing (i.e., zero
or one occurrences). Greedy version."
"cx?" "Lazy version of cx."
"c+?" "Lazy version of c+."
"c?" "Lazy version of c?."
"pl|p2|...|pN" "Matches pl or p2 or ... pN."
"plp2...pN" "Matches pl, followed by p2, followed by ... pN."
"rpl" "Matches pl only at the start of the string.”
"p1%" "Matches pl only at the end of the string."
"rpl$" "Matches only if pl matches the entire string."
"\\d" "Any digit 0-9"
"\\s" "Whitespace"
See Also

The definitive reference on regular expressions is Mastering Regular Expressions, Sec-
ond Edition, by Jeffrey E. F. Friedl (O’Reilly). If you plan to do anything nontrivial
using regular expression matching, you will save yourself hours of frustration by con-
sulting this book.

An excellent tutorial on working with string patterns in Mathematica can be
found in the documentation under tutorial/WorkingWithStringPatterns or online at
http://bit.ly/yGbND. Besides being a good all-around tutorial, it has a section specifi-
cally targeting Perl programmers, which is helpful for those who already have experi-
ence with string manipulation in Perl.
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5.1 Comparing Strings

Problem

You want to compare strings but Less, LessEqual, Greater, and GreaterEqual do not

work.

Solution

Use Order[el,e2], which returns 1 if el is before e2, -1 if el is after €2, and O if they

are equal.
In[23]:=
out[23]=

In[24]:=
Out[24]=

Discussion

Order["rat", "rate"]
1

Order["rat", "cat"]
-1

Most users of Mathematica will not find themselves doing direct string comparison
since functions like Sort and Ordering do the right thing. However, if you find your-
self needing to use the more natural comparison operators with strings, you can do
the following;:

In[25]:=

In[31]:
out[31]

In[32]:=
out[32]=

In[33]:=
Out[33]=

Unprotect[Less, LessEqual, Greater, GreaterEqual];
Less[s1 String, s2_String] := Order[sl, s2] > 0;
LessEqual[s1_String, s2_String] := Order[sl, s2] > -1;
Greater[sl_String, s2_String] := Order[sl, s2] < 0;
GreaterEqual [s1_String, s2_String]| := Order[sl, s2] < 1;

Protect[Less, LessEqual, Greater, GreaterEqual];

rat" < "cat"
False

"cat" < "rat"
True

cat" <= "cat"
True
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5.2 Removing and Replacing Characters
from Strings

Problem

You want to strip certain characters (e.g., whitespace) or characters at certain positions
from a string. You may also want to replace these characters with other characters.

Solution
Using patterns

StringReplace[] is an extremely versatile function that solves most character-oriented
stripping and replacing operations. It supports a very general set of string-substitution
rules, including regular expressions and Mathematica-specific string patterns.

Strip all spaces.

In[34]:= myString = " The quick brown fox jumped over the lazy programmer ;

In[35]:= StringReplace[myString, s ““]
Out[35]= Thequickbrownfoxjumpedoverthelazyprogrammer

Strip leading and trailing whitespace.
In[36]:= StringReplace[myString, RegularExpression["*\\s+|\\s+$"] - ""] // InputForm
Out[36]//InputForm=
"The quick brown fox  jumped over the lazy programmer"

Normalize whitespace: strip leading, trailing, and multiple internal whitespace.

In[37]:= StringReplace|[myString, {RegularExpression[""\\s+|\\s+$"] > "",
RegularExpression["\\s\\s+"] - " "}] // InputForm
Out[37]//InputForm=
"The quick brown fox jumped over the lazy programmer"

Literal string substitution.
In[38]:= StringReplace[myString, "the" - "a"] // InputForm
Out[38]//InputForm=
" The quick brown fox  jumped over a lazy programmer

Ignore case while matching.

w_n

In[39]:= StringReplace[myString, "the" - "a", IgnoreCase-;True] // InputForm
Out[39]//InputForm=

a quick brown fox  jumped over a lazy programmer

Use Mathematica-specific patterns instead of regular expressions.
In[40]:= StringReplace[myString, “ox" ~~ Whitespace » "ox "]
Out[40]= The quick brown fox jumped over the lazy programmer
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Using positions
Sometimes you know exactly where the characters are that you want to remove. In
that case, StringDrop[] is a lot more efficient. StringDrop[] takes the string and a sec-
ond argument, which can be an offset from the front, an offset from the end, specific
positions, or a range of positions.
Consider:
In[41]:= myString = "abcdefghijklmnop" ;
Here you drop the first three characters.
In[42]:= StringDrop[myString, 3]
Out[42]= defghijklmnop
Alternatively, you drop the last three characters, like so.
In[43]:= StringDrop[myString, —3]
Out[43]= abcdefghijklm
Drop only the third character, like this.
In[44]:= StringDrop [myString, {3}]
Out[44]= abdefghijklmnop
And drop the third through fifth ("cde"), using a range list.
In[45]:= StringDrop [myString, {3, 5}]
Out[45]= abfghijklmnop

The step size in the range can even be greater than one by specifying it as the third
element. Here you specify a step size of two to remove every other character. The -1
upper limit is a convenient way to specify the end of the string without having to
know its length.

In[46]:= StringDrop[myString, {1, -1, 2)]

Out[46]= bdfhjlnp

You can also act on several strings at once.

In[47]:= otherString = "1234567890";

In[48]:= StringDrop[{myString, otherString}, {3, 5}]
out[48]- {abfghijklmnop, 1267890}

The positional form for replacement is called StringReplacePart[], and it works
using similar conventions for specifying positions. The difference is that you must
always provide a contiguous range or a list of such ranges.
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In[49]:= StringReplacePart[myString, "zz7", {3, 5}]
Out[49]= abZzZfghijklmnop

In[50]:= StringReplacePart[myString, "zz7", {{(3,5}, {10, 15}}]
out[50]= abzzzfghizzzp

Each range can also have its own replacement string.

In[51]:= StringReplacePart[myString, {"2z2z", "WWw"}, {{3,5}, {10, 15}}]
Out[51]= abZZZfghiWWWp

Discussion

As you can see from the given examples, StringReplace is quite versatile. However,
the versatility is derived from Mathematica’s rich support for patterns (see
“Introduction” on page 181). Here are some typical text-processing problems that
yield to the application of StringReplace[] and pattern matching.

Stripping comments
String expression version:

In[52]:= StringReplace|
"1 + 2 % 3.14 (xprecise enough for our purposex) / 42 (xsecret
of the universex)", " (" ~~ ShortestMatch[__] ~~"+)">""]
Out[52]= 1 + 2 = 3.14 / 42

Regular expression version:

In[53]:= StringReplace|
"1 + 2 % 3.14 (xprecise enough for our purposex) / 42 (xsecret of

the universex)", RegularExpression["\\ (\\x.*2\\x\\)"] > “"]
Out[53]= 1+ 2 % 3.14 / 42

Changing delimiters

Delimited text (e.g., comma-delimited text) sounds simple at first, but many delim-
ited formats allow a way to handle the delimiters as regular text by some quoting
mechanism, as well as a way to escape quotes themselves. Furthermore, you must
handle empty fields. If you want to replace a comma-delimited format with, say, a
semicolon-delimited format, you must craft expressions that deal with all cases.
Here, "" is used to escape a double quote. This example does not handle empty
fields, but see Friedl’s Mastering Regular Expressions for guidance.

190 | Chapter 5: String and Text Processing



In[54]:= delimitedText = "Ten Thousand,10000,
2710 ,\"10,000\",\"It's \"\"10 Grand\"\",baby\",10k";
StringJoin[Riffle[StringCases [delimitedText,
RegularExpression[" ([*\",T+|\" (2: [*\"T\"\") %\")"] =
StringReplace["$1", "\"\"" = "\""]], ";"]]
Out[55]= Ten Thousand;10000; 2710 ;"10,000";"It's "10 Grand",baby";10k

Removing XML markup

Simple XML manipulations, such as discarding markup, can be accomplished with
StringReplace[].

In[56]:= NotebookDirectory[]
Out[56]= /Users/smangano/Documents/workspace/Mathematica Cookbook/mathematica/

In[57]:= xml = Import[FileNameJoin|
{NotebookDirectory[1, "..", "data", "ch02", "datal.xml"}], "Text"
Out[57]= <?xml version="1.0" encoding="UTF-8"?>
<!-- Some data to use as a test for Mathematica's XML import -->
<?test Just for didactic purposes?>
<data>
<item>
<name>Leonardo</name>
<sex>male</sex>
<age>8</age>
<height>4.7</height>
</item>
<item>
<name>Salvatore</name>
<sex>male</sex>
<age>5</age>
<height>4.1</height>
</item>
<item>
<name>Alexis</name>
<sex>female</sex>
<age>b</age>
<height>4.4</height>
</item>
</data>
<!-- Comment at end -->
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In[58]:= StringReplace[xml,

n_n un

{Shortest["<" ~~ Except[">"] .. ~~ ">"] .. "", Whitespace » " "}]
Out[58]= Leonardo male 8 4.7 Salvatore male 5 4.1 Alexis female 6 4.4

Replacing with expression evaluation

By capturing matched substrings in variables, you can perform expression evaluation
using ToExpression[] as you replace.

In[59]:= expr = "Is 1 + 1 in every possible universe? What about Pi / 2?";

In[60]:= StringReplace[expr,
x: ({NumberString , "Pi"} ~~ Whitespace... ~~ {"#","+","-","/"} ~~
Whitespace ... ~~ {NumberString, "Pi"}):»

n n

x <> " =" < ToString[N[ToExpression[x]]]]
Out[60]= Is 1 + 1 = 2. in every possible universe? What about Pi / 2 = 1.5708?

Here is another example using dates.
In[61]:= invoice =
"05/17/2008\nMathematica Programming: $1000.00\nInvoice is Net 30";
Block [ {datefmt = {"Month", "/", "Day", "/", "Year"}, date},
date = StringCases[invoice, DatePattern[datefmt]];

StringReplace[invoice, "Net " ~~ n:NumberString :» "due " <> DateString[

DatePlus [DateList[date[[1]]], ToExpression[n]], datefmt]]]
Out[62]= 05/17/2008
Mathematica Programming: $1000.00
Invoice is due 06/16/2008

See Also

See Recipe 2.4 for use of StringPosition[], which returns sequence specification
that can be fed into StringReplacePart[] and StringDrop|].

See Recipes 2.8 and 2.9 for more sophisticated forms of XML processing.

5.3 Extracting Characters and Substrings

Problem

You want to extract a substring by position or content from a string.
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Solution
Using patterns

StringCases[] provides the pattern-driven means of extracting substrings. There are
two major variations. In the first, you simply extract what the patterns literally
match. The second variation uses rules to transform the matched substrings into
other strings and return those instead.

You can extract specific words using regular expressions (here \\b matches word
boundaries).

In[63]:= StringCases["The pig thought he was a dog and then chased the cat.",
RegularExpression["\\b (a|the)\\b"], IgnoreCase - True]
Out[63]= {The, a, the}

The same can be done using string expressions.

In[64]:= Str:i.ngCases["The pig thought he was a dog and then chased the cat.",

WordBoundary ~~ {"a", "the"} ~~ WordBoundary, IgnoreCase -> True]
Out[64]= {The, a, the}

The most common reason for using rules instead of patterns is to match a substring
within a specific context but return the substring alone. Here we want to return sub-
strings bracketed by one or more occurrences of the letter a. This example also illus-
trates that regular expressions and string expressions can be mixed.

In[65]:= StringCases ["abacbcdbdaeaaazzza",
RegularExpression[" (?<=a) "] ~~
X : Repeated [Except["a"]] ~~
RegularExpression[" (?=a)"] - x|

(*Return the characters surrounded by "a".=x)
Out[65]= {b, cbcdbd, e, zzz}

Using positions

Sometimes you know exactly where the characters are that you want to remove. In
that case, StringTake[] is a lot more efficient. StringTake[] takes the string and a sec-
ond argument, which can be an offset from the front, an offset from the end, specific
positions, or a range of positions.

Consider:

In[66]:= myString = "abcdefghijklmnop" ;
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Here you take the first three characters.
In[67]:= StringTake[myString, 3]
Out[67]= abc
Alternatively, you take the last three characters, like so.
In[68]:= StringTake[myString, —3]
out[68]= nop
Take only the third character, like this.
In[69]:= StringTake[myString, {3}]
out[69]= ¢
And take the third through fifth ("cde") using a range list.
In[70]:= StringTake[myString, {3, 5}]
Out[70]= cde

The step size in the range can even be greater than one by specifying it as the third
element. Here you specify a step size of two to take every other character. The -1 upper
limit is a convenient way to specify the end of the string without having to know its length.
In[71]:= StringTake[myString, {1, -1, 2}]
Out[71]= acegikmo

Conveniently, you can also act on several strings at once.
In[72]:= otherString = "1234567890";

In[73]:= StringTake[{myString, otherString}, {3, 5}]
Out[73]= {cde, 345}

If you have read Recipe 5.2, you see that StringTake has very similar parameter varia-
tions as StringDrop[]. However, StringTake has an additional feature: it can take a
list of position specifications and produce a list of the resulting extracts.

In[74]:= StringTake[myString, {{1}, {3}, {8, 10}}]
out[74]= {a, ¢, hij}

This is useful for picking multiple segments from a string in one step. However, if
you want a string rather than a list, simply wrap the expression in a StringJoin[].

In[75]:= StringJoin[StringTake[myString, {{1}, {3}, {8, 10}}]]
Out[75]= achij
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Discussion

In the “Solution” section on page 193 we used RegularExpression["(?<=a)"] (look-
behind) and RegularExpression["(?=a)"] (look-ahead) because there is no string-
expression equivalent. However, there is an option for StringCases[] called Over-
laps, which when set to True, causes the matcher to continue at the character that
follows the first character of the last matched substring. In the following example,
this allows a single a to act as both a start of pattern and end of pattern.

In[76]:= StringCases["abacbcdbdaeaaazzza",

a" ~~ x : Repeated[Except["a"]] ~~ "a" - x, Overlaps - True]
Out[76]= {b, cbcdbd, e, zzz}

Without Overlaps—True, you would not get the "cbcbd" substring.

In[77]:= StringCases["abacbcdbdaeaaazzza",

n_n w_n

a" ~~ x : Repeated[Except["a"]] ~~ "a" > x]
out[77]= {b, e, zzz}

There is a third setting, Overlaps—All, which causes the matcher to repeat searches
from the same position until no new matches are found. To see the effect of All, we
need to consider a different example, one in which the bracketing character is not ex-
cluded from the match. A parenthesized expression is a good example.

In[78]:= StringCases["((a—b) (c+d)y e/ F+g)N"
Shortest[" (" ~~ __ ~~ ")"], Overlaps ->False] // TableForm
Out[78]//TableForm=
((a-b)
(c + d)
(e / (f+ g)

In[79]:= StringCases["((a—b) (c+d)y e/ F+gN"
Shortest[" (" ~~ __ ~~ ")"1, Overlaps - True] // TableForm
Out[79]//TableForm=
((a-b)
(a-b)
(c + d)
(e / (f+g
(f+8)
In[80]:= StringCases["((a-b) (c +d) (e / (f +g)))",
Shortest[" (" ~~ ~~ ")"1, Overlaps - A11] // TableFoxrm
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Out[80]//TableForm=

((a-b)

((a-b) (c + d)

((a=b) (c +d) (e / (‘F+g)
((a=b) (c +d) (e / (f+g))
((a-b) (c +d) (e / (f+g)))
(a-b)

(a-b) (c + d)

(a-b) (c +d) (e / (f+g)
(a-b) (c+d) (e / (f+g))
(a-b) (c +d) (e / (f+g)))
(c + d)
(C+d)(e/(f+g)
(c+d) (e / (f+g))

(c+d) (e / (f+g)))

(e / (‘f+g)

(e / (f+g)

e/ (f+8))

(f+8

(f+8)

(f+8))

See Also

If you have a list of strings and want to extract those that match a pattern, you want
Select, using StringMatchQ with a string pattern as the test, rather than StringCases. See
Recipe 4.1.

5.4 Duplicating a String
Problem

You need to synthesize a string from a fixed number of copies of a seed string.

Solution
Use StringJoin[] on the output of Table[].
In[81]:= stringDup[seed_, n_: 2] := StringJoin@Array[seed &, n]

In[82]:= stringDup["-", 10] // InputForm
Out[82]//InputForm=

In[83]:= stringDup["wiki "]
Out[83]= wiki wiki
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Discussion

This is a simple recipe, and I include it because it’s something you expect to be bun-
dled as a native function, but it’s not. For most practical applications, the solution is
fine, but for very large n, a doubling approach will have better performance. Rather
than doing the math to get the exact string size, we simply truncate the closest sized
string obtained from pure doubling of the seed.

In[84]:= stringDup2[seed_,n_] :=

StringTake[Nest[# <> # &, seed, Ceiling[Log[2,n]] ], n]
In[85]:= Mean[Table[Timing[stringDup["-", 1000001 ] [[1]], {10}]]
Out[85]= 0.0486878

In[86]:= Mean[Table[Timing[stringDup2["-", 1000001] [[1]1, {10}]]
Out[86]= 0.0031014

This solution may not be obvious, so let’s break it down. It should be clear that map-
ping the function #<>#8& to a list containing a string will double that string (recall that
<> is string concatenation).

non

In[87]:= #<> #& /@ {"-"}
out[87]= {--}

It follows that doing this twice will quadruple it.

In[88]:= #<> & /e (<> #& /@ {"-"})
out[88]= {----}

Repeating this process m times will create a string of length 2*m. However, the input
is the desired length n, not the number of doublings, so we know we need at least
Ceiling[Log[2, n]] doublings; by using Nest with this number, we get exactly that.
However, this overshoots the desired length in most cases, because we rarely expect
n to be an exact power of 2. So we use Take to extract the correct length. The reason
this is fast for large n is that it reduces a 0(n) operation in terms of Table to a 0(log n)
operation using StringJoin.

You can bundle these versions together into one function that gives good perfor-
mance across all sizes.
In[89]:= Clear[stringDup];
stringDup [seed_String, n_Integer /; n>=2"12] :=
StringTake[Nest[# <> # &, seed, Ceiling[Log[2,n]] ], n]
stringDup[seed_String, n_Integer: 2] 1= StringJoineArray[seed &, n]
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See Also

Nest is discussed in Recipe 2.11.

5.5 Matching and Searching Text

Problem

You want to determine if a string contains a pattern and at what positions.

Solution
Use StringMatchQ[string,pattern] to determine if a string matches a pattern.

In[92]:= StringMatchQ[“1234", NumberString]
Out[92]= True

Here I show a match on multiple strings with a pattern that is predicated.

In[93]:= StringMatchQ[{"1234", "1237"}, p : NumberString /; 0ddQ[FromDigits[p]]]
Out[93]= ({False, True}

Use StringFreeQ[string,pattern] to determine if a string does not match a pattern.

In[94]:= StringFreeQ[{"1234", "abcde"}, p : NumberString]
Out[94]= ({False, True}

Use StringPosition[string,pattern] to find the integer offsets of matches. The de-
fault behavior is to search for all occurrences of the pattern (i.e., Overlaps — True).

In[95]:= StringPosition["1234abcd54321", NumberString]

0Ut[95]= {{1: 4}: {2) 4}: {31 4}) {4: 4}:
{9, 13}, {10, 13}, {11, 13}, {12, 13}, {13, 13}}

With Overlaps - False, you only get matches on substrings that don’t share charac-
ters with prior matches.

In[96]:= StringPosition["1234abcd54321", NumberString, Overlaps - False]
Out[96]= {{1; 4}: {9) 13}}
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Discussion

StringMatchQ[] and StringFreeQ[] very often find application in restricting inputs to
functions.

In[97]:= classify[word_String /3 StringMatchQ[word, {"I“, "me", "we",
"you", "they", "him", "her", "it"}]] := pronoun[word]
classify[word_String /; StringMatchQ[word, {"and", "or", "nor",
"after," "although," "as," "because," "before," "how," "if,"
"once," "since," "than," "that," "though," "till," "until,"
"when, " "where," "whether,", "while"}]] := conjunction [word]
classify[word_String /; StringMatchQ[word, DatePattern[{"DayName"}]]] :=
dayofweek [word]
classify[word_String /; StringMatchQ[word, DatePattern [ { "MonthName"} ] ]] 1=
month [word]

(*eook)
classify [word_String] := other[word] ;

You can also use them as input to other functions, like Pick[] in the following grep
implementation adapted from an example in Mathematica documentation. Recall
that in the standard Unix grep, option -v instructs grep to return lines that don’t
match the pattern. Here Transpose and Range are used to number each line so the re-
sult contains a list of pairs {line, match text}. This grep function was implemented
in terms of StringFreeQ rather than StringMatchQ since the latter only succeeds if the
entire string matches.

In[102]:= grep[file_, patt_, "-v"] := grepImpl[file, patt, True]
grep[file_, patt_] := grepImpl[file, patt, False]
grepImpl[file_, patt_, value ] := With[{data = Import[file, "Lines"]},
Pick[Transpose [ {Range[Length[data] |, data}],
StringFreeQ[data, RegularExpression[patt]], value]]

In[105]:= grep[FileNameJoin [ {NotebookDirectory[], "greptest.txt"}], "bar"] //

TableForm
Out[105]//TableForm=

1 bar

4 foo bar
5 foobar
6 barfo

In[106]:= grep[FileNameJoin [{NotebookDirectory[], "greptest.txt"}], "bar$"|
Out[106]= {{1, bar}, {4, foo bar}, {5, foobar}}

In[107]:= grep[FileNameJoin[{NotebookDirectory[] , "greptest.txt"}] , "bar", "—v"]
Out[107]= {{2, foo}, {3, baz}, {7, fo 0}}
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Both StringMatchQ[] and StringFreeQ[] support the IgnoreCase — True option.
StringMatchQ also supports option SpellingCorrection — True, which allows the
match to succeed even if a small number of characters are wrong. However, in many
cases a small number can mean only 1, as the following example demonstrates, so I
would not rely too heavily on this “feature.”

In[108]:= StringMatchQ[“mississippl , "missisippi”, SpellingCorrection-»True]
Out[108]= True

In[109]:= StringMatchQ["mississippl , "misisipi”, SpellingCorrection-»True]
Out[109]= False

The output of StringPosition[] can be used as the input to StringTake.

In[110]:= With[{str = "1234abcd54321"},
StringTake[str, StringPosition[str, NumberString]]]
Out[110]= {1234, 234, 34, 4, 54321, 4321, 321, 21, 1}

If you want to use it with StringDrop[], you need to map StringDrop[] over the list
returned by StringPosition[]. This will give you a list with each matching segment
dropped. More than likely, you will want to set Overlaps — False in this case. Try
Overlaps — True with the expression given below to see why it is undesirable.

In[111]:= with[{str= "1234abcd54321"}, StringDrop[str, #] & /e

StringPosition[str, NumberString, Overlaps - False]]
Out[111]= {abcd54321, 1234abcd}

See Also
See Recipes 5.3 and 5.2 for usage of StringTake[] and StringDrop[].
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5.6 Tokenizing Text
Problem

You want to break a string into tokens based on a character or pattern.

Solution

StringSplit[] provides a variety of options for tokenizing text. The default is simply
to tokenize on whitespace.

In[112]:= StringSplit["The quick brown fox\njumped over the lazy programmer"]
Out[112]= {The, quick, brown, fox, jumped, over, the, lazy, programmer}

Other delimiters can be specified as literals or more general patterns. Here you spec-
ify comma delimiters with zero or more whitespace characters.

In[113]:= StringSplit["2008/01/20, testl, 100.3, 77.8,33.77",

non
b

~~ WhitespaceCharacter ...]
Out[113]= {2008/01/20, testl, 100.3, 77.8, 33.77}

If there are several delimiters, give each pattern in a list. Here you decide to parse the
date along with the comma-delimited text.

In[114]:= StringSplit["2008/01/20, testl, 100.3, 77.8,33.77",

{"," ~~ WhitespaceCharacter ..., "/"}1]
Out[114]= {2008, 01, 20, test1, 100.3, 77.8, 33.77}

Discussion

StringSplit supports rules as well as patterns, which leads to some interesting ap-
plications, such as a means of highlighting output. Here is an example that stylizes XML
by rendering directives, comments, and tags in specific font styles and colors. (The
colors will not be visible in a monochrome print, but you can try the code on your
own to see the effect.)
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In[115]:= StringSplit[Import |

FileNameJoin [ {NotebookDirectory[], "..", "data", "ch02", "datal.xml"}],

n_mn n_n

"text"], {x: ("<1--" ~~ Except[">"] .. ~~">") >
Style[x, FontSlant - Italic, FontColor - Brown],
x: ("<?" ~~ Except[">"] .. ~~ ">") > Style[x, FontColor - Red],
x: ("<" ~~Except[">"] «0 ~~">")
Style[x, FontWeight - Bold, FontColor -»Blue]}] // Row
Out[115]= <?xml version="1.0" encoding="UTF-8"?>
<!-- Some data to use as a test for Mathematica's XML import -->
<?test Just for didactic purposes?>
<data>

<item>
<name>Leonardo</name>
<sex>male</sex>
<age>8</age>
<height>4.7</height>

</item>

<item>
<name>Salvatore</name>
<sex>male</sex>
<age>5</age>
<height>4.1</height>

</item>

<item>
<name>Alexis</name>
<sex>female</sex>
<age>6b</age>
<height>4.4</height>

</item>

</data>

Comment at end

5.7 Working with Natural Language Dictionaries

Problem

You want to do some simple linguistic processing driven by a reliable lexicon.

Solution

As of version 6, Mathematica comes bundled with many useful data sources. One of
these sources is an integrated English language dictionary (dictionaries for other lan-
guages can be installed).
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Look up words that begin with th and end with y.

In[116]:= DictionaryLookup[“th“ e "y"]

Out[116]= {thankfully, thanklessly, theatricality, theatrically,
thematically, theocracy, theologically, theology, theoretically,
theory, theosophy, therapeutically, therapy, thereby, thermally,
thermodynamically, thermostatically, they, thickly, thievery,
thingummy, thingy, thinly, thirdly, thirstily, thirsty, thirty, thorny,
thoroughly, thoughtfully, thoughtlessly, thready, threateningly,
threepenny, threnody, thriftily, thrifty, thrillingly, throatily,
throaty, throwaway, thruway, thuggery, thunderously, thundery, thy}

Look up words that end in ee.

In[117]:= DictionaryLookup[__ ~~ "ee"]

out[117]= {absentee, addressee, agree, Aimee, Albee, amputee, apogee, appointee,
Ashlee, attendee, Attlee, axletree, banshee, bee, bootee, bumblebee,
bungee, carefree, Chattahoochee, Cherokee, chickadee, chimpanzee,
coffee, committee, conferee, consignee, coulee, Cree, debauchee, decree,
Dee, degree, deportee, Desiree, detainee, devotee, disagree, divorcee,
draftee, Dundee, dungaree, Elysee, emcee, employee, enlistee, entree,
epee, escapee, evacuee, fat-free, fee, fiancee, filigree, flee, foresee,
franchisee, free, fricassee, Frisbee, fusee, Galilee, garnishee, gee, ghee,
glee, goatee, grandee, grantee, guarantee, gumtree, honeybee, honoree,
Humvee, inductee, internee, interviewee, invitee, jamboree, Jaycee,
jubilee, kedgeree, Klee, knee, lee, Lee, legatee, Legree, lessee, levee,
licensee, manatee, marquee, matinee, McGee, McKee, melee, Menominee,
Milwaukee, mortgagee, Murrumbidgee, Muskogee, nee, negligee, nominee,
Okeechobee, Okefenokee, oversee, parolee, Pawnee, payee, pedigree, pee,
peewee, Pelee, perigee, pewee, pharisee, Pharisee, pongee, prithee,
protegee, puree, puttee, quadtree, ranee, referee, refugee, Renee,
repartee, retiree, returnee, Rhee, rupee, Sadducee, scree, see, settee,
Shawnee, Sheree, shoetree, singletree, sirree, Slurpee, soiree, spree,
squeegee, standee, subcommittee, subtree, suttee, Suwanee, Swanee,
Tallahassee, tee, Tennessee, tepee, thee, three, toffee, toll-free, topee,
toupee, towhee, townee, Toynbee, trainee, transferee, tree, trochee,
Truckee, trustee, Tuskegee, twee, Tweedledee, Tyree, wannabee, wee, whee,
whiffletree, whippletree, whoopee, Yahtzee, Yankee, yippee, Zebedee}
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Discussion

There are a lot of neat applications for an integrated dictionary.

Crossword puzzles

Here is how you might cheat at a crossword puzzle. Say you have three letters of a
six-letter word and the clue is “51 down: unkeyed.”

In[118]:= DictionaryLookup["a" ~~ _ ~~ "0" ~~ _ ~~ ~~ "1"]

Out[118]= {amoral, atonal, avowal}

Ah, atonal sounds right (pun intended)!

Anagrams

You can also help your second grader impress the teacher on that November work-
sheet for finding all the words you can make out of the letters in “Thanksgiving”
(i.e., anagrams). Here we use a pattern containing all combinations of the letters in
“thanksgiving” and an extra constraint function to ensure letters are contained by
their availability (count). Strictly speaking, an anagram must use all the letters of the
input, but I ignore that here.
In[119]:= thanksgivingQ[word_] := StringCount[word, "t"] < 2 &&

StringCount [word, "h"] < 2 && StringCount[word, "a"] < 2 &&

StringCount [word, "n"] < 3 && StringCount[word, "k"] < 2 &&

StringCount [word, "s"] < 2 &% StringCount[word, "g"] < 3 &&

StringCount [word, "i"] < 3 && StringCount [word, "v"] < 2;
In[120]:= DictionaryLookup |

word : ("t" | "h" | "a" | "n" | "K" | "s" | "g" | "i" | ") ../;

thanksgivingQ[word], IgnoreCase - True ]
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Out[120]= {a, aging, agings, Agni, ah, Aisha, akin, Akita, an, Ana, angst, Anita, ankh,
ankhs, Ann, Anna, ans, Anshan, ant, anti, anting, antis, ants, as, ash,
Ashanti, ashing, Asia, Asian, ask, asking, at, Atkins, Ava, Avis, gag,
gags, gain, gaining, gains, gait, gaits, gang, gangs, gas, gash, gashing,
gating, Gavin, ghat, ghats, Ghats, GI, giant, giants, gig, gigs, gin,
Gina, gins, Gish, gist, git, gits, giving, givings, gnash, gnashing,
gnat, gnats, gs, ha, hag, haggis, hags, Hahn, Haiti, Han, hang, hanging,
hangings, hangs, hank, Hank, hanks, Hans, has, hast, hasting, hat, hating,
hats, having, hi, Higgins, hiking, hinging, hint, hinting, hints, his,
histing, hit, hits, HIV, hiving, I, Ian, in, Ina, ink, inking, inks, inn,
innit, inns, ins, insight, inti, is, Isa, Isiah, it, IT, its, Iva, Ivan,
Kan, Kans, Kant, khan, Khan, khans, kin, king, King, kings, Kings, kins,
kit, Kit, kith, kithing, kiths, kiting, kits, knavish, knight, Knight,
knighting, knights, knish, knit, knits, ks, nag, nags, nah, nan, Nan,
nans, NASA, Nash, Nat, nigh, night, nights, Nikita, Nina, ninth, ninths,
Nisan, nit, Nita, nits, nth, sag, saint, saith, Saki, Saks, San, sang,
Sang, saning, sank, Sask, sat, SAT, satin, sating, satining, saving, sh,
shag, shaking, shank, shat, shaving, shin, shining, shiv, Shiva, sigh,
sighing, sight, sighting, sign, signing, Sikh, Sikhs, sin, Sinai, sing,
singing, sink, Sinkiang, sinking, sit, siting, Siva, Sivan, ska, skating,
ski, skiing, skin, skint, skit, skiting, skiving, snag, snaking, snit,
stag, staging, stain, staining, staking, Stan, stank, staving, sting,
stinging, stink, stinking, ta, tag, tags, Tahiti, taking, takings, tan,
tang, tangs, tank, tanking, tanks, tans, task, tasking, Thai, Thais,
than, thank, thanking, thanks, thanksgiving, Thanksgiving, Thant, thin,
thing, things, think, thinking, thinks, thins, this, ti, Tia, tin, Tina,
ting, Ting, tinging, tings, tining, tins, Tisha, Titan, Titans, Titian,
TNT, ts, TV, TVs, vain, van, Van, Vang, vanish, vanishing, vans, vast,
vat, VAT, vats, VHS, via, viking, Viking, vikings, Vikings, vining,

visa, Visa, visaing, vising, visit, vista, vistaing, vita, Vivian, vs}

Using Tally[] to count letter occurrences and doing a bit of set manipulation, we
can generalize this for any word. The condition checking for the empty complement
at the end is not strictly needed here because we will never match a word in the dic-
tionary that has a letter that is not in the input word. However, it is needed to make
the logic if isWordSubsetQ[ ] is correct as a general predicate.
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In[121]:= isWordSubsetQ[wordl , word2_] :=
Block[{tallyl = Tally [Characters [word1] ],
tally2 = Tally[Characters[word2]]},

And @e MapThread[ (#1[[2]] = #2[[2]]) &, {Intersection[tally1,
tally2, SameTest» (#1[[1]] === #2[[1]] &)], Intersection]|
tally2, tallyl, SameTest- (#1[[1]] === #2[[1]] &) ]}] &

Complement [Characters [word2], Characters[wordl]] === {}]
In[122]:= isWordSubsetQ["thanksgiving", "visa"
Out[122]= True

In[123]:= isWordSubsetQ["thanksgiving", "pork"]
Out[123]= False

In[124]:= anagrams[word_] := DictionaryLookup[

w : Characters [word] .. /; isWordSubsetQ[word, w], IgnoreCase —» True]

You can test the generality against other words.
In[125]:= anagrams["winter"]
Out[125]= {en, er, in, inert, inter, ire, it, net, new, newt, nit, niter, re, rein, rent,
rite, ten, tern, ti, tie, tier, tin, tine, tire, twin, twine, twiner, we,
weir, wen, went, wet, win, wine, winter, wire, wit, wren, writ, write}

In[126]:= anagrams["dog"]
out[126]= {do, dog, go, god}

Palindromes
Here is a neat little palindrome finder (courtesy of the Mathematica documentation).
In[127]:= DictionaryLookup [x_ /; X === StringReverse[x] ]
out[127]= {a, aha, aka, bib, bob, boob, bub, CFC, civic, dad, deed, deified,
did, dud, DVD, eke, ere, eve, ewe, eye, gag, gig, huh, I, kayak,
kook, level, ma'am, madam, mam, MGM, minim, mom, mum, nan, non, noon,
nun, oho, pap, peep, pep, pip, poop, pop, pup, radar, redder, refer,
repaper, reviver, rotor, sagas, sees, seres, sexes, shahs, sis,
solos, SOS, stats, stets, tat, tenet, TNT, toot, tot, tut, wow, WWW}

Spell-checker

By using all the words in the dictionary with Nearest[], you can create a rudimen-
tary spell-checker. For our first attempt, we’ll use Nearest’s default distance func-
tion. We'll return a list for which the first element is True or False depending on the
word’s inclusion in the dictionary and the second element is a list of potential cor-
rect spellings.
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In[128]:= nfl = Nearest[DictionaryLookup[]];

SpellCheckl[word_] := Module[ {corrections = nfl[word, 15]},
If[ MembexQ[ corrections, word], {True, word}, {False, corrections}]]
In[130]:= SpellCheckl["pickel"]
out[130]= {False, {nickel, picked, picker, picket, bicker, dicker, dickey,

hickey, kicked, kicker, licked, Michel, mickey, Mickey, nicked} }

We see that the default distance function used for strings (EditDistance) does not
make the greatest spell-checker: the obvious suggestion of pickle is not among the
first 15 nearest words. You can experiment with other distance functions. Here is
one that penalizes more heavily for mistakes in consonants than for mistakes in vowels.

In[131]:= SpellDistance[a_, b_] := Module|
{vowelpat = ("a" | "e" | "i" | "o" | "u") »""}, EditDistance[a, b] +
EditDistance [StringReplace[a, vowelpat], StringReplace [b, vowelpat]] ]

nf2 = Nearest [DictionaryLookup [1, DistanceFunction -» SpellDistance] H

SpellCheck2 [word_] := Module[ {corrections = nf2[word, 10]},
If[ MemberQ[ corrections, word], {True, word}, {False, corrections}]]
In[134]:= SpellCheck2["pickel"]
Out[134]= {False, {nickel, picked, picker,
picket, pickle, packed, packer, packet, pecked, pick}}

Here we test on some commonly misspelled words (according to the Oxford Dictio-
naries website: http://bit.ly/KulQ2) .

In[135]:= SpellCheck2["accomodate"]
Out[135]= {False, {accommodate, accommodated, accommodates, accumulate, accelerate,

accentuate, acclimate, accolade, accommodation, accordant}}

In[136]:= SpellCheck2["alcahol"]
out[136]= {False, {alcohol, alcohols, alcoholic,

achoo, ahchoo, algal, anchor, carol, lethal, local}}
In[137]:= SpellCheck2["mispell”]

out[137]= {False, {misspell, Aspell, Ispell, miscall,
respell, spell, dispel, dispels, misdeal, misplay}}

This returns useful results, but performance (speed) is poor.

In[138]:= SpellCheck2["pickel"] // Timing
Out[138]= {2.22533, {False, {nickel, picked, picker,
picket, pickle, packed, packer, packet, pecked, pick}}}
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We can improve the speed using a divide-and-conquer approach: pick a large but
manageable number (e.g., 100) of nearest words according to simple EditDistance,
and then do a second pass on the smaller set with the EditDistance sans vowels. We
define a distance function called ConsonantDistance[] for the second pass.

In[139]:= ConsonantDistance[a_, b_] :=
MOdule[{Vowelpat = (Ilall | Ilell I “i“ | "0“ I llull) - Illl}’
EditDistance [StringReplace[a, vowelpat], StringReplace[b, vowelpat]] ]

In[140]:= SpellCheck3 [word_] :=
Module[ {corrections, corrections2, nf}, corrections = nfl[word, 100];

nf = Nearest[corrections, DistanceFunction - ConsonantDistance];
corrections2 = nf [word, 10];
If[ MembexQ[ corrections2, word], {True, word}, {False, corrections2}]]
In[141]:= SpellCheck3["pickel"] // Timing
Out[141]= {0.055973, {False, {pickle, nickel, picked,
picker, picket, packed, packer, packet, pecked, pick}}}

Good results and about 43 times faster!

Mathematica also provides WordData[], which returns information about properties
of words, such as parts of speech and definitions.

In[142]:= WordData["run"]

out[142]= {{run, Noun, Score}, {run, Noun, Travel}, {run, Noun, RegularTrip},
{run, Noun, ShortTrip}, {run, Noun, FootballPlay}, {run, Noun, Endeavor},
{run, Noun, Successiveness}, {run, Noun, Flow}, {run, Noun, Damage},
{run, Noun, Footrace}, {run, Noun, Campaign}, {run, Noun, Streak},
{run, Noun, Stream}, {run, Noun, IndefiniteQuantity},
{run, Noun, Liberty}, {run, Noun, TimePeriod}, {run, Verb, Disintegrate},
{run, Verb, SplitUp}, {run, Verb, Dissolve}, {run, Verb, Treat},
{run, Verb, Change}, {run, Verb, Get}, {run, Verb, Vie}, {run, Verb, Race},
{run, Verb, Catch}, {run, Verb, Draw}, {run, Verb, Operate},
{run, Verb, Function}, {run, Verb, CarryThrough}, {run, Verb, Play},
{run, Verb, Circularize}, {run, Verb, Trip}, {run, Verb, GoThrough},
{run, Verb, Hurry}, {run, Verb, TravelRapidly}, {run, Verb, Sport},
{run, Verb, Accompany}, {run, Verb, Sail}, {run, Verb, SpreadOut},
{run, Verb, Flow}, {run, Verb, Gkoay}, {run, Verb, Displace},
{run, Verb, MoveFreely}, {run, Verb, Trade}, {run, Verb, Loose},
{run, Verb, Direct}, {run, Verb, Succeed}, {run, Verb, Implement},
{run, Verb, Occur}, {run, Verb, Continue}, {run, Verb, Endure},
{run, Verb, Extend}, {run, Verb, MakePass}, {run, Verb, Lean},
{run, Verb, Incur}, {run, Verb, Go}, {run, Verb, Range}}
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See Also

Readers interested in spell-checkers should check out this approach (written in
Python) by Peter Norvig of Google: http://bit.ly/19gyjN.

5.8 Importing XML

Problem

You want to import and manipulate XML data in Mathematica.

Solution

Use Import[] with format "XMLObject" to import XML and convert it to a special
Mathematica expression form. Consider the following XML in file datal.xml
(available for download at the book’s website).

<?xml version="1.0" encoding="UTF-8"?>
<!-- Some data to use as a test for Mathematica's XML import --»>
<?test Just for didactic purposes?>
<data>
<item>
<name>Leonardo</name>
<sex>male</sex>
<age>8</age>
<height>4.7</height>
</item>
<item>
<name>Salvatore</name>
<sex>male</sex>
<age>5¢</age>
<height>4.1</height>
</item>
<item>
<name>Alexis</name>
<sex>female</sex>
cage>6</age>
<height>4.4</height>
</item>
</data>
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In[143]:= data = Import[FileNameJoin[
{NotebookDirectory[], "..", "data", "ch02", "datal.xml"}], "XMLObject"]
Out[143]= XMLObject [Document] [
{XMLObject [Declaration] [Version - 1.0, Encoding - UTF-8],
XMLObject [Comment] [
Some data to use as a test for Mathematica's XML import ],
XMLObject[ProcessingInstruction} [test, Just for didactic purposes]},
XMLElement [data, {}, {XMLElement[item, {},
{XMLElement[name, {}, {Leonardo}], XMLElement[sex, {}, {male}],
XMLElement [age, {}, {8}], XMLElement [height, {}, {4.7}]}],
XMLElement[item, 1, {XMLElement[name, {1}, {Salvatore}],
XMLElement [sex, {}, {male}], XMLElement [age, {}, {5}],
XMLElement [height, {}, {4.1}]}], XMLElement [item, {},
{XMLElement[name, {}, {Alexis}], XMLElement [sex, {}, {female}],
XMLElement [age, {}, {6} ], XMLElement [height, {}, {4.4}]}]}],
{XMLObject [Comment] [ Comment at end ]}]

Discussion

Mathematica imports XML into expression form. You can manipulate the ex-
pression just like you would any other Mathematica expression, but first you
need to understand the structure, which is a bit unconventional. Mathematica
uses two types of heads to encode XML. XMLObject["type"] is used to repre-
sent everything that is not an element, including the entire document (type =
"Document"), comments (type = "Comment"), CDATA sections (type =
"CDATASection"), processing instructions (type = "ProcessingInstruction"), decla-
rations (type = "Declaration"), and document types (type = "Doctype"). In the
XML above, you see examples for document, declaration, comment, and process-
ing instruction. XMLELlement[tag,{attrl—-vall,...},{datal,...}] is used to represent
element data for both simple (text values) and complex element types (those with
child elements). Don’t get tripped up by the XMLObject notation. The entire syntax
XMLObject["type"] is the head of the expression, while the remainder is a sequence
of one or more arguments that depends on the type.

In[144]:= Head[data] // InputForm
Out[144]//InputForm=
XMLObject[ "Document”]

The document version consists of three arguments: a list containing the declaration
and possibly other objects, the document content, and a list of any objects (such as
comments) that might appear past the last XML element. A very crude way to access
structure is through Part[] or, equivalently, [[n]].
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In[145]:= data[[1]]
Out[145]= {XMLObject [Declaration] [Version - 1.0, Encoding - UTF—8} s
XMLObject [Comment] [
Some data to use as a test for Mathematica's XML import ],
XMLObject[ProcessingInstruction} [test, Just for didactic purposes]}

In[146]:= data[[2]]

Out[146]= XMLElement|data, {}, {XMLElement[item, {},
{XMLElement[name, {1}, {Leonardo} ], XMLElement [sex, {}, {male}],
XMLElement [age, {}, {8} |, XMLElement [height, {}, {4.7}]}],

XMLElement[item, {1, {XMLElement[name, {}, {Salvatore}],

XMLELement [sex, {}, {male}], XMLElement [age, {}, {5}],
XMLElement [height, {3}, {4.1}]}], XMLElement [item, {},
{XMLElement[name, {}, {Alexis}], XMLElement [sex, {}, {female}],
XMLElement [age, {}, {6} ], XMLElement height, {}, {4.4}]}]}]

In[147]:= data[[3]]
out[147]= {XMLObject[Comment] [ Comment at end ]}

In[148]:= data[[2]]1[[1]] (*The tag of the root elementx)
Out[148]= data

In[149]:= data[[2]11[[311[[11] (+The first childs)

Out[149]= XMLElement[item, {},
{XMLElement[name, {}, {Leonardo} ], XMLElement [sex, {}, {male}],
XMLElement [age, {}, {8} ], XMLElement [height, {}, {4.7}]}]

Pattern matching is much more elegant and more resilient to changes in document
structure. Here we extract male elements using Cases with a pattern and an infinite
level specification. This is roughly equivalent to using XPath in native XML processing.

In[150]:= Cases[data, XMLElement[_, _, {_, XMLElement["sex", _, {"male"}1, __ }1,
Infinity] // TableForm
Out[150]//TableForm=
XMLElement [item, {}, {XMLElement[name, {}, {Leonardo}], XMLElement[sex,
{}, {male}], XMLElement[age, {}, {8}], XMLElement[height, {}, {4.7}]}]
XMLElement [item, {}, {XMLElement[name, {}, {Salvatore}], XMLElement[sex,
{}, {male}], XMLElement[age, {}, {5}], XMLElement[height, {3}, {4.1}]}]
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Sometimes, the XMLObject and XMLElement notation can be a bit too heavy, and it is
easier to work with simple nested lists. This can be done with Apply plus List, speci-
fying all levels.
In[151]:= list = Apply[List, data, {0, Infinity}]
Out[151]= {{{{Version, 1.0}, {Encoding, UTF—S}},
{ Some data to use as a test for Mathematica's XML import },
{test, Just for didactic purposes}}, {data, {},
{{item, {}, {{name, {}, {Leonardo}}, {sex, {}, {male}}, {age, {}, {8} },
{height, {}, {4.7}}}}, {item, {}, {{name, {}, {Salvatore}},
{sex, {}, {male}}, {age, {}, {5}}, {height, {}, {4.1}}}},
{item, {3}, {{name, {}, {Alexis}}, {sex, {}, {female}},
{age, {}, {6}}, {height, {}, {4.4}}}}}}, {{ Comment at end }}}

This can shorten the patterns needed to extract content.

In[152]:= Cases[list, {__, {"sex", _, {"male"}}, _ }, Infinity]

out[152]= {{{name, {1, {Leonardo}}, {sex, {}, {male}},
{age, {}, {8}}, {height, {3}, {4.7}}}, {{name, {}, {Salvatore}},
{sex, {}, {male}}, {age, {}, {5}}, {height, {}, {4.1}}}}

Another useful transformation is to change all heads to the symbolic form of
the element tag. Here we use //. (ReplaceAll) with rules that strip XMLObject and
convert XMLElement expressions. I show the output in tree form to make it clear what
this transformation does.

In[153]:= data //. {XMLObject["Document"][_, content_, _] > content,
XMLElement ["data", attrs_, content_] :»> XMLElement["items",
attrs, content], XMLElement[tag_String, _, {content_ }] =

Symbol [tag] ee {content}} // TreeForm[#, ImageSize > 600] &
Out[153]//TreeForm=

items

item |

height

| name sex name sex name sex

age

| o7

age

height

Leonardo | male Salvatore| male female

| 4.1 || Alexis
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’__ When converting strings to symbols, you need to be cognizant of whether a

“—@ symbol already exists and has a value. This bit me when I was preparing this

recipe, because 1 failed to recognize that the top-level element tag name was

“data,” which, of course, turned out to be the name of the variable

that [ was transforming. Infinite recursion! The solution was to include

the transformation from XMLElement["data", attrs , content ] to
XMLElement["items", attrs, content] as the first transformation.

See Also

Recipes 5.9 and 5.10 show you how to transform imported XML into other structures.

5.9 Transforming XML Using Patterns and Rules

Problem

You want to transform imported XML into something more suitable to mathemati-
cal manipulation.

Solution

The format of imported XML is a bit heavy. You use pattern matching and
ReplaceAll to transform it into something more digestible. Here we take our
row-oriented XML data into a simple matrix.

In[154]:= data = Import[FileNameJoin[
{NotebookDirectory[], "..", "data", "ch02", "datal.xml"}], "XMLObject"];

In[155]:= Cases[data 5 XMLElement["item", _, _], In-Finity] /.
XMLElement[_, _, {val_}] = val /.
XMLElement ["item", _, list_] :» list /. {n_, s_, age, ht_} -
{n, s, ToExpression[age], ToExpression[ht]} // MatrixForm
Out[155]//MatrixForm=

Leonardo male 8 4.7

Salvatore male 5 4.1

Alexis female 6 4.4

This technique has two basic steps. First, you use Cases to extract the relevant elements. Sec
ond, you use a series of one or more transformations to massage the data into the form you
want. In the first transformation, elements are taken to primitive values. Here you
rely on the column position to determine when strings need conversion into numbers via
ToExpression[]. The second transformation strips out the remaining XMLElement con-
tent. Until you have some experience with these types of transformations it is unlikely that
you’ll whip them up off the top of your head. The final form of this transformation
reflects the fact that I developed it in stages. Here are the successive refinements.
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Choose the relevant elements.

In[156]:= Cases[data, XMLElement["item", _, _], Infinity]

Out[156]= {XMLElement[item, {},
{XMLElement[name, {}, {Leonardo}], XMLElement [sex, {}, {male}],
XMLElement [age, {}, {8} ], XMLElement [height, {}, {4.7}]}],

XMLElement [item, {}, {XMLElement [name, {}, {Salvatore}],

XMLElement [sex, {}, {male}], XMLElement [age, {}, {5}],
XMLElement [height, {3}, {4.1}]}], XMLELement [item, {},
{XMLElement[name, {}, {Alexis} ], XMLElement [sex, {}, {female}],
XMLElement [age, {}, {6} |, XMLElement [height, {}, {4.4}]}]}

Strip out the data-level XML structure.

In[157]:= Cases[data, XMLElement["item", _, _1, Infinity] /.
XMLElement[_, _, {val_}] = val

Out[157]= {XMLElement[item, {}, {Leonardo, male, 8, 4.7}],

XMLElement [item, {}, {Salvatore, male, 5, 4.1},

XMLElement [item, {}, {Alexis, female, 6, 4.4}]}

Strip out the row-level XML structure, leaving the data in matrix form but all the

primitive values as strings.

In[158]:- Cases[data, XMLElement["item", _, _1, Infinity] /.

XMLElement[_, _, {val_}] > val /. XMLElement["item", _, list_] :» list
Out[158]= {{Leonardo, male, 8, 4.7}, {Salvatore, male, 5, 4.1}, {Alexis, female, 6, 4.4}}

Finally, do the type conversion.

In[159]:= Cases[data, XMLElement["item", _, _], Infinity] /.
XMLElement[_, _, {val_}] = val /.
XMLElement ["item", _, list_] = list /.
{n_, s_, age_, ht_} » {n, s, ToExpression[age], ToExpression[ht]}
Out[159]= {{Leonardo, male, 8, 4.7}, {Salvatore, male, 5, 4.1}, {Alexis, female, 6, 4.4}}

Discussion

There are always many ways to solve the same transformation problem. The trade-
offs involve brevity, clarity, generality, and performance. The solution has clarity, be-
cause it accomplishes the transformation in a step-by-step fashion. However, it is nei-
ther brief nor very general. The following transformation does the same thing but is
more general. It will work on any two-level XML document because it does not
match on specific element names (like "item"). It also does not hardcode which
columns contain numeric data. However, it is a bit more cryptic because it does not
mention XMLElement at all. Rather, it immediately converts the data to a list (using
Apply with head List), and it uses [[n]] to pick out the relevant items.
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In[160]:= toMatrix[xml_] :=
Apply[List, xml[[2]], {0, Infinity}][[31]1 /. {_, {}, row_} = row /.
{_, (3, {val_}} =
If [StringMatchQ[val, NumberString ]|, ToExpression[val], val]

toMatrix[data] // MatrixForm
Out[161]//MatrixForm=

Leonardo male 8 4.7
Salvatore male 5 4.1
Alexis female 6 4.4

I demonstrate the generality by processing an XML file with a different number of
rows, columns, and data types.

In[162]:= toMatrix[Import[
FileNameJoin [ {NotebookDirectory[], "..", "data", "ch02", "data2.xml"}],

"XMLObject"]] // MatrixForm
Out[162]//MatrixForm=
1. 88.33 8 1000 4.7
2. 99.66 5 1001 4.1
3. 89.7 6 1002 4.4
1.5 99.7 6 1008 4.45

XML-to-XML transformations

You may find that you need to transform XML for reasons other than using the data
in Mathematica. Unless you already know a language specifically designed for this
purpose (like XSLT), Mathematica is a good choice. Mathematica’s pattern-matching
capabilities are well suited to many types of XML transformations. Consider the
problem of converting elements to attributes.

In[163]:= dataUsingAttr =
data /. XMLElement["item", {3}, childElements_] :>XMLE1ement["item",

childElements /. XMLElement[tag_, _, {val_}]| :> Rule[tag, val], {}]
Out[163]= XMLObject [Document] |

{XMLObject [Declaration] [Version - 1.0, Encoding - UTF-8],
XMLObject [Comment] [
Some data to use as a test for Mathematica's XML import ],
XMLObject[ProcessingInstruction} [test, Just for didactic purposes] },
XMLElement [data, {},
{XMLElement [item, {name - Leonardo, sex - male, age - 8, height > 4.7}, {} ],
XMLElement [item, {name - Salvatore, sex - male, age - 5, height - 4. 1} s
{}], XMLElement [item,
{name  Alexis, sex - female, age - 6, height > 4.4}, {}]}],
{XMLObject [Comment] [ Comment at end ]}]
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It is a bit easier to see how this worked by converting back to XML text. The strip-
ping of carriage returns (\r) is only for formatting purposes.

In[164]:= StringReplace [ExportString[dataUsingAttr, "XML"], "\r" - ""]
Out[164]= <?xml version='1.0" encoding="UTF-8'?>
<!-- Some data to uses as a test for Mathematica's XML import -->
<?test Just for didactic purposes?>
<data>
<item name="'Leonardo'
sex="'male’
age="8"
height="4.7" />
<item name="'Salvatore'
sex="male’
age="5"
height="4.1" />
<item name="'Alexis'
sex="'female'

age="6"
height="4.4" />
</data>
<!-- Comment at end -->

A transformation from attributes to elements follows similar lines. The use of Join][]
here is not strictly necessary, but it shows you how to handle cases in which you
don’t want to lose preexisting child elements at the point where you are injecting at-
tribute content.
In[165]:= dataUsingElems =
dataUsingAttr /. XMLElement["item", attrs_, childElements_] :»
XMLElement["item", {}, Join[childElements,
attrs /. Rule[tag_, val_] > XMLElement[tag, {}, {val}]]]
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Out[165]= XMLObject [Document] |
{XMLObject [Declaration] [Version - 1.0, Encoding - UTF-8],
XMLObject [Comment] [
Some data to use as a test for Mathematica's XML import ],
XMLObject[ProcessingInstruction}[test,]ust for didactic purposes]},
XMLElement [data, {}, {XMLElement[item, {},
{XMLElement[name, {}, {Leonardo}], XMLElement [sex, {}, {male}],
XMLElement [age, {}, {8}], XMLElement [height, {}, {4.7}]}],
XMLElement[item, {1, {XMLElement[name, {1}, {Salvatore}],
XMLElement [sex, {}, {male}], XMLElement [age, {}, {5}],
XMLElement [height, {}, {4.1}]}], XMLElement [item, {},
{XMLElement[name, {}, {Alexis}], XMLElement [sex, {}, {female}],
XMLElement [age, {}, {6} |, XMLElement [height, {}, {4.4}]}]}],
{XMLObject [Comment] [ Comment at end ]}]

In[166]:= StringReplace[ExportString[dataUsingElems, "XML"], "\r" - “"]
Out[166]= <?xml version="1.0"' encoding="UTF-8'?>
<!-- Some data to use as a test for Mathematica's XML import -->
<?test Just for didactic purposes?>
<data>
<item>
<name>Leonardo</name>
<sex>male</sex>
<age>8</age>
<height>4.7</height>
</item>
<item>
<name>Salvatore</name>
<sex>male</sex>
<age>5</age>
<height>4.1</height>
</item>
<item>
<name>Alexis</name>
<sex>female</sex>
<age>b</age>
<height>4.4</height>
</item>
</data>
<!-- Comment at end -->
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See Also

See the tutorial XML/tutorial/TransformingXML in the Mathematica documentation
(also at http://bit.ly/4tS1Ce).

Recipe 5.10 shows alternate techniques for XML transformation.

5.10 Transforming XML Using Recursive
Functions (a la XSLT)

Problem

The pure pattern-based approach of Recipe 5.9 is too awkward, cryptic, or complex
for your particular transformation problem.

Solution

Consider using an approach inspired by Extensible Stylesheet Language Transforms
(XSLT). XSLT is a language that is specifically designed to transform XML. There
are some rough similarities between XSLT and a style of Mathematica programming
that exploits functions, patterns, and recursion. Here is how you use Mathematica
to process XML in ways similar to XSLT. Consider the Recipe 5.9 transformation of
elements to attributes. Rather than rely on replacement, we use a set of mutually re-
cursive functions with patterns to navigate the XML tree while surgically inserting
transformations at the correct places.

In[167]:= data = Import[FileNameJoin|
{NotebookDirectory[], "..", "data", "ch02", "datal.xml"}], "XMLObject"]
Out[167]= XMLObject [Document] [
{XMLObject [Declaration] [Version - 1.0, Encoding - UTF-8],
XMLObject [Comment] [
Some data to use as a test for Mathematica's XML import ],
XMLObject [ProcessingInstruction] [test, Just for didactic purposes]},
XMLElement [data, {}, {XMLElement[item, {},
{XMLElement[name, {}, {Leonardo} ], XMLElement [sex, {}, {male}],
XMLElement [age, {}, {8}], XMLElement [height, {}, {4.7}]}],
XMLElement[item, 31, {XMLElement[name, {1}, {Salvatore}],
XMLElement [sex, {}, {male}], XMLElement[age, {}, {5}],
XMLElement [height, {}, {4.1}]}], XMLElement [item, {},
{XMLElement[name, {}, {Alexis} ], XMLElement [sex, {}, {female}],
XMLElement [age, {}, {6} ], XMLElement [height, {}, {4.4}]}]}],
{XMLObject [Comment] [ Comment at end ]}]
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In[168]:= ClearAll[transform]
transform [ XMLObject [ "Document”] [decl_, content_, rest_]] :=
Module[{}, XMLObject[type] [decl, transform[content], rest] ]
transform [XMLObject [type ] [args__]] :=
Module[{}, XMLObject[type] [args ]]
transform[XMLElement ["item", , elements__] ] :=
Module[ {}, XMLElement["item", asAttribute[#] & /@ elements, {}] ]
transform[XMLELement [tag_String, attrs_List, child List]] :=
Module[{}, XMLElement[tag, attrs, transform[child]]]
transform[list_List] :=Module[{}, transform[#] & /@ list ]
asAttribute [XMLELement [tag_, {}, {val_}]] :=
Module[{}, Rule[tag, val] ]

In[175]:= transform[data]
Out[175]= XMLObject [type] [
{XMLObject [Declaration] [Version - 1.0, Encoding - UTF-8], XMLObject [
Comment] [ Some data to use as a test for Mathematica's XML import ],
XMLObject[ProcessingInstruction} [test, Just for didactic purposes] },
XMLElement [data, {},
{XMLElement [item, {name - Leonardo, sex - male, age - 8, height > 4.7}, {}],
XMLElement [item, {name - Salvatore, sex - male, age - 5, height - 4. 1} ,
{}], XMLElement [ item,
{name - Alexis, sex - female, age - 6, height - 4.4}, {}]}],
{XMLObject [Comment] [ Comment at end ]}]

Discussion

A natural objection to using this style of transformation rather than using replace-
ment rules is that it is more verbose. This verbosity comes with some advantages.
The first advantage is that when things go wrong, it is generally easier to debug a set
of discrete functions than a replacement pattern. Most of the action of a replace-
ment pattern is happening under the covers. The second advantage comes in cases
where you need to make many changes at different levels in the XML hierarchy.
Here the overhead of the recursive approach is less bothersome. We implement a
transformation that changes elements to attributes, renames the "item" element to
"row", changes "sex" to "gender”, and converts the height from feet to meters—all
with very little extra overhead.
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In[176]:= ClearAll[transform]
transform [ XMLObject [ "Document”] [decl_, content_, rest_]] :=
Module[{}, XMLObject [ "Document”] [decl, transform[content], rest] ]
transform [XMLObject [type ] [args__]] :=
Module[{}, XMLObject[type] [args ]]
transform[XMLElement ["item", , elements__] ] :=
Module[ {}, XMLElement["row", asAttribute[#] & /@ elements, {}] ]
transform[list_List] := Module[{}, transform[#] & /@ list ]
transform[XMLELement [tag_String, attrs_List, child List]] :=
Module[{}, XMLElement[tag, attrs, transform[child]]]
asAttribute [XMLElement["sex", {}, {val_}1] :=
Module[{}, Rule["gender", val] ]
asAttribute[XMLElement["height”, {3}, {val_}]] :=
Module[{}, Rule["height", ToString[0.3048 » ToExpression[val]]] ]
asAttribute[XMLElement [tag_, {}, {val_}]] :=Module[{}, Rule[tag, val] ]
In[185]:= data2 = transform[data]
Out[185]= XMLObject [Document] |
{XMLObject [Declaration] [Version - 1.0, Encoding - UTF-8],
XMLObject [Comment] [
Some data to use as a test for Mathematica's XML import ],
XMLObject[Processinglnstruction} [test, Just for didactic purposes] },
XMLElement [data, {}, {XMLElement [row,
{name - Leonardo, gender - male, age - 8, height - 1.43256}, {}],
XMLElement [row, {name - Salvatore, gender - male,
age - 5, height > 1.24968}, {} |, XMLElement [ row,
{name - Alexis, gender - female, age - 6, height - 1.34112}, {}]}],
{XMLObject [Comment] [ Comment at end ]}]
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In[186]:= ExportString[data2, "XML"] // StringReplace[#, "\r" -» ""] &
Out[186]= <?xml version="1.0"' encoding="UTF-8'?>
<!-- Some data to use as a test for Mathematica's XML import -->
<?test Just for didactic purposes?>
<data>
<row name="Leonardo’
gender="male’
age="8"
height="1.43256" />
<row name='Salvatore'
gender="male’
age="'5"
height="'1.24968" />
<row name="'Alexis’
gender="female'

age="6"
height="1.34112" />
</data>
<!-- Comment at end -->

One of the first things you learn about XSLT is that if you create an empty stylesheet
(XSLT’s equivalent of a program), you get some default transformation rules that act
to output just the text nodes of the XML data. We can emulate that behavior in
Mathematica with the following functions.

In[187]:= ClearAll[transform]
transform [ XMLObject [type_] [content_]] :=
StringJoin[transform[#] & /@ List[content]]
transform XMLElement [tag_, attrs_List, data_List]] :=
StringJoin[transform[#] & /e data ]
transform[text_String] := text

transform[_] :=

In[192]:= transform[data]
Out[192]= Leonardomale84.7Salvatoremale54.1Alexisfemale64.4
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So far, so good, but can we do something more interesting? Suppose we want to
clone our XML document but replace all occurrences of the element "sex" with the
element "gender".

In[193]:= ClearAll[transform]

transform [XMLObject [type_] [content_]] :=

Module[{}, XMLObject[type] [transform[List[content]]] ]
transform[XMLElement ["sex", attrs List, data_List]] :=
Module[{}, XMLElement["gender”, attrs, transform[data]]]
transform [ XMLElement [tag_String, attrs_List, data_List]] :=
Module|[{}, XMLElement [tag, attrs, transform[data]] ]
transform[list_List] := Module[{}, transform[#] & /@ list ]
transform[text_String] := Module[{}, text]

In[194]:

In[199]:= transform[data]
Out[199]= XMLObject [Document] [{{XMLObject [Declaration] Htransform [Version - 1.0],
transformEncoding - UTF-8] } |, XMLObject [Comment] [
{ Some data to use as a test for Mathematica's XML import }7],
XMLObject[Processinglnstruction} [{test, Just for didactic purposes}] },
XMLElement [data, {}, {XMLElement[item, {},
{XMLElement [name, {}, {Leonardo}], XMLElement [gender, {}, {male}],
XMLElement [age, {}, {8} ], XMLElement [height, {}, {4.7}]}],
XMLElement[item, {1, {XMLElement[name, {1, {Salvatore}],
XMLElement [gender, {}, {male}], XMLElement [age, {}, {5}],
XMLElement [height, {}, {4.1}]}], XMLElement [item, {},
{XMLElement [name, {}, {Alexis}], XMLElement [gender, {}, {female} |,
XMLElement [age, {}, {6} |, XMLElement [height, {}, {4.4}]}]}],
{XMLObject [Comment] [ { Comment at end }}}H
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This recursive transformational approach is overkill in this scenario since we can
more easily express this transformation using ReplaceAll.
In[200]:= data /. "sex" - "gender"
0ut[200]= XMLObject [Document] |
{XMLObject [Declaration] [Version - 1.0, Encoding - UTF-8],
XMLObject [Comment] [
Some data to use as a test for Mathematica's XML import ],
XMLObject[ProcessingInstruction} [test, Just for didactic purposes] },
XMLElement [data, {}, {XMLElement[item, {},
{XMLElement[name, {}, {Leonardo}], XMLElement[gender, {1, {male}],
XMLElement [age, {}, {8} ], XMLElement [height, {}, {4.7}]}],
XMLElement[item, {1, {XMLElement[name, {1}, {Salvatore}],
XMLElement [gender, {}, {male} ], XMLElement [age, {}, {5}],
XMLElement [height, {}, {4.1}]}], XMLElement [item, {},
{XMLELement [name, {}, {Alexis}], XMLElement [gender, {}, {female} |,
XMLElement [age, {}, {6} |, XMLElement [height, {}, {4.4}]}]}],
{XMLObject [Comment] [ Comment at end ]}]
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There are certain types of structure-adding transformations that were difficult to do in
XSLT until a grouping construct was added (xs1:for-each-group) in XSLT 2.0. Here is a
solution to a grouping problem using Mathematica’s Sort[] and Split[] functions.
In[201]:= employees =
Import [FileNameJoin[ {NotebookDirectory[],
"..", "data", "cho2", "employee.xml"}] , "XMLObject"]
0ut[201]= XMLObject [Document] [
{XMLObject [Declaration] [Version - 1.0, Encoding - UTF-8] },
XMLElement [Employees, {},
{XMLElement [employee, {name - Jil Michel, sex - female, dept - 1001}, { }] ,
XMLElement [employee, {name - Nancy Pratt, sex —» female, dept » 1001} , {1} } ,
XMLElement [employee,
{name - Phill McKraken, sex - male, dept - 1003}, {}],
XMLElement [employee, {name » Ima Little, sex —» female, dept —» 1001}, {}] ,
XMLElement [employee, {name - Betsy Ross, sex - female, dept » 1007}, {}} ,
XMLElement [employee, {name - Jane Doe, sex - female, dept - 1003}, {}} ,
XMLElement [employee, {name - Walter H. Potter, sex - male, dept —» 2001},
{}], XMLElement [employee,
{name - Wendy B.K. McDonald, sex - female, dept 2003}, {} B
XMLElement [employee, {name - Craig F. Frye, sex - male, dept » 1001}, {}} ,
XMLELement [employee, {name - Hardy Hamburg, sex - male, dept - 2001}, { s
XMLElement [employee, {name - Rich Shaker, sex - male, dept - 2001}, {} ] ,
XMLElement [employee, {name - Mike Rosenbaum, sex - male, dept - 2003},
{}], XMLElement [employee,
{name - Cindy Post-Kellog, sex - female, dept - 3001}, {} B
XMLElement [employee, {name - Allen Bran, sex - male, dept - 3001}, {} ] ,
XMLElement [employee, {name - Frank N. Berry, sex - male, dept - 1001},
{}], XMLELement [employee,
{name - Jack Apple, sex - male, dept - 2001}, {}], XMLELement |
employee, {name - Oscar A. Winner, sex - male, dept - 3003}, {} ] ,
XMLElement
XMLElement
XMLElement
XMLElement
XMLElement [employee, {name - Andrew Beckett, sex - male, dept - 3001},
{}], XMLElement [employee,
{name - Susan Sarandon, sex - female, dept - 1001}, {}], XMLELement |

employee, {name - Jack Nickolas, sex - male, dept - 1001}, {}] ,
employee, {name > R.P. McMurphy, sex - male, dept - 1001}, {}],
employee, {name - Tom Hanks, sex - male, dept —» 2001}, {} ] )

employee, {name - Forest Gump, sex - male, dept - 2003}, { }] s

employee, {name - Helen Prejean, sex - female, dept - 2001}, {}]}], {}]
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The goal of this transformation is to group all employees in the same department un-
der a new element <Dept dept="num">. Notice how this is accomplished with little ad-
ditional code. Helper functions define an ordering and an equivalence relation
for Sort and OrderQ, respectively, and a transform[] applies the additional level
of grouping when it matches the "employees" element.

In[202]:= ClearAll[transform]

getDept [XMLElement[_, {__, "dept" —» dept_}, {}1] := dept
sameDeptQ[a_, b_] := Module[{}, Order[getDept[a], getDept[b]] == 0]
orderDept[a_, b_] := Module[{}, Order|[getDept[a], getDept[b]] == 1]
transform[XMLObject ["Document”] [decl_, content_, rest_]] 1=

Module[{}, XMLObject [ "Document”] [decl, transform[content], rest] ]
transform [XMLObject [type_] [args__]] :=

Module[{}, XMLObject[type] [args ]]
transform [ XMLElement [ "Employees”, _, elements_ | ] :=

Module[{}, XMLElement ["Employees”, {},

XMLElement [ "Dept"”, {"dept" - getDept[#[[1]1]]1},#] & /e
Split[Sort [elements, orderDept], sameDeptQ] | ]

transform[list_List] := Module[{}, transform[#] & /@ list ]
transform [XMLElement [tag_String, attrs_List, child List]] :=

Module[{}, XMLElement[tag, attrs, transform[child]]]
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In[211]:= transform[employees]

Out[211]= XMLObject [Document] |
{XMLObject [Declaration] [Version - 1.0, Encoding - UTF-8] },
XMLElement [Employees, {}, {XMLElement Dept, {dept - 1001},

{XMLElement [employee, {name - Susan Sarandon, sex - female, dept - 1001},

{}], XMLELement [employee, {name - R.P. McMurphy,
sex > male, dept - 1001}, {}], XMLElement [employee,
{name - Jack Nickolas, sex - male, dept » 1001}, {}], XMLELement |
employee, {name - Frank N. Berry, sex - male, dept - 1001}, {}] ,
XMLElement [employee, {name - Craig F. Frye, sex - male, dept > 1001} ,
{}], XMLElement [employee, {name - Ima Little,
sex - female, dept » 1001}, {} ], XMLELement [employee,
{name - Nancy Pratt, sex - female, dept » 1001}, {} ], XMLELement |
employee, {name - Jil Michel, sex - female, dept - 1001}, {}]}],
XMLElement [Dept, {dept - 1003}, {XMLElement [employee,
{name - Jane Doe, sex - female, dept - 1003}, {}], XMLELement |
employee, {name - Phill McKraken, sex - male, dept - 1003}, {}]}],
XMLElement [Dept, {dept - 1007}, {XMLElement [employee,
{name - Betsy Ross, sex - female, dept - 1007}, {}]}],
XMLElement [Dept, {dept — 2001}, {XMLElement [employee,
{name > Helen Prejean, sex - female, dept - 2001}, {} |
XMLElement [employee, {name - Tom Hanks, sex -» male, dept - 2001}, {} ] ,
XMLElement [employee, {name - Jack Apple, sex > male, dept - 2001}, { }] ,
XMLElement [employee, {name - Rich Shaker, sex - male, dept - 2001}, {} } ,
XMLElement [employee, {name - Hardy Hamburg, sex —» male, dept —» 2001} ,
{}], XMLElement [employee, {name - Walter H. Potter, sex - male,
dept 2001}, {}]}], XMLElement [Dept, {dept 2003},
{XMLElement [employee, {name - Forest Gump, sex -»male, dept - 2003}, {} ] ,
XMLElement [employee, {name - Mike Rosenbaum, sex - male, dept - 2003},
{}], XMLELement [employee,
{name - Wendy B.K. McDonald, sex - female, dept - 2003}, {}]}],
XMLElement [Dept, {dept - 3001}, {XMLElement [employee,
{name - Andrew Beckett, sex » male, dept - 3001}, {} } ,
XMLElement [employee, {name - Allen Bran, sex -» male, dept - 3001}, {} ] ,
XMLElement [employee,
{name - Cindy Post-Kellog, sex - female, dept 3001}, {}]}],
XMLELement [Dept, {dept - 3003}, {XMLElement [employee,
{name - Oscar A. Winner, sex - male, dept »3003}, {}]}]}], {}]

Of course, there are significant differences between these transformations and XSLT.
For example, in XSLT, you operate on a tree and, hence, can navigate upward from
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child elements to parent elements. This is not the case for Mathematica’s representa-
tion of XML. The tutorial mentioned in the following “See Also” section provides
some guidance for working around these issues.

See Also

The tutorial XML/tutorial/TransformingXML in the Mathematica documentation
(also at http://bit.ly/4tS1Ce) has a section comparing Mathematica to XSLT and can
provide further help in exploiting these techniques.

You can learn more about XSLT at the XSL Working Group’s website: http://bit.ly/1{]sB.

5.11 Writing Parsers and Grammars
in Mathematica

Problem

You want to write a parser in Mathematica.

Solution

The easiest type of parser to write in Mathematica is a recursive descent parser. Be-
fore writing the parser, we need to know the grammar of the language we will parse.
The most common notation for grammars is Backus-Naur Form (BNF), but for
reasons that will become apparent in the discussion, I use Mathematica itself to rep-
resent the grammar. For this example, I use a simplified English grammar. The pre-
sentation here is a variation of one developed and given by Daniel Lichtblau of
Wolfram Research at the Wolfram Developer’s Conference in 1999. Refer to the
“See Also” section on page 235 for more information.

First, we need some helper functions to make creating the grammar easier. We use
two functions, sequence and choose, with attribute HoldAll to prevent them from eval
uating their arguments and causing an infinite recursion. As its name would suggest,
sequence[] represents a sequence of terms of the grammar. Choose represents a
choice of one out of two or more possible terms. I allow choose to take an extra argu-
ment, which is a list of probabilities for the choices. More on that later.

In[212]:= SetAttributes [ {sequence, choose}, HoldAll]
NILL = "7
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This grammar is for a small subset of English.

In[214]:=

In[236]:=
out[236]=

sentence := choose[declarative,interrogative, imperative]
declarative := sequence[subject, predicatepast]
interrogative := sequence[qverb, subject, predicatepresent]
imperative := sequence[actverb, subject]
subject := choose[nounclause, sequence[nounclause, prepositionclause]]
nounclause := sequence[adjectiveclause, noun]
noun = {"skyscraper", "ball", "dog", "cow", "shark", "attorney", "hatter"”,
"programmer"”, "city", "village", "buffalo", "moon", "librarian", "sheep"};

adjectiveclause := sequence[article, adjectivelist]
adjectivelist := choose[NILL, sequence[adjective, adjectivelist], {0.7}]
article = {"a", "the", "this", "that"};
adjective =

{"big", "wet", "mad", "hideous", "red", "repugnant”, "slimy", "delectable",

"mild-mannered", "lazy", "silly", "crazy", "ferocious", "cute“};

prepositionclause := sequence[preposition, nounclause ]
preposition = {"in", "above", "under", "from", "near", "at", "with"} ;
predicatepresent := sequence[verbpresent, subject]
predicatepast := sequence[verbclause, subject]
verbclause : = sequence [adverblist, verbpast]
adverblist := choose[NILL, sequence[adverb, adverblist ], {0.6}]
adverb =

{"swiftly", "unflinchingly", "smugly", "selflessly", "oddly", "mightily"};
verbpast = {"ate“, "threw", "gnashed", "boiled",

"grated", "milked", "spanked", "jumped"};
verbpresent = {"eat“, "throw", "gnash", "boil", "grate",

"milk","spank","salivate","jump"};
qverb = {"did", "will", "could", "should"};
actverb = {"break", "fix", "launch", "squeeze", "fetch"};
ToUpperCase [StringTake [ToString [Hold [sentence]], {6, -2}] ]
SENTENCE

This grammar becomes the specification for our parser. Recursive descent parsers
are probably the easiest parsers to craft by hand because their structure mimics the
grammar. The goal of this parser is to create a labeled parse tree from a sentence.

The parser is very simple: it contains no provision for error handling and relies on
the grammar being completely conflict free. For example, the major sentence types
are completely determined by the first word. Real languages or even artificial lan-
guages (like programming languages) are rarely that clean.
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In[237]:= (+Test for membership of a terminal
symbol in a list of terminal symbols.x)
isQ[type_, word_] := MemberQ [ type, word]

(*Get next word for parser.sx)
getNextWord[{}] :=""
getNextWord [words_List] := First[words]

(*Parse a single word, classifyingit as head, and return length of 1.x)
atomParse [head_, words_List] := {head [getNextWord [words]], 1}

(*Top level parse function for
sentences. Dispatches based on first word.x)
sentenceParse [sentence_sentenceType] i=
Module [ {sentencelist = Apply[List, sentence], firstWord },
firstWord = First[sentencelist];
If [isQ [qverb, firstWord], interrogativeParse[sentencelist],
If[isQ[actverb, firstWord], imperativeParse[sentencelist],
declarativeParse[sentencelist]]]]

(*#declarative := sequence [subject, predicatepast] *)
declarativeParse [words_List] :=
Module [ {subject = subjectParse [words], predicate},
predicate = predicatepastParse [Drop [words, subject[[2]1]1]];
"DECLARATIVE SENTENCE" [subject[[1]], predicate[[1]]]]

(»interrogative := sequence[querb, subject, predicatepresent]«)
interrogativeParse [words_List] :=
Module [ {qverb = atomParse [ "QUESTION VERB", words], subject, predicate},
subject = subjectParse [Drop [words, qverb[[2]]]];
predicate = predicatepresentParse[
Drop [words, querb[[2]] + subject[[2]]]];
"INTERROGATIVE SENTENCE"[querb[[1]], subject[[1]], predicate[[1]]]]

(%%)

(vimperative := sequence[actverb, subject] )
imperativeParse [words_List] :=
Module [ {actverb = atomParse ["ACTION VERB", words], subject},
subject = subjectParse [Drop [words, actverb[[2]1]]];
"IMPERATIVE SENTENCE"[actverb[[1]], subject[[1]]]]
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(*subject :=
choose [nounclause, sequence[nounclause, prepositionclause]]x)
subjectParse [words_List] :=
Module [ {nounclause = nounclauseParse [words], prepositionclause},
prepositionclause = Drop [words, nounclause[[2]]];

If[1 isQ[preposition, getNextWord [prepositionclause] |,
{"SUBJECT" [nounclause[ [1]]], nounclause[[2]]},
prepositionclause = prepositionclauseParse [prepositionclause];
{"SUBJECT" [nounclause[ [1] ], prepositionclause[[1]]],

nounclause[ [2]] + prepositionclause[[2]]1}]]

(*predicatepast:=sequence [verbclause,subject] *)
predicatepastParse[words_List] :=
Module [ {verbclause = verbclauseParse [words], subject},
subject = subjectParse [Drop [words, verbclause[[2]]]1];
{"PREDICATE" [verbclause[[1]], subject[[1]]],
verbclause[[2]] + subject[[2]]}]

(*predicatepresent:=sequence [verbpresent,subject] *)
predicatepresentParse [words_List] :=
Module [ {verb = atomParse["VERB (PRESENT TENSE)", words], subject},
subject = subjectParse [Drop [words, verb[[2]1]1];
{"PREDICATE" [verb[[1]], subject[[1]1]], verb[[2]] + subject[[2]]}]

(+verbclause:=sequence [adverblist,verbpast] )
verbclauseParse [words_List] :=
Module[ {adverbs = adverblistParse [words], verb},
verb = atomParse["VERB (PAST TENSE)", Drop [words, adverbs[[2]]11;
If[adverbs[[2]] == 0, verb,
{"VERB CLAUSE" [adverbs[[1]], verb[[1]]], adverbs[[2]] +verb[[2]]}]]

(*nounclause: = sequence[adjectiveclause, noun] *)
nounclauseParse [words_List] :=
Module [ {adjectiveclause = adjectiveclauseParse [words], noun},
noun = atomParse [ "NOUN", Drop [words, adjectiveclause[[2]]]];
{"NOUN CLAUSE"[adjectiveclause[[1]], noun[[1]]],
adjectiveclause[[2]] + noun[[2]]}]

(*adjectiveclause := sequence [article, adjectivelist] *)
adjectiveclauseParse [words_List] :=
Module [ {art = atomParse["ARTICLE", words], adjlist},
adjlist = adjectivelistParse [Drop [words, art[[2]]11;
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If[adjlist[[2]] =0, art, {"ADIJECTIVE CLAUSE"[art[[1]], adjlist[[1]]],
art[[2]] +adjlist[[2]1]}]]

(xParse (possibly empty) list of adjectives.«)
(*adjectivelist :=
choose[NILL, sequence[adjective, adjectivelist], {0.7}]x)
adjectivelistParse [words_List] :=
Module [ {words2 = words, adj, result, len = 0}, result = "ADJECTIVE LIST"[];
While[isQ[adjective, getNextWord [words2] ],
adj = atomParse [ "ADJECTIVE", words2] ;
len +=adj[[2]];
result = "ADJECTIVE LIST"[result, adj[[1]]];
words2 = Drop [words2, adj[[2]1]];
{Flatten[result, Infinity, "ADJECTIVE LIST"], len}]

(*prepositionclause := sequence[preposition, nounclause] =)
prepositionclauseParse [words_List] :=
Module[ {preposition = atomParse [ "PREPOSITION", words], nounclause},
nounclause = nounclauseParse [Drop [words, preposition[[2]]]];
{"PREPOSITION CLAUSE" [preposition[[1]], nounclause[[1]]],
preposition[[2]] + nounclause[[2]]}]

(xParse (possibly empty) list of adverbs.«)
(*adverblist := choose[NILL, sequence[adverb,adverblist], {0.6}]%)
adverblistParse [words_List] :=
Module [ {words2 = words, adv, result, len = 0}, result = "ADVERB LIST"[];
While[isQ[adverb, getNextWord [words2] ],
adv = atomParse [ "ADVERB", words2];
len +=adv[[2]];
result = "ADVERB LIST" [result, adv[[1]]];
words2 = Drop [words2, adv[[2]]] ];
{Flatten[result, Infinity, "ADVERB LIST"], len}]
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We can test the parser on a sentence that conforms to the grammar.

In[254]:= sentenceParse|
sentenceType["will", "the", "wet", "programmer”, "spank”, "the", "moon"] ]
Out[254]= INTERROGATIVE SENTENCE [QUESTION VERB [will],
SUBJECT [NOUN CLAUSE [ADJECTIVE CLAUSE [ARTICLE [the],
ADJECTIVE LIST[ADJECTIVE [wet]]], NOUN|programmer]]],
PREDICATE [VERB (PRESENT TENSE) [spank],
SUBJECT [NOUN CLAUSE [ARTICLE [the], NOUN[moon]]]]]

Discussion

You may wonder why I took the trouble to specify the grammar using Mathematica
if I was going to write the parser by hand. First, I did not write this parser; I
just prettied up a parser written by Daniel Lichtblau! The more serious answer is
that the grammar can be used to easily create a language generator to go along with
the parser. The generator is very useful for testing the parser. Here I based a genera-
tor on Lichtblau’s implementation but made some significant improvements. The
first improvement is that my implementation is more declarative than procedural be-
cause it leverages Mathematica’s pattern matching. The second improvement is that
the generator absorbs all the complexity so the grammar can remain very clean. In
Lichtblau’s original grammar, the representation was soiled by the presence of pro-
grammatic constructs, like Hold[] and his implementation of random choice. Other
than the presence of probabilities, the grammar in the preceding “Solution” section
is completely clean. In fact, it reads as easy as BNF. Refer to the URL in the “See
Also” section on page 235 to compare this implementation with the original.
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In[255]:= << Combinatorica’

(*needed for BinarySearch[]x)

(*randomChoose [parts_List,probs List] selects an item from
parts_List based on a list of probabilities the length of

which must be one less than the number of parts and the sum

of which is less than one. The interpretation is that each
probability corresponds to the probability of the item in the same
position except for the last item, which gets the residual.x)

randomChoose [parts_List, probs_List] := Module[{weights, test, pos},
weights = N[Append [FoldList [Plus, First[probs], Rest[probs]], 1]1];
test = RandomReal[]; pos = Ceiling[BinarySearch[weights, test]];
parts[ [pos]]]

(#randomPart[] is responsible for interpreting the grammar in

a random manner. There is a variation for each possible term,

and recursion is used to expand nonterminals.x)

randomPart [sequence [parts__]] := randomPart[#] & /@ List[parts]

randomPart [choose [parts__, probs_List]] :=

Union[Flatten[List [randomPart [randomChoose[List[parts], probs]]11]

randomPart [choose [parts__]] := Module[{partList, numParts},
partlList = List[parts]; numParts = Length[partList];
randomPart [randomChoose [partList, Table[1/numParts, {numParts -1}]1]] ]

randomPart [terminals_List] :=

terminals [ [ RandomInteger[ {1, Length[terminals]}] ]]

randomPart [NILL] := {}

(#randomSentence[] is the entry point for

generating a random sentence of the grammar.s)

randomSentence[] := sentenceType @@ Flatten[randomPart[sentence] ]

(*We provide a nice textual formatting for

sentences that also takes care of punctuation.x)

Format [ sentence_sentenceType] :=

Module [ {word = First [sentence], words, punc},

words = Map [StringJoin[#, " "] &, sentence] ;
punc = If[isQ[qverb, word], "?", If[isQ[actverb, word], "!", "."11;
words [ [Length [words] ] | = StringReplacePart [Last [words], punc, -1];
words [ [1]] = StringReplacePart [First [words],

ToUpperCase [StringTake [First [words], 11], 1];

Apply [StringJoin, words] |
Here you can see the result of generating 10 random sentences. They are, for the

most part, utter gibberish, but some are kind of funny. They all conform to the gram-
mar, as we can see by running them through the parser.
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In[264]:= randomSentence[] // InputForm
Out[264]//InputForm=
sentenceType["a", "city", "in", "that", "mad", "village", "threw", "the",
"shark", "at", "a", "ball"]
In[265]:= Table[randomSentence[], {10}] // TableForm
Out[265]//TableForm=
Launch this moon from the city!
A skyscraper from a village ate a skyscraper in the attorney.
"The delectable librarian above that red hatter spanked this buffalo above
the big sheep."
Will that programmer salivate that programmer?
Could that mad silly ball spank this moon at that buffalo?
This skyscraper under the cow boiled a village in that village.
Squeeze a ball!
"The crazy mad city in the skyscraper unflinchingly jumped this village
above the skyscraper.”
Could a programmer spank the attorney?
Fetch a programmer in this shark!

In[266]:= SeedRandom[2];
sentenceParse [randomSentence[]] // TreeForm[n, ImageSize » 500] &
Out[267]//TreeForm=

IMPERATIVE SENTENCE

ACTION VERB SUBJECT
I
break NOUN CLAUSE PREPOSITION CLAUSE
L N — ~
ARTICLE NOUN PREPOSITION NOUN CLAUSE
\ \ \ e
that dog above || ADJECTIVE CLAUSE NOUN

ARTICLE || ADJECTIVE LIST cow

[ [
this ADJECTIVE
[
ferocious
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The parser we wrote by hand is an instance of a predictive recursive descent parser
because it looks ahead wherever there is a choice so that it does not take a wrong
path through the grammar. In contrast, a backtracking parser simply starts over
from where it left off if a particular parse path fails. If you are ambitious, you can
continue this recipe and write a backtracking parser generator in Mathematica. The
references in the following “See Also” section provide some background.

See Also
See Daniel Lichtblau’s original implementation at http://bit.ly/zXhUm.

Packrat parsing is amenable to Mathematica implementation. See http://bit.ly/RsNCe.

A functional approach to parsing is discussed in “Monadic Parser Combinators” by
Graham Hutton and Erik Meijer, published in Journal of Functional Programming,
Volume 8, Issue 4, 1996. See hittp://bit.ly/PIVAh (PostScript file).
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CHAPTER 6
Two-Dimensional Graphics and Plots

I've been looking so long at these pictures of you
that I almost believe that they’re real

I’ve been living so long with my pictures of you
that I almost believe that the pictures are all I can feel

The Cure, “Pictures of You”

6.0 Introduction

One of the features that places Mathematica in a class by itself among similar
computer-aided mathematics tools is its advanced graphics capabilities. This chap-
ter focuses on two-dimensional graphics. Mathematica provides a variety of plotting
functions with a versatile set of options for customizing their display. The most
common types of 2D graphic are the plot of a function and list plots of values.
Recipe 6.1 covers Plot and Recipe 6.4 covers ListPlot. Frequently you will want
to use other coordinate systems or scales. In two dimensions, PolarPlot and
ParametricPlot are often used as demonstrated in Recipes 6.1 and 6.2.

True to its symbolic nature, Mathematica represents all graphics as collections of
graphics primitives and directives. Primitives include objects such as Point and Line;
directives provide styling information such as Thickness and Hue. Mathematica al-
lows you to work with the low-level primitives (see Recipe 6.8), but most readers
will be interested in the higher-level functions like Plot and ListPlot, which gener-
ate graphics from functions and data and display them. However, it is easy to demon-
strate that these functions generate primitives by specifying InputForm.

In[1]:= ListPlot[{0, 1, 2,3}] // InputForm
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Out[1]//InputForm=
Graphics [ {Hue[0.67, 0.6, 0.6],
Point[{{1., 0.}, {2., 1.}, {3., 2.}, {4., 3.}}1},
{AspectRatio -> GoldenRatio” (-1), Axes -> True,
AxesOrigin -> {0, Automatic},
PlotRange -> Automatic, PlotRangeClipping -> TrueH

This uniform representation allows graphics to be manipulated programmatically,
just like any Mathematica object, and sometimes can be useful for generating cus-
tom effects. However, this representation is not entirely at the lowest level, because
graphics constructs like axes are implicitly specified via options. To get to the lowest
level you can use the function FullGraphics. Here I use Short to suppress some of
the details.
In[2]:= Short[InputForm[FullGraphics[ListPlot[{0, 1,2,3}1]1], 10]
Out[2]//Short=
Graphics[{{Hue[0.67, 0.6, 0.6], Point[{{1l., 0.}, {2., 1.}, {3.,
2.}, {4., 3.3}1}, {{GraylLevel[0.], AbsoluteThickness[0.25],
Line[{{0.2, 0.}, {0.2, 0.010112712429686845}}]}, Text[0.2,
(0.2, -0.02022542485937369}, (0., 1.}], {GrayLevel[0.],
AbsoluteThickness[0.25], Line[{{0.4, 0.}, {0.4,
0.010112712429686845}} 1}, Text[0.4, {0.4, —0.02022542485937369},
{0., 1.}], {GraylLevel[0.], AbsoluteThickness[0.25],
Line [ { {0.6000000000000001, 0.}, {0.6000000000000001,
0.010112712429686845} 11}, Text [0.6000000000000001,
{0.6000000000000001, -0.02022542485937369}, {0., 1.}],
{GraylLevel[0.], AbsoluteThickness[0.25], Line[{{0.8, 0.}, {0.8,
0.010112712429686845}} ]}, <<41>>, (Graylevel[0.], <<2>>},
{GrayLevel[0.], AbsoluteThickness[0.125], Line[{{0., 0.9}, {0.00375,
0.9}}1}, {GrayLevel[0.], AbsoluteThickness[0.125], Line[{{O.,
0.9500000000000001}, {0.00375, 0.9500000000000001} 3]}, {GraylLevel(0.],
AbsoluteThickness[0.25], Line[{{0., 0.}, {0., 1.}}1}}}]

In the recipes that follow, I make frequent use of GraphicsRow, GraphicsColumn, and
GraphicsGrid. These are handy for formatting multiple graphics outputs across the
page to make maximum use of both horizontal and vertical space. Both GraphicsRow
and GraphicsColumn take a list of graphics to format, whereas GraphicsGrid
takes a matrix. To help generate these lists and matrices, I sometimes use
Table and Partition. These functions are simple enough that I hope they do not de-
tract from the intended lesson of the recipe. Recipe 6.6 explains the use of these grid-
like formatting functions in detail.
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6.1 Plotting Functions in Cartesian Coordinates

Problem

You want to graph one or more built-in or user-defined functions.

Solution

The simplest solution is to use the Plot command with the range of values to plot.
Plot takes one or more functions of a single variable and an iterator of the form
{var, min, max}.
In[3]:= GraphicsRow[{
Plot [Exf[x], {x, -2, 2}],
Plot[{0.5Sin[2 x], Cos[3 x]}, {x, -Pi, Pi}]

}1
1.0 v 1.0
0.5 05
out[3]= - ‘ ! ! ! ! ! ! !
-2 -1 1 2 -3 -2 -1 1 2
~0.5 - ~0.5
-1.0 - -1.0
Discussion

Plot has a wide variety of options for controlling the appearance of the plot. Here
are the defaults.

In[4]:= Partition[ Options[Plot] , 4] // TableForm

Out[4]//TableForm=

AlignmentPoint »Center  AspectRatio— 1/GoldenRatio  Axes- True AxeslLabel - None
AxesOrigin— Automatic AxesStyle— {} Background - None BaselinePosition - Automatic
BaseStyle— {} ClippingStyle - None ColorFunction - Automatic ColorFunctionScaling - True
ColorOutput —Automatic ~ ContentSelectable —Automatic CoordinatesToolOptions - Automatic DisplayFunction:$DisplayFunction
Epilog— {} Evaluated - Automatic EvaluationMonitor - None Exclusions — Automatic
ExclusionsStyle — None Filling - None FillingStyle - Automatic FormatType:> TraditionalForm
Frame - False FrameLabel - None FrameStyle - {} FrameTicks - Automatic
FrameTicksStyle— {} GridLines - None GridlinesStyle— {} ImageMargins - 0.
ImagePadding - All ImageSize - Automatic ImageSizeRaw— Automatic LabelStyle— {}
MaxRecursion - Automatic ~Mesh - None MeshFunctions - { =18} MeshShading - None

MeshStyle - Automatic Method - Automatic PerformanceGoal > $PerformanceGoal PlotLabel - None

PlotPoints - Automatic PlotRange > {Full, Automatic} PlotRangeClipping - True PlotRangePadding - Automatic
PlotRegion - Automatic PlotStyle - Automatic PreserveImageOptions —»Automatic ~ Prolog- {}

RegionFunction- (True&) Rotatelabel-True Ticks - Automatic TicksStyle— {}
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When plotting two or more functions, you may want to explicitly set the style of
each plot’s lines. You can also suppress one or both of the axes using Axes, as I do in
the second and fourth plots. You can label one or both of the axes using AxesLabel and
control the format using LabelStyle.

In[5]:= GraphicsGrid[{
{Plot[{0.5Sin[2x], Cos[3 x], Sin[x] - Cos[2x]}, {x, -Pi, Pi},
PlotStyle » {Directive[Black, Thin], Directive[Black, Thick],
Directive[Black, Dashed] }, ImageSize - Small] »
Plot [Exf[x], {x, -2, 2}, Axes » {False, True}] },
{Plot[0.5sin[2 6], {6, 0, 2 7}, AxesLabel » {"Angle", "Amplitude"},
LabelStyle » Directive[Bold], ImageSize —» Small] )
Plot[0.5Sin[2 6], {6, 0, 2 7'}, Axes - False, ImageSize - Small]

11

1.0
05
0.0
~0.5
-1.0+
out[5]=
Amplitude
0.4
0.2
I I I I I Angle
1 2 4 5 6
-0.2
-0.4
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PlotLabel is a handy option for naming plots, especially when you display several
plots at a time.
In[6]:= GraphicsRow[{
Plot[Sin[x], {x, -2 Pi, 2Pi}, PlotLabel -» "Sin"],
Plot[Cos[x], {x, -2 Pi, 2Pi}, PlotLabel -» "Cos"]

1]
Sin
1.0+
05
Out[6]= . . . . . . . . . .
-6 -4 -2 2 4 -6 -4 - 2 4 6
-0p6 -05
<1.0 F -10F

You can add grid lines with an explicitly determined frequency or a frequency deter-
mined automatically by Mathematica.

In[7]:= GraphicsRow[{
Plot [Tan [x], {x, -Pi/2, Pi/2}, GridlLines - Automatic, ImageSize -» Small,
PlotLabel - "Automatic Grid"], Plot[Tan[x], {x, -Pi/2, Pi/2},
GridLines » {{-Pi/2, -Pi/4,0,Pi/4,Pi/2}, {-6, -4, -2,0,2,4,6}},
ImageSize - Small, PlotLabel - "Custom Grid"]

H

Automatic Grid Custom Grid

/ /
/ /

N
N

Out[7]= e ‘ ‘ ‘ T ‘
-15 -1,0—05 05 10 15 L5 -10—=05 05 | 1.0 15
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Frame, FrameStyle, and Framelabel let you annotate the graph with a border and la-
bel. Note that FrameStyle and FramelLabel only have effect if Frame—True is also
specified.
In[8]:= GraphicsRow[{
Plot [Exp[Sin [X11, {X, 0, 2Pi}, Frame -» True, FrameLabel - "esi"*",
ImageSize - Small] ,

Plot [Exp[Cos[x]1, {X, 0, 2 Pi}, Frame > True, Framelabel - "e“***",

FrameStyle - Directive [Gray, Thick],

ImageSize - Small]

}]

25 25

2.0 2.0

15 15
Out[8]= 1.0 1.0

05 05

00b 0.0

0o 1 2 3 4 5 6 0o 1 2 3 4 5 6
esinx @CosX

Mesh is an option that allows you to highlight specific points in the plot. Mesh - All
will highlight all points sampled while plotting the graph, Mesh — Full will use
regularly spaced points. Mesh — n will use n equally spaced points. The behavior of
Mesh — Automatic will vary based on the plotting primitive.

242 | Chapter 6: Two-Dimensional Graphics and Plots



In[9]:= GraphicsGrid [Partition [Table[
Plot[0.5Sin[2 6], {6, 0, 2 7}, Mesh > m,
ImageSize - Small, Frame - True,
PlotLabel - "Mesh - " <> ToString[m]],
{m, {None, Automatic, All, Full, 16, 50}}], 2], Spacings - 0]

Mesh = None : Mesh H‘Automatic :
0.4 1 0.4 1
02 q 02r q
0.0 0.0
-0.2 1 1 -02r 1
-04 1 -04r ]
1 2 3 4 s e 1 2 3 4 s e
Mesh - AII : : Mesh - FuII :
0.4 q 04 q
02 1 02 1
0ut[9]= 0.0 # 0.0 &
-0.2 -0.2 -
-0.4 -0.4
‘ ‘ ‘ ‘ ‘ 5 6 ‘ ‘ ‘ ‘ ‘ 6
Mesh - 16 Mesh - 50
0.4 1 0.4 1
0.2 1 0.2 1
0.0 0.0
-0.2 4 -02r 1
-0.4 i -0.4 ]
L 1 1 1 L I I L I L L i | |
0 1 2 3 4 5 6 0 1 2 3 4 5 6

PlotRange is an important option that controls what coordinates to include in the
plot. Automatic lets Mathematica decide on the best choice, A1l specifies all points
actually plotted, and Full specifies the entire range. In addition, you can supply
explicit coordinates in the form {{xmin,xmax}, {ymin,ymax}}.
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In[10]:= GraphicsGrid [Partition [
Table[
Plot[Sqrt[100.0 - x*2], {x, 0, 100},
PlotRange - r, ImageSize -» {225, Automatic}, Frame - True,

FrameLabel -» "PlotRange -» " <> ToString[r] ] ,

{r, {Automatic, All, Full, {{0, 20}, {0, 20}}}}], 2], Spacings - 0]

10 10 F H
8 8 ]
6 6 b
4 arf ]
2 2r b
0 O . . . . d
0 2 4 6 8 10
PlotRange — All
Out[10]= 4 - ‘ ‘ \ \ q 20 ;
81 ] 15 | ]
6 L .
10 1

4 L .
2t ] 5t ]
O L L L L L L 0 L L

0 20 40 60 80 100 0 5 10 15 20

PlotRange - Full PlotRange - {{0, 20}, {0, 20}}

AspectRatio controls the ratio of height to width of the plot. The default value is
1/GoldenRatio (also known as ¢). A value of Automatic uses the coordinate values to
determine the aspect ratio.
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In[11]:= GraphicsGridePartition|
Table[
Plot[Sqrt[IO0.0 -x"21, {x, 0, 10}, AspectRatio -» a, Frame -» True,

FrameLabel - "AspectRatio -
{as {GoldenRatio'l,Automatic,1.25,0.75}}],2]

<> ToString[TraditionalForm[a]] ] y

AspectRatio - —
¢
AspectRatio -» Automatic

out[11]=

Ok . . . .
0 2 4 6 8 10

AspectRatio —» 0.75

AspectRatio —» 1.25

Sometimes you want to emphasize an area on one side of the curve or between two
different curves. Filling can be set to Top to fill from the curve upward, Bottom to fill
from the curve downward, Axis to fill from the axis to the curve, or to a numeric
value to fill from the curve to that value in either y direction.
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In[12]:= GraphicsGridePartition[Table|
Plot[Sin[x], {x, 0, 2Pi}, Filling - f, Frame - True,

FrameLabel -> "Filling -» " <> ToString[f],
ImageSize -» {200, Automatic}],

{f, {Top, Bottom, Axis, 0.5}}], 2]

1.0 R z T T z T T 10F
0.5 - 1 05}
00 - 0.0
-0.5 - 1 -05 |
-10E 2 . s . 10k L s 1 L '
o 1 2 3 4 5 6 o 1 2 3 4 5 6
Filling - Top Filling -» Bottom
Out[12]=
1.0 T T T T 1.0 T T T T v T
}
05
00
-05 -
-1.0= \ A . R . N ' ) y '
o 1 2 3 4 5 6 0o 1 2 3 4 5 6

Filling — Axis Filling —+ 0.5

FillingStyle allows you to control the color and opacity of the filling. Specifying an
opacity is useful where regions of multiple functions overlap.

In[13]:= Plot[{Cosh[x], Cosh[3x]}, {x, -1, 1}, Filling - Top,
FillingStyle - Directive [Gray, Opacity[0.5] ], ImageSize - 300]

Out[13]=

-1.0 -0.5 0.5 1.0
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You can also use a special notation to fill the area between two curves. In this nota-
tion, you refer to a curve by {i} where i is an integer referring to the ith plot. You
can then say something like Filling » {i - {j}} to specify that filling should be be-
tween plot i and plot j. You can also override the FillingStyle by including a graph-
ics directive, as in the example here.

In[14]:= Plot[{Sin[x], 2Sin[x +1] +3,3Sin[x + 2] + 6}, {x, 0, 2Pi},
Filling » {1 - {{2}, Red}, 2 » {{3}, Yellow}},
ImageSize - 300]

out[14]=

See Also

Recipes 6.2 and 6.3 demonstrate PolarPlot and ListPlot, which share most of the
options of Plot.

6.2 Plotting in Polar Coordinates

Problem

You want to create a plot in polar coordinates of radius as a function of angle.

Solution

Use PolarPlot, which plots the radius as the angle in polar coordinates varies counter-
clockwise with 0 at the x-axis, 71/2 at the y-axis, and so on.
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In[15]:= GraphicsGrid[{
{PolarPlot[1, {6, 0, 2 r}, PlotLabel - "Constant"],
PolarPlot[e, {6, 0, 2 7}, PlotLabel -» "Spiral"]},
{PolarPlot[Sin[5 6], {6, 0, 2 7}, PlotLabel -» "Loops"],
PolarPlot[1/ (1.5 + Sin[56]), {6, 0, 2 7}, PlotLabel » "Star Fish"]}
11

Constant

0.5 1.0
Out[15]=
Loops Star Fish
1.5
1.0
Discussion

As with Plot, you can plot several functions simultaneously.
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In[16]:= PolarPlot[{l, 0.5Cos[26], Sin[Exp[6/2]1}, {6, 0, 2 7},

ImageSize - 300,
PlotStyle -» {Directive[Black, Dashed],

Directive [Black, DotDashed],

Directive [Black, Dotted] }
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Out[16]= —+— : 1
-1.0 TT--.as 10

~ — 40—

The options for PolarPlot are essentially the same as Plot. One notable exception is
the absence of options related to Filling. Also note that AspectRatio is automatic by
default, which makes sense because symmetry is an essential aesthetic of polar plots.

In[17]:=

Complement [Options [PolarPlot], Options [Plot]]

Out[17]= {Aspectkatio - Automatic, Axes - Automatic, AxesOrigin - {0, 0},

MeshFunctions —» {#3 &}, PlotRange - Automatic, PolarAxes - False,

PolarAxesOrigin - Automatic, PolarGridLines - None, PolarTicks - Automatic}

6.3 Creating Plots Parametrically

Problem

You want to create Lissajous curves and other parametric plots where points {fx[u],

fylul} are plotted against a parameter u.
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Solution

Here are some common Lissajous curves. Note how ParametricPlot takes a pair of
functions in the form of a list.

In[18]:= GraphicsGrid[{{ParametricPlot[
{Sin[Piu], Sin[2Piu]l}, {u, O, 2}, PlotLabel » " (1:2)"],
ParametricPlot [ {Sin[2 Piu], Sin[ Piu]},
{u, 0, 2}, PlotLabel -» " (2:1) "1},
{ParametricPlot[{Sin[5Piu], Sin[4Piu]}, {u, O, 2},
PlotLabel » " (5:4) "7,
ParametricPlot [
{Sin[9Piu], Sin[8Piu]}, {u, O, 2}, PlotLabel » " (9:8)"1}}1]

(1:2) (2:1)
1.0 ¢t :
5r 05t
-1.0 -05 0.5 140 -1.0 -0. 0.5 1.0
-0.5 -0.5
-1.0+ =%
Out[18]=

(5:4)
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Discussion

Here is an animation showing the effect of phase shifting on signals of frequency
ratio 1:1 and 2:1.
In[19]:= Animate[
GraphicsRow[ {ParametricPlot[{Sin[Piu + d], Sin[ Piu]}, {u, 0, 2}1,
ParametricPlot [ {Sin[2Piu + d], Sin[ Piul}, {u, 0, 2}]
}1, {d, 0, 2Pi}]

¢« —(—— 1l 2l =]

10+

Out[19]=

0.5 10 -10 -05

You also use ParametricPlot to create parametric surfaces. This introduces a second
parameter.

In[20]:= ParametricPlot[
{r*2Cos[Sqrt[ t]]1, Sqrt[ r] Sin[rt]}, {t,0, 2Pi}, {1, 1, 2}]

1.0
05
out[20]= °°
-0.5
-1.0
See Also

The 3D counterpart to ParametricPlot, ParametricPlot3D, is covered in Recipe 7.5.

6.3 Creating Plots Parametrically | 251



6.4 Plotting Data

Problem

You want to graph data values that were captured outside Mathematica or previ-

ously computed within Mathematica.

Solution

Use ListPlot with either lists of X values or lists of (x,y) pairs. In this first plot, I gen-
erate the y values but let the X values derive from the iteration range. You can also ex-
plicitly provide the X and y values as a pair for each point plotted, as shown in the

second ListPlot, which compares PrimePi to Prime.

In[21]:= GraphicsRow|[{

ListPlot[Table [Prime[i] / (1 + Log[Fibonacci[ill), {i, 1, 100}],

ImageSize - 250] ,

ListPlot[Table[{PrimePi[i], Prime[i]}, {i, 1, 200}], ImageSize - 250]

H

ol f’,_,.od"’"

8 L
Out[21]= 6

A

<
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&

20 40 60 80 100

1200
1000
800
600
400
200
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Discussion

ListPlot shares most options with Plot; instead of repeating them here, I show only
the differences.

In[22]:= Complement[Options[ListPlot], Options[Plot]]

out[22]= {DataRange - Automatic, InterpolationOrder - None, Joined - False,

MaxPlotPoints - «, PlotMarkers - None, PlotRange - Automatic}
DataRange allows you to specify minimum and maximum values for the x-axis. In the
first plot, the x-axis is assumed to be integer values.

In[24]:= data = Table[Sin[x], {x, -10, 10, 0.1}]; GraphicsRow|
{ListPlot[data], ListPlot[data, DataRange -» {-10, 10} ]}, ImageSize - 500]

1.0 | 1.0 A
WV oV V UV

InterpolationOrder is used with Joined to control the way lines drawn between
points are interpolated. A value of 1 results in straight lines; higher values result in
smoothing, although for most practical purposes, a value of 2 is sufficient.
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In[25]:= data = RandomReal[ {0, 2}, 8];
GraphicsColumn|
Table|[ListPlot[data, Joined - True, InterpolationOrder - i,
PlotLabel - ("InterpolationOrder” <> ToString[i]),
ImageSize - Small], {i, {1, 2, 3}}]]

InterpolationOrder 1

10+

0.5

InterpolationOrder 2

Out[26]=
2 3 4 5 6 7 8
InterpolationOrder 3
2 3 4 5 6 7 8
See Also

Mathematica has related list plotting functions ListLinePlot, ListlLoglogPlot, and
ListLoglinearPlot that have similar usage to ListPlot but are specialized for certain
types of data. Refer to the Mathematica documentation to learn more.
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6.5 Mixing Two or More Graphs
into a Single Graph
Problem

You want to mix several kinds of plots into a single graph.

Solution

Use Show to combine graphs produced by different functions.
In[27]:= Show[Plot[x, {x, 1, 100}], ListPlot[Table[Prime[x], {x, 1, 100}]]]

100
80
60
out[27]=

40

20

20 40 60 80 100

Discussion

When using Show to combine plots, you can override options used in the indi-
vidual graphs. For example, you can override the position of axes, aspect ratio,
and plot range.

In[28]:= g1 = Plot[x"2 - X, {X, 1, 10}, AspectRatio - 0.6, AxesOrigin - Automatic] ;

g2 = Plot[x"2 + X, {X, 1, 10}, AspectRatio - 0.6, AxesOrigin - Automatic];
In[30]:= GraphicsColumn |
{g1, g2, show[g1, g2, AspectRatio - 1, AxesOrigin - {0, 0}, PlotRange - All] },
ImageSize - 200]
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0ut[30]=

100 -

40 -

20

Show can be used to combine arbitrary graphics. For example, you can give a graphic
a background image.
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In[31]:= g1 = Import[FileNameJoin|

{NotebookDirectory[], "..", "images", "truck.jpg"}], "Graphics"];
gl = Graphics[{Opacity[0.3], g1[[1]1]1}];
(*Insert opacity directive into graphics.«)
Show[Plot [x, {x, 0, 100}, PlotStyle - Thick],
gl, PlotRange - All, ImageSize - Small]

120‘
100
80 -
out[32]- %0©

40

20

5‘0 A A . - 160 ‘ » - » 150
One of my favorite mathematical illustrations is convergence through the iteration
of a function (something I am sure many of you have done by repeatedly pressing
Cos on a pocket calculator). Here, NestList performs 12 iterations. We duplicate ev-
ery two and flatten and partition into pairs with overhand of 1 to yield the points for
illustrating the convergence of the starting point 1 to the solution of x == Cos[x].

In[33]:= Show[Plot[{x, Cos[x]}, {x, 0.1, 1.1}], Graphics[
Line[Partition[Flatten[ {#, #} & /@ NestList[Cos, 1.0, 12]]1, 2, 1]]1]]

[ =l

0.6 -

out[33]=

0.4 -

0.4 0.6 0.8 1.0
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Show uses the following rules to combine plots:

e Use the union of plot intervals.

e Use the value of Options from the first plot unless overridden by Show’s own
options.

6.6 Displaying Multiple Graphs in a Grid

Problem

You want to display several related graphs for easy comparison.

Solution

Use GraphicsGrid in Mathematica 6 or GraphicsArray in earlier versions. You can use
tables to group several plots together, but this gives you very little control of the lay-
out of the images. GraphicsGrid gives control of the dimensions of the grid, the
frame, spacing, dividers, and other options. The dimensions of the grid are inferred
from the dimensions of the list of graphics passed as the first argument. You will
find Partition handy for converting a linear list into the desired two-dimensional
form.

In[34]:= With[{cols =2},
GraphicsGrid|
Partition[Table[Plot[0.5Sin[2 6], {6, 0, 2 x},
Mesh -» m, ImageSize -» Small, Frame - True,

FrameLabel - "Mesh » " <> ToString[m] ] )
{m, {None, Automatic, All, Full, 16, 50}}],

cols], Frame - ALl]
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Mesh - All Mesh - Full
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04 r q 04 r q
021 1 02r 1
0.0 0.0
-0.2 q -0.2 q
0.4 1 -0.4 F ]
. . . . . . . | . h . . . .
0 1 2 3 4 5 6 0 1 2 3 4 5 6
Mesh - 16 Mesh - 50

Discussion

In addition to GraphicsGrid, Mathematica provides GraphicsRow and GraphicsColumn,
which are simpler to use for laying out graphics horizontally or vertically. These
layout functions can be combined and nested to create more complex layouts. Here
I demonstrate using GraphicsRow to show a GraphicsColumn next to another Graphics-
Row. Frames can be drawn around the row or column (Frame—True) or additionally
dividing all the elements (Frame—A1l).

6.6 Displaying Multiple Graphsin a Grid | 259



In[35]:= With[{polygons = Table[
Graphics [ {EdgeForm [Black] , FaceForm[LightGray],
Polygon[Table[{Cos[2Pik /p], Sin[2Pik /p1}, {k, p}11},
ImageSize - Tiny],
{p, 4,8, 2}] }J
GraphicsRow[ {
GraphicsColumn[polygons, Frame - True],
GraphicsRow|polygons, Frame - True]
}, Frame - All, ImageSize - 450] |

out[35]=

6.7 Creating Plots with Legends

Problem

You want to identify the information in a plot of multiple data sets using a legend.

Solution

Use the Plotlegends™ package with the PlotLegend, LegendPosition, and LegendSize
options.
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In[36]:= Needs["PlotLegends““];
Plot[{Sin[x], Sin[2X]}, {X, 0, 2 Pi},
PlotStyle » {Directive[Black, Dotted], Directive [Black, Dashed]},

PlotLegend » {"Sin x", "Sin 2x"},
LegendPosition -» {1, 0.1}, LegendSize - 0.75]
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Legends use their own coordinate system, for which the center of the graphic is at
{0,0} and the inside is the scaled bounding region {{-1,-1},{1,1}}. LegendPosition
refers to the lower left corner of the legend.

Discussion

There are a variety of options for further tweaking the legend’s appearance. You can
turn off or control the offset of the drop shadow (LegendShadow); control spacing of
various elements using LegendSpacing, LegendTextSpace, LegendLabelSpace, and
LegendBorderSpace; control the labels with LegendTextDirection, LegendTextOffset,
LegendSpacing, and LegendTextSpace; and give the legend a label with LegendLabel
and LegendLabelSpace.

Notice the effect of LegendTextSpace, which is a bit counterintuitive because it ex-
presses the ratio of the text space to the size of a key box so larger numbers actually
shrink the legend. LegendSpacing controls the space around each key box on a scale
where the box size is 1.
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In[38]:= plotCommonOptions = Sequence[
PlotStyle -» {Directive[Black, Dotted], Directive [Black, Dashed]},
PlotLegend -» {"Sin x", "Sin 2x"}, LegendPosition » {1, 0.1},
LegendSize -» 0.75, ImageSize » 250] 5

GraphicsGrid[ {
{Plot[{Sin[x], Sin[2x]}, {x, 0, 2Pi},
Evaluate [plotCommonOptions],
LegendShadow - None,
LegendSpacing » 1/ 2, LegendTextSpace - 10] ,
Plot[{Sin[x], Sin[2x]}, {x, 0, 2Pi},
Evaluate [plotCommonOptions],
LegendShadow - None, LegendLabel - "Plots”,
LegendSpacing -» 0.2, LegendTextSpace —» 5]
}’
{Plot[{Sin[x], Sin[2x]}, {X, 0, 2Pi},
Evaluate [plotCommonOptions],
LegendShadow » {-0.1, -0.1}, LegendLabel - "Plots",
LegendSpacing - 0.2, LegendTextSpace » 5] B
Plot[{Sin[x], Sin[2x]}, {X, 0, 2 Pi},
Evaluate [plotCommonOptions],
LegendShadow -» {0.1, 0.1},
LegendSpacing -» 1/ 2, LegendTextSpace -» 10]

}
}:

Dividers -» All]
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Sometimes you want to create a more customized legend. In that case, consider

Legend and ShowLegend.

See the tutorial on the PlotLegends™ package at hitp://bit.ly/TYvfV.

6.8 Displaying 2D Geometric Shapes

Problem

You want to create graphics that contain lines, squares, circles, and other geometric

objects.

Solution

Mathematica has a versatile collection of graphics primitives: Text, Polygon,
Rectangle, Circle, Disk, Line, Point, Arrow, Raster, and Point can be combined to
create a variety of 2D drawings. Here I demonstrate a somewhat frivolous yet
instructive function that creates a snowman drawing using a broad sampling of
the available primitives. Included is a useful function, ngon, for creating regular

polygons.
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In[41]:= ClearAll [generateSnow]

In[42]:= (=Create a regular polygon.=x)

ngon [sides_Integer, center_List, size_?NumberQ, rotation_: 0 ] HE
Polygon[Table[ {size Cos[2 Pi k /sides + rotation] + center[[1]],
size Sin[2 Pi k/sides + rotation] + center[[2]]}, {k, sides}]]
(*Generate snow as randomly scattered pairs of
semitransparent points of random size.x)
generateSnow|[minPoint_List, maxPoint_List, density ?NumberQ] := Module[
{size, z = 100, j}, {Opacity[0.3], Reap[Do [Which[RandomReal[] < 0.3,
size = RandomReal[ {0.001, 0.008}];
j = RandomReal[ {-1.0, 1.0}1;
Sow[{PointSize[size/1.3],
If[RandomReal [] < 0.5, {Point[{x, y + zsize +j }],
Point[{x, y - zsize + j}], Point[{x + zsize,y +j }],
Point[{x - zsize, y + j}]}, {Point[{x + zsize, y + zsize +j }],
Point[{x - zsize, y + zsize +j}], Point[{x + z size,
y - zsize + j}], Point[{x - zsize, y - zsize + j}]}],
PointSize[size], Point[{x, y + j}]}]],
{x, minPoint[[1]], maxPoint[[1]], density},
{y, minPoint[[2]], maxPoint[[2]], density}]][[2, 111}]
(*Draw a snowman whose base is of the given radius.x)
snowman [bodyRadius_] := Module[{bodyCenter = {0, 0},
(*Proportioning the torso and head
based on golden ratio gives a pleasing effect.x)
torsoRadius = bodyRadius / GoldenRatio,
headRadius = bodyRadius / (GoldenRatio”2),
torsoCenter, headCenter, leftShoulder, rightShoulder,
buttonSize = bodyRadius /10, buttonSep = bodyRadius /3.3,
leftHand, rightHand, mouthCenter, leftEyeCenter, rightEyeCenter},
torsoCenter = {bodyCenter[ [1]1], torsoRadius + bodyRadius};
headCenter =
{bodyCenter[[1]], bodyRadius + 2 torsoRadius + headRadius};
(*Position the arms at -60 and 60 degrees.x)
leftShoulder =
torsoCenter + {torsoRadius xSin[-Pi/3], torsoRadius x Cos[-Pi/3]};
leftHand = torsoCenter + {3 torsoRadius xSin[-Pi/3],
3 torsoRadius » Cos[-Pi/3]1};
rightShoulder = torsoCenter + {torsoRadius *Sin[Pi/3],
torsoRadius = Cos[Pi/3]};
rightHand = torsoCenter + {3 torsoRadius »Sin[Pi/3],
3 torsoRadius * Cos[Pi/3]};
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(#Position eyes at -45 and 45 degrees and half
the radius of the head.x)
leftEyeCenter = headCenter + {0.5 headRadius » Sin[-Pi/4],
0.5 headRadius * Cos[-Pi/4]};
rightEyeCenter = headCenter + {0.5headRadius * Sin[Pi/4],
0.5 headRadius * Cos[Pi/4]1};
(*Position mouth at 180 degrees -
bottom of circle. Also half radius of head.=x)
mouthCenter = headCenter +
{0.5 headRadius % Sin[Pi], 0.5 headRadius % Cos[Pi]};
Graphics [ {
Circle[bodyCenter, bodyRadius], (xbase ciriclex)
Circle[torsoCenter, torsoRadius], (xmiddle circlex)
Circle[headCenter, headRadius], (xheadx)
Circle[mouthCenter, headRadius /4, {-Pi, 0}],
(xhalf circle for mouthx)
(*Use disks for eyes.x)
Disk[leftEyeCenter, headRadius /8],
Disk[rightEyeCenter, headRadius /8],
(*Make a carrot-shaped nose out of lines. The
proportions here were worked out by trial and error.=)
Line[ {headCenter - {0, headRadius /10}, headCenter -
{headRadius / 2, headRadius / 5}, headCenter + {0, headRadius /10}}1],
(*I use arrows for arms to illustrate how they
work. See discussion for more detail.sx)
{Arrowheads[{-0.1, 0} ], Arrow[ {leftHand, leftShoulder}]},
{Arrowheads[{0, 0.1}1, Arrow[ {rightShoulder, rightHand}]},
{Gray,Thickness[torsoRadius/SOO],
Line [ {rightHand + {-2, 2}, {rightHand[[1]] - 2, -bodyRadius /2}}],
Rectangle [bodyCenter + {bodyRadius /1.4, -2},
bodyCenter + {2.4 bodyRadius, -bodyRadius}]},
generateSnow [ { -2 bodyRadius, -bodyRadius},
{3 bodyRadius, 3.1 bodyRadius}, 5],
(*Use pentagons to simulate coal buttons.x)
ngon[5, {0, torsoRadius + bodyRadius - buttonSep}, buttonSize],
ngon[5, {0, torsoRadius + bodyRadius}, buttonSize],
ngon [5, {0, torsoRadius + bodyRadius + buttonSep}, buttonSize] },
ImageSize - > bodyRadius  10] |

snowman [40]
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out[45]=

Discussion

One of the keys to getting the most out of the graphics primitives is to learn how to
combine them with graphics directives. Some directives are very specific, whereas
others are quite general. For example, Arrowheads applies only to Arrow, whereas Red
and Opacity apply to all primitives. A directive will apply to all objects that follow it,
subject to scoping created by nesting objects within a list. For example, in the follow-
ing graphic, Red applies to Disk and Rectangle but not Line because the line is given
a specific color and thickness within its own scope.

In[46]:= Graphics|[{Red, Disk[{-2, -2}, 0.5], Rectangle[], {Thickness[0.02],
Black, Line[{{-1.65, -1.65}, {0, 0}}]}}, ImageSize - Small]

out[46]=

Color directives can use named colors: Red, Green, Blue, Black, White, Gray, Cyan,
Magenta, Yellow, Brown, Orange, Pink, Purple, LightRed, LightGreen, LightBlue,
LightGray, LightCyan, LightMagenta, LightYellow, LightBrown, LightOrange, LightPink, and
LightPurple. You can also synthesize colors using RGBColor or Hue, CMYKColor,
Graylevel, and Blend. In Mathematica 6 or later versions, these directives can
take opacity values in addition to values that define the color or gray settings. Blend
is also new to Mathematica 6.
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In[47]:= Graphics[Table[{Hue[x], Rectangle[{x, 1}, {x+0.1,2}]1}, {x, 0, 0.99, .1}],
ImageSize -> Small]

: I .

In[48]:= Graphics[Table[{Hue[x], Rectangle[{x, 1}, {x +0.05, 2}],
Blend[ {Hue[x], Hue[x + 0.05]}, 0.25], Rectangle[ {x + .05, 1},
{x+0.1,2}1}, {x, 0, 0.99, .1} |, ImageSize -> Small]

) I .

Of course, you’ll need to try the code on your own to view the colors.
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Thickness[r] is specified relative to the total width of the graphic and, therefore,
scales with size changes. AbsoluteThickness[d] is specified in units of printer points
(1/72 inch) and does not scale. Thick and Thin are predefined versions (0.25 and 2,
respectively) of AbsoluteThickness. Thickness directives apply to primitives that con-
tain lines such as Line, Polygon, Arrow, and the like.
In[49):- Graphics[{Line[{{0, -1}, {0, 1}}1,
{Thin, Line[{{0.5, -1}, {0.5, 1}}1}, {Thick, Line[{{1, -1}, {1, 1}}1},
{AbsoluteThickness[3], Line[{{1.5, -1}, {1.5,1}}1}}]

out[49]=

See Also

Recipe 14.12 applies Mathematica’s graphics primitives to the serious task of visualiz-
ing Hull-White trees, which are used in modeling interest-rate-sensitive securities.

Recipe 13.11 shows an application in constructing finite element diagrams used in
engineering.
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6.9 Annotating Graphics with Text

Problem

You want to add stylized text to graphics.

Solution

Use Text with Style to specify FontFamily, FontSubstitutions, FontSize, FontWeight,
FontSlant, FontTracking, FontColor, and Background.

In[50]:= Graphics[{Text[Style["12 Point Default Font", FontSize »12], {0, 0}], Text|
Style["16 Point Italic", FontSize - 16, FontSlant - Italic], {0, -.2} ] ,
Text [Style["14 Point Bold", FontSize - 14, FontWeight - Bold], {0, -.4}],
Text|[
Style["14 Point Arial”, FontSize - 14, FontFamily - "Arial"], {0, -.6}],
Text [Style["14 Point Arial Narrow", FontSize - 14,
FontFamily - "Arial", FontTracking - "Narrow"], {0, -.8}],
Text[Style["14 Point Bold White on Black", FontSize - 14,
FontWeight -» Bold, FontColor - White, Background » Black] )
{0, -1}]}, ImageSize » Small]

12 Point Default Font

16 Point ltalic

14 Point Bold
Out[50]=
14 Point Arial
14 Point Arial Narrow
14 Point Bold White on Black
Discussion

In this chapter, I demonstrate various plotting functions that contain options for
adding labels to the entire graph, frames, and axes. These options can also be stylized.
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In[51]:= Plot[0.5Sin[2e], {6, 0, 2x},
PlotLabel » Style[0.5Sin[2 6], FontSize -» 20, FontFamily » "Arial"],
AxesLabel » {"Radians", "Amplitude"}, LabelStyle -
Directive [Bold, FontFamily - "Arial", FontSize - 12], Frame - True,
FrameLabel - Style["Sine Wave", FontSlant - Italic], ImageSize » Medium]

0.5sin(2 6)

0.2 B

Out[51]= ©00 Radians

0 1 2 3 4 5 6

Sine Wave

The Style directive was added into Mathematica 6 and is quite versatile. Style can
add style options to both Mathematica expressions and graphics.

6.10 Creating Custom Arrows

Problem

You want to create arrows with custom arrowheads, tails, and connecting lines for
use in annotating graphics.

Solution

Use Arrowheads with a custom graphic to create arbitrary arrowheads and tails.

In[52]:= With[{h= Graphics[{Disk[{0, 0}, 0.75]}1,
t = Graphics[{Line[{{-0.5, 0}, {0.5,0}}],
Line[ {{0, -0.6}, {0, 0.6}}], Line[{{0.2, -0.6}, {0.2,0.6}}1}1},
Graphics [ {Arrowheads [ { {0.05, 1, h}, {0.1, 0, t}}1,
Arrow[{{0, 0}, {0.25, 0.25}}]}, ImageSize - Small] ]
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out[52]=

Discussion

Arrowheads is quite versatile. You can easily create double-ended arrows and arrows
with multiple arrowheads along the span.

In[53]:= Graphics[(Arrowheads[{—o.l, 0.1}], Arrow[{ {0, 0}, {1, 0}}],

Arrowheads[ {0, 0.1, .1, .1, .1}], Arrow[{{0, -0.5}, {1, -0.5}}1},
ImageSize - Small]

-

out[53]=

R e

You may consider using Arrowheads to label arrows, but Mathematica does not treat
such “arrowheads” specially, so you may get undesirable effects.
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In[54]:= Graphics[{Arrowheads[{O, {Automatic, 0.5, Graphics[
{Text[Style["Label", FontSize - 14, FontWeight - Bold]]}]}, 0.1}],
Arrow[{{0, 0}, {-0.25,0.25}}]}, ImageSize » Small]

out[54]=

A Dbetter option is to position the text by using Rotate with Text or Inset or by
using GraphPlot or related functions (see Recipe 4.6). The advantage of Inset over

manually positioned Text is that you get auto-centering if you don’t mind the label
not being parallel to the arrow.

In[55]:= Graphics|{Arrowheads[{0.1}1, Arrow[{{0, 0}, {-0.25, 0.25}}],
Rotate [Text [Style["Label", FontSize - 14, FontWeight - Bold],
{-0.14,0.11} ], -Pi/ 4]}, ImageSize -» Small]

out[55]= <
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In[56]:= Graphics|[{Arrowheads[{0.1}], Arrow[{{0, 0}, {-0.25, 0.25}}],
Inset [Text[Style|"Label", FontSize - 14, FontWeight - Bold] ] ]},
ImageSize - Small]

out[56]= L abel
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CHAPTER 7
Three-Dimensional Plots and Graphics

Maybe I'll win
Saved by zero
Holding onto

Winds that teach me
T will conquer

Space around me

The Fixx, “Saved by Zero”

7.0 Introduction

Modern mathematics demands advanced visualization tools. Although Mathemati-
ca’s 2D graphics are impressive, 3D graphics is where Mathematica really distin-
guishes itself. As with 2D, 3D graphics are represented symbolically but with the
head Graphics3D instead of Graphics. There are 3D counterparts to most 2D plotting
functions. For example, P1ot3D and ListPlot3D are the counterparts to the 2D func-
tions Plot and ListPlot. There are also many functions unique to 3D space, such as
SphericalPlot3D and RevolutionPlot3D.

Mathematica’s 3D graphics are interactive, although it is difficult to illustrate this in
book form! Any 3D plot or drawing can be rotated, flipped, and stretched, allowing
you to see different perspectives. Furthermore, Mathematica 6 added a host of op-
tions for controlling lighting, camera placement, and even how light reflects off of
surfaces (see Recipes 7.12 and 7.13).
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The Symbolic Nature of Graphics

I think most users are quite impressed with the breadth and depth of what Mathe-
matica 7 can achieve with plotting functions (see Recipes 7.1 through 7.9). However,
as a programmer, I am even more taken with what can be achieved in Mathematica
that would be next to impossible in most plotting packages outside of Mathematica.
When you ask the Mathematica kernel to perform a plot, it does not produce a
raster image that the frontend simply renders using the graphics hardware. Instead,
it produces a symbolic representation of the plot that the frontend translates into a
raster image. Why is this relevant? Imagine you were working in another domain
(e.g., Microsoft Excel) and there were two plotting functions that each did half of
what you wanted to render on the screen. How could you morph those two plots to
achieve the desired result? You couldn’t. (I’'m ignoring whatever skills you might pos-
sess as a Photoshop hacker!) In Mathematica, all hope is not lost. In Recipe 7.6, a
3D plot and a 2D contour plot are combined to achieve a 3D plot with a 2D contour
“shadow” underneath. Another example is Recipe 7.10: RevolutionPlot3D is used to
generate a cone to compensate for the lack of a Cone primitive in Mathematica 6
(Cone is built into Mathematica 7). Achieving these results involves sticking your
head under the hood and, sometimes, doing quite a bit of trial and error, but the re-
sults are within reach once you have the general principles.

See Also

In Recipe 18.5, T discuss how the attributes of 3D graphics can be controlled
through stylesheets. If you intend to create publication-quality documents in Mathe-
matica, you should familiarize yourself with stylesheets.

7.1 Plotting Functions of Two Variables
in Cartesian Coordinates

Problem

You want to graph one or more built-in or user-defined functions of two variables.

Solution

Use Plot3D with the function or functions to plot and two lists specifying the ranges
for the independent variables.
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In[1]:= Plot3D[Sin[xPiExp[-y +X]], {X, -1, 1}, {y, -1, 1}]

As with most plots, you can provide multiple functions. However, 3D plots will be-
come crowded quickly (Figure 7-1a), so consider placing multiple plots side by side
rather than trying to shoehorn everything into a single plot. With some functions
and options, this is not an issue (Figure 7-1b).
In[2]:= GraphicsGrid[
{{Plot3D[{Sin[xPiExp[-y +x]], Cos[xPiExp[1-xy]]}, {x, -1, 1},
{y, -1, 1}, PlotLabel » "a"], P1ot3D[{x"2 + y"2, -x"2 - y*2}, {x, -2, 2},
{y, -2, 2}, BoxRatios - Automatic, PlotLabel - "b"]}}, ImageSize - Large]

Figure 7-1. 3D plots of multiple functions
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Discussion

As you might suspect, Plot3D has a variety of options for customizing presentation.
Here I use Complement to list only those options that differ from the 2D Plot function
in Recipe 6.1.

In[3]:= Complement[First /@ Options[Plot3D], First /e Options[Plot]]

out[3]= {AxesEdge, BoundaryStyle, Boxed, BoxRatios, BoxStyle, ControllerlLinking,
ControllerMethod, ControllerPath, FaceGrids, FaceGridsStyle,
Lighting, NormalsFunction, RotationAction, SphericalRegion, ViewAngle,
ViewCenter, ViewMatrix, ViewPoint, ViewRange, ViewVector, ViewVertical}

In[4]:= {AxesEdge, BoundaryStyle, Boxed, BoxRatios, BoxStyle, ControllerLinking,
ControllerMethod, ControllerPath, FaceGrids, FaceGridsStyle,
Lighting, NormalsFunction, RotationAction, SphericalRegion, ViewAngle,
ViewCenter, ViewMatrix, ViewPoint, ViewRange, ViewVector, ViewVertical}
out[4]= {AxesEdge, BoundaryStyle, Boxed, BoxRatios, BoxStyle, ControllerlLinking,
ControllerMethod, ControllerPath, FaceGrids, FaceGridsStyle,
Lighting, NormalsFunction, RotationAction, SphericalRegion, ViewAngle,

ViewCenter, ViewMatrix, ViewPoint, ViewRange, ViewVector, ViewVertical}

AxesEdge determines where the axes are drawn, and the default value of Automatic
(Figure 7-2a) usually gives good results. You can override the default by proving a
specification of the form {{dir y, dir z},{dir x, dir z},{dir x, dir y}}
where each dir i must be either +1 or -1, indicating whether axes are drawn
on the edge of the box with a larger or smaller value of coordinate i, respec-
tively (Figure 7-2b, ¢, and d).
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In[5]:= GraphicsGrid[{{Plot3D[{x"2+y"2, -x*2-y*2}, {x, -2, 2}, {y, -2, 2},
BoxRatios - Automatic, PlotLabel - "a", AxesEdge - Automatic], Plot3D|
{x*2+y"2, -x"2-y*2}, {x, -2, 2}, {y, -2, 2}, BoxRatios - Automatic,
PlotLabel - "b", AxesEdge » {{-1, -1}, {-1, 1}, {-1, -1}}]},
{Plot3D[{x"2+y"2, -x*2-y*2}, {x, -2, 2}, {y, -2, 2}, BoxRatios -
Automatic, PlotLabel » "c", AxesEdge -» {{1, 1}, {1, -1}, {1, 1}}] y
Plot3D[{x"2 +y"2, -x"2-y*2}, {x, -2, 2}, {y, -2, 2}, BoxRatios -
Automatic, PlotLabel » "d", AxesEdge - {{1, 1}, {1, 1}, {1, 1}}]}},
ImageSize - 400, Spacings - {0.1, 0.1} ]

out[5]=

Figure 7-2. Examples of AxesEdge option
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BoundaryStyle allows you to stylize the edge of a plot surface.

In[6]:= Plot3D[{x"2+y"2, -x*2-y*2}, {x, -2, 2}, {y, -2, 2},
BoundaryStyle - Directive [Black, Thickness[0.0125] ] ]

Boxed, BoxRatios, and BoxStyle control the presence, proportions, and style of the
edges surrounding 3D plots. Each of the plots in Figure 7-3 is of the same function.
The differences are that Figure 7-3a is not boxed, Figure 7-3b is boxed with Auto-
matic ratios, and Figure 7-3¢ and Figure 7-3d have specified ratios.
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In[7]:= GraphicsGrid[
{{Plot3D[{x*2+y"2, -x"2 - y*2}, {x, -2, 2}, {y, -2, 2}, PlotLabel - "a",

Boxed - False], P1ot3D[{x"2 + y"2, -x"2 - y*2}, {x, -2, 2},
{y> -2, 2}, BoxRatios -» Automatic, PlotLabel » "b"] },

{Plot3D[{x"2+y"2, -x*2-y*2}, {x, -2, 2}, {y, -2, 2}, BoxRatios -

{1, 2, 1}, PlotlLabel -» "c", AxesEdge -» { {1, 1}, {1, -1}, {1, 1}}],
Plot3D[{x"2+y"2, -x"2-y*"2}, {x, -2, 2}, {y, -2, 2},

BoxRatios - {2, 1, 2}, PlotLabel » "d"] }}, ImageSize - Mediun]

out[7]=

Figure 7-3. Examples of BoxRatios option

FaceGrids specifies grid lines to draw on the faces of the bounding box. You can
specify All or specific faces using {x,y,z}, where two values are 0 and the third is
either +1 (largest value) or -1 (smallest value). FaceGridsStyle allows you to stylize
the grid to your liking.
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In[8]:= GraphicsGrid[{{Plot3D[x"2 +y*2, {x, -2, 2}, {y, -2, 2},
BoxRatios—aAutomatic,PlotLabel—»"a",FaceGrids—eAll],
Plot3D[x"2 +y"2, {X, -2, 2}, {y, -2, 2}, BoxRatios - Automatic,
PlotLabel - "b", FaceGrids » {{0, 0, 1}}]},
{Plot3D[x"2 + y*2, {x, -2, 2}, {y, -2, 2}, BoxRatios - Automatic,
PlotLabel - "c", FaceGrids » {{1, 0, 0}, {0, 1, 0}}],
Plot3D[x"2 +y"2, {X, -2, 2}, {y, -2, 2}, BoxRatios - Automatic,
PlotLabel -» "d", FaceGrids -» {{-1, 0, 0}, {0, 1, 0}},
FaceGridsStyle - Directive [Red, Thick]]}}, ImageSize -+ 400]

Out[8]=

See Also

ViewAngle, ViewCenter, ViewMatrix, ViewPoint, ViewRange, ViewVector, and View-
Vertical are options that give you detailed control of the orientation of the plot.
These are covered in Recipe 7.12.

Recipe 6.1 demonstrates Plot, which is the 2D counterpart to P1ot3D.
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7.2 Plotting Functions in Spherical Coordinates

Problem

You want to plot a surface with spherical radius r as a function of rotational angles 6
(latitude) and ¢ (longitude).

Solution

Use SphericalPlot3D when plotting one or more surfaces in spherical coordinates.
Such plots most often arise in situations where there is some degree of rotational
symmetry. For example, a sphere is fully symmetrical under all rotations and is triv-
ially plotted using SphericalPlot3D as a constant radius.

In[9]:= SphericalPlot3D[1, {e, 0, Pi}, {¢, 0, 2 Pi}, ImageSize » Small]

1.0
05
0.0
-05"
1.0
1.0¢
05
out[9]=
-05!
101,
=10 T
-05 _
00 "
0.5 S
1.0
Discussion

You can plot multiple surfaces by providing a list of functions and leave holes in
some of the surfaces by returning the symbol None for these regions.
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In[10]:= SphericalPlotSD[{l, If[¢ < 3Pi/2, 2, None], If[¢ < 3Pi/2, 3, None] },
{e, 0, Pi}, {4, 0, 2 Pi}, ImageSize » Small]

out[10]=

2|

Of course, you will probably use SphericalPlot3D to plot more interesting functions
too.

In[11]:= SphericalPlot3D[Exp[1/ (1+ @) +Cos[3¢]],
{6, 0, Pi}, {4, 0, 2 Pi}, ImageSize - Small]

-2

out[11]=
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Use PlotStyle to achieve some dramatic effects. Applying the Opacity option is espe-
cially useful when specifying rotational angles greater than 2Pi radians; otherwise,
the resulting interior surfaces would be hidden. Compare Figure 7-4a with Figure 7-4b.

In[12]:= GraphicsRow|
{sphericalPlot3D[If[e < Pi/4, None, 1/ (¢ +5)1, {6, 0, Pi}, {¢, 0, 4Pi},
PlotStyle - Directive[Orange, Opacity[0.6], Specularity [White, 10]],
Mesh - None, PlotPoints - 30, PlotLabel -» "a"] )
SphericalPlot3D[If[o < Pi/4, None, 1/ (¢ +5)1, {6, 0, Pi},
{¢, 0, 4Pi}, PlotStyle - Directive [Orange, Specularity [White, 10]],
Mesh - None, PlotPoints - 30, PlotLabel - "b"] }, ImageSize - 400]

a b
-0.1 -0.
0172 o0 0121 o0
0.0 o 0.0 s T
0.1 ' '

0.1

Out[12]= 0.0

Figure 7-4. Effect of Opacity

See Also
See Recipe 7.4 for the relationship between SphericalPlot3D and ParametricPlot3D.

7.3 Plotting Surfaces in Cylindrical Coordinates

Problem

You want to visualize a surface generated via a revolution of a function or paramet-
ric curve around the z-axis.
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Solution

Many common surfaces can be generated by revolving a 2D curve. The following ex-
amples illustrate the basic idea.

Revolve a parabola to create a bowl.

In[13]:= RevolutionPlot3D[t"2, {t, 0, 1}, ImageSize - Small]

out[13]= 05!

10 -1.0

Revolve a vertical line at a constant distance from the center to create a cylinder.

In[14]:= RevolutionPlot3D[{1, t}, {t, 0, 1}, ImageSize » Small]

1.0,

Out[14]= 05|

Functions that incorporate the angle of revolution can create more exotic surfaces,
such as the spiral shown here. Notice how the angle of revolution can be greater (or
less) than 2Pi (one revolution).
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In[15]:= RevolutionPlot3D[{4t, e}, {t, 0, 1}, {6, 0, 4Pi}, ImageSize > Small]

~4{'

10 |

out[15]=

Discussion

To get a feel for RevolutionPlot3D, plot the 2D parametric version of the equation
next to the 3D revolution. It is fairly easy to see how the 180-degree rotation
of the 2D curve around the y-axis in Figure 7-5a will yield the 3D surface shown
in Figure 7-5b.
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In[16]:= Module[{f1, f2},
fX[x_] :=Sin[x] + Sin[9x] /5;
fy[x_] :=Cos[x] + Cos[9x] /5;
GraphicsRow[ {
ParametricPlot [ {fx[t], fy[t]}, {t, O, Pi}, PlotLabel - "a"],
RevolutionPlot3D[{fx[t], fy[t]}, {t, 0, Pi}, {8, 0, Pi}, PlotLabel » "b"]
}» ImageSize - 400] |

1 a b
-1,
, 1010 o5
10 0.5 i S X
ﬁ \ 0.0 M e 1.0
05| ; 110
[ l0s
out[16]= ; ‘ ]
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o
Figure 7-5. Relationship between ParametricPlot and RevolutionPlot3D

RevolutionPlot3D was introduced in Mathematica 6. Prior to version 6, similar sur-
faces could be generated with ParametricPlot3D; however, the equations one needs
to plot a specific surface using RevolutionPlot3D are often simpler and more intuitive
than those used when plotting parametrically. Both of the following plots yield a
torus, but the RevolutionPlot3D version is simpler.
In[17]:= GraphicsRow|
{ParametricPlot3D[{ (2 + Cos[v]) Sin[u], (2 + Cos[v]) Cos[u], 2 + Sin[v]},
{u, 0, 2Pi}, {v, 0, 2Pi}],
RevolutionPlot3D[{2 + Cos[t], 2 + Sin[t]}, {t, 0, 2Pi}]}, ImageSize - 400]
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As of version 6, Mathematica did not have a RevolutionAxis option, which was in a
legacy package called Graphics SurfaceOfRevolution™. The effect could be emulated
by swapping axes and using ViewVertical. Here I also use ViewPoint to compensate
for the different default orientations of the two plotting functions, but that is not
strictly necessary. The important aspect of the code that produces Figure 7-6 is the
transposition of t and t*2 in RevolutionPlot3D.

In[18]:= Needs["Graphics”SurfaceOfRevolution™"]
GraphicsRow [ {RevolutionPlot3D[{t"2, t}, {t, 0, 2},
Ticks - None, ViewVertical » {-1, 0, 0}, ViewPoint » {-2, -2, 1.1}1],
SurfaceOfRevolution[ {t, t~2}, {t, 0, 2}, Ticks - None,
RevolutionAxis -» {1, 0, 0}]}, ImageSize - 400]

General::obspkg :

Graphics” SurfaceOfRevolution™ is now obsolete. The
legacy version being loaded may conflict with
current Mathematica functionality. See the

Compatibility Guide for updating information. >>

out[19]=

Figure 7-6. Emulating SurfaceOfRevolution

(Note: RevolutionAxis was added in version 7.)

See Also

See discussion of ParametricPlot3D in Recipe 7.4.

See Recipe 7.12 for use of the geometry options ViewVertical and ViewPoint.
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7.4 Plotting 3D Surfaces Parametrically

Problem

You want to plot a 3D curve or surface parameterized over a region defined by a

range.

Solution

Here you plot a curve in 3D space by specifying a single variable u over the range
[-Pi,Pi]. This creates the curve in 3D space, shown in Figure 7-7.

In[20]:= ParametricPlot3D[{Cos[u], Sin[u]l, Cos[u”2] % Sin[u”2]},
{u, -Pi, Pi}, ImageSize - Small]

out[20]=

Figure 7-7. Curve in 3D space

Here you plot a surface in 3D space by specifying an area defined by variables u and
v, yielding Figure 7-8.
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In[21]:= ParametricPlot3D[{Cos[u], Sin[v], Cos[u”2] % Sin[v~2]},
{u, -Pi, Pi}, {v, -Pi, Pi}, ImageSize - Small]

Figure 7-8. Surface in 3D space

Discussion

To get a better understanding of ParametricPlot3D, consider it as a generalization of
the more specialized P1lot3D. In Plot3D, the x and y coordinates always vary linearly
over the range as it plots a specified function in the z-axis. This implies that you can
mimic Plot3D using ParametricPlot (Figure 7-9). The only caveat is that you need to
change the BoxRatios, which have different defaults in ParametricPlot3D.
In[22]:= GraphicsRow|
{Plot3p[Sin[xy] + Cos[x], {x, -Pi, Pi}, {y, -Pi, Pi}, PlotLabel -» Plot3D],
ParametricPlot3D[{x, y, Sin[xy] + Cos[x1}, {x, -Pi, Pi}, {y, -Pi, Pi},
BoxRatios - {1, 1, 0.4}, PlotLabel -> ParametricPlot3D] }, ImageSize - 400]

Plot3D ParametricPlot3D

Figure 7-9. Using ParametricPlot3D to emulate Plot3D
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The relationship between ParametricPlot3D and SphericalPlot3D can be understood
in terms of the following;:

fx = f16,¢] sin 6 cos ¢
fy = fl6,8] sin 8 sin ¢
fz =f10,¢] cos 0

For example, if we pick f[©,¢] to be the constant 1, both SphericalPlot3D and
ParametricPlot3D give a sphere using this relationship.

In[23]:= GraphicsRow[
{SphericalPlot3D[1, {6, 0, Pi}, {¢, 0, 2 Pi}, PlotLabel -> SphericalPlot3D],
ParametricPlot3D[ {1 Sin[e] Cos[¢], 1 Sin[e] Sin[¢4], 1 Cos[E]},
{e, 0, Pi}, {¢, 0, 2Pi}, PlotLabel -> ParametricPlot3D]}, ImageSize » 400]

SphericalPlot3D ParametricPlot3D

out[23]=

7.5 Creating 3D Contour Plots

Problem

You want to create a plot showing the surfaces where a function of three variables
takes on a specific value (Figure 7-10).

Solution

Use ContourPlot3D with a function to produce evenly spaced contour surfaces for
that function.
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In[24]:= ContourPlot3D[Sin [xy z] , {x, -Pi, Pi},
{y, -1, 1}, {2, -1, 1}, ImageSize - 300]

out[24]=

Figure 7-10. 3D contour plot example

Use ContourPlot3D with an equivalence relation to plot the surface where the
equivalence is satisfied. In Figure 7-11, ContourPlot3D shows the surface where the

polynomial is equal to zero.

In[25]:= ContourPlot3D[x"3 +y*2-2z"2==0,
%5 -2, 2}, {y, -2, 2}, {2, -2, 2}, ImageSize - Small]

out[25]=

Figure 7-11. Surface where polynomial is zero
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Discussion

3D contour plots show surfaces of equal value. ContourPlot3D plots several equally
spaced surfaces over the specified intervals. You use the option Contours — n,
where n is an integer, to control the number of surfaces.
In[26]:= GraphicsGrid[
Partition[Table [ContourPlot3D[x"3 + y"2 - 2*2, {X, -2, 2}, {y, -2, 2},
{z, -2, 2}, Contours - n, PlotLabel -» "Contours->" <> ToString[n] ] B
{n, 1, 4}], 2], ImageSize - 400]

Contours> 1 Contours> 2
2 2

\
SO Y

N~

7
A
5

5

out[26]=

See Also

The 2D version ContourPlot is discussed in Recipe 7.6.
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7.6 Combining 2D Contours with 3D Plots

Problem

You want to use a 2D contour plot to annotate the lower plane of a 3D plot.

Solution

Transform the 2D contour plot into a 3D graphic by adding a third z coordinate of
constant value. Use Show to combine the new 3D graphic with a 3D plot.

In[27]:= Module[{f}, f[x_, Yo, z_] =2 +3y? -5z Show[
ContourPlot3D[f[x, ¥, z], {X, -1, 1}, {y, -1, 1}, {2, -1, 1}, Contours » 1],
Graphics3D [ ContourPlot [[x, y, -1], {x, -1, 1}, {y, -1, 1}] [1] /.
{x_Real, y_Real} » {x, y, -1}], ImageSize - 300] |

1.0
05
00

05

out[27]=

Discussion

You can apply the same technique to Plot3D. Here I use a larger PlotRange on the
z-axis to provide room to see the contour. Using Opacity to add some translucence
to the 3D plot also allows the contour plot to be better viewed.
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In[28]:= Module[{f}, f[x_,y_] :=Sin[2Pix"3] +Cos[3Piy~2];
Show[Plot3D[f[x, y], {x, -1,1}, {y, -1, 1},
PlotStyle - Opacity[0.7], PlotRange » {Automatic, Automatic, {-8, 2} }] N
Graphics3D|
ContourPlot[f[x, y], {X, -1, 1}, {y, -1, 1}, Axes - False] [[1]
17.{x:_Real,y: Real} - {x,y, -8}],
ViewPoint » {-2, -2, 1}, ImageSize -» 300

]

7.7 Constraining Plots to Specified Regions

Problem

You want to plot a 3D surface that includes only the points defined by a predicate.

Solution

Use the RegionFunction option with Plot3D, SphericalPlot3D, RevolutionPlot3D,
ParametricPlot3D, and other 3D plots.
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In[29]:= SphericalPlot3D[1, {e, 0, Pi}, {4, -Pi, Pi},
RegionFunction - Function[ {e, ¢}, Sin[¢ 6] <0.3],
ViewPoint - {2, 2, 0}, ImageSize - Small]
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Out[29]= 0.0
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Discussion

The parameters passed to a region function vary by plot type; these are listed in
Table 7-1.

Table 7-1. Region functions by plot type

Plot type RegionFunction arguments

Plot3D, ListPlot3D, ListSurfacePlot3D X, Y, Z

ContourPlot3D, ListContourPlot3D X, ¥, z, T
ParametricPlot3D X, ¥, Z, Uy, V
SphericalPlot3D X, ¥, 2,0, ¢,
RevolutionPlot3D X, ¥,2,t,0, 1
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The region function can be used to create quite exotic effects, as demonstrated in
Figure 7-12.

In[30]:= GraphicsRow[{SphericalPlot3D[1 + Sin[5¢]/10, {e, 0, Pi}, {4, 0, 2Pi},
RegionFunction -> (Sin[5 (#3+ #5)] > 0 &),
Mesh - None, BoundaryStyle - Black],
SphericalPlot3D[1 + Sin[5¢] /10, {6, O, Pi}, {¢, O, 2Pi},
RegionFunction -> (Sin[5 (#3+ #6)] > 0 &),
Mesh - None, BoundaryStyle - Black] }, ImageSize - 400]
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Figure 7-12. Effects of the RegionFunction option

7.8 Plotting Datain 3D

Problem

You have a matrix of data points that you want to plot as heights, with possible
interpolation of intermediate values.

Solution

Use ListPlot3D with InterpolationOrder—0 to plot distinct levels, Interpolation-
Order—1 to join points with straight lines, and InterpolationOrder—2 or higher to
create smoother surfaces.

In[31]:= SeedRandom[1000] ;
data = RandomReal[{-10, 10}, {20, 20}1;
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In[33]:= GraphicsColumn|
Table[ListPlot3D[data, InterpolationOrder - i, Mesh - None], {i, 0, 2}1],
ImageSize - 150, Frame - Al1]

out[33]=
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Discussion

3D list plots are often enhanced by use of a mesh. Here, in an example adapted from
the Wolfram documentation, I show a plot of elevation of the state of Utah by lati-
tude and longitude. The option MeshFunctions - {#3 8} uses the elevation data to
specify the mesh giving contours (first image) that help visualize the elvation better
than the default mesh (second image).
In[34]:= Column[{ListPlot3D|
{citypata[s, "Longitude"], CityData[#, "Latitude"], CityData[#,
"Elevation"]} & /e CityData[{All, "Utah", "UnitedStates"}],
MeshFunctions -» {#3 &}, ImageSize—eBOO],
ListPlot3D[{CityData[#, "Longitude"],
CityData[#, "Latitude"], CityData[#, "Elevation"]} & /e
CityData[{All, "Utah", "UnitedStates"}], ImageSize -»300]}]

3000
2500
2000
1500}
1000

-114

‘42

out[34]=

/42

See Also

ListPointPlot3D is used to create 3D scatter plots.
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7.9 Plotting 3D Regions Where a Predicate
Is Satisfied

Problem

You want to visualize regions where a predicate is satisfied.

Solution
RegionPlot takes a predicate of up to three variables. The predicate can use all of the
relational operators (<, <=, >, >=, ==, =) and logical connectives (88, | [, Not).

In[35]:= RegionPlotSD[x"2+z"3—4y"2 >1 || x*2 + y*2 + z*2 < 0.5,
(x5 -2, 2}, {y, -2, 2}, {2, -2, 2}, ViewPoint - Front, ImageSize - 250]
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out[35]= O /I
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Discussion

RegionPlot3D uses an adaptive algorithm that is based on the options PlotPoints and
MaxRecursion. The default setting for each is Automatic, meaning Mathematica will
pick what it thinks are appropriate values based on the predicate and ranges. The al-
gorithm first samples using equally spaced points, and then subdivides those points
based on MaxRecursions and the behavior of the predicate. It is possible for the algo-
rithm to miss regions where the predicate is true. One way to gain confidence in the
result is to plot with successively larger values for PlotPoints and MaxRecursion.
However, of the two, PlotPoints usually has a more significant effect.
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In[314]:= Grid [Partition [Table[
RegionPlot3D[x"2 + y"2 + 2"2 < 0.75 + Sin[3x] Sin[5y] Sin[7 2] /2,
{x, -1.25, 1.25}, {y, -1.25, 1.25}, {z, -1.25, 1.25}, Mesh - None,
MaxRecursion - 0, PlotPoints - pp], {pp, {5, 10,15, 25}}], 2]]
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7.10 Displaying 3D Geometrical Shapes

Problem
You want to create graphics that contain spheres, cylinders, polyhedra, and other
3D shapes.
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Solution
Mathematica has 3D primitives: Cuboid, Sphere, Cylinder Line, Point, and Polygon.

In[37]:= ClearAll[cone]

In[38]:= cone[height_, base_, {x_, y_, z_}, {ax_, ay_, az_}] :=
Module[{c1, c2, c3, c4, 5},
c1 = RevolutionPlot3D[ {t, -height t2}, {t, 0, base}, Mesh - None];
€2 =Rotate[c1[[1]], ax, {1, 0, 0}]; c3 = Rotate[c2, ay, {0, 1, 0}];
c4 = Rotate[c3, az, {0, 0, 1}];
5 =Translate[c4, {x, y, z + height « base}]; c5]
torus[] := {}
snowman3D [bodyRadius_] := Module[{bodyCenter = {0, 0, 0},
(*Proportioning the torso and
head based on golden ratio gives pleasing effect.x)
torsoRadius = bodyRadius / GoldenRatio,
headRadius = bodyRadius / (GoldenRatio”2),
torsoCenter, headCenter, leftShoulder, rightShoulder,
buttonSize = bodyRadius /10, buttonSep = bodyRadius /3.3,
leftHand, rightHand, mouthCenter, leftEyeCenter, rightEyeCenter},
torsoCenter =
{bodyCenter[[1]], bodyCenter[[2]], torsoRadius + bodyRadius};
headCenter = {bodyCenter[ [111, bodyCenter[[2]],
bodyRadius + 2 torsoRadius + headRadius};
(*Position the arms at -60 and 60 degrees.x)
leftShoulder = torsoCenter +
{torsoRadius »Sin[-Pi/3], 0, torsoRadius %= Cos[-Pi/3]};
leftHand = torsoCenter + {2.5 torsoRadius %Sin[-Pi/3],
0, 3 torsoRadius » Cos[-Pi/3]};
rightShoulder = torsoCenter + {torsoRadius »Sin[Pi/3],
0, torsoRadius » Cos[Pi/3]1};
rightHand = torsoCenter + {2.5torsoRadius *Sin[Pi/3],
0, 3 torsoRadius » Cos[Pi/3]};
(*Position eyes at -45 and 45 degrees and half
the radius of the head.x)
leftEyeCenter = headCenter + {0.5 headRadius » Sin[-Pi/4],
-0.8 headRadius, 0.5 headRadius * Cos[-Pi/4]};
rightEyeCenter = headCenter + {0.5headRadius % Sin[Pi/4],
-0.8 headRadius, 0.5 headRadius » Cos[Pi/4]};
(*Position mouth at 180 degrees - bottom of circle,
also half radius of head.x)
mouthCenter = headCenter + {0.75 headRadius % Sin[Pi],
-25, 0.75 headRadius % Cos[Pi]};
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Graphics3D[ {
Sphere [bodyCenter, bodyRadius], (*Base circles)
Sphere [torsoCenter, torsoRadius], (*Middle circlex)
Sphere [headCenter, headRadius],
Cylinder[ {leftShoulder, leftHand}, 1.5],
Cylinder[{rightShoulder, rightHand}, 1.5],
Sphere [le-FtEyeCenter, headRadius / 4] ,
Sphere [rightEyeCenter, headRadius /4],
cone[headRadius/4,headRadius/4,
headCenter - {headRadius /8, 2 headRadius, 0.75 headRadius},
{90 Degree, 180 Degree, -5 Degree}]}, Axes - True,
AxesLabel » {"x", "y", "z"}, ImageSize - Small] ] ;

snowman3D [30]

y 2Q_,4q -20 8
0, T 20
20" -, 40
50,
Out[41]= ,
o

Discussion

A more mathematically inspired demonstration of graphics primitives is the Dan-
delin construction. Here one drops two spheres, one small and one large, into a
cone such that the spheres do not touch. Consider a plane that slices through the
cone tangent to the surface of both spheres. As you may know, a plane intersecting
a cone traces an ellipse. What is remarkable is that the tangent points with the spheres
are the foci of this ellipse. T adapt the construction from Stan Wagon’s Mathematica
in Action (W.H. Freeman), upgrading it to take advantage of the advanced 3D fea-
tures of Mathematica 6, such as Opacity and PointSize. I refer the reader to Wag-
on’s book for the derivation of the mathematics.
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In[42]:= Block|
{r1, r2, m, h1, h2, c1, C2, M, MC1, MC2, T1, T2, ht,
cone, slope, plane},
{r1, r2} = {1.4, 3.4};
m = Tan[70. «Degree] ;
hl := r1%Sqrt[l + m"*2];
h2 := r2+Sqrt[l + m"2];
1 := {0, 0, h1};
c2 := {0, 0, h2};
M = {0, MC1 + hl};
MC2 = MC1lx (r2/rl1);
MC1 = (x1% (h2 - hl)) / (x1 + 12);
T1 = C1 + rl«{-Sqrt[l - r1~2/MC1"2], 0, rl/MC1};
T2 = C2 + r2* {Sqrt[1 - r2"2/MC2"2], 0, -(r2/MC2)};
ht = 1.2+ (h2 + r2); cone[m_, h_] :=
RevolutionPlot3D[{t, mxt}, {t, 0, h/m}, Mesh -> False][[1]];
slope = (T2[[3]]1 - T1[[3]11) / (T2[[1]] - T1[[1]]1);
plane = ParametricPlot3D[{t, u, slopext + M[[2]1]}, {t, -2%m, 12/m},
{u, -3, 3}, Boxed -> False, Axes -> False][[1]];

Graphics3D [ {{Opacity[0.45], cone[m, 1.2 (h2 + r2)]1},
{opacity[0.5], Sphere[Cl, rl], Sphere[C2, r2]},
{opacity[0.5], plane}, PointSize[0.0175], Point[T1], Point[T2]},
Boxed -> False, ViewPoint -> {-1.8, -2.5, 1.5}, ImageSize -> 300]]

Out[42]=
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Mathematica can also deal with 3D graphics that are not necessarily of mathemati-
cal origin. You can demonstrate this using ExampleData.

In[43]:= GraphicsGrid|
Partition|ExampleData /@ Take[ ExampleData["Geometry3D"], 16], 4]]
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7.11 Constructing Wireframe Models from Mesh

Problem

You want to build a wireframe model or other structural models from an existing 3D
plot.

Solution

The following solution was developed by Ulises Cervantes-Pimentel and Chris Carl-
son of Wolfram Research. As with Recipe 7.6, the trick is to leverage Mathematica’s
symbolic representation of 3D graphics and to perform transformations on that repre-
sentation to yield the desired result.

You begin with the shape of interest. Here Chris Carlson was interested in an archi-
tectural model of a bubblelike structure. Note the use of the Mesh option, which is
central to extracting the wireframe.
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In[44]:= bubbleModel = Module[
{d=1.5",h=5,1=0.15", nx =10, ny = 10, r = 0.4", t = 0.15", zMin = -0.2"},

d)? d)?
ContourPlotBD[[[x——] +y2+hzz—1] [[x+—] +y2+h(z+t)2-r],
2 2

{x, -2, 2}, {y, -2, 2}, {z, zMin, 1}, BoxRatios - Automatic,
PlotPoints - 20 {1, 1, 1}, Axes - None, PerformanceGoal - "Quality",

Contours » {1}, ImageSize - 400, Mesh - {nx, ny, 0}] ]

Out[44]=

You can go directly to a wireframe by simply extracting the lines.

In[45]:= Graphics3D[Cases [Normal [bubbleModel], _Line, ],
Boxed -» False, ImageSize - 400]

Out[45]=
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Discussion

The solution was quite simple because the transformation was a simple extraction of
graphics data that was already present. However, you can take this approach much
further. Here Normal is used to force the Graphics3D object into a representation of
low-level primitives, and Cases is used to extract the lines. However, this time the
lines are transformed to polygons to create a box model.

In[46]:= Graphics3D[Cases [Normal [bubbleModel], Line[pts_, ] :>Polygon[pts], =],
Boxed - False, ImageSize - 400]

out[46]=

If your end goal was an architectural structure, the box model is no good. You need
to open up the space. Here is an even more sophisticated transformation that turns
the walls of the model into curved support beams.
In[47]:= InsetPoints[pts_] := Polygon[Join[pts, Reverse|
Module[{centroid = (Plus ee pts) /Length[pts]},
(# + .1 (centroid - #)) & /e pts]
Graphics3D [Cases [Normal [bubbleModel],
Line[pts_, _ ] :» InsetPoints[pts], o], Boxed -» False, ImageSize » 500]

out[48]=
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As a final step, you may want to show how the structure would look if it were cov-
ered with a translucent covering. Here Mathematica’s sophisticated Lighting and
Specularity options are used.
In[49]:= Graphics3D[{
Gray,
Cases [Normal [bubbleModel], Line[pts_, 1 :> InsetPoints[pts], =],

EdgeForm[None], Opacity[.5],

Specularity [White, 1000], Hue[.66, .75, .51, Lighting » "Neutral”,
Cases [Normal [bubbleModel], _Polygon, ]
}» Boxed - False, ImageSize - 500, Lighting - "Neutral"]

out[49]=

See Also
Recipe 7.13 covers Lighting and Specularity.

Chris Carlson gave a superb presentation at the 2009 International Mathematica
User Conference (IMUC). This post on the Wolfram Blog covers a good portion of
the talk: http://bit.ly/291CDE.

7.12 Controlling Viewing Geometry

Problem

You want to control the placement of a simulated camera that determines viewing
perspective of a 3D graphic.
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Solution

Use the ViewPoint option to control the point in space from which a 3D object is to
be viewed. Here I enumerate some of the possibilities.
In[50]:= GraphicsGrid[
Partition[Table [Append [ExampleData [ {"Geometry3D", "Beethoven"}],
{viewPoint - vp, PlotLabel - ToString[vp]}], {vp, {Front, Back,
Above, Below, Top, Left, Right, {0, -2, 2}, {2, -2, 0}}}], 3]]

Back

Above

Left
Below Top

out[50]= 3 y

Right {0, -2, 2} 2,-2,0}
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Use the ViewCenter option to control the point that should appear as the center of
the displayed image. The coordinates are scaled to the range [0,1].
In[51]:= Grid[Partition[
Table[Graphics3D[Cylinder[], ViewCenter - vc, SphericalRegion - True,
PlotLabel—aToString[N[vc,2]],ImageSize—;Tiny],{vc,
{{0,0,0}, {1/2,1/2,1/2}, {1, 0, 1}, {1, 1, 0}, {0, 1, 1}, {1,1,1},
{1/3,1/2,1/3}, {0,1/3,1/3}, {1/3,1/3,0}}}], 3], Frame - Al1]

10,0, 0} 10.50, 0.50, 0.50) 1.0,0,1.0

{1.0,1.0,0) {0,1.0, 1.0) (1.0, 1.0, 1.0}

Out[51]=

{0.33, 0.50, 0.33} 10, 0.33, 0.33) 10.33, 0.33. 0.
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Use the Viewvertical option to control which coordinates should be vertical.

In[52]:= GraphicsRow|Table [Graphics3D[Cylinder[], ViewVertical »wv],
{w, {{3, 0o, 03, {0, 1, 0}, {0, 0, 1}, {-0.5, -1, 1]’]’]’]]

‘Cewe

Discussion

For many users, combinations of ViewPoint, ViewCenter, and ViewVertical will cre-
ate the initial spatial orientation of the 3D graphic that most suits your tastes or
visual emphasis. However, there are additional options that are useful in some cir-
cumstances. ViewVector allows you to control the position and orientation of a simu-
lated camera. ViewVector takes either a single vector that specifies the position
of the camera that is pointed at ViewCenter or a pair of vectors that specify both
the position of the camera and the center. ViewVector overrides ViewPoint and
ViewCenter. To understand the concept of the camera, picture yourself looking
through the camera as it moves around the stationary graphic.

In[53]:= GraphicsRow|
Table[Graphics3D[Cylinder[], SphericalRegion - True, ViewVector - w],
{wv, {{5,5, -5}, {0, 5, 5}, {5, -5, 0}, {2.5, 2, 2-5}}}]]

‘bWl ®

Continuing with the camera metaphor, the option ViewAngle is analogous to zoom-
ing. The default view angle is 35 degrees. You can specify a specific angle or the sym-
bol All, which will pick an angle that is sufficient to see everything.
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7.13 Controlling Lighting and Surface Properties
Problem

You want to modulate lighting and surface characteristics to highlight important fea-
tures or create artistic effects.

Solution

Mathematica provides quite sophisticated control of light via the options Lighting,
Specularity, and Glow. The simplest settings for Lighting are Automatic, "Neutral",
and None (Figure 7-13).
In[54]:= GraphicsRow[Table [GraphicsBD[Sphere[] , Lighting —» 1] ,
{1, {Automatic, "Neutral", None}}]]

Out[54]= \

Figure 7-13. Examples of Lighting

For more sophisticated control, you can specify combinations of ambient, direc-
tional, spot, and point light sources (Figure 7-14). Try the code on your own for the
full effect.
In[55]:= GraphicsRow[Table [GraphicsBD[Sphere[] , Lighting - 1] ,
{1, {{{"Point", Red, {0, 0, 2}}}, {{"Ambient", Green}},
{{"Directional”, Blue, {{0, 0, 1}, {-1, 1, 1}}}}}}]]

out[55]=

Figure 7-14. Examples of Glow
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Glow is the opposite of Lighting. It specifies the color of the surface itself. Glow is also
different from an object’s color, as you can see in Figure 7-15. (However, Glow is not
easily demonstrated in monochrome print. Please try the code on your own to see
the effect.) Both the cylinder and the sphere have a green color, but the sphere also
has a green glow. There is no lighting, so only the cylinder appears bright because of
Glow. Another way Glow differs from Lighting is that it does not affect surround-
ing objects, only the objects with Glow. In other words, a glowing object is not a
light source in the Graphics3D domain.

In[56]:= Graphics3D[{{Glow[Green], Green, Cylinder[]},
{Green, Sphere[{2, 1.5, 0}]}}, Lighting - None, ImageSize - 300]

out[56]=

Figure 7-15. Difference between Glow and color
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Discussion
As you probably would expect from your experience with colored lights, Mathemat-
ica lighting follows the additive color model (refer to the online version of the follow-
ing image to appreciate its full glory: http://bit.ly/xIgx7).
In[58]:= Module[{lights, plane}, lights = {{"Spot", Red, {{3, 3, 5}, {3, 3, 0}}, Pi/8},
{"Spot", Green, {{7, 3, 5}, {7,3,0}},Pi/8},
{"Spot", Blue, {{5, 6,5}, {5,6,0}},Pi/8}};
plane = ParametricPlot3D[ {u, v, -2}, {u, 0, 10}, {v, 0, 9},
PlotPoints - 100, MaxRecursion - 0, Mesh - None, Axes - False];
Show[plane, Lighting - lights] ]

out[58]=

Lighting can be used as an option that applies to an entire graphic, but it also works
as a graphics directive that applies to the objects that follow it within the same

scope.
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In[59]:= Graphics3D[{
{Lighting - {{"Directional”, Blue, {{0, 0, 1}, {-1, 1, 1}}},
{"Point", Red, {1, 1, 1}}},
{specularity[0.5], Sphere[{0, 0, 1}, 0.251},
Sphere[{1, 0, 0}, 0.25]},
Sphere[ {1, 1, 1}, 0.25]
}, Lighting » { {"Ambient", Green}}, ImageSize - Small]

out[59]=

Specularity and Glow are strictly used as directives, although Specularity can be
combined with Lighting.

See Also

The use cases covered in this recipe should satisfy most common uses of colored
lighting, but if you are trying to achieve very specific lighting effects, you should con-
sult the Mathematica documentation to explore the full range of forms Lighting,
Specularity, and Glow can take and how they interact with color.
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7.14 Transforming 3D Graphics

Problem

You want to scale, translate, or rotate graphics in 3D space.

Solution
Use Scale to stretch or shrink graphics.

In[60]:= GraphicsGrid[
Partition|Table [Graphics3D[ {Scale[Sphere[], {s, s, s}, {0, 0, 0}1},
PlotRange » {{-2, 2}, {-2, 2}, {-2, 2}},
PlotLabel - "Scale = " <> ToString[N[s]]],
{s, {1/3,1/2,1,2}}], 2], ImageSize - 300]

Scale = 0.333333 Scale = 0.5

¢ .

Out[60]=
Scale = 1. Scale = 2.
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Use Translate to move graphics in 3D space. Figure 7-16 presents four translations
of a sphere that is originally constructed at the origin.

In[61]:= GraphicsGrid[Partition|
Table [Graphics3D [ {Translate [Sphere[ {0, 0, 0}, 0.75], v] }, PlotRange -
{{-2, 2}, {-2, 2}, {-2, 2} }, PlotLabel » "Vec = " <> ToString[N[v] ]],
v, {{-1, -1, -1}, {0, 0, 0}, {1, 1,1}, {1/2,0, -1/2}}}],
2], ImageSize - 300]

Vec = {-1., 1., -1.} Vec = {0.,0.,0.}

¢ ¢

Vec={1,1,1]) Vec = {0.5, 0., -0.5)

Out[61]=

.

Figure 7-16. Examples of Translate

Use Rotate to change the orientation of graphics. Figure 7-17 rotates a cube through
Pi/4 radians (45 degrees) but uses different vectors to define the rotation axis.
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In[62]:= GraphicsGrid[
Partition[Table [Graphics3D [ {Rotate [Cuboid[], Pi/4, v]}, PlotRange -»

{{-2, 2}, {-2, 2}, {-2, 2}}, PlotLabel - "Vec =" <> ToString[N[v]]],
v, {{-1, 0, 1}, {0, 1, -1}, {1, 1, 0}, {1, 1, 1}}}], 2], ImageSize - 300]

Ve(;y ={-1.,0,1} Ve(;y ={0., 1., -1}

out[62]=
Vg'c :gl., 1,1}

Figure 7-17. Examples of Rotate

Discussion

In addition to the primitive transformations shown in the solution, Mathematica
provides support for transformation matrices and symbolic transformation functions.
Matrices include RotationMatrix, ScalingMatrix, ShearingMatrix, and Reflection-
Matrix. The transformation functions are RotationTransform, TranslationTransform,
ScalingTransform, ShearingTransform, ReflectionTransform, RescalingTransform,
AffineTransform, and LinearFractionalTransform. A smattering of examples is given here.
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Transformations work in conjunction with the function GeometricTransformation,
which takes a graphic and either a transformation or a matrix.

ShearingTransform[e,v,n] is an area or volume preserving transformation that adds
a slant, also known as a shear, to a graphic. Shear is specified in terms of an angle 6
along a vector v and normal to a second vector n. Figure 7-18 shows a polyhedron in
its original state followed by a shear transform. A translucent cube is also trans-
formed to give a sense of the angles.

In[63]:= Module[{poly}, poly = PolyhedronData | "DisdyakisDodecahedron”] [[1]];
GraphicsRow[ {
Graphics3D [ {Green, poly}, Boxed - False, ViewPoint - Front],
Graphics3D[ {Green,

GeometricTransformation [poly,
ShearingTransform[Pi/6, {1, 0, 0}, {0, 0, 1}] ] , Opacity[0.1],
GeometricTransformation[Cuboid[{—1.5, -1.5, -1.53}, {1.5, 1.5, 1.5}1,
ShearingTransform[Pi/6, {1, 0, 0}, {0,0,1}]]},
Boxed - False, ViewPoint - Front] }

1]

out[63]=

Figure 7-18. Example of ShearingTransform

7.15 Exploring Polyhedra

Problem

You want to investigate the characteristics of various polyhedra.
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Solution

Mathematica 6 includes PolyhedronData, which is effectively an embedded database
of polyhedra attributes. Apropos to this chapter, PolyhedronData contains the 3D
graphics data for a variety of common and exotic polyhedra. If you call
PolyhedronData[ ] with no arguments, it returns a list of all polyhedra it has informa-

tion about.

In[64]:= Partition|

PolyhedronData [ "Properties”],
4,4, {1, 1}, {}] // TableForm

Out[64]//TableForm=

AdjacentFaceIndices AlternateNames AlternateStandardNames Amphichiral
Antiprism Archimedean ArchimedeanDual Centroid

Chiral Circumcenter Circumradius Circumsphere
Classes Compound Concave Convex

Cuboid DefaultOrientation Deltahedron DihedralAngleRules
DihedralAngles Dipyramid DualCompound DualName

DualScale EdgeCount EdgeIndices Edgelengths

Edges Equilateral FaceCount FaceCountRules
FaceIndices Faces GeneralizedDiameter Hypercube

Image Incenter InertiaTensor Information
Inradius Insphere Johnson KeplerPoinsot
Midcenter Midradius Midsphere Name
NetCoordinates NetCount NetEdgeIndices NetEdges
NetFaceIndices NetFaces NetImage NotationRules
Orientations Orthotope Platonic PolyhedronIndices
Prism Pyramid Quasiregular RectangularParallelepiped
RegionFunction Rhombohedron Rigid SchlaefliSymbol
SelfDual Shaky Simplex SkeletonCoordinates
SkeletonGraphName SkeletonImage SkeletonRules SpaceFilling
StandardName StandardNames Stellation StellationCount
SurfaceArea SymmetryGroupString Uniform UniformDual
VertexCoordinates VertexCount VertexIndices Volume
WythoffSymbol Zonohedron

If you call PolyhedronData[poly], where poly is the name of the polyhedron, it will re-
turn the graphic. The code given here creates a labeled grid of a random selection of
24 polyhedra known to Mathematica 7. Here StringSplit uses a regular expression
to parse the names on CamelCase boundaries and inserts a new line so the names fit
inside the grid cells.
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In[65]:= BlockRandom|

SeedRandom [4] ; Block[{p = Append[PolyhedronData[#],
{PlotLabel -» Text[Style[StringJoin[StringSplit[ToString[#],
RegularExpression[" ([a-z]) ([A-Z])"] - "$1\n$2"]],
FontSize - 10, TextAlignment - Center] |, Boxed - False,
ImageSize - Large}] & /@ RandomChoice[ PolyhedronData[], 20]},
Grid[Partition[Show|[s, ImageSize - 95] & /@p, 5], Spacings - {0, 0} ]

]
]
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Bicupola

0

Gyroelongated
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0

out[65]=
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Discussion

PolyhedraData contains a treasure trove of polyhedra information. In the solution we
demonstrate how to extract graphics by name. Here we show the input form of a
cube.

In[66]:= PolyhedronData["Cube"] // InputForm
Out[66]//InputForm=
Graphics3D[GraphicsComplex[{{-1/2, -1/2, -1/2}, {-1/2, -1/2, 1/2}, {-1/2,
1/2, -1/2}, {-1/2, 1/2, 1/2}, {1/2, -1/2, -1/2},
{172, -1/2, 1/2}, {1/2, 1/2, -1/2}, {1/2, 1/2, 1/2}}, Polygon[{{8, 4, 2,
6}, {8, 6, 5, 7}, {8, 7, 3, 4}, {4, 3, 1, 2},
{1, 3, 7, 5}, {2, 1, 5, 6}}]1]

The solution also exploits the ability to list all the polyhedra by providing no argu-
ments. The solution used the first 20, but there are many more, as you can see.
In[67]:= Length[PolyhedronData[] ]
out[67]= 187
You can explore all of them with this little dynamic widget.

In[68]:= DynamicModule [{poly = "DodecahedronSixCompound"},
Row [ { PopupMenu [Dynamic [poly], PolyhedronData[]],
Dynamic [PolyhedronData [poly]]}, " "]]

Out[68]= | DodecahedronSixCompound A4
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The polyhedra are grouped into classes. You can get a list of these classes or a list of
the members of a particular class.

In[69]:= PolyhedronData["Classes"]

Out[69]= {Amphichiral, Antiprism, Archimedean, ArchimedeanDual, Chiral, Compound,
Concave, Convex, Cuboid, Deltahedron, Dipyramid, Equilateral, Hypercube,
Johnson, KeplerPoinsot, Orthotope, Platonic, Prism, Pyramid, Quasiregular,
RectangularParallelepiped, Rhombohedron, Rigid, SelfDual, Shaky,
Simplex, SpaceFilling, Stellation, Uniform, UniformDual, Zonohedron}

In[70]:= PolyhedronData["Chiral"]

out[70]= {GyroelongatedPentagonalBicupola, GyroelongatedPentagonalBirotunda,
GyroelongatedPentagonalCupolarotunda, GyroelongatedSquareBicupola,
GyroelongatedTriangularBicupola, PentagonalHexecontahedron,
PentagonalIcositetrahedron, SnubCube, SnubDodecahedron}

Polyhedra also have various properties, which you can list or use with a polyhedron
to retrieve the value.

In[71]:= PolyhedronData["Properties"]

out[71]= {AdjacentFaceIndices, AlternateNames, AlternateStandardNames, Amphichiral,
Antiprism, Archimedean, ArchimedeanDual, Centroid, Chiral, Circumcenter,
Circumradius, Circumsphere, Classes, Compound, Concave, Convex, Cuboid,
DefaultOrientation, Deltahedron, DihedralAngleRules, DihedralAngles,
Dipyramid, DualCompound, DualName, DualScale, EdgeCount, EdgeIndices,
Edgelengths, Edges, Equilateral, FaceCount, FaceCountRules, FaceIndices,
Faces, GeneralizedDiameter, Hypercube, Image, Incenter, InertiaTensor,
Information, Inradius, Insphere, Johnson, KeplerPoinsot, Midcenter,
Midradius, Midsphere, Name, NetCoordinates, NetCount, NetEdgeIndices,
NetEdges, NetFaceIndices, NetFaces, NetImage, NotationRules,
Orientations, Orthotope, Platonic, PolyhedronIndices, Prism, Pyramid,
Quasiregular, RectangularParallelepiped, RegionFunction, Rhombohedron,
Rigid, SchlaefliSymbol, SelfDual, Shaky, Simplex, SkeletonCoordinates,
SkeletonGraphName, SkeletonImage, SkeletonRules, SpaceFilling,
StandardName, StandardNames, Stellation, StellationCount, SurfaceArea,
SymmetryGroupString, Uniform, UniformDual, VertexCoordinates,
VertexCount, VertexIndices, Volume, WythoffSymbol, Zonohedron}

In[72]:= PolyhedronData [ "GyroelongatedPentagonalBicupola”, "VertexCount"
out[72]= 30
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In[73]:= PolyhedronData["Cube", "Faces"]

1 1 1 1 1 1 1 1
Out[73]= GIaphicsComplexH{——, -, -—}, {__, -, _}, {__’ _
2 2 2 2 2 2 2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
{77) el 7}) {7) I 77}) {7) ) 7}) {7) el 77}) {7) el 7}})
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Polygon([( (8, 4,2, 6}, (8, 6,5, 7}, (8,7,3, 4,
14,3,1,21, (1,3,7,5), (2, 1,5, 6}}1]

Skeletal images show the polygons in terms of connected graphs.

In[74]:= GraphicsRow[{PolyhedronData[“Cube", “SkeletonImage"] , PolyhedronData[

"GyroelongatedPentagonalBicupola”, SkeletonImage"] } , ImageSize » Medium]

Out[74]=

NetImage is my favorite aspect of PolyhedronData because it shows how to make a
cutout that can be folded into an actual 3D model of the named polyhedron. My
kids like this one, too, although I have to do all the tedious parts!

In[75]:= GraphicsRow[{PolyhedronData | "GyroelongatedPentagonalBicupola”, "NetImage"],
Import [FileNameJoin [ {NotebookDirectory[], "..", "images",
"GyroelongatedPentagonalBicupolaConstr.PNG"}]]}]

B VAVAVAVAVAVAVAVAVAVAN
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See Also

GraphData, KnotData, and LatticeData are equally cool graphical data sources that
you can explore on your own. Refer to the Mathematica documentation.

7.16 Importing 3D Graphics from CAD
and Other 3D Software

Problem

You have 3D data from another application that you would like to view or manipu-
late within Mathematica.

Solution

Mathematica 6 can import several popular 3D graphics formats, including Drawing
Exchange Format (DXF) produced by AutoCAD and other CAD packages.

In[76]:= dxf = Import["ExampleData/helicopter.dxf.gz", ImageSize » Small]

Out[76]=

=

Discussion

Mathematica’s symbolic representation makes it possible to manipulate imported
graphics via pattern matching.

You can change colors and directives.
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In[77]:= GraphicsRow[{dxf /. RGBColor[1.,0.,0.] - RGBColor[0, 1., 1.],
dxf /. { RGBColor[__], Polygon[x_]} :> {EdgeForm[Dashed], Polygon[x]}},
ImageSize - 400]

Out[77]

/Ji
A

You can extract elements based on properties. Here we delete all nonyellow
polygons (i.e., all but the rotor).

In[78]:= DeleteCases[dxf, Except[{RGBColor[1., 1., 0.1, Polygon[_1}], {5}]

out[78]=

You can emphasize the component polygons by shrinking each toward its center
and changing all colors to dark gray.

In[79]:= shrink[t_, Polygon[x_List, opts__]] :=Module|

{c=Plus ee x/ Length[x] }» Polygon[Map[(c+ (1-t) (#-c)) & x], opts] ]
In[80]:= dxf /. {x_Polygon :» shrink[0.4, x],

RGBColor[_, _, _] =» GraylLevel[0.3], Small:» 600}

0ut[80]=
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CHAPTER 8
Image Processing

I have a picture

Pinned to my wall

An image of you and of me and we’re laughing
We’re loving it all

You say I'm a dreamer

We’re two of a kind

Both of us searching for some perfect world
We know we’ll never find

Thompson Twins, “Hold Me Now”

8.0 Introduction

Image processing is a field with many challenges. The first challenge is the magni-
tude of the data. Consider that a simple 256 x 256 pixel grayscale image will contain
65,536 bytes of data for the pixel values alone. Larger color images can contain
many times this amount. The second challenge is the raster form of the image data,
which is optimized for display, not for detecting distinct visual elements. A third chal-
lenge is the noise and other artifacts of the image-capture process. A final challenge
is the lack of contextual information; most images do not encode where they were
taken, the lighting conditions, the device used, and so on (although this is beginning
to change). In my opinion, these challenges make working on image processing very
rewarding, especially when one considers that significant portions of our brains are
dedicated to visual perception. Finding algorithms that achieve the kinds of visual-
processing tasks that the brain performs is one way to begin to peel away the veil ob-
scuring the workings of our most mysterious organ.

The field of image processing is very broad; this chapter only samples a small frac-
tion of the relevant problems. The choice of topics is largely a function of the au-
thor’s interests and experience. The full scope of image-processing research includes
efficient encoding of images and video, image enhancement and restoration, image
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segmentation, recovering spatial shape from shading and pattern distortions, learn-
ing about 3D from multiple 2D images, as well as image recognition. Researchers in
this field rely on a wide variety of mathematical techniques; hence, Mathematica is
an ideal platform to get one’s feet wet.

Image Representation

Mathematica uses the function Import to load images into a format suitable for
processing and display within the frontend. When you use Import on an image
file in versions of Mathematica prior to 7, you get a Graphics object that typically
contains a single Mathematica graphics primitive called Raster. A Raster represents
a 2D array of grayscale or color cells. A gray cell value will be a single number; a
color cell value will be three or four numbers. An option called ColorFunction
tells Mathematica how to map the cell values to display colors. Typical encodings
are RGBColor, Graylevel, and Hue. Most of the recipes in this chapter deal with
grayscale images; however, the first recipe shows you how to transform red-green-
blue (RGB) images to other encodings that are appropriate for the kinds of algo-
rithms in these recipes.

As of version 7, Mathematica images have their own representation, called Image,
which is distinct from Graphics (although you can request the older format
for backward compatibility using “Graphic” with Import). To make these recipes
compatible to both versions 6 and 7, I use the following functions throughout
this chapter. However, in some recipes these are not sufficient because the code as-
sumed Graphics form when recreating the image for display, and hence, expected
Graphics options to be present in the imported version.

In[18]:= Clear[getIngata, getImgRange, getImgDim, rasterReplace]

getImgData[img Graphics] := img[[1, 1]]
getImgData[img_Image] := Reverse[ImageData[img, "Byte"]]

getImgRange[img_Graphics] := img[[1, 3]]
getImgRange[img_Image] :=Module[{},
Switch [ ImageType [img], "Bit", {0, 1}, "Byte",
{0, 255}, "Bit16", {0, 65535}, "Real", {0.0, 1.0}]]

getImgDin[img Graphics] := img[[1, 2, 2]] - img[[1,2,1]]
getImgDim[img_Image] := ImageDimensions [img]
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getImgCoord[img_Graphics] := img[[1,2]]
getImgCoord[img_Image] := {{0, 0}, getImgDim[img]}

rasterReplace[img_Graphics, raster_List, opts__] :=
Graphics [Raster[raster, img[ [1, 2]], opts, Sequence @@ Options [img[[1]1]],
Sequence @e Options[img] |

rasterReplace [img_Image, raster_List, opts_] i=

Image [raster, img[[2]], opts, Sequence @@ Options [img] |

Image Processing in Mathematica 7

Most of this chapter was originally written prior to the release of Mathematica 7,
which introduced many native functions for image processing. After the release of
version 7, I added content and augmented some of the recipes. However, I still left
most of the custom algorithms intact, rather than just rewrite everything in terms of
the built-in constructs. As I stated previously, I believe image-processing algorithms
are interesting in their own right. The Mathematica 7 functions are very easy to use;
if you want to sharpen an image, for example, use Sharpen and you are done. How-
ever, if you want to understand the mathematics, see Recipe 8.5 or 8.6. In some
recipes, | simply refer you to the appropriate Mathematica function in the “See
Also” section. There are some common image transformations that are not covered
in this chapter, but most are easily implemented and are native to Mathematica 7. If
you need to crop, pad, rotate, and so on, you will want to upgrade to version 7,
which has ImageCrop, ImagePad, ImageResize, ImageTake, and ImageRotate.

See Also

The recipes in this chapter draw heavily on Rafael C. Gonzalez and Richard E.
Woods’s Digital Image Processing, Second Edition (Addison-Wesley). This is one of
the classic texts in the field, and any individual who has a serious interest in
image processing should own this text. Although T relied on the second edition,
[ would recommend buying the latest (third) edition, published by Prentice Hall in 2008.

If you have never worked with images in Mathematica, consult the documentation
and experiment with the functions Import, Graphics, and Raster before diving into
these recipes.
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8.1 Extracting Image Information

Problem

You want to extract information from one or more image files for manipulation by
Mathematica or for combining into a new image.

Solution

Use the two-argument version of the Import function to selectively import data from
an image file. Using Import with a PNG, GIF, TIFF, BMP, or other supported image
format will import the image and display it in the Mathematica frontend. However,
sometimes you might want to extract a subset of the image data for manipulation
rather than display. What information can you extract? This is answered using a sec-
ond argument of "Elements".

In[200]:= Import[FileNameJoin|

{NotebookDirectory[], "..", "images", "truck.jpg"}], "Elements"]
0ut[200]= {Aperture, BitDepth, CameraTopOrientation, ColorMap, ColorSpace, Data,

DataType, Date, Exposure, Focallength, Graphics, GraylLevels, Image,
ImageSize, ISOSpeed, Manufacturer, Model, RawData, RGBColorArray}

Note that not every image will provide the same level of information. The image
format and the device that produced the image determine which elements are available.

In[201]:= Import[FileNameJoin |

{NotebookDirectory[], "..", "images", "mechanisml.png"}], "Elements"]
Out[201]= {BitDepth, ColorSpace, Data, DataType,

Graphics, GraylLevels, Image, ImageSize, RGBColorArray}

Once you know which elements are available, you can extract them by name.

In[202]:= Import[FileNameJoin |
{NotebookDirectory[], "..", "images", "truck.jpg"}], "BitDepth"]
out[202]= 8

Note that an image element might be supported but not available, in which case
Import will return None.

In[203]:= Import[

FileNameJoin [ {NotebookDirectory[], "..
None

» "images", "truck.jpg"}], "Model"|

0ut[203]
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However, if you ask for the value of an element that is not supported, Import will

fail.

In[204]:= Import[FileNameJoin|{NotebookDirectory[], "..", "images", "truck.jpg"}],
"Copyright"]

Import: :noelem :
The Import element "Copyright" is not present when

importing as JPEG. >

Out[204]= $Failed

Discussion

From an image processing point of view, the elements you will most likely extract
are "Graphics", "GraylLevels", "Data", and "RGBColorArray". The "Graphics"
element is the default element for an image file. It extracts the image in a format suit-
able for immediate display in the frontend.

In[205]:= Import[FileNameJoin|{NotebookDirectory[], "..", "images", "truck.jpg"}],

"Graphics"]

0ut[205]=

Note, if you want to extract the "Graphics" format without displaying it, terminate
the expression with a semicolon.

In[206]:= image = Import[FileNameJoin |

{NotebookDirectory[], "..", "images", "truck.jpg"}], "Graphics"];
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The "GraylLevels" element will convert color image data to gray level data. That is, it
will return a 2D array of pixel gray values in the range 0 (black) to 1 (white). Here I
use Short to only show a few of the gray level values.

In[207]:= Short [Import [FileNameJoin [
{NotebookDirectory[], "..", "images", "truck.jpg"}], "GrayLevels"], 6]
Out[207]//Short=

{{0.283235, 0.330294, 0.270298, 0.242804, 0.227118, 0.190608,
0.190608, 0.161494, 0.181102, 0.156357, 0.21518, 0.322149, 0.388816,
0.446467, 0.524855, 0.576922, 0.620016, 0.646208, <<125>>,
0.980071, 0.988663, 0.980373, 0.981588, 0.98551, 0.984592, 0.984592,
0.984122, 0.972357, 0.985016, 0.985016, 0.984973, 0.984078,
0.984078, 0.984592, 0.984592, 0.983698} , <<118>>, { <<1>>}}

The "Data" element will extract the image pixel data as it is stored in the image file.
The format of the data will vary depending on the image type, but typically it will be
a matrix of RGB triplets for a color image and gray values for a grayscale image both
in the range [0,255].

In[208]:= Short [Import [FileNameJoin [
{NotebookDirectory[], "..", "images", "truck.jpg"}], "Data"], 6]
Out[208]//Short=

{{{86, 67, 63}, {98, 79, 75}, {82, 64, 60}, {73, 58, 53}, {69, 54, 49},
{57, 46, 40}, {57, 46, 40}, {47, 40, 32}, {52, 45, 37}, {43, 40, 31},
{58, 55, 46}, {82, 84, 73}, {99, 101, 90}, {113, 116, 105}, {131, 137, 125},
{141, 152, 138}, {150, 164, 149}, {152, 173, 156}, {150, 175, 156},
{141, 168, 149}, {136, 160, 144}, {142, 165, 149}, {149, 169, 157},
{155, 173, 161}, {146, 163, 153}, {145, 165, 154}, {146, 167, 158},
<1075, {246, 245, 241}, {250, 249, 245}, {255, 255, 251},
(255, 255, 251}, {249, 251, 248}, {248, 250, 247}, {247, 251, 252},
{249, 253, 254}, {248, 252, 255}, {247, 251, 252}, {248, 255, 248},
{246, 253, 245}, {249, 252, 245}, {250, 253, 246}, {252, 251, 249},
{252, 251, 249}, {254, 249, 253}, {251, 246, 250}, {254, 249, 255},
(254, 249, 255}, {252, 250, 255}, {252, 250, 253}, {252, 250, 2531,
(252, 251, 2497, {252, 251, 2497, {252, 251, 2471}, <<118>>, {<<1s>1}}
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In[209]:= Short [Import [FileNameJoin [
{NotebookDirectory[], "..", "images", "truck.jpg"}], "RGBColorArray"], 6]
Out[209]//Short=
{ (RGBColor [0.337255, 0.262745, 0.247059],
RGBColor [0.384314, 0.309804, 0.294118] ,
RGBColor [0.321569, 0.25098, 0.235294],
RGBColor [0.286275, 0.227451, 0.207843],
RGBColor [0.270588, 0.211765, 0.192157],
<150>> , RGBColor [0.988235, 0.980392, 0.992157],
RGBColor [0.988235, 0.980392, 0.992157],
RGBColor [0.988235, 0.984314, 0.976471],
RGBColor [0.988235, 0.984314, 0.976471)
[ ]

RGBColor [0.988235, 0.984314, 0.968627] }, <<119>>}

See Also

More details can be found in the Mathematica documentation for Import and the
formats JPEG, TIFF, BMP, PNG, and GIF.

8.2 Converting Images from RGB Color Space
to HSV Color Space

Problem

You have an image that is represented in RGB but most image-processing algorithms
demand the hue-saturation-value (HSV) color space model.

Solution

The solution starts with defining some primitives to compute Hue, Saturation, and
Value from Red, Green, and Blue intensities.

The HSV color model is often depicted geometrically as a cone (see http://en.
wikipedia.org/wiki/lmage:HSV_cone.png). The hue can be thought of as the angle of
a vector rotating around the center, with angles close to 0 degrees corresponding to
red and increasing angles moving through the rainbow out to violet and returning
again to red. To simplify the math, we first scale the standard RGB values that range
from 0 to 255 to values that range between 0 and 1. Mathematically speaking, you
compute hue by finding which two of the three scaled RGB color intensities domi-
nate and then using their difference to compute an angular offset from a starting an-
gle determined by the third (least dominant) color. Here you divide the circle into
six regions (red, orange, yellow, green, blue, violet) with i specifying the start region
and f acting as a factor determining the offset from i. This value is scaled by the
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difference between the most dominant (rgbMax) and least dominant (rgbMin) color to
yield a value between 0 and 6. Finally you divide by 6 to get a value for hue in the
range [0,1].
In[210]:= HueValue[r_Integer, g_Integer, b_Integer| :=
HueValue2[r/255.0, g /255.0, b/ 255.0]
HueValue2[r_/;r=<1,g_/;g8<1,b_/;b<1] :=
Module [ {minRGB = Min[r, g, b], maxRGB = Max [z, g, b], ¥, i},
Which [maxRGB == minRGB, Return[0],
minRGB == r,f = g-b; i=3,
minRGB ==g, f = b-r;i=75,
minRGB = b, f= r-g; i=1];
(i - f/ (maxRGB - minRGB) ) /6]

Saturation is a measure of the purity of the hue. Highly saturated colors are domi-
nated by a single color, whereas low saturation yields colors that are more muted.
Geometrically, saturation is depicted as the distance from the center to the edge of
the HSV cone. Mathematically, saturation is the difference between the most domi-
nant and least dominant color scaled by the most dominant. Again, you scale RGB
integer values to the range [0,1].

In[212]:= SatValue[r_Integer, g_Integer, b_Integer] =
SatValue2|[r/255.0, g /255.0, b /255.0]
SatValue2[r_/;r<1,g_/;g8<1,b_/;bs<1] :=
Module [ {minRGB = Min[r, g, b], maxRGB = Max[z, g, b] },
If[maxRGB > 0, (maxRGB - minRGB) / maxRGB, 0] ]

The third component of the HSV triplet is the value, which is also known as bright-
ness (HSV is sometimes referred to as HSB). The brightness is the simplest to com-
pute since it is simply the value of the most dominant RGB value scaled to the range
[0,1]. Geometrically, the value is the distance from the apex (dark) of the HSV cone
to the base (bright).

In[214]:= BrightValue[r_Integer, g_Integer, b_Integer] := Max[r, g, b] /255.0

Given these primitives, it becomes a relatively simple matter to translate an image
from RGB space to HSV space. But before you can do this, you need to understand
how Mathematica represents imported images. The applicable function is called
Raster, and it depicts a rectangular region of color or gray level cells. See the
“Discussion” section on page 338 for more information on Raster. The goal is to
transform the RGB color cells to HSV color cells. An easy way to do that is to lin-
earize the 2D grid into a linear array and then use the techniques from Recipe 2.1 to
transform this RGB array into an HSV array. To get everything back to a 2D grid, we
use the Partition function with information from the original image to get the
proper width and height. To get HSV images to display properly, we tell Mathematica
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to use Hue as the ColorFunction. Finally, we copy options from the original graphic
to the new graphic, which requires a sequence rather than a list.
In[215]:= (*RGB2HSV[image Graphics] :=
Module [ {rgb =Flatten[getImgData[image],1],hsv,width,height},
{width,height} = getImgDim[image];
hsv =
{Apply [HueValue,n], Apply[SatValue,#],Apply[BrightValue,u]}& /@ rgb;
Graphics [Raster [Partition [hsv,width], {{0,0},getImgDim[image]},
ColorFunction-sHue] ,Sequence @e Options[image]]] )

RGB2HSV [ image_Graphics] :=
Module[{rgb = Flatten|[getImgData[image], 1], hsv, width, height},
{width, height} = getImgDim[image];
hsv = {Apply [HueValue, ],
Apply [SatValue, #], Apply [BrightValue, #]} & /@ rgb;
rasterReplace[image, Partition[hsv, width], ColoxFunction - Hue] |

In[216]:= image = Import[FileNameJoin |

{NotebookDirectory[], "..", "images", "truck.jpg"}], "Graphics"]

out[216]=

In[217]:= imageHSV = RGB2HSV[image]

out[217]=
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These two images of the red truck look identical, but we can see they have a very dif-
ferent internal representation by inspecting a portion of each Raster.
In[218]:= Short[getImgData[image] [[11], 3]
Out[218]//Short=
({104, 122, 142}, {99, 117, 137}, {94, 112, 132},
(94, 112, 132}, {98, 119, 138}, {104, 125, 144}, {106, 127, 146},
(106, 127, 146}, {101, 124, 142}, {101, 124, 142}, {100, 123, 141},
(99, 122, 140}, {95, 121, 138}, <<134>>, {94, 116, 130},
(92, 114, 128}, {92, 114, 128}, {93, 115, 1293, {95, 117, 131},
(99, 121, 135}, {98, 120, 134}, {98, 120, 134}, {98, 120, 134},
(99, 121, 135}, {101, 123, 137}, {103, 125, 139}, {104, 126, 140} }

In[219]:- Short[getImgData[imageHSV] [[1]], 3]
out[219]//Short=
({0.587719, 0.267606, 0.556863}, {0.587719, 0.277372, 0.537255},
{0.587719, 0.287879, 0.517647}, <<1555>,
{0.564815, 0.258993, 0.545098}, {0.564815, 0.257143, 0.54902} }

Discussion

The major color spaces in popular use are RGB, HSV, and cyan-magenta-yellow-
black (CMYK). RGB is the most common format because it maps directly onto dis-
play technology. The problem with RGB is that it is not very good for image analysis
because colors that are close in perceptual space are not grouped together in RGB
space. CMYK is most often used in printing. HSV is popular in image processing ap-
plications because the mathematical distance between the colors is more closely
aligned with human judgments, yielding a closer approximation to human percep-
tion of color. Another advantage of HSV is that one can immediately convert from
color to grayscale by discarding the hue and saturation components and retaining
the value component.

In[220]:- dimageHSV /. {{_Real, Real, v_Real} - v, Hue - GraylLevel}

0ut[220]=
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Doing image processing in Mathematica requires familiarity with the Raster graph-
ics primitive. When an image is imported from a JPEG, BMP, or GIF file, it will be
represented as an RGB or grayscale Raster with cell values ranging from 0
through 255. The ColorFunction will be RGBColor for color image and GrayLevel for
grayscale images. There are several forms of the Raster function, but the form you
will typically encounter in image processing is Raster[array, dimensions, scale,
ColorFunction — function], where array is a 2D array of integers or RGB triplets,
dimensions defines a rectangle of the form {{xmin,ymin}, {xmax,ymax}}, scale speci-
fies the minimum and maximum values in the array (typically {0,255}), and function
is either GrayLevel or RGBColor. A good way to test algorithms is to mathematically
create rasters so you have controlled test cases.

For example, the following is a green gradient in RGB space that varies from black in
the lower left corner to bright green in the upper right. (Of course, you’ll need to try
the code yourself to view the color effects.)

In[221]:= greenGradientRGB = Graphics |
Raster [Table[{0, Min[g+16 + X, 255], 0}, {g, 0, 15}, {x, 0, 15}] ,
{{0, 0}, {16, 16}}, {0, 255} ], ImageSize » {160, 160} |

out[221]=

In[222]:- greenGradientHSV = RGB2HSV[greenGradientRGB]

out[222]=

In[223]:= greenGradientHSV[[1, 2]]

8.2 Converting Images from RGB Color Space to HSV Color Space | 339



In HSV space, we expect the hue coordinate to be a constant (1/3) with the excep-
tion of the black corner element. The saturation should also be constant and the
brightness values should form a straight line when plotted. This is easy to check.

In[224]:= Union[Flatten[getImgData [greenGradientHsV] /. {h_, _, _} = h]]
out[224]= {0, 0.333333}

In[225]:
out[225]

Count [Flatten [getImgData [greenGradientHsV] /. {h_, _, _} = h], 0]
1

In[226]:= Count[Flatten[getImgData[greenGradientHsV] /. th_, _, _} = h],
0.3333333333333333‘]
Out[226]= 255

In[227]:= ListPlot[Flatten[getImgData greenGradientHsV] /. {_, ,v_} = v],
ImageSize - Small]

1.0 -
0.8
0.6
out[227]=
0.4
0.2
50 100 150 200 250
See Also

In Mathematica 7, use ColorConvert (see the documentation center: http://bit.ly/
irShF).

Wikipedia has several very approachable articles on color models. See http://bit.ly/
IWvVW, http://bit.ly/2DZAhY, http://bit.ly/3jawwr, and http://bit.ly/2qHxr].

Color renderings of the images in this chapter can be found at http://bit.ly/xIgx7 or
http://www.mathematicacookbook.com.
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8.3 Enhancing Images Using
Histogram Equalization

Problem

You have an image that is too dark or too light and you would like to increase
contrast.

Solution

You obtain the histogram of a grayscale image using BinCounts on the flattened
raster matrix. If an image has poor contrast, you will see that the histogram is
skewed when you plot the histogram using BarChart.

In[228]:= overexposed = Import[FileNameJoin[{NotebookDirectory[],

noon s L]

..", "images", "truckOverExposed.jpg"}], "Graphics”]

out[228]=

In[229]:= Quiet[Needs["BarCharts™"]]
In[230]:= histogramPlot [image_Graphics] =
Module[{pixels = Flatten[getImgData[image]], min, max, dx, width, height},
{min, max} = If[MatchQ[getImgRange|image], {_, _}],
getImgRange[image], {0, 1}];
dx = (max - min) /255.0;
BarChart [BinCounts [pixels, {min, max + dx, dx}], BarLabels - None,

BarStyle - Black, BarSpacing - 0.25, BarEdges - False] |
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In[231]:=

out[231]

Histogram equalization works by using the image distribution to derive a transfor-
mation function that will always yield a more uniform distribution of gray levels de-
spite the shape of the input image’s distribution. The solution below will work on
any grayscale image but is not very efficient. I'll implement a more efficient solution
in the “Discussion” section on page 343 and also cover theory that explains why this

histogramPlot [overexposed]

400

300

200

100

0

transformation works.

In[232]:=

In[233]:=

histCDF [x_, histogram , n_] :=

N

[Sum[histogram[[i]], {i,1,x+1,1}] %255 /n]

histogramCorrect [image_Graphics] :=
Module [ {pixels = Flatten[getImgData[image]],

min, max, histogram, width, height, nPixels, outpix},
(#Extract the image's dimensions.x)
{width, height} = getImgDim[image] ;
(#Extract the image's range, which if unspecified implies [0,1].%)
{min, max} =
If [MatchQ[getImgRange [image], {_, _}], getImgRange [image], {0, 1}];
(*Normalize the data to the range [0,255] if necessary.x)
pixels = If[{min, max} == {0, 255},
pixels, Round[Rescale[pixels, {min, max}, {0, 255}111;
(*Compute histogram. Use 256 as the upper limit because
the BinCount range is of the form [min,max].x)
histogram = BinCounts [pixels, {0, 256, 1}1;
(*Transform by treating the
histogram as a cumulative distribution function.x)
nPixels = width * height;
outpix = histCDF [#, histogram, nPixels] & /e pixels;
Graphics [Raster [Partition [outpix, width], image[[1, 2]], {0, 255},
ColorFunction -» GrayLevel ], Sequence @@ Options [image]]]

342 | Chapter 8: Image Processing



In[234]:= corrected = histogramCorrect [overexposed]

Out[234]=

Note how the histogram of the corrected image is more spread out than the input.

In[235]:= histogramPlot [corrected]

400 +

100 -

Out[235]= 200

Discussion

The theory behind automatic histogram equalization is based on probability theory.
View the gray levels of an image as a random variable in the interval [0,1]. It is clear
that grayscale ranges in the [0,255] range can be scaled to [0,1] simply by dividing
by 255. Let pr[r] denote the probability density function (PDF) of the input image.
Let ps[s] denote the desired PDF of the output image. In this case, we want ps[s] to
be uniform. Let T[r] denote the transformation function applied to the input r to
produce output s with PDF ps[s]. We want T[r] to be a single-valued monotoni-
cally increasing function. Single valued is necessary so that the inverse exists; mono-
tonic prevents the transformation from inverting gray levels. We also want T[r] to
have range [0,1]. Given these conditions, we know from probability that the trans-
formed PDF is related to the original PDF by:

dr

ds

ps[s] = pr[r]
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In the solution, we used the discrete form of the cumulative density function (CDF)
as T[r]. The continuous form of the CDF is

s = T[x]= fpr[w]dlw
o

By substitution, we obtain

ds d T[r] d
—_ = = —(JTPI[W]GIW]
dr dr dr\Jdo

We can ask Mathematica to evaluate this derivative for us by entering it in Mathe-
matica syntax.

In[236]:= D[fpr[W] dw, r]
o
Out[236]= pr(r]

By substitution into the original equation, we get

1

s[s] = prir]

prir]

Since the probabilities are always positive, we can remove the absolute value to
prove that

s[s] =1

This means that the PDF of s is 1; hence, we have a uniform distribution. This
demonstrates that in the continuous case, using the CDF as a transformation always
yields a uniform distribution regardless of the characteristics of the input PDF.
Of course, these results for the continuous domain do not translate exactly to the
discrete domain, but it suggests that the discrete CDF will tend to shift gray levels to
a more uniform range. To gain some deeper insight, you can plot the transformation
function obtained from the histogram of the overexposed image.
In[237]:= ClearAll[T, i, k, histogram, nPixels];

histogram = BinCounts|[Flatten[getImgData [overexposed]], {0, 256, 1}];

nSum = Total[histogram];

nPixels = Times @@ (getImgDim[overexposed]);

Trk_] := N[Sum[histogram[[i]], {i, 1, k+1,1}] /nPixels] »255

Plot[T[x], {X, 0, 255}, PlotRange - Automatic]
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250 -

out[242]=

50 -

50 100 150 200 250

This shows that all but the brightest levels will be mapped to darker levels; thus an
overly bright image will tend to be darkened. The opposite will occur for an overly
dark (underexposed) input image.

The nature of the transformation function leads to an obvious optimization: a pre-
computed lookup table computed in a single pass using FoldList. This lookup table
can be used as the transformation function. This produces an O(nPixels) algorithm
from our original O(nLevels * nPixels).

In[243]:= histogramCorrect2 [image_Graphics] t=
Module[{pixels = Flatten|getImgData[image]], min, max,
histogram, transform, width, height, nPixels, outpix},
(*Extract the image's dimensions.x)
{width, height} = getImgDim[image];
(*Extract the image's range, which if unspecified implies [0,1].%)
{min, max} =
If [MatchQ[getImgRange [image], {_, _}], getImgRange [image], {0, 1}];
(*Normalize the data to the range [0,255] if necessary.x)
pixels = If[{min, max} == {0, 255},
pixels, Round[Rescale[pixels, {min, max}, {0, 255}111;
(*Compute histogram. Use 256 as the upper limit because
the BinCount range is of the form [min,max).x)
histogram = BinCounts [pixels, {0, 256, 1}];
(*Transform by treating the
histogram as a cumulative distribution function.x)
nPixels = width * height;
transform = N[Rest[FoldList [Plus, 0, histogram]] « 255/nPixels];
outpix = transform[[# +1]] & /@ pixels;
Graphics [Raster [Partition [outpix, width], image[[1, 2]], {0, 255},
ColorFunction - GraylLevel], Sequence @@ Options|image]]]

8.3 Enhancing Images Using Histogram Equalization | 345



As you can see, there is a two-orders-of-magnitude performance improvement for
histogramCorrect2.

In[244]:= timingOrig = Timing[histogramCorrect [overexposed] ] [[11]1;
timingNew::Timing[histogramCorreth[overexposed]] [[111;
Grid[{{"original”, "new"}, {timingOrig, timingNew}}]
original new

Out[2461= 5 356 0.015

Here are the histograms from each for comparison.

In[247]:= GraphicsRow[{histogramPlot[histogramCorreth[overexposed]],

histogramPlot [histogramCorrect [overexposed] ] }]

400 400
300 300
Out[247]= 200 200
100 100

i |

i [

0 [l 0 [l

Mathematica 7 has the native function ImageHistogram for plotting an image’s
histogram.

In[248]:= GraphicsRow[{ImageHistogram[histogramCorreth[overexposed]],

ImageHistogram[histogramCorrect [overexposed] ]| }]

Out[248]=

See Also

Recipe 8.3 shows how histograms can be used to match one image’s contrast to that
of a reference image.
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8.4 Correcting Images Using Histogram
Specification

Problem

You need to transform the gray levels of an image to match another image’s
histogram.

Solution

To match a histogram of one image to another, you produce the equalization trans-
form of the input image as in Recipe 8.1. You then produce the equalization trans-
form of the target image, and from that and the input transform, derive the final
specification transform. Next, map the input through the specification transform to
yield an image that approaches the target image’s histogram. Since you need to build
the equalization transform for each image, it makes sense to factor that logic into a
separate function. Here I call it buildEqualizationMap. You will recognize the basic
logic from Recipe 8.2.

In[249]:= buildEqualizationMap [image_Graphics] =
Module [ {pixels , min, max, histogram, width, height, nPixels},

pixels = Flatten[getImgData [image] ] ;

{min, max} = If[MatchQ[getImgRange|image], {_, _}],
getImgRange[image], {0, 1}];

pixels = If[{min, max} == {0, 255}, pixels,
Rescale[pixels, {min, max}, {0, 255}]1];

nPixels = Length [pixels] ;

histogram = BinCounts [pixels, {0, 256, 1}1;

N[Rest[FoldList[Plus, 0, histogram]] * 255/nPixels] ]

The main function must build the map for each image and use those maps to derive
the final transformation (here it is called specMap). The logic underlying the deriva-
tion of specMap is explained in the “Discussion” section on page 349 and was
adapted from work by Nikos Drakos and Ross Moore (refer to the “See Also” sec-
tion on page 351). Here we take advantage of Reap and Sow to build up specMap incre-
mentally without the overhead of Append.
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In[250]:= specificationMap [inputMap_List, targetMap_List] :=
Module[{i, j =0}, Reap[Do|
If[ (inputMap[[i + 11] <= targetMap[[j+1]]) ,
sow[j],
While[inputMap[[i+1]1] > targetMap[[j+1]], j++];
Sow[If[ (targetMap[[j +1]] - inputMap[[i+1]]1) >
(inputMap[[i+1]] - targetMap[[j]]),i--»3]]
]> (1,0, 2553]] 112, 111]
In[251]:= histogramSpecification [input_Graphics, target_Graphics] 1=
Module [ {pixels , min, max, histogram, width,
height, nPixels, inputMap, targetMap, specMap, outpix},
(*Compute histogram mapping of target.x)
targetMap = buildEqualizationMap [target];
(*Compute histogram mapping of input.x)
inputMap = buildEqualizationMap [input];
(*Compute inverse of targetMap.=x)
specMap = specificationMap[inputMap, targetMap];
(*Use inverse to transform input.x)
outpix = Flatten[getImgData[input]];
(*outpix = inputMap[ [Round[#]+1]]&/@ outpix;«+)
outpix = specMap[[Round[#] +1]] & /@ outpix ;
{width, height} = getImgDim[input] ;
Graphics [Raster [Partition [outpix, width], input[[1, 211, {0, 255},
ColorFunction - GrayLevel], Sequence @@ Options [input]]]

To demonstrate histogramSpecification, I'll synthesize two raster images with differ-
ent grayscale levels, using one as the input and the other as the target. In Recipe 8.4
there is a much less contrived example of this algorithm’s application.
In[252]:= test = Graphics[Raster|[Table[ixj/2, {i, 1,16}, {j, 1, 16}],
{{0, 0}, {16, 16}}, {0, 255} ], ImageSize » {64, 64} ]

Out[252]=
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In[253]:= target = Graphics[Raster[Table[ixj-1, {i, 1, 16}, {j, 1, 16}],
{{0, 0}, {16, 16}}, {0, 255} ], ImageSize » {64, 64} ]

out[253]=

Here you can see the darker test image has been shifted toward the lighter target
image.

In[254]:- histogramSpecification[test, target]

Out[254]=

Discussion

In Recipe 8.2 we saw how histograms can be used to automatically equalize an im-
age’s contrast. However, sometimes it is preferable to equalize based on a reference
histogram rather than a uniform distribution. This often arises when transtorma-
tions are applied to an image and have side effects that reduce contrast—side effects
we wish to undo by shifting the image back to the grayscale distribution of the origi-
nal image (see Recipe 8.4).

To appreciate the theory behind the solution, imagine an image that has a uniform
grayscale distribution. Suppose you want to transform this hypothetical image to the
distribution of the target image. How could you produce such a transformation?
You already know how to transform the target image to a uniform distribution
(Recipe 8.2); it follows that the inverse of this transformation will take the uniform
distribution back to the target distribution. If we had this inverse distribution, we
could proceed as follows:

1. Transform the input image to a uniform distribution using Recipe 8.2.

2. Use the inverse of the target equalization transformation to transform the
output of (1) to the distribution of the target.

The key to the solution is finding the inverse. Since you are working in a discrete
domain, you cannot hope to find the exact inverse, but you can approximate the
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inverse by flipping the targetMap, taking the minimal unique values, and filling in
missing values with the next closest higher entry. The function inverseEqualization-
Map shown here will build such an inverse from an image. However, if you inspect
the code in histogramSpecification, you’ll see that for efficiency the inverse is never
built, but rather it computes the specification map directly using specificationMap
from the input and target equalization transformations (inputMap and targetMap).

In[255]:= expand[pl_List, p2_List] := Reap[Sow[pl];

Do[Sow[{i, p2[[211}1, {i, p1[[1]] +1, p2[[1]] -1}11[[2,1]]
buildPartialInverseEqualizationMap [image_Graphics] HE
Module[{map = buildEqualizationMap[image]},

Union[{ {0, 0}}, Table[{Round[map[[i+1]]11, i}, {i, 0, 255}1,

{{256, 255} }, SameTest » (#1[[1]] = #2[[1]] &)]]
inverseEqualizationMap [image_Graphics] := Flatten|

expand eee Partition[buildPartialInverseEqualizationMap[image], 2, 1],

1] [[ALL, 2]]

We can gain some insight into this process by creating a function histogram-
SpecificationPlot, which plots the input transform, target transform, target
inverse, and the resulting histogram specification transform. These plots show how
input gray levels are mapped to output gray levels. If you are not convinced that
specificationMap gives the desired transformation, replace the plot of specMap with
inverseMap[#]& /@ inputMap to see that it yields the same plot.

In[258]:= Needs["PlotLegends™"]
histogramSpeci-FicationPlot[input_Graphics ’ target_Graphics] =
Module [ {inputMap, targetMap, inverseMap, specMap},
(*Compute histogram mapping of target.x)
targetMap = buildEqualizationMap [target];
(*Compute histogram mapping of input.x)
inputMap = buildEqualizationMap [input];
inverseMap = inverseEqualizationMap[target];
(*Compute inverse of targetMap.=)
specMap = speci-FicationMap[inputMap, targetMap];
ListPlot[{inputMap, targetMap, inverseMap, specMap},
PlotMarkers - Automatic, Joined -» True, MaxPlotPoints - 50,

spec"},

PlotLegend » {":i.nputEq", "targetEq", "inverseTarget",
LegendPosition -» {0.7, -0.5}, LegendSize -» 0.4,
LegendShadow - None, ImageSize - Large] |
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In[260]:= histogramSpecificationPlot [test, target]
250 [
200 [

150 -

Out[260]=

100 -

-@-  inputEq
i - targetEq

50 [ @ inverseTarget

A~  spec
L L
50 100 150 200 250
See Also

The theory behind histogram specification can be found in Gonzalez and Woods,
but for the implementation, I am indebted to Professor Ruye Wang’s lecture notes,
available at http://bit.ly/40Sglp. Wang’s lecture contains information originally pub-
lished by Nikos Drakos (University of Leeds) and Ross Moore (Macquarie Univer-
sity, Sydney).

8.5 Sharpening Images Using Laplacian
Transforms

Problem

You want to emphasize edges in the image and make them easier for the eye to pick
out. You want to work in the spatial domain.
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Solution

This transformation is performed as a convolution of the image with one of the Lap-
lacian kernels in Figure 8-1.

Transforms Subtract transform from image | Add transform to image
0110 0|-1|0
Sharpens in vertical 11-411 -1]14 |-1
and 01 |o1 0]-1]0

horizontal

111 |1 -11-1]-1
Also sharpens in 11-8|1 -1]18 |-1
diagonal 1111 -1]-1/-1

Figure 8-1. Laplacian kernels

The built-in function ListConvolve makes it easy to implement image convolution in
Mathematica. The only caveat is that by default, ListConvolve returns a matrix that
is smaller than the input. However, you can specify a cyclic convolution by pass-
ing a third parameter of 1 to ListConvolve to make the output size match the input
size. Refer to the ListConvolve Mathematica documentation for clarification.
In[261]:= sharpenWithLaplacian [image_Graphics,

kernel List : {{-1, -1, -1}, {-1, 8, -1}, {-1, -1, -1}}] :=

Module [ {transformed, sharpened},

transformed = ListConvolve[kernel, getImgData [image], 1];

sharpened = N[getImgData[image] + Sign[kernel[[2, 2]]] * transformed];

Graphics |

Raster[Rescale [sharpened, {Min[##], Max[##]} & @@ Flatten[sharpened],
{0, 255}1, image[[1, 211, {0, 255},
ColorFunction - GraylLevel], Sequence @@ Options|[image]]]

Here we want to see more fine detail of the craters in an image of the moon. The
transform achieves this but we lose contrast. We can readjust contrast using the
histogramSpecification algorithm from Recipe 8.3.
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In[262]:= image = Import[FileNameJoin |

LI T ]

{NotebookDirectory[], "..", "images", "moon.jpg"}], "Graphics"]

out[262]=

In[263]:= sharpenWithLaplacian [image]

0ut[263]=
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In[264]:= histogramSpecification|sharpenWithLaplacian|image], image]

out[264]=
Discussion
The Laplacian of a continuous 2D function is given as
?f oM
Vi =——+
aZXZ aZyZ

This equation is not useful for image processing and must be converted to discrete
form. A common way to do this is to express each component in finite difference

form and sum the result.

o

?=f(x+1,y) + £ (x-1,y) - 2f(x,y)
o°x

o

— = f(xy+1) + f(x,y-1) - 2f(x,y)
oty

Vi = fx+1,y) + f (x-1,y) + F(x,y+1) + f(x,y-1) - 4 £(x,y)

This leads to the convolution kernel shown in Figure 8-2a. To improve results in the
diagonal directions, one can add terms for each of the four diagonal components—
for example, f(x+1,y+1)—each which contributes a negative f(x,y) term leading to
the kernel in Figure 8-2b. Equivalently, one can multiply each of these kernels by -1,
with the sign of the center value determining whether you add or subtract the trans-
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formation from the input image to get the sharpened version. Since the operation is
based on second derivatives, it creates a sharp response in areas of discontinuities
and a shallow response around more slowly varying gray levels. This can be seen
by viewing the output of the transformation directly (i.e., before it is added to
the input image).

a b

1 1
11-411 1(1-8
0] 1 111 |1

Figure 8-2. Convolution kernels

In[265]:= laplacianImage [image_Graphics,
kernel List : {{-1, -1, -1}, {-1, 8, -1}, {-1, -1, -1}}] :=
Module [ {transformed}, transformed =
ListConvolve [kernel, getImgData[image], 1];
Graphics [Raster [Rescale[transformed, {Min[##=], Max[##]} & ee
Flatten[transformed], {0, 255}]1, image[[1, 211, {0, 255},
ColorFunction -» GrayLevel], Sequence ee Options[image]]]

In[266]:= laplacianImage[image]

0ut[266]=
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See Also
In Mathematica 7, you can use Sharpen (http://bit.ly/2rutpn).

8.6 Sharpening and Smoothing
with Fourier Transforms

Problem

You want to emphasize either the low or high frequency characteristics of an image.

Solution

Fourier-based image processing in Mathematica is particularly easy to implement
since it has the native function Fourier, which implements a high-quality version of
the Fast Fourier Transform (FFT). The basic steps of Fourier image processing are

1. Obrtain the Fourier transform of the image.

2. Center the Fourier transform using one of the techniques explained in the dis-
cussion here.

3. Apply a filtering function to the transformed result.
4. Undo the centering.

5. Apply the inverse Fourier transform, discarding any residual imaginary
components.
In[95]:= Clear[fourierFilter];
fourierFilter[image_, filter_] :=
Module [ {four , trans, cols = Length[getImgData[image] [[1]1]],
rows = Length[getImgData[image]]},
trans = Table[ (-1)**Y, {x, 1, rows}, {y, 1, cols}];
(*#Centering transformsx)
four = Fourier[getImgData[image] «trans, FourierParameters -> {1, -1}];
four =
Table[filter[x, y, rows, cols], {x, 1, rows}, {y, 1, cols}] * four;
four = Abs[InverseFourier [four, FourierParameters -> {1, -1}] % trans];
Graphics [Raster [four, getImgCoord [image], {Min[##], Max [t#]} & ee
Flatten[four], ColorFunction » (Graylevel[#1, 1] &)]]]
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The fourierFilter function is designed to work with a custom filter function. Here
are some common functions found in the literature. See the “Discussion” section on
page 358 for more details.
In[11]:= dist[u_, v_, rows_, cols_] := Sqrt[(u-rows/2.)"2 + (v - cols/2.)"2]
In[12]:= ideallowPass[u_, v_, rows_, cols_, d0_] :=
If[dist[u, v, rows, cols] < d0, 1, 0]
In[13]:= idealHighPass[u_, v_, rows_, cols_, d0_] :=
If[dist[u, v, rows, cols] < do0, 0, 1]
In[14]:= butterWorthLowPass[u_, v_, rows_, cols_, d0_, n_] :=
1.0/ (1.0 + (dist[u, v, rows, cols] /d0) 2 n)

One can use a low-pass filter for blurring an image. This might be done as a single
stage of a multistage process applied to text that will be processed by OCR software.
For example, blurring can diminish gaps in letters. This might be followed by a
threshold transformation and other adjustments.

In[100]:= dimage = ColorConvert|
Import [FileNameJoin [ {NotebookDirectory[], "..", "images", "text2.png"}],

"Graphics", ImageSize -» Medium], "GrayScale"]

“Upon receiving the notification from OFTA, EINS and
PMRS . P . i A
ong week, HKTI will notify all its major direct international
carriers about the numbering change and the implementation
schedules and seeure seek their positive acknowledgment
within #we—weeks: gng month time.  Before the actual

out[100]= implementation, HKTT should make preparations and eass
et co-ordinate testing with the direct international carriers
to ascertain the accessibility and usability of the new
numbers. In case of difficulties, HKTI should report
immediately to OFTA so that appropriate contingency plan
may be worked out by OFTA in consultation with the FTNS
and the PMRS operators,”
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In[103]:= image2 = fourierFilter[image, butterWorthLowPass [1, #2, 13, u4, 90, 1] &]

""pcn mccrvmg the nohﬁa:non from OFTA, Ems_md

mx_m:;k, HKTI wnll notify .-.ll its major dlrect mtamnonal
carriers about the numbering change and the implementation
schedules and secure seek their positive acknowledgment
within #we—weeks” on¢ month time.  Before the actual

out[103]=  implementation, HKTI should make preparations and eassy
eut co-ordinate testing with the direct international carriers
to ascertain the accessibility and usability of the new
numbers. In case of difficulties, HKTI should report
immediately to OFTA so that appropriate contingency plan
may be worked out by OFTA in consultation with the FTNS
and the PMRS operators.”

Discussion

An important step in this algorithm is centering the zero frequency component of
the transform. This allows filter functions to use the distance from the center as a
function of increasing frequency. There are two ways to achieve centering. One way
is to preprocess the image before it is transformed by multiplying it by the function
(-1)**Y. This function produces a matrix of alternating values 1 and -1. This is the
technique used in the solution.
In[274]:= Table[(-1)**Y, {x, 1,10}, {y, 1, 10}] // MatrixForm

Out[274]//MatrixForm=

1 -11-11-11-11 -1
-11 -11 -11 -11 -11
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Alternatively, one can postprocess the Fourier output by swapping quadrants using
the quadSwap function.

In[275]:= quadSwap [matrix_List]

:= Module[{width, height, q1, q2, 93, q4},

{width, height} = {Length [matrix[[1]]1], Length [matrix] };
ql =matrix| [1;; Floor[height /2], 1;; Floor [width/2]]];
q2 = matrix[[1;; Floor[height /2], Floor [width /2] + 1 ;; width]];

3=
matrix [ [Floor [height /2] + 1 ;; height, Floor [width/2] + 1 ;; width]];

q4 = matrix|[ [Floor [height /2] + 1 ;; height, 1 ;; Floor [width/2]]];
Join[Join[g3, q4, 2], Join[q2, q1, 2]1]

In[276]:= (testQuadSwap = Table[

1

O SO N N N S

If[x <=58% y <=5,1, If[x>5 8 y <=5,4, If[x<5 8 y>5, 2,3]]],
{x, 1,10}, {y, 1, 10}]) // MatrixForm
Out[276]//MatrixForm=

1

O SO N N N S

1

T SO N N N S

S N SO O N Ty S S

S S N N N Ty S S

w W W W W N NN NN

w W W W W N NN NN

w W W W W N NN NN

w W W W W N NN NN

In[277]:= quadSwap [testQuadSwap]
Out[277]//MatrixForm=

3

NN NN NN W W w w

3

NN NN NN W W w w

3
3
3
3
3
2
2
2
2
2

NN NN NN W W w w w

NN NN NN W W w w w

T U N N NN

T U N N NN

T U N N NN

T U N N NN

w oW W W W N NN NN

// MatrixForm

T U N N NN

I include both methods because you may encounter either of them in the literature.
Gonzalez and Woods use the preprocessing technique, although I find the post-
processing technique easier to understand conceptually.
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It is difficult to appreciate the meaning of complex images after they are mapped
into the frequency domain. However, almost every image-processing text that
discusses the Fourier transform will provide images of the transformation after center-
ing. The fourierImage function below does this using quadSwap, whereas fourier-
Image2 uses (-1)*"Y. You can see that they produce equivalent results. You’'ll
notice that each function maps Log[#+1] over the pixel values because Fourier
transforms produce images with a much too large dynamic range.
In[278]:= fourierImage[image_Graphics] :=
Module [ {four = Map [Log[# + 1] &, quadSwap [Abs|
Fourier [getImgData[image], FourierParameters » {1, -1}]]], 2]},
Graphics [Raster [four, image[[1, 2]], {Min[##], Max[##]} & ee
Flatten[four], ColorFunction - GraylLevel], Options|image]]]
In[279]:= -FourierImageZ[image_Graphics] 1= Module[{width, height, trans, -Four},
{cols, rows} = getImgDim[image] ;
trans = Table[ (-1)*Y, {x, 1, rows}, {y, 1, cols}];
four = Map[Log[# +1] &, Abs|
Fourier [getImgData[image]|  trans, FourierParameters - {1, -1}]], 2];
Graphics [Raster [four, image[[1, 2]], {Min[##], Max[##]} & ee
Flatten[four], ColorFunction - GrayLevel], Options[image] ] ]
In[280]:= fourierImage[image]

0ut[280]=
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In[281]:= fourierImage2[image]

out[281]=

8.7 Detecting Edges in Images

Problem

You want to detect boundaries between distinct objects in an image possibly as a
preprocessing step to object recognition.

Solution

Two popular methods of edge detection are the Sobel and Laplacian of the Gaussian
(LoG) algorithms. The Sobel is based on first-order derivatives that approximate the
gradient. The LoG algorithm combines the second-order Laplacian that we used in
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Recipe 3.3 with a Gaussian smoothing to reduce the sensitivity of the Laplacian to
noise. See the “Discussion” section on page 364 for further details. This implementa-
tion uses transformation rules that map intermediate gray levels to either white or
black to emphasize the edges.

The edgeDetectSobel function provides the orientation optional parameter for
extracting just the x edges {1,0}, just the y edges {0, 1}, or both {1,1} (the defaulr).
In[282]:= edgeDetectSobel [image_Graphics, orientation_List : {1, 1}] t=
Module [ {yKernel = orientation[[2]]{{1,0, -1}, {2, 0, -2}, {1, 0, -1}},
xKernel = orientation[[1]] = {{1, 2, 1}, {0, O, O}, {-2, -1, -1}},
transformed},
transformed = Abs[ListConvolve[xKernel, getImgData[image], 1]] +
Abs [ListConvolve [yKernel, getImgData[image], 1] ];
Graphics [Raster [transformed /. {x_ /; x<127 -0, x_ /5 x 2z 127 » 255},
image[[1, 2]], {0, 255}, ColorFunction -» GrayLevel] y
Sequence @e Options [image]]]

The edgeDetectLOG function provides a way to customize the kernel. See the
“Discussion” section on page 364 for criteria of appropriate kernels.
In[283]:- edgeDetectlLOG[image_Graphics,
kernel_List : {{o0, 0, -1, 0, 0}, {0, -1, -2, -1, 0},
(-1, -2, 16, -2, -1}, {0, -1, -2, -1, 0}, {0, 0, -1, 0, 0}}] :=
Module [ {transformed}, transformed =
ListConvolve [kernel, getImgData[image], 1];
Graphics [Raster [transformed /. {x_ /; x<127 -0, x_ /;x 2z 127 » 255},
image[[1, 211, {0, 255}, ColorFunction - GrayLevel],
Sequence @@ Options [image] ] ]

In[284]:= mech = Import[FileNameJoin[

{NotebookDirectory[], "..", "images", "mechanism.png"}], "Graphics"];
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In[285]:= GraphicsGrid[{{mech, edgeDetectSobel [mech] },
{edgeDetectSobel [mech, {0, 1}], edgeDetectSobel [mech, {1, 0}1},
{edgeDetectLOG [mech] , edgeDetectLOG [mech,
2x{{0, 0, -1, 0, 03, {0, -1, -2, -1, 0}, {-1, -2, 16, -2, -1},
{0, -1, -2, -1, 0}, {0, 0, -1, 0,0}}] }}J
ImageSize —» Medium, Dividers - All]

out[285]=
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Discussion

An edge is a set of connected pixels that lie on the boundary of two regions. Edges
are local areas of discontinuity rather than more global regions. An ideal edge would
have a sharp transition between two very different grayscale values; however, few
realistic images will have edges that are so sharply defined. Typically an edge transi-
tion will be in the form of a ramp from one level to the next, possibly with some
noise superimposed on the transition. See Gonzalez and Woods for some nice visual-
izations of these concepts.

Since edges are transitions, it is not surprising that methods of edge detection
are based on mathematical derivatives. First derivatives of a noisy ramp will produce
an approximate square wave transition along the length of the ramp. Second deriva-
tives will form a spike at the start of the edge transition and one of opposite sign at
the end.

The Sobel masks and Laplacian masks approximate first and second derivatives
in the discrete domain. There are two masks in the first-derivative Sobel method.
The first finds horizontal edges; the second finds vertical edges. The function edge-
DetectSobel is written so that you can use the second parameter to emphasize both
edges {1,1}, horizontal edges {1,0}, or vertical edges {0,1}.

The edgeDetectL0G functions uses a larger 5 x 5 mask to better approximate the
Mexican hat response function sought by that transformation (large central peak,
with rapid tapering off, followed by a gentle increase). This transformation creates
finer lines but is more sensitive to image noise.

Mathematica 7 has ImageConvolve. Here is an example using a Sobel mask.

In[286]:- ImageResize[ImageConvolve [Import|

FileNameJoin [ {NotebookDirectory([], '
{{-1, 0,1}, {-2, 0, 2}, {-1, 0, 1}}], 250]

.o "’ "imagesl': "mEChanism.png“ }] ] ’

0ut[286]=
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8.8 Image Recognition Using Eigenvectors
(Eigenimages)

Problem

Given an initial training set of images, you want to find the best match of an input
image to an image in the training set.

Solution

Here we show a solution that uses concepts from principal component analysis
(PCA) and information theory to map a high-dimensional training set of images into
a lower dimension such that the most significant features of the data are preserved.
This allows new images to be classified in terms of the training set.

In[287]:= (xHelper for vectorizing and scaling image data«)
imageVector [image : (_Graphics | _Image)] :=
N[Rescale[Flatten[getImgData [image] ] ] ]

(*Computes eigenimage vectors, avg image vector,
and eigenvectors of reduced M x M system
where M is the number of training imagesx)
eigenImageElements [images_List, frac_ : 0.5] :=
Module [ {imgMatrix = imageVector /e images,
imgMatrixAdj, imgAverage, eigenVecs},
imgAverage = N[Total[imgMatrix] /Length[imgMatrix]];
imgMatrixAdj = (# - imgAverage) & /e imgMatrix;
eigenVecs = Eigenvectors Dot [imgMatrixAdj, Transpose [imgMatrixAdj]]] ;
imgMatrixAdj =
Dot [Take [eigenVecs, Ceiling[frac » Length[eigenVecs]]], imgMatrix];
{imgMatrixAdj, imgAverage, eigenVecs}]

(*Computes the eigenimages and

average image from a set of training imagesx)
eigenImages[images_List, frac_ : 0.5] :=

Module [ {eigenImages, imgAvg, dummy, imgl = images[[1]], width},

{eigenImages, imgAvg, dummy} = eigenImageElements[images, frac];

width = getImgDim[imgl] [[1]1;

Graphics [Raster [Partition[Rescale[#], width], img1[[1, 2]], {0.0, 1.0}],

Options[imgl]] & /@ Append [eigenImages , imgAvg]
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(xComputes a set of weight vectors for each input image,
and acceptance threshold for matching new
images based on the results from eigenImageElementssx)
eigenImageRecognitionElements[images_List, frac_ : 0.5] HE
Module
{eigenImages, imgAvg, dummy, weightVecs, thresholdVec, threshold},
{eigenImages, imgAvg, dummy} = eigenImageElements|images, frac];
weightVecs =
Table [Dot [ imageVector [images[[i]]] - imgAvg, eigenImages[[j]]],
{i, 1, Length[images]}, {j, 1, Length[eigenImages]}];
thresholdVec = Table[Dot[imgAvg, eigenImages[[i]]],
{i, 1, Length[eigenImages]}];
threshold = Min[EuclideanDistance[thresholdVec, #] & /e weightVecs] /2;
EigenImageElements [ {weightVecs, threshold, eigenImages, imgAvg}] ]

(#Given a training set, determines if a test image matches any image in
the set and also returns the possible matches ranked best to worstx)
eigenImageRecognition [images_List,
testImage : (_Graphics | _Image), frac_ : 0.5] :=
Module[{eigenImages, imgAvg, dummy, weightVecs, testVec,
matchDistances, matchOrdering, match, thresholdVec, threshold},
{weightVecs, threshold, eigenImages, imghvg} =
eigenImageRecognitionElements [images, -Frac] [[111;
testVec = Table[Dot [imageVector [testImage] - imgAvg, eigenImages[[i]]],
{i, 1, Length[eigenImages]}];
matchDistances = EuclideanDistance[testVec, #] & /@ weightVecs;
matchOrdering = Ordering[matchDistances];
matchDistances = matchDistances [ [matchOrdering]];
{matchDistances[ [1]] = threshold,
Inner[List, matchOrdering, matchDistances, List]}

]
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(*This function is more efficient when many test images need to
be matched since it allows you to compute the eigenImageElements
once for the training set and reuse it for each test image.x)
eigenImageRecognition [eigenImageElements_EigenImageElements,
testImage : (_Graphics | _Image), frac_ : 0.5] :=
Module[{eigenImages, imgAvg, dummy, weightVecs, testVec,
matchDistances, matchOrdering, match, thresholdVec, threshold},
{weightVecs, threshold, eigenImages, imgAvg} = eigenImageElements[[1]] ;
testVec = Table[Dot[imageVector[testImage] - imgAvg, eigenImages[[i]]],
{i, 1, Length[eigenImages]}];
matchDistances = EuclideanDistance[testVec, #] & /@ weightVecs;
matchOrdering = Ordering[matchDistances];
matchDistances = matchDistances | [matchOrdering]];
{matchDistances[ [1]] = threshold,

Inner [List, matchOrdering, matchDistances, List]}

]

[ use a training set of faces obtained from the Yale Faces Database. These images
were labeled “normal” in the database and were normalized manually in Photoshop
to center the faces and equalize image dimensions.

In[293]:= faces = Import[:, "Graphics"] & /e FileNames[FileName]oin[

{NotebookDirectory[], "..", "images", "faces", "subject«.png"}]];

Discussion

The solution is based on work performed by Matthew Turk and Alex Pentland at
the MIT Media Laboratory. They were inspired by earlier work by L. Sirovich and
M. Kirby for representing faces using PCA to efficiently encode face images. PCA is a
technique for identifying patterns in data by highlighting similarities and differences.
PCA is used to reduce high-dimensional data sets. It uses the most significant eigen-
vectors (those with the greatest eigenvalues) of a covariance matrix to project
the high-dimensional data on a smaller dimensional subspace in terms of the
eigenvectors.

In the case of image recognition, you start with a training set of images normalized
to the same dimensions. For this example I used images from the Yale Face
Database that I normalized to 180 x 240 pixels with the face centered.
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In[294]:= GraphicsGrid [Partition [faces, 5], ImageSize » Medium]

909%
90098
209080

The first step is to represent the images as vectors by flattening and normalizing the
raster data. The helper function imageVector is used for that purpose. The vectors
are then grouped into a matrix of 15 rows and 43,200 (180 x 240) columns and nor-
malized by subtracting the average of all images from each image. If the solution
used PCA directly, it would then need to generate a 43,200 x 43,200 covariance
matrix and solve for the 43,200 eigensystem. Clearly this brute force attack is in-
tractable. Rather, the solution takes advantage of the fact that in a system where
the number of images (15) is much less than the number of data points (43,200),
most eigenvalues will be zero. Hence, it takes an indirect approach of computing the
eigenvectors of a smaller 15 x 15 matrix obtained from multiplying the image matrix
by its transpose as explained in Turk and Pentland. A fraction (half by default) of
these eigenvectors are then used to compute the eigenimages from the original image
data. This work is encapsulated in the function eigenImageElements, which returns
the eigenimages, the average image, and the computed eigenvectors of the smaller
matrix. This prevents the need to recompute these values in other functions.

The function eigenImages is used to visualize the results. It returns a list of graphics
containing each of the eigenimages plus the average image. Here we show all 16 (15
eigen + 1 average) images by setting frac to 1. The ghostlike quality is a standard
feature of eigenimages of faces. Recalling that the lightest areas of a grayscale image
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represent the largest magnitudes, you can see the elements of each image that are
emphasized. For example, the area around the cheek bones of the first image are the
most significant.

In[295]:= GraphicsGrid[Partition[eigenImages [faces, 0.95], 5,5, {1, 1}, Graphics[]],

ImageSize - Medium]

0ut[295]=

The eigenimages can be used as a basis for image recognition by using the product
of the eigenimages and the original images to form a vector of weights for each test
image. The weights represent the contribution of eigenimage to the original image.
Given these weight vectors, you can compute similar weights for an unknown image
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and use the Euclidean distance as a classification metric. If the distance is below a
certain threshold, then a match is declared.

The test images are derived from some non-face images, some distortions of facial
images, and other poses of the faces in the training set. The function eigenImage-
Recognition returns a Boolean and a ranking list. The Boolean determines if the test
image fell in the threshold of the training set. The threshold is computed using the av
erage image distance. The ranking set ties the index to the image in the training set
and the distance in order of increasing distance. This means the first entry is the best
match to the training image.

In[296]:= testFaces = Import[#, "Graphics"] & /e FileNames[FileNameJoin[
{NotebookDirectory[], "..", "images", "faces", "test", "+.png"}]];

In[297]:= GraphicsGrid[

Partition[testFaces, 6, 6, {1, 1}, Graphics[]], ImageSize - Medium]

A

n[298]:= eir = eigenImageRecognitionElements[faces];
results = eigenImageRecognition[eir, #] & /@ testFaces ;

The code that follows displays the best match in the training set that corresponds to
the test image. If the threshold was not met, an X is superimposed on the image.
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In[300]:= GraphicsGrid[Partition[If[::t[ [111, faces[[#[[2,1,1]1]111,
Graphics[{faces[[#[[2,1,1]]]11[[1]], Red, Thick,
Line[ { {180, 1}, {1, 240}}1, Line[{{1, 1}, {180, 240}}1}11 & /e

results, 6, 6, {1, 1}, Graphics[]], ImageSize -» Medium]

o e l

These results show a false positive for the second image in the first row, the first im-
ages in the second and third rows, and the fourth image in the third row. There is a
false negative for the second image in the second row, meaning there was a correct
match but it fell below the threshold. All other results are correct. This is pretty
good considering the small size of the training set.

See Also

The images used here can be found at http://bit.ly/xlgx7 or http://www.mathematica
cookbook.com. The original Yale Face Database can be found at http://bit.ly/52Igvb.

The original research of paper Eigenfaces for Recognition by Matthew Turk and Alex
Pentland from the Journal of Cognitive Neuroscience (Volume 3, Number 1) can be
found at http://bit.ly/70SSBw.

An excellent tutorial by Lindsay 1. Smith on PCA can be found at hitp://bit.ly/6 CJTWh.
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CHAPTER 9
Audio and Music Processing

Deep in the back of my mind is an unrealized sound
Every feeling I get from the street says it soon

could be found

When I hear the cold lies of the pusher,

I know it exists

It’s confirmed in the eyes of the kids, emphasized
with their fists

The music must change

For we’re chewing a bone

We soared like the sparrow hawk flied
Then we dropped like a stone

Like the tide and the waves

Growing slowly in range

Crushing mountains as old as the Earth
So the music must change

The Who, “Music Must Change”

9.0 Introduction

Audio and music can be approached in three different ways with Mathematica:
(1) as traditional musical notes with associated pitch names and other specifications,
such as duration, timbre, loudness, etc.; (2) as abstract mathematical waveforms
that represent vibrating systems; and (3) as digitally represented sound—just think
of .wav and .aiff files. If nothing else, this chapter should hint at the ease with which
Mathematica can be put in the service of the arts. Let’s make some music!

Mathematica allows you to approach music and sound in at least three different
ways. You can talk to Mathematica about musical notes such as "C" or "Fsharp".
You can directly specify other traditional concepts, such as timbre and loudness,
with Mathematica’s Sound, SoundNote, and PlaylList functions. You can ask Mathe-
matica to play analog waveforms. And you can ask Mathematica to interpret digital
sound samples.
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9.1 Creating Musical Notes

Problem

You want to create musical notes corresponding to traditional musical notation.

Solution

The Mathematica function SoundNote represents a musical sound. SoundNote uses
either a numerical convention, for which middle C is represented as zero, or it ac-
cepts strings like "C", "C3", or "Aflat4", where "A0" represents the lowest note on a
piano keyboard.

In[691]:= Sound[SoundNote[0] ]

0ut[691]

[::][::] ls

In[692]:= Sound[SoundNote["C"]]

out[692]

[::][::] ls

Discussion

SoundNote assumes you want to play a piano sound, for exactly one second, at a
medium volume. You can override these presets. Here’s a loud (Soundvolume-1),
short (0.125 second), guitar blast ("GuitarOverdriven").
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In[693]:= Sound[SoundNote[0, 0.125, "GuitarOverdriven", SoundVolume »1]]

0ut[693]=

v
|

0.13 s

9.2 Creating a Scale or a Melody

Problem

You want to create a sequence of notes, like a scale or single-note melody.

Solution

Sound can accept a list of notes, which it will play sequentially. Here is a whole-tone
scale specified to take exactly 1.5 seconds to play in its entirety.

In[694]:= Sound[{SoundNote[0], SoundNote[2], SoundNote[4],
SoundNote[6], SoundNote[8], SoundNote[10], SoundNote[12]}, 1.5]

0ut[694]=

v
|
=
(%
(%]
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Here’s an alternative syntax using Map (/@), which requires less typing and collects
the note specifications into a list.

In[695]:= Sound[SoundNote[#] & /@ {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 24}, 1.0]

IZIEI ls

Here’s a randomly generated melody composed of notes from an Ab major scale.
The duration of each note is specified as 0.125 second. The duration specification,
now a parameter of SoundNote rather than an overall specification of the entire
melody as in the previous examples, sets the stage for the next example.

In[696]:= Sound[SoundNote[#, 0.125] & /@ RandomChoice[
{"Aflat2", "Bflat2", "C3", "Dflat3", "Eflat3", "F3", "G3", "Aflat3"}, 10]]

o _

IZIEI 1.25s

9.3 Adding Rhythm to a Melody

Problem

You need to specify a melody for which the notes have different rhythm values.

Solution

Replace the 0.125 specification in the previous example with other values. Since
you’re generating a random melody, why not generate random durations?
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In[697]:= Sound[
SoundNote [#, RandomChoice[ {0.125, 0.5, 0.75,1.0}]] & /@ RandomChoice [
{"Aflat2", "Bflat2", "C3", "Dflat3", "Eflat3", "F3", "G3", "Aflat3"}, 10]]

0ut[697]=

|E::”E::] 3.25s

Here, the weighting feature of RandomChoice is used to guarantee a preponderance of
short notes.

In[698]:= Sound[
SoundNote [#, RandomChoice[{10,1, 1,1} » {0.125, 0.5, 0.75,1.0}]1] & /e
RandomChoice[ { "Aflat2", "Bflat2", "C3",
"Dflat3", "Eflat3", "F3", "G3", "Aflat3"}, 10]]

0ut[698]=

[:::] [:::] 2s

9.4 Controlling the Volume

Problem

You would like to add some phrasing to your melody by controlling the volume.

Solution

Unlike duration, which is specified as a parameter to SoundNote, you control the vol-
ume with an option setting. Pulling everything together from the examples above
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and adding a randomized volume yields this funky guitar pattern. Anyone for a cup
of Maxwell House coffee?

In[699]:= Sound[SoundNote[#, 0.125, "GuitarMuted", SoundVolume —» RandomReal[]] & /e
RandomChoice[ {20, 1, 1, 1, 1, 1} » {0, 2, 4, 7, 9, 12}, 56] ]

o _

IZIEI 7s

9.5 Creating Chords

Problem

You want to move beyond simple sequences of single notes to chord patterns.

Solution

To make a chord, give SoundNote a list of notes. For example, you can specify the C
major triad using the pitches C, E, and G specified as a list of numbers {0,4,7}.
Don’t confuse making chords by giving SoundNote a list of notes with making
melodies by giving Sound a list of SoundNotes.

In[700]:= Sound[SoundNote[{0, 4, 7}]]

o _

IZIEI ls
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9.6 Playing a Chord Progression

Problem

You want to make a chord progression.

Solution

This is the same as making melodies. Spell out the chords in your chord progression
as lists inside a list. Feed them into SoundNote using Map.

In[701]:= Sound[SoundNote[#, 0.5] & /e
({"G3", "E3", "G3"}, {"F3", "A3", "C4"}, {"G3", "B3", "D4"}}]

IZIEI 1.5s

Here’s a popular pop song progression.

In[702]:= Sound[SoundNote[#, 1] & /e {{"C3", "E3", "G3"},
("B2", "E3", "G3"}, {"Bb2", "E3", "G3"}, {"A2", "E3", "G3"},
("Aflat2", "Eflat3", "G3"}, {"G2", "C3", "D3", "G3"}, {"C3", "E3", "G3"}}]

o _

IZIEI 7s
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9.7 Writing Music with Traditional
Chord Notation

Problem

You want to specify a chord progression using traditional notation. For example,
you would like to write something like:

In[703]:= myProg="C A7 d-7 F/G C";
or, using roman numerals as is common in jazz notation,

In[704]:= myJazzProgression = "<Eb> I vi-9 II7/#9b13 ii-9 V7sus I";

Solution

Mathematica can deftly handle this task with its String manipulation routines and
its pattern recognition functions. First, decide which chord symbols will be allowed.
Here’s a list of jazz chords: Maj7/9, Majadd9, add9, Maj7#11, Maj7/13, Maj7/#35,
Maj7, Maj, -7b5, -7, -9, -11, min, 7/b913, 7/#9b13, 7/b9b13, 7/b9#11, 7/b5, 7/b9,
7/#9,7/#11,7/13,7,7/9, 7sus, and sus.

The rules below turn the chord names into the appropriate scale degree numbers in
the key of C. Later, as a second step, you’ll transpose these voicings to other keys.

In[705]:= chordSpellingRules = {"Maj7/9" = {0, 4, 7, 11, 14}, "Majadd9" :» {0, 2, 4, 7},
"add9" :» {0, 2, 4, 7}, "Maj7/811" = {0, 4, 7, 11, 14, 18},
"Maj7/13" > {2, 6, 9}, "Maj7/#5" > {4, 8, 11}, "Maj7" => {0, 4, 7, 11},
"Maj" > {0, 4, 7},
(*1lstead - added rule so "F" worksx)
" {0,4,7),
"-7b5" :» {0, 3, 6, 10}, "-7":» {0, 3, 7, 10},
"_9": {0, 3, 7, 10, 14}, "-11" = {0, 3, 7, 10, 14, 17},
"min" :» {0, 3, 7},
(x1stead - added rule so "D-" worksx)
"-" s {0,3,7),
"7/b913" :» {1, 4, 9, 10}, "7/#9b13" =5 {0, 3, 8}, "7/b9b13" :5 {1, 4, 8, 10},
"7/b9111" :» {1, 4, 6, 10}, "7/b5" 5 {0, 4, 6, 10},
"7/b9" > {1, 4, 7, 10}, "7/8#9" :»> {4, 10, 15},
"7/#11" 5 {0, 4, 7, 10, 14, 18}, "7/13" > {4, 9, 10, 14}, "7" = {0, 4, 7, 10},
"7/9" > {0, 4, 7, 10, 14}, "Tsus" = {0, 5, 7, 10}, "sus" > {0, 5, 7, 12} };
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romanRoots = {"bIII": 3, "III": 4, "bII" 1, "II":»2, "#II" 3,
"IV" =5 5, "#IV" =5 6, "bVII" :» 10, "VII" :»> 11, "bVI" :5 8, "VI" =5 9,
"H#VI" > 10, "bV" =5 6, "V" 5 7, "HV" 5 8, "I" 5 0, "HI" :5 1};

letterRoots = {"C":=0, "C#" 1, "Db" =51, "D" =52, "Dt" =5 3,

"Eb" >3, "E" > 4, "F" 5 5, "F#t" =5 6, "Gb" 5 6, "G" 57,
"G#" > 8, "Ab" :» 8, "A" 59, "Bb" :5 10, "B" :5 11} ;
roots = Join[romanRoots, letterRoots]
Out[708]= {bIII:=3, III:»4, bII:»1, 1152, #1153, IV 5, IV 6,
bVII :> 10, VII 5 11, bVI > 8, VI:5 9, VI 5 10, bV > 6, Vis 7, HV 5 8,
I-50,8I+-1,C»0,Ct:51,Db:>1,D:52,D0:53, Eb>3, En 4,
F5, Fi:>6,C0b:>6,G:>7, Gt:>8, Ab:>8, A9, Bb:> 10, B:> 11}

Make a table by concatenating together each possible root and type. Then /. can
be used to decode chord.

In[709]:= compoundRules = Table[ToUpperCase[1|[1, 17 ~~1[2, 1711 ->
{101, 21, 102, 21}, {1, Tuples[{roots, chordSpellingRules}]}];
drules = Dispatch[compoundRules] ;
Now create a function for converting the chord string into a progression
representation.
In[711]:= progressionFromString[s_] :=
Block[ {su, ss},
ss = StringSplit[s, Whitespace];
progression[First[ss], ToUpperCase[Rest[ss]]] ]

progression[key_, chords_] :=
Block [ {keyCenter, 1h, rh},
keyCenter = StringCases[key,
RegularExpression[" (?i) [a-z]+"] ] [1] /. letterRoots;
progression [key, chords, keyCenter,
Table[

{lh, rh} = (choxd /. drules);
1h = 1lh + keyCenter - 24;
rh = rh + 1lh + 24;
Flatten[{1lh, rh}1],
{chord, chords}]]]

And a function to play the progression.
In[713]:= playProgression[progression[k_, csyms_, kn_, chords_]] :=
Sound [ SoundNote [#, 1] & /@ choxds, 5]
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Let’s test it on a jazz progression.

In[714]:= jazzS = "<Eb> I vi-9 II7/#9b13 ii-9 V7sus I";

In[715]:= jazzP = progress:i.onFromString[jazzS]
Out[715]= progression[<Eb>, {I, VI-9, II7/#9B13, II-9, V7SUS, I},
3, ({-21,3, 7,10}, {-12, 12, 15, 19, 22, 26}, {-19, 5, 8, 13},
(-19, 5, 8, 12, 15, 19}, {-14, 10, 15, 17, 20}, {-21, 3,7, 10} } ]

In[716]:= playProgression|jazzP]

out[716]=

P = 5s

Let’s add some rhythm and volume.

In[717]:= buffer = progressionFromString[jazzS][[4]]
Sound [MapIndexed [SoundNote[#, {1, 0.5, 0.5, 0.75, 0.25, 1} [Sequence ee #2],
SoundVolume - RandomReal[0.5, 1]] &, buffer]]
out[717]= {{-21, 3,7, 10}, {-12, 12, 15, 19, 22, 26}, {-19, 5, 8, 13},
(-19, 5, 8, 12, 15, 19}, (-14, 10, 15, 17, 20}, {-21, 3, 7, 10} }

out[718]=
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Discussion

There’s a very unsatisfying feature to the result: the chords jump around in an unmu-
sical way. A piano player would typically invert the chords to keep the voicings cen-
tered around middle C. So for example, when playing a CMaj7 chord, which is
defined as {0,4,7,11} or {"C3","E3","G3","B3"}, a piano player might drop the top
two notes down an octave and play {-5,-1,0,4} or {"G2","B2","C3","E3"}. You can
use Mathematica’s Mod function to achieve the same result. Here the notes greater
than 6 {"F#3"} are transposed down an octave simply by subtracting 12 from them.

In[719]:= buffer
out[719]= {{-21,3,7, 10}, {-12,12, 15, 19, 22, 26}, {-19, 5, 8, 13},
{-19, 5, 8, 12, 15, 193}, {-14, 10, 15, 17, 20}, {-21, 3, 7, 10} }

Currently in the buffer, the nonbass notes are all positive, so this rule, which uses /;
n>0 as a condition, leaves the (negative) bass notes untouched while processing the
rest of the voicing.
In[720]:= buffer /. {n_Integer /;n>0:>Mod[n, 12, -5]}
Out[720]= {{-21, 3, -5, -2}, {-12,0, 3, -5, -2, 2}, {-19, 5, -4, 1},
{-19,5, -4,0, 3, -5}, {-14, -2, 3, 5, -4}, {-21, 3, -5, -2}}

In[721]:=
Sound [SoundNote [#, 1] & /@ ( buffer /. {n_Integer /;n>0:>Mod[n, 12, -5]1})]

out[721]=
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Here’s another progression showing all the steps in one place.

In[722]:= buffer = progressionFromString["<F> F Eb7 F C7 d- Bb7 C7 F"][[4]];
Sound [
SoundNote [, 1] & /@ ( buffer /. {n_Integer /;n>0:>Mod[n, 12, -51}) ]

out[723]=

EE 8s

9.8 Creating Percussion Grooves
Problem

You want to make percussion sounds.

Solution

Mathematica has implemented 60 percussion instruments as specified in the Gen-
eral MIDI (musical instrument digital interface) specification.

Here the percussion instruments are listed in alphabetical order. Some of the names
are not obvious. For example, there is no triangle or conga, instead there’s

"MuteTriangle", "OpenTriangle", "HighCongaMute", "HighCongaOpen", and "LowConga".

In[724]:= allPerc = {"BassDrum", "BassDrum2", "BellTree", "Cabasa",
"ChineseCymbal", "Clap", "Claves", "Cowbell", "CrashCymbal",

"CrashCymbal2", "ElectricSnare", "GuiroLong", "GuiroShort",

Castanets”,

HighAgogo",
"HighBongo", "HighCongaMute", "HighCongaOpen", "HighFloorTom",
"HighTimbale", "HighTom", "HighWoodblock", "HiHatClosed", "HiHatOpen",
"HiHatPedal", "JingleBell", "LowAgogo", "LowBongo", "LowConga",
"LowFloorTom", "LowTimbale", "LowTom", "LowWoodblock", "Maracas",
"MetronomeBell", "MetronomeClick", "MidTom", "MidTom2", "MuteCuica",
"MuteSurdo", "MuteTriangle", "OpenCuica", "OpenSurdo", "OpenTriangle",
"RideBell", "RideCymbal”, "RideCymbal2", "ScratchPull", "ScratchPush",
"Shaker", "SideStick", "Slap", "Snare", "SplashCymbal", "SquareClick",

"Sticks", "Tambourine", "Vibraslap", "WhistleLong", "Whistleshort"};
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Here’s what each instrument sounds like. The instrument name is fed into SoundNote
where, more typically, the note specification should be. In fact, in the Standard
MIDI specification, each percussion instrument is represented as a single pitch in a
“drum” patch. So for example, "BassDrum" is CO, "BassDrum2" is C#0, "Snare" is DO,
and so on. Therefore, it makes sense for Mathematica to treat these instruments as
notes, not as “instruments” as was done above for "Piano", "GuitarMuted", and
"GuitarOverDriven".

In[725]:= Sound[SoundNote[#, 0.125] & /@ allPerc]

0ut[725]=

b || = 7.5s

Here’s a measure’s worth of closed hi-hat:

In[726]:= Sound[SoundNote[#, 0.125] & /@ Table["HiHatClosed", {8}]]

0ut[726]=

v
|
=
(%]
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And here’s something with a little more pizzazz. Both the choice of instrument and
volume are randomized.

In[727]:= Sound[SoundNote[#, 0.125, SoundVolume - RandomReal[{0.25,1}1] & /e
Table [RandomChoice[ { "HiHatOpen", "HiHatClosed", "HiHatPedal"}], {16}]]

o _

IZIEI 2s

9.9 Creating More Complex Percussion Grooves

Problem

You want to create a drum kit groove for a pop song using kick, snare, and hi-hat.

Solution

This task is the percussion equivalent of making chords, because on certain beats all
three instruments could be playing, on other beats only one instrument or possibly
none. Here’s the previous hi-hat pattern, played at a slower tempo.

In[728]:= Sound[SoundNote[#, 0.25] & /@ Table["HiHatClosed", {8}]]

o _

IZIEI 2s
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Here’s a kick drum pattern. Use None as a rest indication.

In[729]:= Sound[SoundNote[#, 0.25] & /@
{"BassDxum", None, None, "BassDrum", "BassDrum", None, None, None} ]

out[729]=

[:::][:::l 1.25s

Here’s the snare drum backbeat. The display omits the leading rests, so the picture
is a little misleading. As soon as we integrate this with the hi-hat and kick drum,

everything will look correct.

In[730]:= Sound[SoundNote[#, 0.25] & /@
{None, None, "Snare", None, None, None, "Snare", None}]

0ut[730]=

l:::”[::] 1.75s

Each list has exactly eight elements, so we can use Transpose to interlace the
elements.

In[731]:= groove = Transpose[ {Table["HiHatClosed", {8}],

{"BassDrum", None, None, "BassDrum", "BassDrum", None, None, None},
{None, None, "Snare", None, None, None, "Snare", None}}]

Out[731]= {{HiHatClosed, BassDrum, None}, {HiHatClosed, None, None},
{HiHatClosed, None, Snare}, {HiHatClosed, BassDrum, None},
{HiHatClosed, BassDrum, None}, {HiHatClosed, None, None},
{HiHatClosed, None, Snare}, {HiHatClosed, None, None} }
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In[732]:= Sound[SoundNote[#, 0.25] & /@ groove]

out[732]

[::”[:] 2s

An entire tune can now be made by repeating this one-measure groove as many
times as desired.
In[733]:= Sound[SoundNote[s, 0.25] & /@ Flatten[Table[ groove, {4}], 1]]

o _

[::][:] 8s

Discussion

Getting the curly braces just right in Mathematica’s syntax can be a little frustrating.
Without Flatten in the example above, the SoundNote function is confused by the
List-within-List results of the Table function. Consequently, you get no output.

In[734]:= Sound [SoundNote[#, 0.25] & /@ Table[ groove, {4}]]

Out[734]= Sound[
{SoundNote [ { { "HiHatClosed", "BassDrum", None}, {"HiHatClosed", None, None},

{"HiHatClosed", None, "Snare"}, {"HiHatClosed", "BassDrum", None},
{"HiHatClosed", "BassDrum", None}, {"HiHatClosed", None, None},
{"HiHatClosed", None, "Snare"}, {"HiHatClosed", None, None}}, 0.25 ],
SoundNote [ { { "HiHatClosed", "BassDrum", None}, {"HiHatClosed", None, None},
{"HiHatClosed", None, "Snare"}, {"HiHatClosed", "BassDrum", None},
{"HiHatClosed", "BassDrum", None}, {"HiHatClosed", None, None},
{"HiHatClosed", None, "Snare"}, {"HiHatClosed", None, None}}, 0.25 ],
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SoundNote [ { { "HiHatClosed", "BassDrum", None}, {"HiHatClosed", None, None},
{"HiHatClosed", None, "Snare"}, {"HiHatClosed", "BassDrum", None},
{"HiHatClosed", "BassDrum", None}, {"HiHatClosed", None, None},
{"HiHatClosed", None, "Snare"}, {"HiHatClosed", None, None}}, 0.25° ],

SoundNote [ { { "HiHatClosed", "BassDrum", None}, {"HiHatClosed", None, None},
{"HiHatClosed", None, "Snare"}, {"HiHatClosed", "BassDrum", None},
{"HiHatClosed", "BassDrum", None}, {"HiHatClosed", None, None},
{"HiHatClosed", None, "Snare"}, {"HiHatClosed", None, None}}, 0.257]}]

Furthermore, with a simple Flatten wrapped around the Table function, each hit is
treated individually; we lose the chordal quality of the drums hitting simultaneously.
Go back and notice that the correct idea is to remove just one layer of braces by us-
ing Flatten[ ... , 1 ].

In[735]:= Sound[SoundNote[tt, 0.25] & /e Flatten[Table[ groove, {4}]]]

out[735]=

Al 23.5 s

9.10 Exporting MIDI files

Problem

You want to save your Mathematica expression as a standard MIDI file.

Solution

Mathematica can export any expression composed of Sound and SoundNote expres-
sions as a standard MIDI file. The rub, however, is that Mathematica does not im-
port MIDI files. So let’s create some utilities that at the very least let you look at the
guts of standard MIDI files.
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Here’s a simple phrase that gets exported as the file myPhrase.mid.

In[736]:= myPhrase = Sound[
{SoundNote[0], SoundNote[4], SoundNote[7], SoundNote[ {0, 4, 7, 12}]}]

out[736]=

[>1[=] as

In[737]:= Export["myPhrase.mid", myPhrase]
Out[737]= myPhrase.mid

9.11 Playing Functions As Sound

Problem

You want to listen to the waveform generated by a mathematical function.

Solution
If you know how to plot a function in Mathematica:

In[738]:= Plot[Sin[1000*2 nxt], {t, 0, 0.001}, ImageSize » 300]

1.0

0.5

Out [ 738 ] = L 1 L L 1 L L 1 L L 1 L L |
0.0002 0.0004 0.0006 0.0008 0,0010

-0.5

-1.0
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You can play a function. Play uses the same syntax as Plot. However, you don’t
want to listen to 1/1000th of a second, which is what was plotted above, so specify
something like {t, 0, 1}.

In[739]:= Play[Sin[1000%2 7xt], {t, 0, 1}]

o _

1s 8000 Hz

Discussion
Here are other crazy-sounding functions.

In[740]:= Play[Sin[300 27 tExp[t]], {t, 0, 8}]

o _

8s 8000 Hz

In[741]:= Play[ (2 + Cos[40t"2]) Sin[700t"2], {t, 0, 10}]

-

o _

> |[=] 105 8000 Hz
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9.12 Adding Tremolo
PPPPPPP

Solution

“Tremolo” is the musical term for amplitude modulation. Here a 20 Hz signal modi-

j
rwwwwmww»

b | = 1s 8000 Hz




9.13 Adding Vibrato

Problem

You want to add vibrato.

Solution

Vibrato is frequency modulation. Notice that the sine wave alternates between re-
gions of compression and expansion.

In[744]:= Plot[ (Sin[(1+Sin[250%27+t]) #1000%2 7w xt]),
{t, 0, 0.010}, ImageSize - 400, AspectRatio —» 0.5]

|
v |

-0.5 -

1.0

0.5

-10

Here the parameters are adjusted for listening.

In[745]:= Play[(Sin[(1+0.002Sin[542xt]) x1000%2 7w #t]), {t, 0, 1}]

out[745]=

P | m 1s 8000 Hz
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Why not put the two modulations together: tremolo and vibrato?

In[746]:= Play[ (2 +Sin[5+2mxt])
Sin[(1+0.002Sin[5%2w+t]) 100042 w#t], {t, 0, 1}]

out[746]=

le 1s 8000 Hz

9.14 Applying an Envelope to a Signal

Problem

You want to apply an envelope to your signal.

Solution

The Mathematica function Piecewise is the perfect tool for creating an envelope.
Here is the popular attack-decay-sustain-release (ADSR) envelope.

In[747]:= Plot[Piecewise[{
6t,t<1},
{6-5(t-1),t<2},
{1, t<4},
{1-0.5 (t-4),t<6}
11,
{t, 0, 6},
PlotStyle - AbsoluteThickness[2],
ImageSize » {300, 150}, AspectRatio -» 0.5

]
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out[747]=

1 2 3

Sine waves are typically represented as amplitude * sine (wt). You can simply substi-

tute the entire Piecewise[] envelope for amplitude.

In[748]:= Plot|
Piecewise[ {
6t,t<13,
(-5 (t-1) +6, t<2},
{1, t<4},
(-0.5 (t-4) +1, t<6}}
]1*Sin[6x2xt],
{t, 0, 6},
PlotRange - All

]

6

I ﬂf\ L MM(\/\/\(\/\MM/\/\/\/\/\/\MM .

VU } vavwvvwwwwvw :
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Listen!
In[749]:= Play[

Piecewise[ {
{(6t), t<1},
{(-5(t-1) +6),t<2},
{(1), t<4},
((=0.5 (t-4) +1), t <6}

}1%*Sin[1000%2 7wxt],
{t, 0, 6}

out[749]=

> || = 6s 8000 Hz

Discussion

Calculating the envelope functions for the four regions is not as hard as you might
expect. Perhaps you remember the equation for a straight line: y = m x + b, where m
is the slope of the line and b is the y-intercept. Here is a line with a slope of -2 that
intercepts the y-axis at y = 4, so its equation is y = -2x + 4.

In[750]:= Plot[—Z x +4, {x, 0, 2}, PlotRange -» { {0, 4}, {-1, 4}},
PlotStyle - {AbsoluteDashing[{4, 4}], {Thick, Black}}]

4N
\
\\
3k \\
N\
A Y
2+ \\
Out[750]= \\
1r \
\
\\

0 L L \ L ]

1 2 3 4

396 | Chapter9: Audio and Music Processing



If this were the function for the second portion of the envelope, the decay portion,
you would need to shift this line to the right. You can shift the line to the right sim-
ply by replacing x with (x - displacement). In general, the template for creating the
equations for the Piecewise functions will be: y = m (x - displacement) + initial
value of segment. Notice that what was at first the y-intercept is now the “initial
value of the segment.” The line here is shifted two units to the right, and the new
equation is y = -2 (x - 2) + 4. If we simplify the right side, the equation becomes y =
-2x + 8. This line has the same -2 slope but would intercept the y-axis at y = 8 if we
were to extend the line to the left.

In[751]:= Plot[-2 (x-2) +4, {x, 0, 4}, PlotRange » {{0, 4}, {-1, 4}},
PlotStyle - {AbsoluteDashing[ {4, 4}], {Thick, Black}}]

ar N

N
3r \\
N
N
N
2l >
- N
out[751] ~
b
\
N
N

0 ‘ ‘ ‘ ~

1 2 3 4

9.15 Exploring Alternate Tunings

Problem

You want to explore different partitions of the musical scale and alternate instru-
ment tunings.

Solution

Modern Western music uses tempered tuning, which is a slight compromise to the vi-
brations of the natural world, or at least the perfection of the natural world as the
Greeks described it 3,000 years ago. The ancient Greeks (and even earlier, the Babylo-
nians) noticed that when objects vibrate in simple, integer ratios to each other, the
resulting sound is pleasant. The simple ratio of 2:1 is so pleasant that we perceive it
as an equivalence. When two notes vibrate in a ratio of 2:1, we say they have the
same pitch but are in different octaves. The history of music has been the history of
partitioning the octave.
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The first obvious division of the octave is created by the next simplest ratio, a 3:1 ra-
tio. Consider the following schematic of a vibrating string. The only requirement on
the string is that its endpoints remain fixed. The string can vibrate in many different
modes, as shown in the first column. Each mode has a characteristic number of still
points, called “nodes,” that appear symmetrically along the length of the string.
Each mode also has a characteristic rate of vibration, which is a simple integer multi-
ple to the lowest fundamental frequency. Notice that three out of the first four har-
monics are octave equivalences. The third harmonic, situated between the second
and fourth harmonics, has a ratio of 3:2 to the second harmonic and 3:4 to the
fourth. These were the kinds of simple ratios that appealed to the Greeks.

In[752]:= SetOptions [Plot, ImageSize -» {150, 30}, AspectRatio - 0.2,
Ticks - None, PlotStyle - AbsoluteThickness [2] ] ;

Style [Grid [{

{"mode", "harmonic", "musical interpretation", "ratio to fundamental"y,

4
{Plot[Sin[400 2rxt], {t, 0, 0.005}7, "4th", "octave", "-“},

||},

2
{Plot[Sin[ZOO 2rxt], {t, 0, 0.005}7, "2nd", "octave", "-“},
1

=] w
[y

{Plot[Sin[300 2mt], {t,0,0.005}], "3rd", "fifth","

{Plot[Sin[100 x 2 rxt], {t, 0, 0.005}, PlotRange » {-1, 1}],
"].St“, "tOniC", "1"}

}
Frame - All,
Background -» {White, {White, White, White, White, White}}

], 14, "Label"

mode harmonic | musical interpretation | ratio to fundamental

% 4th octave 4I
3rd fifth 3
Out[753]= 1

L 2nd octave 2
\ N——" .
— 1st tonic 1

398 | Chapter9: Audio and Music Processing



mode harmonic | musical interpretation | ratio to fundamental
% 4th octave 4I
T\ N0 3 fifth 2
out[90]= | | NS !
LN 2nd octave 2
[ \_/ 1
‘ 1st tonic 1

r

mode harmonic | musical interpretation | ratio to fundamental
Qvgv 4th octave AI
y 3
\//\ 3rd fifth 2
PN 2nd octave 2
! ~~—— !
K 1st tonic 1

The following keyboard shows how a successive application of the 3:2 ratio can be
used to build the entire chromatic scale. After 12 applications of this 3:2 ratio, every
note of the modern chromatic scale has been visited once and we are returned to
starting pitch—sort of!
In[754]:= With[{y1=-1.6,y2=6.5},
whiteKeys = Table [Rectangle[{x, 0}, {x + 1, 5}], {X, 0, 49} ];
blackKeys = Table[Rectangle[{octave +Xx+0.65, 2}, {octave + x + 1.3, 5}],
{x, {0, 1, 3, 4, 5}}, {octave, 0, 42, 7}];
sequential = Sort [Flatten@Join [whiteKeys, blackKeys] ] ;
highlights = sequential[Table[n, {n, 1, 85, 7}11;
keyboard = {white, EdgeForm[ {Black, AbsoluteThickness[1]}], whiteKeys,
Gray, highlights, Black, blackKeys, Gray, highlights[7 ;; 11] };
Graphics [ {keyboard,
Style[{Text["1", {0.5, y1}], Text[3/2, {4.5, y1}], Text[ (3/2)?,
{8.5,y1}], Text[ (3/2)3, {12.5, y1}], Text[ (3/2)*, {16.5, y1}],
Text[(3/2)°, {20.5, y1}], Text[ (3/2)%, {25, y2}],
Text[(3/2)7, {29, y2}], Text[ (3/2)%, {33, y2}],
Text[(3/2)°, {37, y2}], Text[ 3/2) %, {41, y2}],
Text[ (3/2)%, {45.5, y1}], Text[ (3/2)*, {49.5, y1}]}, 9]
}, ImageSize » {550, 200} ] ]
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o B HI. Jh Dol el

27/ 81/ 243/ 177147/531441/
32 2048 4096

There’s a problem: (3/2)!2 represents the C seven octaves above the starting C and
should equal a C with a frequency ratio of 27 = 128, but (3 /2)'2 equals 129.75. The
equal temperament solution to this problem is to distribute this discrepancy equally
over all the intervals. In other words, in equal temperament, every interval is made
slightly, and equally, “out of tune.” Johann Sebastian Bach composed a series of key-
board pieces in 1722 called “The Well-Tempered Clavier” to demonstrate that this
compromise was basically imperceptible and had no negative impact on the beauty
of the music.

Mathematically, equal temperament means that the frequency of each pitch should
have the same ratio to its immediate lower neighbor’s frequency. Call this ratio a.
Then it must be the case that if a chromatic scale, which contains 12 pitches, takes
you from some frequency to twice that frequency, then a'?= 2. So the ratio of a semi-
tone in equal temperament is 1.0596.

In[755]:= a=~/2.0

Out[755]= 1.05946

ut[92]= 1.05946
1.05946

However, now that we have the octave in perfect shape, every other interval is
slightly “wrong”—or at least wrong according to the manner in which the Greeks
were trying to make their intervals. So for example, a Pythagorean fifth, which is 3/2
= 1.5, is slightly flat in equal temperament (the musical interval of a fifth is com-
posed of seven half-steps).

In[756]:= o’

out[756]= 1.498317
In[757]:= 1.498307
Out[757]= 1.49831

Now that we’ve gone through the basics of tuning, how do you use Mathematica to
explore alternate tunings?
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Discussion

As explained above, tuning instruments in the modern Western world is based on di-
viding the octave into 12 equal segments. If the ratio of the semitone C to C# is
called @, then the ratio of the octave from C3 to C4 is a!? and should equal 2.0.
Therefore you can calculate a to be the 12th root of 20.

In[758]:= =4/ 2.0

Out[758]= 1.05946
Out[95]= 1.05946
1.05946

Here’s the equal-tempered chromatic scale, sometimes referred to as 12-TET (twelve-
tone equal temperament):

In[759]:= TET = Table[Sin[440.0%a" x2 wxt], {n, 0, 12}]
Out[759]= ({Sin[2764.6t], Sin[2928.99 t], Sin[3103.16t],
Sin[3287.68 t], Sin[3483.18t], Sin[3690.3 t],
Sin[3909.74 t], Sin[4142.22t], Sin[4388.53 t
Sin[4649.49 t], Sin[4925.96 t], Sin[5218.87 t

Out[96]= {Sin[2764.6t], Sin[2928.99t], Sin[3103.16t],
Sin[3287.68 t], Sin[3483.18 t], Sin[3690.3 t],

Sin[3909.74 t], Sin[4142.22 t], Sin[4388.53 t],

Sin[4649.49 t], Sin[4925.96 t], Sin[5218.87 t], Sin[5529.2t]}

(Sin[2764.6 t], Sin[2928.99 t], Sin[3103.16 t],

[3287.68t], Sin[3483.18 t], Sin[3690.3 ],
Sin[3909.74 t], Sin[4142.22 t], Sin[4388.53 t
Sin[4649.49 t], Sin[4925.96 t], Sin[5218.87 t

)

]
1,5in[5529.2 t]}

Sin
)

]
1, 5in[5529.2 t]}
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In[760]:= Show[Play[#, {t, 0, 0.25}] & /@ TET]

I | ‘

0ut[760]=

> = 3.25s 8000 Hz

The equal-tempered major scale is

In[761]:= Show[Play[#, {t,0,0.25}]1& /@ TET[1+ {0,2,4,5,7,9, 11, 12}1]

Ry

out[761]

b = 2s 8000 Hz
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9.16 Importing Digital Sound Files

Problem

You want to import a digital sound file, for example, a WAV or AIFF file.

Solution

Mathematica imports many standard file formats. Both AIFF and WAV are in the
list.

In[762]:= $ImportFormats

Out[762]= {3DS, ACO, AIFF, Apachelog, AU, AVI, Base64, Binary, Bit, BMP, Byte, BYU,
BZIP2, CDED, CDF, Character16, Character8, Complex128, Complex256,
Complex64, CSV, CUR, DBF, DICOM, DIF, Directory, DXF, EDF, ExpressionML,
FASTA, FITS, FLAC, GenBank, GeoTIFF, GIF, Graph6, GTOP030, GZIP,
HarwellBoeing, HDF, HDF5, HTML, ICO, Integer128, Integerl6, Integer24,
Integer32, Integer64, Integer8, JPEG, JPEG2000, JVX, LaTeX, List, LWO,
MAT, MathML, MBOX, MDB, MGF, MMCIF, MOL, MOL2, MPS, MTP, MTX, MX, NB,
NetCDF, NOFF, OBJ, ODS, OFF, Package, PBM, PCX, PDB, PDF, PGM, PLY, PNG,
PNM, PPM, PXR, QuickTime, RawBitmap, Reall28, Real32, Real64, RIB,
RSS, RTF, SCT, SDF, SDTS, SDTSDEM, SHP, SMILES, SND, SP3, Sparse6, STL,
String, SXC, Table, TAR, TerminatedString, Text, TGA, TIFF, TIGER,
TSV, UnsignedInteger128, UnsignedInteger16, UnsignedInteger24,
UnsignedInteger32, UnsignedInteger64, UnsignedInteger8, USGSDEM, UUE,
VCF, WAV, Wave64, WDX, XBM, XHTML, XHTMLMathML, XLS, XML, XPORT, XYZ, ZIP}

Using the "Data" specification will save you the aggravation of decoding the syntax
of the imported data. Don’t forget the semicolon, which prevents Mathematica from
listing all the sample points. The easiest way to access a file is to type Import[ ],
place your cursor between the empty brackets, choose File... from the Insert Menu,
navigate in the dialog box to the file you want to open.

In[763]:= file = FileNameJoin[{NotebookDirectory[] ,"..", "data", "JCK_Ol.aif"}];
data = Flatten@Import[file, "Data"];

You’ll need to know the sample rate and whether this file is a mono or stereo, so do
a second Import on the same file but specify "Options".

In[765]:= Import[file, "Options"]
out[765]= {AudioChannels - 1, AudioEncoding - Integer16, SampleRate - 48000}
If you simply wanted to play the file, specify "Sound" as the second parameter.

In[766]:= snd = Import[file, "Sound"];
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This returns a Sound object.
In[767]:= snhd // Head
Out[767]= Sound

And can be played like so:
In[768]:= snd

OOk C0k bbb

out[768]=

|| 29.1s 48000 Hz

Discussion
Sound files can be huge, and as such, become difficult to work with.

In[769]:= Length[data]
0ut[769]= 1396853

Here’s a quick way to get an overview of a sound file. Mathematica is being asked to
display every thousandth sample point. You can easily see there are a handful of
bursts of energy.

In[770]:= SetOptions[ListLinePlot,

ImageSize - {500, 150}, AspectRatio - 0.25, PlotRange - AL1] ;
SetOptions [ListPlot, ImageSize » {500, 150},

AspectRatio - 0.25, PlotRange - All] ;

In[771]:

In[772]:= ListLinePlot[data[1 ;; 1396000 ;; 1000 ]

out[772]=
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Focus on the three wavelets between 900 and 1,300.
In[773]:= ListLinePlot[data[900000 ;; 13000007 ]

06

04 F

02f

out[773]=
400000

“Yes we can; yes we can; yes we can!”

In[774]:= Sound[SampledSoundList[data[900000 ;; 13000007, 480007 ]

fade  Arl A1l

out[774]=

“ = 8.33s 48000 Hz

9.17 Analyzing Digital Sound Files

Problem

You want to do a Fourier analysis on a sound file. Fourier analysis is a means of in-
vestigating the energy in a signal. Specifically, Fourier analysis will report on the
energy spectrum of a signal versus frequency. The mathematics behind Fourier analy-
sis is quite sophisticated, but armed with just a few principles, you can put Mathe-
matica’s Fourier tools to work for you.

Solution

Typically you’ll start with a digitized signal. The sampling rate will determine the
highest frequency that can be investigated. This highest frequency is called the
Nyquist frequency and is always exactly one half the sampling rate. For this “Yes we

can!” sample, which was digitized at 48 KHz, the highest frequency is 24 KHz. (It’s
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not coincidental that this frequency is slightly greater than the limits of human hear-
ing.) Notice the plot is symmetric about the Nyquist frequency.

The number of sample points used in any analysis is also critical. Here exactly one
second of audio, that is, 48,000 sample points, is being analyzed. The 48,000 points
from the time domain yield 48,000 points in the frequency domain, but as you can
see, the right side of the plot, between points 24,000 and 48,000, is just a mirror du-
plication of the points between 0 and 24,000. This is an artifact of the underlying
mathematics, and there is no additional information in this half of the plot.

In[775]:= ListLinePlot [Abs [Fourier [data[900000 ;; 900000 + 48000 ]] ]

0.7
0.6
0.5
0.4
0ut[775]= o3
0.2
0.1

10000 20000 30000 40000

Since this is speech, you can focus on the first 2,000 points, which correspond to
frequencies 0 to 2,000 Hz. Later you’ll see that 2,000 points of a Fourier analysis
doesn’t always mean frequencies 0 through 2,000 Hz. It does in this case because
you started with 48,000 sample points in the time domain that equals the sampling
rate and created a one-to-one relationship between data points and frequencies in
the frequency domain. You can see that this speaker has four significant frequency
resonances to his voice at approximately 150 Hz, 300 Hz, 490 Hz, and 700 Hz.
These resonances are known as formants. Notice, the Ticks option customized the la-
beling of the x-axis.

In[776]:= ListLinePlot [Abs [Fourier [data[900000 ;; 900000 + 48000711 [1 ;; 20007,
Ticks - { {150, 300, 490, 700, 1000, 1500, 2000} , Automatic} ]

0.7 ¢
0.6 F
05 F
04
Out[776]= o3¢t
02t

150 300 490 700 1000 1500 2000

Typically, when analyzing voice, one second is too long of a sample. Just think how
many syllables you utter in one second of normal speech. A much more appropriate
length would be 1/10 or 1/20 or even 1/30 of a second. You can easily identity
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various phonemes of “yes we can” in the plot below: the “yeh” and “sss” of the
“yes,” the singular vowel sound of “we,” and the hard “c” and “an” of “can.”

In[777]:= ListLinePlot [data[[925000 ;; 925000 + 96000]],
PlotRange -> All, AxesOrigin - {0, -0.4}]

0.4
0.2
Out [777 ] = 0.0

-0.2

20000 40000 60000 80000

Here’s the “we,” which is very homogeneous.

In[778]:= ListLinePlot[data[ [955000 ;; 955000 + 9600]], PlotRange -> All]

03 F
02¢F

ol ,,.,‘nllllIHlnm.l.llllll,lm,n
aa O e TN e s

-0.2 F

You’re now looking at 9,600 sample points (9,600/48,000 = 1/5 sec) in the time do-
main, so each point in the frequency domain represents 48,000/9,600 = 5 Hz.
There’s a direct trade-off between using as few sample points as possible to narrow
the analysis to a single phoneme, versus sampling enough points to ascertain a desired
precision in the frequency domain.

In[779]:= pts = Abs[Fourier[data[[955000 ;; 955000 + 96001111[[1 ;; 100]1];
ListPlot[pts, Joined - True,
Epilog » {MapIndexed[Point [ {Sequence ee #2, #}] &, pts]},
Ticks » {Table[{n, 5%n}, {n, 0, 100, 10} ], Automatic},
PlotRange - All, Filling - Axis]

z_oé
1,5,E
out[780]= 10°F
05 f

50 100 150 200 250 300 350 400 450 500
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Here, half as many points (4,800) sampled from the same region focuses our analysis
in the time domain, but each sample point now represents 10 Hz. Perhaps we’re los-
ing some detail in the 150-200 Hz range, as well as the 300-350 Hz range?
In[781]:= pts = Abs[Fourier[data[[955000 ;; 955000 + 48001]111[[1 ;; 100]1];
ListPlot[pts, Joined - True,
Epilog » {MapIndexed[Point [ {Sequence ee #2, #}] &, pts]},

Ticks » {Table[{n, 10xn}, {n, 0, 100, 10} ], Automatic},
PlotRange - All, Filling - Axis]

25
4
2.0 ¢\
[
15 [ o
out[782]= o [ |
[782] 1.0 A o |
|\ | L]
0.5 | « 4
" $%00  Sosegete
M-“ evsend .~ Seete, 00400, vose.
100 200 300 400 500 600 700 800 900 1000

9.18 Slicing a Sample

Problem

You want a Fourier analysis over time.
Solution

You can partition the data into 1/30 of a second slices and do an analysis on each
slice. Each sample point in the frequency domain will be 30 Hz, which is “wider”
than the previous examples, but the precision in the time domain will more than
make up for it.
In[783]:= ffts = Table[Fourier[data[t ;; t + 1600 - 1],
t, 900000, 900000 + 1600 % 250, 1600} ] ;

Take just the lowest 100 frequency bands, frequencies 0-3,000 Hz.
In[784]:= lines = Abs[ffts[All, 1;; 100]];

With Mathematica’s Graphics3D primitives, you can make this waterfall-style chart,
where time is left to right across the front, and frequency is front to back.
In[785]:= Graphics3D[

Line[#] & /@ MapIndexed[List[Sequence ee #2, #] &, lines , {-1}],
PlotRange - { {0, 250}, {0, 60}, {0, 4}}, BoxRatios -» {4, 2, 1},
ImageSize - 500, SphericalRegion - True,

ViewPoint - {1, -1, 0.75}, Boxed - True]
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0ut[785]=

ListLinePlot accomplishes the same thing but interpolates the individual lines into
surfaces.
In[786]:= ListPlot3D[lines,
Mesh - None, PlotRange - All, ImageSize - 500,
SphericalRegion - True, ViewPoint -» {-1, 1, 0.75},
Boxed - False, ColorFunction » (GrayLevel[1 - #3] &),

Ticks - {Function[ {min, max}, Table[ {i, i%30}, {i, 0, Floor [max], 10}117,
Function[ {min, max},

Table[ {i, 1+0.033 // Round}, {i, 0, Floor [max], 30}]], Automatic}

3000
2700

out[786]=
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Discussion

Now that you’ve seen the previous 3D displays, perhaps these contour plots will
make immediate sense to you. These are bird’s-eye views of the 3D plots. You can
really finesse these plots to bring out the details. Look at the color versions provided
in the online version of this book.

In[787]:= ListContourPlot|
Transpose@Table [Abs [Fourier [data[[n ;; n + 1600 - 1]]] [1 ;; 1207,
{n, 900000, 900000 + 1600 x 250, 1600} ],
Contours - 20, ContourShading - None, ImageSize -» {500, 300},
AspectRatio -» 0.5, Ticks -» {None, None},
FrameTicks » {Automatic,
Function[ {min, max}, Table[{i, i«15}, {i, 0, max, 20}]1]}]

1800 1800

1500 - - 1500

1200 1200
Out[787]= 900 900

600 600

300 300

0k =_0
0 250

Tweaking the Contours and ContourShading options prevent the white-outs in the
peak regions.

In[788]:= ListContourPlot|[
Transpose@Table [Abs [Fourier [data[n ;; n + 1600 - 1] 11 [1 ;; 1201,
{n, 900000, 900000 + 1600 * 250, 1600} ],
Contours - Function[{min, max}, Range[0, max, 0.25] ] ,
ContourShading - Table [GrayLevel[1-n/16.], {n, 16}], PlotRange - ALl,
ImageSize » {800, 400}, AspectRatio - 0. 5]

120

100 |

80|
_ : : i
out[788]= -} o I
40 |
o 2 - ; # g
v : @ £ .
0: L 2% L g™ 28
0 50 100 150 200 250
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A Spectrograph

ArrayPlot is another perfect tool to display the results. ArrayPlot will automatically
scale the results such that the greater the energy content in the frequency domain,
the darker the plot. Frequency runs across the page, as shown previously in Recipe
9.17, whereas the individual slices run down the page.

In[789]:= SetOptions[ArrayPlot, ImageSize - {600, 200}, AspectRatio - 0.25];
In[790]:= ArrayPlot[Table[Abs [Fourier[data[n ;; n+ 1600 - 11]1[1 ;; 1001,
{n, 900000, 900000 + 1600 % 250, 1600} ],

FrameTicks » {Automatic, Table[{n, 30*n}, {n, 0, 100, 5}1}]

50 - —
100 |
Out[790]= 150 | =
200 3
250 -

I I I I I I I I I I
0 150 300 450 600 750 900 10501200135015001650180019502100225024002550270028503000

You can improve on ArrayPlot’s formatting. Convention wants time to run left to
right across the page and frequency to run bottom to top. Transpose will reverse the
axes, but you’ll also need DataReversed-True to make time run left to right.

In[791]:= ArrayPlot[Transpose@Table[Abs [Fourier[data[n ;; n + 1600 - 1]]1][1;; 120],
{n, 900000, 900000 + 1600 % 250, 1600} 1,
FrameTicks » {Table[{n, 30%n}, {n, 0, 100, 10}],
Table[ {n, 0.03333 %n // Round}, {n, 0, 250, 30} ]}, DataReversed - True]

out[791]= %goo

You could set a threshold and display in black and white.

In[792]:= ArrayPlot[Transpose@Table [Abs [Fourier[data[n ;; n+ 1600 - 17]][1 ;; 1201,
{n, 900000, 900000 + 1600 » 250, 1600}] /.
{ Real? (#>=0.3 &) :»1, Real? (#<0.3 &) >0},
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In[792]:= FrameTicks - {Table[{n, 30%n}, {n, 0, 100, 10}],
Table[ {n, 0.03333 %n // Round}, {n, 0, 250, 30} ]}, DataReversed - True]
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Oout[792]= 1500
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Or, you could zoom in and look more closely at the lower frequencies.

In[793]:= ArrayPlot[Transpose@Table [Abs [Fourier[data[n;; n+ 1600 - 11111 ;; 30],
{n, 900000, 900000 + 1600 x» 250, 1600} 1,
FrameTicks -» {Table[{n, 30 *n}, {n, 0, 30, 5}1,
Table[ {n, 0.03333 xn // Round}, {n, 0, 250, 30} ]}, DataReversed -» True]

out[793]=
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CHAPTER 10
Algebra

When a problem comes along
You must whip it

Before the cream sits out too long
You must whip it

When something’s going wrong
You must whip it

Now whip it
Into shape
Shape it up
Get straight
Go forward
Move ahead
Try to detect it
It’s not too late
To whip it
Whip it good
Devo, “Whip It”

10.0 Introduction

Algebra can be divided into elementary algebra and abstract algebra. Elementary algebra
is the kind we all learned in high school. Mathematica is well equipped to solve prob-
lems in elementary algebra, and many of the recipes in this chapter show you how to
leverage these features. Mathematica does not presently have deep support for ab-
stract algebra, which is concerned with constructs such as groups, rings, and fields.
However, there are third-party packages available for exploring abstract algebra, and
I provide references for those.

Mathematica’s ability to do algebraic manipulation is important for two reasons.
First, many problems, although conceptually easy to solve by hand, are tedious, and
it makes sense to have Mathematica relieve you of this drudgery. Recipe 10.1 shows
you how to solve algebraic equations; Recipe 10.2 shows how to work backward
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from a root to a polynomial. However, helping you solve algebraic equations is not
the most important part of this chapter. Rather, you will often find that Mathemat-
ica will not automatically give you an answer in the form you desire. Knowing how
to coax expressions into the desired form is an important skill in your day-to-day use
of Mathematica. Recipe 10.3 is geared to helping you gain proficiency in this area. It is easy
enough to create a polynomial by typing input into Mathematica, but if you want to
generate a polynomial of a specific form, Recipe 10.4 will show you how. On the other
hand, if you need to break up a polynomial into parts to perform some low-level
manipulations, you will want to look at Recipe 10.5. Diving a bit deeper into abstrac-
tion, Recipe 10.6 investigates division and related operations on polynomials.

See Also

Allen C. Hibbard and Kenneth M. Levasseur have developed “Exploring Abstract Al-
gebra with Mathematica” (http://bit.ly/CHT90), which can be freely downloaded
after registering.

10.1 Solving Algebraic Equations

Problem

You want to solve an algebraic equation for its unknowns.

Solution

Use Solve with expressions of the form left-hand-side == right-hand-side and the
unknown variable (or variables) provided as the second argument. Results are re-
turned as rules.

In[2]:= Solve[x"2 - 2x - 3 = 0, Xx]
out[2]:= {{x->-1}, {x->3}}

Solve takes either a single expression, as above, or a list of expressions or several ex-
pressions linked with 88. As you would expect, solutions can be found in symbolic
form.

In[3]:= Solve[{ax+2y=7,3bx-y=1}, {x,y}]
9 a-21b

out[3)- {{X%awsb)ya*auib}}

In[4]:= Solve[ax—2y==7 8&%2bx+y==0, {x, y}]
7 14 b

outl4]= {{X9a+4b’y97a+4b}}
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Discussion

Solve works best with linear and polynomial equations. For expressions involving
constraints, inequalities, or non-algebraic expressions, you should use Reduce. (In
Mathematica 8.0, Solve will be enhanced to cover a much larger class of problems,
thus reducing the need to Reduce!)

In[5]:= Reduce[x > 0 &% x"2 - 2x - 3 = 0, x]
Out[5]= X-==
Reduce does not use rules because it may need to express solutions in terms of intervals.

In[6]:= Reduce[x > 0 && x"2 <2, x]
out[6]= 0<x<ﬁ

FindRoot is appropriate when you are looking for numerical solutions and have pro-
vided a starting point where you want Mathematica to search. FindRoot is a numeri-
cal method, so it can solve a larger class of expressions then Solve, although it is not
guaranteed to converge.

In[7]:= FindRoot[x"2 - 2x - 3 = 0, {x, -3}]
out[7]= {x--1.}

In[8]:= FindRoot[x"2 - Exp[2x] - 3 = X, {X, 0}]
Out[8]= {x--1.32237}

10.2 Finding a Polynomial from a Given Root

Problem

You have an algebraic number and you want a polynomial that has the number among
its roots. This is the opposite of Solve, which finds the roots given a polynomial.

Solution

Use MinimalPolynomial to find the minimal polynomial (least degree) with the given
value as a root.

In[9]:= poly = MinimalPolynomial[Sqrt[2] + Sqrt[5], x]
out[9]= 9-14x* +x*

In[10]:= Last[Solve[poly = 0, x]] // FullSimplify

Out[10]= {X—>\/7+\/?}
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Discussion

As you would expect, complex numbers are allowed.
In[11]:= MinimalPolynomial([2 + I, x]
Out[11]= 5-4x+x
Numbers must be explicitly algebraic or you will get an error. Trying to use Minimal-

Polynomial with Pi is doomed, since Pi is a transcendental number, but a rational
approximation of Pi fails as well because it is not explicitly algebraic.

In[12]:= MinimalPolynomial [Pi, x]

MinimalPolynomial::nalg :
st is not an explicit algebraic number. >>

Out[12]= MinimalPolynomial [r, x]

In[13]:= MinimalPolynomial[3.14, x]

MinimalPolynomial::nalg :

3.14° is not an explicit algebraic number. >

Out[13]= MinimalPolynomial[3.14, x]

Use Rationalize to work around this limitation.

Out[14]= MinimalPolynomial [Rationalize[3.14], x]
Out[14]= -157 + 50 x

10.3 Transforming Expressions to Other Forms

Problem

You have a symbolic expression that you would like to transform to a different form.
This problem often arises when you get a result from a Mathematica computation
that is in a form you don’t want. One common requirement is to simplify the expression.
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Solution

The two most important symbolic transformations are Simplify and FullSimplify.
These functions attempt to apply algebraic and other transformations to an expres-
sion that will convert it to an equivalent form that contains fewer symbols. The
main difference between Simplify and FullSimplify is that FullSimplify will con-
sider a much larger set of transformations, including special functions. As a result,
FullSimplify is often more effective but also slower.

Here Simplify and FullSimplify ultimately arrive at the same answer, but Full-
Simplify takes well over a minute, whereas Simplify completes in just over a
second.

In[15]:= Timing[Simplify[Sin[(x + y + z)*2] Cos[ (z + y + x) *2]]]

1
out[15]= {0.764, ;Sin[z (x+y+z)2}}

In[16]:= Timing[FullSimplify[Sin[(x +y + z) “2] Cos[ (z +y + x) “2]]]
1
i 138.626, —Sin[2 (x+y+z)?
In[16]:- {38.626, _sin[2 (x+y+2)?]|

Discussion

Simplify and FullSimplify perform fully automated simplification. However, you
sometimes want to apply more targeted transformations. For example, a common
transformation is to bring together a sum over a common denominator.

In[17]:= Together[

a/(a*2+b"2+c"2) +b/ (@*2+b*2+c*2) + c/(a*2+b"2+c"2)]
a+b+c

In[17]:

a2 + b? + c?
Apart is another useful transformation that represents an expression as sums of par-
tial fractions.

In[18]:= Apart[4/ ((1+x) (5+x))]
1 1

In[18]:= -
1+x 5+x

Polynomial transformations are a very important class, exemplified by functions like
Factor, FactorTerms, FactorSquareFree, Expand, and ExpandAll.

In[19]:= Factor[21-4x-x]
In[19]:= - (-3 +Xx) (7+X)
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Expand is the opposite of Factor and expands out sums of products and positive
powers.

In[20]:= Expand[%]

out[20]= 21-4x-x°

In[21]:= Expand[(1+x) *5]

0ut[21]= 1+5x+10x* +20%% + 5x* + x°

In[22]:= Factor[%]
out[22]= (1+x)°
ExpandAll is similar to Expand but reaches in deeper into the expression, for example,

into arguments of functions like Sin or Exp. Notice how Expand has no effect on a
nested polynomial but ExpandAll does.

In[23]:= Expand[Sin[(1+x)°]]
out[23]= Sin[(1+x)°]

In[24]:= ExpandAll[Sin[(1+x)°]]
Out[24]= Sin[1+5x+10x2+10x3+5x4+x5]

You can also narrow the scope of Expand to the numerator or denominator of a ratio-
nal expression using ExpandNumerator and ExpandDenominator, respectively.
In[25]:= With[{expr = (1+x) "3 / (3 +x) "4},
Row [ { ExpandNumerator [expr], ExpandDenominator [expr]} , Invisible[expr]]]
1+3x+3x2+%x3 (1+x)3

out[25]=
(3+x)* 81+ 108 x + 54 x> + 12> + x*

Collect does the job of Expand but also collects terms of matching powers of some
variable. Compare the results of Expand and Collect given here.

In[26]:= Expand[(a +x) "2 (b +x) *3]

Out[26]= a’b®+3a’b?x+2ab>x+3a’bx*+6ab>x’+

bPx®+a?x®+6abx®+3b2x +2ax’ +3bx* + %
In[27]:= Collect[(a +x)"2 (b+Xx) "3, x]
In[27]:= at b’ + (3a2b2+2ab3) X + (3a2b+6ab2+b3) X +

(a2+6ab+3b2)x3+(23+3b) x* 4 x°

FactorTerms factors out numerical terms or terms that do not depend on particular
variables.

In[28]:= FactorTerms[Expand[ (3 + 3 x) "5]]
0ut[28]= 243 (1+5x+10x* +10%> + 5x* + x°)
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In[29]:= Expand[(y + yx)"5]
out[29]

y5+5xy5+10><2y5+10x3y5+5x4y5+x5y5

In[30]:= FactorTerms[%, y]
0ut[30]= (1+5x+10x* +10% +5x* +x°) y°

Another important class of transformations are trigonometric transformations.
These include TrigFactor, TrigExpand, TrigExpandAll, and TrigReduce.

In[31]:= TrigFactor[Sin[3 x]]
Out[31]= (1+2Cos[2x]) Sin[x]

TrigExpand removes sums and products inside arguments by expanding the expres-
sion using trigonometric identities.

In[32]:= TrigExpand[Sin[3 x + 1]]

Out[32]= Cos[x}3 Sin[1] +3Cos[1] Cos[sz Sin[x] -
3 Cos[x] Sin[1] Sin[x]2 - Cos[1] Sin[x]3

Cos[x]®Sin[1] +3Cos[1] Cos[x]?Sin[x] -
3 Cos[x] Sin[1] Sin[x]% - Cos[1] Sin[x]>

Cos[x]®Sin[1] +3 Cos[1] Cos[x]?Sin[x] -
3 Cos[x] Sin[1] Sin[x]% - Cos[1] Sin[x]?
TrigReduce transforms an expression so that it is linear in the trigonometric terms
(no powers or multiplications of two different trig functions).

In[33]:= TrigReduce[Sin[3 x] "2 Cos[2x]]
1

Out[33]= — (2Cos[2x] - Cos[4x] - Cos[8x])
4

See Also

Mathematica has quite a few specialized functions for manipulating polynomials
and extracting portions of their structure. See tutorial/AlgebraicOperationsOnPolynomials
in the documentation.

A complete overview of algebraic manipulations can be found at tutorial/Algebraic
ManipulationOverview.

10.4 Generating Polynomials

Problem

You want to generate a polynomial of a specific degree.
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Solution
A simple solution uses Sum and Subscript. Here I generate a fourth-degree polynomial.

In[34]:= Sum[Subscript[a, i] x"i, {i, 0, 4}]

Out[34]= ap+xap+x*ay+xaz+x*a,

Discussion

If, other than the degree, you don’t care about the particular form of the polynomial,
then the solution is fine. However, if you want to specify the coefficients, you can
generate a polynomial with Dot.

In[35]:= ClearAll makePoly]

SetAttributes [makePoly, HoldRest]; makePoly [coef_List, var_: x] :=
Dot [Table[var*~i, {i, 0, Length[coef] - 1}], coef]

In[37]:= makePoly[{a, b, c, d, e}]

out[37]= a+bx+cx’ +dx® +ext

Here I specify a variable other than x.

In[38]:= makePoly[{a, b, c, d, e}, z]

Out[38]= a+bz+rcz?+d? et

Many mathematics textbooks show polynomials from highest to lowest degree, and
you may want to generate and display your polynomials in this order as well. Re-
place Dot with Inner and use HoldForm so the sum is not reordered by Mathematica.
Note how I changed Table to generate terms from highest degree to lowest.

In[39]:= ClearAll[makePoly2]
SetAttributes [makePoly2, HoldRest] ;
makePoly2 [coef_List, var_: x] := Inner[Times,
Table[var“i, {i, Length[coef] - 1, 0, -1}], coef, HoldForm[Plus [#2]] &]
In[41]:
out[41]= az*+bZ+c2+dz+e

makePoly2[{a, b, c, d, e}, z]

10.5 Decomposing Polynomials into Their
Constituent Parts

Problem

You want to extract a list of coefficients, monomials, or variables from a given
polynomial.
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Solution

Two wuseful primitives for decomposing polynomials are CoefficientlList and
Monomiallist. First I generate a polynomial, per Recipe 10.4.

In[42]:= poly = Sum[Subscript[a, i] x"i, {i, 0, 6}]
Out[42]= ao+xal+x2 a2+x3 a3+x4 a4+x5 a5+x6 de
Use Coefficientlist to extract a list of coefficients of poly.
In[43]:= CoefficientList[poly, x]
In[43]:= {30, a1, @2, A3, A4, As, A}
Use Monomiallist to extract a list of the individual monomial terms of poly.
In[44]:= Monomiallist [poly]

6 5 4 3 2
Out[44]= {ao; X" dg, X” ds, X 34, X a3, X" Ay, Xal}

If you only want the variables of the polynomial, use Variables.

In[45]:= Variables| (x+1)*2 (y+3) 3]
out[45]= {x, y}

Discussion

In addition to CoefficientList, you can pick coefficients that match a specific form
using Coefficient.

In[46]:= Coefficient[8+12x+6x2+x3, x"Z]
Out[46]= 6

Coefficient also takes a third argument, which specifies the power of the second ar-
gument. So the same extraction can be done as shown here.

In[47]:= Coefficient[8+12x+6x* +x’, X, 2]
In[47]:= 6

Conveniently, this also allows you to extract the constant term.

In[48]:= Coefficient[s +12x+6x% +%3, X, 0]
out[48]= 8

Returning to Monomiallist, there is a third argument that allows you to change the or
der of the monomials returned. The available orderings are "Lexicographic",
"Degreelexicographic”, "DegreeReverselexicographic", "Negativelexicographic",
"NegativeDegreelexicographic", and "NegativeDegreeReverselexicographic". Refer
to the documentation of Monomiallist for definitions.

10.5 Decomposing Polynomials into Their Constituent Parts | 421



In[49]:= poly = Expand[(x+2) ~2 (y+3)"3]
Out[49]= 108+108x+27x2+108y+108xy+
27x2y+36y2+36xy2+9x2y2+4y3+4xy3+><2y3

In[50]:= Monomiallist[poly, {x, y}, "Degreelexicographic"]

out[50]= {Xy’, 9x°y*, 4xy’, 27Xy, 36 xy’, 4y*, 27x*, 108 xy, 36 y*, 108 x, 108 y, 108}

In[51]:= Monomiallist[poly, {x, y}, "Lexicographic”]

out[51]= {X’y’, 9% y?, 27Xy, 27x*, 4xy’, 36 xy*, 108 xy, 108 x, 4y*, 36 y*, 108 y, 108}

In[52]:= Monomiallist[poly, {x, y}, "NegativeDegreelexicographic"|

out[52]= {108, 108x, 108y, 27 x*, 108 x y, 36 y*, 27X’ y, 36 xy*, 4y>, X’ y*, 4xy’, X’ y*}
After using Monomiallist to get the monomials in the desired order, you can display
the polynomial in that order using HoldForm.

In[53]:= HoldForm[Plus[##]] & @@ Monomiallist[poly, {x, y}, "Lexicographic"]
Out[53]= x2y3+9x2y2+27x2y+27x2+4xy3+
36 xy? + 108 xy + 108 x + 4y® + 36 y* + 108 y + 108

See Also

You may also want to consider CoefficientArrays and CoefficientRules. See the
Mathematica documentation for these functions.

10.6 Dividing Polynomials by Other Polynomials

Problem

You want to divide polynomials, find remainders, greatest common divisor (GCD),
or least common multiple (LCM).

Solution

Use PolynomialQuotient or PolynomialRemainder. If you need both, use Polynomial-
QuotientRemainder.
In[54]:= PolynomialQuotient[x"3 +x"2-x+1, x+1,x]
Qut[54]:= -1+x
In[55]:= PolynomialRemainder [x"3 +x"2-x+1, x+1,x]
Out[55]= 2

In[56]:= PolynomialQuotientRemainder [x"3 +x"2 -x+1, x+1,x]
out[56]= {-1+x*,2}
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Discussion

Mathematica also provides PolynomialMod, which uses an algorithm based on re-
peated subtraction and, hence, never performs a division. In contrast, Polynomial-
Remainder is implemented in terms of PolynomialQuotient.
In[57]:= With[{poly =x"3+x"2-x+1, divisor = x*2},
Simplify [poly - (divisor » PolynomialQuotient[poly, divisor, x] )] ===
PolynomialRemainder [poly, divisor, x]]
Out[57]= True

In many cases, PolynomialMod and PolynomialRemainder will return the same result.
In particular, for univariate rational polynomials, PolynomialRemainder is the same as
PolynomialMod.
In[58]:= PolynomialMod[x"3 + x"2 - x+ 1, x"2] ===
PolynomialRemainder [x"3 + x"2 - x + 1, x*2, Xx]
out[58]= True

In[59]:= PolynomialMod[x"3 +x"2 -x+1,x] ===

PolynomialRemainder [x"3 + x"2 - x + 1, X, X]
True

out[59]

If the divisor is a constant or multivariate, the functions work differently. In the case
of PolynomialMod, a constant m reduces the coefficients module m whereas
PolynomialRemainder will always give 0.

In[60]:= PolynomialMod[13 x"3 +15x"2-5x+7,7]

0ut[60]= 2x+x* +6x°

In[61]:= PolynomialRemainder [x"3 +x"2-x+1,7, x]
out[61]= O
In the multivariate case, PolynomialMod determines variable order based on OrderedQ.

In[62]:= PolynomialMod[a x"3 +2ax"2-5ax +1, x+a]
out[62]:= 1-5ax-2x -x'

In[63]:= PolynomialRemainder[ax”3 +2ax"2-5ax +1, x+a, X]
out[63]= 1+22a°-a*-5ax
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Both PolynomialMod and PolynomialRemainder allow you to compute the result mod-
ule to a specific integer n by specifying the option Modulus—n. This means the compu-
tation is over the finite ring of integers Z,,. The default is Modulus—0, meaning the
infinite set of integers.

In[64]:= PolynomialRemainder [x"2 + 2 X + 2, X, X]

out[64]= 2

Given these polynomial generalizations of division, it makes sense to discuss GCD
and LCM.

In[65]:= PolynomialGCD[10x"3 +2,30x"3 + 6]

out[65]= 2+10%°

Here we show that polynomials with coefficients with LCM less than the product
will result in polynomials with LCM different than their product.
In[66]:= With[{pl=12x + 18, p2 = 18 x + 24},
Grid[{Expand /e { PolynomiallCM[p1, p2], p1 #p2}}, Dividers - A1l ] ]
Out[66]= ‘ 72 + 102 x + 36 x* ‘432 +612 x + 216 X2

Observe that
In[67]:= {LCM[18, 24], LCM[12, 18]}
out[67]:= {72, 36}

In[68]:= 612/102 == 432/72 == 216/36 == GCD[18, 24, 12]
Out[68]= True
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CHAPTER 11
Calculus: Continuous and Discrete

Time may change me
But I can’t trace time
I said that time may change me
But I can’t trace time

David Bowie, “Changes”

11.0 Introduction

This chapter primarily focuses on the types of problems students and teachers will
cover in college-level mathematics courses and how Mathematica can be used as
a calculator (tool for getting an answer) and a teacher (tool for gaining insight into
a mathematical problem). However, this focus was largely pragmatic and does
not imply that Mathematica is limited to introductory calculus. Quite the contrary.
Mathematica has been leading the charge among computer algebra systems since its
inception, and with each new release the depth and breadth of its abilities in sym-
bolic calculus improve. My goal in most of these recipes is to provide a starting
point for the inexperienced user. Experts will probably find little that is new or
highly original. This was a conscious choice based on space limitations. I am quite
certain one could write a small cookbook by turning each recipe here into an entire
chapter! Such is the depth of Mathematica’s abilities.

Most of the recipes in this chapter address what is commonly known as infinitesimal
or continuous calculus. These problems deal with limits (Recipe 11.1), series
(Recipe 11.3), derivatives (Recipe 11.4), integrals (Recipe 11.5), and differential
equations (Recipe 11.6). A common application of calculus is finding minimums
and maximums. Mathematica packages these techniques into Minimize, Maximize,
and related functions (Recipe 11.7). When you use your calculus skills to solve real
engineering and physics problems, you are bound to run smack into applications
that involve vector calculus. Mathematica has a package of functions specifically
dedicated to vector calculus, and we touch on some of this functionality in
Recipe 11.8.
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Although the calculus of continuous functions still plays a dominant role, discrete calcu-
lus is extremely important and has been garnering increasing attention lately due to re-
search in such varied domains as string theory, probability theory, theory of algorithms,
and combinatorics, to name a few. Mathematica 7 has enhanced its discrete calculus
abilities. Recipes 11.9 through 11.11 help you start using these capabilities.

See Also

A guide to all functions related to infinitesimal calculus can be found in the Mathe-
matica documentation at guide/Calculus.

A guide to all functions related to discrete calculus can be found in the Mathematica
documentation at guide/DiscreteCalculus.

11.1 Computing Limits

Problem

You want to determine the value of a function as a variable approaches a specific
value, even if evaluating the function at that limit may give an indeterminate result.

Solution

The functions Sin[x]/x, Sin[x"2]/x, and Sin[x]/x"2 each evaluate to the indetermi-
nate value 0/0 at x = 0; however, their limits as x approaches zero are quite definite
and different.

In[1]:= Limit[Sin[x] /X, x> 0]

out[1]= 1

In[2]:= Limit[Sin[x"2]/x, x- 0]
Out[2]= O

In[3]:= Limit[Sin[x]/x"2, x> 0]
Out[3]=

Discussion

Plotting functions around the limiting value is often a good way to provide visual in-
sight into the limiting value.
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In[4]:= GraphicsRow[{Plot[Sin[x]/x, {x, -1, 1}],
Plot[Sin[x"2] /X, {X, -1, 1}1, Plot[Sin[x] /x"2, {x, -1, 1}1}]

Out[4]=

: ~10 -05 05 10 -10 =0 05 10
~05 >
-10 -05 00 05 1.0 -1

Here you can see that the last function has different limits depending on whether
one approaches the limit from the left or the right. You can specify which limit you
want using the option Direction.

In[5]:= (*From the lefts)Limit[Sin[x] /x"2, x -> 0, Direction - 1]

Out[5]= -
In[6]:= (*From the rightx)Llimit[Sin[x] /x"2, x -> 0, Direction - -1]
Out[6]=

11.2 Working with Piecewise Functions

Problem

You want to express a function in terms of two or more functions over different
intervals.

Solution

Mathematica supports a function Piecewise for composing a complex function out
of simpler functions using predicates to determine which of the simpler functions
apply.

In[7]:= fIx_] =
Piecewise[{{Sqrt[1/x"2], x< -0.3}, {1/x, x >0.3}, {3.33, True}}]

[ 1
= -0.3
3 X <

x>0.3
.33 True
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In[8]:= Plot[f[x], {x, -3, 3}]

out[8]=

Discussion

Clip, Sign, and UnitStep are special cases of built-in piecewise functions. Clip con-
strains its input to a minimum and maximum value (default -1 and +1). Sign gives
-1 or 1 depending on whether the input is negative or positive, and UnitStep is O for
negative values and 1 for values greater than or equal to zero.
In[9]:= GraphicsRow[{Plot[Clip[2Sin[x]], {X, -Pi, Pi}, PlotlLabel -> "Clip"],
Plot[Sign[2Sin[x]], {x, -Pi, Pi}, PlotLabel -> "Sign"],
Plot [UnitStep[2 Sin[x]], {x, -Pi, Pi}, PlotLabel -> "UnitStep"]},
ImageSize - {500, 150}

Clip Sign UnitStep
1.0 10— — 10—
0.5 05F 08¢
outfol- o)
-2 -1 1 2 3 -3 -2 -1 1 2 3 ‘
§ —O.Z/E o5t 02F
TN S
-1 - -1o0f -3 -2 -1 12 3

You can differentiate and integrate piecewise functions, and you’ll get a piecewise

function.

In[10]:= D[Clip[2Sin[x]], X]

0 Sin[x] < - || Sin[x] >
out[10]= 2 2
2 Cos[x] True
In[11]:= Integrate[Clip[2Sin[x]], X]
. 1
-X Sin[x] < -
Out[11]= | x Sin[x] > %

-2Cos[x] True
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PiecewiseExpand can take a nested piecewise function and return a single function.
You can use this to show that Min, Max, and Abs are also special cases of piecewise
functions.

In[12]:= PiecewiseExpand[Max[w, X, ¥, z]]
(w w-x208w-y>208w-22>0
X W-X<08x-y=208ix-220
Out[12]= y W-y<08x-y<08y-2z20

| z True

In[13]:= PiecewiseExpand[Clip[Min[x, y]]]
(-1 (x<-18x-y=0) || (x-y>08%y<-1)
1 (x>18x-y=0) || (x-y>08%y>1)

Out[13]=
[13] x -1sx=<18x-y=<0

Ly True

11.3 Using Power Series Representations

Problem

You want to find the series expansion of a function.

Solution

The Mathematica function Series will generate the series expansion of a function
about a point to a specified order. It produces a SeriesObject, which Mathematica
will display as a traditional series expansion.

In[14]:= Series[Sin[x], {x, 0, 10}]

3 5 7 9

X X X X

out[14]= X - —+ — - +
6 120 5040 362880

+o[x] 1

In[15]:= % // InputForm
Out[15]//InputForm=
SeriesData[x, 0, {1, 0, -1/6, 0, 1/120, 0, -1/5040, 0, 1/362880}, 1, 11, 1]

You use Normal to create a regular Mathematica expression. Here I also use
Evaluate because I am defining a function and want Normal to evaluate immediately
even though the function is defined using SetDelayed (:=). Equivalently, you can use
Set (=) to define the function without Evaluate.

In[16]:= f[x_] := Evaluate[Normal[Series[Sin[x], {x, 0, 10}]1]

11.3 Using Power Series Representations | 429



You visualize the accuracy of the series approximation by plotting over successively
larger intervals. As expected, this series approximation begins to diverge as you
move away from the origin.

In[17]:= GraphicsColumn[Table[Plot[{Sin[x], f[x]}, {x, -nPi, nPi}], {n, 1, 3}]]

1.0+

0.5

O[] AN SNk

Discussion

You can compute the inverse of a series using InverseSeries.

In[18]:= fInv[x_] = Normal[InverseSeries[Series[Sin[x], {x, 0, 10}]1]]
¥ 3x> 5x 35%°

Out[18]= X+ —+ —+ +
6 40 112 1152
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In[19]:= Plot[{ArcSin[x] , fInv[x]}, {X, -1, 1}, ImageSize - Small]
15}
10l

05F

out[19]= - : : ! !
-1.0 -0.5 r 0.5 1.0

11.4 Differentiating Functions

Problem

You want to compute derivatives or partial derivatives of functions in symbolic
form. You may do this as a means of creating new functions or as a means of teach-
ing the concepts that underlie differentiation.

Solution

Mathematica allows you to enter derivatives in input form as D[f[x], x] or in stan-
dard form as o,f[x].

In[20]:= D[Sin[x], x]
Out[20]= Cos[x]

In[21]:= 06xSin[x]
out[21]= Cos[x]

Higher-order derivatives are specified as D[f[x],{x,n}] where n is 2 for the second
derivative, 3 for the third, and so on. In standard form, the second derivative can be
entered as 94,2 f[X].

In[22]:= D[Sin[x], {x, 2}]

Out[22]= -Sin[x]
Partial derivatives are easily accommodated as well using several equivalent
notations.

In[23]:= D[Sin[x] Sin[y], {x, 1}]
out[23]= Cos[x] Sin[y]
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In[24]:= D[Sin[x] Sin[y], X, X, ¥]
out[24]= -Cos[y] Sin[x]

In[25]:= D[Sin[x] Siﬂ[y]; {x, 2}, ‘[y; 1}]
out[25]= -Cos[y] Sin[x]

Discussion

Mathematica also recognizes prime notation, but this notation is more commonly
used in Mathematica when entering a differential equation. See the sidebar
“Mathematica’s Representation of Differentiation” on page 433 for some important
subtleties.

In[26]:= {Sin'[x], Sin''[x]}

Out[26]= {Cos[x], -Sin[x]}

You can use D along with Solve to differentiate implicit functions. Simply use D as
usual and use Solve to find the solution in terms of y' [x].
In[35]:= implicitFunction = x"4 + 2y[x]"2 == 8;
Solve[D[implicitFunction, x], y ' [x]]

Out[36]= {{y [X] = —y; }}

There are cases where you may want to use the D to synthesize a function on the fly.
In this case, use Set (=) to perform the differentiation operation immediately or use
Evaluate with SetDelayed (:=).

In[37]:= f1[x_] =D[Sin[PixCos[x " 2]1, X];
In[38]:= f2[x_] := Evaluate[D[Sin[PixCos[x * 211, x]]

In[39]:= {f1[2.], f2[2.]}
Out[39]= {-9.65614, -9.65614}

If you forget to do so, you will get an error when you call the function with a literal
value.

In[40]:= f3[x_] :=D[Sin[PixCos[x " 2]], X]

In[41]:= f3[2.]

General::ivar : 2.” is not a valid variable. >

out[41]= ©,.0.82226
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Mathematica’s Representation of Differentiation

More importantly, the prime notation is not synonymous with D[] but rather with a
differential operator of the form Derivative[n]. The operator form clarifies
ambiguities that would result from using it with functions of more than one variable.
Think of Derivative[n1, n2, ...] as an operator that acts on a function to produce
the specific derivative. The number of n’s should not exceed the number of variables
of the function since each 7 is associated with the nth derivative of the corresponding
variable. Some examples should help clarify.

First derivative with respect to x:
Derivative[1] [f] [x, Y]

X2 xt X6 x8
1- —+ — - —+

2 24 720 40320
% Y]

x2 xt X6 x&
l1-—+ — - —+

2 24 720 40320
First derivative with respect to x, then y:
Derivative[1, 1] [f] [x, Y]
£V %, y]
FOD x, y]
FOU [x, y]

First derivative with respect to x, then second derivative with respect to y:

Derivative[1, 2] [f] [x, Y]

£ [, y]

.F(1,2) [X, y]

£ [, y]
For the most part, you should work with D[] directly, but keep the operator notation
in the back of your mind because it is how Mathematica represents derivatives
internally.

D[f[x, ¥]» %, ¥] // FullForm

Derivative[1, 1] [f] [, Y]

Derivative[1, 1] [f] X, ¥]

£ [, y]

Many students will use Mathematica to check the answers to their calculus homework,
but Mathematica is also useful for generating demonstrations of the fundamental con-
cepts underlying differentiation. For example, the derivative of a function at a point
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is the slope of the tangent to the function at that point. Further, given two points,
the slope of the secant drawn between these points approaches the derivative as the
points approach each other along the curve. The following function uses
Mathematica’s dynamic features to generate presentations of this fact using any func-
tion and starting points as input.

In[42]:= makeDerivativeDemo[f , x1_, x2_, opts : OptionsPattern[]] :=
DynamicModule[{fp, 2, p1, p2, g, slope, slopeText, buildPlot, minX, maxX},
pl = {x1, f[x1]};
p2 = {x2, f[x2]};

g = buildPlot [f, fp, f2, p1, p2];
With [{plotRange = Inner[{Min[# - 3], Max[# + 31} 8, p1, p2, List]},
minX = plotRange[[1, 1]];
maxX = plotRange[[1, 2]11];
Dynamic |
Graphics[{g[[1]], Line[{p1, p2}1,
Locator [Dynamic [p1, { (p1l = {#[[1]1], F[#[[1]1]1}) &,
(g = buildpPlot [, fp, 2, p1, p2]) &} ], Appearance - Small],
Locator [Dynamic [p2, { (p2 = {#[[1]1, f[#[[1]111}) &,

(g = buildPlot [, fp, 2, p1, p2]) &}], Appearance -» Small] },
FilterRules[{opts}, Options[g]], PlotRange -> plotRange,
Options|[g]]]

15

Initialization: (
(*The actual derivativex)
fp[x_] := Evaluate[D[f[x], x]];
(#Function for tangent line at x0x)
f2[x0_, x_] := Module[{}, f[x0] + fp[x0] (x -x0)1;
(#Text for slope of line from pl to p2x)
slopeText[pl_, p2_] :=
Module[{s}, s = Divide @@ (1.0/ (p2 - p1)); ToString[s]];
(#Plot function, tangent line, and text labelx)
buildPlot[ff_, fp_, f2_, p1_, p2_] := Module[{},

Noxrmal [
Plot [ {ff[x], f2[p1[[1]1, X1}, {x, pL[[1]1] -3, p2[[1]] +3},
Epilog - {Inset[Panel["Secant slope = " <>

slopeText [p1, p2] <>

"\nDerivative = " <>
ToString [N[fp[p1[[1]]11]] ] » {Left, Top}, {Left, TOP}]}

1]
]
)]
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In[43]:= makeDerivativeDemo[Sin[Pi Cos[#]] &, 1.25, 1.75]

A

out[43]- / X /
, 1 2 B N4 [ is 6
7} N // N

2

11.5 Integration

Problem

You want to solve problems that involve indefinite or definite integrals using sym-
bolic integration.

Solution

Use Integrate or [to compute single, double, or higher-order integrations. Indefi-
nite integrals specify an expression and the variables of integration.

In[44]:= Integrate[1/x, x]

Out[44]= Log[x]

Definite integrals provide the minimum and maximum limits, which can be con-
stants or expressions.

In[45]:= Integrate[1/x, {x, 1, 10.0}]
Out[45]= 2.30259

In[46]:= Clear[a, b];
Integrate[x"2, {x, a, b}]
a b
Out[47]= - —+ —
3 3

The minimum and maximum limits can be -Infinity or Infinity.

In[48]:= Integrate[1/ (x"3 + x"2), {x, 1, Infinity}]
Out[48]= 1-Llog[2]
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Discussion

Integrate will easily handle most integration problems you are likely to encounter in
school, engineering, and science.

2
In[49]:= J— dz
(Z-1) Vz22+1
1
out[49]= Z (4ArcSinh[z] +\/7 (Log[—1+z] - Log[1l+12z] +

Log[—1+z—ﬁm]—mg 1+z+ﬁﬁ”}

Double and higher-order integrals are computed with a single Integrate function by
adding multiple integration variables. However, if you use the traditional integration
notation, you will use multiple integral symbols.

In[50]:= Integrate[Sin[2Pizy/x] xyz, X, Y, z]

1 2nyz

X

Out[50]= (-2nxtyz+ar’y 2 Cos[

64 7 X

} .

4 (x*+ 27yt 2*) si 2y
y* ') SinIntegral

X
In[51]:= Jjjxyzdx dy dz
1

Out[51]= gxzyzz2

2nyz

x (-3x v 270y 2 Sin[

X

Some integrations may return with conditionals and assumptions due to conver-
gence issues. You can eliminate these by providing your own assumptions.

In[52]:= Integrate[Exp[-c xz], {X, -, w}]
Vo ,
Out[52]= If[Re[c} >0, —, Integrate[e’Cx , {X, —@, @}, Assumptions - Re[c] < OH
c

In[53]:= Integrate[Exp[-c xz], {X, -0, ®}, Assumptions » ¢ > 0]

Vo

out[53]=
C
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You also do this using GenerateConditions — False.

In[54]:= Integrate[Exp[-c xz], {X, -0, ®}, GenerateConditions - False]

N
Out[54]= ——
C

You can also get piecewise functions as a result of Integrate.

In[55]:= Integrate[Abs[x + Abs[x]"2], x, Assumptions » x € Reals]

X
—+ — x<-1
2 3
1 x2 X3
Out[55]= il -1<x<0
1 X2 X3
-+ —+ — True
302 3

When Integrate is unable to solve the integration, it will return the unevaluated inte-
gral in symbolic form.

In[56]:= Integrate[Exp[1/ (Log[x] +1)], {X, 2, 3}]
1

3
0Ut[56]= J\elﬂog[x] dx
2

Applications of integration are numerous, and it would be impossible to provide
even a small representative set of examples here. Rather, I will provide examples that
emphasize how Integrate can be combined with other Mathematica functions in
non-obvious ways.

A simple application is a function to compute the area between two arbitrary curves
given two points. When you create functions that embed Integrate, you often want
to allow options to pass through to increase generality.
In[57]:= areaBetweenTwoCurves[exprl , expr2_, var_, a_,
b_, opts : OptionsPattern[]] := Integrate[exprl - expr2,
{var, a, b}, Sequence ee FilterRules|[{opts}, Options[Integrate]]]

In[58]:= areaBetweenTwoCurves[x, x"2, x, 0, 1]

1
out[58]= —
6

This would generate a huge messy conditional if not for the ability to pass assump-
tions about the arbitrary bounds a and b.
In[59]:= areaBetweenTwoCurves [Log[x] , Sin[x], x, a, b, Assumptions >a >0 && b > 0]

Out[59]= a-b-Cos[a] +Cos[b] —alog[a] +bLog[b]

Create a table of volumes of hyperspheres. Here Boole maps True to 1 and False
to 0. Note that the list of integration limits must be converted to a sequence using
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Apply (@@). By the way, this is a very expensive way to calculate volume of a hyper-
sphere, but it does illustrates how to parameterize the order of integration. Search
for hyperspheres on Wikipedia or Wolfram’s MathWorld to find a more practical
formula.
In[60]:= Table[Integrate[Boole[Sum[x[i] "2, {i, 1, n}] <1],
Sequence @e Table[{x[j], -Infinity, Infinity}, {j, 1, n}],
GenerateConditions - True], {n, 1, 5}]
4x 72 8n?
Out[60]= {2; T —— —» 7}
3 2 15
You can combine Integrate with differentiation to create a general function to com-
pute the length of a curve between two points.

In[61]:= Clear[lengthOfCurve]
In[62]:= lengthOfCurve[expr_, var_, a_, b_, opts : OptionsPattern[]] :=
Integrate[Sqrt[l + D[expr, var] ~2], {var, a, b},
Sequence @e FilterRules|[{opts}, Options|[Integrate]]]
Or, you can compute the length of the hypotenuse of a right triangle.

In[63]:= lengthOfCurvel[x, x, 0, 1]
out[63]= /2

Verify the formula for the circumference of a circle given its radius by taking twice
the arc length of a semicircle.

In[64]:= 2 lengthOfCurve[Sqrt[r"2 - x"2], x, -1, I, Assumptions » r > 0]
Out[64]= 27T
Here is a purely symbolic solution with assumptions to simplify results.

In[65]:= lengthOfCurve[Exp([x], X, a, b, Assumptions » (a>0 & b>0)]

1+4/1+e%? [—1+\/1+<92b
&1+w1+e“ (1+V1+e”

|

1
out[65]= f\/1+<eza +\/1+c92b +—Log{
2

11.6 Solving Differential Equations

Problem

You have a model of a system described by a differential equation and you want to
solve that equation symbolically. Two related problems are getting the equation in a
form Mathematica expects and getting the solution in the form you expect.
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Solution

An undergraduate student of engineering or physics will commonly need to solve dif-
ferential equations that model simple systems. A common problem is an undamped
oscillator composed of a mass hanging from a spring. The problem may appear in a
textbook as

In[66]:= my'" +ky=0

This says that the force (mass x acceleration) is balanced by the force of the spring,
as given by Hooke’s law, where k is the spring constant. The key to solving this equa-
tion in Mathematica using DSolve is to make the equation more explicit. Specifically,
the equation omits the time variable. You must also replace the = symbol with ==
and tell Mathematica what equation we are solving for and what are the variables.

1))

The solution is given as a replacement rule, and since the equation is a second order,
two constants, C[1] and C[2], are introduced. You can provide initial conditions to
eliminate the constants. In this case, you can also render the solution in its customary
form by replacing Sqrt[k]/Sqrt[m] by the angular frequency w.
In[68]:= DSolve[{m y''[t] + ky[t] = 0,y[0] = 1,y'[0] =1}, y[t], t] /.
{Sqrt[k] /Sqrt[m] - w}
K Cos[tw] ++/m Sin[tw]
- j}

vk

In[67]:= DSolve[m y''[t] + ky[t] =0, y[t],t]
VK t VK t
] +C[2] sin{

Vm Vm

Out[67]= {{y[t} -C[1] Cos{

out[68]

Discussion

The solutions provided by DSolve are not automatically simplified, and you often
will want to use Simplify or FullSimplify to postprocess them into a more mathe-
matically friendly form. This is especially relevant when comparing the answer
DSolve finds with answers provided in a typical textbook. Consider this problem
adapted from Advanced Engineering Mathematics by Erwin Kreyszig (John Wiley).
Here you want to find the solution to a differential equation describing the speed of
a fluid flowing out of an opening in a container.
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In[69]:= k= 0.00266 ;
eq = {h'[t] = -kSqrt[h[t]], h[0] == 150};
sol =DSolve[eq, h[t], t]
out[71]= {{h[t] -150. - 0.0325782t + 1.7689x 10 ° t*},
{h[t] -150. +0.0325782 t + 1.7689x 10 ° t*} }

Given the physics of the problem, it should be clear we want the first solution (the
second solution has the height increasing with time).

In[72]:= FullSimplify[sol[[1]]]
out[72]= {h[t] >1.7689x10°° (~9208.61 +t) (-9208.61 +t)}

Although this has simplified the result somewhat, it is a much more complicated solu-
tion than the one provided by Kreyszig, which is

2
In[73]:= (\/ 150 -0.00133" t)

2
out[73]= [5\/2—0.00133t]

Did DSolve give the wrong result? A common mistake when using Mathematica is to
prematurely substitute specific constants as I did above. It is often advisable to solve
equations entirely in symbolic form and substitute constants later.

In[74]:= eq = {h'[t] = -k1Sqrt[h[t]], h[0] == hO};
sol = FullSimplify[DSolve[eq, h[t], t][[1]1]]

out[75]= {h[t] »% (—2 W+ k1 tjz}

Although this did not get us all the way to the form of the book’s solution, you are
more likely to see the final transformation that will demonstrate that DSolve was cor-
rect. It hinges on noticing that 1/4 is the same as (-1/2)*(-1/2).

S
o s

3 (s o ]
(52 (12 )

[ ]

2

440 | Chapter 11: Calculus: Continuous and Discrete



Substituting h0 and k1 with the constants shows that Mathematica did get the cor-
rect solution. Alternatively, you can ask Mathematica to prove its solution is equal
to the book’s solution by using Resolve and ForAll. The only problem here is that
Mathematica does not show its work!

In[76]:= Resolve[ForAll[{hO, ki, t}, ! (-2M+k1t)z [\/ﬁ_ k—ltlz] ]
2

4
Out[76]= True

11.7 Solving Minima and Maxima Problems

Problem

You want to find the minimum or maximum values of a function. You may need to
find these extremes subject to constraints or for numbers in a specific domain (e.g.,
integers).

Solution

Although there are standard techniques used in calculus for finding extrema, Mathe-
matica provides the specific functions Minimize and Maximize, which provide a great
deal of power.

In[77]:= Maximize[1- (-2 + X)2 - (-1+x)4, x] //N
ut[77]= (0.710727, {x - 1.58975}}

In[78]:= Minimize[2x"4 - 3x"2 + X, x] //N
Out[78]= {-2.0293, {x— -0.939693}}

Discussion

For many applications of minimization or maximization, you are interested in the ex-
treme value within a specific interval.

In[79]:= Maximize[{((x-3)"3 -2x"2 - x), -1 < x < 4},x] //N
Out[79]= {-9.3726, {x - 1.48085}}

[ restrict this discussion to Maximize for simplicity, but everything here applies
to Minimize as well. If you are interested in displaying the result of Maximize, you
will want to force the result to numerical form, as we did in the solution. Maximize
will keep the result in exact form if it is given input in exact form. For polynomials,
this typically means the result will be expressed in terms of radicals or Root objects.
A Root[f,k] object represents the kth solution to a polynomial equation f[x] ==
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In[80]:= Maximize[{ ((x-3)"3 -2x"2 - x), -1 < x < 4}, x]
26 11 1

out[80]= {-27+? (11_ﬁ) - [11-W)2+; [11_\/H)3,

1

Sl

In[81]:= Maximize[1- (-2+x)?- (-1+x)*, x]

Out[81]= {4 +8Root[-4+7m1- 621"+ 261’8, 1] -
7Root[ -4+ 711 - 6112 +21:1° 8, 1]” + 4Root [ -4+ 711 - 611% + 211% &, 1]° -
Root[-4 + 711 - 6111% + 2111% &, 1]°, {X»Root[—4+7tt1—6tt12+21:t13&,1]}}

Sometimes you want to find solutions for integer values only. You can constrain
Maximize to the integers in one of two ways. You might recognize this problem as an
instance of a knapsack problem where you are optimizing the value of the knapsack
(item1 has value 8, item2 11, and so on) subject to size constraint of 14 where item1
has size 5 and so on.

In[82]:= Maximize[{8x1 + 11x2 + 6x3 + 4x4,

5x1 +7x2+4x3+3x4 < 14 8& x1<2 && x2<2 && x3< 2 &&

x4 <2 8 Element[x1 | x2 | x3 | x4, Integers]}, {x1, x2, x3, x4} ]
out[82]= {21, {x1-0,x2->1,x3->1,x4->1}}

A more convenient notation when all variables are integer is to specify the domain as
the third argument to Maximize.

In[83]:= Maximize[(8x1 + 11x2 + 6x3 + 4x4,5x1 +7x2+4x3 +3x4 < 14 &&
x1<2 8% x2<2 8% x3< 2 8& x4 <2}, {x1, x2, x3, x4}, Integers]
out[83]= {21, {(x1-0,x2-1,x3>1,x4->1}}

Maximize seeks a global maximum, whereas an alternative function, FindMaximum,
seeks a local maximum (there is also FindMinimum for local minimums). FindMaximum
allows you to specify a starting point for the search, but otherwise has a very similar
form to Maximize. The following program demonstrates the difference between Maxi-
mize and FindMaximum. The advantage of FindMaximum is that it does not require
the objective function to be differentiable.
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In[84]:= Clear["Global x"];
fIx_] := xCos[0.1Exp[x]] Sin[0.1PiExp[x]1] ;
globalMax = Maximize[{f[x],0<x <5}, x];
localMax = FindMaximum[f[x], {x, 0}1;
Plot[f[x], {X, 0, 5}, Epilog » {PointSize[0.02],
Red, Point[{x, f[x]}] /. Last[globalMax] ,
Blue, Point[{x, f[x]}] /. Last[localMax]}]

out[88]=

11.8 Solving Vector Calculus Problems

Problem

You want to find solutions to problems within vector fields. Such problems arise in
mechanics, electromagnetic theory, and fluid dynamics.

Solution

Simple vector calculus problems can be solved in terms of the calculus primitives dis-
cussed in this chapter’s recipes along with vector functions like Dot and Cross. For ex-
ample, line integrals are commonly used to calculate work performed when moving
a particle along a path in a vector field. Here F is the vector equation of the field, f is
the equation of the path through the field, var is the parameter of f, and a and b are
the start and end points of the path.

In[89]:= lineIntegral(F_, f , var_, a_, b_] :=
Integrate[Dot[F[f[var]], D[f[var], var]], {var, a, b}]
FI{xy_s2_}] := {x+y,y*2,x-2}
flt_] := {-t+1,t+2, -6t +1}
lineIntegral [F, f, t, 0, 1]

35

out[92]= -—
3

11.8 Solving Vector Calculus Problems | 443



Another common operation in vector calculus is the surface integral over scalar func-
tions and vector fields. Surface integrals are the 2D analog of line integrals. One way
to think of the scalar surface integral is to imagine a surface f made of a material
whose density varies as described by a second function g. The surface integral of f
over g is then the mass per unit thickness.

In[93]:= surfaceIntegralScalar[g , f_, {vl_,vla_, vib_}, {v2_, v2a_,v2b_}] :=
Integrate[g[f[vl, v2]] Noxm[Cross[D[f[v1, v2], v1], D[f[v1, v2],Vv2]]],
{v1, via, vib}, {v2, v2a, v2b} ]

For example, consider the surface 1, which is a half sphere over the interval {¢, 0,
Pi/2} and {6, 0, 2 Pi}, and compute the surface integral given a density function
given by (x*2 + y*2) z.
In[94]:= fl[¢_,6_]1 := {Sin[¢] Cos[6], Sin[¢] Sin[6], Cos[4]}
gl[{xLy_,z_}] = (x*2 + y*2) z

surfaceIntegralScalar[gl, f1, {¢, 0, Pi/2}, {6, 0, 2Pi}]
s

out[96]= —
2

If we use a constant function (uniform density), we get the surface area of the half sphere
as expected (surface area of an entire sphere is 4 arl).

In[97]:= g2[{xL,y_,2_}] :=1
surfaceIntegralScalar[g2, f1, {¢, 0, Pi/2}, {6, 0, 2Pi}]
out[98]= 2

For a vector field, there is a similar equation using Dot in place of scalar multiplication
by the norm. The traditional way to visualize the vector surface interval is to consider
a fluid flowing through a surface where there is a vector function F describing the ve-
locity of the fluid at various points on the surface. The surface integral is then the
flux, or the quantity of fluid flowing through the surface in unit time.

In[99]:= surfaceIntegralVector[F_, f , {vl_,vla_,vlb_}, {v2_,v2a_,v2b_}] :=
Integrate[Dot [F[f[v1, v2]], Cross[D[f[v1, v2], vl], D[f[v1, v2], v2]]],
{v1, vila, vilb}, {v2, v2a, v2b}]

Here is the solution to the flux described by {3 y, -z, x*2} through a surface de-
scribed parametrically as {s t, s + t, (s"2 - t"2)/2}.
In[100]:= Ffls_,t ] := {st,s+1t, (s"2-1t"2)/2}
FI{x vy 22}] = {3y, -2, x*2}
surfaceIntegralVector [F, f, {s, 0, 1}, {t, 0, 3}]
Out[102]= -15
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A standard result from electrostatics is that the net flux out of a unit sphere, for a
field that is everywhere normal, is zero. We can verify this as follows:

In[103]:= F2[{x_,y_,z_}] := {1,1,1}/ (x"2 + y*2 + 2"2)
In[104]:= f2[6_, ¢_1 := {Sin[¢] Cos[e], Sin[¢] Sin[6], Cos[¢]}

In[105]:= surfaceIntegralVector[F2, f2, {©, 0, 2Pi}, {4, 0, Pi}]
Out[105]= O

Discussion

The solution shows how the calculus primitives and other Mathematica functions
can be used to build up higher-order vector calculus solutions. However, if you are
interested in solving problems in vector calculus, the package VectorAnalysis” is defi-
nitely worth a look. Be forewarned that you might be in for a bit of a learning curve
with this particular package, but it offers a lot of functionality. An important feature
of the package is that it simplifies working in different coordinate systems.
Before you can make effective use of VectorAnalysis™, you need to understand how
coordinate systems are used and which coordinate system is appropriate to your
problem.

In[106]:= Needs["VectorAnalysis™"]

In[107]:
Out[107]= Cartesian

CoordinateSystem

In[108]:= SetCoordinates [Spherical]
Out[108]= Spherical [Rr, Ttheta, Pphi]

In[109]:= CoordinateSystem
Out[109]= Spherical

When you use VectorAnalysis™, you will typically want to use functions in that pack-
age in place of some standard Mathematica functions such as Dot and Cross. This is
because the alternatives DotProduct and CrossProduct respect the current coordi-
nate system. For example, if the current coordinate system is Spherical, you expect
the following DotProduct to be zero because the vectors are orthogonal in spherical
coordinates.

In[110]:= DotProduct[{1,Pi/2, 0}, {1,Pi/2,Pi/2}]
Out[110]= O
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In contrast, Dot and Cross always assume Cartesian coordinates.

In[111]:= Dot[{1,Pi/2,0}, {1,Pi/2,Pi/2}]

7T2

out[111]= 1+ —
4

Some of the most important vector calculus operations are Div (divergence), Grad
(gradient), Curl, and the Laplacian. Although it would make a nice exercise to imple-
ment these from the calculus primitives, as I did for line and surface integrals, there
is no need if you use the VectorAnalysis™ package. These operations use the default
coordinate system, or you can specify a specific coordinate system as a separate
argument.

The divergence represents the instantaneous outflow of a vector field at each point.

In[112]:= Together[Div[{1, 1,1}/ (x"2 + y*2 + z"2), Cartesian[x, y, z]]]
2 (x+y+z)

out[112]= -—

(x*+y*+ 22)2

The curl of a vector field represents the amount of rotation.
In[113]:= Together[Curl[{1, 1, 1}/ (x"2 + y*2 + z*2), Cartesian[x, y, z]]]
2 (y-z) 2 (x-12) 2 (x-y) }

Out[113]: {_ b -
(x2+y2+zz)2 (x2+y2+zz)2 (><2+y2+zz)2

By definition, the divergence of the curl must be zero since the curl has no net
outflow.

In[114]:= SetCoordinates[Cartesian[x, Y, z]];
Div[Curl[{1, 1, 1}/ (x*2 + y"2 + 2°2)]]
out[115]= O

The gradient of a function f is a vector-valued function that indicates the direction
in which f is increasing most rapidly. If you were climbing a hill, you would move in
the direction of the gradient at each point to reach the top (strictly speaking the gradi-
ent would only be guaranteed to be directing you to a local peak). You can visualize
the meaning of the gradient by using VectorPlot. I restrict the result to 2D for easier
visualization.
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In[116]:= GraphicsRow[{Plot3D[x*y*, {x, -1, 1}, {y, -1, 1}, PlotRange - Full],
VectorPlot [Evaluate [Drop[Grad| x* y* 1, Cartesian|x, y, z] ], -1]],
{x, -1, 1}, {y, -1, 1}] } , ImageSize - 500]

I.Oj \\\ 0 U s g M
LY . e r 7/ /l
[ A\ A vt !
05| {
00|
out[116]=
05} | &
| P AV SR 3 {
A0t Af 7 - SN
1.0 05 0.0 05 1.0
See Also

The Mathematica tutorial to the VectorAnalysis package is essential reading for us-
ing those functions.

Div, Grad, Curl, and All That by H. M. Schey (W.W. Norton) and Vector Calculus
by Paul C. Matthews (Springer) are two of my favorite informal introductions to vec-
tor calculus.

11.9 Solving Problems Involving Sums
and Products

Problem

You want to solve problems in discrete calculus that are expressed in terms of sums
or products.

Solution

Mathematica can handle infinite sums and products with ease, provided, of course,
they converge.

° 1
In[117]:= :E:—;
n=1 N

7],2

out[117]= —

6
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Out[118]=

Discussion

If sums or products don’t converge, Mathematica will let you know by emitting an
error. You can test for convergence without evaluating the sum using Sum-
Convergence.

® 1
In[119]:= '
n=a N
Sum::div : Sum does not converge. >>
@ 1
out[119]= ) -
n:ln

1 1
In[120]:= Table[{—k, SumCOnvergence[—k, n] }, {k, 1, 4}] // TableForm
n n

Out[120]//TableForm=

False
True
True

True

e e e 20

As with Integrate, Sum can specify multiple summation variables. In traditional
form these sums are rendered as a multiple summation, but keep in mind that these

are entered as Sum[expr,{n,nmin,nmax},{m,mmin,mmaz}] rather than Sum[Sum[expr,
{n,nmin,nmax}],{m,mmin,mmaz}].

This double summation has a surprisingly simply solution.

2

© ® m°n
In[121]:= ) ) ——————

moanca 2" (m2" + 2™ n)
out[121]= 2

This is a very famous sum attributed to Srinivasa Ramanujan, one of India’s greatest
mathematical geniuses. You might think that Mathematica is just doing some simple
pattern matching to recognize this result; however, substitute for any of the magic
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constants in this formula, and Mathematica will handle it just as well (but don’t ex-
pect the answer to be as pretty).

242 = (4k) ! (1103 + 26390 k)

In[122]:=
9801 |, (k1)*396%k
1

out[122]= —
s

Bk)t (5 + 10k)

In[123]:= i

o (k1)*300%k

1 1 2 1
Out[123]= ——— [675000000 HypergeometricPFQH—, —}, {1,1}, ——— | +
135000000 3 3 300000000

4 5 1
HypergeometricPFQHf, 7}, {2, 23, 7”
3 3 300000000

Here is a very pretty formula for 7 that combines an infinite sum and an infinite
product.

In[124]:=

out[124]= =

As of version 7, Mathematica can handle indefinite sums and products. Mathemat-
ica will seek to eliminate the sum if possible. For example, the sum over k of a polyno-
mial is another polynomial that can be expressed in terms of k, and products over
polynomials will invariably reduce to some expression involving Gamma.

In[125]:= (3K -k +3k+5)
k

1
out[125]= —k (40+33k-22k* +9K°)
12
In[126]:= [ ] (K -3k+5)
SCosh{T“} Gamma[—; . j\/le +k Gamma{—f+ i? +k
0ut[126]=
JT

The Z-transform is an important infinite sum used in signal processing. It is defined
as Sum[f[n] z*-n,{n,0,Infinity}], butis directly supported using ZTransform.

In[127]:= ZTransform[n"2, n, z]

z (1+2)
out[127]=
(-1+2)3
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Here is an unconventional application for Sum, but one that is sometimes used in dis-
crete math to introduce the idea of a generating function. You can use Sum to con-
struct a generating function for solutions to problems like x1+x2+x3 == 12 subject to
x1 >= 4,x2 >= 2,and 5 >= x3 »>= 2. Each Sum is constructed from the smallest num-
ber the associated variable can take to the largest, by considering the smallest the
other variables can take. For example, x1 must be at least 4 but can’t be greater than
12-2-2 = 8, since x2 and x3 must each be at least 2. Here we use Expand to generate
the polynomial and Cases to find the exponents that sum to 12, thus giving all
solutions.

In[128]:= Cases[ Expand [ixl" ixz" ixS" ],
n=4 n=2 n=2

x1"- x2"- x3"- /s n1+n2+n3=12: {nl, n2, n3}]

Out[128]= {{81 2) 2}) {7, 3) 2}) {61 4, 2}) {5, 5, 2}) {4, 6) 2}) {7, 2) 3}) {61 3) 3})
{5, 4, 3}: (4,5, 3}: {6) 2) 43}, {5, 3) 4}, {4, 4,4}, {5, 2) 5}, {4, 3) 5}}

If you only care about the number of solutions, it would fall out of the coefficient of
x12 in the expansion of this polynomial.

In[129]:= Cases[ Expand[ix" ix" ix" ], a_x? a]

n=4 n=2 n=2
Out[129]= {14}

See Also

See Recipe 11.11 for more information on generating functions in Mathematica.

Readers who are interested in gaining insight into the algorithms that underlie
Mathematica’s amazing feats with infinite sums should read A=B by Marko
Petkovsek, Herbert S. Wilf, and Doron Zeilberger (A K Peters), which is avail-
able online at http://bit.ly/11Jiwe.

11.10 Solving Difference Equations

Problem

You want to solve problems that arise in discrete systems such as finance, actuarial
science, dynamical systems, and numerical analysis. Many such problems can be
modeled as recurrence relations, also known as difference equations.
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Solution

RSolve is used to solve difference equations. A simple problem where RSolve applies
is in mortgage calculations. Suppose you want to derive a function for the outstand-
ing principal over the life of a loan. Let’s say the yearly interest rate is 5.75%, the
monthly payment is $1,000.00, and the term is 30 years. This loan can be described
as the following difference equation. Here the constraint y[360] == 0 arises from the
condition that the last payment is zero (I am using y[0] as the origin).
In[130]:= i = 0.0575;
payment = 1000.00;
sol = RSolve[{y[n+1] = (1 + i/12) y[n] - payment, y[360] == 0}, y, n]
out[132]= {{y - Function[ {n}, 0.995231x2.71828 %-%47802"
(209696. x1.00479" - 37516.4x1.00479" 2.71828% 045022 1) ] 1}

From this we can figure out the initial principal or the payoff at any given month:

In[133]:= y[0] /. sol[[1]]
Out[133]= 171358.

After 60 months, or 5 years, very little has been paid off, which is quite depressing
but a fact of life.

In[134]:= y[0] -y[60] /. sol[[1]]
Out[134]= 12402.6

Discussion

Setting up a difference equation is often a matter of solving the problem by hand for
small values of n and then detecting the relationship between successive values.
Consider the Towers of Hanoi puzzle. A one-disk problem is solved in one move
(T[1] = 1), a two-disk problem is solved in three moves (T[2] = 3), and three-disk
problem is solved in seven moves (T[3] = 7). It follows then that T[n] = 2 T[n-1] + 1.
In[135]:= RSolve[{T[n] = 2T[n-1] + 1, T[1] = 1}, T, n]
out[135]= {{T-Function[{n}, -1+2"]}}

A seemingly innocent difference equation can result in a solution involving complex
numbers. This is a second-order equation, so two initial values are required to get an
exact solution with no arbitrary constants.

In[136]:= sol = RSolve[{a[n] == 2 (a[n-1] - a[n-2]),a[0] ==1, a[1] = 2}, a, n]

Out[136]= {{aaFunction{{n}, [i+ ;) ((1-1)"-1 (1+11)”)H}
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Note that like DSolve, RSolve does not try to simplify the result. It is advisable to try
to simplify it; in this case, you see that complex numbers disappear, and the result is
in terms of trigonometric functions, which you may not have expected.

In[137]:= FullSimplify[a[n] /. sol[[1]]]

out[137]= (1-i) MM (L+d) T
As with DSolve, if you do not provide initial conditions, you will get solutions in-
volving arbitrary constants of the form C[N].

In[138]:= RSolve[{a[n] -3a[n-1] = 5(3"n)}, a,n]

out[138]= {{a- Function[{n}, 5+3"n+3™"C[1]] 1
These solutions were found in terms of pure functions because we asked for the solu-

tion in terms of a, but you can change the form of the second argument to a[n] to
get the solution in that form.

In[139]:= sol =RSolve[{a[n] -3a[n-1] = 5 (3*n)}, a[n], n]
out[139]= {{a[n] »5-3"n+3""C[1]}}

You can evaluate this solution for specific n and C[1] using ReplaceAll (//.).

In[140]:= a[n] //. Flatten[{sol,n-3, C[1] - 2}]
Out[140]= 423

See Also

One of the best introductions to the subject of difference equations is An Introduc-
tion to Difference Equations by Saber Elaydi (Springer).

11.11 Generating Functions
and Sequence Recognition

Problem

You want Mathematica to generate a function associated with a particular sequence
or to infer a function that will produce the sequence for successive integers.
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Solution

Use FindGeneratingFunction to derive the generating function for a sequence.
Recall that the power series of a generating function encodes the sequence in its
coefficients.
In[141]:= g = FindGeneratingFunction[{1, 4, 9, 16, 25, 36, 49, 64, 81, 100}, x]
-1-x
Out[141]=
(-1+x)3
In[142]:= Series[g, {x, 0, 12}]
Out[142]= 1+4x+9%x2+16% +25%x* +36 x> +49 %% +
64 x7 + 81 x5 + 100 x° + 121 x*° + 144 x* + 169 x*2 + 0[x] 13

Use FindSequenceFunction to find an expression that maps the integers to the spec-
ified sequence.

In[143]:= s = FindSequenceFunction[({1, 4, 9, 16, 25, 36, 49, 64, 81, 100}, n]
out[143]= n’

In[144]:= Table[s, {n, 1, 12}]
out[144]= (1, 4,9, 16, 25, 36, 49, 64, 81, 100, 121, 144}

Discussion

FindSequenceFunction can deal with sequences that are not strictly increasing and
with noninteger sequences.

In[145]:= FindSequenceFunction[{-1, 3, -11, 13, -29, 31, -55,
57, -89, 91, -131, 133, -181, 183, -239}, n] // FullSimplify
out[145]= (-1)" (- (-)" (-1 +n) +n?)

2 3 12 5 30 21 56 18 90
In[146]:= FindSequenceFunction[{O, — —y =y —y —y —y — 