
LPI exam 101 prep: Hardware and architecture
Junior Level Administration (LPIC-1) topic 101

Skill Level: Introductory

Ian Shields (ishields@us.ibm.com)
Senior Programmer
IBM

08 Aug 2005

In this tutorial, Ian Shields begins preparing you to take the Linux Professional
Institute® Junior Level Administration (LPIC-1) Exam 101. In this first of five tutorials,
Ian introduces you to configuring your system hardware with Linux™. By the end of
this tutorial, you will know how Linux configures the hardware found on a modern PC
and where to look if you have problems.

Section 1. Before you start

Learn what these tutorials can teach you and how you can get the most from them.

About this series

The Linux Professional Institute (LPI) certifies Linux system administrators at two
levels: junior level (also called "certification level 1") and intermediate level (also
called "certification level 2"). To attain certification level 1, you must pass exams 101
and 102; to attain certification level 2, you must pass exams 201 and 202.

developerWorks offers tutorials to help you prepare for each of the four exams. Each
exam covers several topics, and each topic has a corresponding self-study tutorial
on developerWorks. For LPI exam 101, the five topics and corresponding
developerWorks tutorials are:

Table 1. LPI exam 101: Tutorials and topics

LPI exam 101 topic developerWorks tutorial Tutorial summary

Topic 101 LPI exam 101 prep (topic (This tutorial). Learn to

Hardware and architecture
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 1 of 39

mailto:ishields@us.ibm.com
http://www.lpi.org
http://www.ibm.com/legal/copytrade.shtml

101):
Hardware and architecture

configure your system
hardware with Linux. By the
end of this tutorial, you will
know how Linux configures
the hardware found on a
modern PC and where to look
if you have problems.

Topic 102 LPI exam 101 prep:
Linux installation and package
management

Get an introduction to Linux
installation and package
management. By the end of
this tutorial, you will know how
Linux uses disk partitions, how
Linux boots, and how to install
and manage software
packages.

Topic 103 LPI exam 101 prep:
GNU and UNIX commands

Get an introduction to
common GNU and UNIX
commands. By the end of this
tutorial, you will know how to
use commands in the bash
shell, including how to use text
processing commands and
filters, how to search files and
directories, and how to
manage processes.

Topic 104 LPI exam 104 prep:
Devices, Linux filesystems,
and the Filesystem Hierarchy
Standard.

Learn how to create
filesystems on disk partitions,
as well as how to make them
accessible to users, manage
file ownership and user
quotas, and repair filesystems
as needed. Also learn about
hard and symbolic links, and
how to locate files in your
filesystem and where files
should be placed. See
detailed objectives below.

Topic 110 The X Window system Coming soon.

To pass exams 101 and 102 (and attain certification level 1), you should be able to:

• Work at the Linux command line

• Perform easy maintenance tasks: help out users, add users to a larger
system, back up and restore, and shut down and reboot

• Install and configure a workstation (including X) and connect it to a LAN,
or connect a stand-alone PC via modem to the Internet

To continue preparing for certification level 1, see the developerWorks tutorials for
LPI exam 101. Read more about the entire set of developerWorks LPI tutorials.

The Linux Professional Institute does not endorse any third-party exam preparation

developerWorks® ibm.com/developerWorks

Hardware and architecture
Page 2 of 39 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic1102-i.html
http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic1102-i.html
http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic1102-i.html
http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic1103-i.html
http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic1103-i.html
http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic1104-i.html
http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic1104-i.html
http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic1104-i.html
http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic1104-i.html
http://www.ibm.com/developerworks/views/linux/libraryview.jsp?topic_by=All+topics+and+related+products&sort_order=asc&lcl_sort_order=asc&search_by=lpi+exam+101&search_flag=true&type_by=Tutorials&show_abstract=true&sort_by=Title&end_no=100&show_all=false
http://www.ibm.com/developerworks/views/linux/libraryview.jsp?topic_by=All+topics+and+related+products&sort_order=asc&lcl_sort_order=asc&search_by=lpi+exam+101&search_flag=true&type_by=Tutorials&show_abstract=true&sort_by=Title&end_no=100&show_all=false
http://www.ibm.com/developerworks/linux/lpi/index.html?S_TACT=105AGX03&S_CMP=tut
http://www.ibm.com/legal/copytrade.shtml

material or techniques in particular. For details, please contact info@lpi.org.

About this tutorial

Welcome to "Hardware and architecture," the first of five tutorials designed to
prepare you for LPI exam 101. In this tutorial, you will learn about PC hardware and
architecture.

is organized according to the LPI objectives for this topic. Very roughly, expect more
questions on the exam for objectives with higher weight.

Table 2. Hardware and architecture: Exam objectives covered in this tutorial

LPI exam objective Objective weight Objective summary

1.101.1
Configure fundamental BIOS
settings

Weight 1 You will learn to configure
fundamental system hardware
by making the correct settings
in the system BIOS. You will
learn about configuration
issues such as the use of LBA
on IDE hard disks larger than
1024 cylinders, enabling or
disabling integrated
peripherals, and configuring
systems with (or without)
external peripherals such as
keyboards. We also discuss
correct settings for IRQ, DMA,
and I/O addresses for all
BIOS-administered ports and
settings for error handling.

1.101.3
Configure modem and sound
cards

Weight 1 You will learn how to ensure
that devices meet compatibility
requirements and how to set
up both the modem and sound
card. You will learn how to
configure a modem for
outbound dialup, and how to
use it for outbound PPP, SLIP,
or CSLIP connections.

1.101.4
Set up SCSI devices

Weight 1) You will learn how to configure
SCSI devices using the SCSI
BIOS as well as the necessary
Linux tools. You will review the
various types of SCSI. You will
learn how to set up a SCSI
boot device and how to set the
desired boot sequence in a
mixed SCSI and IDE
environment.

1.101.5
Set up different PC expansion
cards

Weight 3) You will learn about the
differences between ISA and
PCI cards with respect to
configuration issues. You will

ibm.com/developerWorks developerWorks®

Hardware and architecture
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 3 of 39

mailto:info@lpi.org
http://www.ibm.com/legal/copytrade.shtml

learn how to check the
settings of IRQs, DMAs, and
I/O ports to avoid conflicts
between devices.

1.101.6
Configure communication
devices

Weight 1 You will learn how to install
and configure different internal
and external communication
devices such as modems,
ISDN adapters, and DSL
switches. You will learn about
compatibility requirements
(especially important if that
modem is a winmodem),
necessary hardware settings
for internal devices (IRQs,
DMAs, I/O ports), and loading
and configuring suitable
device drivers. We will also
cover interface configuration
requirements.

1.101.7
Configure USB devices

Weight 1 You will learn how to activate
USB support and how to use
and configure different USB
devices. You will learn about
correct selection of your USB
chipset and the corresponding
module. We will also cover the
basic architecture of the layer
model of USB and the
different modules used in the
different layers.

Prerequisites

There are no formal prerequisites for this tutorial. To get the most from this tutorial,
you should already have a basic knowledge of Linux and a working Linux system on
which you can practice the commands covered in this tutorial.

Different versions of a program may format output differently, so your results may
not look exactly like the listings and figures in this tutorial.

Section 2. BIOS settings

This section covers material for topic 1.101.1 for the Junior Level Administration
(LPIC-1) exam 101. The topic has a weight of 1.

We will start with a high-level overview of a modern personal computer, and then
we'll discuss the configuration issues for setting up a system. We will focus on

developerWorks® ibm.com/developerWorks

Hardware and architecture
Page 4 of 39 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

systems using an x86 processor, such as an Intel® Pentium® or AMD Athlon
processor, and a PCI bus, as these are the most common today.

Many of the topics covered here have a high level of overlap with LPI objectives for
specific peripherals. Later sections of this tutorial will refer you back to this section
for basic material.

System and BIOS overview

A modern personal computer (or PC) system consists of a central processing unit
(CPU) for performing calculations, along with some memory for storing the data that
the processor is using. To make such a device useful, we attach peripheral devices,
such as keyboards, mice, displays, hard drives, CD or DVD drives, printers,
scanners, and network cards, which allow us to enter, store, print, display, and
transmit data.

In the computer just described, the memory used by the processor is called Random
Access Memory (RAM). In a typical PC, this memory is volatile, meaning that it
requires power to keep its data. Turn off the PC and the memory is wiped clean. Put
another way, when we turn off a PC, we turn it into a collection of hardware
components that will do nothing until reprogrammed. This reprogramming occurs
when we turn on the machine; the process is called bootstrapping or booting the
computer.

Bootstrap process and BIOS

The process of booting involves loading an operating system from an external
storage device, such as a floppy disk, CD, DVD, hard drive, or memory key. The
program that does this initial loading is permanently stored in the computer and is
called the Basic Input Output System (BIOS). The BIOS is stored in non-volatile
memory, sometimes called Read Only Memory (ROM). In early PCs, the ROM chip
was often soldered or socketed to the computer main board (or motherboard).
Updating the BIOS meant replacing the ROM chip. Later, Electrically Erasable
Programmable Read Only Memories (EEPROMs) were used. EEPROMs allowed
BIOS to be upgraded in the field with a diskette instead of special tools. Today you
will more often find a form of non-volatile memory known as Flash memory, which is
also used in digital cameras and memory keys. Flash memory also permits BIOS
upgrades in the field.

Besides controlling the initial bootup of a PC, today's BIOS programs usually permit
a user to set or verify several configuration options on a system. These include
verifying installed features such as RAM, hard drive, optical drive, keyboard, mouse,
and possibly onboard display, sound and network connections. The user may enable
or disable some features. For example, the onboard sound may be disabled to allow
use of an installed sound card. The user may also choose which devices will be
considered for booting the system and whether the system is protected by a
password.

Accessing the BIOS setup screens usually requires a keyboard to be attached to the

ibm.com/developerWorks developerWorks®

Hardware and architecture
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 5 of 39

http://www.ibm.com/legal/copytrade.shtml

system. When a system is powered on a Power On Self Test or POST is performed.
On some systems you will be briefly prompted to press a particular key to enter
setup otherwise normal bootup takes over. On other systems you will need to know
which key to press before the normal boot process is invoked as the prompt is either
not present or may have been removed as the result of previous customization of
setup options. On some systems you may have other choices besides going to the
BIOS setup, such as illustrated in Figure 1. Otherwise, you should see a BIOS
summary screen such as that shown in Figure 2.

Figure 1. Accessing the BIOS settings

Figure 2. BIOS settings summary

The above illustrations are examples of what you may see, but BIOS setup screens
vary widely, so don't be surprised if yours looks different.

Figure 2 shows us that the Flash EEPROM (or system BIOS) revision level is

developerWorks® ibm.com/developerWorks

Hardware and architecture
Page 6 of 39 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

24KT52AUS and it is dated March 4, 2004 while the current date on the system is
June 9, 2005. A check on the manufacturer's (IBM) support site shows that several
later BIOS versions are available, so it would probably be a good idea to upgrade
this system's BIOS.

You will notice several other menu selections in Figure 2. We will cover these in the
remaining sections of this tutorial. Before we do though, let's review a little more of
the inner workings of a PC.

Buses, ports, IRQs, and DMA.

PCI and ISA buses

Peripheral devices, including those that may be built in to the system board,
communicate with the CPU over a bus. The most common bus type in use today is
the Peripheral Component Interconnect or PCI bus which has mostly superseded
the earlier Industry Standard Architecture or ISA bus. The ISA bus was sometimes
called the AT bus after the IBM PC-AT in which it was first used in 1984. During the
transition from ISA to PCI bus, many systems included both buses with slots
permitting the use of either ISA or PCI peripherals.

The ISA bus supports 8-bit and 16-bit cards, while the PCI bus support 32-bit
devices.
There are a couple of other bus standards that you should also know about. Many
systems include an Accelerated Graphics Port or AGP slot which is a special slot
based on the PCI 2.1 bus specification, but optimized for the high bandwidth and
fast response required for graphics cards. This is slowly being replaced by the newer
PCI Express or PCI-E bus which addresses many limitations of the original PCI
design.

We'll learn more about the Linux file system in later tutorials in this series, but right
now we'll introduce you the /proc filesystem. This is not a real filesystem on disk, but
a "pseudo file system" which provides information about the running system. Within
this file system, the file /proc/pci contains information about the devices on the
system's PCI bus. There has been some discussion about discontinuing this
particular file, as the lspci command gives similar information. Run the command
cat /proc/pci to see output which will look something like Listing 1.

Listing 1. /proc/pci

PCI devices found:
Bus 0, device 0, function 0:

Host bridge: Intel Corp. 82845G/GL [Brookdale-G] Chipset Host Bridge
(rev 1).

Prefetchable 32 bit memory at 0xd0000000 [0xdfffffff].
Bus 0, device 2, function 0:

VGA compatible controller: Intel Corp. 82845G/GL [Brookdale-G] Chipset
Integrated Graphics Device (rev 1).

IRQ 11.
Prefetchable 32 bit memory at 0x88000000 [0x8fffffff].
Non-prefetchable 32 bit memory at 0x80000000 [0x8007ffff].

Bus 0, device 29, function 0:

ibm.com/developerWorks developerWorks®

Hardware and architecture
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 7 of 39

http://www.ibm.com/legal/copytrade.shtml

USB Controller: Intel Corp. 82801DB USB (Hub #1) (rev 1).
IRQ 11.
I/O at 0x1800 [0x181f].

Bus 0, device 29, function 1:
USB Controller: Intel Corp. 82801DB USB (Hub #2) (rev 1).
IRQ 10.
I/O at 0x1820 [0x183f].

Bus 0, device 29, function 2:
USB Controller: Intel Corp. 82801DB USB (Hub #3) (rev 1).
IRQ 5.
I/O at 0x1840 [0x185f].

Bus 0, device 29, function 7:
USB Controller: Intel Corp. 82801DB USB2 (rev 1).
IRQ 9.
Non-prefetchable 32 bit memory at 0xc0080000 [0xc00803ff].

Bus 0, device 30, function 0:
PCI bridge: Intel Corp. 82801BA/CA/DB/EB PCI Bridge (rev 129).
Master Capable. No bursts. Min Gnt=4.

Bus 0, device 31, function 0:
ISA bridge: Intel Corp. 82801DB LPC Interface Controller (rev 1).

Bus 0, device 31, function 1:
IDE interface: Intel Corp. 82801DB Ultra ATA Storage Controller

(rev 1).
IRQ 5.
I/O at 0x1860 [0x186f].
Non-prefetchable 32 bit memory at 0x60000000 [0x600003ff].

Bus 0, device 31, function 3:
SMBus: Intel Corp. 82801DB/DBM SMBus Controller (rev 1).
IRQ 9.
I/O at 0x1880 [0x189f].

Bus 0, device 31, function 5:
Multimedia audio controller: Intel Corp. 82801DB AC'97 Audio

Controller (rev 1).
IRQ 9.
I/O at 0x1c00 [0x1cff].
I/O at 0x18c0 [0x18ff].
Non-prefetchable 32 bit memory at 0xc0080c00 [0xc0080dff].
Non-prefetchable 32 bit memory at 0xc0080800 [0xc00808ff].

Bus 2, device 8, function 0:
Ethernet controller: Intel Corp. 82801BD PRO/100 VE (LOM) Ethernet

Controller (rev 129).
IRQ 9.
Master Capable. Latency=66. Min Gnt=8.Max Lat=56.
Non-prefetchable 32 bit memory at 0xc0100000 [0xc0100fff].
I/O at 0x2000 [0x203f].

You might want to compare this with the output from the lspci command. This is
usually on the path of the root user, but non-root users will probably need to give the
full path /sbin/lspci. Try these on your own system.

IO Ports

When the CPU needs to communicate with a peripheral device it does so through an
IO port or sometimes just simply port.When the CPU wants to send data or control
information to the peripheral, it writes to a port. When the device has data or status
ready for the CPU, the CPU reads the data or status from a port. Most devices have
more than one port associated with them, typically a small power of 2, such as 8, 16
or 32. Data transfer is usually done a byte or two at a time. Devices cannot share
ports, so if you have ISA cards, you must ensure that each device has its own port
or ports assigned. Originally, this was done using switches or jumpers on the card.
Some later ISA cards used a system called Plug and Play or PnP which will discuss
later in this section. PCI cards all have PnP configuration.

Within the /proc file system, the file /proc/ioports tells us about the IO ports available

developerWorks® ibm.com/developerWorks

Hardware and architecture
Page 8 of 39 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

on the system. Run the command cat /proc/ioports to see output which will
look something like Listing 2.

Listing 2. /proc/ioports

0000-001f : dma1
0020-003f : pic1
0040-005f : timer
0060-006f : keyboard
0070-007f : rtc
0080-008f : dma page reg
00a0-00bf : pic2
00c0-00df : dma2
00f0-00ff : fpu
0170-0177 : ide1
01f0-01f7 : ide0
02f8-02ff : serial(auto)
0376-0376 : ide1
0378-037a : parport0
03c0-03df : vga+
03f6-03f6 : ide0
03f8-03ff : serial(auto)
0cf8-0cff : PCI conf1
1800-181f : Intel Corp. 82801DB USB (Hub #1)
1800-181f : usb-uhci

1820-183f : Intel Corp. 82801DB USB (Hub #2)
1820-183f : usb-uhci

1840-185f : Intel Corp. 82801DB USB (Hub #3)
1840-185f : usb-uhci

1860-186f : Intel Corp. 82801DB Ultra ATA Storage Controller
1860-1867 : ide0
1868-186f : ide1

1880-189f : Intel Corp. 82801DB/DBM SMBus Controller
18c0-18ff : Intel Corp. 82801DB AC'97 Audio Controller
18c0-18ff : Intel ICH4

1c00-1cff : Intel Corp. 82801DB AC'97 Audio Controller
1c00-1cff : Intel ICH4

2000-203f : Intel Corp. 82801BD PRO/100 VE (LOM) Ethernet Controller
2000-203f : e100

The port numbers are in hexadecimal (base 16). You'll doubtless see several that
look familiar, such as keyboard, timer, parallel (printer), serial (modem) and display
(vga+). Compare these with the some of the standard IO port assignments for a PC
as shown in Listing 3. Notice, for example, that the first parallel port is (parport0) has
the address range 0378 to 037A allocated in the /proc/ioports listing, but the
standard allows it (LPT!) to use the range 378 through 37F.

Listing 3. Standard I/O Port Settings

1FO-1F8 - Hard Drive Controller, 16-bit ISA
200-20F - Game Control
210 - Game I/O
220 - Soundcard
278-27F - LPT2
2F8-2FF - COM2
320-32F - Hard Drive Controller, 8-bit ISA
378-37F - LPT1
3B0-3BF - Monochrome Graphics Adapter (MGA)
3D0-3DF - Colour Graphics Adapter (CGA)
3F0-3F7 - Floppy Controller
3F8-3FF - COM1

Interrupts

ibm.com/developerWorks developerWorks®

Hardware and architecture
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 9 of 39

http://www.ibm.com/legal/copytrade.shtml

So how does the CPU know when the last output is finished or when data is waiting
to be read? Usually, this information is available in a status register which may be
accessed by reading one (or more) of the IO ports associated with a device. Two
obvious problems arise with this scenario. Firstly, the CPU has to spend time
checking the status. Secondly, if the device has data coming from somewhere, such
as an attached modem, the data must be read by the CPU in a timely fashion
otherwise it might be overwritten by the next available data byte.

The dual problems of not wasting unnecessary CPU cycles and ensuring that data is
read or written in a timely fashion are addressed by the concept of interrupts.
Interrupts are also called Interrupt Requests or IRQs. When something happens in a
device that the CPU needs to know about, the device raises an interrupt and the
CPU temporarily stops whatever else it was doing to deal with the situation.

With our experience from the last section, it should hardly come as a surprise that
information on interrupts is also kept in the /proc file system, in /proc/interrupts. Run
the command cat /proc/interrupts to see output which will look something
like Listing 4.

Listing 4. /proc/interrupts

CPU0
0: 226300426 XT-PIC timer
1: 92913 XT-PIC keyboard
2: 0 XT-PIC cascade
5: 0 XT-PIC usb-uhci
8: 1 XT-PIC rtc
9: 2641134 XT-PIC ehci-hcd, eth0, Intel ICH4

10: 0 XT-PIC usb-uhci
11: 213632 XT-PIC usb-uhci
14: 1944208 XT-PIC ide0
15: 3562845 XT-PIC ide1
NMI: 0
ERR: 0

This time, the interrupt numbers are decimal in the range 0 through 15. Once again,
Compare these with the standard IRQ assignments for a PC as shown in Listing 5.

Listing 5. Standard IRQ Settings

IRQ 0 - System Timer
IRQ 1 - Keyboard
IRQ 2(9) - Video Card
IRQ 3 - COM2, COM4
IRQ 4 - COM1, COM3
IRQ 5 - Available (LPT2 or Sound Card)
IRQ 6 - Floppy Disk Controller
IRQ 7 - LPT1
IRQ 8 - Real-Time Clock
IRQ 9 - Redirected IRQ 2
IRQ 10 - Available
IRQ 11 - Available
IRQ 12 - PS/2 Mouse
IRQ 13 - Math Co-Processor
IRQ 14 - Hard Disk Controller
IRQ 15 - Available

Originally, each device had its own private IRQ. In Listing 5, note, for example, that

developerWorks® ibm.com/developerWorks

Hardware and architecture
Page 10 of 39 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

IRQ5 was often used for either a sound card or a second parallel (printer) port. If
you wanted both, you had to find a card that could be configured (usually via
hardware jumper settings) to use another IRQ such as IRQ15.

Today, PCI devices share IRQs, so that when one interrupts the CPU, an interrupt
handler checks to see if the interrupt is for it and, if not, passes it to the next handler
in the chain. Listings 4 and 5 do not tell us about this sharing. We will learn about the
grep command in a later tutorial, but for now we can use it to filter the output from
the dmesg command to look for bootstrap messages about IRQs as shown in Listing
6. we've highlighted the shared interrupts here.

Listing 6. Interrupts found during bootstrap

[ian@lyrebird ian]$ dmesg | grep -i irq
PCI: Discovered primary peer bus 01 [IRQ]
PCI: Using IRQ router PIIX [8086/24c0] at 00:1f.0
PCI: Found IRQ 5 for device 00:1f.1
PCI: Sharing IRQ 5 with 00:1d.2
Serial driver version 5.05c (2001-07-08) with MANY_PORTS MULTIPORT

SHARE_IRQ SERIAL_PCI ISAPNP enabled
ttyS0 at 0x03f8 (irq = 4) is a 16550A
ttyS1 at 0x02f8 (irq = 3) is a 16550A
PCI: Found IRQ 5 for device 00:1f.1
PCI: Sharing IRQ 5 with 00:1d.2
ICH4: not 100% native mode: will probe irqs later
ide0 at 0x1f0-0x1f7,0x3f6 on irq 14
ide1 at 0x170-0x177,0x376 on irq 15
PCI: Found IRQ 11 for device 00:1d.0
PCI: Sharing IRQ 11 with 00:02.0
usb-uhci.c: USB UHCI at I/O 0x1800, IRQ 11
PCI: Found IRQ 10 for device 00:1d.1
usb-uhci.c: USB UHCI at I/O 0x1820, IRQ 10
PCI: Found IRQ 5 for device 00:1d.2
PCI: Sharing IRQ 5 with 00:1f.1
usb-uhci.c: USB UHCI at I/O 0x1840, IRQ 5
PCI: Found IRQ 9 for device 00:1d.7
ehci-hcd 00:1d.7: irq 9, pci mem f885d000
parport0: irq 7 detected
PCI: Found IRQ 9 for device 02:08.0
PCI: Found IRQ 9 for device 02:08.0
parport0: irq 7 detected
PCI: Found IRQ 11 for device 00:02.0
PCI: Sharing IRQ 11 with 00:1d.0
PCI: Found IRQ 9 for device 00:1f.5
PCI: Sharing IRQ 9 with 00:1f.3
i810: Intel ICH4 found at IO 0x18c0 and 0x1c00, MEM 0xc0080c00 and

0xc0080800, IRQ 9

DMA

We mentioned earlier that communication with peripheral devices through IO ports
occurs a byte or two at a time. For a fast device, servicing interrupts could use a lot
of the CPUs capability. A faster method is to use Direct Memory Access or DMA, in
which a few IO instructions tell the device where in RAM to read or write data and
then the DMA controller provides hardware management of the actual transfer of
data between RAM and the peripheral device.

Hands up anyone who can guess where we find information about the DMA
channels are in use. If you said it is in /proc/dma, then you are right. Run the
command cat /proc/dma to see output which will look something like Listing 7.

ibm.com/developerWorks developerWorks®

Hardware and architecture
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 11 of 39

http://www.ibm.com/legal/copytrade.shtml

Listing 7. /proc/dma

4: cascade

Is that all? It is important to remember that most devices will only request one of the
limited number of DMA channels when IO is actually happening, so /proc/dma will
frequently look nearly empty as in our example. We can also scan the bootstrap
messages for evidence of DMA capable devices as we did for IRQs above. Listing 8
shows typical output.

Listing 8. /proc/dma

[ian@lyrebird ian]$ dmesg | grep -i dma
ide0: BM-DMA at 0x1860-0x1867, BIOS settings: hda:DMA, hdb:pio
ide1: BM-DMA at 0x1868-0x186f, BIOS settings: hdc:DMA, hdd:DMA

hda: 312581808 sectors (160042 MB) w/8192KiB Cache,
CHS=19457/255/63, UDMA(100)

hdc: 398297088 sectors (203928 MB) w/7936KiB Cache,
CHS=24792/255/63, UDMA(33)

ehci-hcd 00:1d.7: enabled 64bit PCI DMA

Plug and play

Early PCs allocated fixed port numbers and IRQs for particular devices, such as
keyboard or parallel printer port. This made it difficult to add new devices or even run
two devices of the same type such as two modems or two printers. The first serial
port was usually called COM1 and the second COM2. Linux systems usually refer to
these as ttyS0 and ttyS1. Some cards were configurable usually with hardware
jumpers which allowed a modem to operate as either COM1 or COM2, for example.
As devices proliferated and the original space allocated for IO port addresses and
IRQs became scarce, Plug and Play or PnP was developed. The idea was to allow a
device to tell the system how many and what kind of resources it needed and for the
BIOS to then tell the device which particular resources it should use. This
semi-automatic configuration was introduced with the IBM PS/2 which used a bus
architecture called microchannel. Later, the idea, and the plug and play name were
used for ISA cards, particularly modems and sound cards which were popular
add-on cards at the time. The PCI bus advanced the idea further and all PCI devices
are inherently plug and play.

If you happen to work on a system with ISA PnP devices, be aware that you must
avoid port and IRQ conflicts between devices. Ports cannot be shared between two
devices; each device must have its own ports. The same applies for DMA channels.
With few exceptions, ISA devices cannot share IRQs either. If you have non-PnP
devices, you must manually configure each device so that it does not interfere with
another device. The promise of PnP was that configuration could be performed
automatically. However, with some ISA devices not participating in PnP, this does
not always work perfectly. You may be able to resolve conflicts using the isapnptools
that we will discuss next, or you may have to reassign some of the ports or IRQs on
non-PnP devices in order to get a working system.

developerWorks® ibm.com/developerWorks

Hardware and architecture
Page 12 of 39 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Prior to the 2.4 kernel, a package called isapnptools allows a user to configure PnP
devices. The isapnp command interprets a configuration file (normally
/etc/isapnp.conf) to configure PnP devices. This is usually done during the Linux
boot process. The pnpdump command scans PnP devices and dumps a list of
resources your PnP cards either need or would prefer to use. The format is suitable
for use by the isapnp command, once you uncomment the actual commands that
you wish to use. You must be sure to avoid resource conflicts. Refer to the man
pages for isapnp and pnpdump for more information on using these commands.

Since the 2.4 kernel, PnP support has been integrated into the Linux kernel and the
isapnptools package has become obsolete. For example, it was removed from Red
Hat 7.3 which was released in May 2002. The support is similar to the PCI support
discussed earlier. You can use the lspnp command (part of the kernel-pcmcia-cs
package) to display information about PnP devices. You will also find this
information in the /proc file system if the BIOS found PnP devices during
initialization. The file /proc/bus/pnp will contain this information. This file will not be
present on a PCI-only system.

IDE Hard drives

On modern PC systems, Integrated Drive Electronics or IDE hard drives are the
most common. These are also known as AT Attachment or ATA drives after the
original IBM PC-AT. Another type of drive using the Small Computer System
Interface or SCSI interface is also popular, particularly on server machines. IDE
drives have an advantage of low cost, while the SCSI interface permits attachment
of a larger number of drives, with higher potential for overlapping operations to
different drives on the same bus, and therefore higher potential performance.

A new type of drive, called Serial ATA or SATA has recently entered the market. The
SATA specification seeks to address some of the limitations of the ATA specification
while preserving significant compatibility with ATA.

BIOS and IDE drive sizes

IDE drives are formatted into sectors, data units of 512 bytes. A drive might contain
multiple rotating disk platters, so the sectors are arranged in concentric circles with
each circle called a cylinder. Data from a particular platter is read or written by a
head. To find the data in a particular sector, the disk moves the head assembly to
the cylinder, selects the appropriate head and waits for the right sector to come
under the head. This gives rise to the notion of CHS (for Cylinder, Head and Sector)
addressing. You may also hear this called disk geometry.

Unfortunately for history, early BIOS implemented a limit to the size permitted for
each of the C, H and S values and DOS, a popular operating system for the PC,
implemented a different limitation. During the 1990s, Disk sizes quickly outstripped
the artificial CHS limitations imposed by BIOS and DOS. Several intermediate
strategies involved translating the real CHS values to "virtual" values that would
meet the constraints, either in the BIOS itself or by means of low level software
routines such as Ontrack's Disk Manager software.

ibm.com/developerWorks developerWorks®

Hardware and architecture
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 13 of 39

http://www.ibm.com/legal/copytrade.shtml

Even without the artificial limits of BIOS or DOS, the CHS design allows for up to
65536 cylinders, 16 heads, and 255 sectors/track. This limits the capacity to
267386880 sectors, or approximately 137 GB. Note that disk capacities, unlike some
other PC values, are measured in powers of 10, so 1GB=1,000,000,000 bytes.

The solution was to have the system ignore the geometry and leave that to the drive
to figure out. The system, instead of asking for a CHS value simply asks for a
Logical Block Address or LBA and the drive electronics figure out which real sector
to read or write. The process was standardized in 1996 with the adoption of the
ATA-2 standard (ANSI standard X3.279-1996, AT Attachment Interface with
Extensions).

As we discussed earlier, BIOS is needed to boot a system, so booting from a hard
drive requires that the BIOS understand enough of the disk layout to locate and load
the initial program that will then load the full operating system. An older BIOS that
does not understand LBA disks will probably be limited to booting from within the
first 1024 cylinders of a disk, or at least the first 1024 cylinders as the BIOS
understands the disk geometry! Such a BIOS is probably now fairly rare, but if you
do need to work with one, it may have a setting for LBA support and you may need
to locate the /boot directory in a partition within the first 1024 cylinders. Even when
your system will happily boot from the very end of a very large disk, many Linux
partitioning tools will warn you that a partition extends beyond the 1024 cylinder limit.

Figure 3 shows information available in the BIOS of my Intel motherboard for the
250GB IDE disk on one of my Linux systems.

Figure 3. BIOS view of a large LBA disk

developerWorks® ibm.com/developerWorks

Hardware and architecture
Page 14 of 39 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Listing 9 shows part of the output available on a Linux system (Fedora Core 3 in this
case) using the hdparm -I /dev/hda command for the same disk as was used in
Figure 3. Note that CHS values limit addressing to 4,128,705 sectors and the LBA
value is set to 268,435,455 sectors or 137GB. These values together imply that the
real capacity is in the LBA48 value. This is 490,234,752 sectors or 251GB.

Listing 9. Output from hdparm -I /dev/hda

/dev/hda:

ATA device, with non-removable media
Model Number: Maxtor 6Y250P0
Serial Number: Y638VBWE
Firmware Revision: YAR41BW0

Standards:
Supported: 7 6 5 4
Likely used: 7

Configuration:
Logical max current
cylinders 16383 65535
heads 16 1
sectors/track 63 63
--
CHS current addressable sectors: 4128705
LBA user addressable sectors: 268435455
LBA48 user addressable sectors: 490234752
device size with M = 1024*1024: 239372 MBytes
device size with M = 1000*1000: 251000 MBytes (251 GB)

Capabilities:
LBA, IORDY(can be disabled)
Queue depth: 1
...

While we are discussing booting, one other point should be noted. By default, a PC
will boot from the first IDE drive in the system. Some systems have BIOS settings
that will allow you to override this, but most will boot this way. The system will first
load a small piece of code from the master boot record and that will, in turn, provide
information on which partition to boot. We will cover more about boot loaders for
Linux in a later tutorial.

If you'd like to know even more about the history of large disks, see Resources for a
link to the Large Disk HOWTO which is available from the Linux Documentation
Project.

Linux disk names

We will cover a lot more about how Linux uses disks in later tutorials in this series.
However, right now is a good time to introduce you to another important Linux file
system, the /dev filesystem. This, like /proc, is a pseudo file system which describes
the devices that are or could be on a Linux system. Within the /dev filesystem you
will find entries such as /dev/hda, /dev/hda5, /dev/sda, /dev/sdb1 and so on. You will
find lots of other entries for other device types, but for now lets look at the ones that
start with either /dev/hd or /dev/sd.

Devices that start with /dev/hd, such as /dev/hda or /dev/hda5 refer to IDE drives.
The first drive on the first IDE controller is /dev/hda and the second one, if present, is
/dev/hdb. Likewise, the first drive on the second IDE controller is /dev/hdc and the

ibm.com/developerWorks developerWorks®

Hardware and architecture
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 15 of 39

http://www.ibm.com/legal/copytrade.shtml

second one is /dev/hdd. As you can see from Listing 10, there are many more
defined in /dev than are likely on your system.

Listing 10. /dev/hd? and /dev/sd? entries

[ian@lyrebird ian]$ ls /dev/hd?
/dev/hda /dev/hdd /dev/hdg /dev/hdj /dev/hdm /dev/hdp /dev/hds
/dev/hdb /dev/hde /dev/hdh /dev/hdk /dev/hdn /dev/hdq /dev/hdt
/dev/hdc /dev/hdf /dev/hdi /dev/hdl /dev/hdo /dev/hdr
[ian@lyrebird ian]$ ls /dev/sd?
/dev/sda /dev/sde /dev/sdi /dev/sdm /dev/sdq /dev/sdu /dev/sdy
/dev/sdb /dev/sdf /dev/sdj /dev/sdn /dev/sdr /dev/sdv /dev/sdz
/dev/sdc /dev/sdg /dev/sdk /dev/sdo /dev/sds /dev/sdw
/dev/sdd /dev/sdh /dev/sdl /dev/sdp /dev/sdt /dev/sdx

As we did earlier for IRQs, we can use the dmesg command to find out what disk
devices were found during bootstrap, Output from one of my systems is shown in
Listing 11.

Listing 11. Hard drives found during bootup

[ian@lyrebird ian]$ dmesg | grep "[hs]d[a-z]"
Kernel command line: ro root=LABEL=RHEL3 hdd=ide-scsi
ide_setup: hdd=ide-scsi

ide0: BM-DMA at 0x1860-0x1867, BIOS settings: hda:DMA, hdb:pio
ide1: BM-DMA at 0x1868-0x186f, BIOS settings: hdc:DMA, hdd:DMA

hda: WDC WD1600JB-00EVA0, ATA DISK drive
hdc: Maxtor 6Y200P0, ATA DISK drive
hdd: SONY DVD RW DRU-700A, ATAPI CD/DVD-ROM drive
hda: attached ide-disk driver.
hda: host protected area => 1
hda: 312581808 sectors (160042 MB) w/8192KiB Cache,

CHS=19457/255/63, UDMA(100)
hdc: attached ide-disk driver.
hdc: host protected area => 1
hdc: 398297088 sectors (203928 MB) w/7936KiB Cache,

CHS=24792/255/63, UDMA(33)
hda: hda1 hda2 hda3 hda4 < hda5 hda6 hda7 hda8 hda9 hda10 hda11 >
hdc: hdc1 < hdc5 hdc6 hdc7 hdc8 >
hdd: attached ide-scsi driver.

From the highlighted lines in Listing 11, we see that the system has two IDE drives
(hda and hdc) and a DVD-RW drive (hdd). Note that there is no hdb, indicating that
there is no second drive on the first IDE controller on this system. An IDE drive can
have up to four primary partitions and an unlimited number of logical partitions.
Considering the drive hdc in Listing 11, we see that it has one primary partition
(hdc1) and four logical partitions (hdc5, hdc6, hdc7, and hdc8). We will see in Topic
104 in a later tutorial in this series that hdc1 is actually a container (or extended
partition) for the logical partitions.

Historically, devices such as sda and sdb were SCSI disks, which we will discuss
further when we see how to set up SCSI devices Up to the 2.4 kernel, IDE CD and
DVD devices were usually handled through SCSI emulation. Such a device often
appeared in /dev as something like /dev/cdrom which was a symbolic link to the
SCSI emulated device. For the above system, Listing 12 shows that /dev/cdrom is a
link to /dev/scd0 rather than to /dev/hdd as might have been expected. Note the
hdd=ide-scsi kernel parameter in Listing 11 as well as the indication that the ide-scsi

developerWorks® ibm.com/developerWorks

Hardware and architecture
Page 16 of 39 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

driver was attached for hdd.

Listing 12. IDE SCSI emulation

[ian@lyrebird ian]$ ls -l /dev/cdrom
lrwxrwxrwx 1 root root 9 Jan 11 17:15 /dev/cdrom -> /dev/scd0

Today, you will find that both USB and SATA storage devices appear as sd, rather
than hd, devices.

Legacy peripherals

We have alluded above to peripherals such as serial or parallel ports that are usually
integrated into a motherboard, and we have seen some standard IO port and IRQ
assignments for these devices. Serial ports, in particular, have been used for
connecting a variety of devices and they have a history of being hard to configure.
With the advent of IEEE 1394, also known as Firewire and Universal Serial Bus or
USB devices, automatic configuration and hot plugging of devices has largely
replaced the chore of ensuring correct serial or parallel port configuration. Indeed, a
legacy-free system does not support the standard serial or parallel ports. Neither
does it support a floppy drive or a PS/2 connected keyboard or mouse.

We'll now discuss some common BIOS settings that you may need to configure.

Serial ports (COMn)

The legacy serial ports are known as COM1 through COM4. If your system has a
single serial port connector (originally a 25-pin DB25 connector but now more
commonly a 9-pin DB9 connector) it will probably use the default base address and
IRQ for COM1, namely IO port 3F8 and IRQ 4. The standard IO port addresses and
IRQs for serial ports are shown in Table 3.

Table 3. Serial port assignments

Name Address IRQ

COM1 3F8-3FF 4

COM2 2F8-2FF 3

COM3 3E8-3EF 4

COM4 2E8-2EF 3

You will notice that COM1 and COM3 share IRQ 4 and likewise COM2 and COM4
share IRQ 3. Unless the driver and the device can actually share the interrupt, or a
device does not use interrupts, this means that most real systems will use only
COM1 and COM2.

Occasionally, you may need to either disable an onboard serial port or configure it to
use an alternate address and IRQ. The most likely reason to do this is because of

ibm.com/developerWorks developerWorks®

Hardware and architecture
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 17 of 39

http://www.ibm.com/legal/copytrade.shtml

conflicts with a PnP modem in an ISA slot or a desire to use the PnP modem as
COM1. We recommend that you only change these if you are having problems with
Linux detecting your configuration.

Parallel ports (LPTn)

The legacy parallel ports are known as LPT1 through LPT4, although usually only at
most two are present. If your system has a single parallel port connector it will
probably use the default base address and IRQ for LPT1, namely IO port 378 and
IRQ 7. The standard IO port addresses and IRQs for parallel ports are shown in
Table 4.

Table 4. Parallel port assignments

Name Address IRQ

LPT1 378-37F 7

LPT2 278-27F 5

LPT* 3BC-3BE

Note that the IO ports 3BC-3BE were originally used on a Hercules graphics adapter
that also had a parallel port. Many BIOS systems will assign this range to LPT1 and
then the other two ranges would become LPT2 and LPT3 respectively instead of
LPT1 and LPT2.

Many systems do not use interrupts for printers, so the IRQ may or may not actually
be used. It is also not uncommon to share IRQs for printing and also to share IRQ 7
with a sound card (Sound Blaster compatible).

The parallel ports were originally used for printing with data flowing to the printer and
a few lines reserved for reporting status. Later, the parallel port was used for
attaching a variety of devices (including early CD-ROMs and tape drives), so the
output-only nature of the data flow changed to a bidirectional data flow.

The current standard applicable to parallel ports is IEEE Std. 1284-1994 Standard
Signaling Method for a Bi-Directional Parallel Peripheral Interface for Personal
Computers which defines five signaling modes. Your BIOS may give you choices in
setup such as bi-directional, EPP, ECP and EPP and ECP. ECP stands for
Enhanced Capabilities Port and is designed for use with printers. EPP stands for
Enhanced Parallel Port and is designed for devices such as CD-ROMs and Tape
drives which require large amounts of data to flow in either direction. The default
BIOS choice is likely to be ECP. As for serial ports, change this only when you have
a device that does not work properly.

Floppy disk port

If your system has a legacy floppy disk controller, it will use ports 3F0-3F7. If you
install a legacy floppy drive in a system that shipped without one, you may have to
enable legacy options in your BIOS. Consult the manufacturer's information for more
details.

developerWorks® ibm.com/developerWorks

Hardware and architecture
Page 18 of 39 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Keyboard and mouse

The keyboard/mouse controller uses ports 0060 and 0064 for legacy keyboards and
mice. That is, those connected by a round PS2 connector. Many systems will
generate a Power-On-Self-Test (POST) error if a keyboard is not attached. Most
machines designed to be used as servers, and many desktops, now have BIOS
options to allow clean startup without a keyboard or mouse present.

Once a system is installed, running without a keyboard (or mouse) is seldom a
problem. Servers frequently run this way. Management is performed over the
network using either web administration tools, or a command line interface such as
telnet or (preferably) ssh.

Installation on a keyboardless system is usually accomplished using a terminal (or
terminal emulator) attached through a serial port. Usually, you will need a keyboard
and display to ensure that the BIOS is set up correctly with an enabled serial port.
You may also need a customized boot disk or CD to perform a Linux system install.

Another approach used by systems such as the IBM JS20 blade server is to emulate
a serial connection over a LAN.

Section 3. Modems and sound cards

This section covers material for topic 1.101.3 for the Junior Level Administration
(LPIC-1) exam 101. The topic has a weight of 1.

Modems

A modem (from modulator/demodulator) is a device for converting the digital signals
used in computers to a serial stream of analog data that is transmitted over
telephone lines. In the early days of PCs, modems were external devices that were
attached to a serial port. Later, modems were implemented on cards that could be
installed inside the computer, reducing cost for housing and power, and eliminating
the need for a cable between serial port and modem. Another cost reduction
occurred when some of the function normally done by a modem was transferred to
software in the PC. This type of modem may be called a softmodem, HCF modem,
HSP modem, HSF modem or controllerless modem, among other terms. Such
modems were designed to reduce the cost of systems which generally ran Microsoft
Windows. The term winmodem is often used for such devices, although
Winmodem® is a registered trademark of U.S. Robotics, who manufactured several
modems under that name.

Most external modems and full function internal modems will work under Linux

ibm.com/developerWorks developerWorks®

Hardware and architecture
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 19 of 39

http://www.ibm.com/legal/copytrade.shtml

without problem. Some of the modems that require software assistance from the PC
operating system will also work with Linux and the list of working modems in this
category is continually increasing. Software-assisted modems that work under Linux
are often called linmodems and there is a site dedicated to these (linmodems.org). If
you have such a modem, you first step should be to check the linmodems site (see
Resources) and download the latest version of the scanModem tool. This will tell you
what is already known about available drivers (if any) for your modem.

If you have an ISA modem, you will need to ensure that ports, IRQs and DMA
channels do not conflict with other devices. See the earlier section BIOS settings for
additional information.

The modems discussed in this section are asynchronous modems. There is another
class of modems, called synchronous modems used for HDLC, SDLC, BSC or
ISDN. Very loosely, we can say that asynchronous transmission is concerned with
transmitting individual bytes of information while synchronous communications is
concerned with transmitting whole blocks of information.

Most Linux communications occurs using the Internet Protocol or IP So a Linux
system will need to run what looks like IP over an asynchronous line which was not
originally designed for block protocols such as IP. The first method of doing this was
called Serial Line Interface Protocol or SLIP. A variant using compressed headers is
called CSLIP. Nowadays, most Internet Service Providers (ISPs) support dialup
connections using Point-to-Point Protocol or PPP.

The Linux Networking-HOWTO and The Network Administrators' Guide available
from the Linux Documentation Project (see Resources) provide information on SLIP,
CSLIP and PPP configuration.

When communicating using a modem, there are a number of settings that you may
need to make on your Linux system. Most importantly, you will set the speed of
communications between your system and the modem. this will usually be higher
than the nominal line speed and is usually set to the maximum supported by your
serial port chipset and your modem. One way to set or view the modem parameters
that will be used by the serial driver is with the setserial program. We illustrate
the setserial command in Listing 13. Note that the -G option prints the output in a
format suitable for use in setting parameters with setserial. In this case, the UART
(Universal Asynchronous Receiver Transmitter) is a buffered 16550 which is a
common type of UART on modern PCs. The speed is set of 115,200 bps which is
also commonly used with this UART and most modern external 56kbps modems.
Note that the default speed on some newer systems may be set as high as
460,800bps. If your modem does not appear to respond, this is probably the first
thing you should check.

Listing 13. The setserial command

[root@attic4 ~]# setserial /dev/ttyS0
/dev/ttyS0, UART: 16550A, Port: 0x03f8, IRQ: 4
[root@attic4 ~]# setserial -G /dev/ttyS0
/dev/ttyS0 uart 16550A port 0x03f8 irq 4 baud_base 115200 spd_normal skip_test

developerWorks® ibm.com/developerWorks

Hardware and architecture
Page 20 of 39 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

One thing to note about setserial is that it does not probe the hardware. All it does is
tell the serial driver what parameters to use, unless you use the autoconfig and
auto_irq parameters. In this case, setserial will ask the kernel to probe the hardware.
See the man pages for setserial for more information about these and other options
of the command.

We will cover networking more in a tutorial for LPI exam 102 (See Resources). In the
meantime, if you wish to set up a PPP connection, there are several excellent tools
to help you do this. The kppp program has a nice GUI and is easy to use. The
wvdial command provides an intelligent command line tool for setting up dial
connections. In addition to these, distributions may have other tools, either
specifically for PPP or dialup connections or as part of a more general network
configuration tool such as system-config-network in Fedora Core 4.

Another aspect of modem communications that is usually under control of the
communications program but may be set or have the default values set on the
modem itself is flow control. This is a way for one end to tell the other end to wait for
a moment while the receiving end clears its data buffers. This may be done in
software by sending XON and XOFF characters. The preferred way, and that used
for PPP connections, is called hardware flow control in which the state of certain
modem signal lines is used to indicate readiness to receive data. The signals used
are Clear to Send or CTS and Ready to Send or RTS, so you will often see this
described as flow control using RTS/CTS or something similar. Figure 4 shows how
the speed and hardware flow control are set using the kppp program.

Figure 4. Configuring modem parameters with kppp

Sound cards

Most personal computers sold today include audio or sound card capabilities.

Sound port (Sound Blaster)

The Creative Labs Sound Blaster series of sound cards have set de facto industry
standards for sound cards. Even though many other brands of excellent sound cards

ibm.com/developerWorks developerWorks®

Hardware and architecture
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 21 of 39

http://www.ibm.com/legal/copytrade.shtml

exist, many of these provide a compatibility mode for one or more of the Sound
Blaster series. The original Sound Blaster card was an 8-bit card that worked in the
original IBM PC. Later 16-bit models for the PC-AT and compatibles used the 16-bit
PC-AT or ISA bus. Today, most of these cards use the PCI bus. Many motherboards
even provide a sound chip with Sound Blaster compatibility on board. Sound devices
may also be attached through USB connections, although we will not cover those
here.

The ports used by an ISA bus Sound Blaster card are 0220-022F, although base
addresses of 240, 260 or 280 were often configurable. Similarly, the IRQ is usually
configurable, with common choices being 2, 5, 7, or 10. The default setting is to use
IRQ 5. The cards could usually be configured to use alternate DMA channels too.

As with all ISA devices, you will need to ensure that ports, IRQs and DMA channels
do not conflict with other devices. See the earlier section BIOS settings for additional
information.

MIDI port (MPU-401)

Many sound cards also have in interface to attach a MIDI (from Musical Instrument
Digital Interface) device. Commonly, this interface emulates the Roland MPU-401.
The standard ports used by the MPU-401 ISA interface are 0200-020F.

As with all ISA devices, you will need to ensure that ports, IRQs and DMA channels
do not conflict with other devices. See the earlier section BIOS settings for additional
information.

Configuring Linux sound support

Modern 2.4 and 2.6 kernels have sound support for a wide variety of sound devices
built in to the kernel, usually as modules. As with other devices, we can use the
pnpdump command for ISA devices, or the lspci command for PCI devices to
display information about the device. Listing 14 shows the output from lspci for an
Intel sound system on a system motherboard.

Listing 14. Using lspci to display sound resources

[root@lyrebird root]# lspci | grep aud
00:1f.5 Multimedia audio controller: Intel Corporation 82801DB/DBL/DBM

(ICH4/ICH4-L/ICH4-M) AC'97 Audio Controller (rev 01)

Kernel modules are the preferred way to provide support for a variety of devices.
Modules need only be loaded for the devices actually present and they may be
unloaded and reloaded without rebooting the Linux system. For 2.4 and earlier
kernels, the module configuration information is stored in /etc/modules.conf. For 2.6
kernels, the kernel module system was redesigned and the information is now stored
in /etc/modprobe.conf. In either case, the lsmod command will format the contents
of /proc/modules and display the status of loaded modules.

Listing 15 shows the contents of /etc/modprobe.conf for a 2.6 kernel and Listing 16

developerWorks® ibm.com/developerWorks

Hardware and architecture
Page 22 of 39 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

shows the output from lsmod as it relates to sound devices on this system.

Listing 15. Sample /etc/modprobe.conf (2.6 kernel)

[root@attic4 ~]# cat /etc/modprobe.conf
alias eth0 e100
alias snd-card-0 snd-intel8x0
install snd-intel8x0 /sbin/modprobe --ignore-install snd-intel8x0 &&\
/usr/sbin/alsactl restore >/dev/null 2>&1 || :
remove snd-intel8x0 { /usr/sbin/alsactl store >/dev/null 2>&1 || : ; }; \
/sbin/modprobe -r --ignore-remove snd-intel8x0
alias usb-controller ehci-hcd
alias usb-controller1 uhci-hcd

Listing 16. Sound related output from lsmod (2.6 kernel)

[root@attic4 ~]# lsmod |egrep '(snd)|(Module)'
Module Size Used by
snd_intel8x0 34689 1
snd_ac97_codec 75961 1 snd_intel8x0
snd_seq_dummy 3653 0
snd_seq_oss 37057 0
snd_seq_midi_event 9153 1 snd_seq_oss
snd_seq 62289 5 snd_seq_dummy,snd_seq_oss,snd_seq_midi_event
snd_seq_device 8781 3 snd_seq_dummy,snd_seq_oss,snd_seq
snd_pcm_oss 51185 0
snd_mixer_oss 17857 1 snd_pcm_oss
snd_pcm 100169 3 snd_intel8x0,snd_ac97_codec,snd_pcm_oss
snd_timer 33605 2 snd_seq,snd_pcm
snd 57157 11 snd_intel8x0,snd_ac97_codec,snd_seq_oss,
snd_seq,snd_seq_device,snd_pcm_oss,snd_mixer_oss,snd_pcm,snd_timer

soundcore 10913 1 snd
snd_page_alloc 9669 2 snd_intel8x0,snd_pcm

Listing 17 shows the contents of /etc/modules.conf for a 2.4 kernel and Listing 18
shows the output from lsmod as it relates to sound devices on this system. Note the
similarities between the modules.conf and modprobe.conf files.

Listing 17. Sample /etc/modules.conf (2.4 kernel)

[root@lyrebird root]# cat /etc/modules.conf
alias eth0 e100
alias usb-controller usb-uhci
alias usb-controller1 ehci-hcd
alias sound-slot-0 i810_audio
post-install sound-slot-0 /bin/aumix-minimal -f /etc/.aumixrc -L >/dev/null 2>&1 || :
pre-remove sound-slot-0 /bin/aumix-minimal -f /etc/.aumixrc -S >/dev/null 2>&1 || :

Listing 18. Sound related output from lsmod (2.4 kernel)

Module Size Used by Not tainted
smbfs 43568 1 (autoclean)
i810_audio 28824 0 (autoclean)
ac97_codec 16840 0 (autoclean) [i810_audio]
soundcore 6436 2 (autoclean) [i810_audio]
st 30788 0 (autoclean) (unused)

Sound support on many 2.4 and earlier systems is provided through the Open
Sound System (OSS) Free drivers. Many systems today use the Advanced Linux

ibm.com/developerWorks developerWorks®

Hardware and architecture
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 23 of 39

http://www.ibm.com/legal/copytrade.shtml

sound architecture or ALSA drivers. The sndconfig utility was created by Red Hat
to assist in configuring ISA PnP sound cards. It also works with PCI sound cards.
This utility may be present on systems that do not use the ALSA drivers, although
modern module support has made it largely unnecessary. The utility will probe for
sound cards, lay a test sound of Linus Torvalds speaking, and then update the
/etc/modules.conf file. Typical operation is shown in Figures 5 and 6.

Figure 5. The sndconfig utility

Figure 6. The sndconfig utility

Section 4. Set up SCSI devices

This section covers material for topic 1.101.4 for the Junior Level Administration
(LPIC-1) exam 101. The topic has a weight of 1.

SCSI overview

developerWorks® ibm.com/developerWorks

Hardware and architecture
Page 24 of 39 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

The Small Computer System Interface, more generally known as SCSI, is an
interface designed for connecting streaming devices such as tapes and block
storage devices such as disks, CD-ROMs, and DVDs. It has also been used for
other devices, such as scanners and printers. SCSI is pronounced "scuzzy". SCSI
was designed to allow multiple devices on the bus. One device, called the controller
has responsibility for managing the bus. SCSI devices may be either internal or
external.

There have been three major releases of SCSI standards from the American
National Standards Institute (ANSI).

SCSI
is the original standard (X3.131-1986), now usually called SCSI-1. This arose
from efforts by Shugart Associates to get a standard interface for disk devices.
The standard supported up to 8 devices on a cable. SCSI-1 uses passive
termination (more on this below). This standard has now been withdrawn,
although devices may still work on current SCSI cables assuming appropriate
termination. The data interface was 8 bits parallel with a maximum speed of 5
MBps (megabytes/sec). The SCSI standard was designed for disks, but is very
flexible and was used for other devices, notably scanners and slower devices
such as Zip. FConnection used a 50 connector cable, originally with a
Centronics connector, but later with a 50-pin D-shell connector, similar to a
DB-25 RS-232 serial connector,

SCSI-2
was approved as ANSI standard X3.131-1994 in 1994. This revision doubled
the speed of the bus to 10MBps as well as introducing so-called wide or 16-bit
data transfers. A 16-bit bus running at 10MBps can transfer 20MBps of data.
The 50-connector cable was used for 8-bit or narrow SCSI devices, while the
newer wide devices used a 68-pin cable. Higher density cables were also
introduced, allowing smaller and cheaper connectors. SCSI-2 also
standardized the SCSI command set and introduced differential signaling to
improve quality at higher speeds. This was later called High Voltage Differential
or HVD signaling. HVD has active termination requirements. It is possible to
mix 8-bit and 16-bit devices on a cable with appropriate care in termination.
SCSI-2 supports up to 16 devices on a cable of which at most 8 may be
narrow.

SCSI-3
is a set of standards rather than a single standard. This allows standards to be
enhanced for technology areas that are fast-moving, while avoiding the need to
revise standards for stable technology. The overall architecture is defined in
ANSI standard X3.270-1996 which is also known as the SCSI-3 Architecture
Model or SAM. The earlier SCSI standards are now embodied in the SCSI
Parallel Interface or SPI standards. Speed was increased again and current
16-bit devices are capable of up to 320MBps data transfers at a bus speed of
160MBps.
SCSI-3 introduced Fiber Channel SCSI with support for up to 126 devices per
bus allowing connection over 1GBps or 2GBps fiber channel links at distances
up to several kilometers. This helps to alleviate inherent limitations involved

ibm.com/developerWorks developerWorks®

Hardware and architecture
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 25 of 39

http://www.ibm.com/legal/copytrade.shtml

with the use of standard SCSI cabling. Another notable introduction was Single
Connector Attachment or SCA which is only used for wide (16-bit) devices.
SCA is an 80-pin connector which incorporates the pins from the 68-pin
connector as well as power and some additional pins. SCA is designed to allow
devices to be safely hot-plugged in a running system, and is frequently used in
devices implementing Redundant Array of Independent disks or RAID storage
systems as well as network attached storage and server racks.

We mentioned termination above without saying much about it. The electrical
specifications for a SCSI bus require each end of the bus to be properly terminated.
You must use the appropriate type of terminator for your bus; passive, HVD or LVD.
If you mix wide and narrow devices on a bus be aware that the termination for
narrow devices may occur in a different place to the termination for wide devices. If
the controller is controlling only an internal bus or only an external bus, it will usually
provide termination, either automatically or via BIOS configuration. Check the
manuals for your particular controller. If the controller is controlling both an internal
and an external segment, then it should normally not provide termination.

Some devices are capable of providing termination, either via a switch, or other
means such as a jumper. Again, consult the manual for your device. Otherwise,
termination is usually accomplished with a terminator block which is plugged into the
cable. Whichever type of termination you use, be particularly careful if you mix wide
and narrow devices on the same bus, as the narrow termination may occur at a
different place on the cable than the wide termination.

SCSI Ids

By now, you may be wondering how the system manages many devices on one
cable. Every device, including the controller, has an ID, represented by a number.
For narrow (8-bit) SCSI, the ID numbers range from 0 through 7. Wide SCSI adds
numbers 8 through 15. Narrow devices may only use ID numbers 0 through 7 while
wide devices may use 0 through 15. The controller is generally assigned ID 7. The
ID for a devices may be set via jumpers, switches or dials on the device, or through
software. Devices using the Single Connector Attachment (SCA) usually have an ID
assigned automatically as these devices may be hot-plugged.

Devices on a SCSI bus have a priority. Priority for narrow devices runs from 0
(lowest) through 7 (highest), so a controller at address 7 has highest priority. The
extra IDS for wide SCSI have priority 8 (lowest) through 15) highest, with 15 having
lower priority than 0. Thus, the overall priority sequence is 8, 9, 10, 11, 12, 13, 14,
15, 0, 1, 2, 3, 4, 5, 6, 7. Slower devices and devices that cannot tolerate delays
(such as CD or DVD recorders) should be given high priority IDs to ensure they get
sufficient service.

Devices such as RAID controllers may present a single ID to the bus but may
incorporate several disks. In addition to the ID, the SCSI addressing allows a Logical
Unit Number or LUN. Tapes and single disk drives either do not report a LUN or

developerWorks® ibm.com/developerWorks

Hardware and architecture
Page 26 of 39 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

report an LUN of 0.

A SCSI adapter may support more than one SCSI cable or channel, and there may
be multiple SCSI adapters in a system. The full ID of a device therefore consists of
an adapter number, a channel number, a device ID and a LUN.

Devices such as CD recorders using ide-scsi emulation and USB storage devices
will also appear to have their own adapter.

Linux names and files for SCSI devices

Back in the BIOS section on IDE drives we discussed the names assigned by Linux
to the various IDE devices, such as /dev/hda and /dev/hdc. This is simple for an IDE
controller which can support either one or two hard drives. The secondary IDE drive
on the second adapter is always /dev/hdd, even if the only other hard drive is the
primary drive on the first adapter (/dev/hda). With SCSI the situation becomes more
complicated as we may mix hard drives, tapes, CD and DVD drives, as well as other
devices on a SCSI cable.

Linux will assign device names as devices are detected during boot. Thus, the first
hard drive on the first channel of the first adapter will become /dev/sda, the second
/dev/sdb, and so on. The first tape drive will be /dev/st0, the second /dev/st1, and so
on. The first CD device will become /dev/sr0 or /dev/scd0 and the second /dev/sr1 or
/dev/scd1. Devices using SCSI emulation, such as USB storage devices and (prior
to the 2.6 kernel) IDE CD or DVD drives will also be allocated names in this name
space.

While we won't cover all the intricacies of SCSI naming here, it is most important to
know that this numbering is redone at each boot. If you add or remove a SCSI hard
drive, then all previously higher drives will have a different device name next time
you boot. The same goes for other device types. We will learn more about partitions,
labels and file systems in another tutorial in this series, but for now we will warn you
about one thing. Since disks can have up to 15 partitions on them, each with a name
tied to the device name (for example, /dev/sda1, /dev/sda2 through /dev/sda15), this
can cause havoc when your system attempts to mount the filesystems. Plan very
carefully when you add or remove SCSI devices and use disk labels rather than
device names for SCSI disks whenever possible.

We introduced the /proc file system in the section on BIOS settings. The /proc file
system also contains information about SCSI devices. Listing 19 shows the contents
of /proc/scsi/scsi on a system with two SCSI devices, a hard drive with ID 0 and a
controller with ID 8.

Listing 19. /proc/scsi/scsi

[root@waratah root]# cat /proc/scsi/scsi
Attached devices:
Host: scsi1 Channel: 00 Id: 00 Lun: 00
Vendor: IBM-PSG Model: DPSS-336950M F Rev: S94S
Type: Direct-Access ANSI SCSI revision: 03

Host: scsi1 Channel: 00 Id: 08 Lun: 00
Vendor: IBM Model: YGLv3 S2 Rev: 0

ibm.com/developerWorks developerWorks®

Hardware and architecture
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 27 of 39

http://www.ibm.com/legal/copytrade.shtml

Type: Processor ANSI SCSI revision: 02

If you want to know which real device corresponds to say /dev/sda, you can use the
scsi_info command. Listing 20 confirms that our first (and only) SCSI hard drive
is /dev/sda.

Listing 20. The scsi_info command

[root@waratah root]# scsi_info /dev/sda
SCSI_ID="0,0,0"
MODEL="IBM-PSG DPSS-336950M F"
FW_REV="S94S"

However, note that some systems, such as Fedora Core 2, do not include the
scsi_info command (which is a part of the kernel-pcmcia-cs package).

More recent systems have switched to using the SCSI Generic or sg driver. When
the sg driver is used, you will find additional information under the /proc/scsi/sg
subtree in your filesystem. You will also have devices such as /dev/sg0, /dev/sg1.
/dev/sg2 and so on. These generic devices usually correspond to some other device
type such as a hard disk like /dev/sda or a tape like /dev/st0.

The sg3_utils package contains a number of utilities for manipulating and
interrogating aspects of the SCSI subsystem. In particular, the sg_map command
will provide a map between the sg name and another device name if one exists.
Note that scanners will not have another device name, only a generic one. Listing 21
shows the output of sg_map on a system with an IDE optical drive that uses SCSI
emulation and two USB drives.

Listing 21. The sg_map command

[root@lyrebird root]# sg_map
/dev/sg0 /dev/scd0
/dev/sg1 /dev/sda
/dev/sg2 /dev/sdb

The sg utility corresponding to scsi_info is sginfo. You can use either the generic
device name or the more familiar name with sginfo. Listing 22 shows the output of
sginfo for the three devices of Listing 21. Notice that sginfo does not provide
information for /dev/sg1, although as shown in the listing the scsi_info command
does show it as a USB memory key. In this case, the device has been unplugged
from the system. Information about it is retained (and can be found in
/proc/scsi/scsi). the sginfo command interrogates the device for the information while
the scsi_info will use the retained information. Thus sginfo must be run as root while
scsi_info need not be run as root, although non root users may have to specify the
full path of /sbin/scsi_info.

Listing 22. The sginfo command

[root@lyrebird root]# sginfo /dev/scd0

developerWorks® ibm.com/developerWorks

Hardware and architecture
Page 28 of 39 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

INQUIRY response (cmd: 0x12)

Device Type 5
Vendor: SONY
Product: DVD RW DRU-700A
Revision level: VY08

[root@lyrebird root]# sginfo /dev/sg1
INQUIRY reponse (cmd: 0x12)

Device Type 0
Vendor:
Product:
Revision level:

[root@lyrebird root]# sginfo /dev/sg2
INQUIRY reponse (cmd: 0x12)

Device Type 0
Vendor: WD
Product: 2500JB External
Revision level: 0411

[root@lyrebird root]# scsi_info /dev/sg1
SCSI_ID="0,0,0"
MODEL=" USB DISK 12X"
FW_REV="2.00"

SCSI BIOS and boot sequence

While SCSI is standard on most servers, most desktop and laptop computers do not
normally include SCSI support as standard. Such systems will normally boot from a
floppy disk, a CD or DVD drive or the first IDE hard drive in the system. The boot
order is usually configurable in BIOS setup screens such as we saw in the section
BIOS settings, and sometimes dynamically by pressing a key or key combination
during system startup.

The BIOS Boot Specification (see Resources) defines a method for add on cards
such as SCSI cards to present a message during startup and have BIOS on the card
invoked for configuration purposes. SCSI cards normally use this to allow
configuration of the SCSI subsystem controlled by the card. For example, an
Adaptec AHA-2930U2 card will present a message

Press <Ctrl><A> for SCSISelect (TM) Utility!

allowing a user to press the ctrl and A keys together to enter the adapter BIOS.
Other cards will have a similar process for entering the card BIOS to set up the card.

Once in the card BIOS, you will have screens that typically allow you to set the SCSI
controller address (typically 7), the SCSI boot device (usually ID 0), the bus speed
and whether the controller should provide termination or not. Some older cards may
require that the boot device be ID 0, but most modern cards will allow you to choose
any device. You may, and probably will, have other options, such as the ability to
format a hard disk. See your card manufacturer's documentation for details. Once
you have set up the SCSI view of the bus, you will usually still have to tell your PC
BIOS to boot from the SCSI disk rather than an IDE drive. Consult your system
reference manual to determine whether you can boot from a non-IDE drive and how

ibm.com/developerWorks developerWorks®

Hardware and architecture
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 29 of 39

http://www.ibm.com/legal/copytrade.shtml

to set it if you can.

Section 5. PC expansion cards

This section covers material for topic 1.101.5 for the Junior Level Administration
(LPIC-1) exam 101. The topic has a weight of 1.

We covered the material that you will need to know for this section when we
discussed BIOS settings. You should review the discussion of DMA, IRQs, ports and
the different kinds of buses and adapters in the section Buses, ports, IRQs, and
DMA so you understand the contents of the /proc/dma, /proc/interrupts, and
/proc/ioports files and how to use them to determine any conflicts. Review the
material on /proc/pci and the lspci command. Also review the material in the Plug
and play section for information about ISA and Plug and Play cards. There you will
find information about isapnp and pnpdump.

Section 6. Communication devices

This section covers material for topic 1.101.6 for the Junior Level Administration
(LPIC-1) exam 101. The topic has a weight of 1.

This section covers a variety of communications devices, including modems, ISDN
adapters, and DSL switches. This material for this section falls into two general
categories:

1. Selecting and installing your communications device, and

2. Communicating with your device

Selecting your communications device is like selecting any other device for your
system in that it needs to match your bus type (PCI or ISA) and you need Linux
support for the device. You should review the discussion of DMA, IRQs, ports and
the different kinds of buses and adapters in the section Buses, ports, IRQs, and
DMA so you understand the contents of the /proc/dma, /proc/interrupts, and
/proc/ioports files and how to use them to determine any conflicts. Review the
material on /proc/pci and the lspci command. Also review the material in the Plug
and play section for information about ISA and Plug and Play cards. There you will
find information about isapnp and pnpdump.

The Linux kernel supports more and more devices with every release, so your first

developerWorks® ibm.com/developerWorks

Hardware and architecture
Page 30 of 39 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

check for support should be with the distribution you are already using. If the support
is already installed, your distribution may have a utility to help you configure it.
Figure 7 illustrates the Fedora Core 4 network configuration tool. You can see that
an ethernet connection has been configured (and is active) and a backup dial
connection using PPP has also been configured. The system already supports that
addition of ISDN, Token Ring, wireless and xDSL connections.

Figure 7. Fedora Core network configuration utility

If you have to install drivers for a communications device, check first to see if the
required drivers are a part of your distribution that has not yet been installed and
install if so. Otherwise, you should try and find a driver package that has already
been built for your system. Your final choice is to build your own driver package from
source. We will cover building packages in the tutorial for LPI Exam 101 Topic 102.
(see Resources).

For an ISDN connection, you will also need the synchronous PPP driver, as the
normal one used with asynchronous modems is designed for character mode
transmission rather than block mode. As we mentioned in the section on Modems
we will discuss setting up connections more in a tutorial for LPI exam 102 (See
Resources).

DSL connections may be one of several types. Some provide an ethernet port that is
bridged to the ISP network. Authentication is usually done in this case using your

ibm.com/developerWorks developerWorks®

Hardware and architecture
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 31 of 39

http://www.ibm.com/legal/copytrade.shtml

computer's ethernet MAC address. If you attach a router (or a different computer) to
the DSL modem, you may need to clone the MAC address of the computer that was
originally connected in order for the connection to work. More commonly, an ISP will
use Point-to-Point Protocol over Ethernet or PPPoE. In this case, you are provided
with a username and password to use when establishing the connection. In this
case, if you use a router, you will usually configure this address into the router and
your computer will simply use a standard ethernet connection. Rarely, you may have
a PPPoA or PPP over ATM connection.

Wireless connections may require you to know the name of the network you are
connecting to. This is called a Service Set Identifier or SSID. If the network uses
encryption such as Wired Equivalent Privacy or WEP or WiFi Protected Access or
WPA you will need to configure your connection appropriately.

Section 7. USB devices

This section covers material for topic 1.101.7 for the Junior Level Administration
(LPIC-1) exam 101. The topic has a weight of 1.

USB overview

In this section we will look at Linux support for Universal Serial Bus or USB devices.
USB was developed by a consortium of companies with the goal of providing a
single, simple bus for attachment of peripherals. In the section on BIOS settings, we
saw the complexities of managing ports, IRQs and DMA resources in ISA bus
machines. The USB design allows devices to be hot-plugged and uses standard
connectors for connecting devices. USB devices include keyboards, mice, printers,
scanners, hard drives, flash memory drives, cameras, modems, ethernet adapters,
and speakers. The list keeps growing. Current Linux support is quite comprehensive,
although some devices require special drivers and others, particularly printers, may
not be supported or may be only partially supported.

A computer system may provide one or more controllers or hubs. to which either a
USB device or another (external) hub may be connected. A hub can support up to 7
devices, some or all of which may be additional hubs. The hub in the system is
called the root hub. Each such star topology can support up to 127 hubs or devices.

Note: Frequently, we speak of a USB port which refers to the USB capability in a
computer and the connecting socket (compare with serial port or parallel port) rather
than the internal port addresses used by the device.

The USB system is a layered system.

1. The Bus Interface layer provides physical, signaling, and packet
connectivity between hosts and devices, providing data transfer between

developerWorks® ibm.com/developerWorks

Hardware and architecture
Page 32 of 39 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

the host and devices.

2. The Device layer is used by the system software to do generic USB
operations with a device over the bus. This allows the host to determine
characteristics of the device, including device class, vendor name, device
name, power requirements, and many capabilities such as device speed
or USB level supported.

3. The Function layer provides additional capabilities that are specific to the
device. Matched host and device software layers permit use
device-specific functions.

The earlier USB specifications (1.0 and 1.1) support speeds up to 12Mbps (megabits
per second). Devices conforming to this specification are relatively low speed
devices, such as printers, mice, keyboards, scanners, and modems. The newer USB
2.0 specification supports speeds up to 480Mbps which is adequate for hard drives
and external CD or DVD drives. Some USB 2.0 devices are backwards compatible
to allow use on older systems, although not all faster devices are backwards
compatible. If your computer does not have USB 2.0 support built in, PCI cards (or
PC cards for laptops) are available to provide one or more USB 2.0 ports.

The USB cable is a thin, 4-wire cable with two signal lines plus power and ground.
The end plugged into a hub has a flat rectangular connector (called an A connector)
while the end plugged into a device or downstream hub has a small more square,
connector (the B connector). Several different mini-B connectors exist for connecting
small devices such as cameras to a computer. USB devices and hubs may draw
power from the USB bus or may be self powered.

Linux USB module support

USB is now fairly well supported in Linux. Much of the development has occurred in
the 2.6 kernel tree. A lot has been backported to 2.4 kernels, with some support
even in 2.2 kernels. Linux supports USB 2.0 as well as the earlier specifications.
Because of the hot-pluggable nature of USB, support is usually provided through
kernel modules which can be loaded or unloaded as necessary. For this tutorial we
will assume that the modules you need for your distribution are either available or
already installed. If you need to compile your own kernel, refer to the tutorial for
Exam 201 Topic 201 (see Resources).

After you have ascertained that your computer has USB ports, you may check what
your Linux system found using the lspci command as shown in Listing 23. We
have filtered the output to show just USB related devices.

Listing 23. lspci output for USB devices

[root@lyrebird root]# lspci | grep -i usb
00:1d.0 USB Controller: Intel Corporation 82801DB/DBL/DBM

(ICH4/ICH4-L/ICH4-M) USB UHCI Controller #1 (rev 01)
00:1d.1 USB Controller: Intel Corporation 82801DB/DBL/DBM

ibm.com/developerWorks developerWorks®

Hardware and architecture
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 33 of 39

http://www.ibm.com/legal/copytrade.shtml

(ICH4/ICH4-L/ICH4-M) USB UHCI Controller #2 (rev 01)
00:1d.2 USB Controller: Intel Corporation 82801DB/DBL/DBM

(ICH4/ICH4-L/ICH4-M) USB UHCI Controller #3 (rev 01)
00:1d.7 USB Controller: Intel Corporation 82801DB/DBM

(ICH4/ICH4-M) USB2 EHCI Controller (rev 01)

You will notice that there are four USB controllers in this system. The UHCI and
EHCI fields indicate the driver module required to support the controller. The correct
USB 1.1 driver depends on the chipset used in your controller. USB 2.0 requires the
EHCI driver plus a USB 1.1 driver. See Table 5.

Table 5. Linux USB drivers
Table 5. Linux USB drivers

Driver Chipset

EHCI USB 2.0 Support -
requires one of UHCI,
OHCI or JE

UHCI Intel and VIA chipsets

JE This is an alternate to
UHCI for 2.4 kernels. If
UHCI does not work,
and you have an Intel
or VIA chipset, try JE

OHCI Compaq, most
PowerMacs, iMacs, and
PowerBooks, OPTi,
SiS, ALi

We came across the lsmod command and the module configuration files
/etc/modules.conf (2.4 kernel) and /etc/modprobe.conf (2.6 kernel in our earlier
discussion of sound support. Listing 24 shows some of the modules associated with
USB devices that are loaded on the same system as Listing 23. This system has a
USB mouse

Listing 24. Using lsmod to show loaded USB modules

[root@lyrebird root]# lsmod | egrep 'usb|hci|hid|mouse|Module'
Module Size Used by Not tainted
usbserial 23420 0 (autoclean) (unused)
mousedev 5524 1
hid 22244 0 (unused)
input 5888 0 [keybdev mousedev hid]
ehci-hcd 20008 0 (unused)
usb-uhci 25740 0 (unused)
usbcore 77376 1 [usbserial hid ehci-hcd usb-uhci]

Note particularly that the usbcore module is used by all the other USB modules as
well as the hid (human interface device) module.

Displaying USB information

developerWorks® ibm.com/developerWorks

Hardware and architecture
Page 34 of 39 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

So now we know something of the modules that support USB, how do we find out
what USB devices are attached to our system? The information is to be found in the
/proc/bus/usb part of the file system. The file /proc/bus/usb/devices contains
summary information for currently attached USB devices. a partial listing for our
system is shown in Listing 25.

Listing 25. Partial contents of /proc/bus/usb/devices

[root@lyrebird root]# cat /proc/bus/usb/devices
T: Bus=04 Lev=00 Prnt=00 Port=00 Cnt=00 Dev#= 1 Spd=480 MxCh= 6
B: Alloc= 0/800 us (0%), #Int= 0, #Iso= 0
D: Ver= 2.00 Cls=09(hub) Sub=00 Prot=01 MxPS= 8 #Cfgs= 1
P: Vendor=0000 ProdID=0000 Rev= 2.04
S: Manufacturer=Linux 2.4.21-32.0.1.EL ehci-hcd
S: Product=Intel Corp. 82801DB USB2
S: SerialNumber=00:1d.7
C:* #Ifs= 1 Cfg#= 1 Atr=40 MxPwr= 0mA
I: If#= 0 Alt= 0 #EPs= 1 Cls=09(hub) Sub=00 Prot=00 Driver=hub
E: Ad=81(I) Atr=03(Int.) MxPS= 2 Ivl=256ms
T: Bus=03 Lev=00 Prnt=00 Port=00 Cnt=00 Dev#= 1 Spd=12 MxCh= 2
B: Alloc= 0/900 us (0%), #Int= 0, #Iso= 0
D: Ver= 1.00 Cls=09(hub) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1
P: Vendor=0000 ProdID=0000 Rev= 0.00
S: Product=USB UHCI Root Hub
S: SerialNumber=1840
C:* #Ifs= 1 Cfg#= 1 Atr=40 MxPwr= 0mA
I: If#= 0 Alt= 0 #EPs= 1 Cls=09(hub) Sub=00 Prot=00 Driver=hub
E: Ad=81(I) Atr=03(Int.) MxPS= 8 Ivl=255ms

The Spd=480 that we've highlighted above indicates a USB 2.0 bus while the
Spd=12 indicates a USB 1.1 (or possibly USB 1.0) device. Further down this listing
our mouse is shown as having Spd=1.5. One and a half megabits per second should
be fast enough for most mice.

As with other things that we have seen in the /proc file system, you will be pleased to
know that there is a lsusb command to help you with display of this information. In
particular, you can get a tree view of your USB devices by using the -t option. This
shows their attachment hierarchy. You can use the -d option for information about a
specific device if your system gives an abbreviated display using the -t option. The
-v option produces verbose output which interprets many of the fields that we saw in
Listing 25. For Listing 26, we've plugged in an external hub, a Nikon digital camera,
a USB memory key and an external USB 2.00 hard drive and shown you some of
the output.

Listing 26. Using the lsusb command

[root@lyrebird root]# lsusb -t
Bus# 4
`-Dev# 1 Vendor 0x0000 Product 0x0000
|-Dev# 2 Vendor 0x0409 Product 0x0059
| |-Dev# 8 Vendor 0x04b0 Product 0x0108
| |-Dev# 4 Vendor 0x0d7d Product 0x1400
| `-Dev# 7 Vendor 0x1058 Product 0x0401
`-Dev# 3 Vendor 0x07d0 Product 0x1202

Bus# 3
`-Dev# 1 Vendor 0x0000 Product 0x0000
Bus# 2
`-Dev# 1 Vendor 0x0000 Product 0x0000
Bus# 1

ibm.com/developerWorks developerWorks®

Hardware and architecture
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 35 of 39

http://www.ibm.com/legal/copytrade.shtml

`-Dev# 1 Vendor 0x0000 Product 0x0000
`-Dev# 2 Vendor 0x1241 Product 0x1111

[root@lyrebird root]# lsusb -d 0x0409:0x0059
Bus 004 Device 002: ID 0409:0059 NEC Corp. HighSpeed Hub
[root@lyrebird root]# lsusb -d 0x04b0:0x0108
Bus 004 Device 008: ID 04b0:0108 Nikon Corp. Coolpix 2500
[root@lyrebird root]# lsusb -d 0x0d7d:0x1400
Bus 004 Device 004: ID 0d7d:1400 Phison Electronics Corp.
[root@lyrebird root]# lsusb -d 0x1058:0x0401
Bus 004 Device 007: ID 1058:0401 Western Digital Technologies, Inc.
[root@lyrebird root]# lsusb -d 0x07d0:0x1202
Bus 004 Device 003: ID 07d0:1202 Dazzle
[root@lyrebird root]# lsusb -d 0x1241:0x1111
Bus 001 Device 002: ID 1241:1111 Belkin Mouse
[root@lyrebird root]#

Listing 27 shows part of the verbose output available from the lsusb command. This
is for a memory key. Note that the device has indicated its maximum power
requirement (200mA). Note that this device will be treated as a SCSI device. Use
either the dmesg command or the fdisk -l command to find out which SCSI
device is mapped to a device. Most cameras equipped with USB ports, as well as
card readers, flash devices and hard drives are treated as storage class devices and
handled as SCSI devices in Linux. Many cameras come with Windows programs to
help upload and pictures from the camera. In Linux you can simply mount the SCSI
device representing the camera and copy the pictures to your hard drive where you
can edit them with a program such as the GNU Image Manipulation Program (the
GIMP). You can even erase files from the memory card or write files to it from Linux,
allowing your camera to be used as an exotic replacement for a floppy disk.

Listing 27. Verbose output (partial) from lsusb command

[root@lyrebird root]# lsusb -vd 0x0d7d:0x1400

Bus 004 Device 004: ID 0d7d:1400 Phison Electronics Corp.
Device Descriptor:
bLength 18
bDescriptorType 1
bcdUSB 2.00
bDeviceClass 0 (Defined at Interface level)
bDeviceSubClass 0
bDeviceProtocol 0
bMaxPacketSize0 64
idVendor 0x0d7d Phison Electronics Corp.
idProduct 0x1400
bcdDevice 0.02
iManufacturer 1
iProduct 2 USB DISK 12X
iSerial 3 0743112A0083
bNumConfigurations 1
Configuration Descriptor:

bLength 9
bDescriptorType 2
wTotalLength 32
bNumInterfaces 1
bConfigurationValue 1
iConfiguration 0
bmAttributes 0x80
MaxPower 200mA
Interface Descriptor:
bLength 9
bDescriptorType 4
bInterfaceNumber 0
bAlternateSetting 0
bNumEndpoints 2
bInterfaceClass 8 Mass Storage

developerWorks® ibm.com/developerWorks

Hardware and architecture
Page 36 of 39 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

bInterfaceSubClass 6 SCSI
bInterfaceProtocol 80 Bulk (Zip)
iInterface 0
...

One more piece of information that is available to us now that we know the bus and
device ids of your USB devices from Listing 26 is a way to determine which modules
are required for a particular device. We'll illustrate a couple in Listing 28.

Listing 27. Verbose output (partial) from lsusb command

[root@lyrebird root]# usbmodules --device /proc/bus/usb/004/003
usb-storage
[root@lyrebird root]# usbmodules --device /proc/bus/usb/004/007
usb-storage
hid

Hot plugging

There are two commands that your system might use to handle hot plugging of USB
devices, usbmgr and hotplug. According to which you are using, you will find
configuration files in the /etc/usbmgr or /etc/hotplug directories. Newer systems are
more likely to have hotplug.

Hot plugging for USB (and also PC cards) involves users plugging in devices while a
system is running. The system then has to:

• Determine the device type and find a driver to run it

• Bind the driver to the device

• Notify other subsystems about the device. This allows disks to be
mounted or print queues to be added for example.

ibm.com/developerWorks developerWorks®

Hardware and architecture
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 37 of 39

http://www.ibm.com/legal/copytrade.shtml

Resources

Learn

• Review the entire LPI exam prep tutorial series on developerWorks to learn
Linux fundamentals and prepare for system administrator certification.

• At the LPIC Program, find task lists, sample questions, and detailed objectives
for the three levels of the Linux Professional Institute's Linux system
administration certification.

• See the Reference Guide - Hard Disk Drives for a comprehensive history of
hard drives. The Hard Disk Interfaces and Configuration section includes
information on SCSI and a comparison of IDE/ATA and SCSI interfaces.

• The Linux documentation project is the home of lots of useful Linux
documentation, including:

• Large Disk HOWTO on disk geometry, the 1024 cylinder limit, and other
limits for disks

• Linux 2.4 SCSI subsystem HOWTO, covering SCSI on Linux, including
device naming.

• Linux SCSI Generic (sg) HOWTO on the new generic SCSI driver and
utilities on Linux

• The Network Administrators' Guide for networking on Linux

• Linux Networking-HOWTO on SLIP, CSLIP, and PPP

• Linux PPP HOWTO on setting up PPP on Linux

• Find more resources for Linux developers in thedeveloperWorks Linux zone.

Get products and technologies

• Order the SEK for Linux, a two-DVD set containing the latest IBM trial software
for Linux from DB2®, Lotus®, Rational®, Tivoli®, and WebSphere®.

• Build your next development project on Linux with IBM trial software, available
for download directly from developerWorks.

Discuss

• Participate in the discussion forum for this content.

• Get involved in the developerWorks community by participating in
developerWorks blogs.

About the author

Ian Shields

developerWorks® ibm.com/developerWorks

Hardware and architecture
Page 38 of 39 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/developerworks/linux/lpi/index.html?S_TACT=105AGX03&S_CMP=tut
http://www.lpi.org/en/lpic.html
http://www.storagereview.com/guide2000/ref/hdd/index.html
http://www.storagereview.com/guide2000/ref/hdd/if/index.html
http://www.tldp.org
http://www.tldp.org/HOWTO/Large-Disk-HOWTO.html
http://www.tldp.org/HOWTO/SCSI-2.4-HOWTO/index.html
http://tldp.org/HOWTO/SCSI-Generic-HOWTO/
http://www.tldp.org/LDP/nag/node1.html
http://tldp.org/HOWTO/NET3-4-HOWTO.html
http://www.tldp.org/HOWTO/PPP-HOWTO/
http://www.ibm.com/developerworks/linux/
http://www.ibm.com/developerworks/offers/sek/?S_TACT=105AGX03
http://www.ibm.com/developerworks/downloads/?S_TACT=105AGX03
http://www.ibm.com/developerworks/forums/dw_forum.jsp?forum=160&cat=5
http://www.ibm.com/developerworks/blogs/
http://www.ibm.com/legal/copytrade.shtml

Ian Shields works on a multitude of Linux projects for the developerWorks Linux
zone. He is a Senior Programmer at IBM at the Research Triangle Park, NC. He
joined IBM in Canberra, Australia, as a Systems Engineer in 1973, and has since
worked on communications systems and pervasive computing in Montreal, Canada,
and RTP, NC. He has several patents and has published several papers. His
undergraduate degree is in pure mathematics and philosophy from the Australian
National University. He has an M.S. and Ph.D. in computer science from North
Carolina State University. You can contact Ian at ishields@us.ibm.com.

ibm.com/developerWorks developerWorks®

Hardware and architecture
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 39 of 39

mailto:ishields@us.ibm.com?subject=LPIC-1 exam 101 topic 101
http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	Before you start
	About this series
	About this tutorial
	Prerequisites

	BIOS settings
	System and BIOS overview
	Buses, ports, IRQs,
					and DMA.
	Plug and play
	IDE Hard drives
	Legacy peripherals
	Keyboard and mouse

	Modems and sound cards
	Modems
	Sound cards

	Set up SCSI devices
	SCSI overview
	SCSI Ids
	SCSI BIOS and boot sequence

	PC expansion cards
	Communication devices
	USB devices
	USB overview
	Linux USB module support
	Displaying USB information
	Hot plugging

	Resources
	About the author

