Atomic Physics – Sample Quiz (2024/2025)

 $30 \ {\rm December} \ 2024$

1. Calculate the temperature of a blackbody if the spectral distribution peaks at (a) gamma rays, $\lambda = 1.50 \times 10^{-14} \,\mathrm{m}$; (b) x rays, 1.50 nm; (c) red light, 640 nm; (d) broadcast television waves, $\lambda = 1.00 \,\mathrm{m}$; and (e) AM radio waves, $\lambda = 204 \,\mathrm{m}$.

http://kfe.fjfi.cvut.cz/ sinor/tmp/edu/f7ambaf/mp/mp3.pdf, Problem 14 (page 37) Solution: (a) $T = 2.898 \times 10^{-3} \text{ m.K} / \lambda_{max} = 2.898 \times 10^{-3} \text{ m.K} / (1.50 \times 10^{-14} \text{ m}) = \dots$

2. What is the maximum wavelength of incident light that can produce photoelectrons from silver $(\phi = 4.64 \,\mathrm{eV})$? What will be the maximum kinetic energy of the photoelectrons if the wavelength is halved?

http://kfe.fjfi.cvut.cz/ sinor/tmp/edu/f7ambaf/mp/mp3.pdf, Problem 29 (page 38) Solution: $E = hc/\lambda_{max} = \phi \Rightarrow \lambda_{max} = hc/\phi = 1240 \text{ eV. nm}/(4.64 \text{ eV}) = 267 \text{ nm}.$ $E = hc/(\lambda_{max}/2) = \phi + E_{kin} \Rightarrow E_{kin} = 2 hc/\lambda_{max} - \phi = \phi.$

3. What is the binding energy of the electron in the ground state of (a) deuterium, (b) He⁺, and (c) Be⁺⁺⁺?

http://kfe.fjfi.cvut.cz/ sinor/tmp/edu/f7ambaf/mp/mp4.pdf, Problem 25 (page 32) Solution: $E_n = -E_0 Z^2/n^2$, n = 1, (a) Z = 1, (b) Z = 2, (c) Z = 4.

4. We learned that a particle (ideal gas) in thermal equilibrium with its surroundings has a kinetic energy of 3kT/2. Calculate the de Broglie wavelength for (a) a neutron at room temperature (300 K) and (b) a "cold" neutron at 77 K (liquid nitrogen).

http://kfe.fjfi.cvut.cz/ sinor/tmp/edu/f7ambaf/mp/mp5.pdf, Example 5.3 (page 14)

- 5. A person can perceive yellow light with the naked eye when the power being delivered to the retina is 1.8×10^{-18} W. The wavelength of yellow light is about 600 nm. At this power, how many photons fall on the retina each second?
- 6. X-rays with a wavelength of 0.1 nm are scattered on graphite. The scattered radiation is observed perpendicular to the direction of the incident x-rays.
 - a) How large is the Compton shift $\Delta \lambda$?
 - b) How large is the kinetic energy of the ejected electron?
 - c) What fraction of its original energy does the photon lose?

d) How large is the corresponding fraction of energy lost by a photon with a wavelength $\lambda = 0.01$ nm if it is deflected through 90° by Compton scattering?

7. Give the electron configuration and the nl value of the electrons in the subshells for the ${}_{35}Br$. Solution: $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^5$