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Lecture Outline
• Instrumentation

– CT Generations
– X-ray source and collimation
– CT detectors  

• Image Formation• Image Formation
– Line integrals
– Parallel Ray Reconstruction

• Radon transform
• Back projection
• Filtered backprojection
• Convolution backprojection
• Implementation issues
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Limitation of Projection Radiography
• Projection radiography

– Projection of a 2D slice along one direction only
– Can only see the “shadow” of the 3D body

• CT: generating many 1D  projections in different angles
When the angle spacing is sufficiently small can reconstruct the– When the angle spacing is sufficiently small, can reconstruct the 
2D slice very well
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1st Generation CT: Parallel Projections
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2nd Generation
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3G: Fan Beam 

Much faster than 2G
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4G

Fast
Cannot use 
collimator at 
detector, hence 
affected by 
scatteringscattering
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5G: Electron Beam CT (EBCT) 
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6G: Helical CT
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7G: Multislice
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X-ray Source
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X-ray Detectors
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CT Measurement Model
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CT Number

Need 12 bits to represent
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Need 12 bits to represent



Parameterization of a Line
Each projection line is 
defined by (l,)

s
y A point on this line (x,y) can 

be specified with two options

x

Option 1 (parameterized by s):

= l

Option 2:
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Line Integral: parametric  form
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Line Integral: set form
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Physical meaning of “f” & “g”
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What is g(l,)?
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Example
• Example 1: Consider an image slice which contains a 

single square in the center. What is its projections along 
0, 45, 90, 135 degrees?

• Example 2: Instead of a square, we have a rectangle. 
RepeatRepeat. 
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Sinogram

EL5823 CT-1 Yao Wang, NYU-Poly 22



Backprojection
• The simplest method for reconstructing an image from a 

projection along an angle is by backprojection
Assigning every point in the image along the line defined by (l ) the– Assigning every point in the image along the line defined by (l,) the 
projected value g(l, ), repeat for all l for the given 

s
y

x
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Two Ways of Performing Backprojection
• Option 1: assigning value of g(l, ) to all points on the line (l, ) 

– g(l, ) is only measured at certain l: ln=n l 
– If l is coarsely sampled (l is large) many points in an image will not be– If l is coarsely sampled (l is large), many points in an image will not be 

assigned a value
– Many points on the line may not be a sample point in a digital image

• Option 2: going through all sampling points (x,y) in an image, find its p g g g p g p ( y) g
corresponding “l=x cos y sin ” for the given , take the g value for 
(l, )

(l ) i l d t t i l l l– g(l, ) is only measured at certain l: ln=n l
– must interpolate g(l, ) for any l from given g(ln, )

• Option 2 is better, as it makes sure all sample points in an image are 
assigned a valueassigned a value

• For more accurate results, the backprojected value at each point 
should be divided by the length of the underlying image in the 
projection direction (if known)
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Backprojection Summation

Replaced by a p y
sum in practice
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Implementation Issues

EL5823 CT-1 Yao Wang, NYU-Poly 27

From L. Parra at CUNY, http://bme.ccny.cuny.edu/faculty/parra/teaching/med-imaging/lecture4.pdf



Implementation: Projection
• To create projection data using computers, also has similar problems. 

Possible l and q are both quantized. If you first specify (l,q), then find (x,y) 
that are on this line. It is not easy. Instead, for given q, you can go through 
all (x y) and determine corresponding l quantize l to one of those you wantall (x,y) and determine corresponding l, quantize l to one of those you want 
to collect data.

• Sample matlab code (for illustration purpose only)
[x,y]=meshgrid([0:J-1]-J/2,[0:I-1]-I/2);
N=ceil(sqrt(I*I+J*J))+1;N ceil(sqrt(I I J J)) 1;
N0= floor((N-1)/2);
ql=1;
G=zeros(N,180);
for phi=0:179
f ( /2 /2 1 /2 /2 1)for (x=-J/2:J/2-1; y=-I/2:I/2-1)

l=x*cos(phi*pi/180)+y*sin(phipi/180);
l=round(l/ql)+N0+1;
If (l>=1) && (l<=N)

G(l phi+1)=G(l phi+1)+f(x+J/2+1 y+I/2+1);G(l,phi+1) G(l,phi+1)+f(x+J/2+1,y+I/2+1);
End
end

end
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Example
• Continue with the example of the image with a square in 

the center. Determine the backprojected image from 
each projection and the reconstruction by summing 
different number of backprojections
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Problems with Backprojection
 Blurring
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Projection Slice Theorem

dlljlgG }2exp{),(),(   




The Fourier Transform of a projection at angle  is a line in the 
Fourier transform of the image  at the same angle.
If (l ) are sampled sufficiently dense then from g (l ) we
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If (l,) are sampled sufficiently dense, then from g (l,) we 
essentially know F(u,v) (on the polar coordinate), and by inverse 
transform can obtain f(x,y)!



Illustration of the Projection Slice 
TheoremTheorem
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Proof
• Go through on the board
• Using the set form of the line integral
• See Prince&Links, P. 198

dlljlgG }2exp{)()(   


dlljlgG }2exp{),(),(    
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The Fourier Method
• The projection slice theorem leads to the following 

conceptually simple reconstruction method
– Take 1D FT of each projection to obtain G() for all 
– Convert G() to Cartesian grid F(u,v)
– Take inverse 2D FT to obtain f(x,y)Take inverse 2D FT to obtain f(x,y)

• Not used because
– Difficult to interpolate polar data onto a Cartesian grid
– Inverse 2D FT is time consuming

• But is important for conceptual understanding
– Take inverse 2D FT on G( ) on the polar coordinate leads toTake inverse 2D FT on G() on the polar coordinate leads to 

the widely used Filtered Backprojection algorithm

EL5823 CT-1 Yao Wang, NYU-Poly 34



Filtered Backprojection
• Inverse 2D FT in Cartesian coordinate:

   dudvevuFyxf yvxuj )(2),(),( 

• Inverse 2D FT in Polar coordinate:

  dudvevuyxf ),(),(

     )sincos(2)i()( ddFf yxj

=l=G()

• Proof of filtered backprojection algorithm

 
 




 
20 0

)sincos(2)sin,cos(),( ddeFyxf yxj

• Proof of filtered backprojection algorithm 

Inverse FT
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Filtered Backprojection Algorithm
• Algorithm:

– For each 
• Take 1D FT of g(l,) for each -> G()
• Frequency domain filtering: G() -> Q(||G()
• Take inverse 1D FT: Q() -> q(l) 
• Backprojecting q(lto image domain -> b(x,y)

– Sum of backprojected images for all 
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Function of the Ramp Filter
• Filter response:

– c() =||
– High pass filter

• G() is more densely 
sampled when is small andsampled when is small, and 
vice verse

• The ramp filter compensate 
for the sparser sampling at 
higher 
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Convolution Backprojection
• The Filtered backprojection method requires taking 2 Fourier 

transforms (forward and inverse) for each projection
I t d f f i filt i i th FT d i f l ti• Instead of performing filtering in the FT domain, perform convolution 
in the spatial domain

• Assuming c(l) is the spatial domain filter
– || <-> c(l)
– ||G() <-> c(l) * g(l)

• For each :
– Convolve projection g(l) with c(l): q(l,)= g(l) * c(l)
– Backprojecting q(lto image domain -> b(x,y)
– Add b(x,y) to the backprojection sum

• Much faster if c(l) is short
– Used in most commercial CT scanners
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Step 1: Convolution
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Step 2: Backprojection
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Step 3: Summation
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Ramp Filter Design
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Practical Implementation
• Projections g(l,  are only measured at finite intervals

– ln; 
–  chosen based on maximum frequency in G( ) W chosen based on maximum frequency in G(,), W

• 1>=2W or <=1/2W (Nyquist Sampling Theorem)
• W can be estimated by the number of cycles/cm in the projection direction  in the most detailed 

area in the slice to be scanned

For filtered backprojection:• For filtered backprojection:
– Fourier transform G(,) is obtained via FFT using samples  g(n, )
– If N sample are available in g, 2N point FFT is taken by zero padding g(n, )

• For convolution backprojectionFor convolution backprojection
– The ramp-filter is sampled at ln
– Sampled Ram-Lak Filter
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The Ram-Lak Filter (from [Kak&Slaney])
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Common Filters
• Ram-Lak: using the rectangular window
• Shepp-Logan: using a sinc windowpp g g
• Cosine: using a cosine window
• Hamming: using a generalized Hamming window
• See Fig. B.5 in A. Webb, Introduction to biomedical 

imaging
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Matlab Implementation 
• MATLAB (image toolbox) has several built-in functions:

– phantom: create phantom images of size NxN
I PHANTOM(DEF N) DEF ‘Sh L ’ ’M difi d Sh L ’I = PHANTOM(DEF,N) DEF=‘Shepp-Logan’,’Modified Shepp-Logan’

Can also construct your own phantom, or use an arbitrary image

– radon: generate projection data from a phantom
• Can specify sampling of p y p g
R = RADON(I,THETA)

The number of samples per projection angle = sqrt(2) N

– iradon: reconstruct an image from measured projections
• Uses the filtered backprojection method• Uses the filtered backprojection method
• Can choose different filters and different interpolation methods for 

performing backprojection
[I,H]=IRADON(R,THETA,INTERPOLATION,FILTER,FREQUENCY_SCALING,OUTPUT_SIZE)

– Use ‘help radon’ etc. to learn the specifics
– Other useful command:

• imshow imagesc colormap
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• imshow, imagesc, colormap



Summary
• Different generations of CT machines:

– Difference and pros and cons of each
• X ray source and detector design• X-ray source and detector design

– Require (close-to) monogenic x-ray source
• Relation between detector reading and absorption properties of the 

imaged sliceimaged slice
– Line integral of absorption coefficients (Radon transform)

• Reconstruction methods
– Backprojection summationp j
– Fourier method (projection slice theorem)
– Filtered backprojection
– Convolution backprojection

Equivalent, but differ in 
computation

• Impact of number of projection angles on reconstruction image 
quality

• Matlab implementations
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Reference
• Prince and Links, Medical Imaging Signals and Systems,

Chap 6.p
• Webb, Introduction to biomedical imaging, Appendix B.
• Kak and Slanley, Principles of Computerized 

T hi I i IEEE P 1988 Ch 3Tomographic Imaging, IEEE Press, 1988. Chap. 3
– Electronic copy available at http://www.slaney.org/pct/pct-

toc.html
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Homework 
• Reading: 

– Prince and Links, Medical Imaging Signals and Systems, Chap 
6 S 6 1 6 3 36, Sec.6.1-6.3.3

• Note down all the corrections for Ch. 6 on your copy of 
the textbook based on the provided errata.

• Problems for Chap 6 of the text book:
– P6.5
– Consider a 4x4 image that contains a diagonal lineConsider a 4x4 image that contains a diagonal line 

I=[0,0,0,1;0,0,1,0;0,1,0,0;1,0,0,0]; 
• a) determine its projections in the directions: 0, 45,90,135 degrees. 
• b) determine the backprojected image from each projection;
• c) determine the reconstructed images by using projections in the 0 

and 90 degrees only.
• d) determine the reconstructed images by using all projections. 

Comment on the difference from c)
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Comment on the difference from c).



Computer Assignment
Due: Two weeks from lecture date

1. Learn how do ‘phantom’.’radon’,’iradon’ work; summarize their 
functionalities. Type ‘demos’ on the command line, then select ‘toolbox -> 
image processing -> transform -> reconstructing an image from projection 

‘ f fdata’. Alternatively, you can use ‘help’ for each particular function.
2. Write a MATLAB program that 1) generate a phantom image (you can use 

a standard phantom provided by MATLAB or construct your own), 2) 
produce projections in a specified number of angle, 3) reconstruct the p p j p g , )
phantom using backprojection summation; Your program should allow the 
user to specify the number of projection angle. Run your program with 
different number of projections for the same view angle, and the different 
view angles, and compare the quality. You should NOT use the ‘radon( )’ g , p q y ( )
and ‘iradon()’ function in MATLAB.

3. Repeat 1 but uses filter backprojection method for step 3). In addition to 
the number of projection angles, you should be able to specify the filter 
among several filters provided by Matlab and the interpolation filters usedamong several filters provided by Matlab and the interpolation filters used 
for backprojection. Compare the reconstructed image quality obtained with 
different filters and interpolation methods for the same view angle and 
number of projections. You can use the “iradon()” function in MATLAB

4 (Optional) Repeat 3 but uses convolution backprojection method You
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4. (Optional) Repeat 3 but uses convolution backprojection method. You 
have to do your own program.


