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Last Lecture

• Instrumentation

– CT Generations

– X-ray source and collimation

– CT detectors  

• Image Formation

– Line integrals

– Parallel Ray Reconstruction

• Radon transform

• Back projection

• Filtered backprojection

• Convolution backprojection

• Implementation issues



Yao Wang, NYU-Poly EL5823/BE6203: CT-2 3

This Lecture

• Review of Parallel Ray Projection and Reconstruction

• Practical implementation with samples

• Fan Beam Reconstruction

• Signal to Noise in CT
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Review: Projection Slice Theorem

• Projection Slice theorem

– The Fourier Transform of a projection at angle θ is a line in the Fourier 
transform of the image  at the same angle.



Yao Wang, NYU-Poly EL5823/BE6203: CT-2 5

Reconstruction Algorithm for Parallel 
Projections

• Backprojection:
– Backprojection of each projection

– Sum

• Filtered backprojection:
– FT of each projection

– Filtering each projection in frequency domain

– Inverse FT

– Backprojection

– Sum

• Convolution backprojection
– Convolve each projection with the ramp filter

– Backprojection

– Sum



Yao Wang, NYU-Poly EL5823/BE6203: CT-2 6

Practical Implementation

• Projections g(l, θ) are only measured at finite intervals

– l=nτ; 

– τ chosen based on maximum frequency in G(ρ,θ), W

• 1/τ >=2W or τ <=1/2W (Nyquist Sampling Theorem)

• W can be estimated by the number of cycles/cm in the projection direction  in the most detailed 
area in the slice to be scanned

• For filtered backprojection:

– Fourier transform G(ρ,θ) is obtained via FFT using samples  g(nτ, θ)

– If N sample are taken, 2N point FFT is taken by zero padding g(nτ, θ)
• Recall convolving two signals of length N leads to a single of length 2N-1

• For convolution backprojection

– The ramp-filter is sampled at l=nτ

– Sampled Ram-Lak Filter
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The Ram-Lak Filter (from [Kak&Slaney])
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1st Generation CT: Parallel Projections
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3G: Fan Beam 

Much faster than 2G
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Fan Beam: Equiangular Ray

We will focus on the equiangular detector setting on the right in this lecture.
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Fan Beam: Equidistant Ray

We will skip the discussion on reconstruction from equidistant Ray.
Details can be found at [Kak&Slaney]
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Equiangular Ray Projection
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Equiangular Ray Reconstruction
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Equiangular Ray Reconstruction
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Typos in [Prince&Links]

• P. 207, Eq. (6.38), change to

• Eq. (6.39) change to

• Eq. (6.40),(6.41) 
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Practical Implementation

• Projections P(γ, β) are only 
measured at finite intervals

– γ=nα; 

– α chosen based on maximum 

frequency in γ direction, W

• 1/α>=2W or α<=1/2W

• For convolution backprojection

– The filter cf(γ) is sampled at 

γ=nα

– Sampled Filter g(nα)

• For backprojection

– For given (r,φ), determine

(D’,γ)

– Use interpolation to determine

q(γ,β) from known values at 

γ=nα

( ) ( )
( )

( ))sin(
)cos(

),(tan

)cos()sin(),('
222

φβ
φβφγ

φβφβφ

−+
−=

−+−+=

rD
r

r

rrDrD

( )

)cos(),(),('

)(*),('),(

),(
'

1
),(

2

0
2

γβγβγ

γβγβγ

ββγφ

π

Dpp

cpq

dq
D

rf

f

=

=

= ∫

-1/2



Yao Wang, NYU-Poly EL5823/BE6203: CT-2 17

Matlab Functions for Fan Beam CT

• Relevant functions:

– fanbeam(), ifanbeam()
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CT Quality Evaluation

• Blurring Effect

• SNR
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Effect of Area Detector

• Practical detector integrates the detected photons over 
an area

• Mathematically, the detector can be characterized by an 
indicator function s(l) (aka impulse response)

• The measured projection g’(l,θ) is related to “real”

projection g(l,θ) by

– g’(l,θ)= g(l,θ) * s(l)

– G’(ρ,θ)= G(ρ,θ) S(ρ)
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Windowing Function

• Recall that the ideal filter c(ρ)
is typically modified by a 

window function W(ρ)

• Overall Effect
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Blurred Projection

h(x,y): PSF of the blurring
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Circular Symmetry of Blurring
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PSF given by Hankel Transform
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Circularly Symmetric Functions and 
Hankel Transform

• Circularly symmetric:

– f(x,y) = f(r), only depends on the distance to the origin, not angle

• Fourier transform of circularly symmetric function is also circularly symmetric

– F(u,v)=F(ρ)
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Common Transform pairs

• See Table 2.3

• Scaling property

• Duality:  If h(r) <-> H(ρ), then H(r)<->h(ρ)
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determine the blur function.
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Example 

• Example 6.5 in [Prince&Links]

– Detector: rectangular detector 

with width d

• S(l)=rect(l/d)

– Rectangular window function 

• W(ρ)=rect(ρ/2ρo); ρo>>1/d

• Solution

– S(l)=rect(l/d) <-> S(ρ)=d sinc(dρ)

– ρo>>1/d -> 

– H(ρ)=S(ρ) W(ρ)~= S(ρ) =dsinc(dρ) 

(Hankel transform of h(r))
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Noise in CT Measurement
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What about the measured projection
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CBP Approximation
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Definitions and Assumptions

gij are independent because Nij are independent

Deriving mean and variance of µ(x,y) based on the independence assumption
See [Prince&Links] for derivation
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• Variance increases with ρ0 (cut-off freq. of filter), and T (detector 
spacing), decreases with M (number of angles),\bar N (or N0) (x-ray 

intensity)
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SNR of the Reconstructed Image

C: fractional change of 

µ from \bar µ



Yao Wang, NYU-Poly EL5823/BE6203: CT-2 33

SNR in a good design
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SNR in Fan Beam

N=Nf/D

w=L/D

SNR decreases as D increases. 

Reason: Convolution of the projection reading with the ramp filter couples the noise between 

detectors, and effectively increases  the noise as the number of detector increases

But larger D is desired to obtain a good resolution.
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Rule of Thumb
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Aliasing Artifacts

• Nyquist Sampling theorem:

– If the maximum freq of a signal is fmax, it should be sampled 
with a freq fs>=2max, or sampling interval T<=1/2fmax

– If sampled at a lower freq. without pre-filtering, aliasing will occur

• High freq. content fold over to low freq

– Prefilter to lower fmax, and then sample

• If the number of samples in each projection (D) or the 

number of projection angles (M) are not sufficiently 
dense, the reconstructed image will have streak artifacts

– Caused by aliasing

– Practical detectors are area detectors and perform pre-filtering 
implicitly
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From [Kak&Slaney] Fig. 5.1
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Summary

• Parallel projection reconstruction 
– Backprojection summation

– Fourier method (projection slice theorem)

– Filtered backprojection

– Convolution backprojection

– Practical implementation: using finite samples

• Fan beam projection and reconstruction
– Weighted backprojection

• Blurring due to non-ideal filters and detectors
– Approximate the overall effect by a filter:

• h(l)=w(l)*s(l); H(ρ)=W(ρ) S(ρ)

– Circularly symmetric functions and Hankel transform
• Equivalent spatial domain filter h(r)=inverse Hankel {H(q)}

• Noise in measurement and reconstructed image
– Factors influencing the SNR of reconstructed image

• Number of angles (M), number of samples per angle (D), filter cut-off ρo

• Impact of number of projection angles and samples on reconstruction image 
quality

– Nyquist sampling theorem

– Streak artifacts
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Reference

• Prince and Links, Medical Imaging Signals and Systems, Chap 6.

• A. C. Kak and M. Slaney, Principles of Computerized Tomographic
Imaging. Originally published by IEEE, 1998. E-copy available at 
http://www.slaney.org/pct/

– Chap 3 Contain detailed derivation of reconstruction algorithms both for 

parallel and fan beam projections. Have discussions both in continuous 

domain and implementation with sampled discrete signals.

– Chap 5 discusses noise in measurement and reconstructed image.

– Chap 5 also covers aliasing effect  with more mathematical 

interpretations
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Homework 

• Reading: 

– Prince and Links, Medical Imaging Signals and Systems, Chap 6, 

Sec.6.3.4-6.5

• Note down all the corrections for Ch. 6 on your copy of the textbook 
based on the provided errata.

• Problems for Chap 6 of the text book:

– P.6.9

– P.6.10 (part e is not required)

– P.6.13.

• Hint: solution for part (a) should be 

– P.6.17

– P.6.19

– P.6.20
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Computer Assignment

1. Learn how do ‘fanbeam’.’ifanbeam’ work; summarize their functionalities. 
Type ‘demos’ on the command line, then select ‘toolbox -> image 
processing -> transform -> reconstructing an image from projection data’. 
Alternatively, you can use ‘help’ for each particular function.

2. Write a MATLAB program that 1) generate a phantom image (you can use 
a standard phantom provided by MATLAB or construct your own), 2)
produce equiangular fan beam projections; 3) reconstruct the phantom 
using filtered backprojection algorithm; Your program should allow the user 
to specify the number of fan beams, and the number of projections per fan 
beam, the angular spacing between the projections. Run your program 
with different number of projections for the same view angle, and with 
different view angles, and compare the quality. Use the same filter and 
interpolation algorithm for all the comparisons. Compare the reconstructed 
image quality obtained with different number of view angles and number of 
projections per view angle. Also, compare the image quality with those 
obtained with parallel projections for the same phantom image when the 
same total number of measurements are used (from your last assignment). 
You can use the “fanbeam()” and “ifanbeam()” functions in MATLAB.


