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Foreword

For anyone wanting to investigate electromagnetic or optical phenomena, or go 
further to design components and devices, this is an ideal book. In most cases, 
analytical solutions to hard problems do not exist, and it is necessary to find 
solutions by numerical means. The author, Dr. Rumpf, is very well-known in the 
field of computational electromagnetics (CEM). He has pioneered and promoted 
the advantages of using the finite-difference frequency-domain (FDFD) method, 
which, as he demonstrates here, is both simple and versatile. While it is somewhat 
of a brute-force method and may not be as fast and efficient as other techniques, 
it can be very broadly applied to almost all important electromagnetic problems. 
Many examples ranging from waveguides, metasurfaces, and guided mode filters 
are presented, illustrating the power and versatility of FDFD.

The book is organized and written in a style that lends itself to the self-navigator. 
The level is appropriate for undergraduates, graduates, or professionals in the field. 
It can also be used by instructors to teach from. Apart from an assumption of some 
basic knowledge of electromagnetics and an appreciation for a tool such as MAT-
LAB®, this book unfolds as an adventure through a planned series of electromag-
netic modeling examples which the reader can try and then build on. The reader’s 
confidence is built not only by completing the assigned examples, but through the 
conceptual help and insights provided. The content flow of the book reinforces the 
reader’s understanding of foundational physical concepts and the key relationships 
that are embedded in Maxwell’s equations. FDFD is an excellent method for CEM 
simulations and also naturally lends itself to visualizing near-field and far-field 
effects. Visualization is the key to building physical intuition and tackling more chal-
lenging simulations, but confidence in the results of simulations is of key importance. 
Dr. Rumpf emphasizes throughout his book the need for “benchmarking.” Devices 
and structures that have known characteristics and electromagnetic responses are 
simulated first to ensure the code is trustworthy. As Dr. Rumpf notes, the ability 
to calculate and visualize fields and waves as they interact with material structures 
gives one the sense of having superpowers. CEM can become almost addictive after 
a few early successes, and it is only natural to want to build on new insights and 
investigate increasingly interesting and more complex problems! The importance of 
benchmarking and tracking convergence of solutions is critical to ensure accuracy, 
and this is very well covered throughout the book.

Dr. Rumpf has been widely praised for his excellent teaching and writing skills. 
In the field of CEM, there are few others with his depth of understanding and clarity 
of purpose. This shines through in his writing style. He systematically introduces 
topics in an engaging, non-intimidating, and thoroughly informative way. The book 
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begins with a review of the relevant MATLAB materials including linear algebra as 
the tool to keep track of everything being simulated. The second chapter reviews 
electromagnetism and Maxwell’s equations. This is an excellent chapter providing 
all of the necessary backgrounds for success, with tutorials on gratings, waveguides, 
and transmission lines. He also shows how the guiding principles of Maxwell’s equa-
tions scale with physical size and material properties, a critical concept to grasp and 
understand in CEM. The next two chapters, Chapters 3 and 4, provide the basic 
understanding of the implementation issues for successful CEM. These are the fun-
damentals of finite-difference approaches for computation, the need for boundary 
conditions and the organization of the (Yee) grid in an FDFD simulation, essential 
to capture the physics of the problem at hand, and to obtain quantitative accuracy 
estimates for simulation results. Chapter 5 explains the inevitable constraints of 
finite computational modeling and the need for perfectly matched boundaries to 
ensure the solution volume is not corrupted by computational artifacts from outgoing 
waves. Chapter 6 explicitly considers guided modes, slab waveguide structures, and 
includes a section on the simulation of surface plasma waves and surface plasmon 
polaritons. Chapters 7 and 8 explain very clearly and elegantly the role of, and the 
computation of, so-called photonic bands and equifrequency surfaces for structured 
materials, both important for characterizing and visualizing electromagnetic propa-
gation through, as well as reflection or transmission from, periodic structures. The 
benefits of sweeping variables and parameters in CEM cannot be overstated, and 
this is covered in Chapter 9. Parameter sweeps can provide deep physical insights 
into the performance of devices and trends for their optimization. The final chapter 
includes a number of state-of-the-art and highly stimulating examples involving 
modern-day metamaterials and design strategies based on transformation optics, 
such as how to simulate an invisibility cloak.

In summary, this book will be of value to anyone interested in CEM modeling. 
While alternative simulation approaches exist, for example, for very large prob-
lems, FDFD can be comprehensively applied to model almost all electromagnetic 
phenomena. For example, transient and time-evolving phenomena can be studied 
by taking a frequency sweep followed by Fourier transformation. Also, being a 
frequency-domain method, dispersion studies are very straightforward, and physical 
phenomena such as skin depth and plasmonic effects are automatically incorporated. 
The many MATLAB codes associated with simulations presented in the book are 
available for download, granting those superpowers immediately!

Michael Fiddy

Professor, Optical Science and Engineering and of Electrical Engineering 
at the University of North Carolina at Charlotte (UNCC)

Research physicist, Army Research Laboratory in 
the Directed Energy Bioeffects Group

January 2022
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Preface

Over my career, I have implemented more numerical methods for electromagnetics 
than most people can even name. Of all these, finite-difference frequency-domain 
(FDFD) has contributed the most to my career. When I wrote my first FDFD code 
around the year 2000, I mistakenly thought I had invented a new computational 
electromagnetic method. Shortly after, I became aware of some research that 
implemented the method, but the papers describing the research said little about 
how the method worked. Due to a lack of learning materials, I had to figure out 
how to implement FDFD completely on my own. I made every possible mistake 
there is to make while doing so.

For many different methods in computational electromagnetics (CEM), I became 
frustrated with the overall lack of helpful information. It is still very common for 
me to read a journal article with dozens of equations and almost no description of 
how to actually implement the method. Eventually, I learned there is a huge differ-
ence between deriving the necessary equations and describing how the method is 
implemented. The latter is seriously lacking in the literature. With insane tenacity 
and quickly developing visualization skills, I managed to implement a large number 
of different methods. My frustrating experience getting started in CEM has pro-
foundly impacted how I teach the topic. I have created lots of online content and 
even some online courses (https://empossible.net/) covering electromagnetics and 
computation. I hope the style I developed for teaching CEM comes through in this 
book. My goal for this book is to make it easier for others to get started in CEM 
and to popularize FDFD.

Over the last 20 years, more materials have become available to help a beginner 
get started in CEM. Unfortunately, there are still almost no materials for learning 
FDFD and the method remains relatively obscure. I believe FDFD should be one of 
the most popular methods due to its simplicity and versatility. I cannot think of a 
better first method to learn. With a good understanding of FDFD, it will be easier 
to learn new methods in CEM. Every sentence in this book comes from my heart 
and is intended to help you. I hope this book will help many people get started in 
CEM that will go on to use the skills and knowledge to discover new things and 
achieve new breakthroughs that help humanity.
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xix

Introduction

Computational electromagnetics (CEM) deals with using a computer to figure out 
how electric and magnetic fields will behave when interacting with materials and 
devices. It is especially useful when it is not possible to obtain analytical solutions. 
I have found skills in CEM to be like having superpowers. The ability to analyze 
devices and predict how they will behave is an incredible skill to have and will 
surely accelerate your career. This is the book I wish I had when I was trying to 
get started in CEM.

The FDFD method may be the easiest numerical method to derive and implement 
that is able to obtain a rigorous solution to Maxwell’s equations. It uses the finite-
difference method to solve Maxwell’s equations so the underlying mathematics is 
mature and well-understood. It is the frequency-domain brother of the hugely popular 
finite-difference time-domain (FDTD) method [1, 2]. For this reason, much of the 
literature on FDTD can be directly applied to FDFD. FDFD offers many significant 
advantages over FDTD. FDFD is easier to implement than FDTD, especially when 
a perfectly matched layer (PML) is incorporated to absorb outgoing waves. For 
small simulations, FDFD is faster than FDTD. Being a frequency-domain method, 
FDFD is superior for simulating highly resonant devices or devices exhibiting abrupt 
features in the spectral response. FDFD can also incorporate oblique angle of 
incidence into simulations of periodic structures much more easily than FDTD. 
The benefits of FDFD, however, come at a price. It is a very brute-force method 
so it is not as fast and efficient as other techniques like the finite element method 
(FEM) [3] or rigorous coupled-wave analysis [4]. FDFD is an excellent method for 
visualizing electromagnetic fields and learning about the physics of devices. Other 
numerical methods often require modification or computationally intensive post-
processing steps to visualize the fields. FDFD inherently calculates the fields so they 
can always be visualized. Visualizing the fields is good for troubleshooting codes, 
learning about devices, and for showcasing the results of a simulation. Why just 
plot reflection versus frequency when you can also animate the electromagnetic 
fields interacting with your device?

FDFD can be compared to the FEM [3, 5]. While the FEM offers better effi-
ciency due to the elegant use of an unstructured grid, it is much more difficult to 
formulate and implement. To benefit from an unstructured grid, a FEM program 
must also generate a mesh specific to the device being simulated. Generating meshes 
adds another large step to the simulation process and is just as complicated of a 
topic as the FEM itself [6–8]. There is no meshing step for uniform grids in FDFD, 
greatly simplifying the implementation. The main price paid for the simplicity of 
FDFD is poorer efficiency compared to other methods. Despite this, FDFD is easily 
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able to simulate an incredible variety of devices on modern computers and is one of 
the most versatile methods available.

Working through all of my struggles in CEM allowed me to come up with five 
key steps for the ideal CEM process. These steps are laid out in the block diagram 
in Figure i.1 where the first two steps are performed on paper and the remaining 
steps are performed on a computer. The first step is the formulation where all of the 
necessary equations are derived. The ideal formulation starts at Maxwell’s equations 
and ends with the final equations that should be entered into a computer code to 
implement the method. The second step is the implementation where the algorithm 
is constructed step-by-step, often in a block diagram. The third step is coding the 
algorithm in a computer language such as MATLAB, Julia, Python, or C/C++. When 
the algorithm is running without error, the fourth step is to ensure the method is 
properly converged before making any conclusions about the results. Convergence 
identifies the proper resolution of the simulation in order to reduce numerical error 
below an acceptable threshold. The last step is benchmarking where devices and 
structures that have known answers are simulated. This is the only true way to get 
practice and to conclude that the code and how you are using the code is correct.

One of my big mistakes when I was trying to learn CEM was interpreting the 
formulation as if that was the implementation. This is mostly due to the literature 
usually only ever covering the derivation of the equations and not discussing how 
the algorithms were actually implemented. I could not understand how a code was 
going to do all of the things happening in the derivations. The answer was that the 
code does not do these things at all! In fact, I learned that the steps performed on a 
computer are very different than the steps performed in the formulation. Learning to 
mentally separate the formulation from the implementation was a big breakthrough 
for me. Another big mistake was trusting the results of my algorithm the moment 
it ran without error. Those that simulate the most, trust the simulations the least. 
I learned that benchmarking was the best way to troubleshoot my algorithms and 
my own simulation practices. This book and the literature are full of examples to 
benchmark your own codes. The last big mistake that I will mention is making 
conclusions about a simulation before the results are converged. The simulated 
behavior of devices can change dramatically as the resolution of the simulation is 
increased. Never conclude anything about a device or a simulation until the results 
are converged.

I am not a detail-oriented person and this caused me to struggle even more in 
CEM. In fact, I do not possess any special skills for CEM other than passion. For me 
to be successful, I had to take a different approach that minimized the tediousness 
of the methods. In the end, I learned to build large and complicated matrices from 
smaller and simpler matrices. The simpler matrices are easy to build and easy to 
test. Often, building the big matrices becomes trivial after the simpler matrices are 

Figure i.1  Block diagram of the ideal CEM process.
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calculated. You will observe this practice in the formulations in this book. A person 
hardly benefits from clean code if the code is only cleaned up after it is made to 
work. I have learned to write clean code from the very start. It helps to clear my 
chaotic mind. I found that clean code just seems to run better. Further, I developed 
and practiced strong visualization skills. Over the years, I have learned that the 
key to computation is visualization. A person can stare at an array of numbers all 
day without seeing the trends or errors. Our brains are already programmed to 
interpret images and catch inconsistencies, so visualizing the data graphically is the 
most powerful tool for learning and troubleshooting numerical methods. Producing 
exciting graphics is fun and an excellent way to showcase your simulations!

It is with a tremendous amount of personal debate and guilt that I have omitted 
some topics from this book. I have left out wonderful subjects like near-field-to-far-
field transformation [2, 9], unstructured grids [10, 11], nonorthogonal grids [12], 
FDFD in different coordinates systems [13], and more. I have left out variants of 
the FDFD method like the beam propagation method [14], method of lines [15–17], 
slice absorption method [18–21], and others. There are countless types of devices 
that I have not demonstrated in this book. I chose the examples in this book to be 
representative of the broadest array of devices possible. For example, simulating 
metasurfaces [22, 23] is identical to simulating frequency selective surfaces [24]. 
So, I only included an example of a frequency selective surface to keep the book as 
concise as possible. With some thought, a beginner will be able to simulate almost 
anything with simple modifications to the examples in this book.

The chapters in this book are written in a cumulative order, where later chapters 
rely on topics covered in previous chapters. Chapters 1 to 5 are background chapters 
needed to understand how the various forms of the FDFD method are formulated and 
implemented. Chapter 1 does not teach MATLAB, but it covers special topics and 
skills in MATLAB that are important for implementing FDFD and understanding 
why some things in this book are done the way they are. Chapter 2 does not teach 
electromagnetics, but reviews some key concepts needed to understand and imple-
ment the FDFD method. This includes Maxwell’s equations, parameters describing 
the properties of materials, waves, polarization, and some limited device theory. 
With great effort, I have tried to make the notation consistent between the analytical 
equations, the numerical equations, and the computer codes as much as possible. 
Chapter 3 covers the finite-difference method and how it will be used to solve Max-
well’s equations. It is quite different than how the finite-difference method is taught 
in most texts. With practice, the techniques taught in Chapter 3 will let you solve 
completely new differential equations in mere seconds to minutes. Chapter 4 covers 
how to make the fields and materials in Maxwell’s equations discrete functions using 
the Yee grid scheme [25]. The Yee grid makes approximating Maxwell’s equations 
with finite-differences simple and accurate. The Yee grid enforces the divergence 
equations implicitly so only the curl equations have to be solved explicitly. Chapter 
5 covers the PML absorbing boundary that will be used to absorb outgoing waves 
in the simulation. Both a uniaxial PML (UPML) and a stretched-coordinate PML 
(SCPML) will be presented. Both types of PMLs absorb outgoing waves equally, but 
the UPML is easier to implement. The SCPML has advantages for large problems 
when the final matrix equation must be solved iteratively.
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Chapters 6 to 10 cover many of the variations of the FDFD method. Chapter 
6 covers how to calculate guided modes and analyze transmission lines. Examples 
include a dielectric rib waveguide, a dielectric slab waveguide, an interface sup-
porting a surface plasmon polariton, and a microstrip transmission line. Chapter 7 
describes how to calculate photonic bands of periodic structures using the FDFD 
method. Examples include calculating and plotting the photonic band diagram of 
a photonic crystal as well as the isofrequency contours. Chapter 8 describes how to 
use FDFD to simulate scattering from various types of devices. Simulation exam-
ples include calculating the diffraction orders from a sawtooth diffraction grating, 
simulating the transmission of a Gaussian beam through a self-collimating photonic 
crystal, and directional coupling of a guided mode through an optical integrated 
circuit. Chapter 9 explains the best practices for performing parameter sweeps. 
The reflection and transmission from a guided-mode resonance filter (GMRF) as a 
function of frequency is simulated and plotted. The extinction ratio of a terahertz 
polarizer is plotted as a function of grating depth. Last, the frequency response of 
the terahertz polarizer is plotted.

While this book is primarily intended for the beginner in CEM, Chapter 10 is 
advanced. FDFD for three-dimensional devices and structures composed of aniso-
tropic materials are covered at the same time. Device examples include a crossed 
grating GMRF, a frequency selective surface, parameter retrieval of a left-handed 
metamaterial, and an invisibility cloak designed using transformation optics.

To download the MATLAB codes for this book or to access more learning 
resources, see https://empossible.net/fdfdbook/.
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1

C H A P T E R  1

MATLAB Preliminaries

This chapter covers some basic topics related to MATLAB that are useful for imple-
menting the finite-difference frequency-domain (FDFD) method. It is assumed that 
the reader has a basic familiarity with MATLAB® and computer programming. If 
not, visit the MathWorks website for excellent introductory and tutorial materials. 
If MATLAB is not available to you, Octave is an excellent open-source alternative 
that offers close to 100% compatibility with the MATLAB language.

1.1	 Basic Structure of an FDFD Program in MATLAB

A block diagram of the basic structure for an FDFD program in MATLAB is illus-
trated in Figure 1.1. The MATLAB code corresponding to the block diagram is 
provided in Section 1.1.1. It is a common practice to begin a MATLAB program 
with a commented section that summarizes the purpose of the program, how to 
use it, and any other information that may be useful to know. This is especially 
helpful if the code may be used by others or put away and used again years later. 
When help followed by the program name is entered at the command prompt, the 
commented section at the start of the program will be displayed in the command 
window. It is useful for the first line of the program to be the name of the file and 
any other information provided immediately below. The header for the program in 
Section 1.1.1 extends from lines 1 to 8.

Immediately after the header, MATLAB is initialized on lines 10 to 13. Through-
out this book, MATLAB will be initialized in three steps. First, all open figure 
windows are closed with the command close all. Second, all texts are cleared 
from the command window with the command clc. Third, and most important, 
all variables and functions are cleared from memory with the command clear all.

After MATLAB is initialized, the simulation itself is initialized by defining 
all of the units and constants that will be used by the program. This code extends 
from lines 15 to 31. Here, meters is set to the value 1 and all other length units are 

Figure 1.1  Basic structure of an FDFD program in MATLAB.
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defined relative to this. This makes it easier to keep the units consistent and allows 
for much cleaner code that is easy to read and understand. For example, the dimen-
sion a can be defined as 2.0 mm with the following line of code.

a = 2.0 * millimeters;

For photonic simulations, it is best to define micrometers to be 1 and then define 
all other length scales relative to this. For radio frequency simulations, frequency is 
often used instead of wavelength and so it is convenient to define frequency units in 
addition to dimensional units. With all units defined, any physical constants that 
will be needed can be defined immediately afterward. These should be defined in 
terms of the specified units, as done in lines 28 to 31.

The next part of the MATLAB program is a major new section. Observe the 
section header inserted into lines 33 to 35 to identify that this is the start of what 
will be called the dashboard. A nice visual break between sections helps our brains 
understand the code more easily. The dashboard is where all aspects of the simu-
lation are defined and controlled. All hard-coded numbers in the program should 
be defined here. No tasks should be performed in the dashboard, such as building 
arrays, calculating matrices, or generating figures. This practice will keep the dash-
board simple and restricted to just defining parameters that control the rest of the 
code. For FDFD analysis, the dashboard will define all the needed parameters for 
the source, dimensions of the device, material properties of the device, and numeri-
cal parameters controlling things like the size and resolution of the grid.

After the dashboard is the rest of the program where the real work happens. 
Absolutely no hard-coded numbers should appear outside of the dashboard. If 
changing a value inside of the dashboard requires you to change something else 
outside of the dashboard, you have written your program incorrectly. When multiple 
edits to the program are needed to change one thing, there is a good chance you 
will miss some of the edits. The absolute best outcome of this is that the simulation 
will fail. An even worse outcome is that the simulation appears to work but gives 
you the wrong answer that you think is correct. Also, perhaps the most powerful 
tools in electromagnetics are parameter sweeps where the result of the simulation 
is plotted as a parameter is varied over some range of values. For example, plotting 
reflection and transmission as a function of frequency is one of the most common 
parameter sweeps. Imagine how many changes your code would require if you had 
to change multiple items in your code for every frequency in the sweep. If your 
MATLAB program is written properly, parameter sweeps are as easy as placing a 
big for loop around your code. Procedures and best practices for parameter sweeps 
are covered in Chapter 9.

1.1.1  MATLAB Code for Ideal Structure of a Program

1   % basic_programstructure.m
2   %
3   % The purposes of this program are to:
4   %
5   %   1. Demonstrate the function of a header.
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6   %   2. Demonstrate how to initialize MATLAB.
7   %   3. Demonstrate how to define units.
8   %   4. Demonstrate the dashboard.
9
10  % INITIALIZE MATLAB
11  close all;
12  clc
13  clear all;
14
15  % DEFINE UNITS
16  meters      = 1;
17  centimeters = 1e-2 * meters;
18  millimeters = 1e-3 * meters;
19  micrometers = 1e-6 * meters;
20  nanometers  = 1e-9 * meters;
21  seconds     = 1;
22  hertz       = 1/seconds;
23  kilohertz   = 1e3 * hertz;
24  megahertz   = 1e6 * hertz;
25  gigahertz   = 1e9 * hertz;
26
27  % CONSTANTS
28  c0 = 299792458 * meters/seconds;
29  e0 = 8.854187812813e-12 * 1/meters;
30  u0 = 1.256637062121e-6 * 1/meters;
31  N0 = 376.7303136686;
32
33  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
34  %% DASHBOARD
35  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
36
37  % DEFINE ALL HARD CODED NUMBERS HERE
38 
39  % NO WORK HAPPENS HERE
40
41  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
42  %% REST OF THE PROGRAM
43  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
44
45  % ALL THE WORK HAPPENS HERE
46
47  % NO HARD-CODED NUMBERS APPEAR HERE

1.2	 MATLAB and Linear Algebra

The name MATLAB is an acronym for MATrix LABoratory. The original purpose 
of MATLAB was to provide an easy interface to matrix libraries like LINPACK and 
EISPACK. A matrix is nothing more than a table of numbers that holds information 
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from large sets of linear algebraic equations. For example, define the following set 
of four equations.

	

a11x1 + a12x2 + a13x3 + a14x4 = b1

a21x1 + a22x2 + a23x3 + a24x4 = b2

a31x1 + a32x2 + a33x3 + a34x4 = b3

a41x1 + a42x2 + a43x3 + a44x4 = b4 	

(1.1)

In these equations, the amn terms are coefficients that will have numerical values 
assigned to them. The terms b1, b2, b3, and b4 are constants representing the exci-
tation and will also have numerical values assigned to them. Last, x1, x2, x3, and 
x4 are the unknowns that are to be determined by solving the system of equations.

In FDFD, instead of having four unknown terms, there will be hundreds of 
thousands of unknown terms. It is quite tedious to keep writing all of the equations 
in (1.1) and to manipulate many equations at every step of a derivation. To get around 
this, it is much more convenient to express and manipulate large sets of equations 
as matrices. Using matrices, (1.1) is written compactly as

	 Ax = b 	 (1.2)

where

	

A =

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥ 	

(1.3)

	

x =

x1

x2

x3

x4

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥ 	

(1.4)

	

b =

b1

b2

b3

b4

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥ 	

(1.5)

All of the terms from the large set of equations have been assembled into the 
matrix A and the column vectors x and b. In this book, bold uppercase letters rep-
resent matrices while bold lowercase letters represent column vectors. This allows 
all of the data associated with the large set of equations to be manipulated using just 
the terms A, x, and b using a modified set of rules for matrix algebra [1]. To solve 
(1.2) for x, both sides of the equation are predivided by A to get A–1Ax = A–1b. The 
product A–1A equals the identity matrix I which vanishes from the equation to get
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	 x = A−1b 	 (1.6)

It is these types of calculations that MATLAB makes incredibly easy to do. For 
example, the following code enters values for the matrix A and column vector b and 
then solves for x using (1.6). Note that commas separate elements along a row while 
semicolons separate elements along the columns. Inserting the commas is optional 
in MATLAB, but can help make the code more readable.

A = [ –0.8 ,  1.3 , –1.4 , –1.5 ; ...
      –1.4 , –0.3 , –1.3 , –0.3 ; ...
       0.5 ,  0.1 ,  0.1 , –1.3 ; ...
       0.5 ,  1.0 ,  0.5 , –0.2 ];
b = [ –2.66 ; –4.86 ; 1.56 ; 2.60 ];
x = A\b;

Observe how the column vector x is calculated in the above MATLAB code. 
From a computer coding perspective, it is a mistake to read (1.6) as the inverse of 
A times the column vector b. This interpretation leads to obtaining the solution as 
x = inv(A)*b. While a correct solution can be obtained this way, there is a sig-
nificant difference between calculating a matrix inverse and performing a matrix 
division in MATLAB. Matrix division does not calculate the inverse of matrix A 
and usually involves significantly fewer calculations. Calculating x as x = A\b is 
called backward division and is the preferred way in FDFD to solve the system of 
equations defined by Ax = b.

Matrices are tables of numbers arranged by rows and columns, as illustrated 
in Figure 1.2. MATLAB makes inserting, extracting, and manipulating rows and 
columns in matrices very easy. For example, if the second row of matrix A is to 
be replaced with all numerical values of 7, the MATLAB command to do this is 
A(2,:) = 7. Similarly, if the third column is to be replaced with all numerical val-
ues of 4, the MATLAB command to do this is A(:,3) = 4.

Solving differential equations by numerical methods very often leads to matri-
ces with numbers placed along the diagonals of a matrix. Figure 1.3 illustrates 

Figure 1.2  Rows and columns of a matrix.
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how the diagonals are referenced by number. The center diagonal is assigned the 
index of 0 and is the diagonal being referred to when reading or hearing the label 
“the diagonal.” Diagonals above the center diagonal are given positive indices and 
diagonals below the center diagonal are given negative indices. MATLAB makes 
inserting, extracting, and manipulating diagonals in matrices very easy using the 
functions diag() and spdiags(). The diagonals of a matrix will be the primary 
means for constructing the matrices used in FDFD and will be covered in detail in 
Chapters 3 and 4.

It is very common in numerical methods to have very large matrices with numbers 
placed along only a single diagonal or just a handful of diagonals. A matrix with non-
zero elements along only the center diagonal is called a diagonal matrix. A matrix 
with non-zero elements along a small set of diagonals is called a banded matrix. It 
is common to have 99.9% or more of the elements in a diagonal or banded matrix 
be all zeros. Storing every element in these matrices as double-precision floating-
point numbers is unnecessary and consumes a lot of memory. Tremendous memory 
savings can be achieved if only the non-zero elements of a matrix are stored. This 
is called a sparse matrix and a plethora of algorithms exists that are optimized for 
working with sparse matrices. In MATLAB, a matrix is simply declared as sparse 
and everything else is handled automatically. Thank you MATLAB! While a matrix 
can be declared to be sparse using the function sparse(), this is bad practice because 
a full matrix will be created and stored before declaring it as sparse. Instead, it is 
best to initialize the matrices as sparse from the very beginning so large and full 
matrices never have to be created or stored.

1.2.1  Special Matrices

FDFD will make use of some special matrices. The zero matrix Z is a matrix filled 
entirely with zeros and is the closest thing to the numerical value of zero that exists 
that is still a matrix. Any matrix multiplied by the zero matrix will give another 
zero matrix. There also exists a zero column vector 0 indicated by a bold zero.

	

Z =
0 0 ! 0
0 0
" #

0 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

	

(1.7)

Figure 1.3  Diagonals of a matrix.
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0 =
0
0
!

0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

	

(1.8)

A sparse zero matrix can be initialized using sparse(). The following line of 
MATLAB code creates a sparse zeros matrix of size M × M.

Z = sparse(M,M);

The identity matrix I is a diagonal matrix with ones placed along the center 
diagonal and zeros everywhere else. This is the closest thing to the numerical value 
of 1 that is still a matrix. Any matrix A multiplied or divided by the identity matrix 
is the matrix A again.

	

I =
1

1
!

1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

	

(1.9)

A sparse identity matrix can be initialized using the MATLAB command speye(). 
The following line of MATLAB code creates a sparse identity matrix of size M × M.

I = speye(M,M);

A block matrix is a matrix composed of multiple smaller matrices. Forming 
large and complicated matrices by assembling combinations of smaller and sim-
pler matrices is a practice that will be used throughout this book to formulate and 
implement FDFD. MATLAB makes forming block matrices very easy. For example, 
suppose the following block matrix G is to be formed.

	

G = A B
C D

⎡
⎣⎢

⎤
⎦⎥
=

1 1 2 2
1 1 2 2
3 3 4 4
3 3 4 4

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
	

(1.10)

	
A = 1 1

1 1
⎡
⎣⎢

⎤
⎦⎥
    B = 2 2

2 2
⎡
⎣⎢

⎤
⎦⎥
    C = 3 3

3 3
⎡
⎣⎢

⎤
⎦⎥
    D = 4 4

4 4
⎡
⎣⎢

⎤
⎦⎥ 	

(1.11)

The following MATLAB code builds the small matrices A, B, C, and D and then 
calculates the large matrix G as a block matrix. This practice will make more sense 
to perform when matrices are larger and more complicated.

A = 1*ones(2,2);
B = 2*ones(2,2);
C = 3*ones(2,2);
D = 4*ones(2,2);
G = [ A B ; C D ];
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1.2.2  Matrix Algebra

To formulate FDFD, it will be necessary to derive and manipulate matrix equations. 
It is critical that proper matrix algebra rules [1] are followed so that correct equa-
tions are derived and correct quantities are calculated. The most important concept 
to remember is that the order of multiplication of matrices cannot be reversed. The 
commutative laws for matrix algebra are

	

A + B = B + A

AB ≠ BA 	
(1.12)

The associative laws are

	

A + B( ) + C = A + B + C( )
AB( )C = A BC( ) 	

(1.13)

The distributive laws are

	

A + B( )C = AC + BC

A B + C( ) = AB + AC 	
(1.14)

The commutative laws apply to matrix division as well

	 A−1B ≠ BA−1
	 (1.15)

The operation A–1B is called predivision and is calculated in MATLAB as A\B. 
The operation BA–1 is called postdivision and is calculated in MATLAB as B/A. Note 
the direction of the divide symbol. The backward slash \ is used for predivision, 
or backward division, and the forward slash / is used for postdivision, or forward 
division. It is very important to not change the order of the division when dividing 
matrices. It is also important to not calculate a matrix division by calculating the 
inverse of a matrix and then multiplying. Explicitly calculating matrix inverses is 
surprisingly rare in numerical methods.

1.3	 Setting Up a Grid in MATLAB

1.3.1  MATLAB Array Indexing

MATLAB treats every variable as if it were a matrix. This leads to some problems 
when arrays are being manipulated because there are profound differences between 
matrices and arrays. Matrices are sets of numbers cast into a variable that are used 
in linear algebra equations and algorithms. When visualized, matrices do not pro-
vide much insightful information. Arrays are also sets of numbers, but they can be 
composed of any number of dimensions and convey more meaning when they are 
visualized. The most significant difference between matrices in MATLAB and tra-
ditional arrays in other programming languages is how the elements are referenced. 
This comparison is illustrated in Figure 1.4. From long-standing convention, the 
elements of a matrix amn are referenced using the index m for row number and n 
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for column number, as illustrated in Figure 1.4(a). Both m and n are integers with a 
starting value of 1. This means the first index m is the vertical position with values 
increasing downward. The second index n is the horizontal position with values 
increasing toward the right. The manner in which a traditional array is visualized 
is shown in Figure 1.4(b). The elements of a two-dimensional array are referenced 
using two integer indices, i and j, but they are defined and interpreted differently 
than the indices of a matrix. The first index i starts at 0 and describes the horizontal 
position with values increasing toward the right. The second index j also starts at 
0 and describes the vertical position with values increasing upward.

The most confusing aspect of the inconsistency between matrices and arrays 
is the direction that the indices access the elements. For matrices, the first index is 
vertical position and the second is horizontal position. However, people tend to think 
of functions as f(x,y), where the first argument is the horizontal position and the 

Figure 1.4  Matrix versus array in MATLAB. (a) A matrix and the MATLAB syntax to access 
elements in the matrix. (b) A traditional array and the representative syntax used by other 
programming languages to access elements in the array.
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10� MATLAB Preliminaries

second argument is the vertical position. There are multiple ways to work around 
this inconsistency, but MATLAB will always treat arrays as if they are matrices. In 
the author’s experience in teaching this subject, he has observed students struggle 
much more with building geometries into arrays than they struggle with numerical 
algorithms. For this reason, it is recommended to program MATLAB as if the arrays 
are actually traditional arrays where the first index references horizontal position and 
the second the vertical position. This practice will make building devices into arrays 
more intuitive. Treating arrays in this manner will need to be considered when the 
arrays are visualized because MATLAB will try to visualize those arrays as if they 
were matrices. Unlike arrays in most other programming languages, in MATLAB 
the array indices will start at 1 instead of 0 and the vertical array index will have 
increasing values in the downward direction instead of upward. This second point 
is actually a nice coincidence that will work in your favor. In electromagnetics, it is 
preferred to have waves propagate in positive directions. It is also preferred to have 
waves flow either left-to-right or top-to-bottom. So, having the positive direction 
be downward is convenient.

1.3.2  Parameters Describing a Grid in MATLAB

Continuous functions that are defined over some area of space contain an infinite 
amount of information. The standard FDFD algorithm cannot process continuous 
functions so they must be made discrete. To do this, space is divided into an array 
of cells, as illustrated in Figure 1.5. The set of cells and parameters describing how 
space is represented will collectively be called the grid. The physical size of the grid 
in the x-direction will be given the variable name Sx in MATLAB. It will have units 
of length such as meters or micrometers. Similarly, the physical size of the grid in 
the y-direction will be given the variable name Sy. Space will be divided into an 
array of discrete cells. In MATLAB, the variable Nx will be the number of cells in 
the x-direction and Ny will be the number of cells in the y-direction. The size of 
a single cell in the x-direction will be given the variable name dx and the size of a 
single cell in the y-direction given the variable name dy. The variables dx and dy will 
be called the grid resolution parameters. If all of the grid parameters are calculated 
correctly, the following two equations will be satisfied.

	 Sx = Nx ∗ dx 	 (1.16)

	 Sy = Ny ∗ dy 	 (1.17)

Continuous functions still contain an infinite amount of information within 
a single cell. To make the function truly discrete, the value of the function will be 
known at only one infinitely small point in each cell. It is incorrect to think of the 
function as having a constant value throughout the area of each cell. Instead, it is 
more correct to think of the function value as varying linearly from point to point 
through the cells. For now, think of the position of those points to be at the center 
of the cells, but more will be discussed about this in Chapters 3 and 4 when the Yee 
grid scheme is introduced. As more points (Nx and Ny) are used on a grid covering 
the same physical amount of space (Sx and Sy), the function will be resolved more 
accurately, but the simulation will be less computationally efficient due to requiring 
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1.3	 Setting Up a Grid in MATLAB� 11

more memory and more calculations. This is a fundamental tradeoff in computation, 
accuracy versus efficiency. A huge portion of the research in the area of computa-
tion is aimed at achieving higher accuracy with greater efficiency.

1.3.3  Calculating the Grid Parameters

There are multiple ways to properly calculate the grid parameters Sx, Sy, Nx, Ny, 
dx, and dy. It is most common to first calculate the grid resolution parameters dx 
and dy. It is not necessary that these parameters be equal to each other. The grid 
resolution is calculated with two considerations in mind. First, the cells on the grid 
must be sufficiently small to resolve the wave accurately enough. To do this, the 
variable NRES will be defined in the dashboard as the number of cells per smallest 
wavelength. NRES typically has a value in the range of 10 to 40. Figure 1.6 shows 
once cycle of a sine wave resolved with an increasing number of points defined 
by NRES. Observe that somewhere around 10 points is where the wave begins to 
be resolved well. This is consistent with what you will observe in simulations. 
However, in real simulations, waves will be interfering and diffracting to produce 
fluctuations that vary more abruptly than a pure wave. Depending on the physics 
involved in the simulation, higher values of NRES will be needed in order to obtain 
accurate results. This leads into the subject of convergence where the results from 
a simulation are analyzed as the value of NRES is increased. A simulation is said 
to be converged when the numerical error in the result falls below an acceptable 
threshold. It is up to the designer to determine the converged value of NRES. Testing 
for convergence must become standard practice. Behind every simulation should 
be a proper convergence study. Never make any conclusions about a simulation 

Figure 1.5  Definition of the grid parameters Sx, Sy, Nx, Ny, dx, and dy.
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12� MATLAB Preliminaries

until it is converged. More about how to perform proper convergence studies will 
be covered in Chapters 6 to 10.

Another variable that will be defined in the dashboard is the maximum refrac-
tive index nmax found anywhere in the simulation. Given the free space wavelength 
lam0 for the simulation, the smallest wavelength that the simulation will have to 
resolve is lam0/nmax. It is this smallest wavelength that should be resolved with 
NRES points. Based on this, the preliminary calculation for dx is

	 dx = lam0/nmax/NRES 	 (1.18)

The second consideration for grid resolution is that dx and dy must be sufficiently 
small to resolve the minimum feature size of the device to be simulated. This concept 
is illustrated in Figure 1.7. It is best to resolve the minimum features with at least 
one to two grid cells. This is particularly important when simulating small features 
composed of metals or high permittivity materials. Sometimes it is okay to be lazy 
and ignore the minimum feature size consideration when simulating devices with 
low permittivity or when it is known beforehand that the device will not have any 
small features. For a good preliminary calculation of the grid resolution, go with 
the smaller value of dx calculated for resolving the minimum wavelength and the 
minimum feature size.

After the preliminary values of dx and dy are calculated, they can be adjusted, 
if necessary, so that a critical dimension is resolved on the grid with an exact inte-
ger number of cells. For periodic structures, resolving the period exactly is often 

Figure 1.6  Resolving a wave with the increasing number of points.
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1.3	 Setting Up a Grid in MATLAB� 13

very important. For diffraction gratings, resolving the groove depth is often very 
important. It is up to you as the device expert to identify any critical dimensions 
and the need to resolve them exactly. If a wrong guess is made for the most critical 
dimension, the simulation may exhibit slow convergence but will still give the cor-
rect answer if proper convergence habits are followed.

Figure 1.7  (a) Lattice to build into an array. (b) Grids where lattices are resolved with a different 
number of points representing the minimum dimension.

7025_Book.indb   137025_Book.indb   13 12/17/21   8:38 AM12/17/21   8:38 AM



14� MATLAB Preliminaries

Suppose it is desired to accurately resolve the dimension a in the x-direction. 
The equation nx = a/dx calculates how many grid cells will represent the dimen-
sion a given the grid resolution dx. The number nx is very likely not going to be an 
integer here because the dimension a was not considered in the calculation of dx. 
To adjust the value of dx to make nx an integer, the calculated value of nx should 
be rounded up to the nearest integer using MATLAB’s ceil() function.

	 nx = ceil a/dx( ) 	 (1.19)

Given that nx has been made an integer, dx is adjusted according to

	 dx = a/nx 	 (1.20)

After this recalculation of dx, the dimension a will be resolved on the grid exactly 
by nx cells. This procedure ensures that dx is made smaller instead of bigger so grid 
resolution is improved instead of lost.

The concepts discussed above to calculate the grid resolution parameter dx are 
illustrated in Figure 1.8. At the top is a bar representing some critical dimension a 
that should be resolved exactly with an integer number of grid cells for best numeri-
cal efficiency and least error. The preliminary calculation of dx does not achieve 
this so it is adjusted in a second step. This will be called snapping the grid to critical 
dimensions. Equations (1.18) to (1.20) are repeated to calculate dy. Uniform grids 
can only snap to one critical dimension per axis so choose wisely which dimension 
is critical. Make snapping the grid standard practice when setting up a grid for 
FDFD analysis! This practice will provide your FDFD codes better accuracy and 
faster convergence.

At this point, only the grid resolution parameters dx and dy are known and they 
will not be modified again in the program. The next step is to calculate the overall 
size of the grid. This includes the physical dimensions Sx and Sy and the number 
of points Nx and Ny along the x- and y-directions, respectively. Usually, Sx and Sy 
are calculated first. A typical grid setup for an FDFD simulation is illustrated in 
Figure 1.9. Lengths 1, 5, 6, and 10 represent absorbing boundaries that will be 
incorporated onto the grid to absorb waves propagating outward so that they do 
not reflect back into the simulation. These will typically be 10 to 20 cells large. 
Lengths 3 and 8 are the dimensions of the device to be simulated. Lengths 2, 4, 7, 
and 9 are spacer regions placed between the device and the absorbing boundaries. 

Figure 1.8  Illustration of snapping the grid to a critical dimension.
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1.4	 Building Geometries onto Grids� 15

These are typically made to be at least a quarter to one wavelength large and are 
needed to obtain accurate results or to better visualize the field around the device. 
The grid must be made sufficiently large to fit all of this at the same time.

After Sx and Sy are calculated, the total number of points on the grid in the 
x-direction is calculated as Sx/dx. However, this is likely not going to be an integer 
quantity because the total size of the grid Sx was not considered in the calculation 
of dx. For this reason, the quantity Sx/dx is rounded up to the nearest integer to 
calculate the total number of points Nx.

	 Nx = ceil Sx/dx( ) 	 (1.21)

Since Nx was rounded up, Sx may no longer accurately represent the physical size 
of the grid. This is corrected simply by recalculating Sx according to (1.16). This 
process is repeated for the y-direction to calculate Sy and Ny. Now all of the grid 
parameters are consistent and the grid has been optimized to simulate the device.

With the calculated grid, it is time to build the arrays ER and UR which contain 
the relative permittivity and permeability, respectively, across the grid. These are 
needed in order to fully describe the problem to be simulated. The following sections 
describe how to make some simple shapes and how to combine them with Boolean 
operations to make more complicated shapes.

1.4	 Building Geometries onto Grids

Suppose it is desired to simulate a wave scattering from a cylinder as shown in 
Figure 1.10(a). How is the simulation told what it is simulating, the shape the device, 
the material properties, etc.? For the FDFD method, this information is conveyed 
through the relative permittivity εr(i,j) and relative permeability μr(i,j) at each point 
of the grid. To do this in MATLAB, two arrays will be constructed, one to describe 
the relative permittivity ER and one to describe the relative permeability UR. If done 
correctly, plotting either of these arrays will show a picture of what is to be simulated, 
as illustrated in Figure 1.10(b), which shows the relative permittivity array ER for 
a cylinder. In this case, the array ER is filled with the value εr2 at all points that lie 
inside of the cylinder and the value εr1 at all points outside of the cylinder.

Figure 1.9  Typical grid setup for FDFD.
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16� MATLAB Preliminaries

Building geometries into arrays is often the most difficult for students. The fol-
lowing sections cover the techniques required to build a wide variety of different 
geometries into data arrays so that different devices can be simulated. Complicated 
shapes can usually be created from combinations of simple shapes. With practice, 
these techniques will become intuitive and easy.

1.4.1  Adding Rectangles to a Grid

The simplest shapes to build onto a grid are squares and rectangles. They are also 
very common shapes for real devices in electromagnetics and photonics. Diffraction 

Figure 1.10  (a) FDFD simulation of scattering from a dielectric cylinder. (b) Relative permittivity 
array ER that completely describes the cylinder to be simulated.
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1.4	 Building Geometries onto Grids� 17

gratings and polarizers are often described well by rectangles in their cross section. 
Rectangles are also elements of more complicated geometries. For example, a triangle 
can be thought of as a stack of thin rectangles of varying lengths. Rectangles can be 
added to a grid simply by calculating the array indices where the shape begins and 
ends and then adding the numbers to the array. For example, the MATLAB code 
below builds a rectangle into the array ER. The result is illustrated in Figure 1.11.

1   Nx = 10;
2   Ny = 15;
3
4   nx1 = 5;
5   nx2 = 8;
6   ny1 = 6;
7   ny2 = 13;
8
9   ER = ones(Nx,Ny);
10  ER(nx1:nx2,ny1:ny2) = 6;

In practice, the array indices will not be hard-coded like in this example. Instead, 
they will be calculated from parameters defined in the dashboard. This practice 
will be demonstrated in later chapters when FDFD implementation is discussed.

1.4.2  The Centering Algorithm

Many times it is desired to center a device on a grid. For this example, the same 
rectangle depicted in Figure 1.11 will be centered on the grid. This begins by cal-
culating how many cells wide nx and how many cells tall ny the rectangle is. Given 
these variables, the start and stop array indices are calculated using the MATLAB 
code below.

1   nx = 4;
2   ny = 8;
3   nx1 = 1 + floor((Nx – nx)/2);
4   nx2 = nx1 + nx – 1;
5   ny1 = 1 + floor((Ny – ny)/2);
6   ny2 = ny1 + ny – 1;

The concept of this technique is as follows. The array index corresponding to the 
center of the grid in the x-direction is Nx/2, temporarily ignoring that this quantity 
must be rounded to an integer. This means the array index nx1 where the rectangle 
starts should be Nx/2 minus half of the number of cells the rectangle is wide nx/2. 
Putting these together means the starting array index is Nx/2–nx/2, which is simpli-
fied to (Nx–nx)/2. To get an integer array index, this is rounded down to the near-
est integer using MATLAB’s floor() function. To prevent getting an array index 
of 0, the value of 1 is added to the rounded integer. The final equation to calculate 
nx1 is on line 3 of the MATLAB code immediately above. Calculating the stop 
index nx2 is much easier after the start index nx1 is known. The stop index nx2 is 
nx2=nx1+nx-1. The final equation to calculate nx2 is on line 4 of the MATLAB code 
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18� MATLAB Preliminaries

immediately above. The reason for the -1 is so the rectangle occupies the correct 
number of cells on the grid to accurately represent its size. In this example, nx=4 
and nx1=4. If the –1 were not used, the stop index nx2 would be calculated to be 
8, causing five cells to be filled in on the grid (4, 5, 6, 7, and 8). Doing this would 
make the rectangle one cell larger than it should be. While this may seem minimal, 
it can lead to very slow convergence requiring very high grid resolution to make 
the one-cell error insignificant. It is best practice to take great care to always use 
the most accurate number of cells. The final centered rectangle is shown in Figure 
1.12. Observe that the rectangle is not perfectly centered in the y-direction. This is 
because the height of the rectangle is an even number of cells and the height of the 
grid is an odd number of cells. Often, the position of the device on the grid is much 

Figure 1.11  Building a rectangle onto a grid.
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1.4	 Building Geometries onto Grids� 19

less important than getting its dimensions correct. For this reason, there is more 
room to be lazy calculating nx1 than there is when calculating nx2 relative to nx1.

1.4.3  The Meshgrid

While rectangles are common shapes and easy to build onto a grid, it is cumbersome 
to use them for building shapes like circles and ellipses. The meshgrid technique in 
MATLAB makes the code to build a wide variety of shapes very simple and easy. 
The concept of the meshgrid and the variables related to it are illustrated in Figure 
1.13. It starts with the array ER or UR that will be used to store the relative permit-
tivity or relative permeability, respectively. The parameters that describe the grid 

Figure 1.12  Centering a rectangle onto a grid.
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associated with these arrays were described previously. Two axis arrays, xa and ya, 
must be defined before the meshgrid parameters X and Y can be calculated. The array 
xa contains the center position of all the cells in the x-direction, while the array ya 
contains the center position of all the cells in the y-direction. These are illustrated 
below and to the left of the ER (or UR) array shown in Figure 1.13. The color in the 
cells of xa and ya represents the number values that are stored in those arrays.

Given the axis arrays xa and ya, the meshgrid parameters X and Y are calculated 
using MATLAB’s function meshgrid(). Since X and Y are associated with arrays and 
not matrices, the order of x and y is swapped when calling the meshgrid() function.

[Y,X] = meshgrid(ya,xa)

Both X and Y are arrays the same size as the grid for ER (or UR). The number 
values in the array X contain the position of those number values in the x-direction. 
For this reason, the numbers in any vertical column of X are the same. The number 
values in the array Y contain the position of those number values in the y-direction. 
For this reason, the numbers in any horizontal row of Y are the same. This redun-
dant information may seem like a waste of computer memory, but the utility of the 
meshgrid arrays will be demonstrated shortly.

1.4.4  Adding Circles and Ellipses to a Grid

The meshgrid arrays X and Y make it very easy to build circles and ellipses onto 
grids. The general equation for an ellipse with center position (x0,y0), radius rx in 
the x-direction, and radius ry in the y-direction is

	

x − x0

rx

⎛
⎝⎜

⎞
⎠⎟

2

+
y − y0

ry

⎛

⎝⎜
⎞

⎠⎟

2

= 1
	

(1.22)

Using the meshgrid parameters X and Y, this ellipse can be built into the array ER 
simply by typing (1.22) directly into MATLAB.

ER = ((X – x0)/rx).^2 + ((Y – y0)/ry).^2 <= 1

Figure 1.13  Illustration of the meshgrid arrays X and Y.
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1.4	 Building Geometries onto Grids� 21

The meshgrid makes it incredibly easy to build an ellipse and the code to do it 
is very simple and easy to read. Figure 1.14 overlays the ellipse onto the final array 
ER where the ellipse has been incorporated using meshgrid. Observe how the dimen-
sions of the ellipse are conveyed in the ER array.

The MATLAB code to build the ellipse into the array ER is provided below. 
The code begins with a short dashboard that defines the physical size of the grid 
with Sx and Sy, the number of points on the grid with Nx and Ny, the center of the 
ellipse with x0 and y0, and the radii of the ellipse in the x- and y-directions with 
the variables rx and ry, respectively. The next parameters calculated are the grid 
resolution parameters dx and dy, axis arrays xa and ya, and finally the meshgrid 
arrays X and Y. The very last line uses the meshgrid arrays to build the ellipse in a 
single and simple line of code that comes directly from (1.22).

% DASHBOARD
Sx = 1;
Sy = 1;
Nx = 20;
Ny = 20;

x0 = 0.3;
y0 = 0.6;
rx = 0.2;
ry = 0.35;

% CALCULATE GRID
dx = Sx/Nx;

Figure 1.14  An ellipse is built into the array ER.
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dy = Sy/Ny;
xa = [0.5:Nx–0.5]*dx;
ya = [0.5:Ny–0.5]*dy;
[Y,X] = meshgrid(ya,xa);

% BUILD ELLIPSE
ER = ((X – x0)/rx).^2 + ((Y – y0)/ry).^2 <= 1;

While this code builds an ellipse, it is easily modified to build a circle. One 
way to do this is to simply ensure that rx and ry are equal. Alternatively, and more 
simply, the last line above could be replaced with

ER = (X – x0).^2 + (Y – y0).^2 <= r^2;

Observe that neither the equation for the ellipse nor the circle calculate the square 
root of the meshgrid arrays. Instead, the radius quantities are squared so that only 
a single number has to be squared instead of calculating the square root of every 
number in the meshgrid. This is done for speed and efficiency.

1.4.5  Grid Rotation

Sometimes it is desired to build a shape onto a grid that is tilted by some angle. 
Later, this technique will be applied to calculate Gaussian beams at oblique angles. 
Both of these tasks are easily accomplished by rotating the meshgrid parameters. 
Suppose it is desired to build an ellipse as shown in Figure 1.14, but rotated counter-
clockwise by 30°. The final rotated ellipse is depicted in Figure 1.15.

Figure 1.15  Building a rotated ellipse into the array ER.
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The MATLAB code to build this rotated ellipse is provided below. The first step 
is to convert the Cartesian meshgrid parameters X and Y into polar coordinates TH 
and R using MATLAB’s cart2pol() function. The meshgrid parameters passed to 
cart2pol() are made to equal zero at the point (x0,y0) by subtracting these values 
from X and Y. This makes the new meshgrid rotate about the center of the ellipse 
being built onto the grid. Next, the polar coordinates are immediately converted 
back to Cartesian coordinates to get a second set of meshgrid arrays XR and YR. This 
is the step where some angle theta is added to TH, making XR and YR the rotated 
meshgrid arrays. Now the ellipse is calculated using the rotated meshgrid terms 
in the exact same way it would be calculated using the standard meshgrid terms.

% UNITS
degrees = pi/180;

% DASHBOARD
Sx = 1;
Sy = 1;
Nx = 20;
Ny = 20;
x0 = 0.3;
y0 = 0.6;
rx = 0.2;
ry = 0.35;
theta = 30*degrees;

% CALCULATE GRID
dx = Sx/Nx;
dy = Sy/Ny;
xa = [0.5:Nx–0.5]*dx;
ya = [0.5:Ny–0.5]*dy;
[Y,X] = meshgrid(ya,xa);
[TH,R] = cart2pol(X–x0,Y–y0);
[XR,YR] = pol2cart(TH+theta,R);

% BUILD ELLIPSE
ER = (XR/rx).^2 + (YR/ry).^2 <= 1;

1.4.6  Boolean Operations

To build more complicated geometries onto FDFD grids, Boolean operations are 
very useful. Many complicated shapes can be envisioned as a combination of simpler 
shapes. Boolean operations can be used to combine multiple shapes, subtract one 
shape from another, and more. Figure 1.16 shows various types of Boolean opera-
tions that can be performed easily in MATLAB. The top two arrays labeled A and 
B are two squares offset from each other. The other arrays show how A and B can 
be combined in multiple ways to form a wide array of new shapes.

Observe that the original arrays A and B contain only zeros and ones instead of 
relative permittivity or relative permeability. When Boolean operations are going to 
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be used, it is very useful to build the simple shapes from just zeros and ones so that 
the Boolean operations can be performed more naturally. When the final geometry 
resides on the grid, the zeros and ones are easily converted to physical values of 
relative permittivity and/or relative permeability. The concept of this calculation is 
illustrated in Figure 1.17. At left is a grid containing a square with a circle subtracted 
from it using a Boolean operation. This might be a unit cell of a photonic crystal, 
for example. The array at this point contains only zeros and ones to facilitate the 
Boolean operation.

If the structure depicted in Figure 1.17 is made of a material with relative per-
mittivity er2=9 and is embedded in a medium with relative permittivity of er1=2, 
the zeros must be replaced with the value of er1 and the ones must be replaced with 
the value of er2. One simple way to do this is using (1.23).

	
ER = er1 + er2-er1( ) ∗ ER

	 (1.23)

Figure 1.16  Examples of various Boolean operations in MATLAB.
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The first occurrence of er1 in (1.23) places that value throughout the entire 
array ER. The second term (er2-er1)*ER adds the difference er2-er1 to the cells 
on the grid where er2 is to be placed. Since er1 is the current value in those cells, 
er2-er1 is added to them to get a final value of er2. With some practice, this will 
become very intuitive and techniques for assigning more than two material values 
to the grid are straightforward to implement.

1.5	 Three-Dimensional Grids

Everything discussed so far is easily generalized to three dimensions for use in 
Chapter 10. All of the same techniques are used to calculate the grid parameters 
and build geometries onto the grid. To demonstrate, suppose it is desired to build 
an ellipsoid onto a three-dimensional grid with radii rx = 0.4, ry = 0.3, and rz = 1.0. 
The MATLAB code to do this is provided below.

1    % demo_3Dgrid.m
2
3    % INITIALIZE MATLAB
4    close all;
5    clc;
6    clear all;
7
8    % DASHBOARD
9    rx = 0.4;
10   ry = 0.3;
11   rz = 1.0;
12  
13   er1 = 1.0;
14   er2 = 9.0;
15
16   Sx = 1;
17   Sy = 1;
18   Sz = 3;

Figure 1.17  Converting binary arrays to arrays containing real values of relative permittivity.
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19   Nx = 20;
20   Ny = 20;
21   Nz = 60;
22
23   % CALCULATE 3D MESHGRID
24   dx = Sx/Nx;
25   xa = [1:Nx]*dx;
26   xa = xa – mean(xa);
27
28   dy = Sy/Ny;
29   ya = [1:Ny]*dy;
30   ya = ya – mean(ya);
31
32   dz = Sz/Nz;
33   za = [1:Nz]*dz;
34   za = za – mean(za);
35
36   [Y,X,Z] = meshgrid(ya,xa,za);
37
38   % BUILD ELLIPSE
39   ER = (X/rx).^2 + (Y/ry).^2 + (Z/rz).^2 < 1;
40   ER = er1 + (er2 – er1)*ER;

Line 1 is a comment with the name of the program. Lines 3 to 6 initialize MAT-
LAB. Lines 8 to 21 comprise the dashboard where everything about the program 
is controlled. The radii of the ellipsoid are defined on lines 9 to 11 as rx, ry, and 
rz. Lines 13 and 14 define the relative permittivity values to be assigned to this 
grid. er1 is the relative permittivity outside of the ellipsoid and er2 is the relative 
permittivity of the ellipsoid. Lines 16 to 21 define a simple three-dimensional grid 
in terms of the physical size Sx, Sy, and Sz and the number of points along each 
dimension Nx, Ny, and Nz. The three-dimensional meshgrid is calculated from lines 
24 to 36 in four groups of code. The first three groups of code calculate the grid 
resolution parameters dx, dy, and dz as well as the axis arrays xa, ya, and za. Line 
36 calculates the meshgrid parameters X, Y, and Z. The meshgrid parameters are 
all three-dimensional arrays of size Nx-by-Ny-by-Nz. Last, lines 38 to 40 build the 
ellipsoid onto the three-dimensional grid. Line 39 actually builds the ellipsoid into 
the array ER where 0’s are placed outside of the ellipsoid and 1’s are placed inside 
of the ellipsoid. This makes the ellipsoid suitable for Boolean operations with other 
structures if that is desired. Line 40 converts the 0’s and 1’s to the actual values of 
relative permittivity. This line works by assigning the value of er1 to all points in 
the array ER and then adding (er2 - er1) at the points in ER that contain 1’s. After 
this line, all 0’s in ER are replaced with er1 and all 1’s in ER are replaced with er2.

The output of the program described above is the three-dimensional array ER 
containing the relative permittivity throughout the grid. Figure 1.18 shows the 
array ER that is constructed by the above MATLAB program. The axes are labeled 
with the array indices instead of the physical position along the grid for illustration 
purposes. For real simulation work, it is usually more meaningful to label the axes 
with physical dimensions.
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1.6	 Visualization Techniques

1.6.1  Visualizing Data on Grids

The two most common functions in MATLAB to visualize data arrays arising in 
FDFD are imagesc() and pcolor(). The key differences between these functions 
can be observed in Figure 1.19. The top two images show the same 5 × 5 array 
visualized with both functions. Notice that imagesc() clearly shows that there are 
5 × 5 discrete numbers in the array while pcolor() seems to imply there are only 
4 × 4 numbers. The function imagesc() is what the author uses for his day-to-day 
simulation tasks because it more precisely and intuitively conveys discrete func-
tions. The function pcolor() is more intended to visualize smooth functions and is 
performing interpolations to smooth the data. It assigns the values from the array 
to the axis lines. The discrete shades shown in the top right image are essentially 
interpolated from the data values at the edges, thus the 5 × 5 set of data appears to 
be 4 × 4. While this is not good for inspecting digital data, it is an excellent way to 
produce a very nice-looking final image of the fields calculated from a simulation. 

Figure 1.18  Ellipsoid built onto a three-dimensional grid.
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Even low-resolution data can be made to look smooth and continuous. Also notice 
the orientation of the vertical axis. The function imagesc() inverts the y-axis so 
the numbers increase going downward. In contrast, pcolor() orients the vertical 
axis so that numbers increase going upward. This was discussed previously and the 
preferred orientation is to have numbers increase going downward like that pro-
duced by imagesc(). Last, observe that pcolor() adds coordinate lines by default 
to the image. When arrays contain many points, the black lines become so dense 
the entire image becomes black. In FDFD, it will be a standard practice to turn off 
those lines and to reverse the y-direction when using pcolor(). The bottom row 
of Figure 1.19 visualizes arrays containing 15 × 15 points. The image generated by 
pcolor() has the black lines removed and the y-axis reversed to match imagesc(). 
The application of pcolor() to visualize smooth data is apparent.

A key issue about imagesc() and pcolor() is that both assume the array being 
visualized is a matrix. Both graphics commands place the first dimension of the 
array along the vertical axis and the second dimension of the array along the hori-
zontal axis. This is the exact opposite of how arrays will be handled throughout 
this book. To correct this, the arrays are simply transposed to put them in the cor-
rect orientation for visualization.

The MATLAB code to visualize an array R is provided below. Observe that the 
array R is transposed in the calls to imagesc() and pcolor() on lines 29 and 34, 
respectively. The axis lines produced by default for pcolor() are removed using 
shading interp on line 35. The direction of the y-axis for pcolor() is reversed 

Figure 1.19  Visualizing data in arrays with imagesc() and pcolor().
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by setting the property ‘YDir’ to ‘reverse’ on line 37. Otherwise, the code uses 
standard graphics procedures.

1   % imagescpcolor.m
2
3   % INITIALIZE MATLAB
4   close all;
5   clc;
6   clear all;
7
8   % DASHBOARD GRID
9   Sx = 2;
10  Sy = 2;
11  Nx = 15;
12  Ny = 15;
13
14  % CALCULATE MESHGRID
15  dx = Sx/Nx;
16  xa = [1:Nx]*dx;
17  xa = xa – mean(xa);
18
19  dy = Sy/Ny;
20  ya = [1:Ny]*dy;
21
22  [Y,X] = meshgrid(ya,xa);
23
24  % CALCULATE DATA TO VISUALIZE
25  R = sqrt(X.^2 + Y.^2);
26
27  % VISUALIZE USING IMAGESC AND PCOLOR
28  subplot(121);
29  imagesc(xa,ya,R.’);
30  axis equal tight;
31  colorbar;
32
33  subplot(122);
34  pcolor(xa,ya,R.’);
35  shading interp;
36  axis equal tight;
37  set(gca,’YDir’,’reverse’);
38  colorbar;

1.6.2  Visualizing Three-Dimensional Data

Visualizing three-dimensional data is more difficult but can be done several differ-
ent ways. By far the simplest in MATLAB is to use the built-in slice() function. 
The slice() function visualizes planes cut through a three-dimensional set of data, 
essentially using pcolor() to visualize each slice. The most common way to use 
slice() in FDFD is to visualize slices cut through the middle of the grid along each 
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plane. This can be done to visualize three-dimensional objects built onto a grid, as 
shown in Figure 1.20(a), or to visualize electromagnetic fields in three dimensions, 
as shown in Figure 1.20(b).

The MATLAB code to produce the visualizations in Figure 1.20 is provided 
below. The slice function takes three-dimensional meshgrid parameters X, Y, and Z as 
the first three input arguments. The fourth input argument is the three-dimensional 
array to be visualized. The fifth input argument is an array containing all of the 
positions along the x-axis to image slices. In this case, a single value of 0 is given to 
draw a single slice at the plane defined by x = 0. The sixth and seventh input argu-
ments are similar arrays for the positions of the slices along the y- and z-axes. See 
the documentation for MATLAB for additional options for the slice() function.

slice(Y,X,Z,A,0,0,0);
shading flat;
grid on;
axis equal tight;
colorbar(‘LineWidth’,3);
view(120,20);
camlight headlight;

Figure 1.20  (a) Visualization of a three-dimensional ellipsoid object using slice(). (b) Visualizing 
a three-dimensional wave using slice().
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1.6.3  Visualizing Complex Data

The FDFD method is a frequency-domain simulation technique. This means it 
calculates the field f as an array of complex numbers to convey both amplitude 
and phase. A good question to ask is how an array of complex numbers should be 
visualized. Most of the time, visualizing just the real part of the array f will pro-
duce the most intuitive representation of the field from a simulation, but this can 
sometimes hide aspects of the field. Figure 1.21 shows the four primary ways of 
visualizing a complex field. In this example, a diverging Gaussian beam from an 
FDFD simulation is being visualized. Observe that the images produced by Figure 
1.21(a, b) are essentially the same, but the phase appears different when comparing 
the real and imaginary parts. While both convey the same information, sometimes 
one may produce a better visualization of the field than the other. Figure 1.21(c) 
shows the absolute value of the field. This is excellent for visualizing where power 
is distributed, but is missing the wave nature of the field. In this case, the curvature 
of the wave fronts would be completely missed. Last, Figure 1.21(d) shows the phase 
part of the field. Due to wrapping of the phase and absence of conveying where 
power is distributed, this visualization is rarely used. There is no single best way to 
visualize complex data, and sometimes, all four visualizations are needed in order 

Figure 1.21  Four ways to visualize data in complex arrays: (a) real part, (b) imaginary part, 
(c) absolute value, and (d) phase.

7025_Book.indb   317025_Book.indb   31 12/17/21   8:38 AM12/17/21   8:38 AM



32� MATLAB Preliminaries

to completely understand the field. For most work, the author prefers to visualize 
the real part of the field.

1.6.4  Animating the Fields Calculated by FDFD

The FDFD method is a frequency-domain method, so it obtains a snapshot of the 
fields at steady-state at a single frequency. Based on this, it would seem that it is 
not possible to create animations of the simulated fields propagating and scatter-
ing on the grid. This is false! It is absolutely possible to create stunning animations 
and these will help you to learn about your devices and to showcase your results. 
There are times where it can really help your career to show off! Consider making 
it standard practice for you to show an animated GIF of your simulation in a pre-
sentation instead of a boring static image like everybody else.

The rest of this book will teach you how to simulate a wide variety of devices 
using the FDFD method. In the end, you will have an array f containing the fre-
quency-domain solution to the simulation. f is the array from which the animation 
will be generated. The MATLAB code to create an animated GIF from the complex 
field f can be downloaded from https://empossible.net/fdfdbook/. It is called Chap-
ter1_GIFanimation.m and is described below. The code essentially captures frames 
over one wave cycle in a way that if repeated will produce the illusion that the wave 
keeps propagating. It is typical to use around 40 frames in a GIF animation. The 
program saves the GIF with the name “FDFD_animation.gif.” To replace a real 
FDFD simulation, this code calculates a plane wave propagating vertically at an 
angle of 30° in the array f. Lines 37 to 64 create the animation from the array f and 
these lines can be copied and pasted to the end of any FDFD program to animate 
the results. A single frame from the animation created from the code above is shown 
in Figure 1.22. The direction of the wave is downward and slightly to the right 
consistent with the angle theta. This is a common source used in FDFD analysis.

Reference

[1]	 Gentle, J. E., “Matrix Algebra Theory, Computations and Applications in Statistics” 
Springer Texts in Statistics, New York: Springer, Vol. 10, 2007.

Figure 1.22  A single frame of the GIF animation of a plane wave.
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C H A P T E R  2

Electromagnetic Preliminaries

This chapter will review the key electromagnetic concepts and equations needed to 
understand and implement the finite-difference frequency-domain (FDFD) method. 
Maxwell’s equations and the constitutive relations are introduced and expanded 
into Cartesian coordinates that will be used in the FDFD method. From here, the 
wave equation is derived and some properties of waves are discussed including 
polarization and the dispersion relation. The scattering of waves at an interface and 
how polarization is defined relative to the interface are reviewed. The conditions 
are explained where Maxwell’s equations can be reduced to analyze devices in just 
two dimensions. To set up how reflection and transmission will be calculated in 
FDFD for periodic structures, diffraction gratings are reviewed as well as diffrac-
tion efficiency of the diffraction orders. Waveguides and transmission lines will be 
briefly discussed to understand the terminology, parameters, and mathematical 
form of the modes associated with the devices. Last, scalability in electromagnetics 
is discussed along with its implications and applications in FDFD.

2.1	 Maxwell’s Equations

Maxwell’s equations are an incomplete set of equations that describe classical 
electromagnetics [1–5]. The most general form of Maxwell’s equations is the time-
domain integral form.

	

!
D t( )

S
"∫∫ • d!s = ρv t( )dv

V
∫∫∫

  
Gauss’ Law for Electric Fields	 (2.1)

	

!
B t( )

S
"∫∫ • d!s = 0

  
Gauss’ Law for Magnetic Fields	 (2.2)

	

!
E t( ) • d

!
ℓ
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#∫ = −

∂
!
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⎡

⎣
⎢

⎤

⎦
⎥ • d
!
s

S
∫∫

  
Faraday’s Law	 (2.3)

	

!
H t( ) • d

!
ℓ

L
#∫ =

!
J t( ) + ∂

!
D t( )
∂t

⎡

⎣
⎢

⎤

⎦
⎥ • d
!
s

S
∫∫

  
Ampere’s Circuit Law	 (2.4)

There are two ways that electric fields and static electric charges can store energy. 
First, energy can be stored in the electric field itself because energy can be propa-
gated through the vacuum of space in electromagnetic waves. This is the electric 
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field intensity 
!
E(t) and it has units of volts per meter (V/m). The electric field inten-

sity is most closely associated with voltage and force. Second, energy can be stored 
in the matter as displaced charge, like in a battery or the dielectric in a capacitor. 
The electric flux density 

!
D(t) includes both forms of electric energy and has units 

of Coulombs per square meter (C/m2). It is most closely associated with charge.
Similarly, there are two ways that magnetic fields and moving electric charges can 

store energy. First, energy can be stored in the magnetic field itself because energy 
can be propagated through the vacuum of space in electromagnetic waves. This is 
the magnetic field intensity 

!
H(t) and it has units of Amperes per meter (A/m). The 

magnetic field intensity is most closely associated with electric current. Second, 
magnetic energy can be stored in matter as rotated magnetic dipoles. The magnetic 
flux density 

!
B(t) includes both forms of magnetic energy and has units of Webers 

per square meter (Wb/m2) or Tesla (T). Magnetic flux is most closely associated 
with force. The needle of a compass aligns with the magnetic flux.

Gauss’ law for electric fields equates two different ways of calculating the total 
charge enclosed in a volume. The total charge can be obtained either by integrating 
the electric flux 

!
D(t) through a closed surface or by integrating the electric charge 

density ρv (C/m3) throughout the volume enclosed by the same surface. Since there 
is no such thing as a magnetic charge, Gauss’ law for magnetic fields equals zero 
and only contains the term integrating the magnetic flux. Faraday’s law equates 
two different ways of calculating the electromotive force (EMF). The EMF can 
be calculated from a line integral of the electric field intensity around a closed 
path or by integrating the rate of change of the magnetic flux through the surface 
enclosed by the path. A negative sign is incorporated to enforce the negative sign 
convention. Ampere’s circuit law equates two different ways of calculating the total 
electric current passing through an area. The total current can be calculated from a 
line integral of the magnetic field intensity around a path enclosing the area or by 
integrating the electric current density 

!
J(t)  (A/m2) plus the rate of change of the 

electric flux density passing through that area.
Observe that Maxwell’s equations do not contain any material parameters. 

For this reason, Maxwell’s equations only describe the manner in which electric 
and magnetic fields are created and interact with each other. They do not directly 
describe how the fields interact with matter. This information comes from the con-
stitutive relations [2].

	
!
D t( ) = e t( ) ∗

!
E t( )     Electric Response of Matter	 (2.5)

	
!
B t( ) = m t( ) ∗

!
H t( )     Magnetic Response of Matter	 (2.6)

In these equations, ε(t) is the electric permittivity and has units of Farads per meter 
(F/m). The electric permittivity is a measure of how well a medium stores electric 
energy. It accounts for the ability of both matter and the field itself to store electric 
energy. Similarly, the magnetic permeability μ(t) has units of Henries per meter (H/m) 
and is a measure of how well a medium stores magnetic energy. The permittivity and 
permeability change with frequency. This is called material dispersion. This leads 
to the convolution operation observed in the time-domain constitutive relations.
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One final equation is needed in order to describe all of classical electromag-
netics. This is the Lorentz force law that describes the force electric and magnetic 
fields put on a charge q [1]. The Lorentz force law will not be used in this book.

	

!
F t( ) = q

!
E t( ) + q v

!
t( ) ×

!
B t( )⎡⎣ ⎤⎦   

Lorentz Force Law	 (2.7)

For FDFD, Maxwell’s equations will be handled almost exclusively in the fre-
quency-domain differential form. These are derived by Fourier transforming Max-
well’s equations and applying Stoke’s theorem and the divergence theorem [1].

	 ∇ •
!
D = rv     Gauss’ Law for Electric Fields	 (2.8)

	 ∇ •
!
B = 0     Gauss’ Law for Magnetic Fields	 (2.9)

	 ∇ ×
!
E = − jw

!
B     Faraday’s Law	 (2.10)

	 ∇ ×
!
H =

!
J + jw

!
D     Ampere’s Circuit Law	 (2.11)

In differential form, Gauss’ law for electric fields states that electric flux will 
diverge from positive charge and converge on negative charge. In the absence of 
charge, the electric flux cannot diverge or converge so it cannot have a beginning or 
an end. This means the electric flux can only form loops when no charge is present. 
There is no magnetic charge so Gauss’ law for magnetic fields states that magnetic 
flux cannot have divergence. That is, the magnetic flux cannot have a beginning 
or an end so it can only form loops. Faraday’s law states that oscillating magnetic 
flux will have an electric field circulating around it. Ampere’s circuit law states that 
a circulating magnetic field will exist around either an oscillating electric flux or 
an electrical current. In FDFD, the two divergence equations play the most critical 
role in how Maxwell’s equations are made discrete, and the two curl equations play 
the most critical role in equations used for FDFD.

Last, the constitutive relations in the frequency-domain simplify considerably 
since they no longer contain convolutions.

	
!
D = e

!
E     Electric Response of Matter	 (2.12)

	
!
B = m

!
H     Magnetic Response of Matter	 (2.13)

The volume charge density ρv is not often used in electrodynamics (i.e., waves) 
problems because the waves being analyzed are away from free charges. For this 
reason, ρv will be set equal to zero and dropped from Gauss’ law. It is common to 
substitute the constitutive relations into Maxwell’s equations to eliminate the electric 
flux density 

!
D and magnetic flux density 

!
B terms. This gives

	
∇ • e

!
E( ) = 0

	
(2.14)

	
∇ • m

!
H( ) = 0

	
(2.15)

	 ∇ ×
!
E = − jwm

!
H 	 (2.16)

	 ∇ ×
!
H =

!
J + jwe

!
E 	 (2.17)
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The electric current density 
!
J  in (2.17) is related to the electric field intensity 

through a form of Ohm’s law in electromagnetics [2] where σ is the electrical con-
ductivity of the medium.

	
!
J = s

!
E 	 (2.18)

Electrical conductivity σ has units of Ω ⋅ m. Substituting (2.18) into (2.17) gives

	 ∇ ×
!
H = s

!
E + jwe

!
E 	 (2.19)

On the right-hand side of this equation, jω and 
!
E  are factored out of the expres-

sion to obtain

	
∇ ×

!
H = jw s

jw + e⎛
⎝⎜

⎞
⎠⎟
!
E

	
(2.20)

The expression in parentheses can be interpreted as a complex permittivity ε ̃ that 
accounts for both the permittivity ε and electrical conductivity σ at the same time. 
Using the complex permittivity ε,̃ (2.20) becomes

	 ∇ ×
!
H = jw !e

!
E 	 (2.21)

where

	
!e = e + s

jw 	
(2.22)

It is so common to account for loss with a complex permittivity that the tilde 
notation is rarely used. In fact, the complex permittivity throughout this book will 
be written without the tilde even though it is a complex quantity. It is more common 
to communicate about the properties of a material through the complex relative 
permittivity εr̃ than it is the complex permittivity ε.̃ Given the free space permittiv-
ity ε0, these parameters are related as follows.

	
!e = e0

!er 	 (2.23)

In FDFD, material loss is handled simply by making the relative permittivity a 
complex number ε.̃ It is important to be cautious of sign convention when expressing 
the complex permittivity ε.̃ This book, and most of the engineering, adopts the 
negative sign convention where a wave propagating in the +z-direction is written as 
exp(−jkz). The positive sign convention would express the same wave as exp(jkz). 
For the negative sign convention, the imaginary part of the complex permittivity 
is negative when a material has loss and waves decay as they propagate. When 
simulating active materials that have gain, the imaginary part of the complex 
permittivity is positive and waves grow as they propagate. This is consistent with 
(2.22) where the imaginary part has j in the denominator. When brought to the 
numerator, the imaginary part becomes negative. It is very easy to mistakenly use 
the wrong sign for the imaginary part of the complex permittivity.
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2.2	 The Constitutive Parameters

In a vacuum, the permittivity becomes the free space permittivity, or vacuum per-
mittivity, and is

	 e0 = 8.8541878176 × 10−12  F/m 	 (2.24)

The permittivity ε of any other material can be written as the product of the vacuum 
permittivity ε0 and the relative permittivity εr, also called the dielectric constant.

	 e = e0er 	 (2.25)

The relative permittivity εr is a much more convenient quantity to describe materials 
than the permittivity ε because the relative permittivity has no units and is typically 
between the values of 1 and 12. When loss is considered, the relative permittivity 
becomes complex ε.̃ Metals are commonly characterized by a real-valued relative 
permittivity εr and a conductivity σ through (2.26). Many times only the conductivity 
σ is specified for metals and the relative permittivity is assumed to be εr ≈ 1.

	
!er = er +

s
jwe0 	

(2.26)

At radio frequencies, it is common to specify dielectrics through a real-valued relative 
permittivity εr and a loss tangent tanδ. The loss tangent does not have any units. 
The complex relative permittivity ε,̃ is calculated from these parameters according to

	
!er ≅ er 1 − j tan d( ) 	 (2.27)

Similarly, the permeability μ can be written as the free space permeability, or 
vacuum permeability, μ0 times the relative permeability μr.

	 m = m0mr 	 (2.28)

	 m0 = 1.2566370614 × 10−6  H/m 	 (2.29)

Following a similar line of reasoning, the relative permeability can also be a 
complex number μ.̃ When simulating physical materials, it is rare to have a complex 
permeability. However, complex permeability arises frequently with metamaterials 
[6]. This will be discussed in detail in Chapter 10.

2.2.1  Anisotropy, Tensors, and Rotation Matrices

Isotropic materials exhibit the same electromagnetic properties regardless of the 
direction of the fields. The permittivity and permeability of isotropic mediums 
are scalar quantities. Some materials, however, can exhibit different electromag-
netic properties depending on the direction of the fields. Such materials are called 
anisotropic [2, 7, 8]. Anisotropy arises in crystalline structures when atomic-scale 
charges are more easily displaced in some directions than others. For anisotropic 

7025_Book.indb   377025_Book.indb   37 12/17/21   8:38 AM12/17/21   8:38 AM



38� Electromagnetic Preliminaries

materials, the constitutive parameters are tensor quantities and the constitutive 
relations are written as

	

!
D = e[ ]

!
E     or     

Dx

Dy

Dz

⎡

⎣

⎢
⎢
⎢
⎢
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⎥
⎥
⎥
⎥
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eyx eyy eyz
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(2.30)

	

!
B = m[ ]

!
H      or     
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⎢
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⎦

⎥
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⎥
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(2.31)

Handling full nine-element tensors in FDFD is more complicated and will be 
described in Chapter 10. For all other chapters in this book, anisotropy will be 
restricted to diagonally anisotropic media where all of the off-diagonal terms in 
the tensors are zero and FDFD simplifies considerably.
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Bx
By
Bz

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=
mxx 0 0
0 myy 0

0 0 mzz

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Hx

Hy

Hz

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥ 	

(2.33)

We live in a three-dimensional world so there are only three dimensions that 
an electric or magnetic field can be directed toward. For this reason, electric fields 
can only experience a combination of three different permittivity values, and mag-
netic fields can only experience only a combination of three different permeability 
values. These are called the principal values and these occur in the directions of 
the principal axes of the anisotropic medium. When the anisotropic medium is 
analyzed in a coordinate system that matches perfectly to the principal axes, the 
permittivity and permeability tensors are diagonal and contain the principal values 
along the center diagonal.

	

er
⎡⎣ ⎤⎦ =

ea 0 0
0 eb 0
0 0 ec

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
	

(2.34)

	

mr
⎡⎣ ⎤⎦ =

ma 0 0
0 mb 0
0 0 mc

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
	

(2.35)
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Isotropic materials have all of the principal values equal (εa = εb = εc) and the 
tensor reduces to a single scalar quantity. Materials where only two of the principal 
values are equal (εa = εb ≠ εc) are called uniaxial [8]. Materials where all three of 
the principal values are different (εa ≠ εb ≠ εc) are called biaxial [8]. The subscripts 
of the principal values in (2.34) and (2.35) are written as a, b, and c to indicate that 
the principal axes can be in directions other than x, y, and z. The principal axes of 
an anisotropic medium do not even have to be perpendicular to each other. When 
the principal axes align perfectly with the Cartesian axes, the tensors are diagonal, 
and (2.34) and (2.35) are written in terms of the Cartesian axes as

	

er
⎡⎣ ⎤⎦ =

exx 0 0
0 eyy 0

0 0 ezz

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
	

(2.36)

	

mr
⎡⎣ ⎤⎦ =

mxx 0 0
0 myy 0

0 0 mzz

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
	

(2.37)

When the principal axes of the anisotropic medium are not aligned with the 
Cartesian axes, off-diagonal terms arise in the tensors. The diagonal element εmn 
in the tensor [εr] is interpreted as how much of electric field intensity component 
En contributes to electric flux density component Dm. The diagonal element μmn in 
the tensor [μr] is interpreted as how much of magnetic field intensity component 
Hn contributes to magnetic flux density component Bm.

	

er
⎡⎣ ⎤⎦ =

exx exy exz
eyx eyy eyz
ezx ezy ezz

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
	

(2.38)

	

mr
⎡⎣ ⎤⎦ =

mxx mxy mxz

myx myy myz

mzx mzy mzz

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

	

(2.39)

2.2.2  Rotation Matrices and Tensor Rotation

It is very useful to know how to calculate full nine-element tensors from the principal 
values when the principal axes of the anisotropic medium are rotated relative to the 
Cartesian axes. One easy way to do this is to use rotation matrices. First, rotation 
matrices will be introduced as a way to rotate a vector quantity. From there, it will 
be shown how to rotate tensors. Rotating tensors is different than rotating vectors, 
but involves the same rotation matrices.

Suppose there exists a vector 
!
v1  (not necessarily a principal axis) which is to be 

rotated about the x-axis by an angle θ to obtain a vector 
!
v2. This can be done by 
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calculating the rotation matrix [Rx(θ)] and performing the rotation according to 
!
v2 = [Rx(q)]

!
v1. In Cartesian coordinates, this expands to

	

vx,2

vy,2

vz,2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= Rx q( )⎡⎣ ⎤⎦

vx,1

vy,1

vz,1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
	

(2.40)

where

	

Rx q( )⎡⎣ ⎤⎦ =
1 0 0
0 cosq −sinq
0 sinq cosq

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
	

(2.41)

Similar rotation matrices can be constructed to rotate about the y- or z-axes. The 
rotation matrices for rotation about the Cartesian axes and illustrations of the rota-
tions they perform are provided in Figure 2.1.

Figure 2.1  Rotation matrices that rotate about the Cartesian axes by angle θ.
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It is possible to perform multiple rotations. Suppose it is desired to first rotate 
!
v1 about the y-axis by angle θ1 and second rotate about the z-axis by angle θ2. This 
is accomplished using two rotation matrices as follows.

	

vx,2

vy,2

vz,2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= Rz q2( )⎡⎣ ⎤⎦ Ry q1( )⎡
⎣

⎤
⎦

vx,1

vy,1

vz,1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
	

(2.42)

Observe the order of the rotation matrices in (2.42) that may appear at first glance 
to be backward. However, it is [Ry(θ1)] that operates on 

!
v1 first and then [Rz(θ2)] 

operates on the result second. It is further possible to calculate a composite rotation 
matrix [R] that performs both rotations in the specified order with a single matrix 
according to 

!
v2 = [R]

!
v1. This expands to

	

vx,2

vy,2

vz,2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= R[ ]
vx,1

vy,1

vz,1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
	

(2.43)

	
R[ ] = Rz q2( )⎡⎣ ⎤⎦ Ry q1( )⎡

⎣
⎤
⎦ 	

(2.44)

Now that rotating vectors using rotation matrices is understood, rotating ten-
sors can be discussed. Both operations utilize the same rotation matrices and even 
the same composite rotation matrices. The tensor [εr] is rotated about the x-axis 
by angle θ according to

	
ʹer

⎡⎣ ⎤⎦ = Rx q( )⎡⎣ ⎤⎦ er
⎡⎣ ⎤⎦ Rx q( )⎡⎣ ⎤⎦

−1

	
(2.45)

Rotating tensors is mathematically different than rotating vectors because it is actu-
ally a transform being performed instead of a simple rotation [9]. This is the reason 
for the appearance of the inverse in (2.45).

Now suppose the tensor is to be rotated first about the y-axis by angle θ1 and 
rotated second about the z-axis by angle θ2. This is accomplished according to

	
ʹer

⎡⎣ ⎤⎦ = Rz q2( )⎡⎣ ⎤⎦ Ry q1( )⎡
⎣

⎤
⎦ er
⎡⎣ ⎤⎦ Ry q1( )⎡

⎣
⎤
⎦
−1

Rz q2( )⎡⎣ ⎤⎦
−1

	
(2.46)

Using the composite rotation matrix in (2.44), the tensor is rotated according to

	 [ ′er ] = [R][er ][R]−1

	
(2.47)

It is often convenient in FDFD to define the principal values of tensors and the 
angles that are to be rotated in the dashboard. When the device is built onto the 
grid, the full tensors can be calculated by rotation during the build process.
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2.3	 Expansion of Maxwell’s Curl Equations in Cartesian Coordinates

Maxwell’s curl equations, as presented in (2.16) and (2.21), are vector equations 
and independent of the coordinate system. It is possible to expand the vector terms 
in these equations into their Cartesian components. While other coordinate systems 
for FDFD are possible and very useful in special cases [10–13], Cartesian coordi-
nates will be used throughout this book. Using Cartesian coordinates, the vectors 
in the curl equations expand to

	
∇ × Exâx + Eyây + Ezâz( ) = − jw m[ ] Hxâx + Hyây + Hzâz( ) 	

(2.48)

	
∇ × Hxâx + Hyây + Hzâz( ) = jw e[ ] Exâx + Eyây + Ezâz( ) 	 (2.49)

Next, on the left-hand side of the equations the curl is calculated, and on the 
right-hand side the tensor quantities [μ] and [ε] are assumed to be diagonally aniso-
tropic. This converts the curl equations to

	

∂Ez
∂y

−
∂Ey
∂z

⎛

⎝
⎜

⎞

⎠
⎟ âx +

∂Ex
∂z

−
∂Ez
∂x

⎛

⎝
⎜

⎞

⎠
⎟ ây +

∂Ey
∂x

−
∂Ex
∂y

⎛

⎝
⎜

⎞

⎠
⎟ âz

= − jwmxxHxâx − jwmyyHyây − jwmzzHzâz 	

(2.50)

	

∂Hz

∂y
−
∂Hy

∂z

⎛

⎝
⎜

⎞

⎠
⎟ âx +

∂Hx

∂z
−
∂Hz

∂x

⎛

⎝
⎜

⎞

⎠
⎟ ây +

∂Hy

∂x
−
∂Hx

∂y

⎛

⎝
⎜

⎞

⎠
⎟ âz

= jwexxExâx + jweyyEyây + jwezzEzâz 	

(2.51)

Equation (2.50) can be expanded into a set of three coupled partial differential equa-
tions by setting the individual vector components equal on either side of the equation.

	

∂Ez
∂y

−
∂Ey
∂z

= − jwmxxHx
	

(2.52)

	

∂Ex
∂z

−
∂Ez
∂x

= − jwmyyHy
	

(2.53)

	

∂Ey
∂x

−
∂Ex
∂y

= − jwmzzHz
	

(2.54)

Similarly, (2.51) can be expanded into a set of three coupled partial differential equa-
tions by setting the individual vector components equal on either side of this equation.

	

∂Hz

∂y
−
∂Hy

∂z
= jwexxEx

	
(2.55)

	

∂Hx

∂z
−
∂Hz

∂x
= jweyyEy

	
(2.56)
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∂Hy

∂x
−
∂Hx

∂y
= jwezzEz

	
(2.57)

Equations (2.52)–(2.57) are the key equations that will be solved numerically 
in FDFD.

2.4	 The Electromagnetic Wave Equation

Two different electromagnetic wave equations can be derived from Maxwell’s curl 
equations, one in terms of just the electric field 

!
E and the other just in terms of the 

magnetic field 
!
H. To derive a wave equation solely in terms of the electric field, 

(2.16) is solved for 
!
H  and that expression is substituted into (2.21) to eliminate the 

magnetic field term 
!
H. Last, all terms are brought to the left side of the equation. 

The tilde notation on permittivity ε ̃ was dropped even though the permittivity may 
be complex.

	
∇ ×

1
m
∇ ×
!
E

⎛

⎝
⎜

⎞

⎠
⎟ − w2e

!
E = 0

	
(2.58)

This equation cannot be simplified further because the permeability μ may be 
inhomogeneous. That is, μ may vary with position making it so the term cannot be 
brought outside of the curl operation that contains spatial derivatives. If the medium 
is homogeneous, both μ and ε become constants and μ can be moved outside of the 
curl operation and (2.58) becomes

	
∇ × ∇ ×

!
E( ) − w2me

!
E = 0

	
(2.59)

The double-curl operation is rewritten using the general vector identity ∇ × (∇ ×
!
A) = 

∇(∇ ⋅
!
A) − ∇2

!
A. This lets (2.59) be written as

	
∇ ∇ •

!
E( ) − ∇2

!
E − w2me

!
E = 0

	
(2.60)

From (2.14), the divergence of 
!
E is zero in a homogeneous medium so the divergence 

term in (2.60) drops from the equation. This reduces (2.60) to

	 ∇2
!
E + w2me

!
E = 0 	 (2.61)

From here, it is useful to define the wavenumber as k = w me. The wavenumber 
conveys wavelength λ through

	
k =

2p
l

= w me
	

(2.62)

In a vacuum, the wavenumber becomes the free space wavenumber k0. This 
conveys the free space wavelength λ0 through
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k0 =

2p
l0

=
w
c0 	

(2.63)

Substituting (2.62) into (2.61) gives the wave equation for waves inside of a 
homogeneous medium.

	 ∇2
!
E + k2

!
E = 0 	 (2.64)

Equation (2.64) can be compared to the historical wave equation that has been 
known since at least the 1700s [14]. Given the angular frequency ω and the velocity 
of the wave v, the historical wave equation is

	
∇2y +

w
v

⎛

⎝
⎜

⎞

⎠
⎟
2

y = 0
	

(2.65)

In (2.65), ψ is the wave disturbance and can be many things including height 
of a vibrating string, pressure in a fluid, an electric field, and more. Comparing 
the terms in parentheses in the two wave equations gives some additional physical 
meaning to the terms. Seeing that w me  = ω/v, the velocity of an electromagnetic 
wave must be

	
v =

1
me 	

(2.66)

In a vacuum, μ = μ0 and ε = ε0 and an equation for the speed of light c0 can be 
written from (2.66).

	
c0 =

1
m0e0

= 299,792,458 m/s
	

(2.67)

Next, the term inside of the square root in (2.66) can be expanded into me  = 
m0e0 mrer .  After letting n = mrer , (2.66) can be written as

	
v =

c0

n 	
(2.68)

	
n = mrer 	

(2.69)

The parameter n is called the refractive index. From (2.68), it is interpreted as 
the factor by which a wave slows down inside of a medium relative to the speed of 
light in a vacuum c0. Since both μr and εr can be complex quantities, the refractive 
index can also be complex. Using the negative sign convention, it is usually written as

	 n = no − jk 	 (2.70)

The real part of the refractive index no is called the ordinary refractive index 
and quantifies the speed of the wave according to v = c0/no. The imaginary part of 
refractive index κ is called the extinction coefficient and it quantifies the attenuation 
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of a wave. Waves decay with distance z according to exp(−jk0κz). The product k0κ 
is called the attenuation coefficient α of a wave.

2.5	 Electromagnetic Waves in LHI Media

The general solution to (2.64) in a linear, homogenous, and isotropic (LHI) medium is

	
!
E =

!
E0
+e− j

!
ki
!
r +
!
E0
−ej
!
ki
!
r

	 (2.71)

where 
!
E0
+  is the complex vector amplitude of the wave traveling in the positive 

!
k 

direction and 
!
E0
− is the complex vector amplitude of the wave traveling in the nega-

tive 
!
k direction. The amplitudes are complex quantities because waves have both a 

magnitude and a phase. In this equation, the vector position is 
!
r  = xâx + yây + zâz. 

It will be useful to focus attention only on a single term in (2.71). For convenience, 
the forward wave will be chosen.

	
!
E =

!
Pe− j

!
ki
!
r
	 (2.72)

The vector amplitude 
!
E0
+ is replaced with 

!
P to convey that this term describes 

the polarization and complex amplitude of the wave. The wave vector 
!
k  conveys 

two pieces of information at the same time. First, the direction of 
!
k  is the direction 

that the phase of the wave advances. That is, 
!
k is the direction that the ripples of 

the wave will move as illustrated in Figure 2.2. Second, the magnitude of 
!
k conveys 

the wavelength λ of the wave through

	

!
k =

2p
l 	

(2.73)

When the frequency f is known, the free space wavelength λ0 is also known 
because they are related through c0 = fλ0. In this case, the magnitude of 

!
k conveys 

refractive index n through

	

!
k = k0n 	 (2.74)

Figure 2.2  Relation between the wave vector 
!
k, wavelength λ, and the direction that the 

ripples of the wave move.
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An expression for the magnetic field component of the wave is found by sub-
stituting (2.72) into (2.16) and solving for 

!
H.

	

!
H =

!
k ×
!
P

wm
e− j
!
ki
!
r

	
(2.75)

The expression for 
!
H  can be written in a more meaningful way by recognizing 

that the wave vector can be written as 
!
k = w mek̂, where k̂  is a unit vector in the 

direction of 
!
k, and the impedance of the medium is η = m /e.

	

!
H =

k̂ ×
!
P

h
e− j
!
ki
!
r

	
(2.76)

The impedance of the medium η relates the complex amplitude of the elec-
tric field E0 and the complex amplitude of the magnetic field H0 of the wave. The 
impedance can be a complex number because both the amplitude and phase of E0 
and H0 can be different.

	
h =

E0

H0 	
(2.77)

In vacuum, the free space impedance is η0 = 376.730313668 Ω, meaning that 
the electric and magnetic field components are numerically around three orders of 
magnitude different. This will have implications in how Maxwell’s equations are 
solved so that numerical error is minimized. The cross product in (2.76) shows that 
the magnetic field will be perpendicular to both the electric field and the direction 
of the wave. In fact, 

!
E,  
!
H, and 

!
k are all perpendicular to each other and follow a 

right-hand rule such that the cross product 
!
E ×

!
H  is in the direction of 

!
k. When the 

medium is not linear, not homogeneous or not isotropic, these vector quantities are 
not necessarily perpendicular and very interesting behavior can happen!

All of the above could have been performed in terms of the magnetic field from 
which the electric field component can be calculated. As mentioned above, these 
equations are only valid for waves in LHI media. Let 

!
M  be the amplitude and 

direction of the magnetic field, and the above analysis performed in terms of the 
magnetic field gives

	 ∇2
!
H + k2

!
H = 0 	 (2.78)

	
!
H =

!
Me− j

!
ki
!
r

	 (2.79)

	

!
E = h

!
M × k̂( )e− j

!
ki
!
r

	
(2.80)

2.5.1  Wave Polarization

The polarization of a wave is defined as the time-varying direction and amplitude of 
the electric field component of an electromagnetic wave [2, 15]. It is not necessary 
to consider the magnetic field component when determining polarization because 
it would lead to the same conclusion. There is no extra information contained in 
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the magnetic field that is not conveyed through the electric field. Polarization first 
appeared in (2.72) as the vector 

!
P.  Accounting for polarization is very important 

in electromagnetic simulations because waves interact with structures differently 
depending on the orientation of the fields. This is particularly important when the 
structure being simulated is on the same physical scale as the wavelength.

An electromagnetic wave is said to have linear polarization (LP) when the 
electric field oscillates in a single plane. An LP wave is illustrated in Figure 2.3(a). 
A wave propagating in the +z-direction that is linearly polarized in the x-direction 
is written as

	

!
E z( ) = E0âx( )exp − jkz( ) 	

(2.81)

The expression in parentheses is the polarization vector 
!
P  = E0âx. The term 

E0 is the complex amplitude of the wave. It is a complex number because it affects 
both the magnitude and phase of the wave. A wave propagating in the +z-direction 
that is linearly polarized in the y-direction is written as

	

!
E z( ) = E0ây( )exp − jkz( )

	
(2.82)

The electric field for an LP wave is not restricted to being just in the x- or 
y-directions. The electric field can oscillate at any angle θ in the xy plane and still 
be linearly polarized. The expression for such a wave is

	

!
E z( ) = E0 cosqâx + sinqây( )exp − jkz( )

	
(2.83)

An electromagnetic wave is said to have circular polarization (CP) when the 
direction of the electric field rotates with constant magnitude in a plane perpen-
dicular to the direction of the wave. A wave propagating in the +z-direction that is 
circularly polarized can be written as

	

!
E z( ) = E0 âx ± jây( )exp − jkz( )

	
(2.84)

Observe that a CP wave is nothing more than two LP waves propagating in 
the same direction which are 90° out of phase. When the sign of the imaginary 
component in (2.84) is negative −, the wave is said to have left circular polarization 
(LCP) because the electric field rotates counterclockwise when viewed from behind. 
An LCP wave is illustrated in Figure 2.3(b). When the sign in (2.84) is positive +, 
the wave is said to have right circular polarization (RCP) because the electric field 
rotates clockwise when viewed from behind. An RCP wave is illustrated in Figure 
2.3(c). Any polarization that is not LP or CP is said to have elliptical polarization 
(EP) because the electric field will rotate in a way that traces an ellipse when viewed 
from behind. An EP wave is illustrated in Figure 2.3(d).

From the above discussion, a general equation can be written that easily classifies 
all polarization types for an arbitrary wave propagating in the direction of 

!
k.  This is

	

!
E z( ) = E1â1 + E2e

jd â2( )ejq exp − j
!
k i
!
r( )

	
(2.85)
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â1 and â2 are unit vectors perpendicular to 
!
k  and satisfy the handedness defined by 

â1 × â2 = 
!
k /
!
k . Otherwise, the direction of â1 and â2 do not matter when specifying 

polarization until a device or interface is involved. E1 is the real-valued amplitude 
of the electric field component in the direction of â1. E2 is the real-valued ampli-
tude of the electric field component in the direction of â2. θ is the phase common 
to both of these components and does not need to be considered when trying to 
determine the polarization. δ is the phase difference between the two components 
of the electric field. If δ = 0°, the polarization is linear no matter the values of E1 
and E2. If δ = ±90° and E1 = E2, the polarization is circular. A phase of δ = +90° 
indicates RCP and a phase of δ = −90° indicates LCP. Anything else is considered 
elliptical polarization. In some sense, all polarizations are elliptical. Linear and 
circular polarizations are just special cases of elliptical polarization.

Figure 2.3  Summary of electromagnetic wave polarizations. (a) Linear polarization where 
the electric field oscillates within a plane. (b) Left circular polarization where electric field 
rotates counterclockwise from behind. (c) Right circular polarization where electric field rotates 
clockwise from behind. (d) Elliptical polarization where electric field rotation traces an ellipse.

7025_Book.indb   487025_Book.indb   48 12/17/21   8:38 AM12/17/21   8:38 AM



2.7	 Scattering at an Interface� 49

2.6	 The Dispersion Relation for LHI Media

Only a limited set of choices for the wave vector 
!
k are possible given the frequency 

ω of the wave and the electromagnetic properties of the medium. The rule that the 
wave vector must follow is called the dispersion relation. It is derived by substitut-
ing the expression for a plane wave into the wave equation and simplifying to get

	
kx

2 + ky
2 + kz

2 = k2

	 (2.86)

The wavenumber k can be expanded two different ways. Both are given on the 
right side of (2.87) below.

	
kx

2 + ky
2 + kz

2 = k0n( )2 =
wn
c0

⎛

⎝
⎜

⎞

⎠
⎟

2

	
(2.87)

Equation (2.87) is the dispersion relation for an LHI medium. It states that 
the magnitude of the wave vector in an LHI medium is constant regardless of the 
direction of the wave. The dispersion relation is used in FDFD to calculate a miss-
ing wave vector component when the others are known.

2.7	 Scattering at an Interface

It is useful to understand what happens when a wave propagating in one medium 
encounters a second medium. This is not only needed to understand FDFD, but it 
provides ways to test FDFD to ensure it is working correctly. It will be assumed that 
the interface between the two mediums is perfectly flat and of an infinite extent. 
Figure 2.4 illustrates the geometry for two different configurations where 

!
kinc  is 

the wave vector of the incident wave, 
!
kref  is the wave vector of the reflected wave, 

and 
!
ktrn is the wave vector of the transmitted wave. Given the angles θ1, θ2, and ϕ, 

the wave vectors in the figure are written as

	

!
kinc = k0n1 sinq1 cosfâx + sinq1 sinfây + cosq1âz( )
!
kref = k0n1 sinq1 cosfâx + sinq1 sinfây − cosq1âz( )
!
ktrn = k0n2 sinq2 cosfâx + sinq2 sinfây + cosq2âz( ) 	

(2.88)

The plane defined by the incident wave vector and the z-axis is called the plane 
of incidence (POI). The wave vectors for the incident wave, reflected wave, and 
transmitted wave all lie in the POI. Some waves will have the electric field completely 
perpendicular to the POI. This is called the transverse electric (TE) polarization 
because the electric field is transverse to the POI. The TE polarization will have 
the magnetic field parallel to the POI. Other waves will have the electric field com-
pletely parallel to the POI. This is called the transverse magnetic (TM) polarization 
because the magnetic field will be completely transverse to the POI. The angle ϕ can 
be set to 0° to put the POI in the xz plane without affecting the angles, reflection 
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or transmission, as illustrated in Figure 2.4(b). For this reason, scattering at an 
interface, and later diffraction, will be analyzed for waves parallel to the xz plane.

Given the surface normal âz and the incident wave vector 
!
kinc , unit vectors in 

the direction of the TE and TM polarizations can be calculated. This is needed when 
calculating sources for three-dimensional simulations. The direction of the TE polari
zation âTE is perpendicular to the POI that is defined by the vectors âz and 

!
kinc. 

Figure 2.4  (a) Diagram of scattering at an interface with azimuthal angle ϕ ≠ 0°. (b) Diagram 
of scattering at an interface with azimuthal angle ϕ = 0°. The angles and amplitudes remain 
constant regardless of azimuthal angle ϕ.
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2.7	 Scattering at an Interface� 51

Therefore, the direction âTE must be in the same direction as the cross product âz ×  !
kinc. However, this cross product has no meaning at normal incidence when âz  
and 

!
kinc are parallel. This special case must be handled when calculating âTE. At 

normal incidence, the direction of the TE polarization will be chosen to be in the 
y-direction. Putting all of this together, the direction of the TE polarization is cal-
culated according to

	

âTE =

âz ×
!
kinc

âz ×
!
kinc

θ1 ≠ 0°

ây θ1 = 0°

⎧

⎨
⎪⎪

⎩
⎪
⎪

	

(2.89)

After the direction of the TE polarization is known, the direction of the TM 
polarization is easily calculated from it. The TM polarization must be perpendicu-
lar to both the TE polarization and 

!
kinc so it is in the direction of the cross product !

kinc  × âTE.

	 âTM =
!
kinc × âTE 	 (2.90)

Given unit vectors in the TE and TM polarization directions, the polarization 
vector 

!
P  for the electric field is easily written given the complex amplitude of the 

TE polarization PTE and the complex amplitude of the TM polarization PTM.

	
!
P = pTEâTE + pTMâTM	 (2.91)

This equation for polarization is a manifestation of (2.85), but here a device 
is involved so the directions of the unit vectors are important. Without a device or 
interface defined, it does not make sense to talk about TE and TM polarizations.

When the incident wave encounters the interface, some of the incident wave 
can reflect. The angle of the reflected wave θref is equal to the angle of the incident 
wave θ1. This is called Snell’s law of reflection [16].

	 qref = q1 	 (2.92)

In addition, some of the incident wave can transmit through the interface into 
the second medium. If the wave changes speed, the angle of the transmitted wave 
θ2 may be different from the angle of the incident wave θ1 in order to keep the field 
continuous across the interface. The angles θ1 and θ2 will be different when the 
wave is incident at some angle θ1 ≠ 0° and when the first and second mediums have 
different refractive indices, n1 ≠ n2. Snell’s law of refraction [16] relates the angle 
of the incident wave θ1, angle of the transmitted wave θ2, and refractive indices on 
both sides of the interface n1 and n2.

	 n1 sinq1 = n2 sinq2 	 (2.93)

Snell’s laws of reflection and refraction calculate the angles of the waves but 
not the amplitudes. To calculate how much of the incident wave is reflected and 
transmitted, the Fresnel equations are needed [2]. The Fresnel equations relate the 
amplitudes of the incident E0,inc, reflected E0,ref, and transmitted waves E0,trn given 
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the angles θ1 and θ2 and the impedances η1 and η2 of the two mediums. They are 
derived by enforcing the boundary conditions for both the electric and magnetic 
fields at the interface.

rTE =
E0,ref

TE

E0,inc
TE =

h2 cosq1 − h1 cosq2

h2 cosq1 + h1 cosq2

      tTE =
E0,trn

TE

E0,inc
TE =

2h2 cosq1

h2 cosq1 + h1 cosq2 	
(2.94)

rTM =
E0,ref

TM

E0,inc
TM =

h2 cosq2 − h1 cosq1

h2 cosq2 + h1 cosq1

     tTM =
E0,trn

TM

E0,inc
TM =

2h2 cosq1

h2 cosq2 + h1 cosq1 	
(2.95)

In these equations, the reflection and transmission properties are different for 
the TE and TM polarizations because each has to satisfy different boundary con-
ditions at the interface.

2.7.1  Reflectance and Transmittance

Sometimes it is more meaningful to calculate the fraction of power that is scattered 
from an interface instead of the wave amplitudes. In electromagnetics, RMS power 
flow is quantified through the Poynting vector 

!
℘ as [1, 2]

	

!
℘ =

1
2

Re
!
E ×

!
H∗⎡

⎣
⎤
⎦
	

(2.96)

The * superscript in the H* term represents a complex conjugate operation. It 
is known that 

!
E and 

!
H∗ are perpendicular to each other so the magnitude of their 

cross product 
!
E ×

!
H∗ is 

!
E
!
H . It is also known that 

!
E,  
!
H, and 

!
k form a right-handed 

system where the direction of 
!
E ×

!
H∗ has to be in the same direction as 

!
k.  Therefore, 

the direction of the cross product is 
!
k /
!
k . Combining the magnitude and direction 

of the cross product as described above lets the Poynting vector be written as

	

!
℘ =

1
2

Re
!
E
!
H

!
k
!
k

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
	

(2.97)

Next, the magnitudes 
!
E  and 

!
H  are related through the impedance η of the 

medium according to (2.77). This leads to 
!
H  = 

!
E /η and the Poynting vector can 

be written completely in terms of the electric field.

	

!
℘ =

1
2

Re
!
E

!
E

h

!
k
!
k

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
	

(2.98)

It is only the normal component of the Poynting vector that contributes to power 
flow to and from the interface. Components of the Poynting vector that are parallel 
to the interface can be ignored because they describe the power that stays confined 
at the interface. In the present analysis, z is the normal direction so it is only the z 
component of the Poynting vector that needs to be considered.
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℘z =
1
2

Re

!
E

2

h
kz
!
k

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
	

(2.99)

Reflectance R is the fraction of power from the incident wave that is reflected 
from the interface. The transmittance T is the fraction of power from the incident 
wave that is transmitted through the interface. From this definition, reflectance and 
transmittance are calculated from the z components of the Poynting vectors of the 
incident, reflected, and transmitted waves as

	

R =
℘z,ref

℘z,inc 

=

1
2

Re −

!
E0,ref

2

h1

kz,ref
!
kref

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1
2

Re

!
E0,inc

2

h1

kz,inc
!
kinc

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

	

(2.100)

	

T =
℘z,trn

℘z,inc

=

1
2

Re

!
E0,trn

2

h2

kz,trn
!
ktrn

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1
2

Re

!
E0,inc

2

h1

kz,inc
!
kinc

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

	

(2.101)

Observe the negative sign in the numerator of (2.100). The reflected wave is propa
gating in the −z-direction so kz,ref is negative. The negative sign is incorporated in 
the equation to get an overall positive number.

From (2.88), it follows that 
!
kinc  = 

!
kref  = k0n1, 

!
ktrn  = k0n2, kz,inc = −kz,ref = 

k0n1cosθ1, and kz,trn = k0n2cosθ2. Given these relations, (2.100) and (2.101) reduce 
to the following for lossless media.

	

R =

!
E0,ref

2

!
E0,inc

2 = r 2

	

(2.102)

	

T =

!
E0,trn

2

!
E0,inc

2

h1 cosq2

h2 cosq1

= t 2 h1 cosq2

h2 cosq1
	

(2.103)

Writing these equations for both the TE and TM polarizations gives

	
RTE = rTE

2
     TTE = tTE

2 h1 cosq2

h2 cosq1 	
(2.104)

	
RTM = rTM

2
     TTM = tTM

2 h1 cosq2

h2 cosq1 	
(2.105)
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Conservation of power requires that these parameters are related through

	 RTE + TTE = 1	 (2.106)

	 RTM + TTM = 1	 (2.107)

Figure 2.5  (a) Illustration of the conditions for a three-dimensional simulation to numerically 
reduce to two dimensions. (b) Interpretation as a two-dimensional “al” simulation.
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2.8	 What is a Two-Dimensional Simulation?

Our world is three-dimensional, so all simulations are always three-dimensional. 
Sometimes, however, it is possible to reduce the math of a three-dimensional prob-
lem to just two dimensions. In electromagnetics, this happens when three conditions 
are met. First, the device being simulated is uniform and of infinite extent in one 
direction. For convenience, let the uniform direction be the z-direction. Second, 
wave propagation is restricted to be solely in the xy plane. Third, all materials in 
the simulation are isotropic, or at most diagonally anisotropic. These conditions, 
and the final two-dimensional interpretation, are illustrated in Figure 2.5.

When diagonally anisotropic materials are assumed, Maxwell’s curl equations 
expand into (2.52)–(2.57). When the device is uniform in the z-direction and wave 
propagation is restricted to the xy plane, all of the partial derivatives taken with 
respect to z in these equations are zero because nothing changes in the z-direction. 
When the z derivatives are set to zero, (2.52)–(2.57) reduce to the following.

	

∂Ez
∂y

= − jwmxxHx
	

(2.108)

	
−
∂Ez
∂x

= − jwmyyHy
	

(2.109)

	

∂Ey
∂x

−
∂Ex
∂y

= − jwmzzHz
	

(2.110)

	

∂Hz

∂y
= jwexxEx

	
(2.111)

	
−
∂Hz

∂x
= jweyyEy

	
(2.112)

	

∂Hy

∂x
−
∂Hx

∂y
= jwezzEz

	
(2.113)

After inspecting these equations, it becomes apparent that they have separated 
into two independent sets of three coupled partial differential equations. No terms 
in (2.108), (2.109), and (2.113) exist in (2.110), (2.111), and (2.112). Likewise, no 
terms in (2.110), (2.111), and (2.112) exist in (2.108), (2.109), and (2.113). If the 
angle of incidence in Figure 2.4 is set to θ1 = 90°, then (2.108), (2.109), and (2.113) 
correspond to the TM polarization while (2.110), (2.111), and (2.112) correspond 
to the TE polarization. For the TM polarization, it is possible to derive a single 
differential equation just in terms of Ez by solving (2.108) for Hx and (2.109) for 
Hy and then substituting these expressions into (2.113). For this reason, the TM 
polarization will also be called the E mode in this book. These equations are

	
Hx = −

1
jwmxx

∂Ez
∂y 	

(2.114)
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Hy =

1
jwmyy

∂Ez
∂x

	
(2.115)

	

∂
∂x

1
myy

∂Ez
∂x

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ +

∂
∂y

1
mxx

∂Ez
∂y

⎛

⎝
⎜

⎞

⎠
⎟ + w2ezzEz = 0

	
(2.116)

For the TE polarization, it is possible to derive a single differential equation 
just in terms of Hz by solving (2.111) for Ex and (2.112) for Ey and then substitut-
ing these expressions into (2.110). For this reason, the TE polarization will also be 
called the H mode in this book. These equations are

	
Ex =

1
jwexx

∂Hz

∂y 	
(2.117)

	
Ey = −

1
jweyy

∂Hz

∂x
	

(2.118)

	

∂
∂x

1
eyy

∂Hz

∂x

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ +

∂
∂y

1
exx

∂Hz

∂y

⎛

⎝
⎜

⎞

⎠
⎟ + w2mzzHz = 0

	
(2.119)

Solving a single differential equation instead of six coupled partial differential 
equations greatly reduces the computational complexity and improves efficiency. 
This allows simulations to be performed more quickly and larger problems to be 
solved. Similarly, if the problem is uniform along two dimensions, the simulation 
can be reduced to just one dimension for even greater computational efficiency. It 
is always a good practice to reduce the dimensionality of a simulation if at all pos-
sible. If a simulation is performed in something other than the xy plane, the sense 
of TE and TM may be different for the E and H modes.

2.9	 Diffraction from Gratings

A diffraction grating is a planar periodic structure that splits and disperses elec-
tromagnetic waves [17]. Essentially, all periodic structures behave like diffraction 
gratings in terms of reflected and transmitted waves. For this reason, every periodic 
structure in FDFD will be analyzed in the framework of a diffraction grating even 
if the device is not a diffraction grating. Understanding diffraction gratings is very 
important for understanding how reflection and transmission from any periodic 
structure will be evaluated after FDFD calculates the fields. When a wave is incident 
onto a diffraction grating, the grating splits the reflected and transmitted waves 
into multiple discrete waves propagating away from the grating at different angles. 
These are called diffraction orders and the concept is illustrated in Figure 2.6. The 
reason for the splitting of the wave into discrete directions will be discussed in 
Section 2.9.1. The fraction of power coupled into a specific diffraction order from 
the incident wave is called the diffraction efficiency. The overall reflectance from a 
device is the sum of the diffraction efficiencies of all the reflected diffraction orders. 
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Similarly, the overall transmittance from a device is the sum of the diffraction effi-
ciencies of all the transmitted diffraction orders.

2.9.1  The Grating Equation

Suppose a diffraction grating is made from a device with a periodic permittivity e(
!
r). 

The permittivity of the diffraction grating can be written in terms of the average 
permittivity εavg, permittivity contrast Δε, and the grating vector 

!
K.

	
e !r( ) = eavg + Δe cos

!
K i
!
r( ) 	

(2.120)

The permittivity contrast Δε describes how much the permittivity function varies 
around the average value εavg. The grating vector 

!
K  is analogous to the wave vector !

k and conveys two pieces of information at the same time. First, the direction of !
K is perpendicular to the grooves of the diffraction grating like 

!
k  is perpendicular 

to the ripples of a wave. In this sense, the grooves are analogous to wave ripples, 
but the grooves of a grating do not move and do not oscillate like the ripples of a 
wave. Second, the magnitude 

!
K  conveys the period Λ of the grating just like the 

magnitude 
!
k  conveys the wavelength of a wave.

	

!
K =

2p
Λ 	

(2.121)

When a wave passes through a diffraction grating, its amplitude gets perturbed 
by the grating with the same basic pattern as the grating. If the applied wave is !
Einc(
!
r)  = 

!
E0 exp(− j

!
kinc i

!
r),  the perturbed wave can be written as

	

!
E
!
r( ) ∝

!
E0 eavg + Δe cos

!
K i
!
r( )⎡

⎣
⎤
⎦exp − j

!
kinc i

!
r( )

	
(2.122)

The proportionality sign ∝ is used here because no conclusions are being made 
about the amplitude of the perturbed wave. Attention is focused solely on the 

Figure 2.6  Geometry of diffraction from a grating. The grating is depicted as a paper-thin 
interface to generalize the configuration of the grating. The grating could be at the bottom of 
the top medium, on the surface of the bottom medium, or in some intermediate medium.
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interaction between the grating vector 
!
K and wave vector 

!
kinc. Applying trigonometric 

identities to this equation shows that (2.122) is actually three waves propagating in 
different directions. One wave propagates in the direction of 

!
kinc , another propagates 

in the direction of 
!
kinc −

!
K, and the last propagates in the direction of 

!
kinc +

!
K.

	

!
E
!
r( ) ∝

!
E0eavg exp − j

!
kinc i

!
r( )

+
!
E0

Δe
2

exp − j
!
kinc −

!
K( ) i !r⎡

⎣
⎤
⎦ +
!
E0

Δe
2

exp − j
!
kinc +

!
K( ) i !r⎡

⎣
⎤
⎦ 	

(2.123)

Each of these three waves is also perturbed by the diffraction grating and splits 
into three more directions, giving a total of nine waves. Each of these nine waves 
is perturbed by the diffraction grating, split into three waves, and so on. This leads 
to an infinite sum of discrete waves.

	

!
E
!
r( ) ∝

!
Em exp − j

!
kinc − m

!
K( ) i !r⎡

⎣
⎤
⎦

m=−∞

∞

∑
	

(2.124)

To derive the grating equation that will calculate the angles of the diffraction 
orders, let the geometry of the grating be that shown in Figure 2.6. The incident 
wave vector is written as

	

!
kinc = k0ninc sinqincâx + k0ninc cosqincây 	

(2.125)

After experiencing the grating, the wave vector expansion from (2.124) becomes
!
k(m) = 

!
kinc − m

!
K. Replacing 

!
kinc in this expression with (2.125) and letting K =

2π
Λ

⎛

⎝
⎜

⎞

⎠
⎟ âx 

gives a new expression for 
!
k(m).

	

!
k m( ) = k0ninc sinqinc − m

2p
Λ

⎛

⎝
⎜

⎞

⎠
⎟ âx + k0ninc cosqincây 	

(2.126)

Boundary conditions require that the x-components of the wave vectors be the 
same for both the reflected and transmitted diffraction orders. For this reason, 
kx(m) taken from (2.126) is written without having to identify it as either reflected 
or transmitted.

	
kx m( ) = k0ninc sinqinc − m

2p
Λ 	

(2.127)

Equation (2.127) will be used in FDFD to calculate the tangential components of the 
wave vectors associated with the diffraction orders. The term kx(m) can be written 
in terms of the refractive index nobs where the diffraction is being observed and the 
angle θ(m) of the diffraction order. Putting kx(m) = k0nobssin[θ(m)] into (2.127) gives

	
k0nobs sin q m( )⎡⎣ ⎤⎦ = k0ninc sinqinc − m

2p
Λ 	

(2.128)

The grating equation is derived by dividing this equation by the free space wave-
number k0 = 2π/λ0.
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nobs sin q m( )⎡⎣ ⎤⎦ = ninc sinqinc − m

l0

Λ 	
(2.129)

The grating equation can be thought of as a generalization to Snell’s law of 
refraction that accounts for multiple diffraction orders. In this equation, m is the 
diffraction order number. The zero-order (m = 0) term is the only wave that would 
be present if no diffraction occurred and the grating equation reduces exactly to 
Snell’s law of refraction. Observe from (2.129) that it is possible for diffraction 
order angles θ(m) to become imaginary due to the subtraction on the righthand side 
of the equation. Imaginary diffraction angles indicate that the diffraction order is 
cutoff and is not a propagating wave. The grating equation is useful for calculating 
the direction θ(m) of diffraction orders and what diffraction orders may be cutoff. 
Sometimes it is desired to control which diffraction orders are present in a grating. 
For simulations, it is useful to know when there are diffraction orders near cutoff 
because these cause numerical problems at the boundaries that are difficult to impos-
sible to handle accurately. Longer grating periods produce more diffraction orders. 
As the grating period is increased, diffraction orders first appear propagating near 
parallel to the surface of the grating. As the period is increased further, the angles 
of the diffraction orders decrease and new diffraction orders may appear. It is very 
common to use the grating equation to calculate the grating period that cuts off all 
the diffraction orders except the zero-order. These are called subwavelength grat-
ings because the period is less than one wavelength, Λ < λ.

2.9.2  Diffraction Efficiency

The diffraction efficiency of a diffraction order is the fraction of power from the 
applied wave that gets coupled into that diffraction order. Calculating diffraction 
efficiency follows how reflectance and transmittance were calculated previously. 
The diffraction efficiencies of the mth diffraction order for both reflection and 
transmission are written from (2.100) and (2.101) as

	

RDE m( ) =
℘z,ref m( )
℘z,inc

=

1
2

Re −

!
E0,ref m( )

2

href

kz,ref m( )
!
kref

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1
2

Re

!
E0,inc

2

hinc

kz,inc
!
kinc

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

	

(2.130)

	

TDE m( ) =
℘z,trn m( )
℘z,inc

=

1
2

Re

!
E0,trn m( )

2

htrn

kz,trn m( )
!
ktrn

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1
2

Re

!
E0,inc

2

hinc

kz,inc
!
kinc

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

	

(2.131)
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Recognizing that 
!
kinc =

!
kref  = k0nref, 

!
ktrn  = k0ntrn, ηref = m0mr,ref /e0er,ref , ηtrn = 

m0mr,trn /e0er,trn , and nref = mr,refer,ref , and ntrn = mr,trner,trn ., (2.130) and (2.131) 

reduce to the following for lossless media.

	

RDE m( ) =
!
E0,ref m( )

2

!
E0,inc

2 Re −
kz,ref m( )
kz,inc

⎡

⎣
⎢

⎤

⎦
⎥

	

(2.132)

	

TDE m( ) =
!
E0,trn m( )

2

!
E0,inc

2 Re
mr,ref

mr,trn

kz,trn m( )
kz,inc

⎡

⎣
⎢

⎤

⎦
⎥

	

(2.133)

In FDFD, the source will almost always be given a unit amplitude so 
!
Einc

2
 = 

1. The amplitudes of the diffraction orders 
!
Eref (m) and 

!
Etrn(m) will be determined  

from the FDFD simulation. The z components of the diffraction orders are deter
mined from the dispersion relation in the medium where they exist.

	
kz,ref m( ) = − k0nref( )2 − kx2 m( )

	
(2.134)

	
kz,trn m( ) = k0ntrn( )2 − kx2 m( )

	
(2.135)

A negative sign was inserted into (2.134) because the reflected wave is propa-
gating in the −z-direction. Observe from (2.134) and (2.135) that the longitudinal 
components of the wave vectors can become imaginary. This means the mth dif-
fraction order is cutoff and is not a propagating wave. These are evanescent waves 
and they do not contribute to power flow away from the diffraction grating. These 
are ignored in the diffraction efficiency equations by taking only the real part of 
kz,ref(m) and kz,trn(m).

Equations (2.132) and (2.133) are used when electric fields are calculated from 
the simulation (E mode simulation). If magnetic fields are known instead (H mode 
simulation), (2.136) and (2.137) should be used instead.

	

RDE m( ) =
!
H0,ref m( )

2

!
H0,inc

2 Re −
kz,ref m( )
kz,inc

⎡

⎣
⎢

⎤

⎦
⎥

	

(2.136)

	

TDE m( ) =
!
H0,trn m( )

2

!
H0,inc

2 Re
er,ref

er,trn

kz,trn m( )
kz,inc

⎡

⎣
⎢

⎤

⎦
⎥

	

(2.137)

2.9.3  Generalization to Crossed Gratings

When a grating is periodic in both the x- and y-directions at the same time, it is called 
a crossed grating. Diffraction from a crossed grating is illustrated in Figure 2.7. The 
device has a period in the x-direction given as Λx and a period in the y-direction 
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given as Λy. The key difference from planar diffraction discussed previously is that 
diffraction orders can occur in a cone of directions above and below the grating.

The period and symmetry of a crossed grating is described by two grating vec-
tors 

!
K1 and 

!
K2. For a rectangular grating, these are defined as

	
!
K1 = Kxâx      

!
K2 = Kyây 	 (2.138)

	

!
K1 = Kx =

2p
Λx

     
!
K2 = Ky =

2p
Λy 	

(2.139)

For three-dimensional diffraction problems, boundary conditions must be 
applied to both x and y components of the incident wave vector. This leads to an 
infinite expansion for both x and y components of the wave vectors associated with 
the diffraction orders. These are equal for both reflected and transmitted diffrac-
tion orders and are given by

	
kx m,n( ) = kx,inc − m

2p
Λx 	

(2.140)

	
ky m,n( ) = ky,inc − n

2p
Λy 	

(2.141)

Figure 2.7  Geometry of diffraction from a crossed grating described by grating vectors 
!
K1 = 

Kxâx and 
!
K2 = Kyây. Diffraction orders occur within a cone of angles on both sides of the grating 

and are identified by their two indices (m,n).
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Observe for crossed gratings that there are two integers m and n that identify 
the diffraction orders. That is because diffraction no longer occurs in just a single 
plane, but fans out in a cone of directions. While the wave vectors of both the 
reflected and transmitted diffraction orders share the same x and y components, 
the longitudinal components must be calculated separately because the mediums 
can be different. These are calculated from the dispersion relation as

	
kz,ref m,n( ) = − k0nref( )2 − kx2 m,n( ) − ky

2 m,n( )
	

(2.142)

	
kz,trn m,n( ) = k0ntrn( )2 − kx2 m,n( ) − ky

2 m,n( )
	

(2.143)

The diffraction efficiencies are calculated using essentially the same equations as 
for planar diffraction. The difference is that the diffraction efficiencies are calculated 
for diffraction orders identified by two indices m and n. When diffraction efficiency 
is calculated from electric fields, the equations are

	

RDE m,n( ) =
!
E0,ref m,n( )

2

!
E0,inc

2 Re −
kz,ref m,n( )

kz,inc

⎡

⎣
⎢

⎤

⎦
⎥

	

(2.144)

	

TDE m,n( ) =
!
E0,trn m,n( )

2

!
E0,inc

2 Re
mr,ref

mr,trn

kz,trn m,n( )
kz,inc

⎡

⎣
⎢

⎤

⎦
⎥

	

(2.145)

When diffraction efficiency is calculated from magnetic fields, the equations are

	

RDE m,n( ) =
!
H0,ref m,n( )

2

!
H0,inc

2 Re −
kz,ref m,n( )

kz,inc

⎡

⎣
⎢

⎤

⎦
⎥

	

(2.146)

	

TDE m,n( ) =
!
H0,trn m,n( )

2

!
H0,inc

2 Re
er,ref

er,trn

kz,trn m,n( )
kz,inc

⎡

⎣
⎢

⎤

⎦
⎥

	

(2.147)

2.10	 Waveguides and Transmission Lines

Waveguides for electromagnetic waves are analogous to pipes for fluids [18–21]. 
They confine electromagnetic waves so that power will not be lost due to the spread-
ing of the wave as it propagates. At radio frequencies, common waveguides include 
transmission lines like microstrips [22] and rectangular metal waveguides [2]. At 
optical frequencies, common waveguides include optical fibers [20] and integrated 
optical waveguides [23]. There exist plenty more types of waveguides including some 
very interesting and exotic designs, usually intended for specialized applications. 
Electromagnetic fields must obey Maxwell’s equations so the fields cannot take on 
any configuration they please. Due to the rules defined by Maxwell’s equations, 
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the fields can only take on certain discrete configurations called guided modes. A 
guided mode can have a cutoff frequency. At frequencies less than the cutoff fre-
quency, the guided mode is said to be cutoff and will decay very quickly along the 
waveguide if any attempt is made to excite the mode. Not all guided modes have a 
cutoff frequency and will still be guided modes even as the frequency approaches 
zero. At a fixed frequency, waveguides can sometimes support multiple modes. The 
guided mode supported at the lowest frequency is called the fundamental mode. 
The fundamental mode is generally the most important of the guided modes. Sin-
gle-mode waveguides operate at a frequency where only the fundamental mode is 
supported by the waveguide.

Transmission lines are waveguides in every sense, but they are a special class 
of waveguides that tend to be thought of more as a circuit element or a simple 
electrical interconnect. For a waveguide to be considered a transmission line, it 
must have at least two conductors. The fundamental mode in transmission lines has 
no cutoff frequency and can operate down to zero frequency. When a transmission 
line contains only a single homogeneous dielectric around the conductors, it can 
support a completely transverse electromagnetic (TEM) mode where neither the 
electric nor magnetic field has a vector component in the direction of propagation.

2.10.1  Waveguide Modes and Parameters

Waveguides can be divided into two broad categories, slab waveguides and channel 
waveguides. These are illustrated in the context of two different integrated optical 
waveguides in Figure 2.8. A slab waveguide is shown in Figure 2.8(a) and confines 
waves along only one axis. In this case, waves will not spread out in the x-direction 
as they propagate through the waveguide, but they will spread out in both the y- 
and z-directions because they are only confined in the x-direction. If the guided 
mode propagates only in the z-direction and not the y-direction, the ripples of the 
wave will only move in the z-direction. The field of the guided mode will extend 
infinitely and uniformly outward in the y-direction. The guided mode shown for the 
slab waveguide is something close to a Gaussian distribution along the x-axis and is 
uniform along the y-axis. The basic dielectric slab waveguide is composed of a high 
refractive index core surrounded by two mediums with a lower refractive index, 
but many other designs are possible. Below the core is the substrate medium and 
above the core is the superstrate medium. A channel waveguide is shown in Figure 
2.8(b) and confines waves along two axes. In this case, waves are confined along 
both the x- and y-axes and propagate in the z-direction. The guided mode shown 
for the channel waveguide is a single spot due to the wave being confined in both 
x- and y-directions. The specific channel waveguide depicted in Figure 2.8(b) is a 
rib waveguide that is constructed a bit like the slab waveguide in Figure 2.8(a), but 
part of the high-index region is made thicker to form a rib. The rib provides index 
contrast in the x- and y-directions to confine waves in both the x- and y-directions.

Figure 2.8 also illustrates the basic geometry for analyzing waveguides. While 
only a dielectric slab and rib waveguide are shown, virtually all waveguides can 
be analyzed just like this. The typical analysis lets the z-direction be the direction 
of propagation along the waveguide. This makes the xy plane be the cross section 
of the waveguide. Even though the waveguide is three-dimensional, calculating 
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guided modes in straight channel waveguides reduces to a two-dimensional prob-
lem because it is only the cross section that has to be analyzed. Calculating guided 
modes in slab waveguides reduces to a one-dimensional problem because the cross 
section exists only in a single direction.

The function describing what the electric field of a guided mode looks like in 
the xy plane is labeled as 

!
e(x,y) in Figure 2.8. The peak amplitude of this function 

has no meaning and can be set to anything. Sometimes 
!
e(x,y) is normalized so that 

the peak value is 1. At other times, it is normalized so that ∫y ∫x
!
e(x,y)dxdy = 1. The 

Figure 2.8  Comparison of slab and channel waveguides. (a) Slab waveguides confine 
propagation along a single axis. (b) Channel waveguides confine propagation along two axes.
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function 
!
e(x,y) is simply a description of the relative amplitude and direction of the 

electric field throughout the xy plane at z = 0. To determine what a guided mode 
looks like at any other position z, the complex propagation constant γ must also be 
calculated. Given γ, the electric field at any position is written as

	
!
E x,y,z( ) = !e x,y( )exp −gz( ) 	 (2.148)

The complex propagation constant γ is a complex number with real and imagi-
nary parts defined as

	 g = a + jb 	 (2.149)

The terms α and β have physical meaning that can be determined by substitut-
ing (2.149) into (2.148) and expanding the exponential. This gives

	
!
E x,y,z( ) = !e x,y( )exp −az( )exp − jbz( ) 	 (2.150)

From (2.150), it is observed that α describes the decay of the guided mode 
that would occur due to the guided mode being leaky or due to ohmic loss in the 
materials the waveguide is made of. The parameter α is called the attenuation coef-
ficient. In most guided mode calculations, the loss is ignored and the waveguides 
are not leaky so α = 0. It can also be observed that β leads to the guided mode 
oscillating with distance z due to the exponential having an imaginary argument. 
The parameter β is called the phase constant and describes how quickly the guided 
mode accumulates phase as it propagates. As long as the waveguide is straight and 
possesses no discontinuities, the picture of the mode 

!
e(x,y) does not change and 

the mode simply accumulates phase and/or decays as it propagates. In this sense, a 
propagating mode is quite boring!

In photonics, sometimes the effective refractive index neff is used to characterize 
propagation instead of the complex propagation constant γ. The two parameters are 
almost synonymous and are related through γ = jk0neff. The meaning of the effective 
refractive index is that a guided mode will accumulate phase at the same rate as a 
plane wave propagating in an infinite and homogeneous medium of refractive index 
neff. In dielectric waveguides, the effective refractive index is very close to the aver-
age refractive index calculated over the area of the guided mode. The concept of the 
effective refractive index can be used to reduce some complicated three-dimensional 
simulations down to simpler two-dimensional simulations. This will be discussed 
in more detail in Chapter 6 when the effective index method is discussed.

All of the information about the guided mode is contained in 
!
e(x,y) and γ (or 

neff). If the waveguide supports more than one guided mode, each mode will have 
its own pair of parameters describing it because each mode will look different and 
propagate differently. The mth guided mode will have !em(x,y) and γm (or nm,eff). The 
magnetic field can be calculated directly from the electric field and has the same 
basic form given in (2.151). The magnetic field component of a guided mode has 
the same complex propagation constant γ, but an entirely different picture 

!
h(x,y) 

in the xy plane.
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!
H x,y,z( ) =

!
h x,y( )exp −gz( ) 	 (2.151)

The purpose of a guided-mode calculation is simply to calculate 
!
em(x,y), γm (or 

nm,eff), and possibly 
!
hm(x,y) for each guided mode. The analysis only calculates what 

guided modes are supported by the waveguide, not what guided modes may actually 
be excited or their amplitudes relative to the other modes. A scattering simulation 
with a source is required in order to determine which of the guided modes may be 
excited and what the amplitudes of the modes would be. Scattering simulations 
with waveguides will be discussed in Chapter 8.

2.10.2  Transmission Line Parameters

There are many types of transmission lines to meet a wide array of applications [18, 
24]. Two different transmission lines are illustrated in Figure 2.9. The microstrip 
transmission line in Figure 2.9(a) is composed of a strip of metal sitting on top of 
a dielectric substrate with a ground plane underneath the substrate. The coaxial 
transmission line in Figure 2.9(b) is composed of an inner conductor and an outer 
conductor with a dielectric separating the two conductors. Fortunately, almost all 
transmission lines can be accurately represented using the simple RLGC equivalent 
circuit model illustrated in Figure 2.9(c) [24]. While the equivalent circuit is shown 

Figure 2.9  (a) Microstrip transmission line. (b) Coaxial transmission line. (c) RLGC equivalent 
circuit model for a transmission line.
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to be composed of discrete circuit elements R, L, G and C, the elements are truly 
distributed parameters that manifest themselves smoothly and continuously across 
the line. R has units of ohms per meter (Ω/m) and is the resistance caused primarily 
by the resistivity of the conductors. L has units of Henries per meter (H/m) and is 
the inductance caused by the magnetic energy stored around the line. G has units 
of Siemens per meter (1/Ω ⋅ m) and arises due to the conductivity in the dielectric 
separating the conductors. C has units of Farads per meter (F/m) and is the capaci-
tance caused by the ability to store electric energy between the lines.

Despite being distributed parameters, the transmission line can still be modeled 
with discrete circuit elements in the form of a series of repeated RLGC circuits, as 
illustrated in Figure 2.9(c). The model works when the length of the RLGC circuit 
is made to approach zero. From this model, the characteristic impedance Z0 and 
complex propagation constant γ can be derived. Applying Kirchoff’s voltage law 
(KVL) [25, 26] around the outer loop and applying Kirchoff’s current law (KCL) 
[25, 26] at the center node of the RLGC circuit gives the following equations.

	
−
dV z( )
dz

= R + jwL( )I z( )
	

(2.152)

	
−
dI z( )
dz

= G + jwC( )V z( )
	

(2.153)

Equations (2.152) and (2.153) are sometimes called the telegrapher equations 
[1, 24]. They are somewhat analogous to Maxwell’s curl equations in which it is 
the interaction between these two equations that produces waves. Combining the 
equations leads to the wave equation on the transmission line that can be written 
in terms of just the voltage V(z) or just the current I(z) as follows.

	

d2V z( )
dz2 − R + jwL( ) G + jwC( )V z( ) = 0

	
(2.154)

	

d2I z( )
dz2 − R + jwL( ) G + jwC( )I z( ) = 0

	
(2.155)

The collection of terms (R + jωL)(G + jωC) defines the complex propagation con-
stant γ. The general solution to both of the wave equations is

	 V z( ) = V0
+ exp −gz( ) +V0

− exp gz( ) 	 (2.156)

	 I z( ) = I0
+ exp −gz( ) + I0

− exp gz( ) 	 (2.157)

where

	 g = a + jb = R + jwL( ) G + jwC( ) 	 (2.158)

In these equations, V0
+ is the complex amplitude of the voltage component of the 

forward wave, V0
– is the complex amplitude of the voltage component of the back-

ward wave, I0
+ is the complex amplitude of the current component of the forward 

wave, and I0
– is the complex amplitude of the current component of the backward 
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wave. The parameter α is the attenuation coefficient and β is the phase constant. 
Equation (2.158) can be solved for α and β to write them in terms of the RLGC 
parameters. The equations for α and β are almost identical and differ only by the 
sign of the (RG − ω2LC) term.

	
a =

RG − w2LC( ) + R2 + w2L2( ) G2 + w2C2( )
2 	

(2.159)

	
b =

− RG − w2LC( ) + R2 + w2L2( ) G2 + w2C2( )
2 	

(2.160)

The characteristic impedance Z0 quantifies the amplitude and phase relation-
ship between the voltage and current at any point along the transmission line. An 
expression for Z0 in terms of the RLGC parameters is derived by substituting (2.156) 
and (2.157) into (2.152) and (2.153), combining the two new equations, and then 
solving for V0

+/I0
+. This long derivation gives

	
Z0 =

V0
+

I0
+ =

R + jwL
G + jwC

	
(2.161)

2.11	 Scalability of Maxwell’s Equations

There is no fundamental length scale in electromagnetics. This means that a 1-m 
wavelength interacting with a 0.5-m device will behave exactly like a 3-m wavelength 
interacting with the same device scaled to 1.5 m. This assumes the material properties 
are the same at both wavelengths. The concept of scalability is illustrated in Figure 
2.10. While a schematic symbol for an antenna was used, the scaling concept applies 
to all electromagnetic devices.

Figure 2.10  Scalability in electromagnetics.
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Scalability has two big implications for electromagnetic simulations. First, the 
frequency, wavelength, and dimensions of a device are artificial concepts to an elec-
tromagnetic simulation. These quantities may be specified at the start of a simulation, 
but they are quickly normalized so the only parameters known to the simulation are 
relative permittivity, relative permeability, and size relative to wavelength. Each of 
these are unitless quantities that carry no information about the actual frequency, 
wavelength, or physical size of the device being simulated. When the simulation is 
finished, the results are often denormalized back to whatever frequency or physical 
dimensions were initially specified, but these are not part of the simulation itself. 
Second, if a device is simulated, or if a device is identified in the literature, which 
exhibits the desired behavior but at the wrong frequency, it is only a matter of scal-
ing the dimensions to get the same behavior at a different frequency.

2.12	 Numerical Solution to Maxwell’s Equations

The numerical solution to Maxwell’s equations will be obtained using the finite-
difference method. The finite-difference method will convert Maxwell’s equations 
to a single matrix equation that can be solved numerically. The matrix equation 
can have one of two forms: (1) an eigenvalue problem and (2) a scattering problem. 
For eigenvalue problems, the matrix equation will have the form of

	 Af = vf 	 (2.162)

In (2.162), the matrix A enforces Maxwell’s equations onto the fields stored in the 
column vector f. The eigenvalue problem is essentially a test. If performing the opera-
tion of A on the function stored in f gives the function f again scaled by a constant 
v, then the function in f is a valid solution to the eigenvalue problem. The solution f 
is an eigenvector and the constant v is an eigenvalue. Eigenvectors and eigenvalues 
come in pairs and should always be kept together. When solved numerically, M 
solutions to the eigenvalue problem are calculated when the matrix A is size M × M. 
There is no source or excitation associated with eigenvalue problems. When analyz-
ing waveguides, for example, the solutions are the possible modes supported by the 
waveguide. Eigenvalue problems only calculate what modes could propagate in the 
waveguide. Calculating what modes may actually be propagating in a waveguide 
requires a source to determine. Eigenvalue problems will be formulated and solved 
in Chapter 6 to analyze waveguides and in Chapter 7 to calculate photonic bands.

For scattering problems, the matrix equation will have the form of

	 Af = b 	 (2.163)

In (2.163), the matrix A enforces Maxwell’s equations like the A matrix in (2.162). 
In contrast to eigenvalue problems, scattering problems require a source and pro-
duce only a single solution. The source is encoded into the column vector b. Scat-
tering problems will be formulated and solved in Chapters 8 to 10 for a variety of 
devices and applications.

7025_Book.indb   697025_Book.indb   69 12/17/21   8:39 AM12/17/21   8:39 AM



70� Electromagnetic Preliminaries

References

[1]	 Sadiku, M. N. O., Elements of Electromagnetics, Seventh Edition, New York: Oxford 
University Press, 2018.

[2]	 Balanis, C. A., Advanced Engineering Electromagnetics, New York: Wiley, 1989.
[3]	 Fleisch, D., A Student’s Guide to Maxwell’s Equations, New York: Cambridge University 

Press, 2008.
[4]	 Huray, P. G., Maxwell’s Equations, Hoboken, NJ: John Wiley & Sons, 2011.
[5]	 Maxwell, J. C., “On Physical Lines of Force,” Philosophical Magazine, Vol. 90, No. S1, 

2010, pp. 11–23.
[6]	 Simovski, C., “Material Parameters of Metamaterials (A Review),” Optics and Spectroscopy, 

Vol. 107, No. 5, 2009, pp. 726–753.
[7]	 Rumpf, R. C., “Engineering the Dispersion and Anisotropy of Periodic Electromagnetic 

Structures,” Solid State Physics, Vol. 66, 2015, pp. 213–300.
[8]	 Mackay, T. G., and A. Lakhtakia, Electromagnetic Anisotropy and Bianisotropy: A Field 

Guide, Singapore: World Scientific, 2019.
[9]	 Brand, L., Vector and Tensor Analysis, Mineola, NY: Dover Publications, 2020.
[10]	 Rewienski, M., and M. Mrozowski, “An Iterative Algorithm for Reducing Dispersion 

Error on Yee’s Mesh in Cylindrical Coordinates,” IEEE Microwave and Guided Wave 
Letters, Vol. 10, No. 9, 2000, pp. 353–355.

[11]	 Xiao, J., H. Ni, and X. Sun, “Full-Vector Mode Solver for Bending Waveguides Based on 
the Finite-Difference Frequency-Domain Method in Cylindrical Coordinate Systems,” 
Optics Letters, Vol. 33, No. 16, 2008, pp. 1848–1850.

[12]	 Aghaie, K. Z., S. Fan, and M. J. Digonnet, “Birefringence Analysis of Photonic-Bandgap 
Fibers Using the Hexagonal Yee’s Cell,” IEEE J. of Quantum Electronics, Vol. 46, No. 
6, 2010, pp. 920–930.

[13]	 Guo, S., et al., “Photonic Band Gap Analysis Using Finite-Difference Frequency-Domain 
Method,” Optics Express, Vol. 12, No. 8, 2004, pp. 1741–1746.

[14]	 Speiser, D., K. Williams, and S. Caparrini, Discovering the Principles of Mechanics 
1600–1800: Essays, Basel–Boston, MA: Birkhäuser, 2008.
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C H A P T E R  3

The Finite-Difference Method

This chapter describes how functions can be made discrete and how differential 
equations can be solved using the finite-difference method. Estimating derivatives 
of discrete functions using finite differences is introduced, and boundary condi-
tions for calculating the derivatives at the boundaries of the discrete functions are 
described. With this background, the concept of derivative matrices is introduced 
that will allow differential equations to be written as matrix equations almost effort-
lessly. The chapter ends by discussing how to solve differential equations using the 
finite-difference method and how to handle multivariable systems.

3.1	 Introduction

The finite-difference frequency-domain (FDFD) method is useful for solving 
Maxwell’s equations where analytical solutions may be highly restricted or 
impossible. In such situations, a numerical approach is needed and the finite-
difference method is chosen for this purpose. Adopting a numerical solution 
allows FDFD to solve virtually any simulation problem. The finite-difference 
method is perhaps the easiest and most intuitive numerical technique for solving 
differential equations [1]. With practice, new equations can often be solved in 
mere minutes. The primary drawback of the finite-difference method is its poor 
efficiency compared to other methods.

In order to implement the finite-difference method, functions are made dis-
crete. That is, function values such as electric fields will only be stored at discrete 
points using the grids discussed in Chapter 1. Instead of having analytical equa-
tions, functions are stored as arrays of discrete numbers as shown in Figure 3.1. 
While interpolation techniques could be used to calculate the function at positions 
between the discrete points, it is most efficient to implement the finite-difference 
method so that interpolations are not needed.

It is important to realize that the finite-difference method does not find analyti-
cal solutions. It is given discrete data and calculates the solution as discrete data. 
However, the discrete solution can suggest the form of an analytical answer where 
one may exist. It is also very common to become so good at obtaining numerical 
solutions that way too little thought is ever given to analytical solutions. Do not 
let strong numerical skills stop you from thinking logically about a problem before 
solving it numerically!
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72� The Finite-Difference Method

3.2	 Finite-Difference Approximations

To solve differential equations and analyze functions, it is necessary to evaluate their 
derivatives. At first glance, this may not seem possible if no analytical expressions 
exist for the functions. For discrete functions, derivatives can be estimated using 
finite-difference approximations. In the most general words, a finite-difference 
approximation is a weighted sum of the function values in close proximity to the 
point where a derivative is being estimated [1]. The trick is determining the weights 
in the sum that correctly estimate derivatives.

A finite-difference approximation is best explained with an example. Suppose a 
function f(x) is made discrete and stored in an array f(n) with array index n. Figure 
3.2 shows three points of the discrete function. In this figure, the spacing between 
the discrete points along the x-axis is uniform and equal to Δx. The light gray line 
is the original continuous function and is shown here to help illustrate the error in 
the estimation. In practice, only the discrete function is known and there would be 
no analytical function to plot.

Now suppose it is desired to estimate the first derivative at the second point 
n = 2. The first derivative is the slope, which is calculated as “rise divided by run.” 
A simple way to estimate the slope at this second point is to calculate the slope of 
the line connecting the first and third points. The rise in this case, or how much 
the function increases, is f(3) − f(1). The run, or the distance between the first and 
third points, is x3 − x1 = 2Δx. Putting these together, the derivative at the second 
point can be estimated according to

	

df 2( )
dx

≅
f 3( ) − f 1( )

2Δx 	
(3.1)

Equation (3.1) is a finite-difference approximation of the first-order derivative 
at n = 2. The solid black lines in Figure 3.2 show the exact slope calculated from 
the analytical function and the estimated slope calculated from the finite-difference 
estimation. In practice, the exact slope is rarely ever known because the analytical 
function is rarely ever known. The exact slope is only shown here for illustration 
purposes. It is clear that the estimated slope is not perfectly equal to the exact 
slope. The angle between the slopes represents the numerical error introduced by 

Figure 3.1  A discrete function f(n) composed of 14 points.
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the finite-difference approximation. In a typical problem being solved by the finite-
difference method, thousands to millions of finite-difference approximations will 
be made at the same time. Each finite-difference approximation produces numerical 
errors, and the errors can even trickle into the other finite-difference approxima-
tions to spread and amplify. It is healthy to become very paranoid about numerical 
errors and to take precautions to minimize and control the errors.

In the example illustrated in Figure 3.2, the error arises because the discrete 
points are spaced too far apart to resolve the function accurately. This implies that 
error can be reduced by reducing the distance Δx between the discrete points. How-
ever, this requires more points to be used and more calculations to be performed 
when the entire function is being analyzed. This will reduce the overall efficiency 
of the method by increasing the memory required to solve the problem and increase 
the time it takes for the calculations to be performed. Accuracy versus efficiency is 
the fundamental tradeoff for virtually all numerical methods and simulation tech-
niques. A tremendous amount of research has been devoted to getting away with 
fewer points in a simulation without sacrificing accuracy. If you are a beginner in 
computational electromagnetics, it may take you a few weeks to understand and 
implement a new method, but you will spend the rest of your career battling the 
tradeoff between accuracy and efficiency.

3.2.1  Deriving Expressions for Finite-Difference Approximations

Equation (3.1) estimates the first derivative at n = 2 from the function values from 
n = 1 to n = 3. What if a different derivative is desired? What if the location of the 
points were different? What if it is desired to calculate the derivative at a differ-
ent location than n = 2? Any of these changes will require a different expression 
to estimate the derivative. This section will describe a simple technique to derive 
expressions that estimate the function or any of its derivatives at any position and 
from any distribution of points. The method works by fitting a polynomial to the 
distribution of points and then using the polynomial to write the expressions that 
approximate the function or one of its derivatives. Start with the following Nth 
order polynomial.

	 f x( ) = a0 + a1x + a2x
2 +! + aNx

N

	 (3.2)

Figure 3.2  Illustration of a finite-difference approximation and associated numerical error.
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74� The Finite-Difference Method

The coefficients a0 to aN can be found by fitting the polynomial to a set of 
N + 1 points, expressed as x1 to xN+1. To do this, (3.2) is written for each of the 
N + 1 points as

	

f x1( ) = a0 + a1x1 + a2x1
2 +! + aNx1

N

f x2( ) = a0 + a1x2 + a2x2
2 +! + aNx2

N

!

f xN+1( ) = a0 + a1xN+1 + a2xN+1
2 +! + aNxN+1

N

	

(3.3)

The set of equations in (3.3) can be written in matrix form as

	 f = Xa 	 (3.4)

where

	

f =

f1
f2
f3
!

fN+1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

	

(3.5)

	

X =

1 x1 x1
2
! x1

N

1 x2 x2
2
! x2

N

1 x3 x3
2
! x3

N

! ! ! "

1 xN+1 xN+1
2 xN+1

N

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥ 	

(3.6)

	

a =

a0

a1

a2

!

aN

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

	

(3.7)

To write simpler equations, the function f(x) evaluated at the discrete position 
xm will be written as fm. Numerical values for the discrete function values fm placed 
into the column vector f are not known and remain symbolic when deriving expres-
sions for finite-difference approximations. The matrix X in (3.6) has the form of a 
Vandermonde matrix [2, 3] and contains the positions of the discrete points raised 
to different powers along its columns. The polynomial coefficients to be calculated 
are stored in the column vector a. They are found by solving (3.4) for a and extract-
ing them from the column vector.

	 a = X−1f 	 (3.8)

After the polynomial coefficients are calculated, (3.2) can be directly used 
to interpolate the function at any position x. Expressions to estimate any of the 
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derivatives at position x can be found by differentiating (3.2) with respect to x. The 
polynomial and its first two derivatives are

	

f x( ) = a0 + a1x + a2x
2 +! + aNx

N

′f x( ) = a1 + 2a2x +! + NaNx
N−1

′′f x( ) = 2a2 + 6a3x +! + N N − 1( )aNxN−2

! 	

(3.9)

After close inspection of (3.9), the equations will simplify considerably if the 
function or its derivatives are evaluated at x = 0. Setting x = 0 reduces the expres-
sions in (3.9) to

	

f 0( ) = a0

′f 0( ) = a1

′′f 0( ) = 2a2

!

f (n) 0( ) = n!( )an 	

(3.10)

Equation (3.10) implies that to derive an expression for the nth derivative, at 
least n + 1 points are needed so that the polynomial coefficients a0 to an can be 
calculated. A finite-difference approximation derived from n + 1 points is said to 
be nth-order accurate because it is calculated from an nth-order polynomial.

The above discussion implies a simple procedure to derive expressions for finite-
difference approximations. Step 1 identifies N + 1 coordinates from which to esti-
mate the function or one of its derivatives. The position xfd where the function or 
one of its derivatives is to be estimated is subtracted from the list of coordinates. 
This is done so that (3.9) can be evaluated at x = 0. Putting the shifted coordinates 
into the column vector x gives

Step 1	 x =

x1 − xfd

x2 − xfd

x3 − xfd

!

xN+1 − xfd

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

		  (3.11)

Step 2 builds the matrix X in (3.6) using the shifted coordinates stored in the 
column vector x. A useful way to express X is given in (3.12). Observe that the first 
column in X contains all 1’s, or x0. The second column in X is x1, the third column 
in X is x2, and so on. This suggests an easy way to build the matrix X in MATLAB 
by inserting x raised to different powers into the columns of X.

Step 2	 X =

1
1

x x2
! xN

!

1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

	 (3.12)
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Step 3 inverts the matrix X to obtain the matrix Y. It will be shown that the 
coefficients of the finite-difference approximations are contained along the rows 
of Y, but still need to be multiplied by the constant n!, where n is the row number 
containing the finite-difference coefficients.

Step 3	 Y = X−1
		  (3.13)

Step 4 calculates the polynomial coefficients as a = Yf. The polynomial coef-
ficients are extracted from the column vector a as

Step 4    a0 = y11f1 + y12f2 + y13f3 +!y1,N+1fN+1

a1 = y21f1 + y22f2 + y23f3 +!y2,N+1fN+1

a2 = y31f1 + y32f2 + y33f3 +!y3,N+1fN+1

!

aN = yN+1,1f1 + yN+1,2f2 + yN+1,3f3 +!yN+1,N+1fN+1 	

(3.14)

Step 5 writes the expression to interpolate the function or estimate one of its 
derivatives from these polynomial coefficients using (3.10). This is

Step 5    f 0( ) = y11f1 + y12f2 + y13f3 +!y1,N+1fN+1

′f 0( ) = y21f1 + y22f2 + y23f3 +!y2,N+1fN+1

 ′′f 0( ) = 2y31f1 + 2y32f2 + 2y33f3 +!2y3,N+1fN+1

!

f m( ) 0( ) = m!( )ym+1,1f1 + m!( )ym+1,2f2 + m!( )ym+1,3f3 +! m!( )ym+1,N+1fN+1

		  (3.15)

The terms multiplying the discrete function values in (3.15) are called the finite-
difference coefficients. Information from the position of the points and the position 
where the expression is estimating the derivative is encoded into these terms. With 
practice, the procedure can stop at Step 3 and the finite-difference coefficients can 
be taken directly from the rows of Y. Be careful to multiply the row in Y by the 
correct constant if a second derivative or higher is being derived.

3.2.2  Example #1—Interpolations and Derivatives from Three Points

It is very common to solve problems that contain only a single variable with finite-
differences written from a span of three points on a grid. If the function or one of 
its derivatives is to be calculated at the middle point of three points with uniform 
spacing Δx, the following equations summarize the results of each step of the 
derivation procedure described above.

Step 1	 x =
−Δx

0
+Δx

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

		

(3.16)

Step 2	 X =
1 −Δx Δx2

1 0 0
1 +Δx Δx2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥ 		

(3.17)
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Step 3	 Y =

0 1 0

− 1
2Δx

0
1

2Δx
1

2Δx2 − 1
Δx2

1
2Δx2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥ 	

(3.18)

Step 4	 a0 = 0f1 +1f2 + 0f3

a1 = − 1
2Δx

f1 + 0f2 +
1

2Δx
f3

a2 =
1

2Δx2 f1 −
1
Δx2 f2 +

1
2Δx2 f3

	 (3.19)

Step 5a	 f2 ≈ f2 		  (3.20)

Step 5b	
df2
dx

≈
f3 − f1
2Δx 		

(3.21)

Step 5c	
d2f2
dx2 ≈

f3 − 2f2 + f1
Δx2

		
(3.22)

Equation (3.20) gives an expression to interpolate the function value at n = 2 
from the function values at n = 1 to n = 3. Since the function value at n = 2 is one 
of the known function values, the interpolation expression is just f2. This obvious 
answer is a great check to verify the calculations were performed correctly. Equa-
tion (3.21) estimates the first derivative at n = 2. It should be recognized that this 
is the same as that in (3.1) which was derived by slope. Last, (3.22) estimates the 
second derivative at n = 2. In this case, information from all three function values 
were needed in order to assess the curvature of the function quantified by the sec-
ond derivative.

What if the same derivation is to be performed, but it is desired to get an expres-
sion for the function and its derivatives at n = 1 from the function values from n = 
1 to n = 3? This derivation gives

Step 1	 x =
0
Δx

2Δx

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

		  (3.23)

Step 2	 X =
1 0 0
1 Δx Δx2

1 2Δx 4Δx2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
		  (3.24)

Step 3	 Y =

1 0 0

− 3
2Δx

2
Δx

− 1
2Δx

1
2Δx2 − 1

Δx2

1
2Δx2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

	 (3.25)
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Step 4	 a0 = 1f1 + 0f2 + 0f3

a1 = − 3
2Δx

f1 + 2
Δx

f2 − 1
2Δx

f3

a2 = 1
2Δx2 f1 − 1

Δx2 f2 + 1
2Δx2 f3

	 (3.26)

Step 5a	 f1 ≈ f1 		  (3.27)

Step 5b	

df1
dx

≈
−f3 + 4f2 − 3f1

2Δx 		  (3.28)

Step 5c	

d2f1
dx2 ≈

f3 − 2f2 + f1
Δx2

		  (3.29)

Observe that the interpolation in (3.27) is correct. Observe that the first deriva-
tive in (3.28) now contains three terms instead of two due to estimating the deriva-
tive at the first point instead of the second. Last, observe (3.29) is the same as (3.22) 
despite the derivative being estimated at a different point. This happens because 
there is no other way to estimate a second derivative from only three points.

3.2.3  Example #2—Interpolations and Derivatives from Two Points

All of the approximations in this book for FDFD will estimate the first derivatives 
at the center of two adjacent points on the grid. It is trivial to show that the finite-
difference approximation is the slope between the two points.

	

df1.5

dx
≈
f2 − f1
Δx 	

(3.30)

This finite-difference approximation can also be derived following the steps 
outlined in this chapter. This gives

Step 1	 x =
− Δx

2

+ Δx
2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥ 		

(3.31)

Step 2	 X =
1 − Δx

2

1 + Δx
2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥ 		

(3.32)

Step 3	 Y =

1
2

1
2

− 1
Δx

+ 1
Δx

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥ 		

(3.33)
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Step 4	 a0 = 1
2
f1 + 1

2
f2

a1 = − 1
Δx

f1 + 1
Δx

f2
		

(3.34)

Step 5a	 f1.5 ≈
f2 + f1

2 		
(3.35)

Step 5b	
df1.5

dx
≈
f2 − f1
Δx 		

(3.36)

Equation (3.35) is averaging the function values at n = 1 and n = 2 to interpolate 
the function at n = 1/2. The first derivative in (3.36) is the same as (3.30) and is the 
finite-difference approximation that will be used throughout this book for FDFD. 
It is a second-order accurate finite-difference approximation of the first derivative. 
It is not possible to derive an expression for any higher derivatives without using 
more points.

3.2.4  Example #3—Interpolations and Derivatives from Four Points

Suppose it is desired to estimate the function value or one of its derivatives at the 
center of four points. This will be derived following the steps outlined in this section.

Step 1	 x =

− 3Δx
2

− Δx
2

+ Δx
2

+ 3Δx
2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

		  (3.37)

Step 2	 X =

1 − 3Δx
2

9Δx2

4
− 27Δx3

8

1 − Δx
2

Δx2

4
− Δx3

8

1 + Δx
2

Δx2

4
+ Δx3

8

1 + 3Δx
2

9Δx2

4
+ 27Δx3

8

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

	 (3.38)

Step 3	 Y =

− 1
16

9
16

9
16

− 1
16

1
24Δx

− 9
8Δx

+ 9
8Δx

− 1
24Δx

1
4Δx2 − 1

4Δx2 − 1
4Δx2

1
4Δx2

− 1
6Δx3

1
2Δx3 − 1

2Δx3

1
6Δx3

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

	 (3.39)

7025_Book.indb   797025_Book.indb   79 12/17/21   8:39 AM12/17/21   8:39 AM



80� The Finite-Difference Method

Step 4	 a0 = −
1

16
f1 +

9
16

f2 +
9

16
f3 −

1
16

f4

a1 =
1

24Δx
f1 −

27
24Δx

f2 +
27

24Δx
f3 −

1
24Δx

f4

a2 =
1

4Δx2 f1 −
1

4Δx2 f2 −
1

4Δx2 f3 +
1

4Δx2 f4

a3 = −
1

6Δx3 f1 +
3

6Δx3 f2 −
3

6Δx3 f3 +
1

6Δx3 f4

	

(3.40)

Step 5a	 f2.5 ≈
−f4 + 9f3 + 9f2 − f1

16
	 (3.41)

Step 5b	
df2.5

dx
≈

−f4 + 27f3 − 27f2 + f1
24Δx

	 (3.42)

Step 5c	
d2f2.5

dx2 ≈
f4 − f3 − f2 + f1

2Δx2 	 (3.43)

Step 5d	
d3f2.5

dx3 ≈
f4 − 3f3 + 3f2 − f1

Δx3 	 (3.44)

Throughout this book, FDFD will be based on the finite-difference approxi-
mation in (3.36). However, it is possible to base FDFD on the finite-difference 
approximation in (3.42). A fourth-order polynomial was used so this is a fourth-
order accurate finite-difference approximation. In principle, the improved accuracy 
should allow FDFD problems to be solved with fewer points on the grid and give 
answers with less numerical dispersion.

3.3	 Numerical Differentiation

Numerical differentiation uses finite-difference approximations to calculate the 
derivative of a discrete function [1]. Numerical differentiation is not the finite-dif-
ference method. The finite-difference method uses finite-difference approximations 
to solve differential equations, not to calculate derivatives. This section is not yet 
talking about the finite-difference method, but many of the concepts involved in the 
finite-difference method are easier to learn in the context of numerical differentiation.

In order to calculate the derivative at every point of a discrete function, each 
point where the derivative is to be calculated requires its own finite-difference 
approximation. This is illustrated in Figure 3.3 for a discrete function composed of 
14 different points. To do this, (3.1) was applied to all 14 points and the resulting 
finite-difference approximations were written above the points.

In a computer code, it would be inefficient to have a separate line of code to 
calculate each finite-difference. Instead, a for loop is used to make the code more 
compact. In MATLAB, the code to perform the numerical differentiation in Figure 
3.3 would look something like
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for n = 1 : 14
    fder(n) = (f(n+1) − f(n−1))/(2*dx);
end

3.4	 Numerical Boundary Conditions

If you were following the previous section closely enough, perhaps you caught a seri-
ous problem that will arise at the first and last points that will cause the numerical 
differentiation to fail. The finite-difference approximations at the end points of the 
discrete function required function values f(0) and f(15). These do not exist and so 
they cannot be used in any finite-difference approximations. However, something 
must still be done to calculate the derivatives at the two end points. The manner 
in which the end points are handled is called a numerical boundary condition [1]. 
Great care must be taken when choosing the numerical boundary condition to ensure 
that it is consistent with the physics of what is being analyzed or simulated. There 
are many options for boundary conditions, but the two most common for FDFD 
are the Dirichlet and the periodic boundary conditions (PBCs) described below.

3.4.1  Dirichlet Boundary Conditions

Perhaps the simplest way to handle a boundary is the Dirichlet boundary condition, 
which assumes the discrete function value outside of the grid is a fixed value [4]. 
Throughout this book, that fixed value will be zero. The finite-difference approxi-
mations across an N-point grid using Dirichlet boundary conditions are summarized 
in (3.45). The first finite-difference approximation is only used at the first point 
n = 1, the second finite-difference approximation is used at all points except at the 
two boundaries, and the third finite-difference approximation is only used at the 

Figure 3.3  Illustration of finite-difference approximations used in numerical differentiation.
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82� The Finite-Difference Method

last point n = N. The points at the boundaries of the grid get their own special and 
unique finite-difference approximations. They are very lucky points!

	

df n( )
dx

≈

f 2( ) − 0
2Δx

n = 1

f n + 1( ) − f n − 1( )
2Δx

2 ≤ n ≤ N − 1

0 − f N − 1( )
2Δx

n = N

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

	

(3.45)

3.4.2  Periodic Boundary Conditions

Another option is a PBC [5]. If it is known that the discrete function f(n) repeats 
every 14 points, then f(14) can be used in place of f(0) and f(1) can be used in place 
of f(15). The finite-difference approximations across an N-point grid using PBCs 
is summarized in (3.46). The first finite-difference approximation is only used at 
the first point n = 1, the second finite-difference approximation is used at all points 
except at the two grid boundaries, and the third finite-difference approximation is 
only used at the last point n = N. Like before, the points at the boundaries of the 
grid get their own special and unique finite-difference approximations. The PBC in 
(3.46) will be modified in Chapter 4 to account for phase of a wave across the grid.

	

df n( )
dx

≈

f 2( ) − f N( )
2Δx

n = 1

f n + 1( ) − f n − 1( )
2Δx

2 ≤ n ≤ N − 1

f 1( ) − f N − 1( )
2Δx

n = N

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

	

(3.46)

3.5	 Derivative Matrices

It is possible to build a matrix Dx that calculates the numerical derivative of a dis-
crete function f(n) with respect to x when the discrete function is stored in a column 
vector f. The numerical derivative would then be stored in another column vector 
f′. Equation (3.47) expresses this numerical calculation where Dx premultiplies f to 
get f′. This section will discuss how to construct a derivative matrix Dx that cor-
rectly performs a numerical differentiation.

	
′f = Dxf 	 (3.47)

The manner in which the derivative matrix Dx is constructed for the example 
depicted in Figure 3.3 is shown in Figure 3.4. The column vector f′ on the left side 
of the matrix equation is populated with the finite-difference expressions that need 
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to be calculated. In this case, Dirichlet boundary conditions were used. The column 
vector f on the far-right side of the matrix equation is populated with the discrete 
function values at each point on the grid. The large square matrix Dx is populated 
last with values so that the matrix multiplication on the right side gives the column 
vector on the left side. When determining the elements of the derivative matrix, 
it is a common practice to first write the matrix equation with a blank derivative 
matrix and second to populate the derivative matrix.

It turns out that Dx is a banded matrix containing numerical values along only 
two of its diagonals. This makes constructing the derivative matrix very easy, espe-
cially in MATLAB that has built-in functions for inserting diagonals into matrices. 
Also, observe that most of the elements in the 14 × 14 derivative matrix are zero. 
Matrices typically encountered in the finite-difference method are of size 10k × 
10k and larger. Tremendous memory savings can be achieved by storing derivative 
matrices as sparse matrices. Always construct and store derivative matrices as sparse 
matrices! Do not worry, MATLAB makes working with sparse matrices very easy.

From Figure 3.4, the derivative matrix with Dirichlet boundary conditions can 
be extracted from the matrix equation and written more generically as

Dx = 1
2Δx

+1
−1 +1

−1 !

! +1
−1 +1

−1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

  Dirichlet boundary conditions	 (3.48)

Figure 3.4  Construction of the derivative matrix using Dirichlet boundary conditions.
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This derivative matrix Dx has a very convenient form due to being composed 
of just two uniform diagonals and a constant 1/2Δx on the outside. This makes it 
very easy to construct as a sparse matrix in MATLAB using the following code.

Z  = sparse(N,N);
DX = spdiags(−ones(N−1,1),−1,Z);
DX = spdiags(+ones(N,1),+1,DX);
DX = DX/(2*dx);

This convenient form was possible due to uniform spacing between points. It is 
possible to have nonuniform spacing in FDFD, but the derivative matrices are more 
complicated to build. For a uniform grid, building the derivative matrix begins by 
declaring the matrix Z to be a sparse N×N matrix filled with all zeros. The function 
spdiags() inserts and extracts diagonals in sparse matrices, but is only being used 
to insert diagonals here. It is given three input arguments. The first input argument 
is a one-dimensional array of numbers to insert along the diagonal. The second 
input argument is the diagonal number to insert numbers into, where 0 indicates 
the center diagonal, positive integers identify diagonals above the center diagonal, 
and negative integers identify diagonals below the center diagonal. The third input 
argument is the matrix to insert the diagonal into. The first call to spdiags() inserts 
the −1 diagonal into the zeros matrix Z. The second call to spdiags() inserts the 
+1 diagonal into the DX matrix instead of the Z matrix so that the first diagonal is 
retained. The last line of code divides all of the elements by 2*dx.

This example can be repeated to demonstrate incorporating PBCs. This is illus-
trated in Figure 3.5. In this case, additional terms are added to the upper-rightmost 
element in the matrix and lower-leftmost element because the PBCs required them 
at the first and last points of the discrete function.

Figure 3.5  Construction of the derivative matrix using PBCs.
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From Figure 3.5, the derivative matrix with PBCs can be extracted from the 
matrix equation and written more generically as

Dx =
1

2Δx

+1 −1
−1 +1

−1 !

! +1
−1 +1

+1 −1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

  Periodic boundary conditions	 (3.49)

The MATLAB code to build this matrix is similar to the case for Dirichlet 
boundary conditions, but two additional numbers must be inserted into the matrix 
to incorporate the PBCs.

Z  = sparse(N,N);
DX = spdiags(−ones(N−1,1),−1,Z);
DX = spdiags(+ones(N,1),+1,DX);
DX(1,N) = −1;
DX(N,1) = +1;
DX = DX/(2*dx);

Derivative matrices can be used to perform numerical differentiation following 
(3.47), but this is not their real purpose. Numerical differentiation is more efficiently 
performed with a for loop as previously discussed. Instead, the derivative matrices 
will be used in the next section to convert differential equations into matrix equations 
for numerical solution. Using derivative matrices to perform numerical differentiation 
is a good way to verify that they work correctly. If the derivative matrix was already 
constructed for other reasons, using them to perform numerical differentiation is 
a good application.

3.6	 Finite-Difference Approximation of Differential Equations

It is possible to convert a differential equation into a set of algebraic equations if the 
functions in the differential equation are made discrete. This allows the derivatives 
to be approximated using finite differences and the entire differential equation can 
be made discrete. The discrete form of the differential equation is written once for 
each point on the grid and the resulting set of equations is written as a single matrix 
equation. In the end, an analytical differential equation is converted into a numeri-
cal matrix equation. Converting an analytical differential equation into a matrix 
equation is the first half of the finite-difference method. The second half solves the 
matrix equation so that a solution is obtained. This section will focus on the first 
half of the finite-difference method. All of this work is done on paper or outside 
of the computer code. The final equations that come out of this work are what are 
used in the computer code to build the matrices that will solve the problem. When 
the finite-difference method is done properly, the computer code will be very simple, 
compact, and easy to read and understand.
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Equipped with the knowledge of derivative matrices, converting a differential 
equation into a matrix equation becomes incredibly simple. Differential equations 
are converted to a matrix equation one term at a time. Each term in the differential 
equation becomes either a matrix or a column vector in the matrix equation. If the 
term is an unknown function or the excitation of a differential equation, it becomes 
a column vector in the matrix equation. All other terms are linear operations that 
become square matrices in the matrix equation.

This is best explained through an example. A generic differential equation to 
be converted to matrix form is specified in (3.50). In this equation, the function 
f(x) is unknown so its discrete version is stored in the column vector f. The function 
b(x) is the excitation so its discrete version is stored in the column vector b. The 
two remaining terms d/dx and c(x) are operations and are represented by square 
matrices Dx and C. At a first glance, it may seem incorrect to call the function c(x) 
an operation. However, it is performing the operation of a point-by-point multipli-
cation of the known function c(x) with the unknown function f(x).

	

df x( )
dx

+ c x( ) f x( ) = b x( )
	

(3.50)

Given the differential equation, it is converted term-by-term into a matrix equa-
tion as shown in Figure 3.6. The derivative operation d/dx is written as a derivate 
matrix Dx. The unknown function f(x) is written as a column vector f, the point-
by-point multiplication with c(x) is written as a square matrix C, and the excita-
tion function b(x) is written as a column vector b. Note that bold uppercase letters 
represent matrices and bold lowercase letters represent column vectors.

The final matrix equation expands to (3.51). Observe that the point-by-point 
multiplication matrix C is a diagonal matrix with the discrete values of c(n) placed 
along the center diagonal. All other elements in the C matrix are zero. With practice, 
converting differential equations to matrix equations becomes nearly effortless.

1
2Δx

+1
−1 !

! +1
−1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

f 1( )
f 2( )
!

f N( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

+

c 1( )
c 2( )

!

c N( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

f 1( )
f 2( )
!

f N( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

b 1( )
b 2( )
!

b N( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥ 	

(3.51)

Figure 3.6  Term-by-term conversion of a differential equation into a matrix equation.
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3.7	 Solving Matrix Differential Equations

Before the matrix differential equation can be solved, it must be cast into the stan-
dard form of Af = b. From Figure 3.6, the matrix differential equation is

	 Dxf + Cf = b 	 (3.52)

To put this in a standard form, the column vector f is factored out on the left-hand 
side of the matrix equation.

	
Dx + C( )f = b

	
(3.53)

Next, let A = Dx + C and the matrix equation is in standard form.

	 Af = b 	 (3.54)

	 A = Dx + C 	 (3.55)

Equation (3.54) is easily solved either by direct LU decomposition [1] or via an 
iterative technique [6, 7]. MATLAB makes obtaining a solution by either method 
very easy. The solution f is written symbolically as

	 f = A−1b 	 (3.56)

It is important to note that explicitly calculating matrix inverses is quite rare in 
numerical methods. The matrix inverse in (3.56) represents a predivision by A instead 
of a premultiplication by the matrix inverse A–1. The difference between these two 
interpretations is huge in terms of the number of computations required. If you are 
ever calculating a matrix inverse, reconsider this five or six times to ensure explic-
itly calculating the inverse is truly necessary. In MATLAB, the predivision is called 
backward division and is written as f = A\b. Do not ever solve this equation as  
f = inv(A)*b! Following the above procedure, solving a differential equation in 
MATLAB is very easy. With some practice, solving an entirely new differential equa-
tion can be accomplished in mere minutes.

3.7.1  Example—Solving a Single-Variable Differential Equation

Suppose it is desired to calculate the numerical solution to the following differential 
equation in the range 0 ≤ x ≤ 10.

	

df
dx

= − 1
3

     f 0( ) = 1
	

(3.57)

Analytically, this is easily solved by integrating the differential equation to get 
f(x) = b − x/3. The constant b is found by applying the initial condition f(0) = 1 to 
get b = 1. This gives the final solution to be

	
f x( ) = 1 − x

3 	
(3.58)
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The MATLAB code that solves (3.57) numerically can be downloaded at https://
empossible.net/fdfdbook/. The file is named Chapter3_fdm1d.m. The first line simply 
displays this file name as a comment. Lines 3 to 6 initialize MATLAB as described 
in Chapter 1. Lines 8 to 13 define and calculate the grid for the numerical solution. 
The variables a and b define the bounds for the solution, Nx is the number of dis-
crete points, xa is an array containing the positions of the discrete points along the 
x-axis, and dx is the spacing between the points. Lines 15 to 19 build the deriva-
tive matrix DX that implements the finite-difference approximation summarized in 
(3.59). Observe that the finite-difference equation at the last point n = N is modi-
fied to calculate the derivative from the two adjacent last points separated by Δx.

	

df
dx

≅

f n + 1( ) − f n − 1( )
2Δx

n < N

f N( ) − f N − 1( )
Δx

n = N

⎧

⎨
⎪⎪

⎩
⎪
⎪ 	

(3.59)

Line 16 creates a one-dimensional array d containing all values of 1/2Δx that 
will be used to insert into the diagonals of the derivative matrix. Line 17 inserts −d 
along the −1 diagonal and line 18 inserts +d along the +1 diagonal. Line 19 over-
writes the last row in DX with the finite-difference approximation to be used only at 
n = N. At the same time, this line places −1/dx at DX(Nx,Nx−1) and places +1/dx at 
DX(Nx,Nx). Lines 21 to 23 build the matrix equation to be solved without the initial 
value f(0) = 1 incorporated yet. The standard form of the matrix equation from (3.57) 
is Af = b where A = Dx and b is a column vector with all elements equal to −1/3. 
Lines 25 to 28 incorporate the boundary value f(0) = 1 into the matrix equation. 
Line 26 sets the first row in A to all zeros to completely erase the finite-difference 
equation associated with the first point on the grid. Line 27 sets the diagonal ele-
ment in the first row to 1. The value that f(1) is set equal to is inserted into the first 
element of b on line 28 to make the first discrete equation in the matrix equation 
f(1) = 1 instead of a finite-difference equation. Line 31 solves for the column vector 
f using backward division in MATLAB. Lines 33 to 35 plot the numerical solution 
which is shown in Figure 3.7. This matches exactly the analytical solution derived 

Figure 3.7  Plot of finite-difference method solution to df/dx = −1/3 given f(0) = 1.
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3.8	 Multiple Variables and Staggered Grids� 89

in (3.58) and demonstrates how simple the MATLAB code can be for implementing 
the finite-difference method.

3.8	 Multiple Variables and Staggered Grids

Suppose it is desired to solve the following system of two coupled differential equa-
tions of two unknowns f(x) and g(x) using the finite-difference method.

	

df x( )
dx

+ u x( )g x( ) = b1 x( )
	

(3.60)

	

dg x( )
dx

+ v x( ) f x( ) = b2 x( )
	

(3.61)

It is entirely possible to solve this system of equations using only the concepts 
taught previously. However, there is a better way to handle the finite-difference 
approximations that gives greater accuracy and improves numerical efficiency. 
From Figure 3.2, it was clear that more closely spaced points will more accurately 
estimate a derivative. The finite-difference approximations up to now spanned 2Δx 
across the grid as illustrated in Figure 3.2. Equation (3.62) shows a way to calcu-
late a finite-difference that only spans Δx, across the grid. This greatly improves 
accuracy, but the result from this derivative is defined at the midpoint. Interpret-
ing the finite-difference approximation in (3.62) as a central finite difference, the 
derivative is estimated at the location n + 1/2, which is midway between the grid 
points n and n + 1.

	

df n + 1/2( )
dx

≈
f n + 1( ) − f n( )

Δx 	
(3.62)

Applying this concept to (3.60) gives a discrete differential equation of the follow-
ing form.

	

f n + 1( ) − f n( )
Δx

+ u n( )g n( ) =
?
b1 n( )

	
(3.63)

Equation (3.63) has a serious problem that can lead to instability and inac-
curacy of the results. The terms u(n)g(n) and b1(n) give values defined at n, but 
the finite-difference approximation gives a value defined at n + 1/2. All terms in a 
finite-difference equation should be defined at the same point in space. One pos-
sible way to correct this is to use interpolation to calculate the second two terms in 
(3.63) at the point n + 1/2.

	

f n + 1( ) − f n( )
Δx

+
u n + 1( )g n + 1( ) + u n( )g n( )

2
=
b1 n + 1( ) + b1 n( )

2 	
(3.64)

This can be made to work, but it involves more calculations than is necessary 
and there is a better way. Instead, the discrete functions f, v, and b2 are defined as 
usual at points 1, 2, 3, …, N on the grid. However, the discrete functions g, u, and 
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b1 are defined at midpoints 1.5, 2.5, 3.5, …, N + 0.5 on the grid. Given the stag-
gering, the discrete form of the two differential equations becomes

	

f n + 1( ) − f n( )
Δx

+ u n + 1
2

⎛
⎝⎜

⎞
⎠⎟ g n + 1

2
⎛
⎝⎜

⎞
⎠⎟ = b1 n + 1

2
⎛
⎝⎜

⎞
⎠⎟ 	

(3.65)

	

g n + 1
2( ) − g n − 1

2( )
Δx

+ ν n( ) f n( ) = b2 n( )
	

(3.66)

These equations have the simplicity of (3.63) but provide accuracy exceeding 
anything else because the finite-difference approximations only span a single Δx. 
The notation of using array indices like n + 1/2 can be confusing. In this book, the 
array indices will only ever be written as integers to match the array indices used in 
the computer codes. The reader will have to remember which functions are stored at 
the offset locations. In addition, the following notation will be adopted for discrete 
functions to make the discrete equations more compact and more clearly identify 
which terms are discrete.

	

f
n+1

− f
n

Δx
+ u n g n

= b1 n 	
(3.67)

	

g
n+1

− g
n

Δx
+ v n f n

= b2 n 	
(3.68)

Two discrete functions f⎪n and g⎪n staggered across a grid is illustrated in Figure 
3.8. Even though f⎪n and g⎪n have the same array index n, observe that they are 
located Δx/2 apart from each other.

To convert to matrix form, (3.67) is written once for every point on the grid, 
and this set of N equations is written in matrix form in (3.69). Similarly, (3.68) is 
written once for every point on the grid, and this second set of N equations is writ-
ten in matrix form in (3.70).

Figure 3.8  The position of two discrete functions is staggered across the grid.
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	 Dx
f f + Ug = b1 	 (3.69)

	 Dx
gg + Vf = b2 	 (3.70)

The superscripts on the derivative matrices identify for which function they cal-
culate the derivatives. Due to the staggering of the discrete functions, the derivative 
matrices for f and g are different from each other. Following the procedure outlined 
previously in this chapter, the contents of the derivative matrices can be determined. 
For the present example, the derivative matrices incorporating Dirichlet boundary 
conditions are provided in (3.71) and (3.72).

1
Δx

−1 +1
−1 !
! +1

−1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

f
1

f
2

!

f
N

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

+

u1

u 2

!

uN

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

g
1

g
2

!

g
N

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

b1 1

b1 2

!

b1 N

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

	

(3.71)

1
Δx

+1
−1 +1
! !

−1 +1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

g
1

g
2

!

g
N

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

+

v 1

v 2

!

v N

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

f
1

f
2

!

f
N

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

b2 1

b2 2

!

b2 N

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

	

(3.72)

Observe the difference between the derivative matrices Dx
f and Dx

g. While they 
look similar, the +1’s and −1’s are inserted along different diagonals. When Dirichlet 
or PBCs are used, the derivative matrices can be related through

	
Dx

g = − Dx
f( )H 	

(3.73)

In this equation, the superscript H indicates a Hermitian transpose, which is an 
ordinary transpose followed by calculating the complex conjugate of each element 
in the matrix. This relation means that after one derivative matrix is constructed, 
the other can be calculated immediately from it, simplifying the computer code. It 
may seem strange to use a complex conjugate when the derivative matrices contain 
only real numbers. In Chapter 4, PBCs will involve complex numbers in order to 
incorporate a source at an oblique angle of incidence. Be careful because the rela-
tion in (3.73) does not hold for all boundary conditions!

After arriving at (3.69) and (3.70), there are two options for solving the system 
of equations. The least preferred is to combine the two matrix equations into a 
single block matrix equation where it assumes the standard form.

	

Dx
f U

V Dx
g

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

f
g

⎡

⎣
⎢

⎤

⎦
⎥ =

b1

b2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

	

(3.74)
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This equation can then be solved using standard matrix division algorithms [1]. 
In this book, the preferred solution method utilizes smaller matrices so it tends to 
be faster and more memory efficient. First, (3.69) is solved for g.

	
g = U−1 b1 − Dx

f f( ) 	
(3.75)

Second, this expression for g is substituted into (3.70) to get a single equation in 
terms of just f.

	
Dx

gU−1 b1 − Dx
f f( ) + Vf = b2 	

(3.76)

Third, (3.76) is put in standard form Af = b and solved for f.

	 f = A−1b 	 (3.77)

	 A = V − Dx
gU−1Dx

f      b = b2 − Dx
gU−1b1 	 (3.78)

Given the solution f, the solution for g is obtained afterward using (3.75). This 
last step is an example where it is good practice to perform numerical differentia-
tion Dx

ff using a derivative matrix. The derivative matrix was already calculated 
for another purpose.

3.8.1  Example—Solving a Multivariable Problem

Suppose it is desired to solve the following set of coupled differential equations 
within the interval 0 ≤ x ≤ 10.

	

df x( )
dx

+ 3g x( ) = 0
	

(3.79)

	

dg x( )
dx

− 2f x( ) = 0
	

(3.80)

	 f 0( ) = 10     f 10( ) = 1	 (3.81)

The first step is to write the differential equations in matrix form using the 
concept of derivative matrices. By inspection, (3.79) and (3.80) become

	 Dx
f f + 3g = 0 	 (3.82)

	 Dx
gg − 2f = 0 	 (3.83)

Equation (3.82) is solved for g to get

	
g = − 1

3
Dx

f f
	

(3.84)

This expression for g is substituted into (3.83) to get

	
Dx

g − 1
3
Dx

f f⎛
⎝⎜

⎞
⎠⎟ − 2f = 0

	
(3.85)
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Equation (3.85) is cast into the standard form of Af = 0.

	
Dx

gDx
f + 6I( )f = 0

	
(3.86)

This is as far as the problem can be taken on paper. The rest is handled in 
MATLAB and the code to obtain and plot the solution can be downloaded at 
https://empossible.net/fdfdbook/. The filename is Chapter3_mvfdm.m. Line 1 is a 
comment with this name of the program. Lines 3 to 6 initialize MATLAB. The grid 
for the problem is calculated on lines 8 to 13 and is the same as the single variable 
example covered in Section 3.7.1. The derivative matrices for the staggered grid are 
constructed on lines 15 to 22. Line 16 builds a one-dimensional array containing 
1/Δx throughout the entire array. Lines 18 to 20 build the derivative matrix Dx

f 
that operates on the function f(x). In MATLAB, the derivative matrix is given the 
variable name DFX. Line 18 initializes DFX as a sparse matrix of size Nx × Nx. Line 
19 adds the center diagonal containing all −1/Δx. Line 20 adds the upper diagonal 
containing all +1/Δx. After DFX is constructed correctly, the derivative matrix Dx

g 
is calculated immediately from it using the relation in (3.73) on line 22. The new 
derivative matrix is given the variable name DGX.

Given the derivative matrices, the matrix equation in (3.86) is constructed 
on lines 24 to 27. The boundary values for f(x) are incorporated into the matrix 
equation on lines 29 to 36. Lines 30 to 32 replace the finite-difference equation 
associated with the first point on the grid with the equation f⎪1 = 10. Lines 34 to 
36 replace the finite-difference equation associated with the last point on the grid 
with the equation f⎪Nx = 1. The matrix equation Af = b is solved on line 39. Given 
the solution for f, the solution for g is calculated immediately from f using (3.84). 
This happens on line 40.

Lines 42 to 51 visualize the results. A legend is provided to distinguish the 
lines. The final plot from this analysis is provided in Figure 3.9. The answer looks 

Figure 3.9  Results obtained from multivariable finite-difference analysis.
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94� The Finite-Difference Method

like perfect sine waves. While no analytical solution is obtained using the finite-
difference method, the results give a huge hint about the answer when solving dif-
ferential equations analytically.
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C H A P T E R  4

Finite-Difference Approximation of 
Maxwell’s Equations

This chapter will explain how Maxwell’s equations are converted into matrix equa-
tions using the finite-difference method. The chapter will show how to prepare 
Maxwell’s equations for finite-difference frequency-domain (FDFD) by normalizing 
the fields and grid coordinates so they are all the same order of magnitude and as 
close to the numerical value of one as possible. The analytical functions in Max-
well’s equations are made discrete according to the Yee grid scheme [1], allowing 
the derivatives to be approximated with simple and accurate finite differences. After 
this is done for full three-dimensional equations, the equations are reduced to two 
dimensions. The equations are then expressed in matrix form in preparation for being 
solved by the various FDFD methods described in following chapters. The derivative 
matrices used in FDFD are discussed in detail. A MATLAB function is presented 
to build the derivative matrices for the two-dimensional FDFD analyses described 
in Chapters 6 to 9. A second MATLAB function is presented to build the deriva-
tive matrices for the three-dimensional FDFD analyses described in Chapter 10.

4.1	 Introduction to the Yee Grid Scheme

In Chapter 2, it was shown that it is possible to reduce the number of electromag-
netic field components that have to be solved down to six. These were Ex, Ey, Ez, 
Hx, Hy, and Hz. In Chapter 3, it was shown how the finite-difference method can 
be used to solve differential equations. It was also shown that when multiple func-
tions are to be solved, the discrete values should be staggered in order to make use 
of tighter finite differences. The manner in which the field components should be 
staggered can be determined by carefully inspecting the equations to be solved. From 
Chapter 2, Maxwell’s curl equations for diagonally anisotropic media expand into 
the following set of six coupled partial differential equations.

	

∂Ez
∂y

−
∂Ey
∂z

= − jwmxxHx
	

(4.1)

	

∂Ex
∂z

−
∂Ez
∂x

= − jwmyyHy
	

(4.2)

	

∂Ey
∂x

−
∂Ex
∂y

= − jwmzzHz
	

(4.3)
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∂Hz

∂y
−
∂Hy

∂z
= jwexxEx

	
(4.4)

	

∂Hx

∂z
−
∂Hz

∂x
= jweyyEy

	
(4.5)

	

∂Hy

∂x
−
∂Hx

∂y
= jwezzEz

	
(4.6)

Examining (4.1), it will be best to define the positions of the discrete values of 
Ey and Ez to be immediately on either side of the discrete values of Hx. This will 
allow the partial derivatives to be estimated using the simplest and most accurate 
central finite-difference approximations. It will also be most convenient to define 
the discrete tensor element μxx to be at the same locations as Hx. A similar argument 
can be made for (4.1) to (4.6). Ex and Ez will be defined to be on either side of Hy. 
Ex and Ey will be defined to be on either side of Hz. Hy and Hz will be defined to be 
on either side of Ex. Hx and Hz will be defined to be on either side of Ey. Last, Hx 
and Hy will be defined to be on either side of Ez. Furthermore, εyy will be defined 
at the same points as Ey, εzz will be defined at the same points as Ez, μxx will be 
defined at the same points as Hx, μyy will be defined at the same points as Hy, and 
μzz will be defined at the same points as Hz. This will present some challenges when 
devices are built onto the grid because material interfaces that slice through the 
middle of Yee cells will place some field components inside of one medium and the 
other field components inside of another. Later in this chapter, the 2× grid technique 
will be presented as an easy way to assign materials to the Yee grid that naturally 
handles the staggering.

The arrangement of field components that satisfies all of the above was first 
proposed by Yee [1] and is now called the Yee grid scheme. In this scheme, a Carte-
sian space is divided into many tiny cells and the six field components are staggered 
the same way within each cell. A single cell of the standard Yee grid is illustrated 
in Figure 4.1. The integers i, j, and k represent the array indices to access the fields 
stored in memory. Even though the six field components have the same array indi-
ces, they are at physically different locations within the cell. This will have impor-
tant implications in how materials will be assigned to the grid, how sources will be 
injected, and how the fields will be postprocessed after the simulation is over. While 
Ex, Ey, and Ez are components of a single vector quantity, they will be out of phase 
because they are at different locations within the Yee cell. If the vector components 
ever need to be combined, they must be interpolated at a common point within 
the Yee cell before combining them. The origin of the Yee cell will be used in this 
book as the common point. Even more, a material interface that slices through the 
middle of the Yee cell may place the different field components within the same 
cell in different mediums, making the arrays storing the constitutive parameters 
different for each field component.

In addition to being the most efficient arrangement for finite-difference approxi-
mations, the Yee grid scheme offers additional benefits. These include the grid 
being divergence-free and physical boundary conditions being naturally satisfied 
[2]. By simply staggering the positions of the field components according to the 
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4.2	 Preparing Maxwell’s Equations for FDFD Analysis� 97

Yee grid scheme, Maxwell’s divergence equations are satisfied so they do not need 
to be explicitly handled by the FDFD method. In addition, no special treatment at 
the interface between two materials is needed in order to obtain an accurate and 
stable simulation.

4.2	 Preparing Maxwell’s Equations for FDFD Analysis

From Chapter 2, the final form of Maxwell’s equations for isotropic media was

	
∇ i e

!
E( ) = 0

	
(4.7)

	
∇ i m

!
H( ) = 0

	
(4.8)

	 ∇ ×
!
E = − jwm

!
H 	 (4.9)

	 ∇ ×
!
H = jwe

!
E 	 (4.10)

In these equations, it should be understood that both the permittivity ε and 
permeability μ can be complex quantities even though the tilde notation is dropped. 
When discussing material impedance η in Chapter 2, it was observed that the electric 
and magnetic fields are numerically around three orders of magnitude different. It 
is  best practice in computation to normalize all of the functions and parameters so 
they are all of the same order of magnitude and are as close to the numerical value 
of 1 as possible. In this book, the magnetic field will be normalized according to

	
!
"

H = − jh0

"
H 	 (4.11)

Figure 4.1  The three-dimensional Yee grid cell.
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98� Finite-Difference Approximation of Maxwell’s Equations

The free space impedance η0 is incorporated to make the normalized magnetic 
field !

"

H  the same order of magnitude as 
!
E. The −j is incorporated to simply give the 

curl equations a more convenient symmetry. Using the normalized magnetic field 
!
"

H, the free space permittivity ε0 and free space permeability μ0 are eliminated from 
(4.7) to (4.10) and become

	
∇ i er

!
E( ) = 0

	
(4.12)

	
∇ i mr

!
"

H( ) = 0
	

(4.13)

	 ∇ ×
!
E = k0mr

!
"

H 	
(4.14)

	 ∇× !
"

H = k0εr

!
E 	 (4.15)

Equation (4.7) was divided by the free space permittivity ε0 to arrive at (4.12), 
and (4.8) was divided by the free space permeability μ0 to arrive at (4.13). With this 
normalization applied to Maxwell’s equations, there is no need to remember which 
of the curl equations has the negative sign! The curl equations with normalized 
magnetic field !

"

H expand into the following set of six coupled partial differential 
equations when diagonally anisotropic media is assumed.

	

∂Ez
∂y

−
∂Ey
∂z

= k0mxx
!Hx

	
(4.16)

	

∂Ex
∂z

−
∂Ez
∂x

= k0myy
!Hy

	
(4.17)

	

∂Ey
∂x

−
∂Ex
∂y

= k0mzz
!Hz

	
(4.18)

	

∂ !Hz

∂y
−
∂ !Hy

∂z
= k0exxEx

	
(4.19)

	

∂ !Hx

∂z
−
∂ !Hz

∂x
= k0eyyEy

	
(4.20)

	

∂ !Hy

∂x
−
∂ !Hx

∂y
= k0ezzEz

	
(4.21)

This will be the final form of the analytical equations for the FDFD method 
when the frequency is not known until the simulation calculates it. When the fre-
quency is not known at the start of the simulation, the free space wavenumber k0 
must be retained as a variable to be calculated by the FDFD algorithm. This situa-
tion occurs in photonic band calculations and will be covered in Chapter 7. In other 
cases, the frequency is known at the start of the simulation and a numerical value 
can be assigned to k0. In this case, it is best to normalize the spatial coordinates x, 
y, and z by dividing them by the free space wavelength λ0. Since k0 = 2π∕λ0, the grid 
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coordinates are divided by λ0 by multiplying them by k0. With this normalization, 
all dimensions will be as close to the numerical value of 1 as possible and will not 
have any units. The normalized coordinates x′, y′, and z′ are defined as

	
′x = k0x     ′y = k0y     ′z = k0z 	 (4.22)

While this normalization incorporates an unnecessary factor of 2π, it is con-
venient to include in order to perfectly cancel the k0 term from the curl equations, 
making them simpler equations. Using normalized spatial coordinates in addition 
to normalized !

"

H, (4.16) to (4.21) become the following set of six coupled partial 
differential equations that are used when frequency is known at the start of the 
simulation. This will be the case for waveguide analysis covered in Chapter 6 and 
scattering analysis covered in Chapters 8–10.

	

∂Ez
∂ ′y

−
∂Ey
∂ ′z

= mxx
!Hx

	
(4.23)

	

∂Ex
∂ ′z

−
∂Ez
∂ ′x

= myy
!Hy

	
(4.24)

	

∂Ey
∂ ′x

−
∂Ex
∂ ′y

= mzz
!Hz

	
(4.25)

	

∂ !Hz

∂ ′y
−
∂ !Hy

∂ ′z
= exxEx

	
(4.26)

	

∂ !Hx

∂ ′z
−
∂ !Hz

∂ ′x
= eyyEy

	
(4.27)

	

∂ !Hy

∂ ′x
−
∂ !Hx

∂ ′y
= ezzEz

	
(4.28)

4.3	 Finite-Difference Approximation of Maxwell’s Curl Equations

Given the Yee grid scheme, (4.16) to (4.21) can be written in discrete form by esti-
mating the partial derivatives with central finite differences. To demonstrate, start 
with (4.21) where the two partial derivatives to estimate with finite differences are 
∂ !Hy / ∂x  and ∂ !Hx / ∂y. The manner in which this equation is made discrete is illus-
trated in Figure 4.2. All of the discrete terms will be defined at the same location 
as Ez⎪i,j,k in the Yee grid. The relative permittivity term εzz⎪i,j,k should be defined at 
the same point as Ez⎪i,j,k. For this reason, the discrete representation of the term on 
the right side of (4.28) is written as k0εzz⎪i,j,kEz⎪i,j,k.

The first partial derivative in (4.21) is ∂ !Hy / ∂x  and its finite-difference approxi-
mation is illustrated in Figure 4.2(a). To ensure the central finite-difference esti-
mates, the derivative at the same location as Ez⎪i,j,k, magnetic field terms that lie 
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symmetrically on either side of Ez⎪i,j,k should be used. These terms are the magnetic 
field term !Hy i, j,k

 from the same cell as Ez⎪i,j,k and the magnetic field term !Hy i−1, j,k
from the previous cell in the x-direction. The finite-difference approximation for 
∂ !Hy / ∂x is therefore

	

∂ !Hy

∂x
≈
!Hy i, j,k

− !Hy i−1, j,k

Δx 	
(4.29)

Figure 4.2  (a) Illustration of the finite-difference approximation of ∂ !Hy / ∂x. (b) Illustration of 
the finite-difference approximation of ∂ !Hx / ∂y .
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The second partial derivative in (4.21) is ∂ !Hx / ∂y and its finite-difference approx-
imation is illustrated in Figure 4.2(b). The magnetic field terms that lie symmetrically 
on either side of Ez⎪i,j,k are !Hx i, j,k

 and !Hx i−1, j,k
.i,j–1,k. The finite-difference approximation 

for ∂ !Hx / ∂ ′y is therefore

	

∂ !Hx

∂y
≈
!Hx i, j,k

− !Hx i, j−1,k

Δy 	
(4.30)

All finite-difference approximations of derivatives of magnetic field terms will 
reach to a previous cell for the second magnetic field term. When applying this same 
reasoning to finite-difference approximations of derivatives of electric field terms, 
however, the finite-difference approximations will reach to a next cell in the posi-
tive direction along the axes. This difference is due to the staggered layout of the 
field components on the Yee grid. Applying these steps to all of (4.16) to (4.21), the 
discrete equations are

	

Ez i, j+1,k
− Ez i, j,k

Δy
−
Ey i, j,k+1

− Ey i, j,k

Δz
= k0mxx i, j,k

!Hx i, j,k
	

(4.31)

	

Ex i, j,k+1
− Ex i, j,k

Δz
−
Ez i+1, j,k

− Ez i, j,k
Δx

= k0myy i, j,k
!Hy i, j,k 	

(4.32)

	

Ey i+1, j,k
− Ey i, j,k

Δx
−
Ex i, j+1,k

− Ex i, j,k

Δy
= k0mzz i, j,k

!Hz i, j,k
	

(4.33)

	

!Hz i, j,k
− !Hz i, j−1,k

Δy
−
!Hy i, j,k

− !Hy i, j,k−1

Δz
= k0exx i, j,k

Ex i, j,k
	

(4.34)

	

!Hx i, j,k
− !Hx i, j,k−1

Δz
−
!Hz i, j,k

− !Hz i−1, j,k

Δx
= k0eyy i, j,k

Ey i, j,k 	
(4.35)

	

!Hy i, j,k
− !Hy i−1, j,k

Δx
−
!Hx i, j,k

− !Hx i, j−1,k

Δy
= k0ezz i, j,k Ez i, j,k

	
(4.36)

A strict rule for finite-difference equations is that every term in the equation 
must be defined at the same point in space. The Yee grid is staggered in a way that 
ensures this condition is met for all field components. Recall that for the relative
permeability terms, μxx⎪i,j,k is defined at the same points as !Hx i, j,k

, μyy⎪i,j,k is

defined at the same points as !Hy i, j,k
,  and μzz⎪i,j,k is defined at the same points as 

!Hz i, j,k
. Similarly for the relative permittivity terms, εxx⎪i,j,k is defined at the same 

points as Ex⎪i,j,k, εyy⎪i,j,k is defined at the same points as Ey⎪i,j,k, and εzz⎪i,j,k must be 
defined at the same points as Ez⎪i,j,k.

Focus for a moment on just (4.31). This equation is written once for every cell on 
the grid, leading to a large set of finite-difference equations. The set of equations can 
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be written as a single matrix equation following the concepts presented in Chapter 
3 as Dy

eez − Dz
eey = k0μμxx

!hx. The same can be said for each of (4.31) to (4.36). This 
gives the following set of six matrix equations that are used to formulate FDFD when 
frequency is not known, and therefore, k0 is retained as a variable in the equations.

	
Dy

eez − Dz
eey = k0µxx

!hx 	
(4.37)

	
Dz

eex − Dx
eez = k0µyy

!hy 	
(4.38)

	
Dx

eey − Dy
eex = k0µzz

!hz 	
(4.39)

	
Dy

h !hz − Dz
h !hy = k0εxxex 	

(4.40)

	
Dz

h !hx − Dx
h !hz = k0εyyey 	

(4.41)

	
Dx

h !hy − Dy
h !hx = k0εzzez 	

(4.42)

In these equations, Dx
e, Dy

e, Dz
e, Dx

h, Dy
h, and Dz

h are derivative matrices for cal-
culating numerical derivatives of the field quantities across the Yee grid. Due to 
the staggered grid, the derivative matrices are different for electric and magnetic 
fields. The “e” and “h” superscripts indicate which field type the derivative matrix 
operates on. The terms ex, ey, and ez are column vectors containing the electric 
field components throughout the Yee grid reshaped into one-dimensional arrays. 
The terms !hx , !hy , and !hz are column vectors containing the normalized magnetic 
field components throughout the Yee grid reshaped into one-dimensional arrays. 
The terms εεxx, εεyy, εεzz, μμxx, μμyy, and μμzz, are diagonal matrices containing the rela-
tive permittivity and permeability, respectively, throughout the Yee grid. They are 
formed by reshaping the materials arrays into one-dimensional arrays and then 
placing those one-dimensional arrays along the center diagonal of sparse matrices. 
Even for isotropic materials, the materials matrices can be slightly different from 
each other due to the staggering of the field components on the grid.

When the frequency is known at the start of the simulation and a numerical 
value can be assigned to the free space wavenumber k0, (4.23) to (4.28) can imme-
diately be written in matrix form as

	
D ʹy
e ez − D ʹz

e ey = µxx !hx 	
(4.43)

	
D ʹz

e ex − D ʹx
e ez = µyy

!hy 	
(4.44)

	
D ʹx

e ey − D ʹy
e ex = µzz

!hz 	
(4.45)

	
D ʹy

h !hz − D ʹz
h !hy = εxxex 	

(4.46)

	
D ʹz

h !hx − D ʹx
h !hz = εyyey 	

(4.47)

	
D ʹx

h !hy − D ʹy
h !hx = εzzez 	

(4.48)
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In these equations, the terms have the same definitions as they did for (4.37) to 
(4.42). The only difference is that the free space wavenumber k0 has been absorbed 
into the derivative matrices through the normalized grid coordinates defined in 
(4.22).

4.4	 Finite-Difference Equations for Two-Dimensional FDFD

In Chapter 2, it was shown that it is possible to reduce the math of some three-
dimensional problems to two dimensions when: (1) the device is uniform along z, 
(2) wave propagation is restricted to the xy plane, and (3) materials are isotropic or 
diagonally anisotropic. When these conditions are met, all derivatives with respect 
to z are zero and (4.31) to (4.36) reduce to

	

Ez i, j+1
− Ez i, j

Δy
= k0mxx i, j

!Hx i, j
	

(4.49)

	
−
Ez i+1, j

− Ez i, j
Δx

= k0myy i, j
!Hy i, j 	

(4.50)

	

Ey i+1, j
− Ey i, j

Δx
−
Ex i, j+1

− Ex i, j

Δy
= k0mzz i, j

!Hz i, j
	

(4.51)

	

!Hz i, j
− !Hz i, j−1

Δy
= k0exx i, j

Ex i, j
	

(4.52)

	
−
!Hz i, j

− !Hz i−1, j

Δx
= k0eyy i, j

Ey i, j 	
(4.53)

	

!Hy i, j
− !Hy i−1, j

Δx
−
!Hx i, j

− !Hx i, j−1

Δy
= k0ezz i, j Ez i, j

	
(4.54)

Observe the k array index was dropped because there is no longer a z dimension to 
be considered in the analysis. This is fortunate because the same symbol k is being 
used for the wavenumber!

When the frequency is known at the start of the simulation, the k0 term will 
have a numerical value and is absorbed into the grid coordinates to normalize them 
according to (4.22). When this is done, (4.49) to (4.54) become

	

Ez i, j+1
− Ez i, j

Δ ′y
= mxx i, j

!Hx i, j
	

(4.55)

	
−
Ez i+1, j

− Ez i, j
Δ ′x

= myy i, j
!Hy i, j 	

(4.56)
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Ey i+1, j
− Ey i, j

Δ ′x
−
Ex i, j+1

− Ex i, j

Δ ′y
= mzz i, j

!Hz i, j
	

(4.57)

	

!Hz i, j
− !Hz i, j−1

Δ ′y
= exx i, j

Ex i, j
	

(4.58)

	
−
!Hz i, j

− !Hz i−1, j

Δ ′x
= eyy i, j

Ey i, j 	
(4.59)

	

!Hy i, j
− !Hy i−1, j

Δ ′x
−
!Hx i, j

− !Hx i, j−1

Δ ′y
= ezz i, j Ez i, j

	
(4.60)

As was observed in Chapter 2, both sets of discrete equations have decoupled 
into two independent sets of three equations. Equations (4.49), (4.50), and (4.54) 
describe the E mode (TM polarization) when frequency is not known and (4.55), 
(4.56), and (4.60) describe the E mode when frequency is known. Equations (4.51) 
to (4.53) describe the H mode (TE polarization) when frequency is not known and 
(4.57) to (4.59) describe the H mode when frequency is known.

After inspecting these two groups of equations, it can be seen that one of the 
modes by itself does not utilize all of the field components within a three-dimen-
sional Yee cell. For two-dimensional simulations, the three-dimensional Yee cell has 
separated into two two-dimensional Yee cells, one for each distinct mode. This is 
illustrated in Figure 4.3 where the Yee cell for the E mode is extracted from the top 
half of the three-dimensional Yee cell and the Yee cell for the H mode is extracted 
from the bottom half.

Figure 4.3  Extracting both two-dimensional Yee cells from the three-dimensional Yee cell.
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4.4.1  Derivation of E Mode Equations When Frequency Is Not Known

The discrete equations for the E mode (TM polarization) when frequency is not 
known are taken from (4.49) to (4.54) to be

	

Ez i, j+1
− Ez i, j

Δy
= k0mxx i, j

!Hx i, j
	

(4.61)

	
−
Ez i+1, j

− Ez i, j
Δx

= k0myy i, j
!Hy i, j 	

(4.62)

	

!Hy i, j
− !Hy i−1, j

Δx
−
!Hx i, j

− !Hx i, j−1

Δy
= k0ezz i, j Ez i, j

	
(4.63)

Each of (4.61) to (4.63) is written once for every point on the grid, and each set 
of equations can be written as its own matrix equation. These are

	
Dy

eez = k0µxx
!hx 	

(4.64)

	
−Dx

eez = k0µyy
!hy 	

(4.65)

	
Dx

h !hy − Dy
h !hx = k0εzzez 	

(4.66)

This is called the E mode because only a single electric field term ez remains in 
the equations and the final matrix equation that will be solved will contain only 
this term.

4.4.2  Derivation of H Mode Equations When Frequency Is Not Known

The discrete equations for the H mode (TE polarization) when the frequency is not 
known are taken from (4.49) to (4.54) to be

	

!Hz i, j
− !Hz i, j−1

Δy
= k0exx i, j

Ex i, j
	

(4.67)

	
−
!Hz i, j

− !Hz i−1, j

Δx
= k0eyy i, j

Ey i, j 	
(4.68)

	

Ey i+1, j
− Ey i, j

Δx
−
Ex i, j+1

− Ex i, j

Δy
= k0mzz i, j

!Hz i, j
	

(4.69)

Each of (4.67) to (4.69) is written once for every cell on the grid and each set of 
equations can be written as its own matrix equation. These are

	
Dy

h !hz = k0εxxex 	
(4.70)
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−Dx

h !hz = k0εyyey 	
(4.71)

	
Dx

eey − Dy
eex = k0µzz

!hz 	
(4.72)

This is called the H mode because only a single magnetic field term !hz  remains 
in the equations and the final matrix equation that will be solved will contain only 
this term.

4.4.3  Derivation of E Mode Equations When Frequency Is Known

The discrete equations for the E mode (TM polarization) when the frequency is 
known are taken from (4.55) to (4.60) to be

	

Ez i, j+1
− Ez i, j

Δ ′y
= mxx i, j

!Hx i, j
	

(4.73)

	
−
Ez i+1, j

− Ez i, j
Δ ′x

= myy i, j
!Hy i, j 	

(4.74)

	

!Hy i, j
− !Hy i−1, j

Δ ′x
−
!Hx i, j

− !Hx i, j−1

Δ ′y
= ezz i, j Ez i, j

	
(4.75)

Each of the above equations is written once for every cell on the grid and each 
set of equations can be written as its own matrix equation. These are

	
D ʹy

e ez = µxx
!hx 	

(4.76)

	
−D ʹx

e ez = µyy
!hy 	

(4.77)

	
D ʹx

h !hy − D ʹy
h !hx = εzzez 	

(4.78)

4.4.4  Derivation of H Mode Equations When Frequency Is Known

The discrete equations for the H mode (TE polarization) when the frequency is 
known taken from (4.55) to (4.60) to be

	

!Hz i, j
− !Hz i, j−1

Δ ′y
= exx i, j

Ex i, j
	

(4.79)

	
−
!Hz i, j

− !Hz i−1, j

Δ ′x
= eyy i, j

Ey i, j 	
(4.80)

	

Ey i+1, j
− Ey i, j

Δ ′x
−
Ex i, j+1

− Ex i, j

Δ ′y
= mzz i, j

!Hz i, j
	

(4.81)
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Each of the above equations is written once for every cell on the grid and each 
set of equations can be written as its own matrix equation. These are

	
D ʹy

h !hz = εxxex 	
(4.82)

	
−D ʹx

h !hz = εyyey 	
(4.83)

	
D ʹx

e ey − D ʹy
e ex = µzz

!hz 	 (4.84)

4.5	 Derivative Matrices for Two-Dimensional FDFD

It is now necessary to use what was discussed in Chapter 3 to build the derivative 
matrices for two-dimensional finite-difference analysis on the Yee grid. This will 
be accomplished by writing all four derivative matrices for a small 3 × 3 grid and 
identifying the patterns that will construct the derivative matrices for larger grids 
fast and simple. The grids for both the E mode and H mode are shown in Figure 4.4.

Figure 4.4  3 × 3 Grid for: (a) E mode and (b) H mode.
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108� Finite-Difference Approximation of Maxwell’s Equations

4.5.1  Derivative Matrices Incorporating Dirichlet Boundary Conditions

The derivative matrix Dx
e is determined by writing the finite-difference approxi-

mation in (4.62) once for each point on the grid that is depicted in Figure 4.4(a), 
writing the large set of equations as a single matrix equation, and then reading off 
the derivative matrix. The matrix form of these equations is a large square matrix 
premultiplying a column vector containing all of the electric field components Ez⎪i,j 
throughout the grid. Using Dirichlet boundary conditions, this large set of equa-
tions in matrix form is

1
Δx

−1 1 0 0 0 0 0 0 0
0 −1 1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0
0 0 0 −1 1 0 0 0 0
0 0 0 0 −1 1 0 0 0
0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 −1 1 0
0 0 0 0 0 0 0 −1 1
0 0 0 0 0 0 0 0 −1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

Ez 1,1

Ez 2,1

Ez 3,1

Ez 1,2

Ez 2,2

Ez 3,2

Ez 1,3

Ez 2,3

Ez 3,3

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

= 1
Δx

Ez 2,1
− Ez 1,1

Ez 3,1
− Ez 2,1

0 − Ez 3,1

Ez 2,2
− Ez 1,2

Ez 3,2
− Ez 2,2

0 − Ez 3,2

Ez 2,3
− Ez 1,3

Ez 3,3
− Ez 2,3

0 − Ez 3,3

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

	 (4.85)

Observe the order that the electric field components are listed in (4.85). It is 
important to always list the field components in this same order every time. It is 
convention to list the fields along the x-direction first and the y-direction second. 
From (4.85), the derivative matrix Dx

e is read off as the square matrix premulti-
plying the column vector of electric field components, including the division by 
Δx. Observe the form of the matrix for Dx

e given in (4.86). It is composed of just 
two diagonals. The center diagonal contains all −1’s and the first upper diagonal 
contains mostly all +1’s but has some 0’s inserted where Dirichlet boundary con-
ditions were applied. The zeros occur every Nx rows, where Nx is the number of 
cells the grid is wide.

	

Dx
e = 1

Δx

−1 1 0 0 0 0 0 0 0
0 −1 1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0
0 0 0 −1 1 0 0 0 0
0 0 0 0 −1 1 0 0 0
0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 −1 1 0
0 0 0 0 0 0 0 −1 1
0 0 0 0 0 0 0 0 −1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

	

(4.86)
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Similarly, the derivative matrix Dy
e is determined by writing the finite-difference 

approximation in (4.61) once for each point on the grid depicted in Figure 4.4, writ-
ing the large set of equations as a single matrix equation, and then reading off the 
derivative matrix. Using Dirichlet boundary conditions, this large set of equations 
in matrix form is

1
Δy

−1 0 0 1 0 0 0 0 0
0 −1 0 0 1 0 0 0 0
0 0 −1 0 0 1 0 0 0
0 0 0 −1 0 0 1 0 0
0 0 0 0 −1 0 0 1 0
0 0 0 0 0 −1 0 0 1
0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 −1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

Ez 1,1

Ez 2,1

Ez 3,1

Ez 1,2

Ez 2,2

Ez 3,2

Ez 1,3

Ez 2,3

Ez 3,3

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

= 1
Δy

Ez 1,2
− Ez 1,1

Ez 2,2
− Ez 2,1

Ez 3,2
− Ez 3,1

Ez 1,3
− Ez 1,2

Ez 2,3
− Ez 2,2

Ez 3,3
− Ez 3,2

0 − Ez 1,3

0 − Ez 2,3

0 − Ez 3,3

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

	 (4.87)

From (4.87), the derivative matrix Dy
e is read off as the square matrix premul-

tiplying the column vector of electric field components, including the division by 
Δy. Observe the form of the matrix for Dy

e given in (4.88). It is composed of just 
two diagonals. The center diagonal contains all −1’s and the upper Nx diagonal 
contains all +1’s. For Dy

e, the upper diagonal is not interrupted by any 0’s so it is 
an easier diagonal to calculate.

	

Dy
e = 1

Δy

−1 0 0 1 0 0 0 0 0
0 −1 0 0 1 0 0 0 0
0 0 −1 0 0 1 0 0 0
0 0 0 −1 0 0 1 0 0
0 0 0 0 −1 0 0 1 0
0 0 0 0 0 −1 0 0 1
0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 −1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

	

(4.88)

The derivative matrix Dx
h is determined by writing the finite-difference approxi-

mation in (4.63) once for each point on the grid depicted in Figure 4.4, writing 
the large set of equations as a single matrix equation, and then reading off the 
derivative matrix. The matrix form of these equations is also a large square matrix 
premultiplying a column vector containing all of the magnetic field components 
!Hy i, j

 throughout the grid. The order of the magnetic field components in the col-
umn vector is exactly the same as the order of the electric field components used 
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previously. Using Dirichlet boundary conditions, this large set of equations in 
matrix form is

1
Δx

1 0 0 0 0 0 0 0 0
−1 1 0 0 0 0 0 0 0
0 −1 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 −1 1 0 0 0 0
0 0 0 0 −1 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 −1 1 0
0 0 0 0 0 0 0 −1 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

!Hy 1,1

!Hy 2,1

!Hy 3,1

!Hy 1,2

!Hy 2,2

!Hy 3,2

!Hy 1,3

!Hy 2,3

!Hy 3,3

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

=
1
Δx

!Hy 1,1
− 0

!Hy 2,1
− !Hy 1,1

!Hy 3,1
− !Hy 2,1

!Hy 1,2
− 0

!Hy 2,2
− !Hy 1,2

!Hy 3,2
− !Hy 2,2

!Hy 1,3
− 0

!Hy 2,3
− !Hy 1,3

!Hy 3,3
− !Hy 2,3

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

	 (4.89)

From (4.89), the derivative matrix Dx
h is read off as the square matrix premul-

tiplying the column vector of magnetic field components, including the division 
by Δx. Observe the form of the matrix for Dx

h given in (4.90). Like the derivative 
matrices for the electric fields, it is composed of just two diagonals. However, for 
the magnetic field the center diagonal contains all +1’s and the first lower diagonal 
contains mostly all −1’s but has some 0’s inserted where Dirichlet boundary condi-
tions were applied. The zeros occur every Nx rows, where Nx is the number of cells 
the grid is wide.

	

Dx
h = 1

Δx

1 0 0 0 0 0 0 0 0
−1 1 0 0 0 0 0 0 0
0 −1 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 −1 1 0 0 0 0
0 0 0 0 −1 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 −1 1 0
0 0 0 0 0 0 0 −1 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

	

(4.90)

Similarly, the derivative matrix Dy
h is determined by writing the finite-difference 

approximation in (4.63) once for each point on the grid depicted in Figure 4.4, writ-
ing the large set of equations as a single matrix equation, and then reading off the 
derivative matrix. Using Dirichlet boundary conditions, this large set of equations 
in matrix form is
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1
Δy

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
−1 0 0 1 0 0 0 0 0
0 −1 0 0 1 0 0 0 0
0 0 −1 0 0 1 0 0 0
0 0 0 −1 0 0 1 0 0
0 0 0 0 −1 0 0 1 0
0 0 0 0 0 −1 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

!Hx 1,1

!Hx 2,1

!Hx 3,1

!Hx 1,2

!Hx 2,2

!Hx 3,2

!Hx 1,3

!Hx 2,3

!Hx 3,3

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

= 1
Δy

!Hx 1,1
− 0

!Hx 2,1
− 0

!Hx 3,1
− 0

!Hx 1,2
− !Hx 1,1

!Hx 2,2
− !Hx 2,1

!Hx 3,2
− !Hx 3,1

!Hx 1,3
− !Hx 1,2

!Hx 2,3
− !Hx 2,2

!Hx 3,3
− !Hx 3,2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥ 	

(4.91)

From (4.91), the derivative matrix Dy
h is read off as the square matrix premul-

tiplying the column vector of electric field components, including the division by 
Δy. Observe the form of the matrix for Dy

h given in (4.88). It is composed of just 
two diagonals. The center diagonal contains all +1’s and the lower –Nx diagonal 
contains all –1’s. The lower diagonal in Dy

h is not interrupted by 0’s so this diagonal 
is easier to construct.

	

Dy
h = 1

Δy

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
−1 0 0 1 0 0 0 0 0
0 −1 0 0 1 0 0 0 0
0 0 −1 0 0 1 0 0 0
0 0 0 −1 0 0 1 0 0
0 0 0 0 −1 0 0 1 0
0 0 0 0 0 −1 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

	

(4.92)

While only Ez, !Hx  and !Hy, !Hx  and !Hywere considered for the above derivative matrices, the 
same derivative matrices for electric and magnetic fields are constructed no matter 
what combination of field component and finite-difference equation is considered. 
It is recommended to the reader to do these derivations as an exercise. Observe 
that the majority of the elements in the derivative matrices are equal to zero. This 
becomes even more pronounced when larger grids are considered. Storing all of 
the elements of a derivative matrix using double-precision floating-point numbers 
would consume a lot of memory. Instead, it is much more efficient to store the 
derivative matrices as sparse matrices where only the non-zero elements are stored. 
MATLAB makes working with sparse matrices very easy. Always store and work 
with derivative matrices as sparse matrices!
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4.5.2  Periodic Boundary Conditions

Very often, periodic structures like photonic crystals and metamaterials can be 
very efficiently analyzed using periodic boundary conditions (PBCs). Figure 4.5 
illustrates the concept where a large and three-dimensional photonic crystal can be 
represented in a much smaller two-dimensional simulation using PBCs at the left and 
right boundaries of the grid. In this manner, only a single unit cell of the lattice in 
the x-direction has to be stored in memory and processed by the simulation. As in 
Chapter 3, the finite-difference equations written for the cells at the left and right 
boundaries will require terms from outside of the grid. Since these are not stored 
in memory, something else must be done.

The concept of a PBC is this. When a field value is needed from outside of 
the grid, the field value from the opposite side of the grid is used in its place. For 
example, the finite-difference approximation in (4.62) has the term Ez⎪i+1,j. At the 
far-right side of the grid where i = Nx, this term is Ez⎪Nx+1,j which is outside of the 
grid and cannot be used. The term at the opposite side of the grid that can be used 
in its place is Ez⎪1,j. Summarizing this approach gives the finite-difference approxi-
mation in (4.93).

Figure 4.5  (a) Large three-dimensional photonic crystal. (b) Application of periodic boundary 
conditions to efficiently analyze the three-dimensional photonic crystal with a two-dimensional 
simulation.
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∂Ez
∂x

≈

Ez i+1, j
− Ez i, j

Δx
i < Nx

Ez 1, j
− Ez Nx , j

Δx
i = Nx

⎧

⎨

⎪
⎪

⎩

⎪
⎪

	

(4.93)

A big limitation of the PBC in (4.93) is that it only works when the source wave 
is at normal incidence. When the source wave is applied at an oblique angle of inci-
dence, the fields at the left and right sides of the grid are out of phase and the PBC 
in (4.93) fails. This concept is illustrated in Figure 4.6. The fields at the far left and 
far right sides of the grid are in phase for a wave at normal incidence, but they are 
out of phase for a wave at an oblique angle. To compensate for the phase difference 
across the unit cell, the PBC in (4.93) must be modified.

The fundamental states for electromagnetic waves inside of periodic structures 
are called Bloch waves and they obey Bloch’s theorem [3]. For the E mode, Bloch’s 
theorem requires the field component Ez to have the following form.

	
Ez x,y( ) = A x,y( )exp − j bxx + byy( )⎡

⎣
⎤
⎦ 	

(4.94)

Figure 4.6  Comparison of phase at the far left and far right sides of a grid for a wave at normal 
incidence and a wave at an oblique angle of incidence.
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The function A(x,y) is the complex amplitude function of the Bloch wave, βx 
and βy are components of the Bloch wave vector 

!
b, and 

!
r  is the position vector. 

The amplitude part of the Bloch wave A(x,y) is periodic exactly like the structure 
the Bloch wave is propagating through. This means the PBC in (4.93) can be applied 
to A(x,y), but it cannot be applied to the exponential term exp[−j(βxx + βyy)]. From 
(4.94), the Ez component at the left boundary (xlo) and right boundary (xhi) of the 
grid can be written as

	
Ez xlo,y( ) = A xlo,y( )exp − j bxxlo + byy( )⎡

⎣
⎤
⎦   Left Boundary	 (4.95)

	
Ez xhi ,y( ) = A xhi ,y( )exp − j bxxhi + byy( )⎡

⎣
⎤
⎦   Right Boundary	 (4.96)

Since the amplitude function A(x,y) of the Bloch wave is periodic, boundary 
conditions at the left and right boundaries of the grid require that A(xhi,y) = A(xlo,y). 
This allows (4.96) to be written as

	
Ez xhi ,y( ) = A xlo,y( )exp − j bxxhi + byy( )⎡

⎣
⎤
⎦ 	

(4.97)

Solving (4.95) for A(xlo,y) gives

	
A xlo,y( ) = Ez xlo,y( )exp + j bxxlo + byy( )⎡

⎣
⎤
⎦ 	

(4.98)

Substituting this expression for A(xlo,y) into (4.97) leads to an equation that relates 
the electric fields at the left and right boundaries of the grid.

	
Ez xhi ,y( ) = Ez xlo,y( )exp − jbx xhi − xlo( )⎡⎣ ⎤⎦ 	

(4.99)

The exponential term in (4.99) describes the phase that accumulates across the 
unit cell in the x-direction. Boundary conditions dictate that the tangential compo-
nent of the wave vector be continuous. From Figure 4.5, the boundary conditions 
imply that βx = kx,inc. The expression xhi − xlo is the physical width of the grid which 
is the period of the device Λx. It is convenient to define a term Φx that incorporates 
the transverse phase across one unit cell.

	
Φx = exp − jbx xhi − xlo( )⎡⎣ ⎤⎦ = exp − jkx,incΛx( )

	
(4.100)

Given all of this, the PBC for electric fields that accounts for the angle of inci-
dence of the source wave is

	

∂Em
∂x

≈

Em i+1, j
− Em i, j

Δx
i < Nx

ΦxEm 1, j
− Em Nx , j

Δx
i = Nx

⎧

⎨

⎪
⎪

⎩

⎪
⎪

m = x,y,z

	

(4.101)
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Similarly, the PBC for magnetic fields that accounts for the angle of incidence 
of the source wave is

	

∂ !Hm

∂x
≈

!Hm 1, j
− Φx

∗ !Hm Nx , j

Δx
i = 1

!Hm i, j
− !Hm i−1, j

Δx
i > 1

⎧

⎨

⎪
⎪

⎩

⎪
⎪

m = x,y,z

	

(4.102)

The ∗ superscript in (4.102) indicates that a complex conjugate is applied to 
reverse the sign of the phase in the term Φx. For derivatives of electric fields, the 
boundary condition problem arose at the right side of the grid and terms from the 
left side were used. For derivatives of magnetic fields, the boundary condition prob-
lem arises at the left side of the grid and terms from the right side are used. This 
reverses the sign of the phase to be used in the PBC for magnetic fields.

In some cases, it may be desired to use PBCs at the top (ylo) and bottom (yhi) 
boundaries of the grid in addition to the left (xlo) and right (xhi) boundaries. This 
is how photonic bands will be calculated in Chapter 7. In these cases, the finite-
difference approximations with PBCs are written as

	

∂Em
∂y

≈

Em i, j+1
− Em i, j

Δy
j < Ny

ΦyEm i,1
− Em i,Ny

Δy
j = Ny

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

m = x,y,z

	

(4.103)

	

∂ !Hm

∂y
≈

!Hm i,1
− Φy

∗ !Hm i,Ny

Δy
j = 1

!Hm i, j
− !Hm i, j−1

Δy
j > 1

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

m = x,y,z

	

(4.104)

	
Φy = exp − jky,incΛy( ) 	 (4.105)

4.5.3  Derivative Matrices Incorporating Periodic Boundary Conditions

The derivative matrices for electric and magnetic fields with the revised PBCs can 
be constructed following the same procedure used in Section 4.5.1. The derivative 
matrix Dx

e with PBCs is determined by writing the finite-difference approximation 
in (4.62) once for each point on the grid depicted in Figure 4.4, writing the large 
set of equations as a single matrix equation, and then reading off the derivative 
matrix. The matrix form of these equations is a large square matrix premultiplying 
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a column vector containing all of the electric field components Ez⎪i,j throughout the 
grid. Using PBCs, this large set of equations in matrix form is

 
1
Δx

−1 1 0 0 0 0 0 0 0
0 −1 1 0 0 0 0 0 0
Φx 0 −1 0 0 0 0 0 0

0 0 0 −1 1 0 0 0 0
0 0 0 0 −1 1 0 0 0
0 0 0 Φx 0 −1 0 0 0

0 0 0 0 0 0 −1 1 0
0 0 0 0 0 0 0 −1 1
0 0 0 0 0 0 Φx 0 −1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

Ez 1,1

Ez 2,1

Ez 3,1

Ez 1,2

Ez 2,2

Ez 3,2

Ez 1,3

Ez 2,3

Ez 3,3

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

= 1
Δx

Ez 2,1
− Ez 1,1

Ez 3,1
− Ez 2,1

ΦxEz 1,1
− Ez 3,1

Ez 2,2
− Ez 1,2

Ez 3,2
− Ez 2,2

ΦxEz 1,2
− Ez 3,2

Ez 2,3
− Ez 1,3

Ez 3,3
− Ez 2,3

ΦxEz 1,3
− Ez 3,3

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

	

(4.106)

From (4.106), the derivative matrix Dx
e is read off as the square matrix premulti-

plying the column vector of electric field components, including the division by Δx. 
Observe the form of the matrix for Dx

e given in (4.107). It is essentially the derivative 
matrix with Dirichlet boundary conditions but with phase terms Φx added in the 
rows where PBCs are used. This suggests an easy way to build a derivative matrix. 
First, build the derivative matrix with Dirichlet boundary conditions. Second, incor-
porate the phase terms only if PBCs are required.

	

Dx
e = 1

Δx

−1 1 0 0 0 0 0 0 0
0 −1 1 0 0 0 0 0 0
Φx 0 −1 0 0 0 0 0 0

0 0 0 −1 1 0 0 0 0
0 0 0 0 −1 1 0 0 0
0 0 0 Φx 0 −1 0 0 0

0 0 0 0 0 0 −1 1 0
0 0 0 0 0 0 0 −1 1
0 0 0 0 0 0 Φx 0 −1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

	

(4.107)

7025_Book.indb   1167025_Book.indb   116 12/17/21   8:39 AM12/17/21   8:39 AM



4.5	 Derivative Matrices for Two-Dimensional FDFD� 117

The derivative matrix Dy
e with PBCs is determined by writing the finite-difference 

approximation in (4.61) once for each point on the grid depicted in Figure 4.4, writ-
ing the large set of equations as a single matrix equation, and then reading off the 
derivative matrix. The results of this are

 
1
Δy

−1 0 0 1 0 0 0 0 0

0 −1 0 0 1 0 0 0 0

0 0 −1 0 0 1 0 0 0

0 0 0 −1 0 0 1 0 0

0 0 0 0 −1 0 0 1 0

0 0 0 0 0 −1 0 0 1
Φy 0 0 0 0 0 −1 0 0

0 Φy 0 0 0 0 0 −1 0

0 0 Φy 0 0 0 0 0 −1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

Ez 1,1

Ez 2,1

Ez 3,1

Ez 1,2

Ez 2,2

Ez 3,2

Ez 1,3

Ez 2,3

Ez 3,3

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

= 1
Δy

Ez 1,2
− Ez 1,1

Ez 2,2
− Ez 2,1

Ez 3,2
− Ez 3,1

Ez 1,3
− Ez 1,2

Ez 2,3
− Ez 2,2

Ez 3,3
− Ez 3,2

ΦyEz 1,1
− Ez 1,3

ΦyEz 2,1
− Ez 2,3

ΦyEz 3,1
− Ez 3,3

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

	

(4.108)

	

Dy
e = 1

Δy

−1 0 0 1 0 0 0 0 0

0 −1 0 0 1 0 0 0 0

0 0 −1 0 0 1 0 0 0

0 0 0 −1 0 0 1 0 0

0 0 0 0 −1 0 0 1 0

0 0 0 0 0 −1 0 0 1
Φy 0 0 0 0 0 −1 0 0

0 Φy 0 0 0 0 0 −1 0

0 0 Φy 0 0 0 0 0 −1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

	

(4.109)

The derivative matrix Dx
h with PBCs is determined by writing the finite-differ-

ence approximation in (4.68) once for each point on the grid depicted in Figure 4.4, 
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writing the large set of equations as a single matrix equation, and then reading off 
the derivative matrix. The results of this are

 
1
Δx

1 0 −Φx
∗ 0 0 0 0 0 0

−1 1 0 0 0 0 0 0 0

0 −1 1 0 0 0 0 0 0
0 0 0 1 0 −Φx

∗ 0 0 0

0 0 0 −1 1 0 0 0 0

0 0 0 0 −1 1 0 0 0
0 0 0 0 0 0 1 0 −Φx

∗

0 0 0 0 0 0 −1 1 0

0 0 0 0 0 0 0 −1 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

!Hy 1,1

!Hy 2,1

!Hy 3,1

!Hy 1,2

!Hy 2,2

!Hy 3,2

!Hy 1,3

!Hy 2,3

!Hy 3,3

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

=
1
Δx

!Hy 1,1
− Φx

∗ !Hy 3,1

!Hy 2,1
− !Hy 1,1

!Hy 3,1
− !Hy 2,1

!Hy 1,2
− Φx

∗ !Hy 3,2

!Hy 2,2
− !Hy 1,2

!Hy 3,2
− !Hy 2,2

!Hy 1,3
− Φx

∗ !Hy 3,3

!Hy 2,3
− !Hy 1,3

!Hy 3,3
− !Hy 2,3

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

	 (4.110)

	

Dx
h =

1
Δx

1 0 −Φx
∗ 0 0 0 0 0 0

−1 1 0 0 0 0 0 0 0

0 −1 1 0 0 0 0 0 0
0 0 0 1 0 −Φx

∗ 0 0 0

0 0 0 −1 1 0 0 0 0

0 0 0 0 −1 1 0 0 0
0 0 0 0 0 0 1 0 −Φx

∗

0 0 0 0 0 0 −1 1 0

0 0 0 0 0 0 0 −1 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
	

(4.111)

Last, the derivative matrix Dy
h with PBCs is determined by writing the finite-

difference approximation in (4.67) once for each point on the grid depicted in Figure 
4.4, writing the large set of equations as a single matrix equation, and then reading 
off the derivative matrix. The results of this are
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1
Δy

1 0 0 0 0 0 −Φy
* 0 0

0 1 0 0 0 0 0 −Φy
∗ 0

0 0 1 0 0 0 0 0 −Φy
∗

−1 0 0 1 0 0 0 0 0

0 −1 0 0 1 0 0 0 0

0 0 −1 0 0 1 0 0 0

0 0 0 −1 0 0 1 0 0

0 0 0 0 −1 0 0 1 0

0 0 0 0 0 −1 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

!Hx 1,1

!Hx 2,1

!Hx 3,1

!Hx 1,2

!Hx 2,2

!Hz 3,2

!Hx 1,3

!Hx 2,3

!Hx 3,3

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

=
1
Δy

!Hx 1,1
− Φy

∗ !Hx 1,3

!Hx 2,1
− Φy

∗ !Hx 2,3

!Hx 3,1
− Φy

∗ !Hx 3,3

!Hx 1,2
− !Hx 1,1

!Hz 2,2
− !Hx 2,1

!Hx 3,2
− !Hx 3,1

!Hx 1,3
− !Hx 1,2

!Hx 2,3
− !Hx 2,2

!Hx 3,3
− !Hx 3,2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

	 (4.112)

	

Dy
h =

1
Δy

1 0 0 0 0 0 −Φy
∗ 0 0

0 1 0 0 0 0 0 −Φy
∗ 0

0 0 1 0 0 0 0 0 −Φy
∗

−1 0 0 1 0 0 0 0 0

0 −1 0 0 1 0 0 0 0

0 0 −1 0 0 1 0 0 0

0 0 0 −1 0 0 1 0 0

0 0 0 0 −1 0 0 1 0

0 0 0 0 0 −1 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

	

(4.113)

4.5.4  Relationship Between the Derivative Matrices

For both Dirichlet boundary conditions and PBCs, the derivative matrices are 
related through

	
Dx

h = − Dx
e( )H      Dy

h = − Dy
e( )H 	

(4.114)

The superscript H indicates a Hermitian transpose. This is an ordinary transpose 
followed by calculating the complex conjugate of all the elements in the matrix. 
This is a very convenient relation because only the electric field derivative matrices 
have to be constructed and the magnetic field derivative matrices can be calculated 
directly from the electric field derivative matrices using (4.114). While it is possible 
to formulate and implement FDFD using only the electric field derivative matrices, 
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it is not recommended because this relation does not hold for all boundary condi-
tions. Be cautious when applying the relation in (4.114)!

4.6	 Derivative Matrices for Three-Dimensional FDFD

It is straightforward to generalize the discussion above to derivative matrices needed 
for three-dimensional FDFD analysis. For a 3 × 3 × 3 grid, the derivative matrix 
Dx

e with Dirichlet boundary conditions is

Dx
e = 1

Δx

−1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1

⎡

⎣

⎢
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⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
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Observe the form of the matrix for Dx
e given in (4.115). Three-dimensional 

derivative matrices are still composed of just two diagonals. The center diagonal 
contains all −1’s and the first upper diagonal contains mostly all +1’s but has some 
0’s inserted where Dirichlet boundary conditions were applied. The zeros occur 
every Nx rows, where Nx is the number of cells the grid is large in the x-direction.

The derivative matrix Dy
e with Dirichlet boundary conditions is
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Dy
e = 1

Δy

−1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
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⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
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Observe the form of the matrix for Dy
e given in (4.116). The center diagonal 

contains all −1’s. The upper diagonal is placed along the Nx diagonal. It contains a 
pattern of (Ny − 1)Nx ones followed by Nx zeros, repeated across the entire diagonal.

The derivative matrix Dz
e with Dirichlet boundary conditions is

Dz
e =

1
Δz

−1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1

⎡
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⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
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⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
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Observe the form of the matrix for Dz
e given in (4.117). The center diagonal 

contains all −1’s. The upper diagonal contains all +1’s and is placed along the 
NxNy diagonal.
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122� Finite-Difference Approximation of Maxwell’s Equations

The same three derivative matrices above with PBCs are

Dx
e = 1

Δx

−1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Φx 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 Φx 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 Φx 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 Φx 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 Φx 0 −1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Φx 0 −1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Φx 0 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Φx 0 −1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Φx 0 −1

⎡
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⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
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Dy
e = 1

Δy

−1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Φy 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 Φy 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 Φy 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 Φy 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 Φy 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 Φy 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Φy 0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Φy 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Φy 0 0 0 0 0 −1

⎡
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⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
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⎢
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Dz
e =

1
Δz

−1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 1

Φz 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0
0 Φz 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0
0 0 Φz 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0
0 0 0 Φz 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 Φz 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 Φz 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 Φz 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 Φz 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 Φz 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1
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⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
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Observe that these derivative matrices are the same as the derivative matri-
ces formed using Dirichlet boundary conditions, but with additional phase terms 
incorporated. The phase terms Φx for the Dx

e matrix are located along with the 
1 − Nx diagonal and placed every Nx position, starting at the first element in the 
diagonal. The phase terms Φy for the Dy

e matrix are located along the −(Ny − 1) 
Nx diagonal. The diagonal is a repeated pattern of Nx phase terms followed by (Ny − 1) 
Nx zeros. The phase terms Φz for the Dz

e matrix are located along the entire  
−(Nz − 1)NyNx diagonal.

4.6.1  Relationship Between the Derivative Matrices

For both Dirichlet boundary conditions and PBCs, the derivative matrices are 
related through

	
Dx

h = − Dx
e( )H      Dy

h = − Dy
e( )H      Dz

h = − Dz
e( )H

	
(4.121)

This is the same relationship observed for two-dimensional grids with the addi-
tion of the relation between Dz

h and Dz
e. As mentioned previously, be cautious when 

applying this relationship when other boundary conditions are being used.
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4.7	 Programming the yeeder2d() Function in MATLAB

Almost all of the tediousness of the finite-difference method is wrapped up in the 
construction of the derivative matrices. The derivative matrices also give an inter-
mediate step to test and verify for correctness. For these reasons, a function will 
be written in MATLAB to construct the derivative matrices, allowing the rest of 
the code for FDFD to be much cleaner and simpler. The MATLAB code for this 
very useful function can be downloaded at https://empossible.net/fdfdbook/. Line 
1 declares the file as the MATLAB function yeeder2d() and defines four input 
arguments (NS, RES, BC, and kinc) and four output arguments (DEX, DEY, DHX, and 
DHY). When Dirichlet boundary conditions are used at all boundaries, only three 
input arguments are needed because it is not necessary to provide the incident wave 
vector kinc. When the grid is normalized, it is still necessary to multiply the resolu-
tion parameters dx and dy by k0 even when kinc is not provided to the yeeder2d() 
function. The remainder of the header is commented so that when help yeeder2d is 
typed at the command prompt, the commented text in the header will be displayed 
in the command window. It is recommended to include the name of the file, an 
expanded title, the syntax for a typical call to the function, and a detailed list and 
description of all the input and output arguments of the function.

Lines 25 to 42 are a section of code that handles the input arguments. The 
first thing that is done is to extract the size of the grid Nx and Ny from the input 
array NS and to extract the resolution parameters dx and dy from the input array 
RES. It is certainly possible to use NS(1) in place of Nx and NS(2) in place of Ny, 
but this makes the code less readable. The same can be said for using RES(1) and 
RES(2) in place of dx and dy. The second thing that is done in this section is to 
define a default incident wave vector kinc if one is not specified as an input argu-
ment. While this step is not necessary either, it makes the task of initializing the 
derivative matrices in later sections a little easier. The third thing in this section 
of code is to calculate the size of the derivative matrices. The derivative matrices 
are square and contain one row and one column for every cell on the grid. If the 
grid is Nx cells wide by Ny cells tall, then the total number of cells on the grid is 
M = Nx*Ny. The last thing accomplished in this section of code is to initialize a 
sparse matrix Z of all zeros. It is critical to never build or store a full matrix. All 
matrices will always be sparse and the zero matrix Z allows for easy and simple 
code to build the derivative matrices.

Lines 44 to 72 of the yeeder2d() function build the derivative matrix Dx
e, 

which in MATLAB will be called DEX. It is good practice to write the yeeder2d() 
function in a way that will allow it to be used to build derivative matrices for one-
dimensional grids in addition to two-dimensional grids. When the numerical size 
of the grid in the x-direction is Nx = 1, the derivative matrix should be set to all 
zeros unless PBCs are used. When PBCs are used, the derivative matrix should be a 
diagonal matrix with −jkx,inc placed down the entire center diagonal. By setting the 
input argument kinc to all zeros when this parameter is not provided, it allows the 
derivative matrix to be constructed for any case by placing −jkx,inc along the center 
diagonal. When the numerical size of the grid is greater than 1 in the x-direction, 
the yeeder2d() function moves on to build two one-dimensional arrays that will 
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be the numbers inserted into the two main diagonals of the derivative matrix DEX. 
The variable d0 will be inserted into the center diagonal so it is initialized as a 
one-dimensional array of all −1’s. The variable d1 will be inserted into the first 
upper diagonal. It is a one-dimensional array initialized with all +1’s, but with 
0’s inserted into the positions where Dirichlet boundary conditions are needed 
every Nx number of cells. Given the one-dimensional arrays d0 and d1, they are 
inserted into the derivative matrix at the same time using MATLAB’s function 
spdiags(). The first input argument into the spdiags() function is a matrix, and 
its columns are the one-dimensional arrays to be inserted into the diagonals. It is 
convenient to divide these arrays by the grid resolution parameter dx at this step. 
The second input argument is an array containing the diagonal numbers that the 
previous one-dimensional arrays should be inserted into. In this case, 0 indicates 
the center diagonal and +1 indicates the first upper diagonal. The third input 
argument to spdiags() is the matrix into which the diagonals should be inserted. 
The zero matrix is given here so only the diagonals inserted by this single call to 
spdiags() will appear in the DEX matrix. At this point, the derivative matrix is 
correct for Dirichlet boundary conditions. The last part of this section of code is 
to insert a third diagonal containing the phase terms where PBCs are to be used 
instead of Dirichlet boundary conditions. The variable d1 is overwritten here with 
the new diagonal containing the phase terms that are inserted into the DEX matrix 
using spdiags().

Lines 74 to 100 of the yeeder2d() function are very similar to the previous sec-
tion of code. It builds the derivative matrix Dy

e, which in MATLAB will be called 
DEY. When the numerical size of the grid in the y-direction is Ny = 1, the deriva-
tive matrix is initialized by placing −jky,inc along the entire center diagonal. When 
the numerical size of the grid is greater than 1, the yeeder2d() function moves on 
to building two one-dimensional arrays that will be inserted into the two main 
diagonals of the derivative matrix. The variable d0 will be inserted into the center 
diagonal so it is initialized as a one-dimensional array of all −1’s. The variable d1 
will be inserted into the Nxth upper diagonal. It is a one-dimensional array initial-
ized with all +1’s. Given the one-dimensional arrays d0 and d1, they are inserted 
into the derivative matrix at the same time using the built-in function spdiags(). 
At this point, the derivative matrix is correct for Dirichlet boundary conditions. The 
last part of this section of code inserts a third diagonal containing the phase terms 
where PBCs are to be used instead of Dirichlet boundary conditions. The variable 
d1 is overwritten with the new diagonal containing the phase terms and then it is 
inserted into the DEY matrix using spdiags().

Lines 102 to 107 of the yeeder2d() function build the derivative matrices for 
the magnetic fields Dx

h and Dy
h. In MATLAB, these will be called DHX and DHY, 

respectively. This is a very easy step because the boundary conditions that this 
function incorporates allows Dx

h and Dy
h to be calculated directly from Dx

e and Dy
e 

using (4.114).
Adding and deleting elements from sparse matrices can be slow, especially for 

large matrices. To optimize the speed and efficiency of yeeder2d(), the diagonals 
were calculated ahead of time and inserted into the derivative matrices with a 
minimum number of calls to spdiags(). It is possible to write yeeder2d() a bit 
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differently that utilizes just a single call to spdiags(), but that approach was not 
taken here in order to make the MATLAB code easier to read and understand.

4.7.1  Using the yeeder2d() Function

The yeeder2d() function by itself is not executable. Instead, it is a function that must 
be called from a MATLAB program that defines the input arguments and passes 
them to the function so that yeeder2d() can build the derivative matrices and return 
them to the program. The MATLAB program listed below demonstrates how to 
use the yeeder2d() function and displays the derivative matrices that yeeder2d() 
builds. The input arguments are defined on lines 8 to 11. NS is an array containing 
the size of the grid. In this case, the grid is three cells wide and four cells tall (i.e., 
Nx = 3 and Ny = 4). RES is an array containing the resolution parameters. For this 
case, dx=0.2 and dy=0.1. The boundary conditions in the array BC where set to 
Dirichlet for both x- and y-axis boundaries. The yeeder2d() function is called on 
line 14 where the input arguments are given to the function, the derivative matrices 
are built, and the derivative matrices returned to the program below through the 
variables DEX, DEY, DHX, and DHY.

1   % Chapter4_yeeder2d_demo.m
2
3   % INITIALIZE MATLAB
4   close all;
5   clc;
6   clear all;
7
8   % DEFINE INPUT ARGUMENTS FOR YEEDER2D
9   NS  = [3 4];
10  RES = [0.2 0.1];
11  BC  = [0 0];
12
13  % CALL YEEDER2D
14  [DEX,DEY,DHX,DHY] = yeeder2d(NS,RES,BC);
15
16  % SHOW DERIVATIVE MATRICES
17  disp(‘DEX = ‘);
18  disp(full(DEX));
19
20  disp(‘DEY = ‘);
21  disp(full(DEY));
22
23  disp(‘DHX = ‘);
24  disp(full(DHX));
25
26  disp(‘DHY = ‘);
27  disp(full(DHY));

7025_Book.indb   1267025_Book.indb   126 12/17/21   8:40 AM12/17/21   8:40 AM



4.7	 Programming the yeeder2d() Function in MATLAB� 127

The derivative matrices are displayed to the command window from lines 16 
to 27. They are sparse matrices so they are converted to full matrices before being 
displayed. Be careful to only attempt to display the derivative matrices for small 
grids this way. The output of the function is

DEX =
    -5     5     0     0     0     0     0     0     0     0     0     0
     0    -5     5     0     0     0     0     0     0     0     0     0
     0     0    -5     0     0     0     0     0     0     0     0     0
     0     0     0    -5     5     0     0     0     0     0     0     0
     0     0     0     0    -5     5     0     0     0     0     0     0
     0     0     0     0     0    -5     0     0     0     0     0     0
     0     0     0     0     0     0    -5     5     0     0     0     0
     0     0     0     0     0     0     0    -5     5     0     0     0
     0     0     0     0     0     0     0     0    -5     0     0     0
     0     0     0     0     0     0     0     0     0    -5     5     0
     0     0     0     0     0     0     0     0     0     0    -5     5
     0     0     0     0     0     0     0     0     0     0     0    -5

DEY =
   -10     0     0    10     0     0     0     0     0     0     0     0
     0   -10     0     0    10     0     0     0     0     0     0     0
     0     0   -10     0     0    10     0     0     0     0     0     0
     0     0     0   -10     0     0    10     0     0     0     0     0
     0     0     0     0   -10     0     0    10     0     0     0     0
     0     0     0     0     0   -10     0     0    10     0     0     0
     0     0     0     0     0     0   -10     0     0    10     0     0
     0     0     0     0     0     0     0   -10     0     0    10     0
     0     0     0     0     0     0     0     0   -10     0     0    10
     0     0     0     0     0     0     0     0     0   -10     0     0
     0     0     0     0     0     0     0     0     0     0   -10     0
     0     0     0     0     0     0     0     0     0     0     0   -10

DHX =
    5     0     0     0     0     0     0     0     0     0     0     0
   -5     5     0     0     0     0     0     0     0     0     0     0
    0    -5     5     0     0     0     0     0     0     0     0     0
    0     0     0     5     0     0     0     0     0     0     0     0
    0     0     0    -5     5     0     0     0     0     0     0     0
    0     0     0     0    -5     5     0     0     0     0     0     0
    0     0     0     0     0     0     5     0     0     0     0     0
    0     0     0     0     0     0    -5     5     0     0     0     0
    0     0     0     0     0     0     0    -5     5     0     0     0
    0     0     0     0     0     0     0     0     0     5     0     0
    0     0     0     0     0     0     0     0     0    -5     5     0
    0     0     0     0     0     0     0     0     0     0    -5     5
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DHY =
    10     0     0     0     0     0     0     0     0     0     0     0
     0    10     0     0     0     0     0     0     0     0     0     0
     0     0    10     0     0     0     0     0     0     0     0     0
   -10     0     0    10     0     0     0     0     0     0     0     0
     0   -10     0     0    10     0     0     0     0     0     0     0
     0     0   -10     0     0    10     0     0     0     0     0     0
     0     0     0   -10     0     0    10     0     0     0     0     0
     0     0     0     0   -10     0     0    10     0     0     0     0
     0     0     0     0     0   -10     0     0    10     0     0     0
     0     0     0     0     0     0   -10     0     0    10     0     0
     0     0     0     0     0     0     0   -10     0     0    10     0
     0     0     0     0     0     0     0     0   -10     0     0    10

4.8	 Programming the yeeder3d() Function in MATLAB

The MATLAB code for the yeeder3d() function can be downloaded at https://
empossible.net/fdfdbook/. This function calculates the derivative matrices DEX, 
DEY, DEZ, DHX, DHY, and DHZ across a three-dimensional Yee grid. This function is 
only necessary for the FDFD codes presented in Chapter 10. Lines 2 to 25 are the 
header of the function and are what is displayed in the command window if help 
yeeder3d is entered at the command prompt. It is always a good practice to include 
a header in functions in order to remember how to use them.

Lines 27 to 45 handle the input arguments by extracting meaningful information 
and initializing some variables. The size of the grid and grid resolution parameters 
are extracted from the input arguments on lines 32 to 34. Lines 36 to 39 calculate 
a default kinc vector if one is not provided. The default vector is set to all zeros. 
The size of the derivative matrices is determined on line 42 by calculating the total 
number of points on the three-dimensional Yee grid. Line 45 initializes a sparse 
matrix Z of all zeros.

Lines 47 to 75 build the DEX derivative matrix and resembles the code given 
in yeeder2d() very closely. If the size of the grid in the x-direction is 1, lines 52 
and 53 initialize the derivative matrix to a diagonal matrix with −jkx,inc along the 
entire center diagonal. If the size of the grid is larger than 1, lines 56 to 75 build the 
matrix. Line 59 calculates an array d0 containing the numbers to be inserted into 
the center diagonal of DEX. Lines 62 and 63 calculate an array d1 containing the 
numbers to be inserted into the +1 diagonal in DEX. Line 63 sets every Nx number of 
cells to zero to incorporate Dirichet boundary conditions. Line 66 divides the two 
arrays d0 and d1 by dx and inserts them into DEX. If periodic boundary conditions 
are called for, lines 69 to 73 incorporate these into DEX.

Lines 77 to 110 build the DEY derivative matrix. If the size of the grid in the 
y-direction is 1, lines 82 and 83 initialize the derivative matrix to a diagonal matrix 
with −jky,inc along the entire center diagonal. If the size of the grid is larger than 
1, lines 86 to 110 build the matrix. Line 89 calculates an array d0 containing the 
numbers to be inserted into the center diagonal of DEY. Lines 91 and 94 calculate an 
array d1 containing the numbers to be inserted into the Nx diagonal in DEY. Line 92 
creates an array containing (Ny-1)*Nx ones followed by Nx zeros. Line 93 repeats 
this array Nz-1 number of times to form a larger array. Line 94 adds Nx zeros to the 
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beginning of this larger array and (Ny-1)*Nx ones to the end. While all of this may 
seem confusing, it is just done to create the correct pattern of zeros and ones that must 
be placed along the Nx*(Ny-1) diagonal of DEY to construct the derivative matrix. 
Line 97 divides the two arrays d0 and d1 by dy and inserts them into DEY. If peri-
odic boundary conditions are called for, lines 100 to 108 incorporate these into DEY.

Lines 112 to 135 build the DEZ derivative matrix. If the size of the grid in the 
z-direction is 1, lines 117 and 118 initialize the derivative matrix to a diagonal matrix 
with −jkz,inc along the entire center diagonal. If the size the grid is larger than one, 
lines 120 to 135 build the matrix. Line 124 calculates an array d0 of all ones. There 
is no need for a second array d1 to be calculated because the second diagonal is not 
broken up in any way to enforce boundary conditions. Line 127 divides this array 
by dz and inserts it twice into DEZ, but one diagonal is inserted with opposite sign. 
If periodic boundary conditions are called for, lines 130 to 133 incorporate these 
into DEZ. Last, lines 137 to 143 calculate the magnetic field derivative matrices DHX, 
DHY, and DHZ directly from the electric field derivative matrices. This is possible 
because only Dirichlet and periodic boundary conditions are used.

4.8.1  Using the yeeder3d() Function

The yeeder3d() function by itself is not executable. Instead, it is a function that must 
be called from a MATLAB program that defines the input arguments and passes 
them to the function so that yeeder3d() can build the derivative matrices and return 
them to the program. The MATLAB program listed below demonstrates how to 
use the yeeder3d() function and displays the derivative matrices that yeeder3d() 
builds. The input arguments are defined on lines 8 to 11. NS is an array containing 
the size of the grid. In this case, the grid has Nx = Ny = Nz = 2. RES is an array 
containing the resolution parameters. For this case, dx=0.3, dy=0.2, and dz=0.1. 
The boundary conditions in the array BC were set to Dirichlet for all boundaries. 
The yeeder3d() function is called on line 14 where the input arguments are given to 
the function, the derivative matrices are built, and the derivative matrices returned 
to the program below through the variables DEX, DEY, DEZ DHX, DHY, and DHZ.

1   % Chapter4_yeeder3d_demo.m
2
3   % INITIALIZE MATLAB
4   close all;
5   clc;
6   clear all;
7
8   % DEFINE INPUT ARGUMENTS FOR YEEDER2D
9   NS  = [2 2 2];
10  RES = [0.3 0.2 0.1];
11  BC  = [0 0 0];
12
13  % CALL YEEDER3D
14  [DEX,DEY,DEZ,DHX,DHY,DHZ] = yeeder3d(NS,RES,BC);
15
16  % SHOW DERIVATIVE MATRICES
17  disp(‘DEX = ‘);
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18  disp(full(DEX));
19
20  disp(‘DEY = ‘);
21  disp(full(DEY));
22
23  disp(‘DEY = ‘);
24  disp(full(DEZ));
25
26  disp(‘DHX = ‘);
27  disp(full(DHX));
28
29  disp(‘DHY = ‘);
30  disp(full(DHY));
31
32  disp(‘DHZ = ‘);
33  disp(full(DHZ));

The derivative matrices are displayed to the command window from lines 16 
to 33. They are sparse matrices so they are converted to full matrices before being 
displayed. Be careful to only attempt to display the derivative matrices for small 
grids this way. The output of the function is

DEX =
   -3.3333    3.3333         0         0         0         0         0         0
         0   -3.3333         0         0         0         0         0         0
         0         0   -3.3333    3.3333         0         0         0         0
         0         0         0   -3.3333         0         0         0         0
         0         0         0         0   -3.3333    3.3333         0         0
         0         0         0         0         0   -3.3333         0         0
         0         0         0         0         0         0   -3.3333    3.3333
         0         0         0         0         0         0         0   -3.3333

DEY = 
    -5     0     5     0     0     0     0     0
     0    -5     0     5     0     0     0     0
     0     0    -5     0     0     0     0     0
     0     0     0    -5     0     0     0     0
     0     0     0     0    -5     0     5     0
     0     0     0     0     0    -5     0     5
     0     0     0     0     0     0    -5     0
     0     0     0     0     0     0     0    -5

DEY =
   -10     0     0     0    10     0     0     0
     0   -10     0     0     0    10     0     0
     0     0   -10     0     0     0    10     0
     0     0     0   -10     0     0     0    10
     0     0     0     0   -10     0     0     0
     0     0     0     0     0   -10     0     0
     0     0     0     0     0     0   -10     0
     0     0     0     0     0     0     0   -10
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DHX =
    3.3333         0         0         0         0         0         0         0
   -3.3333    3.3333         0         0         0         0         0         0
         0         0    3.3333         0         0         0         0         0
         0         0   -3.3333    3.3333         0         0         0         0
         0         0         0         0    3.3333         0         0         0
         0         0         0         0   -3.3333    3.3333         0         0
         0         0         0         0         0         0    3.3333         0
         0         0         0         0         0         0   -3.3333    3.3333

DHY =
     5     0     0     0     0     0     0     0
     0     5     0     0     0     0     0     0
    -5     0     5     0     0     0     0     0
     0    -5     0     5     0     0     0     0
     0     0     0     0     5     0     0     0
     0     0     0     0     0     5     0     0
     0     0     0     0    -5     0     5     0
     0     0     0     0     0    -5     0     5

DHZ =
    10     0     0     0     0     0     0     0
     0    10     0     0     0     0     0     0
     0     0    10     0     0     0     0     0
     0     0     0    10     0     0     0     0
   -10     0     0     0    10     0     0     0
     0   -10     0     0     0    10     0     0
     0     0   -10     0     0     0    10     0
     0     0     0   -10     0     0     0    10

4.9	 The 2× Grid Technique

In FDFD, the field components are positioned throughout space following the Yee 
grid scheme. While the Yee grid offers many numerical advantages, it makes it 
more difficult to build devices onto the grid, especially when material boundaries 
slice through the middle of cells on the grid. Sorting out the assignment of mate-
rial values to the different permittivity and permeability arrays across the Yee grid 
can be tedious and difficult. The 2× grid technique was developed to make this 
process simple and fast and is particularly well suited for dielectric devices with 
curved features [4].

From Figures 4.4 and 4.7, the field components are staggered across the Yee grid 
in a way that suggests that somehow a simulation is getting twice the resolution 
as the standard Yee grid. While this is not entirely true, it is the inspiration for the 
2× grid technique. Figure 4.7 illustrates the same grids as Figure 4.4 but the grids 
are overlaid with a second grid drawn with dashed lines. The second grid has the 
same physical size as the original Yee grid, but has twice as many cells at half the 
size as the original Yee grid. This second grid that has twice as many cells is called 
the 2× grid. The field components from the Yee grid overlay perfectly onto unique 
cells in the 2× grid.
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Calculating the tensor arrays ERxx, ERyy, ERzz, URxx, URyy, and URzz using the 
2× grid technique is a four-step process. First, the grid parameters for the standard 
Yee grid are calculated. This includes the number of cells wide Nx, number of cells 
tall Ny, and the resolution parameters dx and dy. Second, the grid parameters for 
the 2× grid are calculated directly from the Yee grid parameters so that the same 
physical amount of space is represented with twice as many cells.

Nx2 = 2*Nx; 
Ny2 = 2*Ny; 
dx2 = dx/2; 
dy2 = dy/2;

Third, the device to be simulated is built onto the 2× grid without having to 
consider anything about the Yee grid or staggering. This is easily accomplished 
using any of the techniques presented in Chapter 1. When this is done, two arrays 
are produced. ER2 is the array containing the relative permittivity across the 2× grid 
and UR2 is the array containing the relative permeability across the 2× grid. Fourth, 
the tensor elements ERxx, ERyy, and ERzz across the Yee grid are extracted from the 
2× grid array ER2 using the three lines of code below.

ERxx = ER2(2:2:Nx2,1:2:Ny2);
ERyy = ER2(1:2:Nx2,2:2:Ny2);
ERzz = ER2(1:2:Nx2,1:2:Ny2);

Each of these lines of code pulls numbers from every other cell in ER2. The dif-
ference is the starting index being a 1 or a 2, and these are determined by examin-
ing Figure 4.7. The constitutive values for εxx⎪i,j reside at the same points as Ex⎪i,j, 
and the first occurrence of Ex⎪i,j on the 2× grid is at i = 2 and j = 1. Therefore, 2 
and 1 are used as the starting indices for where the array ERxx is extracted from 
the array ER2. A similar examination will show that ERyy is extracted from ER2 
with starting indices i = 1 and j = 2, and ERzz is extracted from ER2 with starting 
indices i = 1 and j = 1.

Last, the tensor elements URxx, URyy, and URzz across the Yee grid are extracted 
from the 2× grid array UR2 using the three lines of code below.

URxx = UR2(1:2:Nx2,2:2:Ny2);
URyy = UR2(2:2:Nx2,1:2:Ny2);
URzz = UR2(2:2:Nx2,2:2:Ny2);

Each of these lines of code pulls numbers from every other cell of UR2. The 
constitutive values for μxx⎪i,j reside at the same points as   !Hx i, j

, and the first occur-
rence of   !Hx i, j

 on the 2× grid is at i = 1 and j = 2. Therefore, 1 and 2 are used as the 
starting indices for where the array URxx is extracted from the array UR2. A similar 
examination will show that URyy is extracted from UR2 with starting indices i = 2  
and j = 1, and URzz is extracted from UR2 with starting indices i = 2 and j = 2.

It is best to illustrate the 2× grid technique by example. Suppose it is desired to 
simulate scattering from a cylinder. In this case, a circle has to be constructed onto 
a two-dimensional Yee grid and values for permittivity and permeability assigned 
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correctly to the six tensor arrays. Figure 4.8(a) shows a 5 × 5 Yee grid indicated by 
solid lines, the field components for both E and H modes distributed throughout the 
grid, and the 2× grid indicated by dashed lines. The highlighted cells in the back-
ground convey the device that was constructed onto the 2× grid. In this example, 
the 2× grid arrays ER2 and UR2 have the same pattern, but this does not have to be 
the case and it does not mean they will ultimately have the same values stored in 
them. The column of diagrams in Figure 4.8(c) shows the arrays ERxx, ERyy, and 
ERzz which are extracted from the array ER2. The column of diagrams in Figure 
4.8(b) shows the arrays URxx, URyy, and URzz which are extracted from the array 
UR2. Observe the arrays do not look similar. In fact, they are different for the cells 
where the edge of the circle slices through the middle of the Yee cells. Constructing 
the tensor arrays individually for the Yee grid would be a more complicated and 
tedious task, but the 2× grid technique makes it simple and intuitive.

Figure 4.7  2× grid overlaid onto the Yee grid for both E and H modes.
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When FDFD simulations are performed for three-dimensional simulations, 
the equations to extract the tensor arrays from the three-dimensional 2× grid are

ERxx = ER2(2:2:Nx2,1:2:Ny2,1:2:Nz2);
ERyy = ER2(1:2:Nx2,2:2:Ny2,1:2:Nz2);
ERzz = ER2(1:2:Nx2,1:2:Ny2,2:2:Nz2);

URxx = UR2(1:2:Nx2,2:2:Ny2,2:2:Nz2);
URyy = UR2(2:2:Nx2,1:2:Ny2,2:2:Nz2);
URzz = UR2(2:2:Nx2,2:2:Ny2,1:2:Nz2);

Figure 4.8  Extracting the tensor element arrays from the 2× grid arrays. (a) Original array on 
2× grid. (b) Relative permeability tensor arrays URxx, URyy, and URzz extracted from the 2× grid. 
(c) Relative permittivity tensor arrays ERxx, ERyy, and ERzz extracted from the 2× grid.
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Furthermore, when full nine-element tensors are used, the equations to extract 
the tensor arrays from the three-dimensional 2× grid are

ERxx = ER2xx(2:2:Nx2,1:2:Ny2,1:2:Nz2);
ERxy = ER2xy(1:2:Nx2,2:2:Ny2,1:2:Nz2);
ERxz = ER2xz(1:2:Nx2,1:2:Ny2,2:2:Nz2);
ERyx = ER2yx(2:2:Nx2,1:2:Ny2,1:2:Nz2);
ERyy = ER2yy(1:2:Nx2,2:2:Ny2,1:2:Nz2);
ERyz = ER2yz(1:2:Nx2,1:2:Ny2,2:2:Nz2);
ERzx = ER2zx(2:2:Nx2,1:2:Ny2,1:2:Nz2);
ERzy = ER2zy(1:2:Nx2,2:2:Ny2,1:2:Nz2);
ERzz = ER2zz(1:2:Nx2,1:2:Ny2,2:2:Nz2);

URxx = UR2xx(1:2:Nx2,2:2:Ny2,2:2:Nz2);
URxy = UR2xy(2:2:Nx2,1:2:Ny2,2:2:Nz2);
URxz = UR2xz(2:2:Nx2,2:2:Ny2,1:2:Nz2);
URyx = UR2yx(1:2:Nx2,2:2:Ny2,2:2:Nz2);
URyy = UR2yy(2:2:Nx2,1:2:Ny2,2:2:Nz2);
URyz = UR2yz(2:2:Nx2,2:2:Ny2,1:2:Nz2);
URzx = UR2zx(1:2:Nx2,2:2:Ny2,2:2:Nz2);
URzy = UR2zy(2:2:Nx2,1:2:Ny2,2:2:Nz2);
URzz = UR2zz(2:2:Nx2,2:2:Ny2,1:2:Nz2);

4.10	 Numerical Dispersion

A simulated wave in FDFD propagates at a slightly slower speed than a physical 
wave due to numerical dispersion. Numerical dispersion is a nonphysical dispersion 
exhibited by the Yee grid [2] and is illustrated in Figure 4.9. In this figure, the 
analytical wave characterized by the wave vector 

!
k is compared to the numerical 

wave at the same frequency characterized by the wave vector 
!
′k .  The numerical wave 

is slower and so it exhibits a compressed wavelength. The severity of the numerical 
dispersion depends on frequency, direction of the wave, and grid resolution. The 
general tendency of numerical dispersion is to shift the frequency response of devices 
to slightly lower frequencies. When simulating very large structures, numerical 
dispersion produces particularly severe errors when extracting phase information 
from a simulation.

In Chapter 2, the dispersion relation was derived for an analytical wave by 
substituting the expression for a plane wave into Maxwell’s equations for a linear, 
homogeneous, and isotropic (LHI) medium. This gave

	

wn
c0

⎛
⎝⎜

⎞
⎠⎟

2

= kx
2 + ky

2 + kz
2

	
(4.122)

A similar numerical dispersion relation is derived by substituting the expres-
sion for a numerical plane wave into the discrete form of Maxwell’s equations in 
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an LHI medium. The following equations give the expression for a numerical plane 
wave for the E mode.

	
� Ez I,J

= Ez0e
− j ′kxIΔx+ ′ky JΔy⎡⎣ ⎤⎦

	
(4.123)

	
  !Hx I ,J

= !Hx0e
− j ′kxIΔx+ ′ky J+0.5( )Δy⎡⎣ ⎤⎦

	
(4.124)

	
  !Hy I ,J

= !Hy0e
− j ′kx I+0.5( )Δx+ ′ky JΔy⎡⎣ ⎤⎦

	
(4.125)

In these expressions, the wave vector components are written with a prime 
superscript to indicate that they are the numerical wave vector components for the 
numerical wave that propagates at a slightly slower velocity than the physical wave. 
Substituting these expressions into (4.61) to (4.63) written for an LHI medium 
described by relative permeability μr and relative permittivity εr gives

Ez0e
− j ʹkxIΔx+ ʹky J+1( )Δy⎡
⎣

⎤
⎦ − Ez0e

− j ʹkxIΔx+ ʹky JΔy
⎡
⎣

⎤
⎦

Δy
= k0mr

!Hx0e
− j ʹkxIΔx+ ʹky J+0.5( )Δy⎡
⎣

⎤
⎦

	
(4.126)

Figure 4.9  Illustration of the concept of numerical dispersion caused by the Yee grid. Despite 
having the same frequency, the analytical and numerical waves propagate at different velocities 
characterized by the wave vectors 

!
k  and 

!

′k . The difference has been exaggerated in this figure 
for illustration purposes.
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 −
Ez0e

− j ʹkx I+1( )Δx+ ʹky JΔy
⎡
⎣

⎤
⎦ − Ez0e

− j ʹkxIΔx+ ʹky JΔy
⎡
⎣

⎤
⎦

Δx
= k0mr

!Hy0e
− j ʹkx I+0.5( )Δx+ ʹky JΔy
⎡
⎣

⎤
⎦

	
(4.127)

!Hy0e
− j ʹkx I+0.5( )Δx+ ʹky JΔy
⎡
⎣

⎤
⎦ − !Hy0e

− j ʹkx I−0.5( )Δx+ ʹky JΔy
⎡
⎣

⎤
⎦

Δx

−
!Hx0e

− j ʹkxIΔx+ ʹky J+0.5( )Δy⎡
⎣

⎤
⎦ − !Hx0e

− j ʹkxIΔx+ ʹky J−0.5( )Δy⎡
⎣

⎤
⎦

Δy
= k0erEz0e

− j ʹkxIΔx+ ʹky JΔy
⎡
⎣

⎤
⎦

	

(4.128)

Next, (4.126) is solved for !Hx0, (4.127) is solved for !Hy0, (4.128) is solved for Ez0, 
and each of the new expressions is simplified to get

	

!Hx0 =
Ez0

k0mrΔy
2 j sin

ʹkyΔy

2

⎛

⎝
⎜

⎞

⎠
⎟

	
(4.129)

	

!Hy0 = −
Ez0

k0mrΔx
2 j sin

ʹkxΔx
2

⎛

⎝
⎜

⎞

⎠
⎟
	

(4.130)

	
Ez0 =

!Hy0

k0erΔx
2 j sin

ʹkxΔx
2

⎛

⎝
⎜

⎞

⎠
⎟ −

!Hx0

k0erΔy
2 j sin

ʹkyΔy

2

⎛

⎝
⎜

⎞

⎠
⎟

	
(4.131)

Last, (4.129) and (4.130) are substituted into (4.131) to arrive at the numerical dis-
persion relation for the E mode.

	

k0
2mrer =

2
Δx

sin
ʹkxΔx
2

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢

⎤

⎦
⎥

2

+
2
Δy

sin
ʹkyΔy

2

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

	
(4.132)

Recognizing that k0 = ω∕c0 and n = μrεr, (4.132) can be written in a form that looks 
more like the analytical dispersion relation in (4.122).

	

wn
c0

⎛
⎝⎜

⎞
⎠⎟

2

= 2
Δx

sin
′kxΔx
2

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

2

+ 2
Δy

sin
′kyΔy
2

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

	
(4.133)

Figure 4.10 shows the comparison of the numerical dispersion described by 
(4.133) and the analytical dispersion described by (4.122) for a Yee grid where the 
grid resolution is Δx = 0.35λ and Δy = 0.15λ, and the background refractive index 
is n = 1.0. In this figure, the analytical and numerical wave vectors are plotted as 
a function of direction. Larger values of k correspond to slower waves. Numerical 
error in a simulation arises because these lines are different. Observe that numerical 
dispersion is greatest in the directions with poorest grid resolution. In this case, the 
grid resolution in the x-direction is around three times lower than the y-direction, 
so the greatest discrepancy between the analytical and numerical waves are expe-
rienced in the x-direction.
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The same numerical dispersion relation as (4.133) would be derived if the H mode 
were analyzed. This is recommended as an exercise to the reader. It is straightfor-
ward to generalize the numerical dispersion relation to full three dimensions. This is

wn
c0

⎛
⎝⎜

⎞
⎠⎟

2

= 2
Δx

sin
′kxΔx
2

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

2

+ 2
Δy

sin
′kyΔy
2

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

+ 2
Δz

sin
′kzΔz
2

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

2

	
(4.134)

Observe that in the limit as Δx, Δy, and Δz approach zero, the numerical dis-
persion relation becomes exactly the analytical dispersion relation. This shows that 
numerical dispersion can be reduced by decreasing the values of Δx, Δy, and Δz. 
However, this would require more points on the grid, greater memory requirements, 
and slower simulations. Other solutions include using finite-difference approxima-
tions with higher-order accuracy [5] or using a hexagonal grid [6, 7]. In Chapter 8, 
an alternative technique will be presented to compensate for numerical dispersion 
that does not require any of this.

To get a feel for the numbers, let n = 1, Δx = 0.1λ0, and k′y = 0. Under these 
conditions, (4.133) reduces to

	
1 = 10

p sin
′kxl0

20
⎛
⎝⎜

⎞
⎠⎟ 	

(4.135)

The numerical wave vector component k′x differs from the analytical wave vec-
tor component kx by a constant ψ according to kx = ψk′x. In addition, since n = 1 
the analytical wave vector component is simply kx = k0 = 2π∕λ0. Applying these 
realizations to (4.135) gives

	
1 = 10

p sin
p

10y
⎛
⎝⎜

⎞
⎠⎟ 	

(4.136)

Figure 4.10  Plot of analytical and numerical wave vectors as a function of direction on a two-
dimensional Yee grid where Δx = 0.35λ, Δy = 0.15λ, and n = 1.
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Solving (4.136) for ψ gives the numerical value for ψ.

	
y = p /10

sin−1 p /10( ) = 0.9831
	

(4.137)

This value for ψ means the wave on the Yee grid is propagating around 1.7% 
slower than a physical wave. At a minimum, this would shift the spectrum of a 
device to a 1.7% lower frequency. Resonance and other wave phenomena occurring 
in real devices tend to amplify the effects caused by numerical dispersion and pro-
duce artifacts more serious than just shifting the spectral response of the device.
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C H A P T E R  5

The Perfectly Matched Layer  
Absorbing Boundary

This chapter will derive and describe how to implement a perfectly matched layer 
(PML) absorbing boundary [1] in the finite-difference frequency-domain (FDFD) 
method. The uniaxial PML (UPML) [2, 3] will be derived and explained how it 
physically absorbs waves. The UPML will be incorporated into Maxwell’s equations 
in a way that only entails modifying the permittivity and permeability arrays. This 
simplifies things considerably because FDFD can be formulated and implemented 
with minimal consideration of the UPML. Calculating the various PML parameters 
will be covered afterward along with a MATLAB function that calculates the PML 
terms and incorporates a UPML into the permittivity and permeability arrays for 
FDFD. Last, the stretched-coordinate PML (SCPML) [4, 5] will be described that 
is more complicated to implement, but improves the conditioning of the matrices, 
allowing large and three-dimensional FDFD problems to be solved by iteration. The 
SCPML will only be used in Chapter 10.

5.1	 The Absorbing Boundary

During the course of a simulation, waves will propagate outward until they reach 
the boundaries of the grid. In most cases, it is desired to prevent the waves from 
reflecting from the boundaries of the grid and reentering the simulation domain. If 
reflections from the boundaries are not eliminated, it becomes difficult or impos-
sible to distinguish between what was reflected from a device being simulated from 
what was reflected from the boundaries. The purpose of the absorbing boundary 
is to make it appear as if the outward propagating waves keep propagating out to 
infinity. Waves will be absorbed by incorporating loss into the outer cells of the 
grid in a special way that does not produce additional reflections. Figure 5.1 shows 
the field calculated from two FDFD simulations of a point source centered on the 
grid. The only difference between the two simulations is the use of an absorbing 
boundary. The field from the simulation without an absorbing boundary is com-
pletely crazy due to all of the reflections. Imagine if you were trying to calculate 
something meaningful about a device from this simulation! When the absorbing 
boundary is added, the cylindrical wave emitting from the point source is clear 
and obvious.

An enormous amount of research has been carried out over the years to develop 
an efficient absorbing boundary [6, 7]. Today, the PML [1, 8] has emerged as the 
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state-of-the-art absorbing boundary. When compared to other absorbing boundaries, 
PMLs are simple to implement, numerically efficient, can be applied to any mesh or 
geometry, work with a wide variety of wave problems, and their performance can 
be controlled. Other absorbing boundaries can sometimes be made to work better 
or more efficiently than a PML for special cases, but the PML is considered superior 
because it can work well over a wide variety of conditions. In most parts of this 
book, the UPML will be used because it is the easiest to implement in FDFD and 
the most intuitive to understand. An arguably better PML for FDFD is the SCPML. 
When FDFD is solved iteratively instead of by direct matrix division, the SCPML 
offers better matrix conditioning than the UPML [9]. The SCPML, however, is more 
complicated to implement in FDFD and is more difficult to understand physically 
than the UPML.

Figure 5.1  (a) FDFD simulation of a point source without an absorbing boundary. (b) Same 
simulation with an absorbing boundary.

7025_Book.indb   1427025_Book.indb   142 12/17/21   8:40 AM12/17/21   8:40 AM



5.2	 Derivation of the UPML Absorbing Boundary� 143

5.2	 Derivation of the UPML Absorbing Boundary

To absorb outgoing waves, the UPML will incorporate loss into the outer regions of 
the simulation domain. However, this must be done in a special manner that does 
not introduce reflections from the lossy regions themselves. The ideal absorbing 
boundary will prevent reflections from itself and absorb waves for all polarizations 
and all angles of incidence.

To see if this is even possible, examine the Fresnel equations in (5.1) that cal-
culate the reflection of a wave incident from the simulation domain (medium 1) 
onto the absorbing layer (medium 2). In a simulation, the impedance of the simu-
lation domain η1 is determined by what is being simulated, so η1 is not a variable 
that can be modified to implement the absorbing layer. In addition, the absorb-
ing layer must prevent reflections for all angles of incidence θ1, so neither θ1 nor 
θ2 are variables that the absorbing layer can modify. The only degree of freedom 
that remains in these equations to implement an absorbing boundary is η2. After 
a careful examination of (5.1), it becomes apparent that there is no choice for η2 
that will prevent reflections for both polarizations and all angles of incidence at 
the same time.

	
rTE =

h2 cosq1 − h1 cosq2

h2 cosq1 + h1 cosq2

     rTM =
h2 cosq2 − h1 cosq1

h2 cosq2 + h1 cosq1 	
(5.1)

More degrees of freedom are needed to achieve the ideal absorbing boundary. It 
will turn out to be sufficient if the absorbing boundary is made doubly diagonally 
anisotropic. This means that both the permittivity and permeability will have to 
be made diagonally anisotropic as discussed in Chapter 2. It will then be shown 
that the absorbing medium should actually have uniaxial anisotropy, leading to the 
absorbing medium being called a UPML. It will be convenient to set the impedance 
η2 of the UPML equal to the vacuum impedance. The most straightforward way to 
best match η2 to vacuum for a general anisotropic medium is to set the permittivity 
and permeability tensors equal to each other. Equation (5.2) defines a general tensor 
for the UPML. The only things that remain to be determined are the tensor elements 
a, b, and c. At this moment, the tensor is biaxial and not yet uniaxial because a, b, 
and c may all be different values.

	

e2⎡⎣ ⎤⎦ = m2⎡⎣ ⎤⎦ =
a 0 0
0 b 0
0 0 c

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

	

(5.2)

The standard Fresnel equations for reflection can no longer be used because 
those were only valid for isotropic media. Building on Figure 2.4(b), let the interface 
between the simulation domain and the absorbing medium lie in the xy plane. When 
a wave is an incident from vacuum onto this doubly-anisotropic medium, Snell’s 
law of refraction and the Fresnel equations for reflection become [2]

	 sinq1 = bc sinq2 	 (5.3)
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rTE =

a cosq1 − b cosq2

a cosq1 + b cosq2

rTM =
b cosq2 − a cosq1

b cosq2 + a cosq1 	
(5.4)

From (5.3), refraction and reflection can be made independent of the angle of 
incidence θ1 if b and c are chosen such that bc = 1. With this choice, (5.3) and (5.4) 
reduce to

	 q1 = q2 	 (5.5)

	
rTE = a − b

a + b
     rTM = b − a

b + a 	
(5.6)

Observe that angles θ1 and θ2 have been completely eliminated from the modi-
fied Fresnel equations indicating that they are angle independent when bc = 1. From 
(5.6), reflection for both polarizations can be made perfectly zero if a = b. Given 
that the parameters a, b, and c are now related through a = b = 1/c, the tensor from 
(5.2) can be written in terms of a single parameter. Any of the three variables can 
be used, but (5.7) expresses the tensor using a.

	

e2⎡⎣ ⎤⎦ = m2⎡⎣ ⎤⎦ =

a 0 0

0 a 0

0 0
1
a

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
	

(5.7)

Recall that this tensor was derived for a wave propagating primarily in the 
z-direction. Instead of expressing the tensor using the variable a, it will be expressed 
using the variable sz, where the z subscript indicates this is for a wave propagating 
primarily in the z-direction incident onto a z-axis boundary.

	

e2⎡⎣ ⎤⎦ = m2⎡⎣ ⎤⎦ =

sz 0 0

0 sz 0

0 0
1
sz

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

  For waves propagating in z-direction	 (5.8)

A similar procedure can be repeated for a wave propagating primarily in the 
x-direction that is incident onto an x-axis boundary. This would lead to the tensor 
elements being related through 1/a = b = c. This tensor will be expressed using the 
variable sx.
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e2⎡⎣ ⎤⎦ = m2⎡⎣ ⎤⎦ =

1
sx

0 0

0 sx 0

0 0 sx

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

  For waves propagating in x-direction	 (5.9)

The procedure can be repeated one last time for a wave propagating primarily 
in the y-direction that is incident onto a y-axis boundary. This would lead to the 
tensor elements being related through a = 1/b = c. This tensor will be expressed 
using the variable sy.

	

  e2⎡⎣ ⎤⎦ = m2⎡⎣ ⎤⎦ =

sy 0 0

0
1
sy

0

0 0 sy

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

  For waves propagating in y-direction	(5.10)

Compare the elements in the tensors in (5.8) to (5.10). Each is uniaxial but the 
position of the inverse PML term 1/si is different for each case along with the sub-
scripts on the PML terms. In order to absorb all waves at all boundaries, all of the 
above tensors are multiplied to form a single tensor describing the UPML.

er,UPML
⎡⎣ ⎤⎦ = mr,UPML

⎡⎣ ⎤⎦ = S[ ] =

1
sx

0 0

0 sx 0

0 0 sx

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

sy 0 0

0
1
sy

0

0 0 sy

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

sz 0 0

0 sz 0

0 0
1
sz

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

=

sysz

sx

0 0

0
sxsz

sy

0

0 0
sxsy

sz

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

	

(5.11)

From this derivation, the UPML parameters sx, sy, and sz are interpreted as con-
stitutive parameters like permittivity and permeability. In Chapter 2, the loss was 
incorporated into the permittivity through the electrical conductivity σ as ε ̃ = εr + 
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σ/jωε0. This gives the start of a recipe for how to make the UPML parameters have 
a loss to absorb outgoing waves. This will be discussed in more detail in Section 5.4.

5.3	 Incorporating the UPML into Maxwell’s Equations

In the previous section, the UPML parameters were derived as constitutive param-
eters like permittivity and permeability. This implies the UPML parameters should 
be incorporated into Maxwell’s equations the same way as the actual constitu-
tive parameters. With a UPML tensor [S], Maxwell’s curl equations are modified 
according to

	 ∇ ×
!
E = − jw S[ ] m[ ]

!
H 	 (5.12)

	 ∇ ×
!
H = jw S[ ] e[ ]

!
E 	 (5.13)

When the tensor quantities are multiplied to combine them, (5.12) and (5.13) 
are written as

	 ∇ ×
!
E = − jw ′m[ ]

!
H 	 (5.14)

	 ∇ ×
!
H = jw ′e[ ]

!
E 	 (5.15)

where [μ′] = [S][μ] and [ε′] = [S][ε]. Observe that (5.14) and (5.15) have the same 
form as the ordinary curl equations, as if there were no UPML incorporated. This 
means that FDFD can be formulated and implemented with hardly considering the 
UPML at all. This is the primary advantage of the UPML. Incorporating the UPML 
will involve one simple step in the algorithm where the PML terms are incorporated 
into the permittivity and permeability tensors according to

	

ʹm[ ] = S[ ] m[ ] =

sysz
sx

mxx 0 0

0
sxsz
sz

myy 0

0 0
sxsy
sz

mzz

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

	

(5.16)

	

ʹe[ ] = S[ ] e[ ] =

sysz
sx

exx 0 0

0
sxsz
sy

eyy 0

0 0
sxsy
sz

ezz

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
	

(5.17)
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For two-dimension simulations, a UPML at the z-axis boundaries is not needed. 
For this case, sz = 1 and the permittivity and permeability tensors reduce to

	

′m[ ] = S[ ] m[ ] =

sy
sx

mxx 0 0

0
sx
sy

myy 0

0 0 sxsymzz

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

	

(5.18)

	

′e[ ] = S[ ] e[ ] =

sy
sx

exx 0 0

0
sx
sy

eyy 0

0 0 sxsyezz

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
	

(5.19)

5.4	 Calculating the UPML Parameters

Up to this point, it has only been mentioned that the UPML parameters are complex 
numbers to incorporate loss just like a complex permittivity. When incorporating 
the loss, it is best to gradually increase the loss into the PML [10]. Numerical prob-
lems can arise at the entrance of an abrupt PML that cause reflections. In addition, 
profiling the PML reduces reflections of waves that are incident onto the PML at 
larger angles. With this in mind, there has been much research to determine the 
best values and optimum profiles for the PML parameters [11–16]. If the UPML 
terms are interpreted as constitutive parameters, they should be defined as such. 
This implies that for the negative sign convention the imaginary part should be 
negative, s = Re[s] − jIm[s]. Recognizing that k0 = w m0e0  and η0 = m0 /e0 , the 
UPML term can be written as s = 1 − jη0σ/k0. If the FDFD analysis is normalizing 
its parameters properly, then λ0 ≈ 1 and k0 ≈ 2π. Now the UPML term reduces to 
s ≈ 1 − j60σ. In order to taper this basic definition of s, the following equations 
will be used for calculating the UPML terms.

	

sx x( ) = ax x( ) 1 − j60sx x( )⎡⎣ ⎤⎦

sy y( ) = ay y( ) 1 − j60sy y( )⎡⎣ ⎤⎦ 	
(5.20)

The functions σx(x) and σy(y) quantify the artificial conductivity associated with 
the UMPL and are not intended to represent physical conductivities associated with 
devices in the simulation. Observe the UPML conductivities are functions of x and 
y. This is because the UPML conductivities will be tapered from zero where a wave 
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enters the UPML up to some maximum value σmax at the far side of the UPML. For 
this book, the following profile for the UPML conductivity functions will be used.

	

sx x( ) = smax sin2 px
2Lx

⎛
⎝⎜

⎞
⎠⎟

sy y( ) = smax sin2 py
2Ly

⎛

⎝⎜
⎞

⎠⎟ 	

(5.21)

In these equations, Lx is the physical size of the UPML extending in the x-direc-
tion and Ly is the physical size of the UPML extending in the y-direction. The ratios 
x/Lx and y/Ly are quantities that range from 0 to 1 from the start to the end of the 
UPML. Interpreting the ratios this way will be very useful in the computer code 
because the same ratios can be calculated directly from array indices without hav-
ing to calculate physical distance or size. The conductivity profiles σx(x) and σy(y) 
calculated from (5.21) are shown in Figure 5.2. They are equal to zero through most 
of the simulation domain and only become nonzero inside of the UPML regions.

Figure 5.2  Conductivity profiles for the UPML.
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5.5	 Implementation of the UPML in MATLAB� 149

The functions ax(x) and ay(y) in (5.20) scale the overall magnitude of the PML 
functions sx(x) and sy(y). Even the amplitude functions are tapered following a 
profile given in (5.22) which is controlled by the parameter p. The functions ax(x) 
and ay(y) range from 1 where the wave enters the UPML up to some maximum 
value amax at the end of the UPML. If visualized, they would look similar to that 
shown in Figure 5.2, but would have a value of 1 throughout most of the simula-
tion domain and only being larger than 1 inside of the UPML regions. Observe 
that (5.22) makes use of the same ratios x/Lx and y/Ly that will be calculated from 
array indices in the computer code.

	

ax x( ) = 1 + amax − 1( ) x
Lx

⎛
⎝⎜

⎞
⎠⎟

p

ay y( ) = 1 + amax − 1( ) y
Ly

⎛

⎝⎜
⎞

⎠⎟

p

	

(5.22)

From (5.21) and (5.22), the UPML is defined from the parameters σmax, amax, 
and p. In this book, the following values will be used: σmax = 1, amax = 4, and p = 
3. The size of the UPML will not be defined in terms of physical size Lx and Ly. 
Instead, to be consistent with calculating the ratios from array indices, the size 
of the UPML will be defined in terms of the number of cells on the grid that the 
UPMLs will occupy. For two-dimensional simulations, up to four UPML regions 
will be defined. This is because a UPML will be needed at both sides of the grid 
for both x- and y-axis boundaries. NXLO will define the number of cells large the 
UPML is at the lower x-axis boundary, NXHI will define the number of cells large 
the UPML is at the upper x-axis boundary, NYLO will define the number of cells 
large the UPML is at the lower y-axis boundary, and NYHI will define the number 
of cells large the UPML is at the upper y-axis boundary. The standard size for a 
UPML is 10 to 20 cells. The larger the UPML regions, the better the UPMLs will 
perform, but simulations will be larger, require more memory, and take more time 
to calculate. The different UPML regions do not have to be the same size, but are 
typically made to be the same size. The size of each UPML can be chosen based on 
apriori knowledge of where more or less wave power will enter the UPMLs or to 
more efficiently handle other special cases.

5.5	 Implementation of the UPML in MATLAB

To incorporate a UPML into the constitutive parameters, a function will be written 
in MATLAB called addupml2d(). The code for this function is divided into four 
major sections and can be downloaded at https://empossible.net/fdfdbook/. The 
header for this function extends from lines 1 to 19. The commented text below the 
function declaration at the top is the text that will be displayed in the command 
window after typing help addupml2d at the command prompt. It will remind you 
later what the function does and how to use it. It lists and defines both the input and 
output arguments of the function. The input arguments are the relative permittivity 
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array ER2 on the 2× grid, the relative permeability array UR2 on the 2× grid, and an 
array NPML defining the number of cells large for each of the four different UPML 
regions on the Yee grid. The output arguments are the permittivity and permeability 
diagonal tensor element arrays ERxx, ERyy, ERzz, URxx, URyy, and URzz on the Yee 
grid with the UPML incorporated.

The addupml2d() function is initialized from lines 21 to 37. This section starts 
by defining the parameters amax and σmax and profile parameter p that controls the 
tapering of the UPML. In MATLAB, these parameters are named amax, cmax, and 
p, respectively. Next, the size of the 2× grid is determined from the size of the array 
ER2. Last, the size of the four different UPML regions is extracted individually from 
the array NPML. Since the values in the array NPML are for the standard Yee grid and 
not the 2× grid, each of the elements in NPML is multiplied by two to get the size of 
the UPML regions on the 2× grid.

The real work in this function happens from lines 39 to 73 where the UPML 
functions sx(x) and sy(y) are calculated as arrays sx and sy, respectively, on the 2× 
grid. First, they are initialized to all ones, which are the correct values if no UPML 
is incorporated. Next, each UPML region is built into sx and sy separately because 
each region could potentially be of a different size. The boundary at nx=1 is called 
the xlo UPML. To build the UPML here, a loop is a setup that iterates from nx=1 
to nx=NXLO. If the UPML at the xlo side is 20 cells large, the loop will iterate from 
1 to 20. The first two lines of code inside of the loop calculate the values of ax(x) 
and σx(x) according to (5.21) and (5.22). In MATLAB, the variables are called ax 
and cx. The third, and last, line of code in the loop calculates sx(x) at the current 
position in the UPML using (5.20). While the loop iterates from 1 to 20, the UPML 
is filled in by the loop from right to left, or from 20 down to 1. This is the purpose 
of the array index NXLO–nx+1 where the UPML function value is written at each 
iteration of the loop. The next loop does essentially the same, but assigns values 
to the array sx for the xhi UPML region. The last two loops repeat the first two 
loops, but instead, assign values to the array sy since they are incorporating the 
ylo and yhi UPML regions.

Lines 75 to 95 of the addupml2d() function calculate the tensor elements εxx(x,y), 
εyy(x,y), εzz(x,y), μxx(x,y), μyy(x,y), and μzz(x,y). In MATLAB, the arrays are called 
ERxx, ERyy, ERzz, URxx, URyy, and URzz, respectively. First, the tensor elements are 
calculated on the 2× grid with the UPML parameters incorporated following (5.18) 
and (5.19). Second, the tensor elements on the standard Yee grid are extracted from 
the tensor elements on the 2× grid.

5.5.1  Using the addupml2d() Function

The addupml2d() function by itself is not executable. Instead, it is a function that 
must be called from a MATLAB program that defines the input arguments and 
passes them to the function so that the UPML can be implemented. The MATLAB 
program listed below demonstrates how to use the addumpl2d() function and dis-
plays the resulting material tensor arrays with the UPML incorporated. The size 
of the Yee grid is defined on lines 8 to 10 as Nx = Ny = 5. The size of the UPML at 
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each axis boundary is defined on line 13. Due to the small size of the grid, the PML 
was set to two cells large at each boundary. The materials arrays ER2 and UR2 are 
set to all 1’s corresponding to vacuum on lines 15 to 17. These arrays are defined 
on the 2× grid so the grid size parameters Nx and Ny were multiplied by two. The 
addupml2d() function is called on lines 20 and 21 where the input arguments are 
passed to the function, the UPML is incorporated, and the tensor elements are 
returned in the arrays ERxx, ERyy, ERzz, URxx, URyy, and URzz.

1   % Chapter5_addumpl2d_demo.m
2
3   % INITIALIZE MATLAB
4   close all;
5   clc;
6   clear all;
7
8   % DEFINE GRID
9   Nx = 5;
10  Ny = 5;
11
12  % DEFINE PML
13  NPML = [2 2 2 2];
14
15  % BUILD ER2 AND UR2 ARRAYS
16  ER2 = ones(2*Nx,2*Ny);
17  UR2 = ones(2*Nx,2*Ny);
18
19  % CALL ADDUPML2D
20  [ERxx,ERyy,ERzz,URxx,URyy,URzz] ...
21                = addupml2d(ER2,UR2,NPML);
22
23  % DISPLAY THE RESULTS
24  disp(‘ERxx =’);
25  disp(ERxx);
26
27  disp(‘ERyy =’);
28  disp(ERyy);
29
30  disp(‘ERzz =’);
31  disp(ERzz);
32
33  disp(‘URxx =’);
34  disp(URxx);
35
36  disp(‘URyy =’);
37  disp(URyy);
38
39  disp(‘URzz =’);
40  disp(URzz);
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The material tensors are displayed to the command window from lines 23 to 
40. These are arrays and not matrices. The output of this program is

ERxx =
   1.0–e+02 *

   0.0207 – 0.0001i   0.0036 + 0.0000i   0.0000 + 0.0001i   0.0008 + 0.0001i   0.0100 + 0.0000i
   0.2581 – 0.0250i   0.0444 – 0.0036i   0.0001 + 0.0011i   0.0100 + 0.0000i   0.1248 – 0.0117i
   0.0400 – 2.4000i   0.0138 – 0.4125i   0.0100 + 0.0000i   0.0105 – 0.0920i   0.0227 – 1.1603i
   0.0581 – 0.0010i   0.0100 + 0.0000i   0.0000 + 0.0002i   0.0022 + 0.0002i   0.0281 – 0.0004i
   0.0100 + 0.0000i   0.0017 + 0.0000i   0.0000 + 0.0000i   0.0004 + 0.0000i   0.0048 + 0.0000i

ERyy =
   1.0e+02 *

   0.0207 – 0.0001i   0.2581 – 0.0250i   0.0400 – 2.4000i   0.0581 – 0.0010i   0.0100 + 0.0000i
   0.0036 + 0.0000i   0.0444 – 0.0036i   0.0138 – 0.4125i   0.0100 + 0.0000i   0.0017 + 0.0000i
   0.0000 + 0.0001i   0.0001 + 0.0011i   0.0100 + 0.0000i   0.0000 + 0.0002i   0.0000 + 0.0000i
   0.0008 + 0.0001i   0.0100 + 0.0000i   0.0105 – 0.0920i   0.0022 + 0.0002i   0.0004 + 0.0000i
   0.0100 + 0.0000i   0.1248 – 0.0117i   0.0227 – 1.1603i   0.0281 – 0.0004i   0.0048 + 0.0000i

ERzz =
   1.0e+04 *

  –5.7584 – 0.1920i  –0.9894 – 0.0495i   0.0004 – 0.0240i  –0.2203 – 0.0288i  –2.7838 – 0.1008i
  –0.9894 – 0.0495i  –0.1700 – 0.0113i   0.0001 – 0.0041i  –0.0378 – 0.0056i  –0.4783 – 0.0253i
   0.0004 – 0.0240i   0.0001 – 0.0041i   0.0001 + 0.0000i   0.0001 – 0.0009i   0.0002 – 0.0116i
  –0.2203 – 0.0288i  –0.0378 – 0.0056i   0.0001 – 0.0009i  –0.0084 – 0.0019i  –0.1065 – 0.0142i
  –2.7838 – 0.1008i  –0.4783 – 0.0253i   0.0002 – 0.0116i  –0.1065 – 0.0142i  –1.3458 – 0.0526i

URxx =
   1.0e+02 *

   0.0048 + 0.0000i   0.0004 + 0.0000i   0.0000 + 0.0000i   0.0017 + 0.0000i   0.0100 + 0.0000i
   0.0281 – 0.0004i   0.0022 + 0.0002i   0.0000 + 0.0002i   0.0100 + 0.0000i   0.0581 – 0.0010i
   0.0227 – 1.1603i   0.0105 – 0.0920i   0.0100 + 0.0000i   0.0138 – 0.4125i   0.0400 – 2.4000i
   0.1248 – 0.0117i   0.0100 + 0.0000i   0.0001 + 0.0011i   0.0444 – 0.0036i   0.2581 – 0.0250i
   0.0100 + 0.0000i   0.0008 + 0.0001i   0.0000 + 0.0001i   0.0036 + 0.0000i   0.0207 – 0.0001i

URyy =
   1.0e+02 *

   0.0048 + 0.0000i   0.0281 – 0.0004i   0.0227 – 1.1603i   0.1248 – 0.0117i   0.0100 + 0.0000i
   0.0004 + 0.0000i   0.0022 + 0.0002i   0.0105 – 0.0920i   0.0100 + 0.0000i   0.0008 + 0.0001i
   0.0000 + 0.0000i   0.0000 + 0.0002i   0.0100 + 0.0000i   0.0001 + 0.0011i   0.0000 + 0.0001i
   0.0017 + 0.0000i   0.0100 + 0.0000i   0.0138 – 0.4125i   0.0444 – 0.0036i   0.0036 + 0.0000i
   0.0100 + 0.0000i   0.0581 – 0.0010i   0.0400 – 2.4000i   0.2581 – 0.0250i   0.0207 – 0.0001i
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URzz =
   1.0e+04 *

  –1.3458 – 0.0526i  –0.1065 – 0.0142i   0.0002 – 0.0116i  –0.4783 – 0.0253i  –2.7838 – 0.1008i
  –0.1065 – 0.0142i  –0.0084 – 0.0019i   0.0001 – 0.0009i  –0.0378 – 0.0056i  –0.2203 – 0.0288i
   0.0002 – 0.0116i   0.0001 – 0.0009i   0.0001 + 0.0000i   0.0001 – 0.0041i   0.0004 – 0.0240i
  –0.4783 – 0.0253i  –0.0378 – 0.0056i   0.0001 – 0.0041i  –0.1700 – 0.0113i  –0.9894 – 0.0495i
  –2.7838 – 0.1008i  –0.2203 – 0.0288i   0.0004 – 0.0240i  –0.9894 – 0.0495i  –5.7584 – 0.1920i

5.6	 The SCPML Absorbing Boundary

The SCPML is an absorbing boundary that will be needed for the FDFD codes 
presented in Chapter 10. The SCPML will be presented by rearranging the terms of 
the UPML and interpreting the terms differently. This conversion is not mathemati-
cally rigorous, but will help to understand the SCPML more intuitively. Equations 
(5.12) and (5.13) show how the UPML is incorporated into Maxwell’s equations. 
The SCPML is derived by moving the UPML tensor [S] to the left-hand side of the 
equations and associating them with the curl operations.

	 [S]−1∇ ×
!
E = − jw m[ ]

!
H 	 (5.23)

	 [S]−1∇ × !
"

H = jw e[ ]
!
E 	

(5.24)

Equations (5.23) and (5.24) are expanded in Cartesian coordinates in order to 
see all of the terms and vector components explicitly.
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(5.25)
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(5.26)
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Both of these equations have the same matrix multiplication on the left-hand 
side. Multiplying these together incorporates the PML terms into the curl operation. 
After reorganizing the terms, the result of the multiplication is
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(5.27)

Observe the PML terms that have been associated with the partial derivatives 
in (5.27). ∂x is always multiplied by sx, ∂y is always multiplied by sy, and ∂z is 
always multiplied by sz. Instead of interpreting the PML terms as lossy constitutive 
parameters, they are interpreted as factors scaling the coordinates. It is hard to 
visualize this because the coordinates are being scaled by complex numbers. At an 
x-axis boundary, the parameter sx is scaling the x coordinates to absorb outgoing 
waves. The parameters sy and sz are not contributing at x-axis boundaries because 
they are just equal to 1 except in the small regions where the PMLs may overlap. 
In this sense, sx by itself is sufficient to absorb outgoing waves at x-axis boundar-
ies. Similarly, only sy is needed to absorb outgoing waves at y-axis boundaries and 
only sz is needed to absorb outgoing waves at z-axis boundaries. For these reasons, 
the PML terms that are not scaling coordinates are dropped from the tensor. This 
is a conceptual step and not a mathematically rigorous step that converts a UPML 
into an SCPML. Equations (5.25) and (5.26) can now be written in their final form 
for the SCPML.
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(5.28)
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While the SCPML improves the conditioning of the FDFD matrices, the PML 
terms cannot be absorbed into the permittivity and permeability. They must remain 
distinct terms in the formulation of FDFD and so the formulation and implementa-
tion are more complicated. Fortunately, the calculation of the PML terms for the 
SCPML remains the same as they were for the UPML.

5.6.1  MATLAB Implementation of calcpml3d()

Implementation of the SCPML in Chapter 10 will require a function to calculate the 
PML terms. The MATLAB code for the calcpml3d() function can be downloaded 
at https://empossible.net/fdfdbook/. The header of the function extends from lines 
2 to 9 and is what is displayed in the command window if ‘help calcpml3d’ is 
entered at the command prompt. Lines 11 to 31 define the parameters controlling 
the PML profile and extract the grid size and PML size from the input arguments.

Lines 33 to 81 calculate the PML arrays sx, sy, and sz. This function does not 
know or care if these are being constructed onto the Yee grid, 2× grid, or some-
thing else. It is up to the program calling calcpml3d() to handle this aspect. This 
is virtually identical code to that used in the addupml2d() function except that a z 
dimension is added requiring calculation of the new array sz and all the PML terms 
are now three-dimensional arrays.

5.6.2  Using the calcpml3d() Function

The calcpml3d() function by itself is not executable. Instead, it is a function that 
must be called from a MATLAB program that defines the input arguments and passes 
them to the function so that the SCPML can be calculated. The MATLAB program 
listed below demonstrates how to use the calcpml3d() function and displays the 
resulting SCPML arrays sx, sy, and sz. The array NGRID is defined on line 9 to be 
the size of the 2× grid. The grid was set to Nx2 = Ny2 = Nz2 = 6. The size of the 
SCPML at each axis boundary is defined on line 10 in the array NPML. Due to the 
small size of the grid, the SCPML was set to two cells large at each boundary. The 
calcpml3d() function is called on line 13 where the input arguments are passed 
to the function, the SCPML arrays are calculated and returned in the arrays sx, 
sy, and sz.

1   % Chapter5_calcpml3d_demo.m
2
3   % INITIALIZE MATLAB
4   close all;
5   clc;
6   clear all;
7
8   % DEFINE INPUT ARGUMENTS
9   NGRID = [6 6 6];
10  NPML  = [2 2 2 2 2 2];
11
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12  % CALL CALCPML3D
13  [sx,sy,sz] = calcpml3d(NGRID,NPML);
14
15  % DISPLAY THE RESULTS
16  disp(‘sx =’);
17  disp(sx);
18
19  disp(‘sy =’);
20  disp(sy);
21
22  disp(‘sz =’);
23  disp(sz);

The SCPML arrays are displayed to the command window from lines 15 to 23. 
These are arrays and not matrices. The output of this program is

sx =
(:,:,1) =
   1.0e+02 *
   0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i
   0.0138 – 0.4125i  0.0138 – 0.4125i  0.0138 – 0.4125i  0.0138 – 0.4125i  0.0138 – 0.4125i  0.0138 – 0.4125i
   0.0100 + 0.0000i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0100 + 0.0000i
   0.0100 + 0.0000i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0100 + 0.0000i
   0.0138 – 0.4125i  0.0138 – 0.4125i  0.0138 – 0.4125i  0.0138 – 0.4125i  0.0138 – 0.4125i  0.0138 – 0.4125i
   0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i

(:,:,2) =
   1.0e+02 *
   0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i
   0.0138 – 0.4125i  0.0138 – 0.4125i  0.0138 – 0.4125i  0.0138 – 0.4125i  0.0138 – 0.4125i  0.0138 – 0.4125i
   0.0100 + 0.0000i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0100 + 0.0000i
   0.0100 + 0.0000i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0100 + 0.0000i
   0.0138 – 0.4125i  0.0138 – 0.4125i  0.0138 – 0.4125i  0.0138 – 0.4125i  0.0138 – 0.4125i  0.0138 – 0.4125i
   0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i

(:,:,3) =
   1.0e+02 *
   0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i
   0.0138 – 0.4125i  0.0138 – 0.4125i  0.0138 – 0.4125i  0.0138 – 0.4125i  0.0138 – 0.4125i  0.0138 – 0.4125i
   0.0100 + 0.0000i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0100 + 0.0000i
   0.0100 + 0.0000i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0100 + 0.0000i
   0.0138 – 0.4125i  0.0138 – 0.4125i  0.0138 – 0.4125i  0.0138 – 0.4125i  0.0138 – 0.4125i  0.0138 – 0.4125i
   0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i

(:,:,4) =
   1.0e+02 *
   0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i
   0.0138 – 0.4125i  0.0138 – 0.4125i  0.0138 – 0.4125i  0.0138 – 0.4125i  0.0138 – 0.4125i  0.0138 – 0.4125i
   0.0100 + 0.0000i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0100 + 0.0000i
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   0.0100 + 0.0000i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0100 + 0.0000i
   0.0138 – 0.4125i  0.0138 – 0.4125i  0.0138 – 0.4125i  0.0138 – 0.4125i  0.0138 – 0.4125i  0.0138 – 0.4125i
   0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i

(:,:,5) =
   1.0e+02 *
   0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i
   0.0138 – 0.4125i  0.0138 – 0.4125i  0.0138 – 0.4125i  0.0138 – 0.4125i  0.0138 – 0.4125i  0.0138 – 0.4125i
   0.0100 + 0.0000i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0100 + 0.0000i
   0.0100 + 0.0000i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0100 + 0.0000i
   0.0138 – 0.4125i  0.0138 – 0.4125i  0.0138 – 0.4125i  0.0138 – 0.4125i  0.0138 – 0.4125i  0.0138 – 0.4125i
   0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i

(:,:,6) =
   1.0e+02 *
   0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i
   0.0138 – 0.4125i  0.0138 – 0.4125i  0.0138 – 0.4125i  0.0138 – 0.4125i  0.0138 – 0.4125i  0.0138 – 0.4125i
   0.0100 + 0.0000i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0100 + 0.0000i
   0.0100 + 0.0000i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0100 + 0.0000i
   0.0138 – 0.4125i  0.0138 – 0.4125i  0.0138 – 0.4125i  0.0138 – 0.4125i  0.0138 – 0.4125i  0.0138 – 0.4125i
   0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i

sy =
(:,:,1) =
   1.0e+02 *
   0.0400 – 2.4000i  0.0138 – 0.4125i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0138 – 0.4125i  0.0400 – 2.4000i
   0.0400 – 2.4000i  0.0138 – 0.4125i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0138 – 0.4125i  0.0400 – 2.4000i
   0.0400 – 2.4000i  0.0138 – 0.4125i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0138 – 0.4125i  0.0400 – 2.4000i
   0.0400 – 2.4000i  0.0138 – 0.4125i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0138 – 0.4125i  0.0400 – 2.4000i
   0.0400 – 2.4000i  0.0138 – 0.4125i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0138 – 0.4125i  0.0400 – 2.4000i
   0.0400 – 2.4000i  0.0138 – 0.4125i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0138 – 0.4125i  0.0400 – 2.4000i

(:,:,2) =
   1.0e+02 *
   0.0400 – 2.4000i  0.0138 – 0.4125i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0138 – 0.4125i  0.0400 – 2.4000i
   0.0400 – 2.4000i  0.0138 – 0.4125i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0138 – 0.4125i  0.0400 – 2.4000i
   0.0400 – 2.4000i  0.0138 – 0.4125i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0138 – 0.4125i  0.0400 – 2.4000i
   0.0400 – 2.4000i  0.0138 – 0.4125i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0138 – 0.4125i  0.0400 – 2.4000i
   0.0400 – 2.4000i  0.0138 – 0.4125i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0138 – 0.4125i  0.0400 – 2.4000i
   0.0400 – 2.4000i  0.0138 – 0.4125i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0138 – 0.4125i  0.0400 – 2.4000i

(:,:,3) =
   1.0e+02 *
   0.0400 – 2.4000i  0.0138 – 0.4125i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0138 – 0.4125i  0.0400 – 2.4000i
   0.0400 – 2.4000i  0.0138 – 0.4125i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0138 – 0.4125i  0.0400 – 2.4000i
   0.0400 – 2.4000i  0.0138 – 0.4125i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0138 – 0.4125i  0.0400 – 2.4000i
   0.0400 – 2.4000i  0.0138 – 0.4125i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0138 – 0.4125i  0.0400 – 2.4000i
   0.0400 – 2.4000i  0.0138 – 0.4125i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0138 – 0.4125i  0.0400 – 2.4000i
   0.0400 – 2.4000i  0.0138 – 0.4125i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0138 – 0.4125i  0.0400 – 2.4000i
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(:,:,4) =
   1.0e+02 *
   0.0400 – 2.4000i  0.0138 – 0.4125i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0138 – 0.4125i  0.0400 – 2.4000i
   0.0400 – 2.4000i  0.0138 – 0.4125i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0138 – 0.4125i  0.0400 – 2.4000i
   0.0400 – 2.4000i  0.0138 – 0.4125i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0138 – 0.4125i  0.0400 – 2.4000i
   0.0400 – 2.4000i  0.0138 – 0.4125i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0138 – 0.4125i  0.0400 – 2.4000i
   0.0400 – 2.4000i  0.0138 – 0.4125i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0138 – 0.4125i  0.0400 – 2.4000i
   0.0400 – 2.4000i  0.0138 – 0.4125i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0138 – 0.4125i  0.0400 – 2.4000i

(:,:,5) =
   1.0e+02 *
   0.0400 – 2.4000i  0.0138 – 0.4125i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0138 – 0.4125i  0.0400 – 2.4000i
   0.0400 – 2.4000i  0.0138 – 0.4125i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0138 – 0.4125i  0.0400 – 2.4000i
   0.0400 – 2.4000i  0.0138 – 0.4125i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0138 – 0.4125i  0.0400 – 2.4000i
   0.0400 – 2.4000i  0.0138 – 0.4125i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0138 – 0.4125i  0.0400 – 2.4000i
   0.0400 – 2.4000i  0.0138 – 0.4125i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0138 – 0.4125i  0.0400 – 2.4000i
   0.0400 – 2.4000i  0.0138 – 0.4125i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0138 – 0.4125i  0.0400 – 2.4000i

(:,:,6) =
   1.0e+02 *
   0.0400 – 2.4000i  0.0138 – 0.4125i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0138 – 0.4125i  0.0400 – 2.4000i
   0.0400 – 2.4000i  0.0138 – 0.4125i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0138 – 0.4125i  0.0400 – 2.4000i
   0.0400 – 2.4000i  0.0138 – 0.4125i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0138 – 0.4125i  0.0400 – 2.4000i
   0.0400 – 2.4000i  0.0138 – 0.4125i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0138 – 0.4125i  0.0400 – 2.4000i
   0.0400 – 2.4000i  0.0138 – 0.4125i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0138 – 0.4125i  0.0400 – 2.4000i
   0.0400 – 2.4000i  0.0138 – 0.4125i  0.0100 + 0.0000i  0.0100 + 0.0000i  0.0138 – 0.4125i  0.0400 – 2.4000i

sz =
(:,:,1) =
   1.0e+02 *
   0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i
   0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i
   0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i
   0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i
   0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i
   0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i

(:,:,2) =
   1.3750 –41.2500i  1.3750 –41.2500i  1.3750 –41.2500i  1.3750 –41.2500i  1.3750 –41.2500i  1.3750 –41.2500i
   1.3750 –41.2500i  1.3750 –41.2500i  1.3750 –41.2500i  1.3750 –41.2500i  1.3750 –41.2500i  1.3750 –41.2500i
   1.3750 –41.2500i  1.3750 –41.2500i  1.3750 –41.2500i  1.3750 –41.2500i  1.3750 –41.2500i  1.3750 –41.2500i
   1.3750 –41.2500i  1.3750 –41.2500i  1.3750 –41.2500i  1.3750 –41.2500i  1.3750 –41.2500i  1.3750 –41.2500i
   1.3750 –41.2500i  1.3750 –41.2500i  1.3750 –41.2500i  1.3750 –41.2500i  1.3750 –41.2500i  1.3750 –41.2500i
   1.3750 –41.2500i  1.3750 –41.2500i  1.3750 –41.2500i  1.3750 –41.2500i  1.3750 –41.2500i  1.3750 –41.2500i

   (:,:,3) =
   1.0000 + 0.0000i  1.0000 + 0.0000i  1.0000 + 0.0000i  1.0000 + 0.0000i  1.0000 + 0.0000i  1.0000 + 0.0000i
   1.0000 + 0.0000i  1.0000 + 0.0000i  1.0000 + 0.0000i  1.0000 + 0.0000i  1.0000 + 0.0000i  1.0000 + 0.0000i
   1.0000 + 0.0000i  1.0000 + 0.0000i  1.0000 + 0.0000i  1.0000 + 0.0000i  1.0000 + 0.0000i  1.0000 + 0.0000i
   1.0000 + 0.0000i  1.0000 + 0.0000i  1.0000 + 0.0000i  1.0000 + 0.0000i  1.0000 + 0.0000i  1.0000 + 0.0000i
   1.0000 + 0.0000i  1.0000 + 0.0000i  1.0000 + 0.0000i  1.0000 + 0.0000i  1.0000 + 0.0000i  1.0000 + 0.0000i
   1.0000 + 0.0000i  1.0000 + 0.0000i  1.0000 + 0.0000i  1.0000 + 0.0000i  1.0000 + 0.0000i  1.0000 + 0.0000i
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(:,:,4) =
   1.0000 + 0.0000i  1.0000 + 0.0000i  1.0000 + 0.0000i  1.0000 + 0.0000i  1.0000 + 0.0000i  1.0000 + 0.0000i
   1.0000 + 0.0000i  1.0000 + 0.0000i  1.0000 + 0.0000i  1.0000 + 0.0000i  1.0000 + 0.0000i  1.0000 + 0.0000i
   1.0000 + 0.0000i  1.0000 + 0.0000i  1.0000 + 0.0000i  1.0000 + 0.0000i  1.0000 + 0.0000i  1.0000 + 0.0000i
   1.0000 + 0.0000i  1.0000 + 0.0000i  1.0000 + 0.0000i  1.0000 + 0.0000i  1.0000 + 0.0000i  1.0000 + 0.0000i
   1.0000 + 0.0000i  1.0000 + 0.0000i  1.0000 + 0.0000i  1.0000 + 0.0000i  1.0000 + 0.0000i  1.0000 + 0.0000i
   1.0000 + 0.0000i  1.0000 + 0.0000i  1.0000 + 0.0000i  1.0000 + 0.0000i  1.0000 + 0.0000i  1.0000 + 0.0000i

(:,:,5) =
   1.3750 –41.2500i  1.3750 –41.2500i  1.3750 –41.2500i  1.3750 –41.2500i  1.3750 –41.2500i  1.3750 –41.2500i
   1.3750 –41.2500i  1.3750 –41.2500i  1.3750 –41.2500i  1.3750 –41.2500i  1.3750 –41.2500i  1.3750 –41.2500i
   1.3750 –41.2500i  1.3750 –41.2500i  1.3750 –41.2500i  1.3750 –41.2500i  1.3750 –41.2500i  1.3750 –41.2500i
   1.3750 –41.2500i  1.3750 –41.2500i  1.3750 –41.2500i  1.3750 –41.2500i  1.3750 –41.2500i  1.3750 –41.2500i
   1.3750 –41.2500i  1.3750 –41.2500i  1.3750 –41.2500i  1.3750 –41.2500i  1.3750 –41.2500i  1.3750 –41.2500i
   1.3750 –41.2500i  1.3750 –41.2500i  1.3750 –41.2500i  1.3750 –41.2500i  1.3750 –41.2500i  1.3750 –41.2500i

(:,:,6) =
   1.0e+02 *
   0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i
   0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i
   0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i
   0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i
   0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i
   0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i  0.0400 – 2.4000i
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C H A P T E R  6

FDFD for Calculating Guided Modes

Sometimes exact or approximate analytical solutions exist for waveguides such as 
rectangular metal waveguides and optical fibers. For waveguides like integrated opti-
cal waveguides and photonic crystal waveguides, no analytical solutions exist and 
numerical solutions are the only option for a designer. When analytical solutions do 
exist for simple waveguides, usually little can be changed about the waveguide for 
the solution to still be valid. However, virtually any type of waveguide can be ana-
lyzed with numerical techniques. Finite-difference frequency-domain (FDFD) makes 
calculating guided modes very easy so it is the first implementation to be discussed 
in this book. Formulation of the method is covered for both rigorous hybrid mode 
analysis and slab waveguides. Waveguides will be analyzed as an eigenvalue prob-
lem so no source will be needed. The effective index method (EIM) is described as 
an application of slab waveguide analysis to reduce some three-dimensional devices 
to a two-dimensional model. Last, implementation in MATLAB is discussed and 
several examples are given for benchmarking codes including a rib waveguide, a 
slab waveguide, a surface plasmon polariton (SPP), and a microstrip transmission 
line. The critical concept of convergence is discussed where the resolution of the 
simulation is increased until numerical error falls below an acceptable threshold.

6.1	 Formulation for Rigorous Hybrid Mode Calculation

Let the geometry for analyzing a channel waveguide be as shown in Figure 6.1. The 
cross section of the channel waveguide is in the xy plane while the guided mode 
propagates in the z-direction. For hybrid mode analysis, Maxwell’s equations will 
not be separated into two sets of equations. This means that all modes supported 
by the waveguide will be calculated from the same eigenvalue equation, regardless 
of how the mode is polarized.

The starting point in FDFD for all waveguide mode calculations is Maxwell’s 
curl equations. The frequency will be known at the start so the free space wavenum-
ber k0 can be used to normalize the grid coordinates. From Chapter 4, Maxwell’s 
curl equations expanded to

	

∂Ez
∂ ′y

−
∂Ey
∂ ′z

= mxx
!Hx

	
(6.1)

	

∂Ex
∂ ′z

−
∂Ez
∂ ′x

= myy
!Hy

	
(6.2)
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∂Ey
∂ ′x

−
∂Ex
∂ ′y

= mzz
!Hz

	
(6.3)

	

∂ !Hz

∂ ′y
−
∂ !Hy

∂ ′z
= exxEx

	
(6.4)

	

∂ !Hx

∂ ′z
−
∂ !Hz

∂ ′x
= eyyEy

	
(6.5)

	

∂ !Hy

∂ ′x
−
∂ !Hx

∂ ′y
= ezzEz

	
(6.6)

where the magnetic field was normalized according to !
"

H = − jh0

"
H  and the grid coor-

dinates were normalized according to x′ = k0x, y′ = k0y, and z′ = k0z. As discussed 
in Chapter 2, all guided modes will have the following form, but here the coordi-
nates and the magnetic field are normalized to be consistent with the formulation.

	

!
E ′x , ′y , ′z( ) = !e ′x , ′y( )e−g ′z /k0

"
!

H ′x , ′y , ′z( ) = "
!

h ′x , ′y( )e−g ′z /k0

	

(6.7)

Substituting the form of the solution in (6.7) into (6.1) to (6.6) and simplifying gives

	

∂ez
∂ ′y

+ g
k0

ey = mxx
!hx

	
(6.8)

Figure 6.1  Geometry of a channel waveguide.
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− g
k0

ex −
∂ez
∂ ′x

= myy
!hy

	
(6.9)

	

∂ey
∂ ′x

−
∂ex
∂ ′y

= mzz
!hz

	
(6.10)

	

∂ !hz
∂ ′y

+ g
k0

!hy = exxex
	

(6.11)

	
− g
k0

!hx −
∂ !hz
∂ ′x

= eyyey
	

(6.12)

	

∂ !hy
∂ ′x

−
∂ !hx
∂ ′y

= ezzez
	

(6.13)

In these equations, the analysis has reduced to just two dimensions because z′ 
was eliminated from the analysis. When the field components are made discrete in 
the xy plane following the Yee grid scheme, the partial derivatives in each of the 
above equations can be approximated using finite differences. In addition, observe 
the ratio γ /k0 that appears in four of the above equations. Let this ratio define the 
normalized complex propagation constant according to γ ̃ = γ /k0. The resulting set 
of discrete equations with the normalized propagation constant is

	

ez i, j+1
− ez i, j

Δ ′y
+ !gey i, j

= mxx i, j
!hx i, j 	

(6.14)

	
− !gex i, j

−
ez i+1, j

− ez i, j
Δ ′x

= myy i, j

!hy i, j 	
(6.15)

	

ey i+1, j
− ey i, j

Δ ′x
−
ex i, j+1

− ex i, j

Δ ′y
= mzz i, j

!hz i, j 	
(6.16)

	

!hz i, j
− !hz i, j−1

Δ ′y
+ !g !hy i, j

= exx i, j
ex i, j

	
(6.17)

	
− !g !hx i, j

−
!hz i, j

− !hz i−1, j

Δ ′x
= eyy i, j

ey i, j 	
(6.18)

	

!hy i, j
− !hy i−1, j

Δ ′x
−
!hx i, j

− !hx i, j−1

Δ ′y
= ezz i, j ez i, j

	
(6.19)

Each of these discrete equations is written once for every cell in the grid, and 
each set of equations is written in matrix form following the procedures described 
in Chapters 3 and 4. These equations are
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D ′y

e ez + !gey = µµxx
!hx 	

(6.20)

	
− !gex − D ′x

e ez = µµyy
!hy 	

(6.21)

	
D ′x

e ey − D ′y
e ex = µµzz

!hz 	
(6.22)

	
D ′y

h !hz + !g
!hy = εεxxex 	

(6.23)

	
− !g  !hx − D ′x

h !hz = εεyyey 	
(6.24)

	
D ′x

h !hy − D ′y
h !hx = εεzzez 	

(6.25)

Next, (6.22) is solved for !hz  and (6.25) is solved for ez.

	
!hz = µµzz

−1 D ′x
e ey − D ′y

e ex( ) 	
(6.26)

	
ez = εεzz

−1 D ′x
h !hy − D ′y

h !hx( ) 	 (6.27)

It is possible to eliminate !hz  and ez from the matrix equations by substituting 
(6.26) into (6.23) and (6.24) and substituting (6.27) into (6.20) and (6.21). This 
gives the following set of four coupled matrix equations containing only ex, ey, !hx ,  
and !hy.

	
D ′y

e εεzz
−1 D ′x

h !hy − D ′y
h !hx( ) + !gey = µµxx

!hx 	
(6.28)

	
− !gex − D ′x

e εεzz
−1 D ′x

h !hy − D ′y
h !hx( ) = µµyy

!hy 	
(6.29)

	
D ′y

h µµzz
−1 D ′x

e ey − D ′y
e ex( ) + !g !hy = εεxxex 	

(6.30)

	
− !g !hx − D ′x

h µµzz
−1 D ′x

e ey − D ′y
e ex( ) = εεyyey 	

(6.31)

It is very important to realize that the longitudinal components !hz  and ez 
were not set to zero and are not necessarily equal to zero. Instead, they were just 
algebraically eliminated from the formulation. Next, (6.28) to (6.31) are simplified, 
terms are rearranged, and the equations are expressed in a different order.

	
D ′x

e εεzz
−1D ′y

h !hx − D ′x
e εεzz

−1D ′x
h + µµyy( ) !hy = !gex 	

(6.32)

	
D ′y

e εεzz
−1D ′y

h + µµxx( ) !hx − D ′y
e εεzz

−1D ′x
h !hy = !gey 	

(6.33)

	
D ′x

h µµzz
−1D ′y

e ex − D ′x
h µµzz

−1D ′x
e + εεyy( )ey = !g  !hx 	

(6.34)

	
D ′y

h µµzz
−1D ′y

e + εεxx( )ex − D ′y
h µµzz

−1D ′x
e ey = !g !hy 	

(6.35)
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Equations (6.32) and (6.33) can be combined into a single block matrix equation 
as well as (6.34) and (6.35). These two block matrix equations are

	

P
!hx
!hy

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
= !g

ex
ey

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

	

(6.36)

	

Q
ex
ey

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= !g

!hx
!hy

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
	

(6.37)

where

	

P =
D ′x

e εεzz
−1D ′y

h − D ′x
e εεzz

−1D ′x
h + µµyy( )

D ′y
e εεzz

−1D ′y
h + µµxx −D ′y

e εεzz
−1D ′x

h

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

	 (6.38)

	

QQ =
DD ′x

h µµzz
−1DD ′y

e − DD ′x
h µµzz

−1DD ′x
e + εεyy( )

DD ′y
h µµzz

−1DD ′y
e + εεxx −DD ′y

h µµzz
−1DD ′x

e

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥ 	 (6.39)

To derive an eigenvalue problem in terms of just the electric field terms ex and 
ey, first (6.37) is solved for the magnetic field terms !hx and !hy.

	

!hx
!hy

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
= 1
!g Q

ex
ey

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

	 (6.40)

Second, (6.40) is substituted into (6.36) to eliminate the magnetic field terms !hx 
and !hy. This gives a matrix wave equation in the form of a standard eigenvalue 
problem Av = λv.

	

ΩΩ2
ex
ey

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= !g 2

ex
ey

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

	 (6.41)

	 ΩΩ2 = PQ 	 (6.42)

This general “PQ” form of the eigenvalue problem arises in other methods like 
the method of lines and rigorous coupled-wave analysis [1]. Solving eigenvalue prob-
lems is a huge and involved topic. Fortunately, MATLAB makes this very simple, and 
(6.41) is solved as simple as [V,D]=eigs(OMEGASQ) where OMEGASQ is a sparse matrix 
defined in (6.42). When (6.41) is solved as an eigenvalue problem, two matrices are 
calculated. The eigenvector matrix V contains the electric field components of the 
modes along its columns. That is, the mth column of V is 

!
em(x,y)  that contains 

ex,m(x,y) and ey,m(x,y). The eigenvalue matrix D contains the eigenvalues !g 2  along 
its diagonal. In this case, the eigenvalues are the squares of the normalized complex 
propagation constants for the guided modes because (6.41) is arranged such that !g 2 
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is the eigenvalue. Eigenvectors and eigenvalues always come in pairs. The mth col-
umn in the eigenvector matrix must always be kept with the mth eigenvalue. Given 
the eigenvalue !gm

2  of the mth guided mode, the complex propagation constant γm, 
attenuation coefficient αm, phase constant βm, and effective refractive index nm,eff 
are calculated as follows.

	
gm = k0

!gm
2

	
(6.43)

	
am = Re gm⎡⎣ ⎤⎦ 	

(6.44)

	
bm = Im gm⎡⎣ ⎤⎦ 	

(6.45)

	
nm,eff =

gm

jk0 	
(6.46)

If needed, the magnetic field components !hx(x,y) and !hy(x,y) can be calculated 
from the solution using (6.40). The longitudinal components !hz(x,y) and ez(x,y) can 
be calculated using (6.26) and (6.27), respectively.

6.2	 Formulation for Rigorous Slab Waveguide Mode Calculation

Let the geometry for analyzing a slab waveguide be as shown in Figure 6.2. Let 
the cross section of the slab waveguide be in the x-direction while the guided mode 
propagates in the z-direction. In this configuration, the slab waveguide and the 

Figure 6.2  Geometry for a slab waveguide.
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guided mode itself will be uniform and unchanging in the y-direction. This means 
that any derivative with respect to y must be equal to zero because nothing changes 
in the y-direction. Under this condition, De

y′ = Dh
y′ = 0 and (6.20) to (6.25) reduce to

	
!gey = µµxx

!hx 	
(6.47)

	
− !gex − D ′x

e ez = µµyy
!hy 	

(6.48)

	
D ′x

e ey = µµzz
!hz 	

(6.49)

	
!g !hy = εεxxex 	

(6.50)

	
− !g !hx − D ′x

h !hz = εεyyey 	
(6.51)

	
D ′x

h !hy = εεzzez 	
(6.52)

6.2.1  Formulation of E Mode Slab Waveguide Analysis

Observe that (6.47) to (6.52) have decoupled into two independent sets of three 
equations. The first set will be called the E mode because its analysis will be reduced 
to one equation in terms of the single electric field quantity ey. The equations for 
the E mode are given by (6.47), (6.49), and (6.51) and contain only ey, !hx , and !hz. 
The missing components are ex = ez = !hy = 0. For convenience, these three equations 
are repeated below.

	
− !g !hx − D ′x

h !hz = εεyyey 	 (6.53)

	
!gey = µµxx

!hx 	
(6.54)

	
D ′x

e ey = µµzz
!hz 	

(6.55)

The first step to derive the matrix wave equation in the form of an eigenvalue 
problem is to solve (6.54) for !hx  and solve (6.55) for !hz.  This gives

	
!hx = !g µµxx

−1ey 	
(6.56)

	
!hz = µµzz

−1D ′x
e ey 	

(6.57)

The second step is to substitute the above expressions into (6.53) to eliminate 
the terms !hx  and !hz  and then rearrange the equation into the form of a generalized 
eigenvalue problem Av = λBv. This is solved in the same manner as for hybrid mode 
analysis and is given by

	
− D ′x

h µµzz
−1D ′x

e + εεyy( )ey = !g 2µµxx
−1ey 	

(6.58)
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When the permeability is close to vacuum, μμxx ≈ I and (6.58) reduces to a stan-
dard eigenvalue problem Av = λv. After the eigenvalue problem is solved, the guided 
mode parameters are calculated the same as for hybrid mode analysis using (6.43) 
to (6.46). That is because the eigenvalue problem for slab waveguide analysis has 
the same term for the eigenvalue.

6.2.2  Formulation of H Mode Slab Waveguide Analysis

The second set of equations that comes from (6.47) to (6.52) will be called the H 
mode because its analysis will be reduced to one equation in terms of the single 
magnetic field quantity !hy. The equations for the H mode are given by (6.48), (6.50), 
and (6.52). The equations contain only !hy , ex, and ez so for the H mode !hx = !hz = 
ey = 0. For convenience, these three equations are repeated below.

	
− !gex − D ′x

e ez = µµyy
!hy 	

(6.59)

	
!g !hy = εεxxex 	 (6.60)

	
D ′x

h !hy = εεzzez 	 (6.61)

The first step to derive the matrix wave equation in the form of an eigenvalue 
problem is to solve (6.60) for ex and solve (6.61) for ez.

	
ex = !g εεxx

−1 !hy 	
(6.62)

	
ez = εεzz

−1D ′x
h !hy 	

(6.63)

The second step is to substitute the above expressions into (6.59) to eliminate 
the terms ex and ez and then rearrange the equation into the form of a generalized 
eigenvalue problem Av = λBv. This is solved in the same manner as for hybrid mode 
analysis and is given by

	
− D ′x

e εεzz
−1D ′x

h + µµyy( ) !hy = !g 2εεxx
−1 !hy 	

(6.64)

Unlike E mode analysis, the B matrix is permittivity which will likely never 
be equal to that of a vacuum so (6.64) will rarely reduce to a standard eigenvalue 
problem. After the eigenvalue problem is solved, the guided mode parameters are 
calculated the same as for hybrid mode analysis using (6.43) to (6.46). That is 
because the eigenvalue problem for slab waveguide analysis has the same eigenvalue.

6.2.3  Formulations for Slab Waveguides in Other Orientations

It is very useful to derive the matrix eigenvalue problems where the slab waveguide 
is oriented along different axes. This is particularly useful when the slab waveguide 
analysis is being used to calculate sources for waveguide simulations or when the 
EIM is being used to reduce three-dimensional problems down to two dimensions. 
For slab modes propagating in the +x-direction in a slab waveguide, the uniform 
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direction can be either in the y-direction or the z-direction. Each choice leads to 
a different formulation for both the E and H modes and these are summarized in 
Figure 6.3.

For slab modes propagating in the +y-direction in a slab waveguide, the uniform 
direction can be either in the x-direction or the z-direction. The formulations for 
both the E and H modes for this case are summarized in Figure 6.4.

For slab modes propagating in the +z-direction in a slab waveguide, the uniform 
direction can be either in the x-direction or the y-direction. The formulations for 
both the E and H modes for this case are summarized in Figure 6.5.

6.2.4  The Effective Index Method

Many times, large and complicated three-dimensional simulations can be reduced 
to much simpler and more numerically efficient two-dimensional simulations quite 
accurately. An excellent example is the optical integrated circuit (OIC) for a ring 

Figure 6.3  Slab waveguide analysis for modes propagating in the +x-direction.

Figure 6.4  Slab waveguide analysis for modes propagating in the +y-direction.
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resonator depicted in Figure 6.6. This OIC leads to a very large and three-dimen-
sional simulation that would be very computationally intensive to perform rigor-
ously. Instead, the OIC can be reduced to a two-dimensional representation using 
the EIM [2]. To do this, the circuit is interpreted as being composed of two regions. 
The first region is away from the rib waveguide and is composed of the substrate, 
a thin high-index film on the surface, and the air above. The second region comes 
from on the rib waveguide and is composed of the substrate, the thin high-index 
film, a high-index rib on top of the film, and the air above. Both regions are analyzed 
as a slab waveguide to determine the effective refractive index of the fundamental 
mode. Recall from Chapter 2 that the fundamental mode is the guided mode with 
the lowest cutoff frequency. The effective refractive index of the off-waveguide 
region is neff1 and the effective refractive index of the on-waveguide region is neff2. 
These analyses and the resulting fundamental mode calculated for each region are 
illustrated on the right of Figure 6.6.

Given the two effective refractive indices, a model of the circuit can be con-
structed in two dimensions as illustrated at the bottom left of Figure 6.6. This 
two-dimensional representation can be thought of as sort of a top view of the three-
dimensional OIC and is constructed from the two effective refractive indices. While 
this two-dimensional model is not a rigorous representation of the three-dimensional 
OIC, it is orders of magnitude less computationally intensive while maintaining 
very good accuracy [2]. In some cases, the regions chosen may not support a guided 
mode or not even be a slab waveguide at all. In this case, any reasonable estimate 
of the average refractive index can still provide good results that match well with 
a three-dimensional simulation.

For best accuracy, it is important to carefully consider whether E or H mode 
analysis should be performed to ensure the correct polarization is used through-
out the entire analysis. For example, the OIC depicted in Figure 6.6 shows the rib 
waveguide is to be illuminated with a vertically polarized mode. To be consistent, 
the slab waveguide analysis should be H mode to allow the electric field to be in the 
z-direction. The E mode would place the electric field solely in the x-direction, so the 

Figure 6.5  Slab waveguide analysis for modes propagating in the +z-direction.
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E mode is not a correct choice. The two-dimensional simulation of the OIC should 
be E mode to place the electric field perpendicular to the plane of the OIC. Following 
a similar line of reasoning, if the rib waveguide mode were horizontally polarized, 
the slab waveguide analyses would need to be E mode while the two-dimensional 
simulation of the OIC would need to be H mode. Be careful when applying the EIM 
because identifying the correct polarizations can be tricky!

6.3	 Implementation of Waveguide Mode Calculations

Calculating guided modes using FDFD consists of three major steps, as illustrated 
in Figure 6.7. Step 1 calculates everything that is needed for the FDFD analysis 
and starts by initializing MATLAB. It is followed by the dashboard where all of 
the parameters are defined that control the simulation. The program then moves 
on to calculating the grid, which includes the number of cells and the resolution. 
With the grid calculated, the waveguide is built onto the grid producing the tensor 
arrays ERxx, ERyy, ERzz, URxx, URyy, and URzz used to build the eigenvalue problem 
in the FDFD method.

With the simulation setup, the code goes on to perform the actual FDFD analysis. 
Everything in this section of code works toward solving the eigenvalue problem. It 
starts by reshaping the materials arrays into diagonal matrices and then building the 
derivative matrices. From here, the eigenvalue problem is constructed. For hybrid 
mode analysis, this entails calculating P, Q, and then ΩΩ2 using (6.38), (6.39), and 
(6.42), respectively. For slab waveguide analysis, this entails calculating the A and 
B matrices in (6.58) for the E mode or (6.64) for the H mode. When the eigenvalue 
problem is constructed, it is solved using the MATLAB function eigs() to calculate 
the eigenvectors and eigenvalues, referred to collectively as the eigenmodes. It is 

Figure 6.6  EIM used to reduce a three-dimensional OIC to a two-dimensional representation.
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less efficient and usually unnecessary to calculate all possible eigenmodes. Instead, 
it is best to calculate only a small set of eigenmodes. If a good guess can be made 
for the eigenvalue !g0

2
 of the fundamental mode, it is possible to calculate only a 

small set of eigenmodes with eigenvalues closest to !g0
2.  The small set will be the 

lowest-order eigenmodes. For dielectric waveguides, the majority of power in the 
fundamental mode typically resides in the core. For this reason, a good guess for 
the eigenvalue of the fundamental mode is !g0

2
 = −n2

core, where ncore is the refractive 
index of the core. For other waveguides, some experimentation may be needed to 
determine a good guess for the eigenvalue of the fundamental mode.

Last, the eigenmodes are analyzed and postprocessed to extract meaning from 
the analysis. Oftentimes, this starts by calculating the various mode parameters 
like the complex propagation constant γ, attenuation coefficient α, phase constant 
β, and/or the effective refractive index neff. Each guided mode will have its own set 
of parameters and they can be calculated from the eigenvalue !gm

2
 using (6.43) to 

(6.46). The field terms are extracted from the columns of the eigenvector matrix. 
If needed, the other field components can be calculated. A typical guided mode 
calculation will end by visualizing the fields of the guided modes.

6.3.1  MATLAB Implementation of Rib Waveguide Analysis

An excellent application for rigorous hybrid mode analysis for waveguides is that 
of a silicon-on-insulator (SoI) rib waveguide that is commonly used in integrated 
optics [3–6]. The waveguide has an inhomogeneous dielectric so it does not strictly 
support TE and TM modes. The geometry and coordinate setup for a typical SoI 
rib waveguide is shown in Figure 6.8. Let propagation be in the z-direction and the 
cross section of the waveguide fall in the xy plane. The figure shows the waveguide, 

Figure 6.7  Block diagram of FDFD analysis of waveguides.
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the coordinate axes, dimensions, refractive indices, and the amplitude profile of the 
fundamental mode supported by the rib waveguide.

The analysis will be performed at the free space wavelength λ0 = 1.55 μm, as 
this is a standard wavelength for telecommunications [7]. The region above the 
waveguide is called the superstrate and is air in this example. Air will be assigned 
a refractive index of n1 = 1.0. The middle layer and rib are made of silicon (Si) 
which has a refractive index close to n2 = 3.5. The region below the waveguide is 
called the substrate and is silicon dioxide (SiO2) in this example. The substrate will 
be assigned a refractive index of n3 = 1.5. The width of the rib is w = 0.8 μm, the 
height of the rib is h = 0.6 μm, and the thickness of the silicon layer away from the 
rib is t = 0.6 μm.

The MATLAB code to analyze this rib waveguide can be downloaded at https://
empossible.net/fdfdbook/ and is called Chapter6_ribwaveguide.m. The code begins 
with the header from lines 1 to 11. The first line is the name of the MATLAB file. In 
this case, the file is saved as “Chapter 6_ribwaveguide.m.” The first task performed 
is initializing MATLAB. This consists of close all to close any figure windows 
that may happen to be open, clc to clear the command window, and the most 
important clear all that clears all variables from memory. Next, the units used in 
the simulation are defined. For photonic waveguide analysis, micrometers is set to 
1. Any other units, such as nanometers, should be defined relative to micrometers.

The next section of the code from lines 12 to 33 is the dashboard. The dashboard 
contains all of the parameters that define and control the simulation. Parameters 
to be defined inside of the dashboard include the free space wavelength, waveguide 
parameters such as dimensions and refractive indices, and grid parameters that 
control the size and resolution of the grid.

The FDFD analysis here calculates the set of modes that the waveguide can 
support so the analysis does not require a source. However, the free space wave-
length lam0 for the analysis must still be defined. The parameter lam0 is the first 
thing defined in this dashboard on line 17. The second set of parameters defines 
everything that is needed about the waveguide in order to calculate the modes it 
supports. This includes the refractive index of the superstrate rib_n1, refractive 
index of the core rib_n2, refractive index of the substrate rib_n3, height of the rib 

Figure 6.8  Geometry and coordinate setup for SoI rib waveguide. The dimensions are w = 0.8 
μm, h = 0.6 μm, and t = 0.6 μm. The refractive indices are n1 = 1.0, n2 = 3.5, and n3 = 1.5. The 
waveguide is analyzed at free space wavelength λ0 = 1.55 μm.
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rib_h, thickness of the silicon layer away from the rib rib_t, and width of the rib 
rib_w. These parameters are as consistent as possible with those shown in Figure 
6.8. The reason for the rib_ prefix is to avoid using common variable names that 
may accidentally get overwritten with different information later in the code. The 
third set of parameters defines everything that is needed to calculate the grid. The 
first parameter nmax is the largest refractive index that will be assigned to any cells 
on the grid. This is needed in order to determine the smallest wavelength the analy-
sis will be required to resolve, λmin = λ0/nmax. The second parameter is NRES. This 
is the number of points that will be used to resolve the shortest wavelength λmin. 
Higher values will improve accuracy by resolving the problem with more points, 
but the calculations will require more memory and take more time to run. Values 
in the range of 10 to 40 are typical, but it is necessary to test for convergence to be 
sure that sufficient resolution is being used. Last, it is necessary to put some space 
around the rib waveguide so that the guided mode decays to zero before reaching 
the boundary. This allows simple Dirichlet boundary conditions to be used. Peri-
odic boundary conditions cannot be used since the guided mode is not periodic. 
SPACER is an array containing four numbers that define how much space there will 
be from the edge of the waveguide to the four grid boundaries. The first number in 
SPACER is the amount of space on the left of the waveguide, the second number is 
the amount of space on the right, the third number is the amount of space above, 
and the fourth number is the amount of space below. In the code, the air superstrate 
will occupy the entire spacer region above the waveguide. The substrate with refrac-
tive index n3 will occupy the entire spacer region below the waveguide. The last 
parameter defined in the dashboard is the number of modes to calculate NMODES. If 
the grid has 200 by 100 points, 20,000 modes will be calculated unless specified 
otherwise. Calculation time is greatly improved when only a subset is calculated. 
In this case, three modes will be calculated. If the number of supported modes is 
to be determined, NMODES will need to be increased until the additional modes are 
clearly not guided modes. Identifying which modes are guided and which are not 
will be discussed near the end of this section.

The next section of code from lines 35 to 66 calculates the grid for the wave-
guide analysis. This includes the number of cells on the grid, Nx and Ny, as well as 
the grid resolution parameters, dx and dy. The first thing in this section is to calcu-
late preliminary values for the grid resolution parameters. The parameters dx and 
dy will be adjusted in the second step. Lines 40 and 41 set the preliminary value 
for both dx and dy equal to the minimum wavelength lam0/nmax divided by NRES. 
This calculation does not consider the dimensions of the waveguide at all so it is 
highly likely that the dimensions will not match the grid perfectly. In fact, at this 
point in the code, the width of the rib is 36.13 cells wide. Since it is not possible to 
fill in a fraction of a cell, the simulation will not accurately represent the width of 
the rib. Lines 43 to 47 adjust dx and dy so that the most critical dimensions of the 
waveguide are represented exactly by an integer number of cells on the grid. This 
practice greatly improves the convergence rate of the simulation so it will be pos-
sible to achieve high accuracy with a minimum number of cells on the grid. To do 
this, a critical dimension is chosen for each axis. For the x-direction, the critical 
dimension is chosen to be rib_w because it was the only dimension to choose. Given 
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the critical dimension, the number of cells representing that dimension is calculated 
and rounded up to the nearest integer according to nx = ceil(rib_w/dx). The 
resolution parameter is then adjusted by recalculating it as the critical dimension 
divided by the number of cells just calculated according to dx = rib_w/nx. When 
done correctly, rib_w will be exactly equal to nx*dx. For the y-direction, it is not 
clear whether rib_t or rib_h is the critical dimension so rib_t was chosen. The 
number of cells representing this dimension is calculated and rounded up to the 
nearest integer according to ny = ceil(rib_t/dy). The resolution parameter is 
then adjusted by recalculating it as the critical dimension divided by the number of 
cells just calculated according to dy = rib_t/ny. When done correctly, rib_t will 
exactly equal ny*dy. Some experimentation with the analysis can give clues about 
what may be the most important dimension to resolve exactly. After this step, both 
dx and dy will usually be slightly smaller than they were initially calculated. Next, 
the size of the grid is calculated on lines 49 to 56. First, the physical width of the 
grid Sx is calculated on line 50 as the leftmost SPACER region plus the width of the 
rib plus the rightmost SPACER region. From this, the numerical size of the grid, or the 
number of grid cells wide, is calculated on line 51 by dividing the physical width by 
the cell size and rounding up to the nearest integer. Due to the rounding operation, 
the physical size of the grid may be slightly off so it is recalculated on line 52 as the 
number of cells wide multiplied by the cell size. The same actions are performed 
for the vertical size of the grid from lines 54 to 56, but the size of the waveguide is 
the height of the rib plus the thickness of the silicon layer. At this point, the grid is 
calculated. If needed, the 2× grid parameters are calculated followed by the axis 
vectors to be used for graphics and visualization.

The next section of code from lines 68 to 98 builds the rib waveguide onto 
the Yee grid. This is done by building the rib waveguide onto the 2× grid and then 
extracting the permittivity and permeability tensor arrays on the Yee grid from the 
2× grid. Before anything is added to the 2× grid, the permittivity and permeability 
arrays ER2 and UR2 on the 2× grid are initialized to air on lines 73 and 74. Observe 
that the refractive index is squared because it is relative permittivity that must be 
assigned to points on the grid, not the refractive index. The two are related through 
εr = n2. Forgetting to square the refractive index is one of the most common mistakes 
made in photonic FDFD simulations.

The second task is to calculate the array indices of where the structures of the 
waveguide begin and end on the 2× grid. This is implemented on lines 76 to 84. 
The overall grid strategy for this is illustrated in Figure 6.9 showing the spacer 
regions around the rib waveguide, the refractive indices, and the array indices. It 
is highly recommended to draw a figure like this before building anything onto a 
grid. Observe that nx1 and nx2 are the array indices for where the rib part of the 
waveguide begins and ends in the x-direction. The array index nx1 is calculated as 
one plus the number the cells wide of the leftmost spacer region. The +1 is included 
so that the left side of the device is outside of the left spacer region. There is no need 
to get nx1 exact to anything. What is important is that nx2 is located correctly rela-
tive to nx1. The array index nx2 is calculated as nx1 plus the number of cells wide 
for the rib round(rib_w/dx) rounded to the nearest integer minus one. As described 
in Chapter 1, the minus one is required so that the dimension is not one cell greater 
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than intended. While one cell may seem small and insignificant, being one cell off 
can greatly affect the convergence rate and accuracy of some devices. Similarly, the 
vertical array indices ny1, ny2, ny3, ny4, and ny5 are calculated.

From here, it is an easy task to assign permittivity values to the 2× grid. The 
rib is added first on line 87, followed by the silicon layer on line 88, followed by the 
substrate on line 89. There is no need to assign values for the superstrate because the 
array ER2 was initialized with the relative permittivity of the superstrate. Observe 
on line 89 the array is filled from ny5 to Ny2 in the y-direction because Ny2 is the 
array index for the bottom of the grid. The last task from lines 91 to 98 is to extract 
the tensors arrays on the Yee grid from the 2× arrays. ERxx, ERyy, and ERzz are 
extracted from ER2 while URxx, URyy, and URzz are extracted from UR2.

With the grid setup and waveguide constructed onto the Yee grid, it is time to 
perform the FDFD analysis of the waveguide. This section of code from lines 100 
to 141 is generic, and the same code can be used to calculate the hybrid modes of 
any waveguide. Before the matrices for the eigenvalue problem can be calculated, 
the tensor arrays must be converted to diagonal matrices. For ERxx, this is done by 
reshaping the array to a column vector via ERxx(:), declaring it as a sparse matrix 
via sparse(ERxx(:)), and then inserting it as a diagonal into a square matrix via 
diag(sparse(ERxx(:))). This last step creates a sparse matrix by default. It is very 
important not to reverse the order of the sparse() and diag() commands as this 
will temporarily create a full matrix that will consume a lot of memory and take a 
long time to process if not crash the computer. The same operation is done for all 
the material tensor arrays to convert them to diagonal matrices. In this code, the 

Figure 6.9  Grid strategy for modeling a rib waveguide on the 2× grid.

7025_Book.indb   1767025_Book.indb   176 12/17/21   8:41 AM12/17/21   8:41 AM



6.3	 Implementation of Waveguide Mode Calculations� 177

same variable names are used so the two-dimensional arrays are overwritten by 
the diagonal matrices. Next, the derivative matrices are constructed on lines 112 to 
117 by calling the function yeeder2d() described in Chapter 4. NS is an array con-
taining the size of the grid Nx and Ny, RES is an array containing the grid resolution 
parameters dx and dy, and BC is an array containing numbers that define the bound-
ary conditions to be used. For waveguide analysis, it is common to use Dirichlet 
boundary conditions so BC is set to [0 0]. The formulation used normalized grid 
coordinates so the input argument RES is multiplied by the free space wavenumber 
k0 to pass normalized grid resolution terms to yeeder2d().

Given the diagonal materials matrices and the derivative matrices, the matrices 
for the eigenvalue problem are calculated on lines 119 to 123. This is done by first 
calculating the intermediate matrices P and Q and then calculating the matrix for the 
eigenvalue problem as P*Q. Rather than waste memory storing the P*Q matrix, the 
product is used as the input argument to eigs() on line 127. The function eigs() 
is built into MATLAB to solve eigenvalue problems of sparse matrices. There are 
many different ways this function can be used and many different options for using 
it. For this example, three input arguments are passed to the function. The first input 
argument is the matrix P*Q. The second input argument is the number of modes to 
calculate from the eigenvalue problem. The parameter NMODES was defined in the 
dashboard to be 3, so three modes will be calculated that have eigenvalues clos-
est to the value given as the third input argument. Thus, the third input argument 
needs to be set to the best guess for the eigenvalues of the guided modes. Recall 
from Chapter 2 for dielectric waveguides that the effective refractive index is close 
to the average refractive index calculated over the area of the guided mode. Given 
that the modes reside mostly inside of the silicon material, n2 is a decent estimate 
of the effective refractive index of the guided modes. However, the eigenvalues are 
not the effective refractive index. From (6.43) and (6.46), the eigenvalue that would 
correspond to an effective index of n2 is

	
!g 2 ≈ −n2

2

	 (6.65)

The function eigs() will then return two matrices that are called Exy and D2 in 
the MATLAB code. If there are M total cells on the grid, the eigenvector matrix Exy 
will have 2M rows and NMODES number of columns. Each column in Exy contains 
the ex and ey column vectors from (6.41). The matrix D2 will be NMODES×NMODES 
and contain the eigenvalues along its center diagonal. Eigenvectors and eigenvalues 
come in pairs, so the mth column in Exy corresponds to the eigenvalue in the mth 
diagonal position of D2. For three modes, these matrices have the form below.

	

Exy =
ex,1

ey,1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

ex,2

ey,2
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⎣
⎢
⎢

⎤

⎦
⎥
⎥

ex,3

ey,3

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
     D2 =

!g1
2 0 0

0 !g 2
2 0

0 0 !g3
2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥ 	

(6.66)

The square of the normalized complex propagation constant has no meaning. 
For this reason, it is a common practice to first calculate the square root of the 
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eigenvalue matrix to calculate the normalized complex propagation constants of 
the modes. This happens on line 128.

	

D = D2 =
!g1 0 0
0 !g 2 0
0 0 !g3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

	

(6.67)

For photonics applications, it is usually the effective refractive index of the 
guided modes that is of interest. These are readily calculated from the normalized 
complex propagation constants simply by multiplying them by −j. At the same time, 
the effective refractive indices are stored in a one-dimensional array NEFF instead of 
a diagonal matrix by extracting the diagonal from the eigenvalue matrix and then 
multiplying by −j. This happens on line 128.

At this point, the finite-difference analysis of the rib waveguide is complete. 
Any remaining steps are considered postprocessing. Solving the eigenvalue problem 
only calculates the electric field components ex and ey, so a common next step is to 
calculate the other field components ez, 

!hx ,  !hy ,  and !hz.  The MATLAB code that 
does this extends from lines 131 to 141. In this code, M is the total number of points 
on the grid and is needed in order to extract the x and y field components from 
the eigenvectors. Immediately after calculating M, the x and y components of the 
electric field are extracted from the eigenvector matrix Exy on lines 133 and 134. 
Afterward, Ex and Ey will be rectangular matrices because they are essentially the 
top and bottom halves of the square matrix Exy. Next, the eigenvector matrix for 
the magnetic fields Hxy is calculated using (6.40). This matrix contains the x and y 
components of the magnetic fields. These are extracted from Hxy as Hx and Hy and 
are also rectangular matrices like Ex and Ey. Last, the z components of the fields 
are calculated using (6.26) and (6.27).

Another common thing to be done after finite-difference analysis is visualizing 
the fields. The MATLAB code to visualize the x and y components of the electric 
fields extends from lines 143 to 173. To make the figure compact, the other field 
components are not visualized. In most cases, the z component of the electric field 
is small and almost all information about the mode profile is contained in just x and 
y components. The code is easily modified to visualize additional field components 
if that is desired. The visualization code has a loop that iterates through all of the 
calculated modes and visualizes the x and y components horizontally in the figure 
window. The first step is to extract the column vectors ex and ey from columns of 
the Ex and Ey matrices, respectively, and reshape them back to the two-dimensional 
Yee grid. The second step is to normalize the values in the field arrays so that the 
maximum value is 1. The third step is to plot Ex on the left of the row and Ey on the 
right. The effective refractive index of the mode is added to the title of the plot of Ex.

While the MATLAB code may be completed at this point, the analysis of the 
waveguide is not at all complete until a convergence study has been performed. This 
will be discussed in more detail later, but good convergence was found for NRES=30 
and spacer regions around 1.0λ0. Using these settings, the grid size was calculated 
to be Nx=269 and Ny=294 and the total calculation time was around 2.3 seconds on 
a laptop computer running a 2.30 GHz Intel Core i9-9880H.
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The first three eigenmodes calculated from this analysis and the effective 
refractive index for each are shown in Figure 6.10. In this figure, the gray shading 
conveys the amplitude of the electric field calculated as sqrt(Ex.^2 + Ey.^2). 
Simply by inspecting the images of the modes, it is evident that only the first two 
modes are guided by the rib waveguide. This is evident because the field power of 
these modes is clearly confined to the vicinity of the rib. The third eigenmode has 
power increasing away from the rib and reaching a maximum value at the grid 
boundary. This is not a mode guided by the rib waveguide so it can be concluded 
that this rib waveguide supports only two modes. It is generally desired to adjust 
the design of the waveguide so that only a single mode is supported and this finite-
difference analysis is a great tool for doing this.

So, what is the meaning of the third eigenmode? Dirichlet boundary conditions 
were used so it is almost like the rib waveguide is encased inside of a very large 
metal waveguide. It is not exactly a metal waveguide because the two boundaries 
where Dirichlet boundary conditions were applied to the magnetic fields make those 
boundaries a perfect magnetic conductor (PMC). At the other two boundaries, 
Dirichlet boundary conditions were applied to the electric fields so those boundaries 
have a perfect electric conductor (PEC). Only a PEC acts like a true metal. The third 
eigenmode calculated by this analysis is a mode guided by the larger waveguide, 
but this does not have any physical meaning related to the rib waveguide and is 
just ignored.

6.3.2  MATLAB Implementation of Slab Waveguide Analysis

Slab waveguide analysis arises frequently enough in photonics and other areas of 
electromagnetic analysis that the ability to analyze them will prove to be a power-
ful capability. The effective refractive index of the guided modes can be used to 
approximate some three-dimensional structures as two-dimensional structures for 
easier simulation [2]. Slab waveguides are also elements of devices such as guided-
mode resonance filters, grating couplers, leaky wave antennas, and more. The 
geometry and coordinate setup for the basic dielectric slab waveguide is illustrated 
in Figure 6.11 and is composed of a substrate, core, and superstrate. Without loss 

Figure 6.10  First three eigenmodes from the FDFD analysis of a rib waveguide. Gray shading 
conveys field amplitude and black arrows convey polarization. The first two modes are guided 
modes because their power is confined to the rib region. The third mode is not a guided mode 
because it has power increasing away from the rib region.
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of generality, the propagation direction is set to the z-direction and the cross section 
of the waveguide is placed in the x-direction. The figure shows the waveguide, the 
coordinate axes, dimensions, and refractive indices. To support guided modes, the 
core must have a refractive index higher than both the substrate and superstrate. 
The substrate and superstrate can have different refractive indices, but both must 
be less than the core refractive index in order to form a waveguide. The thickness 
a of the core is the only dimension needed to define the slab waveguide. If n1 ≠ n3, 
there will be some minimum value of a below which the slab waveguide will not 
support any guided modes. The dimension b is provided to ensure the superstrate 
and substrate regions are large enough to accurately analyze the waveguide. Dirichlet 
boundary conditions were used at the extreme top and bottom of the grid. These 
must be sufficiently far away from the core so that the guided modes decay to zero 
well before reaching the boundaries of the grid. Typically, b > 3λ0. For this analy-
sis, the top spacer region will be the medium above the core filled with refractive 
index n1 and the bottom spacer region will be the medium below the core filled 
with refractive index n3.

The analysis will be performed at the free space wavelength λ0 = 1.55 μm. The 
superstrate will be air (n1 = 1.0), the core region will be silicon nitride (n2 = 2.0), 
and the substrate will be fused silica (n3 = 1.5). The thickness of the slab will be a = 
1500 nm. A correct choice for b will be determined through simulation, but a good 
guess to start with is three wavelengths b = 3λ0. The MATLAB code to analyze this 
slab waveguide can be downloaded at https://empossible.net/fdfdbook/ and is called 
Chapter6_slabwaveguide.m. The program starts with a header that is identical to the 
header for the rib waveguide discussed previously, except that the first line conveys 
this code was given a different name. The header initializes MATLAB and defines 
the units that will be used. For this analysis, micrometers was set to 1 because it 
is a photonics simulation with dimensions closest to this scale.

The next section of the code from lines 12 to 32 is the dashboard. The dash-
board contains all of the hard-coded numbers that define and control the simu-
lation. First, the free space wavelength lam0, followed by whether it is E or H 
modes to be analyzed. To calculate E modes, the mode parameter should be set 
to MODE = ‘E.’ To calculate H modes, the mode parameter should be set to MODE 

Figure 6.11  Dielectric slab waveguide where n2 > n1 and n2 > n3.
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= ‘H.’ The second set of parameters defines everything that is needed about the 
slab waveguide. This includes the refractive index of the superstrate n1, refractive 
index of the core n2, refractive index of the substrate n3, and thickness of the core 
a. Observe that the parameter b is not defined here because b is not a parameter 
that defines the slab waveguide. Instead, it is a simulation parameter that must be 
made sufficiently large so that the grid boundaries are far enough away that the 
modes guided by the slab are calculated accurately. A sufficient amount of space 
must be placed between the waveguide and the Dirichlet boundary conditions, just 
like for the rib waveguide analysis. The third set of parameters defines everything 
that is needed to calculate the grid. The first parameter nmax is the largest refrac-
tive index that will be assigned to any cells on the grid. This is needed in order to 
determine the smallest wavelength the analysis will be required to resolve, λmin = 
λ0/nmax. The second parameter is NRES. This is the number of points that will be 
used to resolve the shortest wavelength λmin. Higher values of NRES will improve 
accuracy by resolving the problem with more points, but the calculations will take 
longer and require more memory to run. Values in the range of 10 to 40 are typi-
cal, but it is necessary to test for convergence to be sure that sufficient resolution 
is being used. Last, the parameter b defines the amount of space to include outside 
of the core to ensure the guided modes decay to zero before reaching the boundary 
of the grid. This allows simple Dirichlet boundary conditions to be used. The last 
parameter defined in the dashboard is the number of modes to calculate, NMODES. 
If the grid has 200 cells, 200 eigenmodes will be calculated unless specified oth-
erwise. It is most efficient to calculate only a subset of the modes because in most 
simulations the vast majority of eigenmodes are not modes guided by the slab and 
have no physical meaning related to the slab waveguide. In this case, four modes 
will be calculated. If the number of supported modes is to be determined, NMODES 
will need to be increased until the additional modes are clearly not guided modes.

The next section of code from lines 35 to 56 calculates the one-dimensional 
grid that will be used to represent the slab waveguide. The first thing in this section 
is to calculate the first guess at the grid resolution parameter dx. This is the first 
guess because dx is refined in the second step. The grid resolution dx is set equal 
to the minimum wavelength lam0/nmax divided by NRES. This calculation does not 
consider the thickness of the slab waveguide so it is highly unlikely that the dimen-
sions will fit on the grid perfectly. In fact, at this point in the code, the core is 19.35 
cells. Since it is not possible to fill in a fraction of a cell, the simulation is not able 
to accurately represent the thickness of the core. The second step in this section 
of the code adjusts dx so that the thickness of the slab is represented exactly by an 
integer number of cells on the grid. Adjusting dx in this manner greatly improves 
the convergence rate of the simulation so it will be possible to achieve high accuracy 
with a minimum number of points on the grid. To do this, line 42 calculates the 
number of cells currently representing the thickness of the core and rounds it up to 
the nearest integer. The resolution parameter dx is adjusted on line 43 by recalcu-
lating it as the slab thickness divided by the number of cells just calculated. After 
this step, dx will be slightly smaller than it was initially calculated. Next, the size 
of the grid is calculated on lines 45 and 46. First, the physical size of the grid Sx is 
calculated as two regions of thickness b and one region of thickness a. From this, 
line 47 calculates the total number of grid cells by dividing the physical size by the 
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cell size and rounding up to the nearest integer. Due to the rounding operation, 
the physical size of the grid Sx may be slightly off so line 48 recalculates it as the 
number of cells wide times the cell size. If needed, lines 54 to 56 calculate the 2× 
grid parameters followed by the axis arrays to be used for graphics and visualiza-
tion. The 2× grid is used here for illustration purposes and consistency, but it is less 
common to use the technique for slab waveguide analysis.

The next section code from lines 58 to 81 builds the slab waveguide onto the 
one-dimensional Yee grid. This is done by building the slab waveguide onto the 2× 
grid and then extracting the permittivity and permeability tensor arrays on the Yee 
grid from the 2× grid. Before anything is built onto the 2× grid, the permittivity and 
permeability arrays ER2 and UR2 on the 2× grid are initialized to air. The second 
task is to calculate the array indices nx1 and nx2 of where the core begins and 
ends on the 2× grid, respectively. The overall grid strategy for this is illustrated in 
Figure 6.12. The array index nx1 is calculated as one plus the number of the cells 
comprising the superstrate of size b. There is no need to get nx1 exact to anything. 
It is most important to calculate nx2 correctly relative to nx1. The array index nx2 
is calculated as nx1 plus the number of cells for the slab rounded to the nearest 
integer minus one. With the calculated array indices, the slab waveguide is built 
onto the 2× grid on lines 71 to 73. Line 71 adds the superstrate from point 1 up 
to point nx1−1. Line 72 adds the core from point nx1 to point nx2. Line 73 adds 
the substrate from point nx2+1 all the way down to point Nx2. Observe that the 
refractive index is being squared. That is because it is the relative permittivity that 
is being assigned to points on the grid where εr = n2. The last task is to extract the 
tensor arrays on the Yee grid from the 2× arrays. ERxx, ERyy, and ERzz are extracted 
from ER2 while URxx, URyy, and URzz are extracted from UR2.

With the grid setup and slab waveguide built onto the Yee grid, it is time to per-
form the FDFD analysis. The section of code from lines 83 to 115 is generic, and the 
same code can be used to calculate the eigenmodes of any slab waveguide. Before 
the matrices for the eigenvalue problem can be built, the material tensor arrays must 

Figure 6.12  Grid strategy for a slab waveguide.
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be converted into diagonal matrices using the same procedure followed in the rib 
waveguide analysis. The happens on lines 88 to 93. Next, lines 96 to 100 construct 
the derivative matrices by calling the function yeeder2d() described in Chapter 4. 
NS is an array containing the size of the grid. To build derivative matrices for the one-
dimensional grid used here, the size of the grid in the y-direction is set to 1 by making 
NS=[Nx 1]. The resolution array is set to RES=[dx 1], but the specific numerical value 
given for dy does not matter since it is not used. The formulation used normalized grid 
coordinates so the input argument RES is multiplied by the free space wavenumber 
k0 to pass normalized grid resolution terms to yeeder2d(). The boundary condition 
array is set to BC=[0 0], but the boundary conditions for the y-axis boundaries also 
do not matter because the y derivative matrices are not used in this analysis.

Given the diagonal materials matrices and the derivative matrices, the matrices 
for the generalized eigenvalue problem Ax = λBx can be constructed. The matrices A 
and B are constructed differently depending on whether it is the E mode or H mode 
to be calculated. For the E mode, the matrices are constructed from (6.58). For the 
H mode, the matrices are constructed from (6.64). Be cautious because it is easy 
to forget to invert the URxx or ERxx matrices or including the negative sign when 
calculating B, only to get incorrect eigenmodes. The function eigs() is built into 
MATLAB to solve eigenvalue problems of sparse matrices. For this example, four 
input arguments are passed to the function. The first two input arguments are the A 
and B matrices. The third input argument NMODES was defined in the dashboard and 
is the number of eigenmodes to be calculated. The parameter NMODES was defined 
in the dashboard to be 4, so four modes will be calculated that have eigenvalues 
closest to the value given as the fourth input argument to eigs(). Thus, the fourth 
input argument is set to the best guess for the eigenvalues of the guided modes. 
Given that the modes reside mostly inside of the core region, n2 is a good estimate 
of the effective refractive index of the guided modes. However, the eigenvalues are 
not directly the effective refractive index. From (6.43) and (6.46), the eigenvalue 
that would correspond to an effective index of n2 is

	
!g 2 ≈ −n2

2

	 (6.68)

From here, the function eigs() returns two matrices that are called Fy and D2 
in the MATLAB code. If there are Nx points on the grid, the eigenvector matrix 
Fy will have Nx rows and NMODES number of columns. Each column in Fy contains 
either the ey column vectors for the E mode or the !hy  column vectors for the H 
mode. The eigenvector matrix was given the symbol F instead of E or H because 
it could represent either electric or magnetic fields. The matrix D2 will be of size 
NMODES×NMODES and contain the eigenvalues along its diagonal. When four modes 
are calculated for the E mode, these matrices have the form below.

	

FFy =

ey,1 1( )

ey,1 2( )

!

ey,1 Nx( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

ey,2 1( )

ey,2 2( )

!

ey,2 Nx( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

ey,3 1( )

ey,3 2( )

!

ey,3 Nx( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

ey,4 1( )

ey,4 2( )

!

ey,4 Nx( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

	

(6.69)
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D2 =

!g1
2 0 0 0

0 !g 2
2 0 0

0 0 !g3
2 0

0 0 0 !g 4
2

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

	

(6.70)

The square of the normalized complex propagation constant has no meaning 
so it is common practice to first calculate the square root of the eigenvalue matrix 
to calculate the normalized complex propagation constants of the modes.

	

D = D2 =

!g1 0 0 0
0 !g 2 0 0
0 0 !g3 0
0 0 0 !g 4

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥ 	

(6.71)

The effective refractive index of the guided modes is readily calculated from 
the normalized complex propagation constants simply by multiplying by −j. At the 
same time, the effective refractive indices are stored in a one-dimensional array 
NEFF instead of a diagonal matrix by extracting the diagonal from the eigenvalue 
matrix and then multiplying by −j.

Before the finite-difference analysis of the slab waveguide can be considered 
complete, a convergence study must be performed. Typically, this is a plot of the 
effective refractive index of the guided modes as a function of the NRES parameter 
and as a function of the spacer region parameter b. Acceptable convergence was 
found at NRES=20 and b=3*lam0. Any remaining steps after calculating the modes 
are considered postprocessing. This may include calculating the field components 
not directly calculated by solving the eigenvalue problem, visualizing the modes, 
or something else.

The MATLAB code to visualize the fields in the eigenvector matrix extends 
from lines 117 to 145. The other field components associated with the modes are not 
calculated or visualized because almost all information about the mode is contained 
in just ey for the E mode and just !hy  for the H mode. First, the figure window is 
prepared for visualization by clearing it and declaring a “hold on” statement that 
allows multiple graphic elements to be superimposed. First, the core of the slab 
waveguide is drawn to the figure window as a rectangle using MATLAB’s fill() 
function. Two arrays x and y are calculated and passed to this function that contain 
the vertices working around the perimeter of the rectangle. The rectangle is drawn 
as a light color of gray as 0.8*[1 1 1]. After the core is drawn, the eigenmodes are 
drawn on top of this so that they can be visualized in relation to the geometry of the 
slab waveguide. To space the modes more easily, the eigenmodes are normalized so 
that the maximum value is 1. A for loop then draws the modes one at a time. The 
parameter x0 is calculated to be the horizontal position of where the mode profile 
will be plotted. Two lines are drawn to visualize the mode. First is a thick white 
line and the second is a narrower blue line. This trick gives the line a white glow 
that will allow the mode profile to stand out regardless of what colors are drawn 
in the background to represent the waveguide. The lines are then labeled with the 
effective refractive index of the mode using MATLAB’s text() function.
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Figure 6.13  First six eigenmodes from E mode analysis of a slab waveguide.

The first six eigenmodes calculated from this analysis and the effective refractive 
indices are shown in Figure 6.13 for the E mode and Figure 6.14 for the H mode. 
Inspection of these results shows that only three modes are supported by the slab 
waveguide for both E and H modes. This is obvious for two reasons. First, the field 
power for the guided modes is clearly confined to the vicinity of the core. The last 
three eigenmodes have power increasing away from the core so they are not modes 
guided by the slab. Second, the effective refractive indices of the unguided modes are 
less than or equal to the substrate refractive index. Guided modes have the majority of 
their power in the core, leading to effective refractive indices greater than the refractive 
indices outside of the core. Like with the rib waveguide analysis, the unguided modes 
are actually modes guided by the larger waveguide that are artificially formed when 
using Dirichlet boundary conditions at the grid boundaries. These do not have a 
physical meaning related to the slab waveguide and should be ignored.

6.3.3  Animating the Slab Waveguide Mode

This section demonstrates a fun and educational way to visualize a slab waveguide 
mode. A GIF animation of a slab waveguide mode propagating through a slab wave-
guide is generated using the technique described in Chapter 1. Lines 117 to 144 from 
the original code presented in Section 6.3.2 are replaced with lines 117 to 193 of the 
alternative code presented in Section 6.3.3. The revised code can be downloaded 
at https://empossible.net/fdfdbook/ and is called Chapter6_animatedslabmode.m. 
Lines 121 to 123 define the name and the number of frames of the GIF animation. 
Line 126 identifies which mode is to be animated. In this case, the second-order 
mode is chosen.
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Slab waveguide analysis is a one-dimensional problem, but a two-dimensional 
set of data is needed in order to calculate the field through a waveguide. Lines 
128 to 134 calculate a two-dimensional grid for this purpose. The physical size in 
the second dimension is made to be twice the size of the cross section of the slab 
waveguide. With the grid calculated, the mode is calculated across the entire two-
dimensional grid on lines 136 to 140. The mode is placed in each cross section of 
the grid, but the phase is added according to the effective refractive index of that 
mode using the following

	
Ey x,y( ) = ey x( )exp − jk0neffy( ) 	

(6.72)

After the complex field is calculated, lines 142 to 193 create the GIF anima-
tion following Chapter 1. Lines 145 to 147 of the main loop add the phase to the 
mode. This is the phase that will animate the mode. Lines 149 to 151 clear the fig-
ure window and issue the hold on command so that the field can be superimposed 
with the slab waveguide. The field is plotted using the pcolor() command on lines 
153 to 155. The slab waveguide is drawn in white directly on top of this using the 
fill() command. In order to see the field, the slab waveguide is given a level of 
transparency. The levels of transparency are calculated on lines 157 to 164 to con-
vey the relative refractive indices of the slab waveguide. The higher the refractive 
index, the less transparent. The three sections of the slab waveguide are drawn on 
lines 166 to 172. Lines 174 to 178 finish the figure and force the graphics to draw. 
Lines 180 to 192 capture a frame and add it to the GIF animation. Line 193 ends 
the main loop and the visualization is finished.

Figure 6.15 shows a single frame from the animation. The mode moves from 
left to right. The GIF animation can be inserted into a website or a presentation and 

Figure 6.14  First six eigenmodes from H mode analysis of a slab waveguide.
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is a very effective and interesting way to showcase the results of a slab waveguide 
calculation. Static images are quick and easy to generate, but are boring. You can 
stand above your competition by showing simple animations like this instead of 
static images.

6.3.4  Convergence

The most important step in any simulation is to perform a convergence study. To do 
this, identify all of the parameters in the code that can be adjusted to improve the 
accuracy and examine how the simulation results change as these parameters are 
varied. From this data, values for the parameters are identified where the simulation 
results are acceptable and calculation time is still sufficiently fast. To demonstrate, 
data will be presented for a convergence study of the rib waveguide covered previ-
ously. First, to study grid resolution, the effective refractive index of the fundamen-
tal mode was plotted as the grid resolution parameter NRES was increased from 1 
to 40. A typical convergence study will exhibit some sort of asymptotic behavior 
as the result converges to a final value. However, increasing grid resolution also 
increases simulation time and the memory required to perform the simulation. 
Both the effective refractive index and simulation time as a function of NRES are 
shown in Figure 6.16. Convergence seems to begin at around NRES=10. This value 

Figure 6.15  Single frame from an animation of the second-order slab waveguide mode.

Figure 6.16  Convergence study of grid resolution for rib waveguide analysis.
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for NRES can be used when only rough results are needed from the simulation. It is 
common to perform most of the preliminary simulations or start an optimization 
with such a choice for NRES. However, as a preliminary design is being refined, it 
is best to operate farther out on the convergence curve. A value of around NRES=30 
seems to be a point where minimal improvement in the effective index is achieved 
while simulation time increases significantly. This would be a good point to obtain 
a final result for a design.

The grid resolution is not the only parameter to study convergence. There are 
also the spacer regions to study in order to determine how big they need to be. Figure 
6.17 shows the effective refractive index of the fundamental mode and the simula-
tion time to analyze the rib waveguide as a function of b. Preliminary convergence 
is observed somewhere around 0.4λ0 to 0.5λ0 that is sufficient for obtaining fast 
and rough results. A spacer region approaching 1.0λ0 is better for higher accuracy.

Convergence studies are a form of parameter sweep where the results of the 
analysis are plotted as some parameter is varied over a range of values. In this case, it 
was the NRES and b parameters that were varied. If the FDFD code is written correctly 
using a dashboard, the convergence study is as easy as wrapping all of the code after 
the dashboard into a big for loop that iterates over all of the different values of NRES 
or b. Other parameters sweeps are just as easy and the topic is covered in Chapter 
9. It is important not to make any conclusions about the results of a simulation 
until convergence is studied and achieved. Convergence is rarely discussed in the 
literature and it is always assumed that the results provided are well converged. In 
commercial software, convergence studies are often done automatically for the user.

6.3.5  MATLAB Implementation for Calculating SPPs

Surface waves are electromagnetic modes confined at the interface of two semi-
infinite media [8]. Surface waves are very similar to modes in slab waveguides in 

Figure 6.17  Convergence study of spacer region for rib waveguide analysis.
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the sense that they are confined to a plane. In the context of FDFD, the numeri-
cal approach to calculate surface waves is identical to calculating modes in slab 
waveguides. Therefore, the MATLAB code described previously can be used here 
to calculate a surface wave. In the photonics community, a type of surface wave 
called an SPP is of great interest for subwavelength optics [9, 10] and has found 
many applications including sensors, waveguides, light sources, solar cells, and much 
more [11, 12]. An SPP is supported at the interface of a good metal and a dielectric. 
It involves a coupling between electromagnetic fields in the dielectric with oscil-
lations of electrons in the metal. Figure 6.18 shows the geometry for calculating 
SPPs at the interface of two materials. These materials can be set to a dielectric and 
a metal just through proper choice of the relative permittivities εr,d and εr,m. The 
dimensions b1 and b2 are not part of the definition of the structure supporting the 
SPP. These are numerical parameters that must be large enough to encompass the 
entire surface wave so that the top and bottom mediums look semi-infinite to the 
analysis. Also shown in this figure is a typical SPP confined at the interface. The 
mode decays exponentially in both directions away from the interface and typically 
decays more quickly on the metal side.

Boundary conditions require that the electric field tangential to a metal be 
equal to zero at the interface. The electric field of the E mode in FDFD is entirely 
tangential to the interface. If the electric field for the E mode is zero, this mode 
cannot describe SPPs. For this reason, it is only the H mode in FDFD that can 
describe SPPs. For an interface to support an SPP, the dielectric constant must have 
an opposite sign on either side of the interface [9]. The most common configuration 

Figure 6.18  Geometry of an SPP at the interface of a metal and dielectric.
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that satisfies this is a dielectric–metal interface. Given the relative permittivity of 
the dielectric εr,d and the relative permittivity of the metal εr,m, the phase constant 
β for an SPP is given by [9]

	
b = k0

er,der,m

er,d + er,m 	
(6.73)

Equation (6.73) will be used to estimate the eigenvalue for the FDFD eigenmode 
analysis. The phase constant β is related to the effective refractive index neff of the 
surface wave through neff = β/k0. Combining this relation with (6.65) and (6.73) 
gives an expression to calculate the eigenvalue !g 2  for the surface wave analysis.

	
!g 2 ≈ −

er,der,m

er,d + er,m 	
(6.74)

For this example, the dielectric was set to fused silica with εr,d = 2.31 and the 
metal was set to silver where εr,m ≈ −9.98 − j0.26 at a wavelength of λ0 = 500 nm. 
Given these values, the theoretical effective refractive index of the SPP was calculated 
to be neff = 1.73 − j0.0068 using (6.73).

The MATLAB code for calculating SPPs can be downloaded at https://empos-
sible.net/fdfdbook/. The file is named Chapter6_spp.m. The code is essentially the 
same as that used for slab waveguide analysis. The header extends from lines 1 to 
10 and only differs on line 1 where the name of the file is “Chapter6_spp.m.” The 
dashboard extends from lines 12 to 27. Line 17 defines the free space wavelength 
to be 500 nm. Lines 19 to 23 define the material properties and the dimensions of 
the superstrate and substrate. The parameter erd defines the relative permittivity 
of the dielectric on the top and the parameter erm defines the relative permittivity 
of the metal on the bottom. The dimensions of the top and bottom mediums, b1 
and b2, must be large enough to fully encompass the surface wave. The results of 
the simulation were found to converge when the dimensions were set to b1 = 2λ0 
and b2 = 1λ0. The grid parameters are defined on lines 25 to 27. The maximum 
refractive index nmax is calculated from the maximum real part of the relative per-
mittivities of the two mediums. The parameter NRES controls the grid resolution 
and is the number of points per wavelength the grid will have. This parameter is 
set to a value of 200 in the code provided, which is at the very start of where the 
analysis begins to converge.

Lines 29 to 47 calculate the grid for the problem. Line 34 calculates the grid 
resolution dx as the minimum wavelength lam0/nmax divided by NRES. There is no 
need to snap the grid to any critical dimension because there are no dimensions 
for this simulation. The dimensions b1 and b2 should not affect the properties of 
the surface wave at all if they are large enough, so there is no need to resolve these 
with an exact number of grid cells. Lines 36 to 39 calculate the size of the grid. 
The physical size Sx is simply the sum of the sizes of the top and bottom mediums 
b1+b2. Lines 41 to 43 calculate the axis array xa that defines the positions of the 
points along the grid. The value of b1 is subtracted on line 43 to make xa=0 at the 
interface between the two mediums. The 2× grid parameters are calculated on lines 
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45 to 47. The 2× grid is useful for this simulation because the H mode has two 
electric field components at different positions on the grid.

The two mediums are built onto the grid on lines 49 to 68. First, lines 53 to 55 
initialize the arrays ER2 and UR2 to all ones. Second, lines 57 to 60 incorporate the 
top and bottom mediums into the array ER2. The variable nx calculated on line 58 
represents the array index for the bottom of the top medium. Line 59 fills in the 
points on the grid representing the top medium and line 60 fills in the points repre-
senting the bottom medium. Third, lines 62 to 65 extract the material tensor arrays 
ERxx, ERzz, and URyy on the Yee grid from the 2× arrays on the 2× grid. Since it is 
only the H mode that will ever be of interest in this code, the other material tensor 
arrays ERyy, URxx, and URzz were not calculated.

The FDFD analysis of the surface wave is performed on lines 67 to 91. First, 
lines 71 to 74 diagonalize the material tensor arrays ERxx, ERzz, and URyy. Second, 
lines 76 to 81 build the derivative matrices needed to build the eigenvalue problem. 
Third, the matrices A and B for the generalized eigenvalue problem are calculated on 
lines 83 to 85. These are the same matrices used for slab waveguide analysis. Fourth, 
lines 87 to 91 solve the generalized eigenvalue problem. Line 88 calculates the target 
eigenvalue. In this case, the exact eigenvalue is known and is calculated using (6.74). 
The generalized eigenvalue problem is solved using the built-in function eigs() on 
line 89. Only a single mode is calculated because there are no higher-order modes 
when dealing with surface waves. The effective refractive index of the surface wave 
is calculated on lines 90 and 91 exactly how it was for slab waveguide analysis.

At this point in the code, the analysis is finished. Lines 93 to 118 visualize the 
surface wave by superimposing it onto the top and bottom mediums. The effective 
refractive index is reported in the title of the figure. Lines 97 to 99 clear the figure 
window and issue the hold on command so the surface wave can be superimposed 
onto the top and bottom mediums. Lines 101 to 106 draw the top and bottom 
mediums using the fill() command. This is done before plotting the surface 
wave so that the mediums appear behind the surface wave. Lines 108 to 111 plot 
the surface wave. Line 109 normalizes the wave so it has unit amplitude. Line 110 
draws a wide white line and then line 111 draws a narrower blue line. These two 
lines together give the blue line a nice white outline that helps it stand out over the 
colors in the background. Lines 113 to 118 finish the plot and give the plot its title 
with the effective refractive index.

While the MATLAB program is complete, the simulation is not finished until 
a convergence study is performed. This is particularly important for SPPs that con-
verge slowly. Figure 6.19 shows a convergence study performed for the calculation 
of the SPP. The figure shows the real and imaginary parts of the effective refractive 
index as a function of the grid resolution parameter NRES. Preliminary convergence 
was observed at around NRES=200. Very slow convergence to the theoretical values 
is observed above this. The very fine grid resolution is typical for SPP simulations.

The results produced by the MATLAB code for two different points along the 
convergence trend are shown in Figure 6.20. Both produce a similar field profile, 
but the effective refractive index differs the most. The theoretical value for the effec-
tive refractive index of this SPP is neff = 1.7335 − j0.006794. Observe that the field 
decays most quickly in the metal. This is a typical behavior of SPPs.
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Figure 6.20  Results from SPP calculation for two different values of NRES.

Figure 6.19  Convergence study for SPP calculation.

6.4	 Implementation of Transmission Line Analysis

Analysis of transmission lines is nothing more than rigorous hybrid mode analysis 
followed by some additional postprocessing steps to calculate the transmission line 
parameters. Very often at radio frequencies, metals are specified solely in terms of 
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their conductivity σ and dielectrics are specified in terms of their dielectric con-
stant εr and loss tangent tanδ. However, the FDFD analysis describes all materials 
in terms of their complex permittivity and complex permeability. From Chapter 2, 
the complex relative permittivity εr̃ of a metal can be estimated from just the con-
ductivity σ as

	
!er ≅ 1 + s

jwe0 	
(6.75)

Furthermore, the complex relative permittivity εr̃ of a dielectric can be calculated 
from the real-valued dielectric constant εr and the loss tangent tanδ according to

	
!er ≅ er 1 − j tan d( ) 	 (6.76)

Given the complex relative permittivity for the metal and dielectric, ordinary 
FDFD analysis of the transmission line can be performed using rigorous hybrid 
mode analysis.

In order to calculate correct transmission line parameters, the magnetic field 
components should be denormalized after the eigenmodes are calculated. This can 
be accomplished in a single step by incorporating the denormalization hi = !hi /(−jη0) 
into (6.37). This is

	

hx
hy

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 1

− jh0
!g Q

ex
ey

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ 	

(6.77)

Given the electric fields in the vicinity of the transmission line, the potential 
difference V0 between the two conductors is calculated from a line integral of 
the electric field 

!
E  from the conductor at higher potential to the conductor at 

lower potential.

	
V0 =

L1

L2

∫
!
E i d

!
ℓ

	
(6.78)

Given the denormalized magnetic fields in the vicinity of the transmission line, 
the current I0 through each of the conductors is calculated from a closed-contour 
line integral of the magnetic field 

!
H  around one of the conductors.

	
I0 =

!
H i d

!
ℓ

L
#∫

	
(6.79)

It follows that the characteristic impedance Z0 is the voltage V0 divided by the 
current I0.

	
Z0 =

V0

I0 	
(6.80)

The complex propagation constant γ is calculated by denormalizing the normal-
ized propagation constant γ ̃ that was calculated from the eigenvalue.
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	 g = k0
!g 	 (6.81)

Recall from Chapter 2 that the distributed transmission line parameters R, L, 
G, and C are related to the characteristic impedance Z0 and complex propagation 
constant γ through

	
Z0 = R + jwL

G + jwC 	
(6.82)

	 g = R + jwL( ) G + jwC( ) 	 (6.83)

Solving (6.82) and (6.83) for R, L, G, and C gives

	
R = Re gZ0⎡⎣ ⎤⎦ 	

(6.84)

	
L = 1

w Im gZ0⎡⎣ ⎤⎦
	

(6.85)

	
G = Re

g
Z0

⎡

⎣
⎢

⎤

⎦
⎥

	
(6.86)

	
C = 1

w Im
g
Z0

⎡

⎣
⎢

⎤

⎦
⎥

	
(6.87)

To demonstrate, the microstrip transmission line illustrated in Figure 6.21 
will be simulated at 1.0 GHz and the transmission line parameters R, L, G, and C 
will be calculated from the results. The microstrip is formed from copper onto an 
FR-4 substrate. The width of the copper line is 1 mm and its thickness is 35 μm. 
The thickness of the substrate between the ground plane and the line is 0.5 mm. 
At 1.0 GHz, copper has a conductivity of 5.8 × 107 Ω ⋅ m and FR-4 has a dielectric 
constant of 4.4 and a loss tangent of 0.03.

Figure 6.21  Geometry of a microstrip transmission line. For this example, w = 1 mm,  
h = 0.5 mm, t = 35 μm, εr = 4.4, tanδ = 0.03, and σ = 5.8 × 107 Ω ⋅ m.
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The MATLAB code that analyzes the microstrip depicted in Figure 6.21 can 
be downloaded at https://empossible.net/fdfdbook/. The file is named Chapter6_
microstrip.m. The majority of the code follows the ordinary hybrid mode analysis 
covered previously so only key differences in the MATLAB code will be discussed. 
The dashboard extends from lines 25 to 52. For source parameters, it is only the 
operating frequency that is defined and the free space wavelength is calculated from 
it. The material properties are defined from lines 34 to 41 in three parts. The first 
part defines the conductivity sigma of the copper and then calculates the complex 
dielectric constant erm from that. The second part defines the properties of the FR-4 
in terms of the dielectric constant er and loss tangent tand. From these, the complex 
dielectric constant erd is calculated. Last, the dielectric constant era of the material 
above the microstrip is defined as air. The dimensions of the microstrip are defined 
from lines 43 to 46 where w is the width, h is the thickness of the dielectric, and t 
is the thickness of the microstrip line. Last, the grid parameters are defined from 
lines 49 to 52. A new parameter NDIM is defined that specifies how many cells the 
minimum feature size should be resolved with. For the microstrip line as defined, 
this minimum dimension is width w in the x-direction and conductor thickness t 
in the y-direction. For the microstrip, no spacer region is needed below the line due 
to the presence of the ground plane. For this reason, the spacer region below the 
line was set to a size of zero.

The grid is calculated on lines 54 to 93. Compared to the rib waveguide analysis, 
there is an extra step here to ensure the minimum dimensions are resolved by at least 
NDIM number of points. This happens from lines 62 to 73. Building the microstrip 
onto the Yee grid is performed on lines 95 to 130. Note that the 2× grid was not 
used here because the rectangular geometry of the microstrip makes it easy to assign 
permittivity values directly to the tensor arrays ERxx, ERyy, and ERzz.

The finite-difference analysis from lines 132 to 176 is nearly identical to that 
of the rib waveguide but has two key differences. The first difference is the guess 
taken for the estimate of the eigenvalue of the lowest order mode. The incorpora-
tion of metals into the analysis makes estimating the eigenvalue for the fundamental 
mode more difficult than it was for dielectric waveguides. Line 159 uses (6.88) to 
estimate the effective relative permittivity of a microstrip transmission line [13].

	
er,eff ≅

er + 1
2

−
er − 1

2 1 + 12 h/w 	
(6.88)

Given the effective permittivity, the estimate for the eigenvalue is

	
g0

2 ≅ −Re er,eff
⎡
⎣

⎤
⎦ 	

(6.89)

The second difference is that after the eigenvalue problem is solved, the complex 
propagation constant γ is calculated instead of the effective refractive index. This 
tends to be the more meaningful parameter for radio frequency circuit analysis [14]. 
In MATLAB, γ ̃ is given the name gamman. Lines 164 to 166 extract ex and ey from 
the eigenvector matrix and calls them Ex and Ey. Line 168 uses (6.77) to calculate 
the denormalized magnetic field components hx and hy. Lines 172 to 176 reshape 
the field components back to the two-dimensional grid.
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The last section of code from lines 178 to 228 postprocesses the fields calculated 
by the FDFD analysis to calculate the transmission line parameters and to visualize 
the field. Lines 183 to 184 use the array indices calculated when building the 
microstrip to perform the line integration of the electric field 

!
E  illustrated in Figure 

6.22(a). This step calculates the potential difference V0 between the ground plane 
and the microstrip line using (6.78). In this case, the positive direction is downward, 
consistent with the coordinates chosen for the analysis. The voltage V0 calculated 
on line 184 is a complex number because it has an amplitude and a phase. Lines 
186 to 192 also use the array indices calculated when building the microstrip to 
perform a line integration of the magnetic field 

!
H  that completely encircles the top 

conductor as illustrated in Figure 6.22(b). This step calculates the current I0 through 
the line using (6.79) and is also a complex number because it has an amplitude and 
a phase. The variable s defined on line 187 defines the number of cells away from 
the microstrip line the path of integration should take. Lines 188 to 191 calculate 
the line integral above the line, to the right of the line, below the line, and to the 
left of the line, respectively. Line 192 sums the integrals to get total current I0, but 
negative signs are used where the integrations happen in the opposite direction of 
the Cartesian coordinates used in the analysis.

At this point, the difficult calculations are finished. Line 195 calculates the 
characteristic impedance Z0 of the line directly from the voltage V0 and current I0 
that was just calculated using (6.80). The complex propagation constant gamma is 
calculated on line 196 from the normalized complex propagation constant gamman 
using (6.81). The effective refractive index is then calculated on line 197 from the 

Figure 6.22  (a) Line integral of the electric field to calculate the potential difference between 
conductors. (b) Closed-contour line integral of the magnetic field to calculate the current 
through the line.
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imaginary part of gamman. Lines 199 to 203 calculate the distributed transmission 
line parameters R, L, G, and C using (6.84) to (6.87).

The last step in the code displays the results of the FDFD analysis. Lines 205 
to 213 display the numerical values for the transmission line parameters in the 
command window. Lines 216 and 217 calculate the magnitude of the electric field 
and normalize it to have a maximum value of one. Lines 219 to 230 visualize the 
electric field magnitude using MATLAB’s pcolor() function.

After the program is written and runs correctly, it is a big mistake to assume the 
simulation is finished and the answer it gives is correct. A convergence study must be 
performed and the program must be benchmarked with known cases. The example 
given in this section can be used to benchmark your own code. In the dashboard, 
there are three variables that all affect the accuracy of the analysis. These are NRES 
that controls grid resolution relative to wavelength, NDIM that controls grid resolution 
relative to the minimum dimension, and SPACER that controls how much space to 
place around the device. Acceptable results were found for the values given in the 
dashboard and the transmission line parameters that come from the analysis are 
summarized in Table 6.1.
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C H A P T E R  7

FDFD for Calculating Photonic Bands

This chapter will discuss the formulation and implementation of finite-difference 
frequency-domain (FDFD) for calculating photonic band diagrams and isofrequency 
contours (IFCs). Photonic band diagrams are useful for identifying bandgaps and 
IFCs are useful when analyzing the dispersion of periodic structures. A brief dis-
cussion of constructing photonic band diagrams and IFCs will be covered prior 
to the implementation. Describing the theory of periodic structures and photonic 
bands is beyond the scope of this book so it will not be covered here. A very good 
introduction to the topic can be found in [1, 2]. The key concepts to understand 
are lattice vectors, Bloch wave vectors, unit cells, Brillouin zones (BZs), irreducible 
BZs (IBZs), and the key points of symmetry.

7.1	 Photonic Bands for Rectangular Lattices

A photonic band diagram is a fast and simple, yet incomplete, description of the 
electromagnetic properties of a periodic structure. It is essentially a map of the 
frequencies of the modes that are allowed to propagate through a periodic structure 
as a function of the Bloch wave vector 

!
b.  The construction of a photonic band 

diagram is illustrated in Figure 7.1. It starts by drawing the BZ, highlighting the 
IBZ, and identifying the key points of symmetry around the IBZ, as depicted in 
the top-left of Figure 7.1. From there, a path is chosen around the perimeter of the 
IBZ that passes through the key points of symmetry. In this case, it was chosen 
to start at the origin ΓΓ, progress to the key point X, then up to the key point M, 
and then back to ΓΓ. The bottom-left of Figure 7.1 shows this path unfolded into a 
straight line. The unfolded path becomes the horizontal axis of the photonic band 
diagram. Working through this path in small increments, each point corresponds 
to a different Bloch wave vector. For each Bloch wave vector, the periodic structure 
is analyzed by solving the wave equation as an eigenvalue problem. The eigenvalues 
obtained from the solution convey the frequencies of the modes that are supported 
by the photonic crystal. These frequencies are plotted vertically above the point 
along with the horizontal axis corresponding to the current Bloch wave vector. If 
enough points are used along the horizontal axis, the discrete frequencies align 
to form the photonic bands. In the formulation presented in Section 7.2, k2

0 is the 
eigenvalue and is interpreted as frequency squared. It may seem odd to interpret the 
free space wavenumber k0 as frequency, but it is related to frequency ω through k0 
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= ω∕c0. Therefore, k0 differs from frequency only by the constant c0 which is the 
speed of light in a vacuum.

There are two primary ways to solve an eigenvalue problem Ax = k2
0x. The 

fastest approach calculates only the eigenvalues of the eigenmodes, while a slower 
approach calculates both the eigenvalues and the eigenvectors. Only the eigenvalues 
are needed for calculating photonic bands. The eigenvectors are needed only if the 
fields associated with the modes are to be visualized or used in some other way. The 
allowed electromagnetic modes inside of a periodic structure are called Bloch modes. 
Instead of plotting the frequencies as k2

0, they are normalized. The ith normalized 
frequency ωn,i is calculated from the ith eigenvalue k2

0,i according to

	
wn, i =

a
2p k0,i

2 = a
l0,i 	

(7.1)

The normalized frequency ωn has the very useful form of lattice spacing a divided 
by free space wavelength λ0. This normalization makes designing photonic crys-
tals from band diagrams very easy. For example, suppose something interesting is 
observed at a normalized frequency of ωn = 0.7 and it is desired to design a photonic 
crystal to operate at a free space wavelength λ0 = 1300 nm. The lattice spacing of 
the photonic crystal should be a = ωnλ0 = (0.7)(1300 nm) = 910 nm. For whatever 
crazy reason, the vertical axes of photonic band diagrams in the literature never 
seem to be labeled with a∕λ0. Instead, they are labeled with either ωn or even more 
often as ωa∕2πc0. It is the author’s opinion that ωa∕2πc0 is a poor label because it 
is unnecessarily confusing and provides little insight into the actual meaning and 
utility of the normalized frequency.

It should be obvious that analyzing a photonic crystal only around the perim-
eter of the IBZ is missing information. To get a complete picture of the bands, the 
photonic crystal must be analyzed throughout the entire area of the IBZ. This data 
can then be unfolded to recover the data for the full BZ. To simplify this, envision 
a double for loop iterating over the entire BZ, and for each point simulated within 
the BZ, the discrete eigenfrequencies are plotted above the BZ. When this is done 
and the sampling is fine enough, the full photonic bands emerge as illustrated in 

Figure 7.1  Construction of a photonic band diagram.
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Figure 7.2(a). To understand how the full bands relate back to the photonic band 
diagram, the IBZ and key points of symmetry were added to this figure.

Instead of viewing the full photonic band diagram, as shown in Figure 7.2(a), 
it is more common to plot just the IFCs. Figure 7.2(b) illustrates how the IFCs are 
constructed from the full bands and how they are typically visualized. For clarity, 
only the second band is shown. Three planes representing three fixed frequencies 
slice through the second band. The IFCs are the lines formed where the constant 
frequency planes intersect the bands. The intersection lines are shown by themselves 
at the bottom of Figure 7.2(b). The lines at the bottom show how IFCs are typically 
visualized. If more constant-frequency planes are added, more IFC lines will appear. 
It is very important to understand how the IFCs relate back to the full bands and 
how the full bands relate back to the photonic band diagram.

The following sections explain how to calculate the photonic bands using the 
FDFD method for rectangular lattices. It is shown how to calculate and plot both 
photonic band diagrams and IFCs. Calculating photonic bands of oblique lattices like 
hexagonal photonic crystals requires modification to the basic FDFD algorithm [3, 
4] that falls outside of the scope of this book. It is possible to choose a rectangular 
unit cell that perfectly represents a hexagonal lattice when arrayed. Analyzing this 
lattice, however, does not sufficiently enforce the phase conditions for a hexagonal 
array. Incorrect bands will be calculated if this is attempted.

7.2	 Formulation for Rectangular Lattices

The starting point in FDFD for photonic band calculations is Maxwell’s curl equa-
tions expanded into Cartesian coordinates. In these equations, the magnetic field 

Figure 7.2  Concept of IFCs and relation to the photonic bands. (a) Full bands calculated 
throughout entire BZ. (b) Three IFCs constructed from the second band.
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is normalized according to !
"

H = − jh0

"
H. The grid coordinates are not normalized 

because k0 will be the output of the algorithm and will not be known until the algo-
rithm finishes. From Chapter 4 for two-dimensional analysis, the matrix equations 
when frequency is not known were

	
Dy

eez = k0µµxx
!hx 	

(7.2)

	
−Dx

eez = k0µµyy
!hy 	

(7.3)

	
Dx

eey − Dy
eex = k0µµzz

!hz 	 (7.4)

	
Dy

h !hz = k0εεxxex 	
(7.5)

	
−Dx

h !hz = k0εεyyey 	
(7.6)

	
Dx

h !hy − Dy
h !hx = k0εεzzez 	

(7.7)

For photonic band calculations, the derivative matrices must incorporate peri-
odic boundary conditions (PBCs) at all boundaries. For the PBCs, the Bloch wave 
vector 

!
b  is used in place of 

!
kinc  for the phase terms. Observe that (7.2) to (7.7) 

have separated into two independent sets of matrix equations. The first set will be 
called the E mode (TM) because the set only contains a single electric field term ez 
and the final equation to be solved will have only this term.

	
Dx

h !hy − Dy
h !hx = k0εεzzez 	 (7.8)

	
Dy

eez = k0µµxx
!hx 	 (7.9)

	
−Dx

eez = k0µµyy
!hy 	

(7.10)

A matrix wave equation in the form of an eigenvalue problem is derived by solv-
ing (7.9) for !hx ,  solving (7.10) for !hy  and substituting both of these expressions 
into (7.8) to put the equation solely in terms of the electric field term ez. This gives

	
− Dx

hµµyy
−1Dx

e + Dy
hµµxx

−1Dy
e( )ez = k0

2εεzzez 	
(7.11)

	

!hx = 1
k0

µµxx
−1Dy

eez
	

(7.12)

	

!hy = − 1
k0

µµyy
−1Dx

eez
	

(7.13)

Equation (7.11) is the eigenvalue problem to be solved to calculate E mode (TM) 
bands. The eigenvalue is k2

0 and the eigenvectors are ez. Most of the time, it is only 
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the eigenvalues that are obtained. If it is desired to calculate the field ez of the Bloch 
modes, it becomes necessary to calculate the eigenvectors. Equations (7.12) and (7.13) 
are only needed if !hx  or !hy  field components are desired to be calculated from ez.

The second set of equations from (7.2) to (7.7) will be called the H mode (TE) 
because the set only contains a single magnetic field term !hz  and the final equation 
to be solved will have only this term.

	
Dx

eey − Dy
eex = k0µµzz

!hz 	
(7.14)

	
Dy

h !hz = k0εεxxex 	 (7.15)

	
−Dx

h !hz = k0εεyyey 	
(7.16)

A matrix wave equation in the form of an eigenvalue problem is derived by solv-
ing (7.15) for ex, solving (7.16) for ey and substituting both of these expressions into 
(7.14) to put the equation solely in terms of the magnetic field term !hz.  This gives

	
− Dx

e εεyy
−1Dx

h + Dy
eεεxx

−1Dy
h( ) !hz = k0

2µµzz
!hz 	

(7.17)

	
ex = 1

k0

εεxx
−1Dy

h !hz
	

(7.18)

	
ey = − 1

k0

εεyy
−1Dx

h !hz
	

(7.19)

Equation (7.17) is the eigenvalue problem to be solved to calculate H mode (TE) 
bands. The eigenvalue is k2

0 and the eigenvectors are !hz.  Equations (7.18) and (7.19) 
are only needed if ex or ey field components are desired to be calculated from !hz.

7.3	 Implementation of Photonic Band Calculation

Calculating photonic bands using FDFD consists of three major steps, as illustrated 
in Figure 7.3. Step 1 calculates everything that is needed for the FDFD analysis to 
happen and starts by initializing MATLAB. It is followed by the dashboard, the 
section of code where all of the simulation parameters are defined. After the dash-
board, the setup moves on to calculating the grid, which includes the number of 
cells and the resolution. With the grid calculated, a single unit cell of the periodic 
structure is built onto the grid producing the tensor arrays ERxx, ERyy, ERzz, URxx, 
URyy, and URzz used by the FDFD method. Ordinary photonic bands apply only 
to photonic crystals of an infinite extent. This can be modeled in FDFD with just 
a single unit cell as long as PCBs are used at all boundaries. After converting the 
material arrays to diagonal matrices, the setup moves on to calculate the list of Bloch 
wave vectors that will each be simulated separately. For photonic band diagrams, 
this entails choosing a path around the IBZ and resolving the path with enough 
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steps that the eigenvalues will form continuous bands when they are plotted. For 
IFCs, the list of Bloch wave vectors will fill the entire area of the IBZ.

With the simulation setup, the code performs the actual FDFD analysis. It is 
composed of a large loop that iterates over the list of Bloch wave vectors calculated 
in the setup. The first task inside of this loop is to build the derivative matrices where 
the Bloch wave vector 

!
b  is used in place of 

!
kinc  for the PBCs. The second task is to 

calculate the A and B matrices of the eigenvalue problem from the diagonal materials 
matrices and the derivative matrices. The eigenvalue problem is constructed from 
(7.11) for the E mode (TM) or from (7.17) for the H mode (TE). The third task is to 
solve the eigenvalue problem for just the eigenvalues using the MATLAB function 
eigs(). It should be mentioned that the corresponding eigenvectors can also be 
calculated if it is desired to know the fields. The eigenvalues are recorded in an array 
before the loop repeats. It is usually bad practice to calculate the eigenvalues of all 
the eigenmodes. Instead, it is more numerically efficient to calculate only a small 
set corresponding to the lowest-order eigenmodes. It is rare for the higher-order 
modes of a photonic crystal to be used because the bands are so dense it is hard to 
isolate them for practical use. This is accomplished by calculating only the smallest 
eigenvalues. MATLAB makes obtaining a solution like this very easy.

After the eigenvalues are calculated for each Bloch wave vector, they are 
normalized according to (7.1). If the eigenvectors were also calculated, the other 
field components can be calculated at this point if they are needed. For photonic 
band diagrams, only the eigenvalues are required. The results are then visualized in a 
professional photonic band diagram. It is the convention in photonic band diagrams 
to illustrate the BZ with the IBZ highlighted and the key points of symmetry labeled 

Figure 7.3  Block diagram of FDFD calculation of photonic bands.
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so that the horizontal axis can be interpreted. Sometimes a picture of the lattice is 
also provided.

7.3.1  Description of MATLAB Code for Calculating Photonic Band Diagrams

The MATLAB code described here calculates the photonic band structure of the 
two-dimensional lattice shown in Figure 7.4. The lattice is a square array of air 
cylinders cut through a dielectric slab. The lattice spacing is a, the radius of the 
holes is r = 0.48a, the relative permittivity of the dielectric is εfill = 12.0, and the 
relative permittivity of the holes is εhole = 1.0. It is typical to specify the lattice 
spacing simply as a=1. That is because the results of the simulation can be scaled 
to operate at any frequency or wavelength. It is also unnecessary to specify the 
thickness of the dielectric slab because the analysis assumes it is infinitely thick in 
the z-direction. It is important to remember that every simulation is always three-
dimensional. However, when the device is infinitely extruded in the z-direction and 
wave propagation is restricted to the xy plane as illustrated in Figure 7.4, the math of 
the analyses reduces to just two dimensions. The basic band structure calculations 
are for infinitely periodic devices, but the analysis is fast and usually approximates 
the behavior of a finite lattice very well.

The MATLAB code described here can be downloaded at https://empossible.
net/fdfdbook/ and is called Chapter7_photonicbanddiagram.m. Lines 1 to 24 are 
the header and dashboard. MATLAB is initialized by closing all figure windows 
with close all, clearing the command window with clc, and the most important 
thing is to clear all variables from memory with clear all. Next is the dashboard 
where all of the hard-coded numbers that control the entire simulation are defined. 
The first group of code in this dashboard defines all of the parameters that describe 
the photonic crystal to be analyzed. This includes the lattice spacing a, the radius 
of the holes r, and the relative permittivity of the holes erhole and the dielectric 
erfill. The lattice spacing a is set to the numerical value of 1, and there is rarely 
an occasion to define it differently. It is not necessary to specify the units of the 
lattice spacing a because the normalized frequency will be calculated relative to a. 

Figure 7.4  Square lattice for photonic band calculation. For this device, r = 0.48a, εhole = 1.0, 
and εfill = 12.0.
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The second group of code in this dashboard defines all of the parameters related to 
the numerical calculations. This includes the size of the grid used to build the unit 
cell Nx and Ny, the approximate number of points to be used along the horizontal 
axis of the band diagram NBETA, the number of photonic bands to calculate for each 
mode NBANDS, and the maximum normalized frequency wnmax to show on the band 
diagram. A convergence study is needed in order to determine how many points 
should be used on the grid. It is recommended to start with values like Nx=Ny=10 
until the code is working to ensure it runs fast while the code is being developed. 
It is similarly recommended to start with a low value for NBETA around 20 to 50. 
This number does not affect the accuracy of the simulation at all, but higher values 
will resolve the bands more finely. Published band diagrams usually contain at least 
200 points. It is only necessary to calculate as many bands as will appear below 
the maximum frequency to be displayed wnmax. This usually puts NBANDS on the 
order of 5 to 10. The higher-order bands (10th band and above) tend to get crazy 
and are rarely of interest in practice. wnmax is set to focus the attention of the band 
diagram on just the bands of interest.

The MATLAB code to calculate the grid optimized to represent the unit cell 
resides in lines 24 to 41. The number of points, Nx and Ny, was specified in the 
dashboard so the only remaining parameters to calculate for the Yee grid are the 
resolution parameters dx and dy. Given the size of the unit cell a, the resolution 
parameters are easily calculated as dx=a/Nx and dy=a/Ny. From these, the 2× grid 
parameters Nx2, Ny2, dx2, and dy2 are calculated followed by the grid axes and a 
meshgrid on the 2× grid. Observe that the meshgrid is centered at (0, 0) by center-
ing both axis vectors xa2 and ya2 about zero.

The next step is to build a single unit cell on the grid. The MATLAB code that 
performs this operation resides in lines 42 to 65. The unit cell is constructed on 
the 2× grid due to the curved geometry. Line 47 builds a circle of radius r centered 
in the array ER2. At this point, the array ER2 contains ones inside of the circle and 
zeros outside. For FDFD analysis, line 48 converts the array ER2 to numerical values 
of relative permittivity. Line 49 sets the relative permeability to all ones. Given the 
unit cell on the 2× grid, the next group of code extracts the material tensor arrays 
ERxx, ERyy, ERzz, URxx, URyy, and URzz that are defined on the standard Yee grid. 
The last group of code in this section visualizes the ER2 array to the first of three 
subplots in the current figure window.

The next step in the code is to calculate the list of Bloch wave vectors that steps 
around the perimeter of the IBZ in small increments. This is perhaps the most 
difficult part of the band calculation and the code to do this extends from lines 66 to 
102. Lines 71 and 72 calculate the reciprocal lattice vectors T1 and T2 that describe 
the symmetry and size of the BZ [2]. There are only two lattice vectors because it is 
a two-dimensional lattice being analyzed. The reciprocal lattice vector T1 is in the 
x-direction and its magnitude is set equal to the width of the full BZ, ⎪

!
T1⎪ = 2π∕a. 

Reciprocal lattice vector T2 is in the y-direction and its magnitude is set equal to 
the height of the full BZ, ⎪

!
T2⎪ = 2π∕a. Lines 75 to 77 calculate the key points of 

symmetry at the vertices of the IBZ. These are G, X, and M. It is a good practice to 
calculate the key points of symmetry from the reciprocal lattice vectors, as is done 
here. The key point ΓΓ (G in MATLAB) is always at the center of the BZ so it is set 
equal to position zero. The key point X is located at the far-right side of the BZ. This 
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distance is half of the BZ so X is calculated as half of the reciprocal lattice vector 
T1. The key point M is located at the upper-right corner of the BZ and is calculated 
as half of T1 plus half of T2. Line 80 creates an array KP containing the key points 
of symmetry in the order that defines the path that will be taken around the IBZ. 
Line 81 records the symbols for the key points of symmetry that will be used when 
plotting the photonic band diagram. These are stored in the sequence KL.

The most complicated part of calculating the list of Bloch wave vectors resides 
from lines 83 to 102. These two sections of code calculate the full list of Bloch 
wave vectors that will define the horizontal axis of the photonic band diagram. 
The spacing of the points corresponding to discrete values of the Bloch wave vector 
will be approximately equal. However, it is necessary to convey the relative lengths 
of the edges of the IBZ by using more points along the longer edges. To calculate 
the spacing, lines 84 to 88 calculate the total length of the path taken around the 
IBZ and store that value in the variable LIBZ. This is done by adding the length of 
each individual edge in the chosen path. Observe that this piece of code functions 
correctly no matter how many, or in what order, the key points of symmetry are 
specified in the variable KP. It would be very bad practice to hard code this loop to be 
for m = 1 : 3 because this would only ever work for three points. Lines 91 to 101 
calculate the list of Bloch wave vectors in a way that maintains the relative lengths 
of the edges taken along the IBZ. The variable dibz calculated on line 91 is the 
approximate length of the increments as the total length divided by the number beta 
points, dibz = LIBZ/NBETA. Next, the list of Bloch wave vectors BETA is initialized 
with the first key point of symmetry on line 92. The array KT will contain the array 
indices of BETA that correspond to the key points of symmetry. It is initialized on 
line 93 with a value of 1 because the first element in the array BETA is a key point 
of symmetry. Later, KT will be used as tick mark positions for the key points of 
symmetry when creating the photonic band diagram. NBETA is the number of points 
along the horizontal axis. It is recalculated after the list of Bloch wave vectors is 
formed. NBETA is initialized here to 1 on line 94 because the array BETA contains 
only a single Bloch wave vector at this place in the code. Starting at line 95, the loop 
iterates over each edge around the IBZ so that its endpoints are defined by the key 
points of symmetry. dK is a vector pointing from the first key point to the second 
key point along the IBZ edge. N is the number of Bloch wave vectors along the edge 
and is calculated as the length of the edge ⎪dK⎪ divided by the increment length 
dibz. Line 98 adds all of the points along the IBZ edge, extending from one point 
away from the first key point all the way to the last key point along the edge. The 
first number added to the end of the array BETA starts one point away from the key 
point of symmetry because the key point will already be the last element entered in 
the array BETA. After the points are added to BETA, the number of points is added to 
NBETA to keep track of the total number of points in the array BETA. The last point 
added to the array BETA is a key point so its array index is recorded in the array KT. 
After completing all of this, it is time to calculate the photonic bands!

Before iterating through the list of Bloch wave vectors, two things are taken 
care of in lines 107 to 117. First, the material tensor arrays ERxx, ERyy, ERzz, URxx, 
URyy, and URzz must be converted into diagonal matrices. This is done in three steps. 
First, they are reshaped into one-dimensional arrays using ERxx(:). Second, they 
are made sparse using sparse(). Third, the sparse one-dimensional array is placed 
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along the center diagonal of a square sparse matrix using diag(). All of this could 
also have been accomplished using the spdiags() function built into MATLAB. 
The last task before entering the main loop is to initialize the arrays that will store 
the band data. The first array WNTE will store the normalized frequencies for the 
TE mode and the second array WNTM will store the normalized frequencies for the 
TM mode.

The MATLAB code for the main loop that calculates the band data resides 
from lines 119 to 147. The main loop iterates nbeta from a value of 1 up to NBETA, 
which is the total number of points along the horizontal axis of the photonic band 
diagram. The first step in the main loop is to fetch the Bloch wave vector for the 
current iteration from the array BETA and store it in the variable beta. The second 
step is to build the derivative matrices that will be used to calculate the eigenvalue 
problems for both TE and TM modes. The derivative matrices are different for each 
iteration because the Bloch wave vector is different for each iteration and is used for 
the PBCs. The third and fourth steps build and solve the eigenvalue problems for 
the TE and TM modes separately and store the results in the arrays WNTE and WNTM. 
The TM mode analysis builds the A and B matrices for the generalized eigenvalue 
problem according to (7.11). The TE mode analysis builds the A and B matrices for 
the generalized eigenvalue problem according to (7.17). Otherwise, these two pieces 
of code are identical. The eigenvalue problem is solved using the MATLAB function 
eigs() that solves sparse eigenvalue problems. The function eigs() is given four 
input arguments. The first two input arguments are the matrices A and B that define 
the generalized eigenvalue problem being solved. The third input argument is the 
number of eigenvalues to calculate, which was defined as NBANDS in the dashboard. 
The fourth input argument is a value that the solver will find eigenvalues closest 
to. A value of zero is given here in order to find the eigenvalues of the lowest-order 
photonic bands. The function eigs() is able to calculate both eigenvalues and 
eigenvectors, but only the eigenvalues are needed for a photonic band diagram. 
For this reason, only a single output variable is given. The function eigs() runs 
much faster when it recognizes that it does not have to calculate eigenvectors. The 
eigenvalues are then sorted in ascending order because there are times when the 
order of the eigenmodes is scrambled. The raw eigenvalues are in the form of k2

0,i and 
stored in the array WNTM for the TM modes and in the array WNTE for the TE modes. 
When the main loop finishes the calculations, the eigenvalues are normalized to put 
them in the form of ωn,i = a/λ0,i. This happens in lines 150 and 151.

The last task in the code is to draw the photonic band diagram from all of the 
data calculated in the program so far. The MATLAB code that draws a simple band 
diagram extends from lines 153 to 174. The figure window was divided into three 
subplots and the band diagram is drawn into the second and third subplots combined. 
This is done using the subplot(1,3,2:3) command so that the band diagram is 
given more space than the diagram of the unit cell. After this, the bands are drawn 
using discrete points, which looks better than continous lines when few points are 
used. When many points are used to construct the band diagram, continuous lines 
look good as well. The plot command is given the array of numbers 1:NBETA to use 
as the horizontal axis. The last set of code formats the view of the graphics. The 
x-axis limits are set to 1 and NBETA. The y-axis limits are set to 0 and wnmax that 
was defined in the dashboard. It would be improper to label the horizontal axis with 
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the numbers ranging from 1 to NBETA. Instead, the horizontal axis should be labeled 
with the key points of symmetry placed at the correct locations. This is accomplished 
using the set() command. The first input argument gca gets the properties of the 
current axes that are to be changed. The first property to be changed is XTick which 
are the tick mark locations along the horizontal axis where labels will be inserted. 
The tick marks were previously calculated and stored in the array KT. The second 
property to be changed is XTickLabel which is a sequence of strings containing the 
labels to put at the tick marks. These were defined previously in the sequence KL. 
After this, the x- and y-axes are labeled and the diagram is given a title.

The figure created by the MATLAB code described above is provided in Figure 
7.5. This is very typical of the type of informal graphics a person would use dur-
ing their day-to-day analysis work. It is good to always visualize the unit cell along 
with the band data to ensure any changes to the unit cell are incorporated correctly. 
Dressing up the graphics any more than this for casual work is not needed and will 
slow down the code.

The results shown in Figure 7.5 are little more than an indication that the code 
runs without error. It is not any kind of indication that the results are correct. A 
convergence study must be performed along with a benchmark simulation to build 
confidence that the results are correct and accurate. A convergence study examines 
the position of the bands as the grid resolution is increased by increasing the number 
of points Nx and Ny. After plotting two band diagrams calculated from different 
values of Nx and Ny, it was observed that the first band for the TE mode fluctuated 
the most at the midpoint between X and M along the horizontal axis. Figure 7.6 
plots the normalized frequency of this band at 

!
b  = 0.5

!
T1 + 0.25

!
T2  for increasing 

values of Nx and Ny. Convergence seems to first happen at around Nx=Ny=20.
Given that convergence occurs for values of Nx and Ny greater than 20, the final 

band diagram was calculated and a more professional photonic band diagram was 

Figure 7.5  Unit cell and photonic band diagram.
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created. This band diagram can be used for you to benchmark your own code. 
While simple and functional, the band diagram in Figure 7.5 is not appropriate for 
publication. In this diagram, the TE and TM bands can barely be distinguished 
from each other. Font sizes and line widths should be adjusted to be more visible. 
The band diagram should also show the BZ, IBZ, and the key points of symmetry. 
A professional band diagram depicting the same band data is provided in Figure 
7.7. In this figure, the small bandgap appearing in the frequency range 0.46 ≤ ωn ≤ 
0.47 is highlighted in gray across the band diagram. If the lattice is not drawn 
somewhere else, as shown in Figure 7.4, it is recommended to provide a picture of 
the lattice as an inset in the band diagram.

7.3.2  Description of MATLAB Code for Calculating IFCs

The MATLAB code to calculate IFCs can be downloaded at https://empossible.net/
fdfdbook/ and is called Chapter7_IFCs.m. The code is essentially just a modified 

Figure 7.6  Convergence study for photonic band calculation for the lattice shown in Figure 7.4. 
Plot shows ωn for the first TE mode at 

!
b  = 0.5

!
T1 + 0.25

!
T2.

Figure 7.7  Professional photonic band diagram for the lattice described in Figure 7.4.
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version of the code described previously that calculated photonic band diagrams. The 
header where MATLAB is initialized and the parameters describing the photonic 
crystal are identical to the previous code. There is a slightly different set of parameters 
that control the FDFD simulation from lines 19 to 24. The number of points on the 
Yee grid Nx and Ny is defined directly in the dashboard. In addition, the number of 
discrete points that will be used to fill in the IBZ with band data is defined through 
the variables NBx and NBy. The more points used, the more accurately resolved the 
IFCs will be. NBANDS defines how many bands are stored in memory. It is usually 
only the lower-order bands that are of interest so this number should be kept small.

Lines 25 to 65 calculate the grid and build the unit cell of the photonic crystal 
onto that grid. This code is identical to that for calculating photonic bands. Lines 66 
to 80 calculate the list of Bloch wave vectors like before, but the list is constructed 
differently. For photonic band diagrams, the list of Bloch wave vectors marched 
around the perimeter of the IBZ. For IFCs, the list of Bloch wave vectors must fill 
the entire area of the BZ. A fast and efficient IFC calculator will only analyze the 
lattice at points within the IBZ. All other points in the BZ can be copied from a 
point within the IBZ. To start, a meshgrid of all of the points throughout the entire 
BZ is calculated on lines 71 to 73. The Bloch wave vector components are stored 
in the arrays BX and BY. Line 76 calculates ind_ibz that contains all of the array 
indices of Bloch wave vectors in BETA that resides within the IBZ. Lines 77 and 
78 convert the linear array indices in ind_ibz to two-dimensional array indices 
where all the points of the BZ are viewed as elements in a two-dimensional array. 
Last, line 79 determines the total number of points in the IBZ from the length of 
the array ind_ibz.

At this point, two small tasks must be performed before the FDFD analysis. 
Lines 85 to 91 form the diagonal materials matrices that will be used to build the 
eigenvalue problems. Then, lines 93 to 95 initialize the arrays where the band data 
will be stored. WNTE will store the normalized frequencies for the TE mode while 
WNTM will store the normalized frequencies for the TM mode.

The main loop from lines 97 to 127 calculates and stores the band data for all 
points within the IBZ. Line 103 of the main loop fetches the next Bloch wave vector 
from the list. Lines 105 to 109 call the yeeder2d() function to build the derivative 
matrices. The Bloch wave vector is given as an input argument to incorporate the 
correct PBCs. Lines 112 to 117 calculate the TM mode bands and store the data 
in the array WNTM. Lines 112 and 113 build the A and B matrices of the generalized 
eigenvalue problem Ax = λBx in (7.11). Line 114 solves the generalized eigenvalue 
problem and returns the eigenvalues in the array D. Since only the eigenvalues are 
returned from the call to eigs(), the eigenvalues are returned in a linear array 
instead of a matrix. Line 115 calculates k0 from the eigenvalue k2

0 and drops any 
small imaginary component that may exist due to numerical error. Line 116 then 
sorts the eigenvalues in increasing order so that the lowest order modes are first. 
Line 117 normalizes the eigenvalues according to (7.1) and stores them in WNTM. 
The process is repeated for TE mode analysis in lines 120 to 125 and the results 
are stored in WNTE. The primary difference is the calculation of the matrices A and 
B that come from (7.17).

The main loop only calculated the band data within the IBZ. To visualize the 
band data more intuitively, the band data throughout the entire BZ is constructed 
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from the band data within just the IBZ. This is done for speed and efficiency because 
only the points within the IBZ have to be analyzed. This is performed on lines 130 
to 144 by iterating through the bands and unfolding the data for both TE and TM 
modes. Line 133 grabs the data for the current TE band. The array wn spans the 
entire BZ, but at this point, only the points in wn that lie within the IBZ contain 
actual band data. Line 134 unfolds the IBZ data to fill a quadrant of the BZ in the 
array wn. However, doing this doubled the diagonal elements so line 135 corrects 
this. Lines 136 and 137 mirror the band data from the quadrant to fill the entire 
BZ. The complete array wn is then copied back into the array WNTE, overwriting the 
original data in this array. This unfolding procedure is repeated for the TM mode 
on lines 140 to 145.

The final portion of the code visualizes the IFCs for the first two TE and TM 
mode bands. Lines 152 to 161 plot the IFCs for the first TE band. Line 154 fetches 
the band data into the array wn. Line 155 calculates an array of 20 numbers that 
extend from the lowest value in wn to the highest value in wn. The numbers in this 
array will become the frequency values where the IFCs are drawn. Line 156 calls 
MATLAB’s contour() function that calculates and plots the IFC lines. Lines 157 to 
161 format and label the plot to look professional. Lines 163 to 172 repeat this for 

Figure 7.8  Unit cell and IFCs for the first two TE and TM bands for the lattice described in Figure 7.4.
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the second TE band. Lines 174 to 194 repeat all of this for the first two TM bands. 
The figure created by the MATLAB code described above is provided in Figure 7.8.

Like before, the results shown in Figure 7.8 are little more than an indication 
that the code runs without error. A convergence study must be performed along 
with a benchmark simulation to build confidence that the results are correct and 
accurate. It was previously shown that convergence occurs for values of Nx and Ny 
above 20. In this code, Nx=Ny=60 was used with little impact on speed and a more 
professional set of IFCs was created to showcase the results. This data can be used 
for you to benchmark your own IFC code and is provided in Figure 7.9.

The IFCs are much more useful than the photonic band diagram for analyzing 
the dispersion properties of photonic crystals. For example, flat IFCs lead to a 
phenomenon called self-collimation where beams are forced to propagate along a 
single direction without spreading [2, 5, 6]. The direction of self-collimation will be 
perpendicular to the flat IFC. After inspection of the IFCs in Figure 7.9, flat IFCs 
can be identified for each of the four cases. The first TM band will self-collimate at 
around ωn = 0.217 because the IFC is flat for waves propagating along the diagonals. 
Identifying the normalized frequency more precisely is more easily accomplished 
using color or by experimenting with which contours are drawn. In this case, self-
collimation will occur for waves propagating diagonally through the lattice because 
the bands are flat in the diagonal directions. This normalized frequency will be used 
in Chapter 8 where a self-collimating photonic crystal is simulated. The first TE 

Figure 7.9  Professional IFCs for the lattice in Figure 7.4.
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band will self-collimate in the same directions at a normalized frequency around 
ωn = 0.28. The second TM band will self-collimate in directions parallel to the x- 
and y-axes at a normalized frequency around ωn = 0.44. The second TE band will 
self-collimate in the same directions at around ωn = 0.43.
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C H A P T E R  8

FDFD for Scattering Analysis

This chapter covers the formulation and implementation of finite-difference 
frequency-domain (FDFD) for two-dimensional scattering simulations. A power-
ful and versatile technique is described to incorporate a wide variety of sources into 
FDFD [1]. Sources covered in this chapter include plane waves, Gaussian beams, and 
guided modes. The general flow of FDFD is discussed which is common to most 
scattering simulations. Before simulating devices, a sequence of simpler simulations 
is suggested that help identify and troubleshoot any problems which may exist in a 
newly written code. After this, three device examples are given that include a diffrac-
tion grating, a photonic crystal, and an optical-integrated circuit (OIC). Complete 
MATLAB codes are given and explained for all of these devices.

8.1	 Formulation of FDFD for Scattering Analysis

The following discussion covers the formulation of FDFD for two-dimensional 
scattering analysis where all of the equations are derived that will be typed into 
MATLAB and solved. First, the matrix wave equations will be derived and will 
have the general form Af = 0. Second, the QAAQ implementation of the total-field/
scattered-field (TF/SF) technique will be introduced as a simple and versatile way 
of incorporating many different types of sources into FDFD simulations [1]. With 
a source incorporated, the matrix equation will have the form Af = b that can be 
solved for the field as f = A–1b. Postprocessing the field will be discussed in order 
to calculate reflection and transmission from two periodic devices and an OIC.

8.1.1  Matrix Wave Equations for Two-Dimensional Analysis

For most scattering problems, the frequency is known at the start of the simulation. 
For this reason, formulation begins with the following matrix equations derived in 
Chapter 4 where the grid was normalized by multiplying the spatial coordinates by 
the free space wavenumber k0.

	
D ′y

e ez − D ′z
e ey = µµxx

!hx 	
(8.1)

	
D ′z

e ex − D ′x
e ez = µµyy

!hy 	 (8.2)

	
D ′x

e ey − D ′y
e ex = µµzz

!hz 	
(8.3)
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D ′y

h !hz − D ′z
h !hy = εεxxex 	

(8.4)

	
D ′z

h !hx − D ′x
h !hz = εεyyey 	

(8.5)

	
D ′x

h !hy − D ′y
h !hx = εεzzez 	

(8.6)

In Chapter 2, it was shown that it is possible to reduce the math of three-
dimensional problems to two dimensions when: (1) the device is uniform along z, 
(2) wave propagation is restricted to the xy plane, and (3) materials are isotropic 
or diagonally anisotropic. When these conditions are met, any derivative in the 
z-direction must be zero because nothing varies in the z-direction. For this reason, 
De

z′ = Dh
z′ = 0 and (8.1) to (8.6) reduce to

	
D ′y

e ez = µµxx
!hx 	

(8.7)

	
−D ′x

e ez = µµyy
!hy 	

(8.8)

	
D ′x

e ey − D ′y
e ex = µµzz

!hz 	
(8.9)

	
D ′y

h !hz = εεxxex 	
(8.10)

	
−D ′x

h !hz = εεyyey 	
(8.11)

	
D ′x

h !hy − D ′y
h !hx = εεzzez 	

(8.12)

Observe that these equations have decoupled into two independent sets of equa-
tions. Equations (8.7), (8.8), and (8.12) contain ez, !hx  and !hy , and describe the E 
mode (TM polarization). A matrix wave equation in terms of just ez is derived by 
solving (8.7) for !hx , solving (8.8) for !hy ,  and substituting both of these expressions 
into (8.12). This gives

	
D ′x

h µµyy
−1D ′x

e + D ′y
h µµxx

−1D ′y
e + εεzz( )ez = 0

	
(8.13)

	
!hx = µµxx

−1D ′y
e ez 	

(8.14)

	
!hy = −µµyy

−1D ′x
e ez 	

(8.15)

Equations (8.9) to (8.11) contain !hz ,  ex, and ey, and describe the H mode (TE 
polarization). A matrix wave equation in terms of just !hz  is derived by solving 
(8.10) for ex, solving (8.11) for ey, and substituting both of these expressions into 
(8.9). This gives

	
D ′x

e εεyy
−1D ′x

h + D ′y
e εεxx

−1D ′y
h + µµzz( ) !hz = 0

	
(8.16)
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ex = εεxx

−1D ′y
h !hz 	

(8.17)

	
ey = −εεyy

−1D ′x
h !hz 	

(8.18)

In standard form Af = b, the matrix wave equations are written as

	 Aeez = 0 	 (8.19)

	 Ah
!hz = 0 	 (8.20)

where

	
Ae = D ′x

h µµyy
−1D ′x

e + D ′y
h µµxx

−1D ′y
e + εεzz 	

(8.21)

	
Ah = D ′x

e εεyy
−1D ′x

h + D ′y
e εεxx

−1D ′y
h + µµzz 	

(8.22)

The matrices Ae and Ah are called wave matrices and they enforce Maxwell’s 
equations across the Yee grid. Note that neither (8.19) nor (8.20) is yet solvable. 
Attempting to solve (8.19) for ez gives ez = Ae

–10 = 0 and attempting to solve (8.20) 
for !hz  gives !hz  = Ah

–10 = 0. Both of these are trivial solutions containing all zeros.

8.2	 Incorporating Sources

Equations (8.19) and (8.20) are not solvable because all they do is enforce Maxwell’s 
equations. No source, or excitation, has been defined from which to calculate the 
fields. Injecting sources into an FDFD simulation can be complicated and confusing. 
In this book, a very simple and powerful technique will be used that makes injecting 
sources and postprocessing the fields easy. Over the years, the author and his research 
team have come to call this the QAAQ technique [1], pronounced as “quack” like 
the sound made by a duck.

The TF/SF technique identifies points on the grid as either a total-field (TF) 
quantity or a scattered-field (SF) quantity [1–3]. TF quantities contain both the 
source and the fields scattered by the device being simulated. SF quantities contain 
only fields scattered from a device and not the source. In the physical world, every-
thing is TF. When the finite-difference equations are written for each point on the 
grid, some finite-difference equations adjacent to the interface between TF and SF 
regions will contain both TF and SF quantities. Equations must contain only SF 
quantities or only TF quantities, not both. The source is injected when the finite-
difference equations are corrected.

The following sections will describe the QAAQ technique in detail, but a 
summary is described here to put all of the implementation steps in context. First, 
the source field is calculated across the entire grid and reshaped into a column 
vector fsrc. Second, the SF masking matrix Q is constructed to identify all of the SF 
cells on the grid. Third, the column vector b that describes the source is calculated 
according to b = (QA − AQ)fsrc, where A is the wave matrix. Now the matrix wave 
equation has the form Af = b which can be solved as f = A–1b. That is it!
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8.2.1  Derivation of the QAAQ Equation

The derivation of the QAAQ equation can be difficult to understand, but is presented 
in this section for completeness. Fortunately, it is not necessary to understand the 
derivation in order to use the QAAQ equation. Using the SF masking matrix Q, it 
is possible to isolate the source function fsrc to just the TF region or to just the SF 
region. This is done according to

	
fsrc,TF = I − Q( )fsrc 	

(8.23)

	
fsrc,SF = Qfsrc 	 (8.24)

At grid cells immediately adjacent to the TF/SF interface, there exist finite-
difference equations in the TF region that contain some SF terms. These quantities 
are not compatible. The source fsrc must be added to these SF terms to make them 
look like TF terms. When this is done as A(f + fsrc,SF) = 0, the numerical values that 
are added to the matrix equation Af = 0 are Afsrc,SF. However, the correction terms 
should only be added to the TF finite-difference equations. The Q matrix is used a 
second time to isolate the correction terms to just the TF region as (I − Q)Afsrc,SF. 
Altogether, the column vector bTF that must be added to the matrix equation to 
correct all the TF equations containing SF terms is

	
bTF = I − Q( )Afsrc,SF 	

(8.25)

	 Af + bTF = 0 	 (8.26)

Similarly, there exist finite-difference equations in the SF region that contain 
some TF terms. The source must be subtracted from these TF terms to make them 
look like SF terms. When this is done as A(f − fsrc,TF) = 0, the numerical values that 
are subtracted from the matrix equation Af = 0 are Afsrc,TF. However, the correc-
tion terms should only be subtracted from the SF finite-difference equations. The 
Q matrix is used a second time to isolate the correction terms to just the SF region 
as QAfsrc,TF. Altogether, the column vector bSF that must be subtracted to correct 
all the SF equations containing TF terms is

	
bSF = QAfsrc,TF 	 (8.27)

	 Af − bSF = 0 	 (8.28)

To implement the TF/SF technique, correction terms for both the TF and SF 
regions are needed. Combining the correction terms from (8.25) and (8.27) gives

	 Af + bTF − bSF = 0 	 (8.29)

The column vectors bTF and bSF come from quantities known at the start of the 
simulation so they can both be given numerical values and moved to the right-hand 
side of the equation. This gives an expression for the overall source vector b.

	
b = −bTF + bSF = − I − Q( )Afsrc,SF + QAfsrc,TF 	

(8.30)
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	 Af = b 	 (8.31)

Furthermore, (8.23) and (8.24) are substituted into (8.30) to put the equation for b 
completely in terms of the original source function fsrc. After simplifying, the result 
is the famous QAAQ equation.

	 b = QA − AQ( )fsrc 	 (8.32)

In this equation, A is the wave matrix derived previously. At first glance, it might 
seem that this equation will always give b = 0. However, recall from Chapter 1 that 
the order of matrix multiplication cannot be reversed so QA ≠ AQ and the source 
vector b will not be all zeros. When considering E and H modes in FDFD, it may 
make more sense to write the QAAQ equation as follows.

	
Aeez = be      be = QAe − AeQ( )fsrc 	

(8.33)

	
Ah
!hz = bh      bh = QAh − AhQ( )fsrc 	

(8.34)

With the source vector calculated, the fields can be solved for the E and H modes 
according to

	 ez = Ae
−1be 	 (8.35)

	
!hz = Ah

−1bh 	 (8.36)

It should be noted that the QAAQ equation will work regardless of the grid 
used or the order of accuracy of the finite differences. In fact, the QAAQ equation 
can be applied to other numerical techniques like the finite element method when 
node elements are used. This is because the specifics of the underlying math and 
the locations of the points on the grid were not part of the derivation.

The source function fsrc, SF masking matrix Q, and source vector b for a plane 
wave source are provided in Figure 8.1. Each of these has been reshaped back to a 
two-dimensional grid to visualize them in the most meaningful way. The shaded 

Figure 8.1  Representative data from QAAQ technique: (a) source function, (b) scattered-field 
masking function just prior to becoming a diagonal matrix, and (c) source vector reshaped to a 
two-dimensional array for visualization.
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regions in the Q array are cells identified to be in the SF. Observe that the source 
vector b is only non-zero in the cells immediately adjacent to the TF/SF interface 
because these are the cells that required corrections to the finite-difference equations.

8.2.2  Calculating the Source Field fsrc(x,y)

The source field fsrc(x,y) is the field that would result from a simulation if nothing 
was added to the simulation to cause the source to scatter. It must be very close 
to a rigorous solution to Maxwell’s equations or spurious waves will be injected 
into the simulation. The source field will be calculated across the entire grid, even 
though it is only strictly needed in the grid cells immediately adjacent to the TF/SF 
interface. This practice allows the TF/SF interface to be changed without having 
to identify the new points adjacent to the interface and calculating the source at 
these new points. The code will be simpler with minimal impact on efficiency, 
and TF and SF regions can be altered at any time without further consideration.

It is possible to calculate the source field directly from analytical equations or 
numerical calculations. Plane waves, cylindrical waves, and Gaussian beam sources 
can all be calculated from analytical equations. Guided modes in waveguides and 
Bloch modes in photonic crystals often do not have analytical equations for them, 
but the source fields can still be calculated numerically using the techniques covered 
in Chapters 6 and 7. Some common source functions are illustrated in Figure 8.2. 
Figure 8.2(a) is a plane wave source that is commonly used when simulating scattering 
from an object or device. The analytical equation and MATLAB code to calculate 
this source function are

	
fsrc x,y( ) = exp − j kx,incx + ky,incy( )⎡

⎣
⎤
⎦ 		

(8.37)

fsrc = exp(-1i*(kxinc*X + kyinc*Y));

In the MATLAB equation above, the variables X and Y are the meshgrid 
parameters for the Yee grid. Figure 8.2(b) shows a cylindrical wave source. This 
can be used to model radiation from a dipole or as a quick and easy source to excite 
waves in all directions at the same time. The analytical equation and MATLAB 
code to calculate a cylindrical source function are

	
fsrc x,y( ) = 1

r
exp − jkr( )

		
(8.38)

R = sqrt(X.^2 + Y.^2); 
fsrc = exp(-1i*k*R)./sqrt(R);

Figure 8.2(c) shows a Gaussian beam source. This source has many applications 
including when it is desired to only illuminate one part of a device or when the 
simulation is to be more consistent with experiments. Gaussian beams are excellent 
for visualizing things like refraction and excitation of surface waves. The analytical 
equation and MATLAB code to calculate this source function are given below. 
Incorporating an angle theta for the Gaussian beam is very easy and only requires 
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that the meshgrid from which the source is calculated to be rotated by the desired 
angle theta. Rotating meshgrids were described in more detail in Chapter 1.

	
fsrc x,y( ) = exp − x

w
⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
exp − jky( )

		
(8.39)

[TH,R] = cart2pol(X,Y); 
[XR,YR] = pol2cart(TH+theta,R); 
fsrc = exp(-(XR/W).^2).*exp(-1i*k*YR);

Equation (8.39) is a highly simplified form of the more general equation for 
a Gaussian beam [4]. Therefore, the Gaussian beam used here is not a rigorous 
solution to Maxwell’s equations and does not include the divergence or radial phase 
of a true Gaussian beam. Extra care must be given when injecting this source. The 
Gaussian beam can be injected without problems as long it is injected from a single 
TF/SF interface that is mostly perpendicular to the beam. This will be demonstrated 
in Section 8.4.3 where a photonic crystal will be illuminated by a Gaussian beam.

Figure 8.2  Common source functions in FDFD: (a) plane wave, (b) cylindrical wave, (c) 
Gaussian beam, and (d) guided mode.
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Figure 8.2(d) shows a guided wave source. This source is used whenever it is 
desired to excite a waveguide with one of its guided modes in order to simulate 
guided-wave devices. For many waveguides, no analytical expression exists for the 
guided mode. In these cases, a waveguide mode calculation from Chapter 6 can be 
performed in the cross section of the grid at the input of the waveguide. This will 
require the FDFD algorithm to be modified to perform a slab waveguide analysis 
when calculating the source field. After the desired mode is calculated, the source 
field is calculated by extrapolating the mode across the grid in the +x-direction by 
adding phase according to the effective refractive index as exp(−jk0neffx). When 
done correctly, the mode should look as if it has propagated across the entire grid 
through a uniform waveguide. In this case, a second-order guided mode is being 
launched in the +x-direction and a slab waveguide analysis from Chapter 6 was 
used to calculate the mode.

8.2.3  Calculating the SF Masking Matrix Q

Building the Q matrix is quite easy, but making the correct choice for the TF and SF 
regions is not as straightforward. It is best to think in terms of the line formed at the 
interface between TF and SF regions instead of the regions themselves. The TF/SF 
interface must completely cross through the source function in order to completely 
describe the source. For this reason, different sources may require different TF/SF 
interfaces. As long as the TF/SF interface completely crosses through the source in 
at least one place, additional TF and SF regions can be added arbitrarily as long 
as they do not disrupt the original TF/SF interface. Ideally, there is only one TF/SF 
interface, and the interface is perpendicular to the direction of the source.

Figure 8.3 illustrates good and poor choices of TF and SF regions for a Gaussian 
beam source simulated in a vacuum where no scattering should occur. Figure 8.3(a) 
shows the source function calculated across the entire grid using (8.39). The ideal 
TF/SF interface is one that crosses completely through the source in a direction 
perpendicular to the direction of the source, as shown in Figure 8.3(b). No waves 
are observed in the SF region, and the simulated beam diverges as it propagates as 
a physical beam would do. Figure 8.3(c) shows a first poor choice where the TF/
SF interface forms a box around the simulation. This is a poor choice because the 
source field and simulated source are very different from each other at the far-right 
side of the grid. The source field is not a rigorous solution to Maxwell’s equations 
so it does not diverge like the simulated beam. A significant wave is observed in 
the SF region at the right side of the simulation despite there being nothing for the 
beam to scatter from to produce an SF wave. This false wave appearing in the SF 
region will introduce significant errors in any postprocessing calculations. The 
second type of poor choice is shown in Figure 8.3(d) where the TF/SF interface does 
not completely cross through the source. This also exhibits a strong wave in the SF 
region where no waves should be observed. Last, Figure 8.3(e) shows a third poor 
choice where the TF/SF interface is not perpendicular to the direction of the source. 
Not only will this amplify problems due to numerical dispersion, but the diverging 
simulated wave fails to match the source field over the entire interface because the 
source field is not a rigorous solution to Maxwell’s equations. As a consequence, 
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the beam observed in the TF region is distorted and waves are observed in the SF 
region that will produce errors in postprocessing calculations. While a Gaussian 
beam was demonstrated here, it is straightforward to apply these same principles 
to all sources.

After proper TF and SF regions are chosen, a discrete function Q is constructed 
on a grid that identifies each cell as either TF or SF. Points filled with 0’s indicate TF 
cells while points filled with 1’s indicate SF cells. The same techniques discussed in 
Chapter 1 can be used to build the array Q. From there, the SF masking matrix Q 
is constructed by reshaping the discrete Q function into a one-dimensional array, 
declaring it as sparse, and then placing it along the diagonal of a matrix. The 
MATLAB code to perform this diagonalization is

Q = diag(sparse(Q(:)));

Figure 8.3  Examples of good and poor TF/SF choices for a Gaussian beam source: (a) source 
field, (b) ideal TF/SF, (c) poor TF/SF #1, (d) poor TF/SF #2, and (e) poor TS/SF #3.
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The order of the functions in the above code is critical. If the order of diag() 
and sparse() is swapped, there will be a moment when a very large full matrix is 
formed in memory. This will be very slow and require a lot of memory if it does 
not crash the program entirely.

8.2.4  Compensating for Numerical Dispersion

Numerical dispersion becomes a more serious problem when there are multiple TF/
SF interfaces, see Figure 8.3(c), or when there is a TF/SF interface extending along 
the direction of the source, see Figure 8.3(e). Recall from Chapter 4 that numerical 
dispersion causes a simulated wave to propagate slower than an analytical wave. 
This makes the simulated source and the source field become out of phase over dis-
tance, even when the source field is a rigorous solution to Maxwell’s equations [5]. 
Additional and undesired waves will be launched from the TF/SF interface where 
there exists a misalignment between the simulated source and the analytical source 
wave. The problem is particularly severe when the source overlaps TF/SF interfaces 
over large distances. These problems were illustrated in Figure 8.3 in the context 
of a Gaussian beam source.

When such nonideal TF/SF regions are necessary, measures must be taken to 
minimize or compensate for the numerical dispersion. It is possible to perfectly can-
cel numerical dispersion for waves in one specific direction. This is accomplished 
by lowering the overall refractive index across the entire grid by the correct amount 
to make numerical waves propagate exactly at the same speed as physical waves. 
The direction to cancel numerical dispersion is usually chosen to be the direction 
of the source.

Suppose numerical dispersion is canceled by multiplying the background 
refractive index n by the constant ψ. In this case, the numerical wave vector would 
exactly match the analytical wave vector, and the numerical dispersion relation for 
a two-dimensional Yee grid becomes

	

w yn( )
c0

⎡

⎣
⎢

⎤

⎦
⎥

2

= 2
Δx

sin
kxΔx

2
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

2

+ 2
Δy

sin
kyΔy

2
⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

	
(8.40)

Solving this expression for the factor ψ and recognizing that k0 = ω/c0 gives

	

y = 1
k0n

2
Δx

sin
kxΔx

2
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

2

+ 2
Δy

sin
kyΔy

2
⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

	

(8.41)

It is possible to perfectly cancel numerical dispersion for a wave propagating in 
the direction of 

!
k  = kxâx + kyây in two steps. First, the factor ψ is calculated using 

(8.41). In MATLAB, the variable ψ will be given the name psi. Second, after build-
ing the materials onto the grid, the relative permittivity ER2 and relative permeability 
UR2 arrays are each adjusted by the factor psi across the entire grid according to

	 ER2 = psi ∗ ER2 	 (8.42)

	 UR2 = psi ∗ UR2 	 (8.43)
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Observe that both the permittivity ER2 and permeability UR2 are adjusted by 
the same factor psi. This happens because it is actually the refractive index n that 
must be adjusted by the factor psi and ψn = ymryer .  If the 2× grid is not used, 
the individual tensor elements must all be scaled by the factor ψ according to

	 ERxx = psi∗ERxx 	 (8.44)

	 ERyy = psi∗ERyy 	 (8.45)

	 ERzz = psi∗ERzz 	 (8.46)

	 URxx = psi∗URxx 	 (8.47)

	 URyy = psi∗URyy 	 (8.48)

	 URzz = psi∗URzz 	 (8.49)

Figure 8.4 illustrates the utility of compensating for numerical dispersion. Both 
simulations in this figure are identical, other than one compensates for numerical 

Figure 8.4  Illustration of compensating for numerical dispersion with a plane wave source at 
NRES = 10. (a) No dispersion compensation leads to numerical error at the far side of the TF/SF 
interface. (b) Compensating for numerical dispersion eliminates the numerical error of the source 
at the TF/SF interface.
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dispersion while the other does not. Each simulation launches a plane wave 
through a vacuum with a square TF region at the center of the simulation. The 
grid resolution was chosen to be NRES=10 to ensure numerical dispersion is easily 
observed. Figure 8.4(a) shows the field calculated by the simulation when numerical 
dispersion is present. Observe the wave in the SF region in the lower-right part of 
the simulation. No wave should be observed here because no device is present to 
scatter waves. This wave is the numerical error that arises because the simulated 
wave and analytical source wave become out of phase. The TF/SF corrections made 
to the finite-difference equations cannot cancel the waves in the far SF region. The 
numerical error is the most serious at the points on the far side of the grid where 
the phase difference is most severe. The numerical error wave appearing in the SF 
region should not be there and so it will lead to more errors if the fields in the SF 
region are postprocessed to calculate transmission, scattering pattern, or something 
else from the simulation. Figure 8.4(b) shows the field calculated by the same 
simulation but numerical dispersion has been compensated. The numerical error 
has been completely eliminated.

Even though this technique only perfectly cancels numerical dispersion for a 
single direction, it still reduces numerical dispersion in all directions. This is one 
argument why it is best to make the grid resolution parameters dx and dy nearly equal 
to each other. If no single direction is the most important, consider compensating 
for a wave propagating at an angle of 22.5° off of the x-axis. This provides a good 
compromise between the extremes of numerical dispersion that tend to be maximum 
in the x- and y-directions and minimum in the diagonal directions.

8.3	 Calculating Reflection and Transmission for Periodic Structures

Section 2.9 from Chapter 2 discussed how reflection and transmission from 
diffraction gratings are handled in the context of diffraction orders. All periodic 
structures in FDFD can be handled as a diffraction grating to calculate reflection 
and transmission. In the discussion from Chapter 2, the surface of the grating was 
in the xy plane, and the diffraction orders carried power away from the device in the 
+z- and −z-directions. This was illustrated in Figures 2.6 and 2.7. In the coordinate 
system chosen for two-dimensional FDFD simulations, the surface of the diffraction 
grating will be in the xz plane, and the diffraction orders will carry power away from 
the grating in the +y- and −y-directions. For this reason, the equations derived for 
calculating diffraction efficiency, reflectance, and transmittance require modification 
in order to be consistent with the new coordinates.

The source wave vector 
!
kinc  incident at angle θinc lies in the xy plane, so kz,inc 

= 0 and the kx,inc and ky,inc components are calculated as

	
kx,inc = k0nref sinqinc 	 (8.50)

	
ky,inc = k0nref cosqinc 	

(8.51)

In this case, the incident wave encounters a diffraction grating that leads to an 
infinite expansion for the x components of the wave vectors associated with the 
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diffraction orders. Boundary conditions require that this expansion is the same for 
both reflected and transmitted diffraction orders so kx,ref(m) = kx,trn(m) = kx(m). 
The expansion is calculated as

	
kx m( ) = kx,inc − m

2p
Λ 	

(8.52)

where Λ is the period of the grating and m is the diffraction order. The longitudinal 
components of the wave vectors of the diffraction orders may be different on the 
reflection side and transmission side because the medium can be different on each 
side. For this reason, they must be calculated separately using the dispersion relation 
written for both sides.

	
ky,ref m( ) = − k0nref( )2 − kx

2 m( )
	

(8.53)

	
ky,trn m( ) = k0ntrn( )2 − kx

2 m( )
	

(8.54)

When the simulation finishes, the field is analyzed to calculate the complex 
amplitudes of the diffraction orders in three steps. First, the fields are extracted from 
the cross section of the grid at both the reflection and transmission planes. For the 
E mode (TM polarization) these are Ez,ref(x) and Ez,trn(x). Second, the phase tilt due 
to an oblique angle of incidence is removed. Recall that Bloch modes in periodic 
structures have the form of an amplitude function times a phase function. Since the 
source is a plane wave with unit amplitude, any cross section of the source gives the 
phase function of the Bloch mode. To isolate the amplitude portion of the Bloch 
mode in both the reflection and transmission planes, the fields extracted from the 
grid are divided by the cross section of the source exp(−jkx,incx).

	

aref x( ) = Ez,ref x( ) ÷ exp − jkx,incx( )
atrn x( ) = Ez,trn x( ) ÷ exp − jkx,incx( ) 	

(8.55)

Third, the amplitudes of the diffraction orders are calculated from the discrete 
Fourier transform of the amplitude functions calculated in (8.55). Using a fast Fou-
rier transform (FFT) algorithm, these are calculated as

	

E0,ref m( ) = FFT aref x( )⎡⎣ ⎤⎦
E0,trn m( ) = FFT atrn x( )⎡⎣ ⎤⎦ 	

(8.56)

Give some extra thought any time an FFT is used because most FFT algorithms 
must be scaled and shifted to produce correct Fourier values. Now that the 
amplitudes of the diffraction orders are known, the diffraction efficiencies are 
calculated from equations derived in Chapter 2, but with the coordinates chosen 
for two-dimensional FDFD.

	

RDE m( ) =
E0,ref m( )

2

E0,inc

2 Re −
ky,ref m( )
ky,inc

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

	

(8.57)
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TDE m( ) =
E0,trn m( )

2

E0,inc

2 Re
mr,ref

mr,trn

ky,trn m( )
ky,inc

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
	

(8.58)

For the H mode (TE polarization), the complex amplitudes of the diffraction 
orders on the reflection and transmission sides are written as !H0,ref (m)  and !H0,trn(m),  
respectively. In Chapter 2, these were vector quantities, but for the H mode in FDFD 
the magnetic field has only a z component. From these, the diffraction efficiencies 
are calculated as

	

RDE m( ) =
!H0,ref m( )

2

!H0,inc

2 Re −
ky,ref m( )
ky,inc

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

	

(8.59)

	

TDE m( ) =
!H0,trn m( )

2

!H0,inc

2 Re
er,ref

er,trn

ky,trn m( )
ky,inc

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

	

(8.60)

Observe the negative sign inserted into (8.53) that is canceled by the negative 
signs inserted into (8.57) and (8.59). It is a habit for many computational scientists 
to avoid doing any calculations that are just undone later in the code. For this rea-
son, some people drop all of these negative signs in their FDFD codes so that ky,ref 
is always a positive number.

8.4	 Implementation of the FDFD Method for Scattering Analysis

A block diagram for a basic FDFD method for scattering analysis is shown in Fig-
ure 8.5. It is composed of six major steps that are each composed of a sequence of 
smaller steps. First, the simulation begins by initializing MATLAB, defining the 
units to be used in the simulation and defining any constants that may be needed 
later in the code. The second major step is the all-important dashboard where all of 
the parameters are defined that control all aspects of the simulation. This includes 
parameters that describe the source, the device dimensions and material properties, 
and parameters that control numerical aspects such as grid resolution and perfectly 
matched layer (PML) size.

The real work begins in the third major step where the grid is constructed. 
All the following steps will operate on this grid. A first guess is made at the grid 
resolution parameters dx and dy by resolving the minimum wavelength λmin by N 
points. The minimum wavelength is the free space wavelength of the simulation λ0 
divided by the maximum refractive index nmax found anywhere on the grid.

	
Δx = Δy =

l0

nmaxN 	
(8.61)

This calculation of grid resolution ignores the dimensions of a device. Some 
dimensions are very critical to model accurately on the grid, such as the period of 
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Figure 8.5  Block diagram of FDFD for scattering analysis.
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a periodic structure and the groove depth of a diffraction grating. The next step 
in FDFD that greatly improves accuracy and convergence rate is to adjust the grid 
resolution parameters Δx and Δy so that critical dimensions are represented exactly 
by an integer number of grid cells. From here, the grid resolution parameters are 
fixed so the next thing is to determine the size of the grid in terms of width Sx and 
height Sy. The physical size is determined first with enough space included to fit the 
device being simulated, absorbing boundaries, and any extra space around the device 
that may be needed. The total number of cells on the grid, Nx and Ny, is calculated 
by dividing the physical size by the grid resolution. At this point, the grid has been 
calculated, and from these parameters, the 2× grid parameters are calculated. The 
last step is to calculate the grid axes and meshgrid parameters if they are needed.

With the grid calculated, the next major step is to build the device onto the grid. 
For many devices, especially those with curved geometries, it is advantageous to 
build them using the 2× grid technique. Regardless, the process starts by initializing 
both the relative permittivity εr(x,y) and the relative permeability μr(x,y) to vacuum. 
The device is constructed onto the 2× grid and visualized. It is an excellent practice 
to visualize as much as possible in the code for troubleshooting, verification, and 
learning the algorithm better. At this point, the uniaxial PML (UPML) is incorporated 
while the device is still on the 2× grid. It is very convenient to build the UPML onto 
the 2× grid. The function addupml2d() is written to incorporate the UPML and 
extract the material arrays for the standard Yee grid. The last step is to form the 
diagonal material matrices from the material arrays.

With the device constructed onto the grid, finally, it is time to implement the 
FDFD method. It starts by calculating the wave vector 

!
kinc  of the incident wave. 

This is needed for the periodic boundary conditions (PBCs) in the derivative matrices 
as well as in postprocessing to calculate reflectance and transmittance. After the 
incident wave vector, the derivative matrices are constructed by calling the function 
yeeder2d() that was described in Chapter 4. Given the materials matrices and 
derivative matrices, the wave matrix A is calculated using (8.21) for the E mode (TM 
polarization) or using (8.22) for the H mode (TE polarization). Next, the source 
field fsrc is calculated, followed by the SF masking matrix Q, and then finally the 
source vector b using the QAAQ equation in (8.32). All of the steps so far in the 
FDFD algorithm run relatively quickly. It is the next single line of code that is the 
slowest computation where the field is calculated by solving f=A\b. When this is 
finished, it is always a good practice to visualize the field. Correct fields are generally 
smooth and continuous. Any sort of noise or spikes in the solution is an indication 
that something may be wrong. Keep in mind that the field may be discontinuous at 
the TF/SF interface because the source is not present in the SF region but is present 
in the TF region.

At this point, the FDFD algorithm is finished and the program can move on to 
postprocessing the simulation results. A common postprocessing flow is analyzing 
transmission and reflection from a periodic structure so that is what is shown in 
the block diagram. Here, the simulated field is analyzed to calculate the diffraction 
efficiencies of all of the diffraction orders as well as the overall reflectance and 
transmittance. The first step is to extract the material properties where the reflected 
and transmitted fields are to be analyzed on the grid. Second, the wave vector 
expansion for the diffraction orders is calculated, including both the tangential 
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and longitudinal components of the wave vectors. Third, the cross section of the 
field on the reflected side of the device is extracted from the grid above the TF/SF 
interface inside of the SF region. The cross section of the field on the transmitted 
side of the device is extracted from the grid just above the bottom UPML. Fourth, 
from all of the information calculated so far, the diffraction efficiency of each of 
the diffraction orders is calculated. Last, the overall reflectance is calculated by 
adding all of the diffraction efficiencies of the reflected diffraction orders. The 
overall transmittance is calculated by adding all of the diffraction efficiencies of 
the transmitted diffraction orders.

8.4.1  Standard Sequence of Simulations for a Newly Written FDFD Code

Before any new devices are simulated, there should be a standard sequence of 
simulations performed to help identify and troubleshoot problems with a newly 
written code. The recommended sequence is shown in Figure 8.6 where PBCs were 
used at the x-axis boundaries to simulate a periodic structure. The first simulation 
is a complete vacuum with the TF/SF interface positioned at the center of the grid 
vertically launching a wave at normal incidence, as depicted in Figure 8.6(a). The TF/
SF interface is centered to better see if there are any backward waves or reflections. 
These would be more difficult to detect if the TF/SF interface were tight against the 
top PML. If the FDFD code is working correctly, the simulation will calculate 100% 
transmission, 0% reflection, and no wave should be visible in the SF region above 

Figure 8.6  Standard sequence of simulations for a newly written FDFD code.
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the TF/SF interface. The specific values for reflectance and transmittance should 
be within a fraction of a percent. At NRES=10, a working FDFD simulation may 
calculate numbers like R = 5.910–5 and T = 0.998. If anything wrong is detected 
when simulating transmission through a vacuum, the mistake will be easier to find 
and better-educated guesses for values of intermediate parameters can be made 
with such a simple simulation.

Next, an angle of incidence is incorporated, perhaps θinc = 30°, as depicted in 
Figure 8.6(b). This is mostly to test that the PBCs are working correctly. If everything 
is correct, the field should look like what is shown in Figure 8.7(a). The source wave 
is visible in the TF region below the TF/SF interface, and no wave is visible in the SF 
region above the TF/SF interface. This simulation should produce 0% reflectance and 
100% transmittance with a numerical error well under 1%. When there is a mistake 
in the code, the field may look like what is shown in Figure 8.7(b). The field below 
the TF/SF interface does not resemble a pure plane wave, indicating that at least one 
additional wave is present that is interfering with the source wave. A wave is also 
visible above the TF/SF interface that is likely the same wave that is interfering with 
the source wave below the TF/SF interface. Since a reflected wave is observed in the 
TF region, it is most likely the bottom PML that is reflecting and not necessarily 
a problem with the TF/SF source. For this case, the reflectance was calculated to 
be 20% and transmittance calculated to be 195% at NRES=20, clearly an incorrect 
simulation result. Keep an open mind when troubleshooting because backward 
waves could be due to a problem with the TF/SF source, a problem with the PML, 
a problem with the boundary conditions, or something else entirely. Most errors 
at this stage all produce fields that look much like what is shown in Figure 8.7(b).

After the FDFD code can simulate vacuum correctly, the next thing is to move 
the TF/SF interface to around two cells below the top PML and then build a single 
material interface onto the grid. This is illustrated in Figure 8.6(c).  In this case, 
the Fresnel equations discussed in Chapter 2 can be used to verify the simulation 
results are correct. First, the bottom half of the grid can be filled with εr = 9.0. For 
normal incidence, this should produce exactly 25% reflectance and 75% transmit-
tance. The most common mistake here is not calculating the diffraction efficiency 
of the transmitted diffraction orders correctly because that equation contains extra 
terms that are easily missed. Next, swap the permittivity and permeability such that 
εr = 1.0 and μr = 9.0 and ensure the simulation still gives 25% reflectance and 75% 
transmittance. Next, set εr = μr = 3.0 in the bottom half of the grid and verify reflec-
tance is near 0% and transmittance is near 100%. This case produces no reflections 
because the impedance is constant throughout the grid. Next, incorporate an angle 
of incidence and repeat various combinations of εr and μr, as illustrated in Figure 
8.6(d). Using the Fresnel equations, an infinite number of simple simulations are 
possible. Choose a few simple ones and then move on.

Next, it is best to simulate an asymmetric diffraction grating like the one that 
will be simulated in Section 8.4.2. An asymmetric diffraction grating is illustrated in 
Figure 8.6(e) and is an excellent device to verify that the diffraction orders are being 
handled correctly in the FDFD code. The same asymmetric diffraction grating is 
simulated again, but with an angle of incidence incorporated, as illustrated in Figure 
8.6(f). The last simulation recommended for testing new codes is a wavelength (or 
frequency) sweep of a guided-mode resonance filter (GMRF), as illustrated in Figure 
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8.6(g, h). GMRFs are extremely sensitive devices. If anything is wrong in the code, 
a GMRF will tend to amplify the problem so that more types of mistakes can be 
identified and corrected. This type of simulation is a form of parameter sweep that 
will be discussed in Chapter 9.

The first device that will be discussed in detail in the following sections is an 
asymmetric diffraction grating that can serve as a device to use for benchmarking. 
The second device that will be simulated is a self-collimating photonic crystal illu-
minated by a Gaussian beam source. This simulation will illustrate how information 
from photonic band calculations can be used in a scattering simulation. The last 
simulation will be an OIC. It will make multiple uses of slab waveguide analysis to 
reduce the OIC to two dimensions, to calculate the source, and finally to analyze 
reflection and transmission from the circuit.

8.4.2  FDFD Analysis of a Sawtooth Diffraction Grating

Figure 8.8 shows the sawtooth diffraction grating that will be used to benchmark 
the FDFD code. The asymmetric nature of the sawtooth is excellent for verifying 
that the diffraction efficiency calculations are correct. The period of the grating 
is Λ and the depth of the grooves is d. To simplify the simulation, the diffraction 
grating will be assumed to be infinitely periodic in the x-direction and infinitely 

Figure 8.7  (a) Correct simulation where the source wave in the TF region is visible and no 
backward wave is observed. (b) Example where bottom UPML is not working correctly and 
reflections are observed.
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extruded in the z-direction. In addition, the space above and below the diffraction 
grating will be assumed to be semi-infinite. This means the superstrate material 
εr1 will extend off to infinity above the grating and the substrate material εr2 will 
extend off to infinity below the grating. This example will have air above the grat-
ing so εr1 = 1.0. The dielectric constant of the diffraction grating was chosen to be 
εr2 = 9.0. It is good to benchmark using devices with higher permittivity to better 
exercise the code. The period of the grating was chosen to be 1.5 cm so that a few 
diffraction orders will exist above and below the diffraction grating when simulated 
at a frequency of 30 GHz. When designing this problem, it was observed there was 
a more even distribution of power among the diffraction orders when the grating 
depth was set to 1.0 cm. This value was chosen to make the design more suitable 
for benchmarking. Changing the grating depth away from this value will change 
the diffraction efficiencies of the diffraction orders.

Figure 8.8 (Right) shows the grid strategy used to simulate most periodic struc-
tures in FDFD. Only a single unit cell in the x-direction has to be stored in memory 
and simulated. PBCs at the x-axis boundaries make the grating appear to be infi-
nitely periodic in the x-direction. The device itself is built onto the grid so that the 
grating resides close to the center of the grid vertically. UPMLs are placed at the 
y-axis boundaries to absorb outgoing waves. Spacer regions are included above 
and below the grating to ensure that any evanescent fields decay very close to zero 
before touching the UPMLs. Evanescent fields are fields that extend outside of the 
device, but are not propagating waves and stay confined to the surface of the device. 
They are sort of a temporary place for electromagnetic power before coupling into 

Figure 8.8  (Left) Perspective view of a sawtooth diffraction grating. (Right) FDFD grid strategy 
for the same sawtooth diffraction grating.
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a diffraction order and escaping the device. The top UPML and a few rows of cells 
below the top UPML have been made the SF. The rest of the cells on the grid are TF.

The MATLAB code to simulate this diffraction grating using FDFD can be 
downloaded at https://empossible.net/fdfdbook/. The file is called Chapter8_
sawtooth.m. The header for the program extends from lines 3 to 29 where MATLAB 
is initialized, units are defined, and electromagnetic constants are defined in terms 
of the specified units. Lines 4 to 6 initialize MATLAB by closing all of the figure 
windows, clearing the command window, and then clearing all variables from 
memory. In lines 9 to 23, the units for the simulation are defined. Here meters and 
seconds were set to 1. This is typical for microwave simulations, but for optical 
simulations consider setting micrometers to 1. It is a good practice to have all 
numbers in a simulation as close to the numerical value of 1 as possible. Proper 
selection of the scale of the units is a good way to do this. Last, lines 26 to 29 
calculate various electromagnetic constants that may be used in the simulation 
including free space permittivity e0, free space permeability u0, free space impedance 
N0, and the speed of light in vacuum c0. This is usually the author’s standard header 
for all simulations so the units and constants are all defined even if they end up 
not being used.

The code extending from lines 31 to 54 is called the dashboard. This is where all 
aspects of the program are controlled. All hard-coded numbers go in this section and 
no work is to be performed here. After the dashboard, never hard-code any numbers. 
Perform all operations relative to variables defined in the dashboard. Lines 35 to 40 
define everything that is needed about the plane wave source. This includes frequency 
f0, angle of incidence theta, and which electromagnetic mode (E or H) to simulate 
stored in the variable MODE. Consider taking the opportunity to calculate the vacuum 
wavelength lam0 and free space wavenumber k0 at this stage because sometimes 
other numbers in the dashboard are calculated using these parameters. Lines 42 to 
46 define everything that is needed about the diffraction grating including the period 
L, depth d, relative permittivity of the superstrate er1, and relative permittivity of the 
substrate er2. It is often best to sketch the device on paper and define the variables on 
that sketch much like what is shown in Figure 8.8. Lines 48 to 53 define parameters 
associated with the numerical aspects of FDFD. NRES defines the resolution of the 
grid as the number of grid cells per minimum wavelength. SPACER is an array of 
two numbers that define how much space should be included above and below the 
diffraction grating. For ordinary scattering simulations, usually, a quarter to a half 
wavelength is sufficient. Some devices can exhibit large evanescent fields, such as 
resonant devices or devices operating near a diffraction order cutoff or a guided 
mode cutoff. For these devices, the spacer regions should be made larger so that 
the evanescent fields do not extend into the UPML regions. NPML is an array of two 
numbers that define the numerical size of the UPML regions at the top and bottom 
of the grid, respectively. ermax is an intermediate parameter that determines the 
maximum relative permittivity that will be placed onto the grid. nmax is calculated 
from ermax and is the maximum refractive index that will be placed onto the grid. 
This is needed to determine the shortest wavelength in the simulation from which 
the grid resolution will be calculated. If there were any relative permeability, there 
would be a urmax parameter defined and this would be used in addition to ermax 
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for the calculation of nmax. After the dashboard, no more hard-coded numbers 
should ever be used!

At this point, the real work for FDFD can begin. The first major task is to 
calculate a grid that is optimized for analyzing the device defined in the dashboard. 
This happens from lines 55 to 88. Lines 60 and 61 make the first guess at grid 
resolution. It sets the grid resolution parameters dx and dy so that the smallest 
wavelength in the simulation is resolved by NRES number of points. Lines 64 to 68 
adjust dx and dy so that the critical dimensions of the device are resolved exactly 
by an integer number of grid cells. For diffraction gratings, the period L is almost 
always chosen to be the critical dimension in the x-direction. The calculation L/dx 
is the number of cells it would take to resolve the period L on the current grid. 
Since the period was not considered in the calculation of dx, L/dx is most likely 
not an integer. This is rounded up to the nearest integer to calculate nx. At this 
point, nx is interpreted as the number of cells it is desired to represent the period 
exactly. To make this happen, the resolution parameter dx is recalculated as L/nx. 
This same procedure is done for the critical dimension in the y-direction. For 
the diffraction grating, the grating depth d was chosen as the critical dimension. 
Only a single critical dimension can be chosen for each direction for a uniform 
grid. Now the grid resolution is finalized and will not be adjusted again. Lines 
70 to 77 calculate both the physical size and numerical size of the grid that will 
contain the device and simulated fields. The physical size in the x-direction is Sx 
while the physical size in the y-direction is Sy. The typical calculation steps are: 
(1) define physical size to include the spacer regions, (2) calculate the total number 
of cells to encompass this region plus the UPML regions, and (3) recalculate the 
physical size so that it includes the UPML regions. At this point, the Yee grid is 
calculated. The next step is to calculate the 2× grid, which describes the same 
physical space as the Yee grid, but with twice as many points. Nx2 and Ny2 describe 
how many points the 2× grid contains in the x- and y-directions, respectively. 
dx2 and dy2 are the grid resolution parameters for the 2× grid. Then, the grid 
axes xa and ya for the Yee grid are calculated along with the grid axes xa2 and 
ya2 for the 2× grid. These are one-dimensional arrays that contain the position 
of each cell on the grid. Last, the meshgrid parameters X and Y for the Yee grid 
are calculated. If needed, the meshgrid parameters X2 and Y2 for the 2× grid can 
also be calculated here.

After an optimized grid is calculated, lines 90 to 127 build the device onto this 
grid, add the UPML and form the diagonal materials matrices. Lines 94 to 96 ini-
tialize the relative permittivity ER2 and relative permeability UR2 on the 2× grid. The 
array ER2 is set to all values of er1 throughout the entire 2× grid. The array UR2 is 
set to all values of 1. Lines 98 to 106 build the asymmetric sawtooth geometry onto 
the 2× grid. The variable ny1 represents the array index in the y-direction of the 
top of the diffraction grating. It is calculated to be below the top UPML, below the 
top spacer region, and one extra cell vertically in case both the UPML and spacer 
region are defined to be zero. Note that the size of the top UPML is multiplied by 
two on line 99. That is because the array NPML contains the size of the UPML on 
the Yee grid, but the device is being constructed on the 2× grid. The variable ny2 
represents the array index in the y-direction of the bottom of the diffraction grating. 
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It is calculated as the array position ny1, plus the number of cells the grating tooth 
is tall, minus one cell. After this, a loop is performed that iterates ny from the top 
ny1 to the bottom ny2 of the grating tooth. Line 102 calculates the variable f to go 
from 0 to 1 as the loop progresses from the top to the bottom of the grating tooth. 
However, it is best to not have f be exactly equal to 0 or 1 because that would be 
an unused layer. Given f, nx is calculated on line 103 to be the number of cells 
wide the grating tooth is at the vertical position defined by ny. Line 104 sets the 
points in ER2 to a value er2 that resides inside of the grating tooth. After the loop 
finishes, line 108 assigns all points in ER2 below the grating tooth to be er2, repre-
senting the semi-infinite substrate. At this point, the device is constructed onto the 
2× grid and it is visualized on lines 110 to 115. Lines 118 and 119 call the function 
addupml2d() that incorporates the UPML onto the grid and extracts the six Yee 
grid materials arrays ERxx, ERyy, ERzz, URxx, URyy, and URzz. Last, lines 121 to 127 
form the sparse diagonal materials matrices that will be used in the next section of 
code to build the wave matrix A.

It is finally time to perform FDFD! This starts by calculating the source wave 
vector. Line 134 calculates the refractive index in the semi-infinite region above the 
diffraction grating. Lines 135 and 136 calculate the x and y components of the source 
wave vector incident at angle theta. Line 137 assembles the wave vector components 
into a single vector. Lines 139 to 143 call the function yeeder2d() to build the four 
derivative matrices. Line 142 defines PBCs at the x-axis boundaries and Dirichlet 
boundary conditions at the y-axis boundaries. If the UPML is functioning correctly, 
it should not matter what boundary conditions are used at the y-axis boundaries. 
Given this, Dirichlet is chosen to avoid incorporating complex numbers into the 
derivative matrices that can sometimes slow obtaining a solution. Observe on line 
143, the grid resolution parameters in RES are multiplied by k0 and the incident 
wave vector kinc is divided by k0 to build the derivative matrices with a normalized 
grid. Lines 144 to 150 calculate the wave matrix A. An if statement is used to build 
a different wave matrix depending on which electromagnetic mode was defined in 
the dashboard through the variable MODE. Line 153 calculates the source field in the 
array fsrc. This is the source wave calculated throughout the entire grid as if the 
diffraction grating were not present. The source is given unit amplitude. Lines 155 
to 159 build the SF masking matrix Q. Line 156 calculates ny to be the array index 
for the location in the y-direction of the TF/SF interface. Line 157 initializes the 
array Q to be all zeros, which makes Q identify all points on the grid as TF. Line 158 
then sets all points in Q from the top of the grid down to ny to be all 1’s. This defines 
the top portion of the grid above ny to be the SF region. Line 159 forms a sparse 
diagonal matrix Q which is the SF masking matrix. Line 162 calculates the source 
vector b using the QAAQ equation. Line 165 is the most intensive computational step 
in FDFD and is also the shortest and simplest line of code in the entire program. It 
is here that the matrix equation Af = b is solved for the field f via backward matrix 
division. For the E mode, the field f represents the field component Ez while for 
the H mode the field f represents the field component Hz. It was given the name f 
to be generic and represent the field for both E and H modes. After solving, f is a 
column vector so line 166 reshapes it back to the two-dimensional Yee grid, which 
is Nx-by-Ny points. Lines 168 to 175 visualize the calculated field. It is always a good 
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practice to visualize the field because many problems can be identified and even 
diagnosed just by examining the field. Expect to see a discontinuity of the field at 
the TF/SF interface because the source is removed in the SF region.

With the field calculated, FDFD is finished and the program can move on to 
postprocessing. For periodic structures, it is often more meaningful to calculate 
reflection and transmission by analyzing the diffraction orders. A simpler way would 
be to simply integrate the Poynting vector across the grid, but this circumvents 
information from the diffraction orders that are very often quite meaningful. Lines 
177 to 218 perform this postprocessing step and report the results. Lines 181 to 
187 extract the material properties where the reflected and transmitted fields are 
being analyzed and calculate the refractive index in these locations. Lines 189 to 
193 calculate the wave vector components of all of the diffraction orders. Line 190 
calculates an array m that contains the integer numbers of the diffraction orders in 
the order that FDFD will calculate them. The limits were chosen to have Nx total 
number of integers and to place the zero-order (i.e., m=0) at the correct position 
for both odd and even values of Nx. Line 191 calculates an array kx that contains 
the tangential components of the diffraction orders. These are the same for both 
reflected and transmitted diffraction orders so only a single array is calculated 
and used for both. The longitudinal components of the diffraction orders will be 
different in the reflected and transmitted regions if the materials in these regions are 
different. They are calculated separately on lines 192 and 193 as kyref and kytrn 
using the dispersion relation for each medium. Line 196 extracts a cross section of 
the field fref at a location just under the top UPML, but still in the SF region, and 
removes the phase tilt due to an oblique angle of incidence. This location ensures 
that any fields present at that location are solely reflected from the device. Line 197 
extracts a cross section of the field ftrn at a location just above the bottom UPML 
and removes the phase tilt. This location ensures that any field at this location is 
transmitted through the device. Lines 200 and 201 calculate the complex amplitudes 
of the diffraction orders. The array aref contains the complex amplitudes of the 
reflected diffraction orders and the array atrn contains the complex amplitudes of 
the transmitted diffraction orders. These terms are complex because they describe 
both the amplitude and the phase of the diffraction orders. The phase tilt and the 
phase of the diffraction orders are different quantities. The phase tilt is the phase 
across the grid due to an oblique angle of incidence. The phase of a diffraction order 
is its overall phase relative to the source.

Given the complex amplitudes and the material properties where the diffraction 
orders are being analyzed, the diffraction efficiencies are calculated in the arrays RDE 
and TDE. Line 204 calculates the array RDE that contains the diffraction efficiencies 
of the reflected diffraction orders. This calculation is the same for both E and H 
modes. Lines 205 to 209 calculate the array TDE that stores the diffraction efficiencies 
of all the transmitted diffraction orders. The equation to calculate the diffraction 
efficiencies of the transmitted diffraction orders is different for E and H modes. 
An if statement is used to select the proper equation. In the end, the array TDE 
will contain the diffraction efficiencies of the transmitted diffraction orders. After 
the diffraction efficiencies are calculated, the overall reflectance REF is calculated 
on line 212 by adding all of the diffraction efficiencies of the reflected diffraction 
orders. The overall transmittance TRN is calculated on line 213 by adding all of the 

7025_Book.indb   2387025_Book.indb   238 12/17/21   8:41 AM12/17/21   8:41 AM



8.4	 Implementation of the FDFD Method for Scattering Analysis� 239

diffraction efficiencies of the transmitted diffraction orders. Last, the reflectance 
and transmittance are added together to assess overall power conservation. If the 
simulation contains no loss or gain, REF+TRN should equal 1. Due to numerical error, 
conservation is never exactly equal to 1 and is usually off of this value by a small 
fraction of 1%. Lines 217 and 218 display the diffraction efficiencies in a simple 
manner. Line 217 calculates the array indices where the diffraction efficiency is not 
zero. Line 218 displays a three-column array of the non-zero diffraction orders. The 
first column is the diffraction order number, the second column is the diffraction 
efficiency of the reflected diffraction orders, and the third column is the diffraction 
efficiency of the transmitted diffraction orders.

Even if the MATLAB program described above runs without error, the answer 
it reports cannot be trusted until a convergence study is performed. To do this, 
Figure 8.9 plots the diffraction efficiency of all the diffraction orders as a function 
of NRES. The lines are not labeled because it is just the overall trend that is of interest. 
Convergence is obtained around NRES equal to 20.

Table 8.1 summarizes the diffraction efficiencies at 30 GHz for both E and H 
modes for two different angles of incidence obtained at NRES = 100. This data can 
be used to benchmark and test your own FDFD code.

8.4.3  FDFD Analysis of a Self-Collimating Photonic Crystal

In Chapter 7, a lattice was analyzed using isofrequency contours (IFCs) to identify 
at what frequency the lattice self-collimates. Four cases where the lattice would 
self-collimate were identified. For this example, self-collimation will be simulated 
for the first band of the E mode. In this case, self-collimation was found to occur 
in the diagonal direction at a normalized frequency of ωn = 0.217. To simulate 
self-collimation occurring along the x-axis through a grid, the lattice will need to 

Figure 8.9  Convergence study for FDFD analysis of sawtooth diffraction grating.
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be rotated about the z-axis by 45°. The concept for the simulation is illustrated in 
Figure 8.10. The left part of this figure shows the lattice that will be simulated. It 
will be illuminated by a diverging Gaussian beam incident at an angle of 20°. This 
angle was chosen to demonstrate that self-collimation will occur in the x-direction 
regardless of the angle of incidence. Self-collimation for this lattice will fail if a large 
enough angle of incidence is chosen. Observe the primitive unit cell simulated in 
Chapter 7 is at a 45° angle relative to the x- and y-axes in this figure. To simplify 
constructing this lattice on the Yee grid, an alternative unit cell is identified that 
aligns with the x- and y-axes. The alternative unit cell has lattice spacing of b = 
a 2,  where a is the lattice spacing of the original unit cell analyzed in Chapter 7. 
Recall from Chapter 7 that εr1 = 1.0, εr2 = 12.0, and r = 0.48a.

The grid strategy that will be used to simulate the photonic crystal is shown 
in Figure 8.11. A lattice of approximately 60a × 40a will be centered in a grid. No 
spacer regions will be used above and below the lattice because all waves should 
be confined vertically to the center of the lattice. Spacer regions of size 6λ0 will be 
used on the left and right sides of the lattice to visualize the source and wave exiting 

Table 8.1  Diffraction Efficiency Calculations for Sawtooth Grating

θinc = 0° θinc = 30°

m RDE(m) TDE(m) RDE(m) TDE(m)

−4 E: 0.09%
H: 0.63%

−3 E: 2.16%
H: 0.36%

E: 0.41%
H: 0.62%

−2 E: 36.85%
H: 34.79%

E: 15.95%
H: 11.19%

−1 E: 1.56%
H: 0.31%

E: 3.90%
H: 17.16%

E: 16.95%
H: 21.61%

0 E: 3.16%
H: 0.54%

E: 1.98%
H: 5.89%

E: 1.82%
H: 0.10%

E: 4.53%
H: 4.86%

1 E: 8.12%
H: 3.32%

E: 20.60%
H: 0.72%

E: 8.99%
H: 3.93%

E: 1.93%
H: 7.18%

2 E: 4.17%
H: 24.53%

E: 11.49%
H: 16.39%

E: 3.29%
H: 4.92%

3 E: 12.30%
H: 3.62%

E: 14.15%
H: 14.59%

4 E: 5.14%
H: 8.15%

E: 19.02%
H: 12.85%

5 E: 1.48%
H: 1.78%

Overall E: R = 12.85%
H: R = 4.17%

E: T = 87.18%
H: T = 95.85%

E: R = 22.30%
H: R = 20.41%

E: T = 77.72%
H: T = 79.61%

Conservation E:  R + T = 100.03%
H: R + T = 100.02%

E: R + T = 100.02%
H: R + T = 100.02%
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the lattice. A diverging Gaussian beam will be launched at a 20° angle of incidence 
and illuminate the center of the left face of the lattice. The TF/SF technique will 
be used to launch the source and the TF/SF interface will span the perimeter of the 
grid staying just outside of the UPMLs. It is not possible to use just a single TF/SF 
interface at the left side of the grid because the source beam is wide enough that 
it would overlap the top or bottom UPML. The TF/SF interface where sources are 
injected cannot cross a UPML because the source functions do not account for decay 
in the UPML. The sources must have zero amplitude where the TF/SF interface 
crosses a UPML. To avoid the source overlapping the UPML in this simulation, the 
TF/SF interface was made to form a square around the entire grid. The UPMLs will 
be 20 cells large and be placed along all four grid boundaries.

The MATLAB code to simulate the self-collimating photonic crystal can be 
downloaded at https://empossible.net/fdfdbook/. The file is called Chapter8_
photoniccrystal.m. Lines 1 to 9 are the header of the program where MATLAB 
is initialized and units for the simulation are defined. In this case, only the units 
of degrees are defined.

The dashboard for the simulation extends from lines 11 to 36. This is where all 
of the hard-coded numbers are defined that control all aspects of the simulation. 

Figure 8.10  (Left) Self-collimating lattice to be simulated by FDFD. (Right) Alternative unit cell 
used to build the lattice in FDFD.

Figure 8.11  Grid strategy for FDFD analysis of a self-collimating photonic crystal.
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Lines 15 to 19 define everything that is needed about the source. This includes 
the free space wavelength lam0, the free space wavenumber k0, the width of the 
Gaussian beam bw, and the angle of incidence theta. lam0 is set to a value of 1. 
Since no length units were used, it may not be clear what this value of 1 represents. 
It represents whatever length scale you wish! That could be meters, micrometers, 
inches, or even Martian units. It is only necessary to ensure that any other length 
parameters be defined with the same units. See Chapter 2 for a discussion on scal-
ability in electromagnetics. An extremely narrow beam was chosen to get a nicely 
diverging beam. The angle of incidence of the Gaussian beam was set to 20°. Lines 
21 to 29 define everything that is needed about the photonic crystal. The normalized 
frequency wn is set equal to 0.217 as identified from the IFCs in Chapter 7. From 
this, the lattice constant a is calculated as the normalized frequency wn times the 
operating wavelength lam0. The radius of the hole is defined relative to the lattice 
constant as 0.48*a. er1 is the dielectric constant of the fill medium and er2 is the 
dielectric constant of the photonic crystal. For this simulation, the fill medium is set 
to air, but it is best to define it this way in the dashboard instead of hard-coding the 
device to be air. The size of the overall lattice is Lx in the x-direction and Ly in the 
y-direction. These were set to produce a lattice roughly 60a × 40a. Last, lines 30 
to 35 define all numerical parameters. The parameter NRES controls the grid reso-
lution and is the number of grid cells per minimum wavelength. The array SPACER 
defines four numbers that control the amount of physical space placed around the 
outside of the photonic crystal. The first number in SPACER is the space on the left, 
the second number is the space on the right, the third number is the space on the 
top, and the fourth number is the space on the bottom. In this example, all four 
dimensions are defined in terms of wavelength, which is often the best way to do 
this. The same ordering of numbers appears in the array NPML to define the size of 
the UPML at each boundary in terms of the number of grid points. A good nominal 
value for the size of a UPML is around 20 cells and that is what is used here for all 
boundaries. If this simulation was to be optimized for efficiency, consider reducing 
the size of the UPMLs at the top and bottom boundaries knowing that very little 
wave power will be incident on those boundaries. The last parameter is nmax, the 
maximum refractive index found anywhere on the grid. It is used later to determine 
the minimum wavelength in the simulation. Here, nmax is calculated through the 
intermediate parameter ermax because all of the material properties were defined 
in terms of relative permittivity.

After the dashboard, the real work can begin. Lines 37 to 71 perform the first 
major task of calculating a grid that is optimized for the simulation defined in the 
dashboard. Lines 42 and 43 calculate the first guess at the grid resolution param-
eters dx and dy that define the size of the cells on the Yee grid. This is calculated to 
be the minimum wavelength divided by NRES. The minimum wavelength is the free 
space wavelength lam0 divided by the maximum refractive index nmax. Next, the 
grid resolution parameters are adjusted so as to resolve the unit cell with an exact 
integer number of cells. This will allow a single unit cell to be arrayed across the 
grid to build the photonic crystal. The unit cell used in Chapter 7 was the primitive 
unit cell with lattice spacing a. An alternative unit cell is defined here for a lattice 
that is rotated by 45° about the z-axis. This alternative unit cell has dimension b 
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calculated as b = a 2. The grid resolution parameter dx is adjusted in lines 47 to 
48. nx is calculated to be the integer number of cells that should be used to repre-
sent the dimension b exactly. To ensure this, dx is recalculated as b/nx. The same 
procedure on lines 50 and 51 is used to adjust the grid resolution parameter dy. 
After this, the grid resolution is fixed and will not be changed again. Therefore, 
the next step is to calculate both the physical and numerical sizes of the grid. Sx is 
the physical size of the grid in the x-direction. It is calculated as the width of the 
photonic crystal Lx plus the spacer regions to the left and the right of the photonic 
crystal. Note the order of the terms on line 54 is written in the same order they 
reside on the grid. This practice helps to remember and visualize all of the dimen-
sions that must be included. Nx is the numerical size of the grid, or the number of 
cells, in the x-direction. This is calculated as the physical size divided by the grid 
resolution Sx/dx, rounding this ratio up to the next largest integer, and adding the 
UPML regions on the left and right sides of the grid. The order of the terms on 
line 55 reflects the order they appear on the grid as was done when calculating Sx. 
Since the UPML regions were not considered in the original calculation of Sx, Sx 
is recalculated as Nx*dx for consistency and to be the true physical size of the grid. 
Lines 58 to 60 repeat the same steps to calculate Sy and Ny to represent the size of 
the grid in the y-direction. At this point, an optimized grid is calculated. Lines 62 
to 64 go on to calculate the 2× grid parameters Nx2, Ny2, dx2, and dy2. Lines 66 
to 75 calculate the axis arrays for both the Yee grid and the 2× grid. Observe how 
the coordinates are adjusted so that x = y = 0 at the center of the input face of the 
photonic crystal. This is done so that when the Gaussian beam is rotated, it will be 
rotated about this origin and will always illuminate the photonic crystal at the cen-
ter of the input face. Observe on line 68 that NPML(1) is multiplied by dx to convert 
it to a physical length. On line 73, 2*NPML(1) is multiplied by dx2 to convert these 
2× grid parameters to physical length.

Now that the grid is calculated correctly to fit the entire photonic crystal, lines 
77 to 131 build the materials onto this grid. First, lines 81 to 86 calculate a small 
2× meshgrid for just a single unit cell of dimension b. Nxuc and Nyuc are the number 
of points on this small 2× grid, xauc and yauc are the axis vectors for this grid, 
and X and Y are the meshgrid arrays for this grid. Lines 88 to 95 build the unit cell 
on the small 2× grid following techniques described in Chapter 1. Line 89 builds a 
circle to the middle of the unit cell and lines 90 to 93 add circles at each corner of 
the unit cell and puts this information into the array ERuc. Line 94 converts the 0’s 
and 1’s in the array ERuc to the relative permittivity values defined by er1 and er2 
in the dashboard. Line 95 defines the relative permeability throughout the unit cell 
as all 1’s because this device has only the vacuum permeability. With the unit cell 
constructed, it is time to array the unit cell across the full grid. Lines 97 and 99 
initialize the arrays ER2 and UR2 to all 1’s to correspond to vacuum. These arrays 
are the relative permittivity and relative permeability, respectively, across the full 2× 
grid. The 2× grid is especially useful here due to the curved geometry of the photonic 
crystal. The double loop from lines 101 to 113 arrays the unit cell to form the whole 
photonic crystal. In this loop, nx1, nx2, ny1, and ny2 are the start and stop indices 
of where a unit cell is to be placed onto the 2× grid. Lines 110 and 111 incorporate 
the unit cell at the location defined by these array indices. After the double loop, 
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the device has been constructed and is visualized to the figure window on lines 115 
to 120. Line 123 incorporates the UPML using the function addupml2d() discussed 
in Chapter 5. Last, lines 125 to 131 form the diagonal materials matrices that will 
be used to calculate the wave matrix A.

It is now time to perform FDFD! Lines 137 to 141 build the derivative matrices 
by calling the function yeeder2d() discussed in Chapter 4. Dirichlet boundary 
conditions are defined at all boundaries in the array BC since there is a UPML at 
each of the boundaries. Line 144 builds the wave matrix A for the E mode using the 
materials matrices and the derivative matrices.

Next, the source field is calculated on lines 146 to 152. The concept of calculating 
the source field fsrc is shown in Figure 8.12. Think of the source field as the field 
that would result if there was no device built onto the grid. Figure 8.12(a) shows the 
Gaussian beam across the grid without the angle of incidence built in. Figure 8.12(b) 
shows the same Gaussian beam but with the 20° angle of incidence incorporated. 
To incorporate the angle of incidence, the meshgrid is rotated on lines 148 to 150. 
Line 148 calculates the ordinary meshgrid, line 149 converts the Cartesian meshgrid 
to polar coordinates, and line 150 converts the polar coordinates back to Cartesian 
after adding the angle of incidence theta to the angle meshgrid term. This allows 
the simple Gaussian beam equation to be used on line 151 to calculate the source 
field, but using the rotated meshgrid parameters. A real Gaussian beam diverges, 
but is a more complicated function to calculate. A simple Gaussian beam can be 
used as long as the source function is prevented from crossing the far-right TF/SF 
interface. On the far-right side, the source function would not match the simulated 
beam because the simulated beam diverges. Line 152 accomplishes this by setting 
the source function to zero at all points to the right of the input face of the photonic 
crystal. The meshgrid was set up so that X = 0 at the input face of the photonic 
crystal. The final source field is shown in Figure 8.12(c). Figure 8.12(d) shows the 
field calculated from a simulation without a photonic crystal to fully illustrate that 
the source beam is diverging. It is a good practice to run a simulation without the 

Figure 8.12  Calculation of the source field. (a) Source field with no rotation. (b) Source field 
with 20° rotation. (c) Truncated source field with 20° rotation. (d) Simulated source field without 
photonic crystal showing divergence.
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device present to ensure that the code is working correctly up to that point. Problems 
with the code can be more difficult to diagnose when the simulation results are 
complicated by the presence of a device.

Next, the SF masking matrix Q is constructed on lines 154 to 161. A single 
TF/SF interface running vertically through the left part of the grid is not sufficient 
for this Gaussian beam source. If a large enough angle of incidence were used, the 
Gaussian beam would run more vertically causing the beam to overlap the UPML 
and move away from the TF/SF interface. Both of these will cause problems in the 
FDFD simulation. To prevent these problems, the TF/SF interface is made into a 
complete perimeter around the grid just outside of the UPML regions. This is shown 
in Figure 8.11. Given Q, the source vector b is calculated using the QAAQ equation 
on line 164. Do not confuse the source vector b with the unit cell dimension b. It is 
an unfortunate reuse of the same variable name. Last, the matrix equation is solved 
on line 167 to calculate the field f. It is reshaped back to the two-dimensional Yee 
grid on line 168 so that it can be visualized and postprocessed.

The field calculated from the simulation is visualized from lines 170 to 190, and 
the result is shown in Figure 8.13. Line 183 uses MATLAB’s contour() function to 
superimpose the photonic crystal onto the fields. It draws the contour lines at the 
edges of the photonic crystal lattice. It is a very good practice to combine the device 
and simulated field into the same diagram in some manner. Much can be learned by 
observing how the field interacts with the device and material interfaces. For this 
example, the lattice is illuminated with a diverging beam incident at 20°. Despite 
the beam’s divergence and angle of incidence, the beam inside of the lattice is self-
collimated and forced to propagate straight along the x-axis without diverging. When 
the beam exits the lattice, the beam continues with essentially the same behavior 
as it entered the lattice. In this simulation, nothing was done at the edges of the 
photonic crystal to minimize reflections and the scattered waves can be observed in 
the simulation. A reflected wave is observed at the input face of the lattice as well 
as a self-collimated beam inside the lattice reflected from the output face.

To ensure the most reliable simulation possible, a convergence study should be 
performed. It was observed that reasonable convergence was achieved at NRES = 20. 

Figure 8.13  Simulation results from a self-collimating photonic crystal.
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It is a mistake to make any conclusions about a simulation without first ensuring 
proper convergence.

8.4.4  FDFD Analysis of an OIC Directional Coupler

To demonstrate how FDFD can be used to simulate OICs, the directional coupling 
device shown in Figure 8.14 will be analyzed. A directional coupler is formed when 
two waveguides are brought close enough together to be electromagnetically coupled 
[6]. When this happens, coupled-mode theory [7–10] shows that there is a periodic 
exchange of power between the waveguides. Directional couplers are commonly 
used in microwave circuits [11, 12], OICs [6], and other frequency bands [13].

For best computational efficiency, the three-dimensional OIC will be reduced 
to a two-dimensional representation using the effective index method (EIM) dis-
cussed in Chapter 6. The rib waveguide will be the same design discussed in Chap-
ter 6, but with smaller dimensions in order that the waveguide support only the 
fundamental mode. The revised dimensions are h = 300 nm, t = 100 nm, and w = 
400 nm. The total length of the input waveguide along the x-direction will be 8.525 
μm. The second waveguide will start at a distance of 775 nm from the start of the 
input waveguide. Both waveguides end at the same position on the right. The gap 
between the waveguides is 155 nm. By experimenting with the simulation, it can be 
observed that smaller gaps will increase the coupling between the waveguides and 
shorten the distance it takes to exchange power. The coupling length is the distance 
required to transfer the maximum amount of power from the first waveguide into 
the second waveguide. While a directional coupler is simulated here, it should be 
clear that any type of circuit can be analyzed including coupled-line filters, ring 
resonators, waveguide bends, and more.

Figure 8.14  Reducing a three-dimensional directional coupler to two dimensions.
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The grid strategy for this simulation is depicted in Figure 8.15. A UPML is 
placed at all grid boundaries and will be 20 cells large. The input waveguide will 
run the entire length of the grid in the x-direction. The second waveguide will run 
parallel to the first waveguide, but its starting point will be some distance to the 
right. The TF/SF interface will cross vertically through the grid just to the right of 
the leftmost UPML. This is where the source will be injected into the input wave-
guide using the QAAQ technique.

A block diagram of the steps to simulate this OIC is provided in Figure 8.16. 
The first three steps follow the ordinary FDFD algorithm summarized in Figure 8.5. 
Before the OIC can be represented on a two-dimensional grid using the EIM, the 
two effective refractive indices must be calculated. A first slab waveguide analysis 
is performed for a slab waveguide defined by the vertical cross section off of the 
rib waveguide. Given that the slab is illuminated with a vertically polarized mode, 
the slab waveguide analysis must be H mode. The effective refractive index of the 
fundamental mode from this analysis is recorded as neff,1. A second slab waveguide 
analysis is performed for the H mode of a slab waveguide defined by the vertical 
cross section on the rib waveguide. The effective refractive index of the fundamental 
mode from this analysis is recorded as neff,2. Now the OIC is constructed onto the 
two-dimensional grid using neff,1 for locations off of the rib waveguide and neff,2 
for locations on the rib waveguide. It is now that a third slab waveguide analysis is 
performed in the cross section of the grid perpendicular to the input waveguide. This 
is calculated for the E mode and the fundamental mode is selected for the source. 
The source function is created by calculating the fundamental mode across the entire 
grid, adding phase at each position x according to exp(−jk0neffx). Otherwise, the 
FDFD analysis follows that of Figure 8.5 and is performed for the E mode. When 
the simulation is finished, the field at the output is analyzed by weighing it against 
all of the modes in the cross section of the waveguide. From this, transmission 
and reflection are calculated. The last step is to visualize the fields calculated by 
the simulation.

The MATLAB code to simulate this device can be downloaded at https://
empossible.net/fdfdbook/ and is called Chapter8_directionalcoupler.m. The 

Figure 8.15  Grid strategy for simulating an OIC directional coupler.
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header for the function extends from lines 1 to 9. The first line is the name of the 
MATLAB program. Lines 4 to 6 initialize MATLAB by closing any open figure 
window, clearing the command window, and clearing all variables from memory. 
Lines 8 and 9 define the units of the program. Being a photonics simulation, the only 
unit defined here is micrometers, but it is often useful to also define nanometers.

Lines 11 to 36 comprise the dashboard of the program where all parameters are 
defined that control the simulation. The source parameters are defined on lines 16 
and 17 to include the free space wavelength lam0 and the free space wavenumber 
k0. The parameters describing the dimensions and material properties of the rib 
waveguide are defined from lines 19 to 25 just how they were in Chapter 6. Lines 
27 to 30 define parameters specific to the directional coupler. This includes the 
length of space L1 between the start of the input waveguide and the start of the 
second waveguide, the length of the second waveguide L2, and the gap distance g 
between the two waveguides. Observe that these are defined in terms of the source 
wavelength lam0 instead of absolute dimensions. Using this approach, the OIC will 
behave the same regardless of the chosen wavelength. If a parameter sweep is to be 
performed, these parameters should be defined in terms of a design wavelength, not 
the wavelength of the simulation. Last, lines 32 to 38 define all of the parameters 
related to the numerical aspects of the simulation. NRES defines the resolution of the 
simulation as the number of points per minimum wavelength. SPACER contains four 

Figure 8.16  Block diagram of FDFD analysis of an OIC.
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numbers identifying how much physical space there should be on all four sides of the 
OIC. NPML contains a similar set of four numbers defining the size of the UPML at 
each grid boundary in terms of the number of points. nmax is the maximum refractive 
index occurring anywhere in the simulation. This is needed to later determine the 
minimum wavelength that must be resolved by NRES cells.

With all of the parameters controlling the simulation defined, the first task is to 
calculate a grid that is optimized for the device to be simulated. The grid is calculated 
from lines 38 to 69 and starts by calculating the grid resolution parameters dx and 
dy. They are calculated as the smallest wavelength in the simulation lam0/nmax 
divided by NRES. This calculation does not consider at all the device dimensions 
so it is entirely probable that critical dimensions are not represented exactly by an 
integer number of cells on the grid. Having critical dimensions represented exactly 
this way improves the accuracy and convergence rate of the simulation. To address 
this, lines 46 to 60 adjust the grid resolution parameters dx and dy so that the 
width of the rib waveguide is represented exactly by an integer number of cells. To 
adjust dx, first nx is calculated as the number of cells that should exactly represent 
the width of the rib. This is calculated as the width of the rib waveguide divided 
by dx and then rounding up to the nearest integer. At this point, dx is adjusted by 
recalculating it as the width of the rib divided by nx. Lines 49 and 50 repeat this 
same calculation to adjust dy.

At this point, the grid resolution parameters dx and dy are fixed and will not be 
changed again. The next step is to calculate both the physical size of the grid and 
the number of points. Lines 53 to 55 do this for the x-direction. Sx is the physical 
size of the grid in the x-direction and is calculated as the spacer regions plus the two 
lengths of waveguide L1 and L2 defined in the dashboard. Observe that the order of 
the terms to calculate Sx on line 53 matches where the dimensions lie on the grid. 
This practice helps to ensure all dimensions are included and nothing is forgotten. 
Nx is the number of cells of the grid in the x-direction and is calculated as Sx/dx 
plus the UPML regions on the left and right sides of the grid. Line 55 recalculates 
the physical size of the grid Sx because the UPMLs were not included in the first 
calculation of Sx. The same three steps are repeated to calculate Sy and Ny that 
represent the physical and numerical sizes of the grid in the y-direction.

With the grid parameters calculated and optimized for simulating the device 
defined in the dashboard, the 2× grid parameters are calculated. This includes the 
number of points Nx2 and Ny2 as well as the grid resolution parameters dx2 and 
dy2. The last step in the grid calculation is calculating the axis arrays for both the 
Yee grid, xa and ya, and the 2× grid, xa2 and ya2.

Before the device can be constructed onto the grid, the effective refractive 
indices must be calculated that accurately represent the three-dimensional OIC in 
two dimensions. Lines 71 to 175 perform two-slab waveguide analyses to determine 
these. Following Figure 6.6, the first slab waveguide is constructed as a vertical cross 
section through the OIC away from the rib waveguide. Lines 75 to 124 perform this 
analysis following the same procedure discussed in Chapter 6 for slab waveguides. 
The fundamental mode of the rib waveguide is vertically polarized indicating that 
it is the H modes of the slab waveguide that must be calculated. Here the slab 
waveguides have modes propagating in the +x-direction and the uniform direction 
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is y. Line 124 records the effective refractive index neff1 of the fundamental mode 
away from the rib waveguide. Similarly, lines 126 to 175 perform the same analysis 
of the vertical cross section through the rib waveguide. Line 175 records the effective 
refractive index neff2 of the fundamental mode on the rib waveguide. The output 
of this entire section of code is the two effective refractive indices neff1 and neff2.

With the grid calculated and the two effective indices calculated for the EIM, 
lines 177 to 215 build the OIC onto the grid, incorporate the UPMLs and form the 
diagonal materials matrices. Lines 182 and 183 initialize the relative permittivity 
and relative permeability arrays on the 2× grid. The relative permittivity array ER2 
is initialized to all values of neff1^2 so that it is only the ribs described by neff2^2 
that must be incorporated. The effective refractive index is squared to convert the 
refractive index to relative permittivity. The relative permeability array UR2 is set 
to all ones. Lines 185 to 188 add the input waveguide to the array ER2. To do this, 
the array indices of the vertical start and stop positions are calculated as ny1 and 
ny2. Given these, the input waveguide is added across the grid in the x-direction 
on line 188. A similar procedure is used to add the second waveguide in lines 190 
to 194. One difference for the second waveguide is that the array index nx where 
the waveguide starts in the x-direction is also calculated. The second waveguide is 
added to ER2 on line 194. At this point, the array ER2 is finished and lines 196 to 
201 visualize the two-dimensional model of the OIC. It is always a good practice 
to visualize the arrays UR2 and ER2 to verify they represent the device correctly. 
With the 2× grid arrays UR2 and ER2 constructed correctly, line 204 incorporates 
the UPML and returns the materials arrays on the Yee grid ERxx, ERyy, ERzz, URxx, 
URyy, and URzz. Lines 206 to 212 form the diagonal materials matrices that will be 
used to calculate the wave matrix A in a later step.

With the device modeled onto the grid, the next step is to analyze the input 
waveguide in order to calculate the source mode. This calculation is necessary 
because the source is a guided mode. This happens on lines 214 to 243 where a third 
slab waveguide analysis is performed of the cross section of the input waveguide. 
Line 219 calculates the array index nx where the cross section is to be obtained. 
Lines 220 to 222 do several things all at once. They extract the cross section of 
the waveguide, extract the points from the 2× grid to the Yee grid, and form the 
diagonal materials matrices for the slab waveguide analysis. Lines 224 to 228 build 
the derivative matrices for the slab waveguide analysis. Dirichlet boundary conditions 
are used. Lines 230 to 232 build the eigenvalue problem which is then solved on 
lines 234 to 238. To be consistent with polarization, this slab is analyzed for the E 
mode. Observe on line 235 that the A and B matrices of the generalized eigenvalue 
problem are converted to full matrices, the command eig() is called instead of 
eigs(), and no other input arguments are given. This is done because it is necessary 
to calculate all of the eigenmodes from the eigenvalue problem to correctly analyze 
reflected and transmitted fields. Since all of the modes are being calculated, there 
is no need to specify the number of modes to calculate or give an estimate for the 
eigenvalue. The eigenmodes are sorted in descending order of the real part of the 
effective refractive indices. This places the fundamental mode in the first position. 
Lines 241 to 243 extract both the field profile and the effective refractive index of 
the fundamental mode. Observe that the eigenvector matrix Ez is recorded so that 
it can be used later to calculate reflection and transmission.
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It is finally time to perform FDFD analysis of the directional coupler circuit. 
This happens on lines 245 to 275. Lines 249 to 253 build the derivative matrices 
using Dirichlet boundary conditions. The wave matrix A is then calculated on line 
256 from the derivative matrices and diagonal materials matrices. The source field 
is calculated on lines 258 to 262. A two-dimensional array fsrc on the Yee grid is 
initialized to all zeros on line 259. The loop on lines 260 to 262 fills in the array 
fsrc one vertical slice at time. Each vertical slice is filled in with the field profile 
of the source and the phase of the source. The phase of the source is calculated 
using the effective refractive index neff of the source mode. Figure 8.17 shows 
the final source field calculated for this example. Recall that the source field is the 
field that would result if no scattering occurred. That means, this is the field that 
would result if there were only the input waveguide across the grid and no second 
waveguide or anything else.

Lines 264 to 268 build the SF masking matrix Q. For this problem, there is only 
a single TF/SF interface running vertically through the grid of two cells to the right 
of the leftmost UPML, as illustrated in Figure 8.15. The interface is two cells to 
the right so that there is a cell in the SF region from which to observe reflection. 
Line 271 calculates the source vector b using the QAAQ equation. Last, the matrix 
equation is solved on line 274 and the calculated field is reshaped back to the two-
dimensional Yee grid on line 275. Line 274 is the most computationally intensive 
step despite being the shortest line of code in the entire program.

At this point, the FDFD simulation is complete and postprocessing and 
visualization of the results can begin. Lines 277 to 293 analyze the reflected and 
transmitted fields to determine how much power is reflected and transmitted in 
the fundamental mode. To do this, lines 282 to 285 extract the fields in the cross 
sections of the grid on the far left and right sides of the grid but not in the UPMLs. 
These are stored in the arrays fref and ftrn. The simulated field along with the 
fields recorded in fref and ftrn are shown in Figure 8.18. This directional coupler 
produced near-zero reflections and split the field evenly between the two output 
waveguides. This is called a 3-dB directional coupler. By adjusting the length over 
which the waveguides are parallel, different split ratios can be realized.

Given the reflected and transmitted fields, the amplitudes of all possible modes 
in the cross section of the grid are calculated in lines 288 and 289, but it is only 
the amplitude of the fundamental mode that is of interest here. The columns in 
an eigenvector matrix V represent an orthogonal set of configurations that the 
field is allowed to have. Whatever the field actually looks like, it must be a linear 

Figure 8.17  Visualization of the source field fsrc for a guided mode.
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combination of the eigenvectors in V. If the amplitudes of all the modes are stored 
in a column vector a, then the overall field is f = Va. In the case of the FDFD simula-
tion, the overall field f is found from the simulation and it is the amplitudes stored 
in a that need to be calculated. This is found by solving the matrix equation for a 
to get a = V–1f. The fraction of power reflected into the fundamental mode R of the 
input waveguide is calculated on line 292. The fraction of power transmitted in the 
fundamental mode T of the input waveguide is calculated on line 293. These are 
somewhat analogous to the reflectance and transmittance terms calculated in the 
diffraction grating example. Depending on the circuit being analyzed, this R and T 
will rarely obey conservation because power is often scattered out of the waveguides 
or coupled into higher-order modes. The semicolons were left off of lines 292 and 
293 so that the results are reported to the command window.

The very last step is to visualize the simulated results. This happens on lines 295 
to 317. The field is visualized using the pcolor() function to obtain nice-looking 
smooth fields. The device is superimposed using the contour() function.
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C H A P T E R  9

Parameter Sweeps with FDFD

Chapter 9 discusses how to modify the MATLAB code for finite-difference fre-
quency-domain (FDFD) in order to perform parameter sweeps. Different types of 
parameter sweeps are discussed along with best practices. As a first example, the 
response of a guided-mode resonance filter (GMRF) [1–4] is simulated as a func-
tion of wavelength in the range 1.4 μm < λ0 < 1.5 μm. For the second example, the 
geometry of a terahertz polarizer will be optimized and its response will be plotted 
as a function of frequency.

9.1	 Introduction to Parameter Sweeps

Parameter sweeps are probably the most powerful tool in existence for analyzing and 
designing electromagnetic and photonic devices. The concept is simple. The results 
of a simulation are plotted as some variable is varied over a range of values. The 
most common parameter sweep is probably transmission and reflection plotted as 
a function of frequency. From parameter sweeps, trends can be determined, device 
dimensions can be optimized, and discoveries can be made!

Parameter sweeps are as simple as placing a big for loop around the FDFD 
code and recording the results as the loop iterates. This is incredibly easy to do if 
proper dashboard discipline is being practiced. Careful thought should be given 
about what steps in the FDFD algorithm are included inside of the loop. Steps that 
produce the same result throughout the parameter sweep should be moved outside 
of the loop if at all possible.

Block diagrams of common parameter sweeps are shown in Figure 9.1. First, 
Figure 9.1(a) shows a block diagram summarizing the major steps in ordinary FDFD. 
This is provided so that the modifications required for different parameter sweeps 
can be more easily identified. Figure 9.1(b) shows a block diagram for a wavelength 
(or frequency) parameter sweep that is by far the most common type of parameter 
sweep. While it is possible to rebuild the grid and device for each wavelength, it 
is not recommended because this practice will lead to a jagged response. Instead, 
the grid and device should be constructed prior to the loop that is based on the 
worst case requiring the finest resolution. This is usually the shortest wavelength 
or highest frequency in the sweep. All other steps to implement the FDFD method 
appear inside of the loop.

Another type of parameter sweep involves changing a dimension associated 
with the device being simulated. This type of parameter sweep is used very often 
to optimize the performance of a device. Figure 9.1(c) shows the flow of steps for 
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this type of parameter sweep. Sometimes it may be necessary to recalculate a grid 
for each new dimension, but it is recommended to calculate a grid that will accom-
modate the full range of dimensions to be simulated. This can be accomplished by 
calculating a grid with fine enough resolution to resolve the smallest dimensions 
while also having enough points on the grid to accommodate the largest dimen-
sions. Calculating the grid this way will avoid getting a jagged response. In this 
sweep, the device has to be rebuilt every iteration so the build step appears inside 
of the parameter sweep loop.

The last parameter sweep, shown in Figure 9.1(d), is a convergence study where 
the simulation is repeated as the resolution of the grid is increased. This requires 
essentially all steps for FDFD to be placed inside of the loop. A convergence study is 
the primary means to determine proper grid resolution, large enough spacer regions, 
and large enough perfectly matched layers (PMLs). Convergence studies must be a 
standard practice in computational electromagnetics.

Observe that each parameter sweep includes a visualization step inside of the 
loop. Parameter sweeps can be time-consuming, so it is useful to visualize the results 
as they are being calculated. Many times, errors can be caught early in the parameter 
sweep. Execution can be stopped, errors corrected, and then the parameter sweep 
restarted without wasting time waiting for an entire parameter sweep to finish. The 
key to computation is visualization.

Figure 9.1  Block diagrams of common parameter sweeps in FDFD.
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9.2	 Modifying FDFD for Parameter Sweeps

The biggest trick to make parameter sweeps easy and utilize simpler code is to 
write a generic function that performs the FDFD analysis. By putting as much of 
the FDFD code into the generic function as possible, the parameter sweep itself 
becomes very short and simple. Having a generic function to implement the FDFD 
method is useful for other things because programs can concentrate on building 
devices and analyzing the results.

An excellent device to perform a parameter sweep for is a GMRF [1–4]. A 
GMRF is both a diffraction grating [5] and a slab waveguide [6] at the same time. 
For most frequencies, a GMRF behaves as an ordinary dielectric slab and exhibits 
a slow and weak response in terms of transmission and reflection. Then, over a 
very narrow range of frequencies, one of the diffraction orders from the diffraction 
grating is able to couple power from the applied wave into a mode guided in the slab 
and the transmission and reflection from the GMRF change abruptly. GMRFs are 
incredibly sensitive to dimensions and material properties so if anything is wrong 
with the FDFD code, a GMRF simulation will tend to amplify it. For this reason, 
GMRFs are excellent devices for benchmarking and practicing FDFD simulations. 
GMRFs are also very interesting and useful devices to study!

The GMRF that will be simulated is illustrated in Figure 9.2. The device itself 
is a slab waveguide with a diffraction grating at its core. There is no requirement 
where the diffraction grating has to reside relative to the slab waveguide as long as 
they are close enough to be electromagnetically coupled. For a wavelength sweep, 
the spacer regions are set to half of the maximum wavelength in the sweep. This is 
a good choice if nothing else is known. However, if there is any apriori knowledge 
of the resonant wavelength, the spacer regions could be set to half of the resonant 
wavelength. It is the resonant wavelength that will have the largest evanescent fields 
because this is the wavelength of the guided mode. Regardless, no evanescent fields 
should be allowed to extend into the UPMLs. The simulation will calculate reflec-
tance and transmittance in the range 1.4 μm < λ0 < 1.5 μm.

Figure 9.2  GMRF and representation on a two-dimensional FDFD grid. This device has f = 0.5, 
n1 = 1.0, n2 = 1.4, nL = 1.9, nH = 2.1, d1 = 265 nm, d2 = 380 nm, and L = 870 nm. The product fL is 
the physical width of the high-index region.
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9.2.1  Generic MATLAB Function to Simulate Periodic Structures

The first step to perform a parameter sweep of the device in Figure 9.2 is to write 
a generic function that performs FDFD analysis of any periodic structure. The 
recommended way of doing this is to first write a standard FDFD program to 
simulate the device at one frequency, just like the diffraction grating example in 
Chapter 8. Save this program with a name like fdfd2d_proto.m. Then save this same 
file as two additional files, and give one the name fdfd2d.m and the other the name 
demo_gmrf.m. In the fdfd2d() function, delete everything before the FDFD analysis 
so that it only contains the steps specific to performing FDFD. In the demo_gmrf.m 
file, delete everything after the device is built onto the grid. Then, add some code to 
demo_gmrf.m to call the fdfd2d() function to perform the simulation. Rather than 
having a large number of input arguments, wrap all parameters defining the device 
to be simulated in the MATLAB structure DEV and all the parameters defining the 
source in the MATLAB structure SRC. Then, all output data will be put into the 
MATLAB structure DAT. When done correctly, the call to the fdfd2d() function 
will be

DAT = fdfd2d(DEV,SRC);

In a sense, demo_gmrf.m will be the first half of the original program fdfd2d_
proto.m while fdfd2d() will be the second half. Most of the work in creating the 
two new MATLAB programs entails changing variable names to accommodate 
the use of structures.

The overall grid strategy for simulating periodic structures that fdfd2d() will 
assume is illustrated in Figure 9.3. Periodic boundary conditions (PBCs) are used 
at the x-axis boundaries to model a device that is infinitely periodic in the x-direc-
tion. UPMLs are located at the y-axis boundaries to absorb outgoing waves. The 
device itself is located near the center of the grid vertically. A top spacer region is 
inserted above the device to allow sufficient space for the field to be visualized and 
to prevent evanescent fields from entering the top PML. A bottom spacer region 
is inserted below the device for the same reasons. The source is injected into the 
simulation in the +y-direction at the TF/SF interface. The TF/SF interface can be 
placed anywhere between the top PML and the device, but cannot overlap either of 
these. For this example, the TF/SF interface is placed just a few cells below the top 
PML but it can be located lower than this if it is desired to visualize more of the SF. 
Immediately below the top PML is the reflection plane where the reflected waves 
are analyzed. It must be located in the SF region so it can be placed anywhere above 
the TF/SF interface and below the top PML. Immediately above the bottom, PML 
is the transmission plane where the transmitted waves are analyzed. The location 
of the transmission plane can be anywhere between the bottom of the device and 
the bottom PML but not overlapping either of these.

The MATLAB code for the generic function fdfd2d() can be downloaded at 
https://empossible.net/fdfdbook/. The first line is the function heading required 
by MATLAB where the input arguments and output arguments are defined. The 
commented section from lines 2 to 27 is what will be displayed to the command 
window when help fdfd2d is typed at the command prompt. It is strongly 
recommended to include a header like this in all functions in order to remember 
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how to use them at a later time. In this header, the input and output arguments 
along with their fields are listed in the header. The structure DEV will contain the 
arrays ER2 and UR2 to define what is to be simulated in a generic way. DEV will also 
contain RES with the grid resolution parameters dx and dy and NPML with the size 
of the UPML at the top and bottom of the grid. The function will always simulate 
periodic structures so no UPML is used on the left and right sides of the grid. The 
structure SRC will contain the free space wavelength lam0, the angle of incidence 
theta, and the mode MODE to be simulated that will be either an “E” or an “H.”

It is strongly recommended to avoid having redundant input arguments. For 
example, it would be a huge mistake to make the grid size parameters Nx and Ny 
be input arguments. That is because these can be determined from the inside of 
the fdfd2d() function from the size of either ER2 or UR2. Having redundant input 
arguments creates extra work and the potential for mistakes.

The section from lines 29 to 56 is a new section that is needed to extract all 
of the required FDFD parameters from the input arguments. Line 34 determines 
the size of the 2× grid from the size of the ER2 array. Lines 36 to 45 calculate the 
remaining grid parameters and the meshgrid for the Yee grid. Line 48 calculates 
the free space wavenumber. Lines 51 to 56 extract the material properties of the 
external regions. These are needed to calculate the source and to calculate reflection 
and transmission.

The FDFD method is implemented from lines 62 to 105. This code is essentially 
unchanged from Chapter 8. The simulated field is then postprocessed to analyze 
reflection and transmission. This analysis appears from lines 107 to 135. Other than 

Figure 9.3  Grid strategy assumed by the fdfd2d() function for simulating periodic structures 
with FDFD.

7025_Book.indb   2597025_Book.indb   259 12/17/21   8:41 AM12/17/21   8:41 AM



260� Parameter Sweeps with FDFD

using the variables inside of the structures, the code is identical to that discussed 
in Chapter 8.

Observe that this fdfd2d() function is generic in the sense that it does not 
have to know anything about the device being simulated. As long as the device is 
to be simulated with PBCs on the left and right boundaries, this same code can 
simulate virtually any periodic structure. Not only does this function allow for 
easy parameter sweeps, it can also simplify code intended to simulate devices at 
just a single frequency by eliminating all of the FDFD steps. It is a very versatile 
and useful function to have!

9.2.2  Main MATLAB Program to Simulate the GMRF

The MATLAB code to build the GMRF and run the wavelength sweep can be 
downloaded at https://empossible.net/fdfdbook/. The file is called Chapter9_GMRF.m. 
Other than some variables being put into data structures, the code up to line 107 is 
nearly identical to the original code that simulated a diffraction grating. The header 
goes from lines 1 to 11 and gives the name of the file, initializes MATLAB, and 
defines some units. Being a photonics simulation, micrometers is set to 1.

The dashboard goes from lines 13 to 39. There are some additional variables 
defined for the source because a wavelength sweep is being performed. The variable 
lam1 defines the shortest wavelength of the sweep, lam2 defines the longest wavelength 
of the sweep, and NLAM defines how many wavelength points there will be over the 
range from lam1 to lam2. Line 21 calculates the array of wavelengths from lam1 to 
lam2. A separate FDFD simulation will be performed for each wavelength in this 
array so it is important to use the minimum number of points NLAM that still resolves 
the reflection and transmission response sufficiently. Lines 22 and 23 define the 
angle of incidence theta and mode MODE to be simulated as was done in Chapter 8. 
Lines 25 to 33 define all of the parameters needed to build the GMRF onto a grid, 
as illustrated in Figure 9.2. These are not made input arguments into fdfd2d() 
because all of the information about the device that FDFD needs to know will be 
built into the arrays ER2 and UR2. The parameters defining the GMRF include the 
duty cycle f, refractive index n1 above and below the GMRF, refractive index n2 of 
the top and bottom layers of the GMRF, the low refractive index nL in the grating 
region, the high refractive index nH in the grating region, thickness d1 of the top and 
bottom layers, thickness d2 of the grating region, and the period L of the grating.

Lines 41 to 72 calculate a grid that is optimized for simulating this GMRF. It 
follows the same flow as discussed in Chapter 8. The grid resolution parameter dx 
was adjusted to represent the grating period L with an exact integer number of cells. 
The grid resolution parameter dy was adjusted to represent the grating thickness d2 
with an exact integer number of cells.

Lines 74 to 105 build the GMRF on the 2× grid and display the ER2 array to 
the figure window. Lines 79 and 80 initialize the relative permeability array UR2 to 
vacuum and the relative permittivity array ER2 to n1

2. Lines 82 to 92 calculate the 
start and stop array indices of all of the features of the GMRF. The variable nx1 
is calculated to be the array index of the left side of the high-index region of the 
grating, while the variable nx2 is the array index of the right side. The variables ny1 
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and ny2 are the array indices of the top and bottom of the top layer of the GMRF. 
The variables ny3 and ny4 are the array indices of the top and bottom of the grating 
layer. Last, the variables ny5 and ny6 are the array indices of the top and bottom of 
the bottom layer of the GMRF. Given all of these array indices, lines 94 to 98 build 
the GMRF into the ER2 array. The array ER2 is visualized from lines 100 to 105 to 
the first subplot of a figure window that is five subplots wide. The field calculated 
during the simulation will be displayed to the second subplot and the reflection and 
transmission spectra will be displayed in the third to fifth subplot spaces.

The wavelength sweep is implemented in the next section of the code from lines 
107 to 152. Line 112 defines the structure field RES that contains the grid resolution 
parameters dx and dy. Lines 115 to 117 initialize the three arrays where the response 
of the device will be stored. REF will contain the overall reflectance calculated for 
each wavelength in the array LAMBDA, TRN will contain the overall transmittance, 
and CON will contain the power conservation that is reflectance plus transmittance. 
It is always best practice to plot the conservation in addition to reflectance and 
transmittance because this is a great indicator of the health and accuracy of the 
simulation. It should be within 1% of 100% for all frequencies. Sometimes larger 
errors arise around wavelengths that correspond to the cutoff of a diffraction order 
where waves are propagating nearly parallel to the x-axis. The wavelength sweep 
itself occurs from lines 119 to 152 inside of a for loop. For important loops, consider 
using a bit more significant comment like what is on lines 119 to 121. Line 122 
starts the for loop to progress the variable nlam from a value of 1 at the start of the 
sweep to a value of NLAM at the end of the sweep. The first step inside of the loop is 
on line 125 where the free space wavelength lam0 is set for the current simulation. 
Line 128 then performs the FDFD simulation at this wavelength. Lines 131 to 133 
record the result. This is very simple code that demonstrates how easy parameter 
sweeps become when there exists a generic function to perform the simulation! The 
rest of the code in the loop simply visualizes the results. Lines 135 to 140 visualize 
the field calculated at each wavelength in the second subplot. Lines 143 to 151 plot 
the reflection and transmission spectrum as they are calculated. It is very good 
practice to visualize the device, field, and spectra during the sweep. These are the 
key things to visualize to catch errors and monitor the status of the simulation.

As discussed in previous chapters, having code that runs without error is not 
sufficient to simulate a device. A convergence study must be performed. If nothing is 
known about the device, convergence can be checked at the shortest wavelength that 
will typically converge last. If anything is known about the device, convergence can 
be checked at the resonant wavelength that usually exhibits the slowest convergence. 
It is even possible to track the center position of resonance of the GMRF and plot that 
as a function of NRES. Regardless of how it is done, make performing a convergence 
study standard practice!

This device was found to converge somewhere between NRES=20 and NRES=40. 
Figure 9.4 shows the reflection, transmission, and conservation lines for a wavelength 
sweep performed with NRES=40 for the E mode at two different angles of incidence. 
A narrow resonance is observed around λ0 = 1.5 μm for normal incidence. For the 
very small angle of incidence of 2.5°, the resonance split into two resonances observed 
around λ1 = 1.465 μm and λ2 = 1.53 μm. GMRFs are very sensitive devices!
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While plotting the conservation line should be standard practice in day-to-day 
simulation work, it is generally ignored when generating graphics for presentations 
and publications. The audience will assume the results presented are correct and 
were generated after convergence was obtained.

9.2.3  Main MATLAB Programs to Analyze a Metal Polarizer

To demonstrate a different type of parameter sweep, the wire grid terahertz polarizer 
presented in [7] will be analyzed here using FDFD. The basic structure of the 
polarizer is illustrated in Figure 9.5 and is composed of gold lines deposited onto 
the surface of a grating etched into a silicon (Si) substrate. It is a wire grid polarizer 
because it is composed of an array of long continuous wires. It is a bilayer polarizer 

Figure 9.4  Spectral response of the GMRF in Figure 9.2 for the E mode at two different angles 
of incidence.
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because there are two layers of wires at different heights, and the interaction between 
the two produces the broadband and high extinction ratio that the device exhibits. 
When the electric field is polarized parallel to the wires, the field is able to push 
the free charges along the wires and the device acts much like a solid metal surface, 
reflecting the wave. This is called the transverse electric (TE) polarization because 
the electric field is transverse to the grating vector 

!
K  that defines the period and 

direction of the grooves. When the electric field is polarized perpendicular to the 
wires [transverse magnetic (TM) polarization], the free charges in the wires are 
constrained in the perpendicular direction and the device acts more like a dielectric, 
allowing the wave to transmit. This is called the TM polarization because the 
magnetic field is transverse to the grating vector 

!
K.

The extinction ratio ξ is the transmittance TTM of the TM wave that transmits 
through the polarizer divided by the transmittance TTE of the TE wave blocked by 
the polarizer.

	
x =

TTM

TTE 	
(9.1)

For polarizers, it is common to define TE and TM relative to the grating vector !
K  instead of the plane of incidence (POI). This is because polarizers are often used at 
normal incidence where no POI can be defined. In the context of a two-dimensional 
FDFD simulation, the E mode is the TE polarization in this case because it has 
the electric field transverse to the grating vector 

!
K  while the H mode is the TM 

polarization because it has the magnetic field transverse to the grating vector 
!
K.  It 

is important to note that this definition of TE and TM assigns the E and H modes 
opposite to how they have been assigned everywhere else in this book. Be cautious 
about the definition of TE and TM when reading the literature!

There are four key parameters in Figure 9.5 to design in order to produce an 
optimized design. For brevity, only the grating depth parameter d will be considered 
here. To choose a value of d that optimizes the extinction ratio, the parameter sweep 
shown in Figure 9.6 was performed using FDFD. The MATLAB code that performs 
this parameter sweep can be downloaded at https://empossible.net/fdfdbook/ and 

Figure 9.5  Geometry of the polarizer presented in [7] along with the direction of TE and TM 
polarization. The optimized design has a = 4.0 μm, t = 200 nm, w = 2.0 μm, and d = 1.5 μm. The 
dielectric constant of the substrate is εr = 11.8 and the gold is made a perfect electric conductor 
(PEC).
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is called Chapter9_polarizer_d.m. The header extends from lines 1 to 23. It was 
chosen to make micrometers equal to 1 based on the dimensions of the polarizer 
and the wavelength of the terahertz waves.

The all-important dashboard extends from lines 25 to 52 and defines all the 
parameters that specify the source, device, and numerical parameters that control 
the simulation. Lines 29 to 32 define the source parameters. To design a polarizer 
operating in the range from 0.6 THz to 3.0 THz, the frequency in the parameter 
sweep is set to 2.0 THz, which is roughly in the middle of the range of frequencies 
of interest. The angle of incidence SRC.theta is set to 0°. The fixed dimensions of 
the polarizer are defined first from lines 35 to 37, consistent with that in Figure 
9.5. The material properties are defined on lines 39 and 40. Lines 42 to 45 define 
the parameter sweep to be performed. The variable d1 is the starting value for the 
grating depth and d2 is the ending value. These extreme cases are illustrated as 
insets in Figure 9.6. NDAT is the number of points to use in the sweep. d_DAT is an 
array of values for grating depth where a simulation will be performed for each to 
determine the extinction ratio. The grid parameters are defined from lines 47 to 
52. NRES is set to a very high value of 200 where good convergence was observed. 
This is typical for simulations containing metals.

Lines 54 to 71 calculate the initial guess for the grid resolution parameters, but 
the final calculations for all of the grid parameters have been moved to the main loop. 
This section calculates the initial guess based on resolving the minimum wavelength 
and then refines the parameters in order to resolve the minimum dimension. For 
this design, the metal layer thickness t is in the z-direction.

The parameter sweep is performed on lines 73 to 180. This is a large section of 
code inside of the loop because most of the steps in FDFD must be performed inside 
of the loop for this type of parameter sweep. Lines 77 to 85 initialize the arrays where 
the results of the simulations are stored. The reflectance, transmittance, and power 
conservation for the E mode (TE polarization) are stored in the arrays REF_E, TRN_E, 
and CON_E, respectively. The reflectance, transmittance, and power conservation for 
the H mode (TM polarization) are stored in the arrays REF_H, TRN_H, and CON_H, 
respectively. The last two arrays, ER and ER_dB, store the extinction ratio on a linear 
and decibel scale, respectively. Do not confuse these arrays with relative permittivity.

The main loop for the parameter sweep extends from lines 86 to 180. The loop 
begins on line 90. The first step in the loop on line 93 grabs the next value of grating 
depth d that should be simulated. Lines 95 to 117 finish calculating the grid that the 
device will be built onto. Lines 119 to 121 initialize the relative permittivity array 
DEV.ER2 and relative permeability array DEV.UR2 to all ones, corresponding to air. 
The device is built onto the grid using start and stop indices that are calculated on 
lines 123 to 131. nx is calculated to be the number of cells wide for the tall grating 
tooth. It is calculated in a way that ensures nx will be an even number by dividing 
the argument of the round() function by two and then multiplying the round() 
function on the outside by two. The variable nx1 is the starting index of the tall 
grating tooth in the x-direction and is calculated using the centering algorithm 
from Chapter 1. However, the centering algorithm has been modified in a way that 
ensures nx1 will be an odd number so that the tangential electric field components 
will be at the inside edge of the tooth. This is done by dividing the argument of 
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floor() by two, multiplying the result of floor() by two, and then adding one. 
nx2 is the ending index which should also be an odd number for the same reason. 
Since nx was calculated to be an even number, nx2 is guaranteed to be odd. In the 
y-direction, ny1 and ny2 are the start and stop array indices of the top metal layer 
and ny3 and ny4 are the start and stop array indices of the bottom metal layer. 
These are also calculated in a way that ensures they are odd numbers. Given the 
start and stop array indices, lines 133 to 137 build the polarizer onto the 2× grid.

Just prior to simulation, line 140 defines the remaining field DEV.RES that 
specifies the resolution parameters dx and dy to the function fdfd2d(). From there, 
the E mode (TE polarization) is simulated on lines 142 and 143 and the results are 
recorded on lines 145 to 147. Similarly, the H mode (TM polarization) is simulated 
on lines 150 and 151 and the results are recorded on lines 152 to 154. Lines 156 to 
158 calculate the extinction ratio on a linear scale in the array ER and also calculate 
it on a decibel (dB) scale in the array ER_dB. Lines 160 to 179 visualize the fields for 
each mode and plot the extinction ratio as the simulation is running. It is always 
a good practice to visualize the intermediate results of a parameter sweep as it is 
running because errors can often be caught early on without having to wait for the 
parameter sweep to finish.

The results of the parameter sweep are shown in Figure 9.6 and were obtained 
with NRES=200. It is typical for simulations of subwavelength metallic devices to 
require high values of NRES. In [7], a value of d = 1.5 μm was chosen for the 
grating depth.

Given a design, a second parameter sweep was performed for this device to plot 
transmittance and extinction ratio as a function of frequency from 0.6 THz up to 
3.0 THz. The simulation results shown in Figure 9.7 for this sweep were obtained 
at NRES=200. The MATLAB code for this parameter sweep can be downloaded at 
https://empossible.net/fdfdbook/ and is called Chapter9_polarizer_freq.m.

Figure 9.6  Extinction ratio ξ as a function of grating depth d.
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9.3	 Identifying Common Problems in FDFD

Most simulation problems are more easily diagnosed when performing parameter 
sweeps than they are when simulating a single case at a single frequency. Figure 
9.8 illustrates three common problems in FDFD that can be identified through the 
power conservation versus frequency response. The first common problem is when 
the absorbing boundaries are not working correctly. To demonstrate this, a vacuum 
was simulated and the PMLs were forced to produce some reflections by making 
them only four cells large. Reflections from the boundaries cause standing waves 
that tend to produce a slow-rolling response in the power conservation. The solid 
black line in Figure 9.8 shows the power conservation line for an FDFD simulation 
of a vacuum where the bottom PML is partially reflecting.

A second common problem is insufficient grid resolution. This tends to produce a 
power conservation that steadily worsens with increasing frequency, as demonstrated 
by the line with long dashes in Figure 9.8 that is also a simulation of a vacuum. This 
happens because the lower frequencies have longer wavelengths that are resolved with 
less numerical error by the grid. To mitigate this, it is not recommended to adjust 
the resolution of the grid for different frequencies because this will lead to jagged 
response lines. Instead, calculate the grid based on worst cases, such as the smallest 
dimensions and highest frequencies, and use the same grid for all frequencies. It is 
always best in parameter sweeps to keep the simulations as similar as possible to 
avoid jagged response lines.

A third common problem happens when the spacer regions are made too small. 
This tends to produce localized spikes in the power conservation, usually around 
the cutoff frequencies of diffraction orders. The dotted line in Figure 9.8 shows the 
frequency response of the sawtooth diffraction grating presented in Chapter 8. The 
solid vertical lines in the figure identify where the diffraction orders have cutoff 
frequencies. Observe that the spikes in the conservation line correspond to the cutoff 
frequencies. Diffraction orders near cutoff can produce large evanescent fields or 

Figure 9.7  Frequency response of the terahertz polarizer. 
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waves propagating near parallel to the x-axis. Neither of these are handled well by 
diffraction order calculations or by the PMLs at the y-axis boundaries. Virtually 
all numerical methods have similar problems resolving the response of periodic 
structures near cutoff frequencies. Making the spacer regions too large will not 
hurt the accuracy of the simulation, but the simulations will require more memory 
and take a longer time to run.
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C H A P T E R  1 0

FDFD Analysis of Three-Dimensional  
and Anisotropic Devices

When general anisotropy is introduced into finite-difference frequency-domain 
(FDFD), all electromagnetic field components are coupled and no simplifications 
can be made to the math even if the device is one or two-dimensional [1]. For this 
reason, anisotropy will be introduced at the same time as three dimensions. Two-
dimensional simulations are still possible using a three-dimensional implementation 
simply by setting one of the grid dimensions equal to one. Regardless, three-dimen-
sional FDFD becomes much more computationally intensive and several modifica-
tions to the algorithm are needed to make it solvable on ordinary desktop computers. 
Most significantly, the matrix equation f = A–1b will be solved iteratively instead of 
directly to conserve memory. The FDFD method as presented so far in this book is 
not easily solvable by iteration due to poor conditioning of the wave matrix A [2]. 
Conditioning will be improved by replacing the uniaxial perfectly matched layer 
(UPML) with a stretched-coordinate PML (SCPML) absorbing boundary. This is an 
advanced chapter that requires a strong understanding of all other chapters in this 
book. It can be argued that FDFD is not well suited for three-dimensional simula-
tions, but some things are still possible. This chapter will demonstrate how FDFD 
can be used to simulate crossed gratings, simulate frequency selective surfaces, do 
parameter retrieval for metamaterials, and simulate devices designed by transfor-
mation optics (TO) like invisibility cloaks.

10.1	 Formulation of Three-Dimensional FDFD

Formulation of three-dimensional FDFD starts by making Maxwell’s equations 
discrete. The field functions are made discrete and distributed throughout space 
according to the Yee grid scheme [3]. The partial derivatives are approximated using 
finite differences. When anisotropy is introduced, however, a problem arises in the 
discrete equations. Not all of the terms are defined at the same points. Interpola-
tions must be performed in the discrete equations to ensure all terms are defined at 
the same points. This has the unfortunate consequence of complicating the discrete 
equations and adding to the computational burden of performing simulations with 
anisotropy. After the interpolations are added, the discrete equations are written for 
every cell on the grid and the large sets of equations are expressed in matrix form. 
New matrices arise in this formulation to perform the interpolations and incorpo-
rate the SCPML terms. Finally, the wave matrix is derived as a surprisingly simple 
matrix equation. This is an excellent example of how calculating small and simple 
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matrices can make calculating big and complicated matrices much simpler. To fin-
ish the formulation, incorporating sources using the TF/SF method and solving the 
final matrix equation by iteration is discussed.

10.1.1  Finite-Difference Approximation of Maxwell’s Curl Equations

From Chapter 5, Maxwell’s curl equations with an SCPML expand into the fol-
lowing set of six coupled partial differential equations. In these equations, all nine 
tensor elements are retained for both permeability and permittivity.

	

1
sy

∂Ez
∂y

− 1
sz

∂Ey
∂z

= k0 mxx
!Hx + mxy

!Hy + mxz
!Hz( )

	
(10.1)

	

1
sz

∂Ex
∂z

− 1
sx

∂Ez
∂x

= k0 myx
!Hx + myy

!Hy + myz
!Hz( )

	
(10.2)

	

1
sx

∂Ey

∂x
− 1

sy

∂Ex

∂y
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!Hx + mzy
!Hy + mzz

!Hz( )
	

(10.3)

	

1
sy

∂ !Hz

∂y
− 1
sz

∂ !Hy

∂z
= k0 exxEx + exyEy + exzEz( )

	
(10.4)
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(10.5)

	

1
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∂ !Hy

∂x
− 1
sy

∂ !Hx

∂y
= k0 ezxEx + ezyEy + ezzEz( )

	
(10.6)

In the above equations, μmn and εmn are the tensor elements of permeability and 
permittivity, respectively. The terms sx, sy, and sz are the complex stretching param-
eters associated with the SCPML. From here, the grid is normalized according to 
x′ = k0x, y′ = k0y, and z′ = k0z to arrive at the final form of the analytical equations.
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1
sx

∂ !Hy

∂ ′x
− 1
sy

∂ !Hx
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= ezxEx + ezyEy + ezzEz

	
(10.12)

Now (10.7) to (10.12) must be made discrete. Writing these equations in dis-
crete form is trickier than it was in previous chapters due to the PML terms and 
the incorporation of general anisotropy. Start by taking a guess at expressing (10.7) 
in a discrete form where the partial derivatives are approximated using central 
finite differences.

	

1

sy i, j,k

Hx

Ez i, j+1,k
− Ez i, j,k

Δy
− 1

sz i, j,k
Hx

Ey i, j,k+1
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Δz

≠ mxx i, j,k
!Hx i, j,k

+ mxy i, j,k
!Hy i, j,k

+ mxz i, j,k
!Hz i, j,k 	

(10.13)

This equation may appear to be correct at first glance, but recall that each 
term in a finite-difference equation must be defined at the same point in space. 
The majority of the terms in (10.13) are defined at the same location as !Hx i, j,k

.  The 

superscripts on the PML terms indicate where the PML terms are defined. Unfortu-

nately, according to the Yee grid scheme, the terms mxy i, j,k
!Hy i, j,k

 and mxz i, j,k
!Hz i, j,k

 

are located at entirely different locations than !Hx i, j,k
.  To correct this, the products 

mxy
!Hy and mxz

!Hz are interpolated at the location of !Hx i, j,k
. These interpolations are 

essentially the average value from the surrounding four points.

mxy
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4  
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4  
		  (10.15)

The correct discrete form of (10.7) can now be written and the same procedure 
applied to all of (10.8) to (10.12). These are

1
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!Hz i, j,k
− !Hz i, j−1,k

Δ ʹy
−

1

sz i, j,k
Ex

!Hy i, j,k
− !Hy i, j,k−1

Δ ʹz

= exx i, j,k
Ex i, j,k

+
exy i, j−1,k

Ey i, j−1,k
+ exy i, j,k

Ey i, j,k
+ exy i+1, j−1,k

Ey i+1, j−1,k
+ exy i+1, j,k

Ey i+1, j,k

4

+
εxz i, j,k Ez i, j,k + exz i+1, j,k

Ez i+1, j,k
+ exz i, j,k−1

Ez i, j,k−1
+ exz i+1, j,k−1

Ez i+1, j,k−1

4  
		

(10.19)

1

sz i, j,k
Ey

!Hx i, j,k
− !Hx i, j,k−1

Δ ′z
− 1

sx i, j,k

Ey

!Hz i, j,k
− !Hz i−1, j,k

Δ ′x

=
eyx i−1, j,k

Ex i−1, j,k
+ eyx i, j,k

Ex i, j,k
+ eyx i−1, j+1,k

Ex i−1, j+1,k
+ eyx i, j+1,k

Ex i, j+1,k

4

+ eyy i, j,k
Ey i, j,k

+
eyz i, j,k Ez i, j,k + eyz i, j+1,k

Ez i, j+1,k
+ eyz i, j,k−1

Ez i, j,k−1
+ eyz i, j+1,k−1

Ez i, j+1,k−1

4  
		

(10.20)
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1

sx i, j,k

Ez

!Hy i, j,k
− !Hy i−1, j,k

Δ ′x
− 1

sy i, j,k

Ez

!Hx i, j,k
− !Hx i, j−1,k

Δ ′y

=
ezx i−1, j,k

Ex i−1, j,k
+ ezx i, j,k

Ex i, j,k
+ ezx i−1, j,k+1

Ex i−1, j,k+1
+ ezx i, j,k+1

Ex i, j,k+1

4

+
ezy i, j−1,k

Ey i, j−1,k
+ ezy i, j,k

Ey i, j,k
+ ezy i, j−1,k+1

Ey i, j−1,k+1
+ ezy i, j,k+1

Ey i, j,k+1

4

+ ezz i, j,k Ez i, j,k  
		

(10.21)

Inspection of (10.16) to (10.18) shows that μxx, μyx, and μzx should be defined 
at the same points as !Hx.  Similarly, μxy, μyy, and μzy should be defined at the same 
points as !Hy  and μxz, μyz, and μzz should be defined at the same points as !Hz.  
Inspection of (10.19) to (10.21) shows that εxx, εyx, and εzx should be defined at the 
same points as Ex. Similarly, εxy, εyy, and εzy should be defined at the same points 
as Ey and εxz, εyz, and εzz should be defined at the same points as Ez.

10.1.2  Maxwell’s Equations in Matrix Form

Each of (10.16) to (10.21) is written once for every cell on the grid. Each set of dis-
crete equations can be written in matrix form leading to a set of six matrix equa-
tions. These are

	
Sy

HxD ′y
e ez − Sz

HxD ′z
e ey = µµxx

!hx + Rx
−Ry

+µµxy
!hy + Rx

−Rz
+µµxz
!hz 	

(10.22)

	
Sz

HyD ′z
e ex − Sx

HyD ′x
e ez = Ry

−Rx
+µµyx
!hx + µµyy

!hy + Ry
−Rz

+µµyz
!hz 	

(10.23)

	
Sx

HzD ′x
e ey − Sy

HzD ′y
e ex = Rz

−Rx
+µµzx
!hx + Rz

−Ry
+µµzy
!hy + µµzz

!hz 	
(10.24)

	
Sy

ExD ′y
h !hz − Sz

ExD ′z
h !hy = εεxxex + Rx

+Ry
−εεxyey + Rx

+Rz
−εεxzez 	

(10.25)

	
Sz

EyD ′z
h !hx − Sx

EyD ′x
h !hz = Ry

+Rx
−εεyxex + εεyyey + Ry

+Rz
−εεyzez 	

(10.26)

	
Sx

EzD ′x
h !hy − Sy

EzD ′y
h !hx = Rz

+Rx
−εεzxex + Rz

+Ry
−εεzyey + εεzzez 	

(10.27)

Two new types of matrices have appeared in these equations compared to 
what was presented in Chapter 4 due to incorporating the SCPML and performing 
interpolations. The S terms are diagonal matrices containing the inverse of the PML 
terms across the Yee grid along their diagonal. The term Sy

Hx is a diagonal matrix 
containing the sy

–1(x,y,z) PML function at the locations of !Hx i, j,k
.  The other S 

matrices are defined similarly. The R terms are matrices that perform interpolations 
across the Yee grid and look very similar to the derivative matrices. The term Rx

+ 
interpolates a function by averaging the function with the value in the next cell 
in the positive x-direction. The term Rx

–    interpolates a function by averaging the 
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function with the value in the previous cell in the positive x-direction. The term 
Ry

+ interpolates a function by averaging the function with the value in the next cell 
in the positive y-direction. The term Ry

– interpolates a function by averaging the 
function with the value in the previous cell in the positive y-direction. The term 
Rz

+ interpolates a function by averaging the function with the value in the next cell 
in the positive z-direction. The term Rz

– interpolates a function by averaging the 
function with the value in the previous cell in the positive z-direction.

10.1.3  Interpolation Matrices

Interpolation matrices are almost identical to derivative matrices [1]. The basic 
finite-difference approximation of a derivative with respect to x′ is

	

∂Ez
∂ ′x

≈
Ez i+1, j,k

− Ez i, j,k
Δ ′x

→ D ′x
e ez

	
(10.28)

An interpolation operation utilizes the same terms as (10.28), but adds the 
terms instead of subtracting them, and divides by two instead of dividing by Δx′.

	
Ez i+0.5, j,k

≈
Ez i+1, j,k

+ Ez i, j,k
2

→ Rx
+ez

	
(10.29)

In fact, when Dirichlet boundary conditions are used, the interpolation matri-
ces can be calculated directly from the derivative matrices. First, the absolute value 
of every element in the derivative matrix is calculated to convert the subtraction 
to an addition. Second, the new matrix is multiplied by the resolution parameter 
Δx′ and then divided by two. From this, Rx

+, Ry
+, and Rz

+ can be calculated directly 
from De

x′, De
y   ′, and De

z′ as

	
Rx

+ = Δ ′x
2

⋅ D ′x
e      Ry

+ = Δ ′y
2

⋅ D ′y
e      Rz

+ = Δ ′z
2

⋅ D ′z
e

	
(10.30)

If periodic boundary conditions (PBCs) are used, the interpolation matrices can-
not be calculated from the derivative matrices because the absolute value operation 
alters any complex numbers. A separate function must be written in MATLAB to 
build the interpolation matrices when PBCs are used. The code to do this is nearly 
identical to building derivative matrices. To make things easier, after Rx

+, Ry
+, and 

Rz
+ are calculated, the remaining interpolation matrices can be calculated directly 

from them as follows.

	
Rx

− = Rx
+( )H      Ry

− = Ry
+( )H      Rz

− = Rz
+( )H

	
(10.31)

Equation (10.31) is valid for both Dirichlet boundary conditions and PBCs. If 
any other boundary conditions are used, be cautious as (10.31) may no longer be 
valid. While (10.31) may look like how the derivative matrices were related, the 
relation for interpolation matrices has no negative sign. Be careful!
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10.1.4  Three-Dimensional Matrix Wave Equation

Equations (10.22) to (10.24) can be written as a single block matrix equation as 
well as (10.25) to (10.27) to get the following two block matrix equations.

00 −Sz
HxD ʹz

e Sy
HxD ʹy

e

Sz
HyD ʹz

e 00 −Sx
HyD ʹx

e

−Sy
HzD ʹy

e Sx
HzD ʹx

e 00

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

ex
ey
ez

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

µµxx Rx
−Ry

+µµxy Rx
−Rz

+µµxz

Ry
−Rx

+µµyx µµyy Ry
−Rz

+µµyz

Rz
−Rx

+µµzx Rz
−Ry

+µµzy µµzz

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

!hx
!hy
!hz

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

	

(10.32)

00 −Sz
ExD ʹz

h Sy
ExD ʹy

h

Sz
EyD ʹz

h 00 −Sx
EyD ʹx

h

−Sy
EzD ʹy

h Sx
EzD ʹx

h 00

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

!hx
!hy
!hz

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

εεxx Rx
+Ry

−εεxy Rx
+Rz

−εεxz
Ry
+Rx

−εεyx εεyy Ry
+Rz

−εεyz
Rz
+Rx

−εεzx Rz
+Ry

−εεzy εεzz

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

ex
ey
ez

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

	

(10.33)

These equations can be written in an even more compact block matrix form as follows.

	 Ce!e = µµ[ ] !
"

h 	 (10.34)

	 Ch !
"

h = εε[ ]!e 	 (10.35)

where

	

!
e =

ex
ey
ez

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥ 	

(10.36)

	

!
"

h =

!hx
!hy
!hz

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

	

(10.37)

	

Ce =

00 −Sz
HxD ʹz

e Sy
HxD ʹy

e

Sz
HyD ʹz

e 00 −Sx
HyD ʹx

e

−Sy
HzD ʹy

e Sx
HzD ʹx

e 00

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
	

(10.38)

	

Ch =

00 −Sz
ExD ʹz

h Sy
ExD ʹy

h

Sz
EyD ʹz

h 00 −Sx
EyD ʹx

h

−Sy
EzD ʹy

h Sx
EzD ʹx

h 00

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

	

(10.39)
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εε[ ] =
εεxx Rx

+Ry
−εεxy Rx

+Rz
−εεxz

Ry
+Rx

−εεyx εεyy Ry
+Rz

−εεyz
Rz

+Rx
−εεzx Rz

+Ry
−εεzy εεzz

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

	

(10.40)

	

µµ[ ] =
µµxx Rx

−Ry
+µµxy Rx

−Rz
+µµxz

Ry
−Rx

+µµyx µµyy Ry
−Rz

+µµyz

Rz
−Rx

+µµzx Rz
−Ry

+µµzy µµzz

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

	

(10.41)

The column vectors ex, ey, and ez for the electric field components have been 
assembled into the single-column vector 

!
e.  The column vectors !hx ,  !hy ,  and !hz  for 

the magnetic field components have been assembled into the single-column vector !
"

h.  
The curl matrix operating on the electric fields is now written as Ce and includes the 
SCPML terms. The curl matrix operating on the magnetic fields is written as Ch and 
also includes the SCPML terms. The material tensors now contain the interpolation 
matrices and are written as [εε] and [μμ].

From here, two different matrix wave equations can be derived and either 
can be used to analyze a device. Unlike two-dimensional FDFD, these two wave 
equations are not calculating two different modes. They are performing the very 
same analysis, just in terms of different fields. To start, (10.34) is solved for !

"

h  and 
(10.35) is solved for 

!
e.

	
!
"

h = µµ[ ]−1
Ce"e 	 (10.42)

	
!
e = εε[ ]−1Ch "

!

h 	 (10.43)

A matrix wave equation in terms of just the electric fields !e  is derived by sub-
stituting (10.42) into (10.35).

	
Ch[µµ]−1Ce − εε[ ]( )!e = 0

	 (10.44)

The matrix division by [μμ] in (10.44) can be very slow when calculating the wave 
matrix, especially when the permeability is anisotropic. To speed computation, it 
is helpful to describe the device from the beginning in terms of its impermeability 
[ψ(x,y,z)] instead of its permeability [μ(x,y,z)]. These are related through [ψ(x,y,z)] 
= [μ(x,y,z)]–1. If for some reason the permeability must be calculated first, the 
impermeability can be calculated from the permeability using (10.45) [1]. This 
equation is best implemented in MATLAB when the μmn terms are arrays.

y[ ] =

myymzz − myzmzy mxzmzy − mxymzz mxymyz − mxzmyy

myzmzx − µyxmzz mxxmzz − mxzmzx mxzmyx − mxxmyz

myxmzy − myymzx mxymzx − mxxmzy mxxmyy − mxymyx

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

mxxmyymzz − mxxmyzmzy − mxzmyymzx − mxymyxmzz + mxymyzmzx + mxzmyxmzy 	
(10.45)
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Using impermeability [ψ(x,y,z)], the wave matrix contains only matrix multi-
plications that are much faster and more efficient to calculate. The revised matrix 
wave equation is

	
Ch ψψ[ ]Ce − εε[ ]( )!e = 0

	
(10.46)

Following a similar procedure, a matrix equation in terms of just the magnetic 
fields !

"

h  is derived by substituting (10.43) into (10.34).

	
Ce εε[ ]−1Ch − µµ[ ]( ) !

"

h = 0
	

(10.47)

The matrix division in (10.47) is also very slow to calculate, especially when the 
permittivity is anisotropic. In this case, it is helpful to describe the device in terms 
of its impermittivity [ζ(x,y,z)] instead of its permittivity [ε(x,y,z)]. These are related 
through [ζ(x,y,z)] = [ε(x,y,z)]–1. If for some reason the permittivity must be calculated 
first, the impermittivity can be calculated from the permittivity using (10.48). This 
equation is best implemented in MATLAB when the εmn terms are arrays.

z[ ] =

eyyezz − eyzezy exzezy − exyezz exyeyz − exzeyy

eyzezx − eyxezz exxezz − exzezx exzeyx − exxeyz

eyxezy − eyyezx exyezx − exxezy exxeyy − exyeyx

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

exxeyyezz − exxeyzezy − exzeyyezx − exyeyxezz + exyeyzezx + exzeyxezy 	
(10.48)

Using impermittivity [ζ(x,y,z)], the revised matrix wave equation contains 
only multiplications.

	
Ch ζ[ ]Ce − εε[ ]( ) !e = 0

	
(10.49)

Neither of the matrix wave equations derived above are yet solvable because a 
source has not been incorporated.

10.2	 Incorporating Sources into Three-Dimensional FDFD

The matrix wave equations derived above contain all three vector components of 
the electric field (or magnetic field). Therefore, all three vector components of the 
source must be calculated. When the electric field wave equation is being solved, 
the components of the source field are Ex,src(x,y,z), Ey,src(x,y,z), and Ez,src(x,y,z). 
It is important to remember that the field components are at physically different 
locations due to the staggering of the Yee grid. This must be taken into account when 
calculating the source components because they will all have a slightly different phase. 
After calculation, the three discrete functions are reshaped into the column vectors 
ex,src, ey,src, and ez,src and assembled into a block column vector 

!
esrc  according to

	

!
esrc =

ex,src

ey,src

ez,src

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥ 	

(10.50)
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Each source field component has its own TF/SF regions. Qx is the SF masking 
matrix for ex,src, Qy is the SF masking matrix for ey,src, and Qz is the SF mask-
ing matrix for ez,src. It is standard practice to build one matrix Qxyz and use 
this same matrix for all field components (Qx = Qy = Qz = Qxyz). Given these, 
the overall SF masking matrix Q is still a diagonal matrix as it was for two-
dimensional FDFD.

	

QQ =
QQx 00 00

00 QQy 00

00 00 QQz

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=
QQxyz 00 00

00 QQxyz 00

00 00 QQxyz

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥ 	

(10.51)

After calculating the source field 
!
esrc ,  the wave matrix A, and the SF masking 

matrix Q, the source vector b is calculated using the standard QAAQ equation 
introduced in Chapter 8.

	 b = QA − AQ( ) !esrc 	 (10.52)

10.3	 Iterative Solution for FDFD

Direct solution of the matrix wave equation Af = b by methods like LU decomposition 
[4] is by far the simplest and most robust solution method. It is even faster than an 
iterative solver when the matrices are small. As matrix size grows, however, the 
efficiency and accuracy degrade and eventually iterative solvers become superior. 
It is difficult to quantify exactly when iterative solvers become superior, but they 
are superior for the vast majority of three-dimensional FDFD simulations. The 
drawback of an iterative solver is that solutions can be slow to calculate and there 
is no guarantee that an iterative solver will converge to a solution [4–6]. Even when 
iterative solvers are slower, they can still offer significant memory savings.

In order to optimize the efficiency of an iterative solver, the conditioning of the 
matrix equation to be solved must be considered [7, 8]. The condition number of a 
matrix A is a measure of how much the answer to a linear algebra problem changes 
due to small changes in A. Matrices with large condition numbers are said to be 
ill-conditioned and are not handled well by iterative solvers. Matrices with small 
condition numbers are said to be well-conditioned and are ideal for iterative solvers. 
To improve the conditioning of the wave matrix A in FDFD, the UPML is replaced 
with the SCPML. Another option is preconditioning where a matrix equation 
Af = b is premultiplied (or postmultiplied, or both) by a preconditioner P such that 
the equation P–1Af = P–1b is better conditioned [5, 6, 8]. The ideal preconditioner 
transforms A into the identity matrix so that only a single iteration is required to 
solve the problem. A simple preconditioner that works well for FDFD is the Jacobi 
preconditioner where P is the diagonal of the wave matrix [8].

	 P−1Af = P−1b 	 (10.53)

7025_Book.indb   2787025_Book.indb   278 12/17/21   8:42 AM12/17/21   8:42 AM



10.3	 Iterative Solution for FDFD� 279

	

P = diag A( ) =

A11 0 0
0 A22

0 ! 0
0 AMM

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

	

(10.54)

Given adequate conditioning, MATLAB offers a variety of options for solving 
matrix equations iteratively. The quasi-minimal residual method qmr() seems to be 
a slower iterative solver but more robust, whereas the biconjugate gradient method 
bicg() is faster but less robust. The robustness of a solver is its dependability to 
converge to a solution despite the conditioning or other properties that could make 
a matrix equation difficult to solve. Experiment with the various solvers in MAT-
LAB to see what works best for your simulation. Representative MATLAB code to 
solve the FDFD matrix equation Af = b using the qmr() solver is

tol   = 1e-10;
maxit = 15000;
f0    = zeros(M,1); %M is number of rows in A
f     = qmr(A,b,tol,maxit,[],[],f0);

In the above code, tol is the tolerance that controls how well converged the final 
answer should be. The variable maxit sets the maximum number of iterations in 
case the solver is failing to converge to a solution. The number of iterations required 
to solve an FDFD problem can range from several hundred to many thousands, 
depending on the size and complexity of the simulation. f0 is an initial guess for 
the solution. Since the solution is completely unknown, it is set to all zeros in the 
code above. When performing parameter sweeps, there may be some benefit to 
seeding the current simulation with the results from the previous if the changes to 
the problem are small from one step to the next in the sweep. The last line in the 
code above solves the matrix equation using the qmr() solver.

If a graphical processing unit (GPU) is available to MATLAB, significant speed 
gains can be achieved by performing the iteration on the GPU. MATLAB makes 
this as easy as assigning the A and b terms to the GPU, calling the iterative solver, 
and then gathering the solution f back from the GPU after the solution is obtained. 
When the arrays are assigned to the GPU, the iterative solver in MATLAB auto-
matically knows to solve them on the GPU. Representative code to solve Af = b 
iteratively on a GPU in MATLAB is

tol   = 1e-10;
maxit = 15000;
f0    = zeros(M,1); %M is number of rows in A
A     = gpuArray(A);
b     = gpuArray(B);
f     = qmr(A,b,tol,maxit,[],[],f0);
f     = gather(f);
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10.4	 Calculating Reflection and Transmission for Doubly 
Periodic Structures

When a structure is periodic in both the x- and y-directions, the structure can be 
analyzed as a crossed grating as discussed in Chapter 2. Calculating reflection and 
transmission will be performed through the diffraction orders. It is a straightforward 
extension of how this calculation was done for two-dimensional simulations in 
Chapter 8. For three-dimensional simulations, the source wave vector 

!
kinc  is 

described by the angles θinc and ϕinc as

	
kx,inc = k0nref sinq inc cosfinc 	

(10.55)

	
ky,inc = k0nref sinq inc sinfinc 	

(10.56)

	
kz,inc = k0nref cosqinc 	

(10.57)

When the incident wave encounters a periodic structure, it leads to an infinite 
expansion for both x and y components of the wave vectors associated with the 
diffraction orders. Boundary conditions require that this expansion is the same for 
both reflected and transmitted diffraction orders so

	
kx m,n( ) = kx,ref m,n( ) = kx,trn m,n( ) = kx,inc − m

2p
Λx 	

(10.58)

	
ky m,n( ) = ky,ref m,n( ) = ky,trn m,n( ) = ky,inc − n

2p
Λy 	

(10.59)

In these equations, Λx is the period of the structure in the x-direction, Λy is the 
period of the structure in the y-direction, and m and n are the diffraction order 
numbers. The longitudinal components of the wave vectors associated with the dif-
fraction orders may be different on the reflection side and transmission side because 
the medium can be different on each side. For this reason, they must be calculated 
separately from the dispersion relation written for both sides.

	
kz,ref m,n( ) = − k0nref( )2 − kx

2 m,n( ) − ky2 m,n( )
	

(10.60)

	
kz,trn m,n( ) = k0ntrn( )2 − kx

2 m,n( ) − ky2 m,n( )
	

(10.61)

When the simulation is finished, the field is analyzed to calculate the complex 
amplitudes of the diffraction orders in the same three steps it was for two-dimen-
sional simulations. First, the fields are extracted from the cross sections of the grid 
at both the reflection and transmission planes. These are ⟨Ex,ref(x,y)⟩, ⟨Ey,ref(x,y)⟩, 
⟨Ez,ref(x,y)⟩, ⟨Ex,trn(x,y)⟩, ⟨Ey,trn(x,y)⟩ and ⟨Ez,trn(x,y)⟩. The x, y, and z field com-
ponents reside at different locations on the grid so they must be interpolated at a 
common point. The angled-bracket operation ⟨ ⟩ represents the field components 
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interpolated at the origins of the Yee cells. Second, the phase tilt due to an oblique 
angle of incidence is removed to isolate the envelope term of the Bloch modes. A 
cross section of the source wave will be used as the phase tilt in this calculation 
so that exp[−j(kx,incx + ky,incy)] does not have to be calculated again. The envelope 
functions are calculated according to

	

ax,ref x,y( ) = Ex,ref x,y( ) ÷ exp − j kx,incx + ky,incy( )⎡
⎣

⎤
⎦

ay,ref x,y( ) = Ey,ref x,y( ) ÷ exp − j kx,incx + ky,incy( )⎡
⎣

⎤
⎦

az,ref x,y( ) = Ez,ref x,y( ) ÷ exp − j kx,incx + ky,incy( )⎡
⎣

⎤
⎦ 	

(10.62)

	

ax,trn x,y( ) = Ex,trn x,y( ) ÷ exp − j kx,incx + ky,inc y( )⎡
⎣

⎤
⎦

ay,trn x,y( ) = Ey,trn x,y( ) ÷ exp − j kx,incx + ky,incy( )⎡
⎣

⎤
⎦

az,trn x,y( ) = Ez,trn x,y( ) ÷ exp − j kx,incx + ky,incy( )⎡
⎣

⎤
⎦ 	

(10.63)

Third, the complex amplitudes of the diffraction orders are calculated from 
the discrete Fourier transform of the amplitude functions calculated in (10.62) and 
(10.63). Using a two–dimensional fast Fourier transform (FFT) algorithm, these 
are calculated as

	

Ex0,ref m,n( ) = FFT2D ax,ref x,y( )⎡
⎣

⎤
⎦

Ey0,ref m,n( ) = FFT2D ay,ref x,y( )⎡
⎣

⎤
⎦

Ez0,ref m,n( ) = FFT2D az,ref x,y( )⎡
⎣

⎤
⎦

	

(10.64)

	

Ex0,trn m,n( ) = FFT2D ax,trn x,y( )⎡⎣ ⎤⎦

Ey0,trn m,n( ) = FFT2D ay,trn x,y( )⎡
⎣

⎤
⎦

Ez0,trn m,n( ) = FFT2D az,trn x,y( )⎡⎣ ⎤⎦
	

(10.65)

Given the complex amplitudes of the diffraction orders, the diffraction efficien-
cies are calculated using the equations derived in Chapter 2. These are

	

RDE m,n( ) =
E0,ref m,n( )

2

E0,inc

2 Re −
kz,ref m,n( )

kz,inc

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

	

(10.66)

	

TDE m,n( ) =
E0,trn m,n( )

2

E0,inc

2 Re
mr,ref

mr,trn

kz,trn m,n( )
kz,inc

⎡

⎣
⎢

⎤

⎦
⎥

	

(10.67)
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Equations (10.66) and (10.67) are used when it is the electric field being solved 
by FDFD. If instead it is the magnetic field being solved, the diffraction efficiency 
calculations are

	

RDE m,n( ) =
!H0,ref m,n( )

2

!H0,inc

2 Re −
kz,ref m,n( )

kz,inc

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

	

(10.68)

	

TDE m,n( ) =
!H0,trn m,n( )

2

!H0,inc

2 Re
er,ref

er,trn

kz,trn m,n( )
kz,inc

⎡

⎣
⎢

⎤

⎦
⎥

	

(10.69)

10.5	 Implementation of Three-Dimensional FDFD and Examples

10.5.1  Standard Sequence of Simulations for a Newly Written  
Three-Dimensional FDFD Code

Before any new three-dimensional devices are simulated, there should be a standard 
sequence of simulations performed to identify and troubleshoot problems with a 
newly written code. The recommended sequence for three-dimensional simulations 
follows essentially the same sequence used for two-dimensional simulations. This 
sequence is illustrated in Figure 10.1 where PBCs are used at the x- and y-axis bound-
aries to simulate a periodic structure. The first simulation is a complete vacuum 
with the TF/SF interface positioned at the center of the grid vertically launching 
a linearly polarized wave at normal incidence, as depicted in Figure 10.1(a). The TF/
SF interface is centered vertically to better see if there are any backward waves or 
reflections that should not be present. It would be more difficult to see if the TF/SF 
interface were tight against the top PML. If the FDFD code is working correctly, the 
simulation will calculate 100% transmittance, 0% reflectance, and no wave should 
be visible above the TF/SF interface. A correct simulation for this case is shown 
in Figure 10.2(a) for a linear polarization (LP). The specific values for reflectance 
and transmittance should be within a fraction of a percent. At NRES=20, a working 
three-dimensional FDFD simulation may calculate numbers like R = 4.9 × 10–6 
and T = 0.996. If a correct simulation is achieved, a different LP should be tried. 
If anything incorrect is detected with such a simple simulation, the mistake will be 
easier to find, and better educated guesses for values of intermediate parameters 
can be made.

Next, an angle of incidence is incorporated along with a circular polarization 
to excite all field components at once. In Figure 10.2(b), the angles were set to θ = 
ϕ = 30°. This is mostly to test that the PBCs are working correctly. The source wave 
should be visible in the TF region below the TF/SF interface and no wave should be 
visible in the SF region above the TF/SF interface. If there are any mistakes in the 
code, the source wave may not look like a uniform plane wave in the TF region below 
the TF/SF interface, and waves may be observed in the SF region above the TF/SF 
interface. This was discussed in Chapter 8. Keep an open mind when troubleshooting.
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After the FDFD code can simulate vacuum correctly, the next thing is to move the 
TF/SF interface five or so cells below the top PML and then build a single material 
interface onto the grid. This is illustrated in Figure 10.1(c) that also shows an LP 
wave at normal incidence. In this case, the Fresnel equations discussed in Chapter 2 
can be used to verify the simulation results are correct. First, fill the bottom half 
of the grid with εr = 9.0 and μr = 1.0. For normal incidence, this causes exactly 
25% reflectance and 75% transmittance. The most common mistake here is not 
calculating the diffraction efficiency of the transmitted diffraction orders correctly 
because that equation contains extra terms that are easily missed. After this, swap 
the permittivity and permeability such that εr = 1.0 and μr = 9.0 and ensure the 
simulation still gives 25% reflectance and 75% transmittance. Next, set εr = μr = 
3.0 and verify reflectance is near 0% and transmittance is near 100%. This case 
produces no reflections because the impedance is constant throughout the grid. 

Figure 10.1  Standard sequence of simulations for a newly written 3D FDFD code. (a) and 
(b) Simulations in a vacuum. (c) and (d) Simulations of a single interface. (e) and (f) Simulations 
of an asymmetric diffraction grating. (g) and (h) Simulations of a guided-mode resonance filter 
(GMRF).
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Next, incorporate an angle of incidence along with circular polarization and repeat 
various combinations of εr and μr, as illustrated in Figure 10.1(d). Using the Fresnel 
equations, an infinite number of simple simulations are possible. Simulate a few 
simple cases and then move on.

Next, it is best to simulate an asymmetric diffraction grating. An asymmet-
ric diffraction grating is illustrated in Figure 10.1(e) and is an excellent device to 
verify that the diffraction orders are being handled correctly in the FDFD code. 
The same asymmetric diffraction grating simulated in Chapter 8 can be repeated 
for three-dimensional simulations as well. The grating can be rotated by 90° to 
verify the diffraction orders are being handled correctly in the x- and y- directions 
independently. The same asymmetric diffraction grating is simulated again, but 
with an angle of incidence incorporated, as illustrated in Figure 10.1(f). The last 
simulation for testing new codes is a wavelength (or frequency) sweep of a GMRF, 

Figure 10.2  (a) Correct simulation where source wave is linearly polarized and at normal 
incidence. (b) Correct simulation where source wave is circularly polarized and incident  
at θ = ϕ = 30°.
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as illustrated in Figure 10.1(g) and (h). GMRFs are extremely sensitive devices. If 
anything is wrong in the code, a GMRF will tend to amplify the problem so that 
even small mistakes can be identified and corrected. This type of simulation will 
be performed in Section 10.5.3 for a crossed-grating GMRF.

10.5.2  Generic Three-Dimensional FDFD Function to Simulate 
Periodic Structures

In Chapter 9, it was argued that it is easiest to perform parameter sweeps by creating 
a generic FDFD function for simulating periodic structures. This will be done for 
three-dimensional FDFD as well. This new function will be called fdfd3d() and 
will be programmed to simulate virtually any periodic structure. The overall grid 
strategy for simulating three-dimensional periodic structures that this function will 
assume is illustrated in Figure 10.3. This is the same basic grid strategy discussed 
in Chapter 9. PMLs are located at the z-axis boundaries to absorb outgoing waves. 
PBCs are used at the x- and y-axis boundaries to model an infinitely periodic array. 
Immediately below the top PML are the two reflection planes where the reflected 
waves will be analyzed. Two adjacent planes are needed because the z component of 
the field will have to be interpolated between two values in the z-direction. In fact, 
all of the field components will be interpolated at the origin of the Yee cells so they 
can be used together to calculate reflection and transmission. Immediately below this 
is the TF/SF interface where the source is injected in the +z-direction. Immediately 

Figure 10.3  Grid strategy assumed by the fdfd3d() function for simulating periodic structures 
with FDFD.
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above the bottom PML are the transmission planes where the transmitted waves 
will be analyzed. Two planes are needed because the z component of the field will 
have to be interpolated between two values in the z-direction. The device itself is 
located near the center of the grid vertically with spacer regions placed above and 
below the device. It is up to the function calling the fdfd3d() function to add the 
spacer regions.

The MATLAB code for the generic fdfd3d() function can be downloaded at 
https://empossible.net/fdfdbook/. The header extends from lines 2 to 41 and is what 
is displayed in the command window if “help fdfd3d” is typed at the command 
prompt. Lines 47 and 48 define the tolerance and a maximum number of iterations 
that should be allowed when attempting to obtain a solution by iteration. Line 48 
defines an anonymous function that forms a diagonal matrix from an array.

The input arguments are processed from lines 53 to 133. There are two ways 
the program that calls fdfd3d() can define the device to be simulated. The first 
option is to build the device into the isotropic 2× grid arrays DEV.ER2 and DEV.
UR2. The second option is to define all of the tensor elements for the permittivity 
and/or the permeability. Lines 57 to 62 take this option into account to determine 
the size of the grid. If the field ER2 exists in the structure DEV, the size of the grid is 
determined from the size of DEV.ER2. If the field ER2 does not exist in the structure 
DEV, the size of the grid is determined from the size of DEV.ER2xx. Lines 64 to 73 
calculate the rest of the grid parameters. Lines 75 to 79 calculate the axis arrays and 
the meshgrid for the 2× grid because the meshgrid is needed to calculate the source 
field. It is standard practice to center the x- and y-axis arrays at zero, as is done 
on lines 76 and 77. The z-axis array calculated on line 78 is not centered this way. 
Line 82 calculates the free space wavenumber k0 from the free space wavelength 
SRC.lam0. Lines 84 to 87 calculate the matrix size M as well as the zeros ZZ and 
identity matrices I. Lines 89 to 110 form the diagonal materials matrices for all of 
the tensor elements of the relative permittivity. If the materials are specified in DEV.
ER2, the tensor is defined as diagonally anisotropic entirely from ER2. Otherwise, 
the tensor elements are specified and are individually diagonalized. This is repeated 
for the relative permeability from lines 112 to 133.

The FDFD algorithm is implemented from lines 135 to 242. It starts by extract-
ing the material properties from the top and bottom parts of the grid on lines 139 
to 145. Lines 147 to 162 calculate the PML terms and form the diagonal matrices 
that incorporate the SCPML into the curl matrices. Lines 164 to 173 calculate 
the wave vectors needed for the PBCs and for calculating reflection and trans-
mission. The incident wave vector is calculated using (10.55) to (10.57). Lines 
175 to 179 call the yeeder3d() function to build the derivative matrices for the 
three-dimensional Yee grid. Lines 181 to 184 calculate the interpolation matrices 
directly from the derivative matrices using (10.30). Now that the interpolation 
matrices are calculated, matrices are constructed for the materials tensors accord-
ing to (10.40) and (10.41) on lines 186 to 192. The curl matrices are calculated 
from lines 194 to 201 using (10.38) and (10.39). This lets the wave matrix A be 
calculated on line 201.

The next few sections of code lead up to building the source vector b. Lines 
203 to 213 calculate the electric field polarization vector P following Section 2.7 
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in Chapter 2. From the polarization vector, lines 215 to 220 calculate all three 
vector components of the source field and assemble them into the column vector 
fsrc. Observe how these calculations are implemented using the 2× grid so that 
the phase and positions of the field components on the Yee grid are accounted for. 
Lines 222 to 227 build the SF masking matrix Q, where the SF region is made to 
cover the PML at the top of the grid plus an additional three cells. The three cells 
are to leave room for analyzing the reflected waves. Given all of this, the source 
vector b is calculated on line 230 using the QAAQ equation.

All of this runs relatively quickly. Lines 232 to 237 are where the field is solved 
and is the most computationally intensive step in the fdfd3d() function. Here, 
the A and b terms are assigned to a GPU for faster calculation. The iterative solver 
bicg() recognizes the matrices are stored on the GPU and the iterative algorithm 
is performed on the GPU. If no GPU is present, lines 234, 235, and 237 should be 
deleted and the iterative solver will run on the CPU. After the field is solved, the x, 
y, and z components of the field throughout the entire grid are extracted from the 
solution on lines 239 to 242. The spaces added in lines 240 and 241 are ignored by 
MATLAB and are inserted simply to align the equations to have clean code.

At this point, the FDFD simulation is finished and the rest of the fdfd3d() 
function postprocesses the fields to calculate reflection and transmission. This occurs 
on lines 244 to 309. Lines 248 to 257 extract the fields from the top and bottom of 
the grid, just outside of the SCPML regions. Observe that the z components of the 
fields are extracted from two slices through the grid. The fields are staggered on 
the Yee grid so in order to combine them for calculations they must be interpolated 
to common points on the grid. For this purpose, the origins of the Yee cells are 
chosen. Lines 259 to 278 perform these interpolations. Lines 280 to 287 remove 
the phase tilt from the fields following (10.62) and (10.63). This is done because 
it is the envelope term that should be Fourier transformed following (10.64) and 
(10.65). Lines 289 to 300 perform the Fourier transforms to calculate the complex 
amplitudes of the diffraction orders. Observe that the results from the FFTs are 
shifted using fftshift() to move the zero-order term to the center of the array, 
and then divided by the total number of points Nx*Ny in the FFT to make the values 
true Fourier coefficients. Lines 294 and 300 calculate the output arrays DAT.s11 
and DAT.s21 that contain the complex reflection and transmission coefficients of 
the diffraction orders. These terms will be used in the parameter retrieval described 
in Section 10.5.5 but are useful any time the amplitude and phase of the diffraction 
orders are of interest. Lines 302 and 304 calculate the diffraction efficiencies of all 
the diffraction orders using (10.66) and (10.67). These are summed on lines 307 
and 308 to calculate the overall reflectance and transmittance.

10.5.3  Simulation of a Crossed-Grating GMRF

To demonstrate three-dimensional FDFD and parameter sweeps at the same time, 
the crossed-grating GMRF illustrated in Figure 10.4 will be simulated. The left 
part of this figure illustrates the GMRF, the source wave, the reflected wave, the 
transmitted wave, and a box formed around a single unit cell of the device. Using 
PBCs, it is only necessary to model a single unit cell on the FDFD grid. This single 
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unit cell is illustrated in the right part of Figure 10.4. The GMRF is composed of 
a core region of relative permittivity εrL = 3.0 that hosts a periodic array of holes 
filled with relative permittivity εrH = 5.0. The relative permittivity above the crossed 
grating is εr1 = 1.0 and below the crossed-grating is εr2 = 2.0. Both mediums above 
and below the crossed-grating are assumed to be semi-infinite. The thickness of the 
grating layer is t = 1.5 cm and the radius r of the holes is chosen so that they occupy 
a fraction of the area defined by f. The equation to calculate r from f is

	
r = a

f
p 	

(10.70)

It is desired to simulate this device using FDFD to calculate and plot its reflectance 
and transmittance from 4.5 to 5.5 GHz. The device is illuminated with a right 
circular polarized (RCP) wave at normal incidence. To perform a parameter sweep, 
the function fdfd3d() will be used so the only tasks left for the main program are 
calculating the grid, building the device, and controlling the parameter sweep. The 
generic function makes parameter sweeps very easy!

The MATLAB code that performs the parameter sweep of the GMRF can 
be downloaded at https://empossible.net/fdfdbook/. The file is called Chapter10_
GMRF.m. The header extends from lines 1 to 25 and includes initializing MATLAB, 
defining the units, and defining the constants. The all-important dashboard extends 
from lines 27 to 56 and defines all of the parameters that control the simulation. The 
source parameters are defined on lines 31 to 39. A frequency sweep is defined from 
4.5 to 5.5 GHz with 500 frequency points used in the array FREQ. It is common to 
use many frequency points when simulating GMRFs because these devices tend to 
exhibit very narrowband and abrupt spectral behavior. The source is an RCP wave 
at normal incidence so lines 38 and 39 calculate the transverse electric (TE) and 

Figure 10.4  Crossed-grating GMRF and how it is represented on an FDFD grid. This device has 
a = 3.7 cm, t = 1.5 cm, f = 0.5, εr1 = 1.0, εr2 = 2.0, εrL = 3.0, and εrH = 5.0.
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transverse magnetic (TM) components. These are made to have equal amplitude but 
a factor of 1i was included to make the components 90° out of phase. Lines 41 to 
48 define all of the material properties and dimensions of the GMRF as illustrated 
in Figure 10.4. Lines 50 to 56 define the grid parameters. NRES defines the number 
of grid cells to resolve the minimum wavelength. DEV.NPML is an array of two num-
bers that define the size of the SCPML at the z-axis boundaries of the grid. ermax 
is the maximum relative permittivity found anywhere on the grid and is calculated 
by determining the maximum value of the relative permittivity terms defining the 
GMRF. From this, nmax is the maximum refractive index anywhere on the grid and 
is calculated from ermax as sqrt(ermax). lam_max is the maximum wavelength in 
the simulation and is calculated as the speed of light divided by the minimum fre-
quency in the simulation. SPACER is an array of two numbers specifying the size of 
the regions between the device and the PMLs above and below. It was found from 
trial-and-error that one wavelength of the maximum wavelength was the minimum 
amount of space needed for this simulation. The guided mode in a dielectric GMRF 
can extend outside of the device. The evanescent field from a device should not be 
allowed to touch the PML or it will excite a propagating wave inside of the PML 
that provides an escape path for power that is not accounted for by the simulation.

The grid is calculated from lines 58 to 101. For the x- and y-directions, the 
grid resolution was snapped to the period of the GMRF. In the z-direction, the grid 
resolution was snapped to the height of the core of the GMRF. Lines 103 to 120 
build the materials arrays that define the GMRF on the 2× grid. Since PBCs are 
used, only a single unit cell has to be constructed onto the grid. Lines 107 to 109 
initialize the relative permittivity array DEV.ER2 and the relative permeability array 
DEV.UR2 to all ones to represent air. The grating is added throughout the entire 2× 
grid on lines 111 to 114. Line 112 calculates the radius r of the hole from the fill 
factor f using (10.70). Lines 116 to 120 overwrite the cells above and below the 
actual grating layer with the correct values for relative permittivity. The entire grid 
above the grating is filled with er1 while the entire grid below the grating is filled 
with er2. Observe that the centering algorithm was not used here to position the 
grating layer because that would not be correct if the two spacer regions were set 
to different sizes. Instead, the starting index of the grating layer is set to a position 
below the top PML and below the top spacer region. The number of cells in the 
top PML was multiplied by two because the GMRF is being constructed on the 2× 
grid that contains twice as many cells.

The frequency sweep is performed from lines 122 to 174. Line 127 defines the last 
remaining field of DEV, which is DEV.RES that stores the grid resolution parameters 
dx, dy, and dz. Lines 129 to 132 initialize the arrays that will store the reflectance 
REF, transmittance TRN, and power conservation CON calculated during the sweep. 
The loop for the actual frequency sweep extends from line 137 to 174. The first step 
in the loop is on lines 139 to 141 where the next frequency to simulate is grabbed 
from the array FREQ. From this, the free space wavelength SRC.lam0 is set to the 
speed of light divided by the frequency. Line 144 calls the fdfd3d() function that 
performs the simulation. This function was described in detail in Section 10.5.2. 
When the simulation for the current iteration finishes, lines 146 to 149 record the 
response in the arrays REF, TRN, and CON. Lines 151 to 159 visualize the field as it is 
being calculated. Lines 161 to 172 plot the response as the simulation is running. 
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Visualizing the fields and spectral response while the parameter sweep is being 
calculated is very good practice. Many times when problems with the code arise 
during the sweep, they can be caught early without having to wait for the entire 
sweep to be completed.

The reflectance, transmittance, and power conservation of the GMRF are plotted 
in Figure 10.5(b). Convergence for this device was found to start at around NRES=20. 
The device exhibits relatively low background reflection with two narrow regions 
of very high reflection. These occur at frequencies where the grating couples the 
applied wave into guided modes. From the spectrum, these resonances are observed 
around 4.9 and 5.2 GHz. The field is visualized at 4.9 GHz in Figure 10.5(a) using 
MATLAB’s slice() function along with a wireframe image of the crossed grating. 
A guided mode is clearly observed.

10.5.4  Simulation of a Frequency Selective Surface

Planar periodic structures are very common in electromagnetics and they include 
frequency selective surfaces (FSSs) [9–11], metasurfaces [12–19], array antennas 
[20, 21], artificial ground planes [22], and more. FSSs are planar structures that 
are designed to reflect, transmit, or absorb different frequencies of electromagnetic 
waves. In this section, the FSS shown in Figure 10.6 will be simulated using almost 
identical code to that discussed in Section 10.5.2. In fact, all of the periodic struc-
tures mentioned above are simulated the same way.

The element chosen for this FSS is a Jerusalem cross [23–25] because it is a very 
well-known element and is good practice to build onto the Yee grid. The geometry of 

Figure 10.5  (a) Electric field component Ey visualized on resonance at 4.9 GHz. 
(b) Transmittance, reflectance, and power conservation response for the GMRF.
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the Jerusalem cross is shown in Figure 10.7. This FSS will use acrylonitrile butadiene 
styrene (ABS) plastic as the substrate material and perfect electric conductors (PECs) 
for the metal elements. It is possible to modify the matrix equation Af = b in order 

Figure 10.6  Frequency selective surface composed of a periodic array of Jerusalem cross 
elements.

Figure 10.7  Geometry of the frequency selective surface element. This design has a = 9.95 mm, 
h = 3.16 mm, s1 = 1.0 mm, s2 = 0.9 mm, w = 4.5 mm, and d = 2.32 mm. The substrate is ABS 
plastic with εr = 2.5.
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to force the electric fields in the metals to be exactly zero to implement the PEC 
conductors. However, it is much easier to simply set the relative permittivity to a 
very large value, like εr,PEC ≈ 106, where the metals are located on the grid. The 
specific dimensions for the element are given in the figure caption.

The MATLAB code to simulate the FSS can be downloaded at https://empossible.
net/fdfdbook/ and is called Chapter10_FSS.m. The program is very similar to the 
code for the crossed grating GMRF. The header extends from lines 1 to 25 and 
includes initializing MATLAB, defining the units, and defining the constants to be 
used in the simulation. The all-important dashboard extends from lines 27 to 58 
and defines all of the parameters that control the simulation. The source parameters 
are defined on lines 31 to 39. A frequency sweep is defined from 8.0 to 12.0 GHz 
with 50 frequency points in the array FREQ. The source is a TE-polarized wave and 
observe that SRC.theta is set to 30° and SRC.phi is set to 60° in order to practice 
simulating waves at an oblique angle of incidence. Lines 41 to 47 define all of the 
dimensions of the FSS element as described in Figure 10.7. The material properties 
are defined on lines 49 and 50. The dielectric constant of the ABS plastic substrate 
is erd=2.5 and the dielectric constant of the metal is set to erm=1e6. This simulation 
could just as easily have accounted for the loss in the materials through a complex 
permittivity. Lines 52 to 58 define the grid parameters. NRES defines the number of 
grid cells to resolve the minimum wavelength. Convergence was found at around 
NRES=80, but this simulation was performed at NRES=100. DEV.NPML is an array of 
two numbers that define the size of the SCPML at the z-axis boundaries of the 
grid. nmax is the maximum refractive index found anywhere on the grid and was 
simply set to sqrt(erd) since the ABS plastic substrate is the only dielectric in this 
simulation other than air. lam_max is the maximum wavelength in the simulation 
and is calculated as the speed of light divided by the minimum frequency in the 
simulation. SPACER is an array of two numbers specifying the size of the spacer 
regions between the device and PMLs. It was found from trial-and-error that 0.2 
of the largest wavelength was sufficient.

The grid is calculated from lines 60 to 107. For the x- and y-directions, the 
grid resolution was snapped to the period of the FSS. In the z-direction, the grid 
resolution was snapped to the thickness of the substrate. Lines 109 to 154 build 
the material arrays that define the FSS on the 2× grid. Since PBCs are used, only a 
single unit cell has to be constructed onto the grid. Lines 113 to 115 initialize the 
relative permittivity array DEV.ER2 and the relative permeability array DEV.UR2 to 
all ones to represent air. The substrate is added on lines 117 to 120. Observe that 
the centering algorithm was not used here because that would not be correct if the 
two spacer regions were set to different sizes. Instead, the starting index of the 
substrate nz1 was to be at a position below the top PML and below the top spacer 
region. The number of cells in the top PML was multiplied by two because the FSS 
is being constructed on the 2× grid that contains twice as many cells. Also, observe 
that the argument of the round() operation is divided by two and then multiplied 
by two on the outside of the round() operation. This ensures the resulting integer 
is an even number. When the value of 1 is added to this even number, the starting 
index nz1 becomes an odd number. This was done to place the tangential field 
components as the first field components in the ABS plastic. The concept of using 
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odd and even array indices to place metals onto the Yee grid is discussed in the 
Appendix. The FSS element is constructed onto the grid in four steps from lines 
122 to 151. First, lines 123 to 132 calculate the physical positions of the edges of 
the FSS element working left to right. Lines 134 to 141 calculate the array indices 
on the 2× grid of these physical positions. Lines 143 to 149 populate an array ER2 
with zeros and ones in the pattern of the FSS element. Line 151 converts the zeros 
and ones to the actual relative permittivity values that need to be placed onto the 
grid. The FSS element is added to the DEV.ER2 array on line 154.

The frequency sweep is performed from lines 156 to 207. Line 161 defines the 
last remaining field of DEV, which is DEV.RES, that stores the grid resolution param-
eters dx, dy, and dz. Lines 163 to 166 initialize the arrays that will store the reflec-
tance REF, transmittance TRN, and power conservation CON calculated during the 
sweep. The loop for the actual frequency sweep extends from lines 168 to 207. The 
first step in the loop is on lines 173 to 175 where the next frequency to simulate is 
grabbed from the array FREQ. From this, the free space wavelength SRC.lam0 is set 
to the speed of light divided by the frequency. Line 178 calls the fdfd3d() function 
that performs the simulation at the current frequency. The fdfd3d() function is 
described in detail in Section 10.5.2. When the simulation finishes, lines 180 to 183 
record the response in the arrays REF, TRN, and CON. Lines 185 to 205 visualize the 
response as the simulation is running. This is a very good practice because many 
problems arising during the sweep can be caught early on without having to wait 
for the entire sweep to be completed. Line 200 calculates the transmittance on a 
decibel (dB) scale. This is a very common practice when the response of a device 
varies over many orders of magnitude.

The transmittance of the FSS is plotted on a decibel (dB) scale as a function of 
frequency in Figure 10.8. The figure shows transmittance for two different cases. 
The first case is a TE-polarized wave at normal incidence and the second case is a 
TE-polarized wave incident at θ = 30° and ϕ = 60°. Despite the angle of incidence, 

Figure 10.8  Transmittance of a TE-polarized wave from a frequency selective surface at two 
different angles of incidence.
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the center frequency of the dip in transmittance is stable. Convergence for this 
device was found to start at around NRES=80, but the results shown in the figure 
were obtained at NRES=100.

10.5.5  Parameter Retrieval for a Left-Handed Metamaterial

Metamaterials are periodic structures that are engineered to provide effective permit-
tivity and permeability [26–28]. Often, these are permittivity and permeability values 
that do not exist in ordinary materials. Metamaterials are typically composed of a 
periodic array of resonant metallic elements that mimic the behavior of atomic-scale 
resonances to produce effective material properties. All-dielectric metamaterials are 
also possible [29–31]. The metamaterial that will be demonstrated here is a famous 
left-handed metamaterial designed by Smith and co-authors [32] and is illustrated 
in Figure 10.9. It is composed of an FR-4 substrate with a straight wire on the back 
and a square split-ring resonator on the front. Dimensions and material properties 
are given in the figure caption. In brief, the wire on the back provides the negative 
permittivity while the split-ring resonator provides the negative permeability. The 
geometry is engineered so that these properties exist at the same frequency to make 
the metamaterial be left-handed and have a negative refractive index.

The results from an FDFD simulation will be used to calculate the effective 
refractive index neff, effective impedance ηeff, effective relative permittivity εr,eff, 
and effective relative permeability μr,eff of the metamaterial described above. The 

Figure 10.9  Geometry of the left-handed metamaterial in [32]. This design has a = 2.5 mm, 
h = 0.25 mm, w1 = 0.14 mm, w2 = 0.2 mm, L1 = 1.5 mm, L2 = 2.2 mm, and g = 0.3 mm. The 
substrate is FR-4 with a dielectric constant εr = 4.4 and loss tangent tanδ = 0.02. The metal is 
copper with conductivity σ = 5.8 × 107 Ω ⋅ m.
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concept of the retrieval process is illustrated in Figure 10.10. From the reflection 
and transmission simulated using FDFD, the effective properties of the metamaterial 
will be retrieved using the Nicolson–Ross–Weir (NRW) method [33, 34]. If correct 
effective properties are retrieved, then a homogeneous slab of material having these 
same properties and occupying the same space will produce the same reflection 
and transmission.

Retrieving the effective properties of the metamaterial via the NRW method 
begins with the analytical analysis of scattering from a homogeneous slab in air. 
The scattering parameters for a wave normally incident onto this slab are

	
S11 =

1 − t2( )r
1 − r2t2

	
(10.71)

	
S21 =

1 − r2( )t
1 − r2t2

	
(10.72)

	
r =

heff − h0

heff + h0 	
(10.73)

	
t = exp jk0neffa( ) 	

(10.74)

In these equations, neff is the effective refractive index of the metamaterial, so 
it is also the refractive index of the homogeneous slab. Similarly, ηeff is the effective 
impedance of the metamaterial, so it is also the impedance of the homogeneous slab. 
Both of these terms are complex quantities to account for the loss. S11 is the complex 
reflection coefficient in the forward direction and S21 is the complex transmission 

Figure 10.10  Parameter retrieval from a left-handed metamaterial. (a) FDFD simulation of 
scattering from a metamaterial unit cell of period a. (b) FDFD simulation of scattering from a 
homogeneous slab of thickness a.
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coefficient of the forward direction. The parameter r is the complex reflection coef-
ficient of the first air-to-slab interface and is not the overall reflection coefficient 
from the slab. The parameter t quantifies the phase accumulated by a wave from 
one pass through the slab using the positive sign convention.

Calculating the effective properties of the slab starts by simulating a single unit 
cell to obtain values for the scattering parameters S11 and S21. Given the scattering 
parameters, (10.71) to (10.74) are solved for neff and ηeff. First, (10.71) and (10.72) 
are solved for r and t to get

	
X =

1 − S21
2 + S11

2

2S11 	
(10.75)

	 r = X ± X2 − 1 	 (10.76)

	
t =

S11 + S21 − r

1 − S11 + S21( )r 	
(10.77)

The parameter X is just an intermediate parameter with no physical meaning. 
Assuming the slab is composed of a passive material that cannot exhibit gain, the 
sign of the square-root in (10.76) is chosen so that ⎪r⎪2 ≤ 1. Given r and t, (10.73) and 
(10.74) are solved for neff and ηeff. The inversion of (10.74) can be difficult because 
it leads to an infinite number of possible answers. Taking the natural logarithm of 
(10.74) gives ln(t) = j(k0na ± 2πm) where any integer m leads to a different solution, 
called branches [35, 36]. For thin slabs, m = 0 can be chosen to get

	
heff = h0

1 + r
1 − r 	

(10.78)

	
neff = lnt

jk0a 	
(10.79)

Recognizing that ηeff = h0 mr,eff /er,eff  and neff = h0 mr,effer,eff ,  the effective 
relative permittivity εr,eff and effective relative permeability μr,eff can be calculated 
from neff and ηeff according to

	
er,eff =

neffh0

heff 	
(10.80)

	
mr,eff =

neffheff

h0 	
(10.81)

Performing parameter retrieval is an excellent way to reduce the numerical 
complexity of simulating devices composed of metamaterials or other subwavelength 
structures [29, 30, 32]. It is very difficult or impossible to calculate the effective 
properties of diffracting structures like photonic crystals and gratings [37]. 
Diffracting structures involve more physics than just an effective permittivity and 
permeability. FDFD simulations of devices described well by effective permittivity 
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and permeability can be performed more efficiently simply by assigning the effective 
properties to the grid. This avoids having to build complicated structures onto the 
grid and having to use very fine grid resolution to resolve the small features of the 
metamaterials themselves. Most often, simulations using just the effective properties 
can get away with many fewer points on the grid. Performing an FDFD simulation 
using just the effective properties of metamaterials will be demonstrated in Section 
10.5.6 to simulate an invisibility cloak designed by TO.

The MATLAB code that performs the FDFD simulation and NRW parameter 
retrieval can be downloaded at https://empossible.net/fdfdbook/. The file is called 
Chapter10_metamaterial.m. The header extends from lines 1 to 25 and nothing 
is different from the other codes. The dashboard extends from lines 27 to 63. The 
source parameters are defined in lines 31 to 39. f1 and f2 are the starting and ending 
frequency for the frequency sweep, NFREQ is the number of frequency points to use, 
and FREQ is the array containing all of the frequencies to simulate in the parameter 
sweep. It is good practice to resolve the response with enough frequency points so 
that the phase can be unwrapped accurately. The simulation is performed at nor-
mal incidence so both SRC.theta and SRC.phi are set to zero. For this simulation, 
the TM polarization is selected to place the magnetic field parallel to the axis of 
the loops. Lines 41 to 48 define the dimensions of the metamaterial as described in 
Figure 10.9. The material properties are specified in terms of the electrical conduc-
tivity sigma for the metal and the dielectric constant er and loss tangent tand for 
the dielectric. From these, the complex relative permittivity for both materials is 
calculated on lines 50 to 56. Last, the grid parameters are defined from lines 58 to 
63. Convergence was found to begin at around NRES=100. The results that will be 
discussed below were obtained at NRES=120. That is, 120 grid cells per wavelength.

Lines 65 to 110 calculate a grid optimized for simulating this metamaterial. The 
grid resolution is snapped to match the period of the metamaterial. Lines 112 to 
170 build the unit cell of the metamaterial onto the 2× grid. First, lines 116 to 118 
initialize both the relative permittivity array DEV.ER2 and the relative permeability 
array DEV.UR2 to all ones to represent air. The FR-4 substrate is added to the grid 
on lines 120 to 127 using the centering algorithm covered in Chapter 1. Observe 
in these calculations that the centering algorithm has been modified so that the 
arguments inside of the rounding operations are divided by two and then multiplied 
by two on the outside. This ensures an even number of cells is calculated. When 
one is added to an even number an odd number is always obtained. This is being 
done so that the metals are added to cells on the grid at odd array indexes because 
these correspond to the field components parallel to the metals. This trick is used 
throughout this section of code. The wire is added at the back edge of the substrate 
on lines 129 to 132 using the same modified centering algorithm. Lines 134 to 
151 add the outer ring in three steps, also making use of the modified centering 
algorithm. Lines 135 to 142 add a large square of metal covering the entire area of 
the outer ring. Lines 143 to 147 subtract a smaller square to form the ring. Lines 
147 to 151 remove more metal to add the gap to form the split ring. Lines 153 to 
170 add the inner ring following the same procedure used to build the outer ring.

The frequency sweep is performed from lines 172 to 234. Line 177 defines the 
DEV.RES data structure that stores the grid resolution parameters dx, dy, and dz. Lines 
179 to 184 initialize the arrays where the frequency response will be stored. S11 is 
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the complex reflection coefficient, S21 is the complex transmission coefficient, REF is 
reflectance, TRN is transmittance, and CON is the power conservation. The frequency 
sweep itself is performed from lines 186 to 234. It is a typical parameter sweep, 
except around lines 200 to 209 where the S11 and S21 parameters are recorded. It 
is critical to calculate phase as if the phase of the source is zero immediately on the 
entrance face of the unit cell and to calculate reflection and transmission with the 
phase that is immediately on the exit face of the unit cell. The function fdfd3d(), 
however, launches the wave from some distance away and also calculates reflection 
and transmission at some distance away. Lines 205 and 206 of the code remove 
this extra phase by dividing the exponential terms. It is also possible to modify the 
fdfd3d() function to place the TF/SF interface and reflection and transmission 
record planes at the edge of the device, but it was desired to use the generic fdfd3d() 
function as it is without any modifications.

At this point, the FDFD simulation is finished and parameter retrieval can 
begin. This is considered postprocessing. While not shown in the code, it is a good 
practice to save the simulation results at this point. This allows the results of the 
long simulation to be quickly loaded from memory to work on coding the param-
eter retrieval section. The parameter retrieval extends from lines 236 to 282 and 
all of the data is plotted from lines 284 to 346. The NRW method in the literature 
was derived using the positive sign convention for waves, but the FDFD method in 
this book is based on the negative sign convention. Lines 240 to 242 calculate the 
complex conjugate of the S11 and S21 scattering parameters to reverse the phase 
and be compatible with positive sign convention equations. In MATLAB and many 
other programming languages, the phase portion ϕ of a complex number is kept in 
the range −π ≤ ϕ ≤ π. If the phase exceeds these limits, an integer multiple of 2π is 
added or subtracted so that the phase falls within this range. This is called wrapping 
and leads to nonphysical discontinuities in the phase response that causes prob-
lems with the parameter retrieval algorithm. To fix this, lines 244 to 263 unwrap 
the phase so that it does not exhibit discontinuities caused by wrapping. Line 266 
calculates the intermediate variable X using (10.75). Lines 268 to 272 calculate the 
reflection coefficient r using (10.76) while also resolving the sign so that ⎪r⎪2 ≤ 1. 
The transmission coefficient t is calculated on line 274 using (10.77). From here, 
lines 276 to 278 calculate the effective impedance eta and effective refractive index 
neff using (10.78) and (10.79), respectively. The last step in the parameter retrieval 
happens on lines 280 to 282 where the effective relative permittivity er and effec-
tive permeability ur are calculated using (10.80) and (10.81), respectively. Lines 284 
to 346 plot all of the data calculated from the simulation and parameter retrieval.

The results of the simulation and the parameter retrieval are shown in Figure 
10.11 for NRES=120 and match well with what was obtained in [32]. Fundamentally, 
FDFD calculates reflection and transmission from the metamaterial unit cell as shown 
in Figure 10.10(a). Everything else is calculated from these results. The reflectance 
and transmittance as a function of frequency are plotted in Figure 10.11(a). Observe 
that conservation is not obeyed due to the loss incorporated into the simulation. Even 
when the loss is to be incorporated, it is good practice to run a preliminary simulation 
with loss set to zero to ensure conservation is obeyed. Violation of conservation is 
a strong indication of a problem with the code, such as the spacer regions being too 
small or the PML not working correctly. The phase component of the reflection 
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and transmission coefficients was unwrapped to form continuous lines and plotted 
in Figure 10.11(b). It is from the S11 and S21 terms that the effective refractive index 
neff and effective impedance ηeff of the metamaterial were calculated using (10.75) to 
(10.79). These parameters as a function of frequency are plotted in Figure 10.11(c, d). 
Observe that the effective refractive index is negative in the vicinity of 10.6 GHz. A 
medium with a negative refractive index is said to be left-handed because the electric 
and magnetic fields obey a left-hand rule instead of a right-hand rule like in ordinary 
media. Note the imaginary part of the effective refractive index in Figure 10.11(c) 
is largest in the vicinity of the negative refractive index. This is a critical problem 
with metamaterials. They often exhibit very high losses at the same frequencies they 
would be most useful. Figure 10.11(e, f) shows the effective relative permittivity εr,eff 
and effective relative permeability μr,eff, respectively. Observe that both of these 
parameters are simultaneously negative where there is a negative refractive index.

Figure 10.11  Results of parameter retrieval. Metamaterial has a negative index of refraction  
around 10.6 GHz.
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10.5.6  Simulation of an Invisibility Cloak

TO is a technique to design the permittivity and permeability functions so that 
waves can be made to flow along any desired path [38–41]. A coordinate transform 
defines the paths the waves should be made to follow. The coordinate transform is 
applied to Maxwell’s equations. The math associated with the transform is moved 
out of the coordinates and incorporated into the permittivity and permeability func-
tions. The output of TO is a map of permittivity and permeability as a function of 
position. The permittivity and permeability calculated from TO are typically aniso-
tropic and entail extreme values that are only realizable using exotic materials or 
metamaterials. The most famous application of TO is invisibility cloaks [42–44], 
but many other more practical applications exist [38]. Simulating TO devices can 
be difficult, but the ability to do so will prove to be a fun and powerful tool in your 
simulation toolbox.

For this example, the classic cylindrical invisibility cloak [44] will be simulated 
using FDFD. The grid strategy for this simulation is illustrated in Figure 10.12. 
The cloak has an inner radius of R1 and an outer radius of R2. This is not a device 
that produces significant evanescent fields so no spacer regions are required. For 
this simulation, space around the cloak was added simply to visualize the wave. A 
PML is incorporated around all four boundaries. The TF/SF interface encircles the 
entire grid just inside of the PML. The PMLs are placed in the SF region while the 
cloak is placed in the TF region.

The MATLAB code to generate and simulate a cylindrical invisibility cloak can 
be downloaded at https://empossible.net/fdfdbook/. The file is called Chapter10_
cloak.m. The code uses many of the tools and concepts covered in this chapter. The 
header extends from lines 1 to 12 and contains all of the same items as previous 
programs. The dashboard extends from lines 14 to 31 and is where all of the variables 

Figure 10.12  Grid strategy to simulate an invisibility cloak designed using TO.
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are defined that control the simulation. The source is defined on lines 18 to 21. 
lam0 is the free space wavelength, theta is the angle of the source wave, and P is 
the polarization vector. The polarization is set to the z-direction corresponding to 
a vertically polarized source.

Lines 33 to 58 calculate the grid. The primary difference in this section com-
pared to previous chapters is that nmax is not used to calculate the grid resolution. 
In general, TO devices can have extreme refractive indices and it is possible it could 
approach infinity or zero for some devices. For this reason, nmax is not used because 
it could lead to an unfeasible grid.

The invisibility cloak is constructed from lines 60 to 139. Lines 64 to 73 initialize 
all nine tensor elements for permittivity to free space. There is no need to initialize 
the permeability because the permeability will just be set equal to the permittiv-
ity. Lines 75 to 104 are where the permittivity values for the invisibility cloak are 
calculated. A double loop is used to iterate through every point on the 2× grid. For 
each point, lines 79 and 80 calculate the cylindrical coordinate parameters ρ and ϕ. 
The condition R1 < ρ < R2 checks if the current point in the iteration resides inside 
of the cloak. If so, the permittivity tensor for the cloak is calculated at that point. 
Otherwise, it moves on to the next iteration of the double loop. Inside of the cloak, 
the three diagonal elements of the permittivity tensor are calculated in cylindrical 
coordinates according to [44]

	

er r,f,z( )⎡⎣ ⎤⎦ =

r − R1

r 0 0
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(10.82)

The permittivity tensor in Cartesian coordinates [εr(x,y)] is calculated by rotat-
ing the tensor in (10.82) about the z-axis by the cylindrical coordinate angle ϕ. The 
rotation is performed on lines 90 to 93. After this, lines 95 to 103 populate the 
tensor arrays with the elements of [εr(x,y)].

Recognizing the anisotropic permeability will lead to a very slow calculation of 
the wave matrix, the impermeability tensor [ψr(x,y)] is calculated directly from the 
permittivity tensor [εr(x,y)] on lines 108 to 120. This section of code uses (10.45) 
to invert the permittivity tensor at each point on the grid to arrive at the imperme-
ability tensor elements. Given the impermeability, the wave matrix is calculated 
much more efficiently using (10.46). Lines 122 to 141 form diagonal matrices from 
the permittivity and impermeability tensor arrays. These are used to calculate the 
wave matrix in a later part of the code.

The FDFD simulation is performed from lines 143 to 223. The source field is 
calculated on lines 147 to 157. The incident wave vector kinc is calculated on line 
151. The source field is calculated on line 157 by assembling the source field com-
ponents Ex, Ey, and Ez into a single column vector. The derivative matrices are con-
structed on line 163 by calling the yeeder3d() function described previously. Since 
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Dirichlet boundary conditions are used, it is possible to calculate the interpolation 
matrices directly from the derivative matrices using (10.30). This happens on lines 
165 to 168. Lines 170 to 185 calculate the SCPML parameters. Line 171 calls the 
calcpml3d() function that calculates the SCPML terms on the 2× grid. Lines 173 
to 185 extract the SCPML terms for the Yee grid and forms the diagonal matrices 
that are used to calculate the curl matrices. It is actually the inverse of the SCPML 
terms are that are used to build the curl matrices. Rather than use matrix division 
to do this, the PML terms are inverted in the diagonalization step. Lines 187 to 193 
form the permittivity and impermeability tensors. Lines 195 to 203 calculate the 
curl matrices for both the electric and magnetic fields. This is where the SCPML is 
incorporated into the simulation. Lines 205 to 213 build the TF/SF masking matrix 
Q. For this simulation, the TF/SF interface forms a rectangle around the entire grid, 
just outside of the SCPML regions. The wave matrix A is calculated on line 216 using 
(10.46). The source vector b is calculated on line 219 using the QAAQ equation 
and then the field f is solved using backward division on line 223. The backward 
division was chosen here over iteration because the size of the simulation is gener-
ally small enough that backward division is the faster solution method. A message 
is displayed to the command window on line 222 to convey that the field is being 
solved because this step can take some time to process.

At this point, the FDFD simulation is finished. Lines 225 to 228 extract the 
vector components fx, fy, and fz from the field solution f. Lines 230 to 233 reshape 
the field components back to the Yee grid. Lines 235 to 250 visualize the results.

While the program may run and produce a result without error, a convergence 
study must be performed before any conclusions can be made about the results. 
For this simulation, convergence was observed at around NRES = 60. The results of 
this simulation are shown in Figure 10.13. It should be mentioned that this would 
be a great time to produce a nice animation of the field with a GIF as described in 
Chapter 1!

Figure 10.13  Simulation results for a cylindrical invisibility cloak.
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A P P E N D I X  A

A.1  Best Practices for Building Devices onto Yee Grids

This section will describe some basic best practices for assigning material values to 
the Yee grid. When metal structures, or structures with high permittivity contrast, 
are built onto the grid, it is best to have the first electric field component immedi-
ately inside of the metal structure be tangential to the edge of the structure. For E 
mode simulations, all electric fields will always be tangential to the edges because 
the electric field is always perpendicular to the plane of the structure. More care 
must be taken when performing H mode simulations with metals. This practice 
makes it easier for the Yee grid to satisfy the boundary conditions at the interface 
of the metal. Doing this will improve the rate of convergence of a simulation con-
taining metals and high-permittivity structures. Figure A.1 demonstrates two ways 
to place a square metal element onto the Yee grid. The ideal placement is shown in 
Figure A.1(a) where the electric field components immediately inside of the square 
are tangential to the edge of the square. Figure A.1(b) shows the same metal element 
placed poorly onto the grid. It has electric field components immediately inside of 
the square that are normal to the edge of the square. The second case will converge 
more slowly than the first case. The practice described here is easy for rectangular 
shapes, but is more difficult or impossible when curved shapes are built onto the grid. 
When curved shapes are needed, you may be forced to accept slower convergence.

From the above discussion, placing metals on grids might be more intuitively 
done by directly populating the Yee grid arrays ERxx, ERyy, and ERzz. If the 2× 
grid technique is to be used, the array indices where structures are placed onto the 

Figure A.1  (a) Ideal placement of a metal square onto a Yee grid where tangential electric field 
components are immediately inside the metal. (b) Poor placement of a metal square onto a Yee 
grid where electric field immediately inside metal is not tangential.
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grid must be more carefully considered. Observe from Figure A.1(a) that the square 
patch of metal starts and ends on odd array indices on the 2× grid. The material 
outside of the square patch starts and stops on even array indices. The array index 
nx can be forced to be even or odd using (A.1) and (A.2). The same can be done for 
any other array index such as ny or nz. Equation (A.1) divides nx by two and then 
multiplies by two to get essentially the original value of nx. However, the quantity 
is rounded after dividing by two to get the nearest integer. Multiplying any integer 
by two will always give an even number. Equation (A.1) will give the closest even 
number to the original value of nx. Equation (A.2) essentially uses the same equa-
tion but adds one to always give an odd number. The floor() command is used 
instead of round() in order to get the odd number closest to the original value of 
nx after one is added. It is common to incorporate these equations into the various 
techniques described in Chapter 1, such as the centering algorithm.

	 nx = 2 * round(nx/2)    makes nx even	 (A.1)

	 nx = 2 * floor(nx/2) + 1    makes nx odd	 (A.2)

When curved dielectric structures are built onto the grid, the edge of the struc-
ture will cut through some of the grid cells. A simple technique to improve conver-
gence rate is to assign the average permittivity (or permeability) to these cells that 
are partly filled. For example, if 70% of a cell is occupied by relative permittiv-
ity 2.5 and 30% is occupied by relative permittivity 6.0, the value that should be 
assigned to the cell is (0.70)(2.5) + (0.30)(6.0) = 3.55. A simple way to accomplish 
this is illustrated in Figure A.2. The technique involves three separate grids that 
all represent the same physical space. These are the Yee grid, the 2× grid contain-
ing twice as many cells as the Yee grid, and a high-resolution grid containing even 
more cells than the 2× grid. In this example, the high-resolution grid has five times 
the number of cells than does the 2× grid. Figure A.2(a) shows the Yee grid, the 
2× grid, and a cylinder constructed onto the high-resolution grid. The next step is 
to blur the high-resolution grid using a rectangular blur function that is 5×5 cells 
wide. Figure A.2(d) shows the blur function centered on the high-resolution grid. 
The blurring operation is performed as a convolution using two-dimensional fast 
Fourier transforms (FFTs). The FFT of the high-resolution grid is multiplied by the 
FFT of the blurring function. The inverse FFT is calculated from the product to get 
the blurred function on the high-resolution grid as shown in Figure A.2(b). After 
the blurring operation, the points on the high-resolution grid that fall at the center 
of the 2× grid cells are the correct weighted averages. The cells on the 2× grid are 
assigned these weighted averages.
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Figure A.2  Simple method to average the permittivity (or permeability) at the edges of 
curved boundaries. Thick lines show the Yee grid cells and the dashed lines show the 2× grid 
cells. (a) Cylinder constructed into a high-resolution grid overlaid onto Yee grid and 2× grid. 
(b) High-resolution cylinder after blurring operation. (c) Materials assigned to 2× grid after being 
extracted from the high-resolution grid. (d) The blur function on the high-resolution grid.
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A.2	 Method Summaries

Figure A.3  Summary of the Yee grids and discrete form of Maxwell’s equations with doubly diagonally 
anisotropic media.
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Figure A.4  Summary of both the uniaxial and the stretched-coordinate perfectly matched layer 
absorbing boundaries.
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Figure A.5  Summary of the formulation and implementation of FDFD for waveguide analysis. Slab 
waveguide analysis is shown in multiple orientations.
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Figure A.6  Summary of the formulation and implementation of FDFD for scattering analysis.
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Figure A.7  Summary of the formulation of FDFD for photonic band analysis.

7025_Book.indb   3127025_Book.indb   312 12/17/21   8:43 AM12/17/21   8:43 AM



313

List of Acronyms and Abbreviations

1-D	 One-Dimensional

2-D	 Two-Dimensional

3-D	 Three-Dimensional

ABS	 Acrylonitrile Butadiene Styrene

BZ	 Brillouin Zone

CEM	 Computational Electromagnetics

CP	 Circular Polarization

CPU	 Central Processing Unit

EIM	 Effective Index Method

EMF	 Electromotive Force

FDFD	 Finite-Difference Frequency-Domain

FDM	 Finite-Difference Method

FDTD	 Finite-Difference Time-Domain

FEM	 Finite Element Method

FSS	 Frequency Selective Surface

GMRF	 Guided-Mode Resonance Filter

GPU	 Graphical Processing Unit

IBZ	 Irreducible Brillouin Zone

IFC	 Isofrequency Contour

KCL	 Kirchoff’s Current Law

KVL	 Kirchoff’s Voltage Law

LCP	 Left Circular Polarization

LHI	 Linear, Homogeneous, and Isotropic

LP	 Linear Polarization

NRW	 Nicolson–Ross–Weir

OIC	 Optical-Integrated Circuit

PBC	 Periodic Boundary Condition

PEC	 Perfect Electric Conductor

PMC	 Perfect Magnetic Conductor

PML	 Perfectly Matched Layer
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POI	 Plane of Incidence

RCP	 Right Circular Polarization

SCPML	 Stretched-Coordinate Perfectly Matched Layer

SF	 Scattered-Field

SoI	 Silicon-on-Insulator

SPP	 Surface Plasmon Polariton

TE	 Transverse Electric

TEM	 Transverse Electromagnetic

TF	 Total-Field

TFSF	 Total-Field/Scattered-Field

TM	 Transverse Magnetic

TO	 Transformation Optics

UPML	 Uniaxial Perfectly Matched Layer

7025_Book.indb   3147025_Book.indb   314 12/17/21   8:43 AM12/17/21   8:43 AM



315

About the Author

Raymond C. Rumpf has been a professor in the Department of Electrical and 
Computer Engineering at the University of Texas at El Paso in El Paso, TX, since 
2010. He has focused most of his career on pursuing high-risk/high-payoff research 
in the areas of electromagnetics, photonics, three-dimensional printing, advanced 
packaging, and more. His research produced many significant breakthroughs, world 
records, and first-ever achievements that established him as a Fellow of SPIE and 
earned him into the Florida Tech Career Hall of Fame. Computation and simula-
tion played a key role in all of his achievements. For a summary of his research and 
publications, visit https://raymondcrumpf.com.

Professor Rumpf is also a highly accomplished teacher. At his University, he has 
been recognized with numerous teaching awards, including the prestigious Univer
sity of Texas Regents’ Outstanding Teaching Award, which is the largest teaching 
award at the largest university system in the United States. For almost 10 years, 
Professor Rumpf has been developing online content for students to learn about 
electromagnetics and computation. To access this content, visit https://empossible.net/.

Professor Rumpf earned his BS and MS in electrical engineering from the Florida 
Institute of Technology in 1995 and 1997, respectively. He earned his PhD in Optics 
from the University of Central Florida in 2006. Prior to joining the University of 
Texas at El Paso, he was a principal investigator at Harris Corporation in Palm Bay, 
FL, and later the Chief Technology Officer for Prime Photonics LC in Blacksburg, 
VA. He has been awarded over a dozen U.S. Patents and authored dozens of peer-
reviewed journal articles and conference proceedings. Other notable achievements 
include five world records for skydiving and teaching Maxwell’s equations to his 
dog Rocky.

7025_Book.indb   3157025_Book.indb   315 12/17/21   8:43 AM12/17/21   8:43 AM



7025_Book.indb   3167025_Book.indb   316 12/17/21   8:43 AM12/17/21   8:43 AM



317

Index

A
Absorbing boundary

about, 141
development, 141–42
doubly diagonally anisotropic, 143
SCPML, 153–59, 309
UPML, 143–47, 309

Acronyms and abbreviations, this book, 313–14
Acrylonitrile butadiene styrene (ABS) plastic, 291
addupml2d() function

about, 149–50
initialization, 150
MATLAB program, 150–53
using, 150–53

Algebra, MATLAB and, 3–8
Amplitude function, 114
Anisotropic materials, 37–38
Anisotropy, 269
Arrays

binary, converting, 25
complex, visualization of data in, 31–32
defined, 8
indexing, 8
lattice to build into, 13
MATLAB and, 10
matrices versus, 8, 9
meshgrid, 20
visualization of data in, 29

Asymmetric diffraction gratings, 232, 284
Attenuation coefficient, 45, 65, 68

B
Backward division, 8
Biaxial materials, 39
Bloch modes, 200
Bloch wave vectors, 199, 206, 207
Block matrix, 7, 91, 165, 275
Boolean operations, 23–25
Boundary conditions

diffraction orders and, 227
Dirichlet, 81–82, 83, 91, 108–11
numerical, 81–82
periodic, 82, 85, 112–19

Brillouin zones (BZs), 199, 200

C
calcpml3d() function, 155–59
Centering algorithm, 17–19
Channel waveguides

about, 63
geometry of translational object, 162
guided modes in, 63–64
slab waveguide comparison, 64
See also Waveguides

Characteristic impedance, 68, 193
Circles, adding to grids, 20–22
Circular polarization (CP), 47
Coaxial transmission lines, 66
Coefficients, terms, 4
Complex permittivity, 36
Complex propagation constant, 65, 67, 193, 195
Composite rotation matrix, 41
Computational electromagnetics (CEM)

about, xv, xix
convergence studies in, 256
importance of, xiii
modeling, xiv
process block diagram, xx
sweeping parameters and variables, xiv

Condition number, 278
Constitutive relations, 34
Continuous functions, 10
Contour() function, 245, 252
Convergence

about, xx, 11
FDFD codes and, 14
grid resolution and, 187–88
rate, 176, 181, 230, 249
slow, 13, 18
testing for, 174, 181
tracking, xiii

Convergence studies
about, 11–12, 256
in computational electromagnetics, 256
of grid resolution, 187
importance of, 187–88
parameter sweeps and, 188
photonic bands, 209–10, 212
point use on grid, 206
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Convergence studies (cont.)
scattering analysis, 239, 245–46
SPP calculation, 191, 192
use of, 256
waveguide analysis and, 178, 184, 187–88

Coupling length, 246
Crossed-grating GMRF, 285, 287–90
Crossed gratings

defined, 60
diffraction efficiency, 62
diffraction from, 60–61
period and symmetry of, 61

Curl equations, Maxwell’s, 42–45, 55, 99–103
Cutoff frequency, 63

D
Derivative matrices

about, 82
convenient form, 84
Dirichlet boundary conditions, 82–83, 108–11
in finite-difference equations, 102
function written in MATLAB for, 124
numerical differentiation and, 85
periodic boundary conditions (PBCs), 84, 115–

19, 230
relationship between, 119–20
staggered grids and, 91
for three-dimensional FDFD, 120–23
for two-dimensional FDFD, 107–20

Diag() function, 224
Diagonal matrices

about, 6
inverse of PML terms, 273
materials, 183
PBCs and, 124

Diagonals, 6
Differential equations

coupled, 89, 92
differential, solving, 5–6
discrete form, 85
finite-difference approximations of, 85–86
generic, converted to matrix form, 86
matrix, solving, 87–89
solving, 72
solving a multivariable problem, 92–94

Diffraction efficiency
about, 59–60
crossed gratings, 62
defined, 56, 59
diffraction gratings, 56–57, 59–60
reflectance and, 56–57
of transmitted diffraction orders, 283

Diffraction gratings
about, 56–57
amplitude and, 57

asymmetric, 232, 284
defined, 56
diffraction efficiency and, 56–57, 59–60
equation, 57–59
generalization to crossed gratings, 60–62
geometry, 57
groove depth, 13, 230
sawtooth, 233–39

Diffraction orders, 56, 226–28, 280–81
Directional coupler. See OIC directional coupler
Direction plane, 258
Dirichlet boundary conditions

about, 81–82
applied to magnetic fields, 179
derivative matrices, three-dimensional FDFD, 

120–21
derivative matrices, two-dimensional FDFD, 

108–11
derivative matrix construction with, 83, 91
interpolation matrices and, 274
relationship between derivative matrices, 

119–20
rib waveguide analysis, 174, 179
slab waveguide analysis, 181

Discrete Fourier transform, 227, 281
Dispersion relation, 49
Double-curl operation, 43

E
Effective index method (EIM)

about, 161, 169–71
in reducing three-dimensional problems, 168, 

171
in reducing two-dimensional problem, 170

Effective permittivity, 195, 296–98
Effective refractive index, 65, 178, 179, 184–85, 

187, 295, 299
Eigenvalue matrix, 165–66
Eigenvector matrix, 166, 184
Eigs() function, 171–72, 177, 183, 204, 208
Electric charge density, 34
Electric conductivity, 36
Electric current density, 34, 36
Electric field intensity, 33–34
Electric flux density, 34, 35
Electric permittivity, 34
Electromagnetic wave equation, 43–45
Electromagnetic waves

energy propagation in, 33, 34
frequencies of, 290
fundamental states for, 113
in LHI media, 45–48
polarization, 46–48
splitting and dispersing, 56
waveguides for, 62
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Electromotive force (EMF), 34
Ellipses

adding to grids, 20–22
built into array, 21
built onto three-dimensional grid, 27
rotated, building into array, 22–23

Elliptical polarization (EP), 47–48
E mode

discrete equations (known frequency), 106
discrete equations (unknown frequency), 105
numerical plane wave for, 136
slab waveguide analysis, 167–68
3 x 3 grid for, 107
2x grid, 133
Yee cell for, 104
See also H mode

Envelope functions, 281
Excitation, terms, 4
Extinction coefficient, 44–45

F
Fast Fourier transform (FFT), 227, 306
fdfd3d()function, 285–87, 289
FDFD analysis

OIC directional coupler, 246–52
rib waveguide, 172–79
sawtooth diffraction grating, 233–39
scattering, 215–52
self-collimating photonic crystal, 239–46
slab waveguide, 179–85
surface waves, 191
of transmission lines, 192–97
of waveguides, 171–92

FDFD program structure (MATLAB), 1–3
FDFD simulation

Gaussian beam simulation, 31
grid setup, 14, 15
known frequency and, 103
of point source with/without absorbing 

boundary, 142
scattering from dielectric cylinder, 16
standard sequence, scattering analysis, 231–33
two-dimensional, UPML and, 147

Fftshift() function, 287
Finite-difference approximations

about, 72
of derivates of magnetic field terms, 101
deriving expressions for, 73–76
of differential equations, 85–86
first-order derivative, 72
illustrated, 73, 100
interpolations and derivatives from four points, 

79–80
interpolations and derivatives from three 

points, 76–78

interpolations and derivatives from two points, 
78–79

Maxwell’s curl equations, 99–103, 270–73
Maxwell’s equations, 95–139
with periodic boundary conditions, 115

Finite-difference coefficients, 76
Finite-difference equations

definition of terms rule, 101
derivative matrices in, 102
for two-dimensional FDFD, 103–7
writing as a single matrix, 101–2

Finite-difference frequency-domain (FDFD)
about, xv, xix–xx, 71
advantages of, xiii
animating fields calculated by, 32
for calculating guided modes, 161–97
codes, accuracy and convergence, 14
common problems in, identifying, 266–67
FEM and, xix
formulation, 8
material loss and, 36
parameter sweeps with, 255–67
in photonic bands calculation, 199–213
PML for, 142
preparing Maxwell’s equations for, 97–99
source functions in, 221
three-dimensional, 269–302

Finite-difference method
derivative matrices, 82
introduction to, 71
multiple variables and staggered grids,  

89–94
numerical boundary conditions, 81–82
numerical differentiation, 80–81
solving matrix differential equations, 87–89

Finite element method (FEM), xix
Floor() function, 17, 265
Forward division, 8
Free space impedance, 46, 98
Free space permeability, 37
Free space permittivity, 37, 98
Free space wavenumber, 43–44
Frequency selective surfaces (FSSs)

ABS plastic, 291
defined, 290
frequency sweep, 293
geometry of, 291
grid calculation, 292
illustrated, 291
MATLAB code for, 292
simulation of, 290–94
transmittance of TE-polarized wave from,  

293
Frequency sweep, 293, 297–98
Fresnel equations, 51–52, 143
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G
Gauss’ law for electric fields, 35
Graphical processing unit (GPU), 279
Grating equation, 57–59
Grating vector, 57
Grid parameters

about, 10–11
calculating, 11–15
defined, 11
resolution, 10–12
three-dimensional grids, 25

Grid resolution
calculation of, 11–12, 228–29
convergence and, 187–88
OIC directional coupler, 249
parameters, 10–12
sawtooth diffraction grating, 236
self-collimating photonic crystal, 243

Grids
adding circles to, 20–22
adding ellipses to, 20–22
adding rectangles to, 16–17, 18
building geometries into, 15–25
data, visualizing, 27–29
defined, 10
lattices, 13
rotation, 22–23
setup for FDFD, 14, 15
setup in MATLAB, 8–15
snapping to a critical dimension, 14
staggered, 89–94
three-dimensional, 25–27
Yee scheme, 95–97, 99

Guided-mode resonance filters (GMRFs)
crossed-grating, 285, 287–90
fdfd2d() function and, 258–60
illustrated, 257
MATLAB program to simulation, 260–62
parameter sweeps and, 257
reflectance, transmittance, power 

conservation, 290
sensitivity of, 261, 285
spectral response to, 262
in testing new codes, 232–33

Guided modes
calculation, implementation of, 171–92
calculation, purpose of, 66
in channel waveguides, 63–64
complex propagation constant and, 65
decay of, 65
effective refractive index, 65, 178, 179, 184–85
electric field of, 64
FDFD for calculating, 161–97
hybrid mode calculation, 161–66
information about, 65

Maxwell’s equations and, 161
propagating in +x-direction, 169
propagating in +y-direction, 169
propagating in +z-direction, 170
transmission line analysis, 192–97
waveguide mode calculation, formulation for, 

166–71
waveguide mode calculation, implementation 

of, 171–92

H
Hermitian transpose, 91
H mode

discrete equations (known frequency), 106–7
discrete equations (unknown frequency), 

105–6
numerical dispersion and, 138
slab waveguide analysis, 168
3 x 3 grid for, 107
2x grid, 133
Yee cell for, 104
See also E mode

I
Identity matrix, 4, 7, 278
Ill-conditioned matrices, 278
Imagesc() function, 27
Impedance. See Characteristic impedance; Free 

space impedance
Impermeability, 277
Interpolation matrices, 274
Inverse FFT, 306
Invisibility cloak

grid strategy to simulation, 300
MATLAB code for, 300–302
simulation of, 300–302
simulation results, 302
TO technique and, 300

Irreducible BZs (IBZs), 199, 200–201, 206–7, 
210, 211

Isofrequency contours (IFCs)
about, 199
concept, 201
in dispersion property analysis, 213
MATLAB code for calculating, 210–13
professional, 213
for TE and TM bands, 212

Isotropic materials, 37, 39

J
Jacobi preconditioner, 278

K
Kirchhoff’s current law (KCL), 67
Kirchhoff’s voltage law (KVL), 67
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L
Lattice vectors, 199
Left circular polarization (LCP), 47–48
Linear, homogeneous, and isotropic (LHI) media

dispersion relation in, 49
electromagnetic waves in, 45–48
Maxwell’s equations for, 135

Linear polarization (LP), 47–48
Lorentz force law, 35
Loss tangent, 37

M
Magnetic field intensity, 34
Magnetic flux density, 34, 35
Magnetic permeability, 34
Material dispersion, 34
MATLAB

about, 3
array indexing, 8–10
backward division, 8
Boolean operations in, 24
commas and, 5
forward division, 8
grid parameters in, 10–15
grid setup in, 8–15
implementation for calculating SPPs, 188–92
implementation of rib waveguide analysis, 

172–79
implementation of slab waveguide analysis, 179
linear algebra and, 3–8
matrix, 3–4
matrix division in, 5
meshgrid technique, 19–23
postdivision, 8
predivision, 8
sparse matrices and, 111
UPML implementation in, 149–53

MATLAB codes
addupml2d() function, 150–53
animated GIF, 32
building an ellipse into an array, 21–22
building rotated ellipse, 22
building small matrices, 7
calcpml3d() function, 155–59
crossed-grating GMRF, 288
cylindrical source function calculation, 220
diagonalization, 223–24
Dirichlet boundary conditions, 83–84
downloading, xiv
fdfd2d() function, 258–60
fdfd3d()function, 286
FDFD program in, 1–3
frequency selective surfaces (FSSs), 292
fyeeder2d() function, 124
GMRF simulation, 260–62

GPU, 279
ideal structure of a program, 2–3
IFC calculation, 210–13
invisibility cloak, 300–302
metal polarizer analysis, 266–67
metamaterials, 296–98
microstrip analysis, 194–97
numerical differentiation, 80–81
OIC directional coupler, 247–48
periodic boundary conditions, 85
photonic band calculation, 205–10
rib waveguide analysis, 173
sawtooth diffraction grating, 235
self-collimating photonic crystal, 241
slab waveguide analysis, 180–85
source function calculation, 220
SPP calculation, 189–92
start and stop array indices, 17
three-dimensional grids, 25–26
visualization of data in arrays, 28–29
visualization of three-dimensional ellipsoid, 30
yeeder3d() function, 128

Matrices
about, 3–4
arrays versus, 8, 9
block, 7, 91, 165, 275
defined, 8
diagonals of, 6
identity, 4, 7, 278
manipulating rows and columns in, 5
rotation, 39–40, 41
sparse, 6, 111, 125, 224
special, 6–7
tables of numbers, 5
using, 4
variables as, 8
zero, 6–7, 124–25

Matrix algebra, 8
Matrix differential equations

converting to, 86
solving, 87–89

Matrix division, 5, 92, 277
Matrix equations

block, 275
coupled, 164
differential, 86–89
preconditioning, 278
three-dimensional, 275–77
for two-dimensional scattering analysis, 

215–17
wave, 275–79

MATrix LABoratory. See MATLAB
Matrix wave equation

deriving, 276
direct solution of, 278
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Matrix wave equation (cont.)
impermeability and, 277
three-dimensional, 275–78
vector components, 277

Maximum refractive index, 12
Maxwell’s curl equations

electromagnetic wave equations and, 43–45
expansion in Cartesian coordinates, 42–43
finite-difference approximation of, 99–103, 

270–73
Maxwell’s equations

about, 33
constitutive parameters, 37–41
discrete form, summary of, 308
electromagnetic fields and, 62–63
electromagnetic wave equation and, 43–45
finite-difference approximation of, 95–139
in frequency-domain differential form, 35
general form of, 33
guided modes and, 161
incorporating UPML into, 146–47
for LHI media, 135
material parameters and, 34
in matrix form, 273–74
numerical solution to, 69
preparing for FDFD analysis, 97–99
relationships embedded in, xiii
scalability of, 68–69
with SCPML, 270
See also Maxwell’s curl equations

Meshgrid() function, 20
Meshgrids, 19–23, 26, 30, 206, 211
Metamaterials

composition of, 294
defined, 294
effective refractive index, 295, 299
frequency sweep, 297–98
geometry of translational object, 294
left-handed, parameter retrieval for, 294–99
MATLAB code for, 297
Nicolson-Ross-Weir (NRW) method and, 295, 

298
parameter retrieval results, 298–99

Microstrip transmission lines, 66, 194–97
Multivariable finite-difference analysis, 92–94

N
Nicolson-Ross-Weir (NRW) method, 295, 298
Normalized complex propagation constant, 163, 

184, 196
Numerical boundary conditions, 81–82
Numerical differentiation, 80–81, 85
Numerical dispersion

about, 135
comparison, 137

concept, 136
H mode and, 138
relation, 138
scattering analysis and, 224–26
Yee grid and, 136

Numerical wave vectors, 136, 138

O
OIC directional coupler

block diagram of FDFD analysis of, 248
coupling length, 246
FDFD analysis, 246–52
grid calculation, 250
grid resolution, 249
grid strategy for, 247
input waveguide analysis, 250
MATLAB code, 247–48
simulation results, 252
three-dimensional, reducing to two 

dimensions, 246
Optical integrated circuit (OIC), 169–71
Organization, this book, xxi–xxii

P
Parameter sweeps

block diagrams of, 256
convergence studies and, 188
FDFD problems, identifying, 266–67
GMRFs and, 257
introduction to, 255
modifying FDFD for, 257–66
polarizer, 264

Pcolor() function, 27, 197, 252
Perfect electric conductor (PEC), 179
Perfectly matched layer (PML)

about, xix
absorbing boundary, 141–59
parameters, 141
size of, 228
terms, calculation of, 155–59
See also Stretched-coordinate PML (SCPML); 

Uniaxial PML (UPML)
Perfect magnetic conductor (PMC), 179
Periodic boundary conditions (PBCs)

concept, 112
derivative matrices, 85, 230
derivative matrices, three-dimensional FDFD, 

122–23
derivative matrices, two-dimensional FDFD, 

115–19
diagonal matrix and, 124
efficiency, 112
for electric fields, 114
finite-difference approximations with, 115
limitation of, 113
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for magnetic fields, 115
N-point grid and, 82
in photonic bands calculation, 202
relationship between derivative matrices, 

119–20
Periodic structures

as crossed grating, 280
double, reflection and transmission for, 

280–82
simulation of, 258–60
three-dimensional FDFD function for 

simulation of, 285–87
Permittivity

averaging, 307
complex, 36
effective, 195, 296–98
electric, 34
relative, 37, 193, 36

Phase constant, 65, 68, 190
Photonic bands

about, 199
analysis, summary of formulation, 312
block diagram of FDFD calculation of, 204
Brillouin zones (BZs) and, 199, 200
construction of, 200
convergence study, 209–10
FDFD in calculating, 199–213
irreducible BZs (IBZs) and, 199, 200–201, 

206–7, 210
isofrequency contours (IFCs) and, 199, 201, 

210–13
periodic boundary conditions and, 202
professional, 210
for rectangular lattices, 199–201
square lattice for, 205
structure, MATLAB code, 205–10
unit cells and, 199, 206, 209

Plane of incidence (POI), 49
Polarization

equation for, 51
surface plasmon (SPP), 161
TE, 49–52
TM, 49–52
types of, 47–48
wave, 46–48

Polarizer
extinction ratio, 263, 265
frequency response, 266
MATLAB program to analyze, 262–66
parameter sweep, 264
TE and TM definitions, 263

Polynomial coefficients, 73–74
Postdivision, 8
Poynting vector, 52
“PQ” form, of eigenvalue problem, 165

Preconditioning, 278
Predivision, 8
Principal axes, 38, 39
Principal values, 38
Propagation constant

complex, 65, 67, 193, 195
normalized complex, 163, 184, 196

Q
QAAQ equation, 218–20, 237, 245, 251, 302
QAAQ technique, 217

R
Rectangles

adding to grids, 16–17
building onto a grid, 18
centered, 18–19

Rectangular lattices, photonic bands for, 
199–201

Reflectance
about, 53
calculation of, 59, 226, 230
for doubly periodic structure, 280–82
GMRF, 290
overall, 56, 230
See also Transmittance

Refractive index, 44
Relative permittivity, 37, 193
Rib waveguides

about, 172
building onto Yee grid, 175
convergence study of grid resolution, 187
geometry and coordinate setup, 173
grid strategy for modeling, 176
MATLAB implementation of analysis, 172–79
See also Waveguides

Right circular polarization (RCP), 47–48
Right-hand rule, 46
Robustness, solver, 279
Rotating tensors, 41
Rotating vectors, 41
Rotation matrices, 39–40, 41

S
Sawtooth diffraction grating

characteristics of, 233–34
convergence study, 239
diffraction efficiency calculations, 240
FDFD analysis of, 233–39
grid optimization, 236
grid resolution parameters, 236
grid strategy for, 234
illustrated, 234
MATLAB code to simulate, 235

Scalability, of Maxwell’s equations, 68–69
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Scattered-field (SF)
masking matrix, calculating, 222–24
quantity, 217, 218
region, 223, 231

Scattering, at interface, 49–54
Scattering analysis

block diagram of FDFD for, 229
formulation and implementation, summary of, 

311
formulation of FDFD for, 215–17
implementation of FDFD method for, 228–52
incorporating sources and, 217–26
numerical dispersion and, 224–26
QAAQ technique and, 217–20
SF masking matrix calculation, 222–24
source field calculation, 220–22
two-dimensional, matrix wave equation for, 

215–17
Self-collimating photonic crystal

about, 239–40
FDFD analysis of, 239–46
grid calculation, 242–43
grid resolution, 243
grid strategy for, 240–41
lattice illustration, 241
lattice size, 242
MATLAB code, 241
simulation concept, 240
simulation results, 245
source field calculation, 244

Self-collimation, 239
Slab waveguide mode

animating, 185–87
second-order, single-frame of animation, 187
surface waves and, 188–89
visualization, 185

Slab waveguides
about, 63
analysis, summary of, 310
channel waveguide comparison, 64
eigenmodes, calculating, 182–83
E mode analysis of, 167–68, 185
geometry for, 166
grid strategy for, 182
guiding onto Yee grid, 182
H mode analysis of, 168, 186
MATLAB implementation of analysis, 179–85
mode calculation, 166–71
modes propagating in +x-direction, 169
modes propagating in +y-direction, 169
modes propagating in +z-direction, 170
in other orientations, formulation for, 168–69
See also Waveguides

Snell’s law of reflection, 51, 143
Source field, calculating, 220–22

Source wave vector, 226
Sparse() function, 224
Sparse matrix

adding and deleting elements from, 125
defined, 6
MATLAB and, 111

Spdiags() function, 84, 125
SPPs

about, 189
calculating, 188–92
calculation results, 192
convergence study, 192
geometry, 189
phase constant, 190
typical behavior of, 191
See also Surface waves

Staggered grids, 89–94
Stretched-coordinate PML (SCPML)

about, 141
absorbing boundary, 153–59
absorbing boundary, summary, 309
arrays, 155, 156
calcpml3d() function and, 155–59
derivation of, 153
equations, 154
implementation of, 155
matrix conditioning, 142, 155
Maxwell’s equations with, 270
three-dimensional FDFD, 269

Substrate medium, 63
Superstrate medium, 63
Surface plasmon polarization (SPP), 161
Surface waves

defined, 188
FDFD analysis, 191
slab waveguide modes and, 188–89
SPP calculation, 189–92

T
Telegrapher equations, 67
Text() function, 184
TF/SF interface, 220, 221, 222, 230, 232, 245
TF/SF technique, 215–17
Three-dimensional 2x grid, 134–35
Three-dimensional FDFD

about, 269
derivative matrices for, 120–23
finite-difference approximation of Maxwell’s 

curl equations, 270–73
formulation of FDFD for, 269–77
implementation of, 282–302
incorporating sources into, 277–78
interpolation matrices, 274
iterative solution for, 278–79
Maxwell’s equations in matrix form, 273–74
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SCPML, 269
standard sequence of simulations for, 282–85
three-dimensional matrix wave equation, 

275–77
UPML, 269

Three-dimensional grids
ellipsoid built onto, 27
grid parameters, 25
MATLAB codes, 25–26
visualization of data in, 29–30

Three-dimensional matrix wave equation, 
275–77

Total-field (TF)
finite-difference equations, 218
quantity, 217, 218, 220
region, 223
See also TF/SF interface

TO technique, 300
Transmission lines

analysis implementation, 192–97
coaxial, 66
defined, 63
equivalent circuit model for, 66–67
microstrip, 66, 194
normalized magnetic fields and, 193
parameters, 66–68
parameters, calculating, 195–96

Transmission plane, 258
Transmittance

about, 53
calculation of, 59, 226, 230
for doubly periodic structure, 280–82
GMRF, 290
See also Reflectance

Transverse electric (TE) polarization, 49–52
Transverse electromagnetic (TEM) mode, 63
Transverse magnetic (TM) polarization, 49–52
2x grid

about, 131–32
arrays, extracting tensor element arrays from, 

134
E and H modes, 133
simulated device and, 132
technique, 131–35
three-dimensional, 134–35
Yee grid extraction from, 132, 133

Two-dimensional FDFD
derivation of E mode equations (known 

frequency), 106
derivation of E mode equations (unknown 

frequency), 105
derivation of H mode equations (known 

frequency), 106–7
derivation of H mode equations (unknown 

frequency), 105–6

derivative matrices, Dirichlet boundary 
conditions, 108–11

derivative matrices, periodic boundary 
conditions, 115–19

derivative matrices for, 107–20
finite-difference equations for, 103–7
relationship between derivative matrices, 

119–20
Two-dimensional simulation, 54, 55–56

U
Uniaxial PML (UPML)

about, 141, 143
absorbing boundary, derivation of, 143–46
absorbing boundary, summary, 309
conductivities, 147–48
conductivity profiles, 148
implementation in MATLAB, 149–53
incorporating into Maxwell’s equations, 

146–47
parameters, 145–46
parameters, calculating, 147–49
size of, 149
tensor, 146
three-dimensional FDFD, 269
for two-dimensional simulations, 147

Unit cells, 199, 206, 209, 212
Unknowns, terms, 4

V
Vandermonde matrix, 74
Visualization

complex data, 31–32
data on grids, 27–29
importance of, xiii
slab waveguide mode, 185
source field fsrc for a guided mode, 251
techniques, 27–32
three-dimensional data, 29–30

Volume charge density, 35

W
Waveguides

analysis, summary of formulation and 
implementation, 310

channel, 63, 64, 162
defined, 62
FDFD analysis of, 171–92
modes and parameters, 63–66
rectangular metal, 161
rib, 172–79, 187
slab, 63, 64, 166–71
types of, 63

Wavelength sweep, 261
Wavenumber, 43–44
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Wave propagation
x-direction, 145
xy plane, 103, 205, 216
y-direction, 145
z-direction, 55, 205

Well-conditioned matrices, 278

Y
yeeder2d() function, 124–28, 237
yeeder3d() function, 128–31
Yee grids

building devices onto, best practices, 305–12
illustrated, 97
importance of, xiv

Maxwell’s equations and, xxi
metal square placement onto, 305
numerical advantages, 131
numerical dispersion caused by, 136
size of, 150
staggered layout on, 101, 132
summary of, 308
2x grid overlaid onto, 133

Yee grid scheme, 95–97, 99, 163

Z
Zero column vector, 6
Zero matrix, 6, 7, 124–25
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