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PREFACE TO THE THIRD EDITION

Since the publication of the Second Edition in 2007, Fundamentals of Photonics has
maintained its worldwide prominence as a self-contained, up-to-date, introductory-
level textbook that features a blend of theory and applications. It has been reprinted
dozens of times and been translated into German and Chinese, as well as Czech and
Japanese. The Third Edition incorporates many of the scientific and technological
developments in photonics that have taken place in the past decade and strives to be
cutting-edge.

Optics and Photonics

Before usage of the term photonics became commonplace at the time of the First
Edition in the early 1990s, the field was characterized by a collection of appella-
tions that were not always clearly delineated. Terms such as quantum electronics,
optoelectronics, electro-optics, and lightwave technology were widely used. Though
there was a lack of agreement about the precise meanings of these terms, there was
nevertheless a vague consensus regarding their usage. Most of these terms have since
receded from general use, although some have retained their presence in the titles of
technical journals and academic courses.

Now, more than 25 years later, the term Optics along with the term Photonics, as
well as their combination Optics & Photonics, have prevailed. The distinction between
optics and photonics remains somewhat fuzzy, however, and there is a degree of overlap
between the two arenas. Hence, there is some arbitrariness in the manner in which
the chapters of this book are allocated to its two volumes, Part I: Optics and Part II:
Photonics. From a broad perspective, the term Optics is taken to signify free-space and
guided-wave propagation, and to include topics such as interference, diffraction, imag-
ing, statistical optics, and photon optics. The term Photonics, in contrast, is understood
to include topics that rely on the interaction of light and matter, and is dedicated to
the study of devices and systems. As the miniaturization of components and systems
continues to progress and foster emerging technologies such as nanophotonics and
biophotonics, the importance of photonics continues to advance.

Printed and Electronic Versions
The Third Edition appears in four versions:

1. A printed version.

2. An eBook in the form of an ePDF file that mimics the printed version.

3. An eBook in the form of a standard ePUB.

4. An eBook in the form of an enhanced ePUB with animations for selected figures.

In its printed form, the text consists of two volumes, each of which contains the
Table of Contents and Index for both volumes along with the Appendices and List
of Symbols:

m Part I: Optics, contains the first thirteen chapters.
m Part II: Photonics, contains the remaining twelve chapters.

The material in the eBook versions is identical to that in the printed version except that
all 25 chapters reside in a single electronic file. The various eBooks enjoy the following
features:

= Hyperlinked table of contents at the beginning of the text.
Xi
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Hyperlinked table of contents as an optional sidebar.
Hyperlinked index.

Hyperlinked section titles, equations, and figures throughout.
Animations for selected figures in the enhanced ePUB.

Presentation

Exercises, examples, reading lists, and appendices. Each chapter of the Third
Edition contains exercises, problem sets, and an extensive reading list. Examples are in-
cluded throughout to emphasize the concepts governing applications of current interest.
Appendices summarize the properties of one- and two-dimensional Fourier transforms,
linear systems, and modes of linear systems. Important equations are highlighted by
boxes and labels to facilitate retrieval.

Symbols, notation, units, and conventions. We make use of the symbols, no-
tation, units, and conventions commonly used in the photonics literature. Because of
the broad spectrum of topics covered, different fonts are often used to delineate the
multiple meanings of various symbols; a list of symbols, units, abbreviations, and
acronyms follows the appendices. We adhere to the International System of Units
(ST units). This modern form of the metric system is based on the meter, kilogram,
second, ampere, kelvin, candela, and mole, and is coupled with a collection of prefixes
(specified on the inside back cover of the text) that indicate multiplication or division
by various powers of ten. However, the reader is cautioned that photonics in the service
of different areas of science can make use of different conventions and symbols. In
Chapter 2, for example, we write the complex wavefunction for a monochromatic
plane wave in a form commonly used in electrical engineering, which differs from that
used in physics. Another example arises in Chapter 6, where the definitions we use for
right (left) circularly polarized light are in accord with general usage in optics, but are
opposite those generally used in engineering. These distinctions are often highlighted
by in situ footnotes. Though the choice of a particular convention is manifested in the
form assumed by various equations, it does not of course affect the results.

Color coding of illustrations. The color code used in illustrations is summarized
in the chart presented below. Light beams and optical-field distributions are displayed
in red (except when light beams of multiple wavelengths are involved, as is often the
case in nonlinear optics). When optical fields are represented, white indicates negative
values but when intensity is portrayed, white indicates zero. Acoustic beams and fields
are similarly represented, but by with green rather than red. Glass and glass fibers are
depicted in light blue; darker shades represent larger refractive indices. Semiconductors
are cast in green, with various shades representing different doping levels. Metal and
mirrors are indicated as copper. Semiconductor energy-band diagrams are portrayed in
blue and gray whereas photonic bandgaps are illustrated in pink.

—_—
p n

I
Optical beam Glass 8 |

Semiconductor -
)} )))))))))) Energy levels
) Dielectric waveguide J
Optical wave
Metal R
x\)))))))))))>) E—— Photonic bandgap
Fiber Mirror
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Intended Audience
As with the previous editions, the Third Edition is meant to serve as:

= An introductory textbook for students of electrical engineering, applied physics,
physics, or optics at the senior or first-year graduate level.

m A self-contained work for self-study.

m A textbook suitable for use in programs of continuing professional development
offered by industry, universities, and professional societies.

The reader is assumed to have a background in engineering, physics, or optics, includ-
ing courses in modern physics, electricity and magnetism, and wave motion. Some
knowledge of linear systems and elementary quantum mechanics is helpful but not es-
sential. The intent is to provide an introduction to optics and photonics that emphasizes
the concepts that govern applications of current interest. The book should therefore
not be considered as a compendium encompassing all photonic devices and systems.
Indeed, some areas of photonics are not included at all, and many of the individual
chapters could easily have been expanded into free-standing monographs.

Organization

The Third Edition comprises 25 chapters compartmentalized into six divisions, as
depicted in the diagram below.

] Optics Wave Propagation \ j Lasers \j Photonic Devices \

1. Ray Optics 7. Photonic Crystals 14. Light and Matter 20. Acousto-Optics

2. Wave Optics 8. Metals & Metamaterials || 15. Laser Amplifiers 21. Electro-Optics

3. Beam Optics 9. Guided-Wave Optics 16. Lasers 22. Nonlinear Optics

4. Fourier Optics 10. Fiber Optics 17. Semiconductor Optics | 23. Ultrafast Optics

5. Electromagnetic Optics | 11. Resonator Optics 18. LEDs & Laser Diodes 24. Interconnects/Switches

6. Polarization Optics 12. Statistical Optics 19. Photodetectors 25. Fiber Communications
13. Photon Optics

\ Optoelectronics f\ Communications f

In recognition of the different levels of mathematical sophistication of the intended
audience, we have endeavored to present difficult concepts in two steps: at an introduc-
tory level that provides physical insight and motivation, followed by a more advanced
analysis. This approach is exemplified by the treatment in Chapter 21 (Electro-Optics),
in which the subject is first presented using scalar notation and then treated again using
tensor notation. Sections dealing with material of a more advanced nature are indicated
by asterisks and may be omitted if desired. Summaries are provided at points where
recapitulation is deemed useful because of the involved nature of the material.

The form of the book is modular so that it can be used by readers with differ-
ent needs; this also provides instructors an opportunity to select topics for different
courses. Essential material from one chapter is often briefly summarized in another
to make each chapter as self-contained as possible. At the beginning of Chapter 25
(Optical Fiber Communications), for example, relevant material from earlier chapters
describing optical fibers, light sources, optical amplifiers, photodetectors, and photonic
integrated circuits is briefly reviewed. This places important information about the
components of such systems at the disposal of the reader in advance of presenting
system-design and performance considerations.

Contents

A principal feature of the Third Edition is a new chapter entitled Metal and Meta-
material Optics, an area that has had a substantial and increasing impact on photonics.
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The new chapter comprises theory and applications for single- and double-negative
media, metal optics, plasmonics, metamaterial optics, and transformation optics.

All chapters have been thoroughly vetted and updated. A chapter-by-chapter com-
pilation of new material in the Third Edition is provided below.

Chapter 1 (Ray Optics). Ray-optics descriptions for optical components such as
biprisms, axicons, LED light collimators, and Fresnel lenses have been added.
The connection between characterizing an arbitrary paraxial optical system by its
ray-transfer matrix and its cardinal points has been established. A matrix-optics
analysis for imaging with an arbitrary paraxial optical system has been included.
Chapter 2 (Wave Optics). A wave-optics analysis of transmission through
biprisms and axicons has been added. A treatment of the Fresnel zone plate
from the perspective of interference has been introduced. An analysis of the
Michelson—Fabry—Perot (LIGO) interferometer used for the detection of gravita-
tional waves in the distant universe has been incorporated.

Chapter 3 (Beam Optics). An enhanced description of Laguerre—Gaussian beams
has been provided. The basic features of several additional optical beams have
been introduced: optical vortex, Ince—Gaussian, nondiffracting Bessel, Bessel—
Gaussian, and Airy.

Chapter 4 (Fourier Optics). An analysis of Fresnel diffraction from a periodic
aperture (Talbot effect) has been included. Nondiffracting waves and Bessel
beams have been introduced from a Fourier-optics perspective. A discussion of
computer-generated holography has been added.

Chapter 5 (Electromagnetic Optics). A new section on the dipole wave, the
basis of near-field optics, has been incorporated. A new section on scattering that
includes Rayleigh and Mie scattering, along with attenuation in a medium with
scatterers, has been added.

Chapter 6 (Polarization Optics). The material dealing with the dispersion relation
in anisotropic media has been reworked to simplify the presentation.

Chapter 7 (Photonic-Crystal Optics). The behavior of the dielectric-slab beam-
splitter has been elucidated. A discussion relating to fabrication methods for 3D
photonic crystals has been incorporated.

Chapter 8 (Metal and Metamaterial Optics). This new chapter, entitled Metal and
Metamaterial Optics, provides a venue for the examination of single- and double-
negative media, metal optics, plasmonics, metamaterial optics, and transformation
optics. Topics considered include evanescent waves, surface plasmon polaritons,
localized surface plasmons, nanoantennas, metasurfaces, subwavelength imaging,
and optical cloaking.

Chapter 9 (Guided-Wave Optics). A new section on waveguide arrays that details
the mutual coupling of multiple waveguides and introduces the notion of super-
modes has been inserted. A new section on plasmonic waveguides that includes
metal-insulator-metal and metal-slab waveguides, along with periodic metal—
dielectric arrays, has been incorporated.

Chapter 10 (Fiber Optics). A discussion of multicore fibers, fiber couplers,
and photonic lanterns has been added. A brief discussion of the applications
of photonic-crystal fibers has been provided. A new section on multimaterial
fibers, including conventional and hybrid mid-infrared fibers, specialty fibers,
multimaterial fibers, and multifunctional fibers, has been introduced.

Chapter 11 (Resonator Optics). A section on plasmonic resonators has been
added.

Chapter 12 (Statistical Optics). The sections on optical coherence tomography
and unpolarized light have been reorganized.

Chapter 13 (Photon Optics). A brief description of single-photon imaging has
been added. The discussion of quadrature-squeezed and photon-number-squeezed



PREFACE XV

light has been enhanced and examples of the generation and applications of these
forms of light have been provided. A section that describes two-photon light, en-
tangled photons, two-photon optics, and the generation and applications thereof,
has been incorporated. Examples of two-photon polarization, two-photon spatial
optics, and two-beam optics have been appended.

m Chapter 14 (Light and Matter). The title of this chapter was changed from Pho-
tons and Atoms to Light and Matter. Brief descriptions of the Zeeman effect, Stark
effect, and ionization energies have been added. The discussion of lanthanide-ion
manifolds has been enhanced. Descriptions of Doppler cooling, optical molasses,
optical tweezers, optical lattices, atom interferometry, and atom amplifiers have
been incorporated into the section on laser cooling, laser trapping, and atom
optics.

m Chapter 15 (Laser Amplifiers). Descriptions of quasi-three-level and in-band
pumping have been added. The sections on representative laser amplifiers, includ-
ing ruby, neodymium-doped glass, erbium-doped silica fiber, and Raman fiber
devices, have been enhanced.

m Chapter 16 (Lasers). Descriptions of tandem pumping, transition-ion-doped zinc-
chalcogenide lasers, silicon Raman lasers, and master-oscillator power-amplifiers
(MOPAs) have been added. Descriptions of inner-shell photopumping and X-ray
free-electron lasers have been incorporated. A new section on optical frequency
combs has been provided.

m Chapter 17 (Semiconductor Optics). The section on organic semiconductors has
been enhanced. A discussion of group-IV photonics, including graphene and 2D
materials such as transition-metal dichalcogenides, has been added. A brief dis-
cussion of quantum-dot single-photon emitters has been incorporated.

m Chapter 18 (LEDs and Laser Diodes). The title of this chapter was changed
from Semiconductor Photon Sources to LEDs and Laser Diodes. A new section
on the essentials of LED lighting has been incorporated. Brief discussions of
the following topics are now included: resonant-cavity LEDs, silicon-photonics
light sources, quantum-dot semiconductor amplifiers, external-cavity wavelength-
tunable laser diodes, broad-area laser diodes, and laser-diode bars and stacks.
A discussion of the semiconductor-laser linewidth-enhancement factor has been
added. A new section on nanolasers has been introduced.

m Chapter 19 (Photodetectors). The title of this chapter was changed from Semi-
conductor Photon Detectors to Photodetectors. Brief discussions of the following
topics have been added: organic, plasmonic, group-IV-based, and graphene-
enhanced photodetectors; edge vs. normal illumination; photon-trapping mi-
crostructures; SACM and superlattice APDs; multiplied dark current; and 1 / f
detector noise. New examples include multi-junction photovoltaic solar cells;
Ge-on-Si photodiodes; graphene-Si Schottky-barrier photodiodes; and SAM,
SACM, and staircase APDs. A new section on single-photon and photon-number-
resolving detectors details the operation of SPADs, SiPMs, and TESs.

m Chapter 20 (Acousto-Optics). The identical forms of the photoelastic matrix in
acousto-optics and the Kerr-effect matrix in electro-optics has been highlighted
for cubic isotropic media.

m Chapter 21 (Electro-Optics). New sections on passive- and active-matrix liquid-
crystal displays have been introduced and their operation has been elucidated.
The performance of active-matrix liquid-crystal displays (AMLCDs) has been
compared with that of active-matrix organic light-emitting displays (AMOLEDs).

m Chapter 22 (Nonlinear Optics). New material relating to guided-wave nonlinear
optics has been introduced. Quasi-phase matching in periodically poled integrated
optical waveguides, and the associated improvement in wave-mixing efficiency,
is now considered. The section pertaining to Raman gain has been enhanced.

m Chapter 23 (Ultrafast Optics). New examples have been incorporated that con-



XVi

PREFACE

sider chirped pulse amplification in a petawatt laser and the generation of high-
energy solitons in a photonic-crystal rod. A new section on high-harmonic gen-
eration and attosecond optics has been added. The section on pulse detection has
been reorganized.

Chapter 24 (Optical Interconnects and Switches). The role of optical intercon-
nects at the inter-board, inter-chip, and intrachip scale of computer systems is
delineated. All-optical switching now incorporates nonparametric and parametric
photonic switches that operate on the basis of manifold nonlinear-optical effects.
Photonic-crystal and plasmonic photonic switches are discussed. The treatment of
photonic logic gates now includes an analysis of embedded bistable systems and
examples of bistability in fiber-based-interferometric and microring laser systems.
Chapter 25 (Optical Fiber Communications). The material on fiber-optic compo-
nents has been updated and rewritten, and the role of photonic integrated circuits
is delineated. A new section on space-division multiplexing in multicore and
multimode fibers has been added. The section on coherent detection has been
expanded and now emphasizes digital coherent receivers with spectrally efficient
coding.

Representative Courses

The different chapters of the book may be combined in various ways for use in courses
of semester or quarter duration. Representative examples of such courses are presented
below. Some of these courses may be offered as part of a sequence. Other selections
may be made to suit the particular objectives of instructors and students.

Optics
1. Ray Optics 8. Metals & Metamaterials 14. Light and Matter 20. Acousto-Optics
2. Wave Optics 9. Guided-Wave Optics 15. Laser Amplifiers 21. Electro-Optics
3. Beam Optics 10. Fiber Optics 16. Lasers 22. Nonlinear Optics
4. Fourier Optics 11. Resonator Optics 17. Semiconductor Optics 23. Ultrafast Optics
5. Electromagnetic Optics 12. Statistical Optics 18. LEDs & Laser Diodes 24. Interconnects/Switches
6. Polarization Optics 13. Photon Optics 19. Photodetectors 25. Fiber Communications
7. Photonic Crystals

The first six chapters of the book are suitable for an introductory course on Optics. These may
be supplemented by Chapter 12 (Statistical Optics) to introduce incoherent and partially coherent
light, and by Chapter 13 (Photon Optics) to introduce the photon. The introductory sections of
Chapters 9 and 10 (Guided-Wave Optics and Fiber Optics, respectively) may be added to cover some

applications.
Guided-Wave Optics

1. Ray Optics 8. Metals & Metamaterials 14. Light and Matter 20. Acousto-Optics

2. Wave Optics 9. Guided-Wave Optics 15. Laser Amplifiers 21. Electro-Optics

3. Beam Optics 10. Fiber Optics 16. Lasers 22. Nonlinear Optics

4. Fourier Optics 11. Resonator Optics 17. Semiconductor Optics 23. Ultrafast Optics

5. Electromagnetic Optics 12. Statistical Optics 18. LEDs & Laser Diodes 24. Interconnects/Switches
6. Polarization Optics 13. Photon Optics 19. Photodetectors 25. Fiber Communications

7. Photonic Crystals

A course on Guided-Wave Optics might begin with an introduction to wave propagation in layered
and periodic media in Chapter 7 (Photonic-Crystal Optics), and could include Chapter 8 (Metal and
Metamaterial Optics). This would be followed by Chapters 9, 10, and 11 (Guided-Wave Optics,
Fiber Optics, and Resonator Optics, respectively). The introductory sections of Chapters 21 and 24
(Electro-Optics and Optical Interconnects and Switches) would provide additional material.
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Lasers
1. Ray Optics 8. Metals & Metamaterials 14. Light and Matter 20. Acousto-Optics
2. Wave Optics 9. Guided-Wave Optics 15. Laser Amplifiers 21. Electro-Optics
3. Beam Optics 10. Fiber Optics 16. Lasers 22. Nonlinear Optics
4. Fourier Optics 11. Resonator Optics 17. Semiconductor Optics 23. Ultrafast Optics
5. Electromagnetic Optics 12. Statistical Optics 18. LEDs & Laser Diodes 24. Interconnects/Switches
6. Polarization Optics 13. Photon Optics 19. Photodetectors 25. Fiber Communications

7. Photonic Crystals

A course on Lasers could begin with Beam Optics and Resonator Optics (Chapters 3 and 11, respec-
tively), followed by Light and Matter (Chapter 14). The initial portion of Photon Optics (Chapter 13)
could be assigned. The heart of the course would be the material contained in Laser Amplifiers and
Lasers (Chapters 15 and 16, respectively). The course might also include material drawn from Semi-
conductor Optics and LEDs and Laser Diodes (Chapters 17 and 18, respectively). An introduction to
femtosecond lasers could be extracted from some sections of Ultrafast Optics (Chapter 23).

Optoelectronics

1. Ray Optics 8. Metals & Metamaterials 14. Light and Matter 20. Acousto-Optics

2. Wave Optics 9. Guided-Wave Optics 15. Laser Amplifiers 21. Electro-Optics

3. Beam Optics 10. Fiber Optics 16. Lasers 22. Nonlinear Optics

4. Fourier Optics 11. Resonator Optics 17. Semiconductor Optics 23. Ultrafast Optics

5. Electromagnetic Optics 12. Statistical Optics 18. LEDs & Laser Diodes 24. Interconnects/Switches
6. Polarization Optics 13. Photon Optics 19. Photodetectors 25. Fiber Communications
7. Photonic Crystals

The chapters on Semiconductor Optics, LEDs and Laser Diodes, and Photodetectors (Chapters 17,
18, and 19, respectively) form a suitable basis for a course on Optoelectronics. This material would be
supplemented with optics background from earlier chapters and could include topics such as liquid-
crystal devices (Secs. 6.5 and 21.3), electroabsorption modulators (Sec. 21.5), and an introduction to
photonic devices used for switching and/or communications (Chapters 24 and 25, respectively).

Photonic Devices

1. Ray Optics 8. Metals & Metamaterials 14. Light and Matter 20. Acousto-Optics

2. Wave Optics 9. Guided-Wave Optics 15. Laser Amplifiers 21. Electro-Optics

3. Beam Optics 10. Fiber Optics 16. Lasers 22. Nonlinear Optics

4. Fourier Optics 11. Resonator Optics 17. Semiconductor Optics 23. Ultrafast Optics

5. Electromagnetic Optics 12. Statistical Optics 18. LEDs & Laser Diodes 24. Interconnects/Switches
6. Polarization Optics 13. Photon Optics 19. Photodetectors 25. Fiber Communications
7. Photonic Crystals

Photonic Devices is a course that would consider the devices used in Acousto-Optics, Electro-Optics,
and Nonlinear Optics (Chapters 20, 21, and 22, respectively). It might also include devices used in
optical routing and switching, as discussed in Optical Interconnects and Switches (Chapter 24).

Nonlinear & Ultrafast Optics

1. Ray Optics 8. Metals & Metamaterials 14. Light and Matter 20. Acousto-Optics

2. Wave Optics 9. Guided-Wave Optics 15. Laser Amplifiers 21. Electro-Optics

3. Beam Optics 10. Fiber Optics 16. Lasers 22. Nonlinear Optics

4. Fourier Optics 11. Resonator Optics 17. Semiconductor Optics 23. Ultrafast Optics

5. Electromagnetic Optics 12. Statistical Optics 18. LEDs & Laser Diodes 24. Interconnects/Switches
6. Polarization Optics 13. Photon Optics 19. Photodetectors 25. Fiber Communications
7. Photonic Crystals

The material contained in Chapters 21-23 (Electro-Optics, Nonlinear Optics, and Ultrafast Optics,
respectively) is suitable for an in-depth course on Nonlinear and Ultrafast Optics. These chapters
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could be supplemented by the material pertaining to electro-optic and all-optical switching in Chap-
ter 24 (Optical Interconnects and Switches).

Fiber-Optic Communications

1. Ray Optics 8. Metals & Metamaterials 14. Light and Matter 20. Acousto-Optics

2. Wave Optics 9. Guided-Wave Optics 15. Laser Amplifiers 21. Electro-Optics

3. Beam Optics 10. Fiber Optics 16. Lasers 22. Nonlinear Optics

4. Fourier Optics 11. Resonator Optics 17. Semiconductor Optics 23. Ultrafast Optics

5. Electromagnetic Optics 12. Statistical Optics 18. LEDs & Laser Diodes 24. Interconnects/Switches
6. Polarization Optics 13. Photon Optics 19. Photodetectors 25. Fiber Communications
7. Photonic Crystals

The heart of a course on Fiber-Optic Communications would be the material contained in Chap-
ter 25 (Optical Fiber Communications). Background for this course would comprise material drawn
from Chapters 9, 10, 18, and 19 (Guided-Wave Optics, Fiber Optics, LEDs and Laser Diodes, and
Photodetectors, respectively), along with material contained in Secs. 15.3C and 15.3D (doped-fiber
and Raman fiber amplifiers, respectively). If fiber-optic networks were to be emphasized, Sec. 24.3
(photonic switches) would be a valuable adjunct.

Optical Information Processing

1. Ray Optics 8. Metals & Metamaterials 14. Light and Matter 20. Acousto-Optics

2. Wave Optics 9. Guided-Wave Optics 15. Laser Amplifiers 21. Electro-Optics

3. Beam Optics 10. Fiber Optics 16. Lasers 22. Nonlinear Optics

4. Fourier Optics 11. Resonator Optics 17. Semiconductor Optics 23. Ultrafast Optics

5. Electromagnetic Optics 12. Statistical Optics 18. LEDs & Laser Diodes 24. Interconnects/Switches
6. Polarization Optics 13. Photon Optics 19. Photodetectors 25. Fiber Communications
7. Photonic Crystals

Background material for a course on Optical Information Processing would be drawn from Wave
Optics and Beam Optics (Chapters 2 and 3, respectively). The course could cover coherent image for-
mation and processing from Fourier Optics (Chapter 4) along with incoherent and partially coherent
imaging from Statistical Optics (Chapter 12). The focus could then shift to devices used for analog
data processing, such as those considered in Acousto-Optics (Chapter 20). The course could then
finish with material on switches and gates used for digital data processing, such as those considered
in Optical Interconnects and Switches (Chapter 24).
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PREFACE TO THE SECOND EDITION

Since the publication of the First Edition in 1991, Fundamentals of Photonics has
been reprinted some 20 times, translated into Czech and Japanese, and used worldwide
as a textbook and reference. During this period, major developments in photonics
have continued apace, and have enabled technologies such as telecommunications
and applications in industry and medicine. The Second Edition reports some of these
developments, while maintaining the size of this single-volume tome within practical
limits.

In its new organization, Fundamentals of Photonics continues to serve as a self-
contained and up-to-date introductory-level textbook, featuring a logical blend of
theory and applications. Many readers of the First Edition have been pleased with its
abundant and well-illustrated figures. This feature has been enhanced in the Second
Edition by the introduction of full color throughout the book, offering improved clarity
and readability.

While each of the 22 chapters of the First Edition has been thoroughly updated, the
principal feature of the Second Edition is the addition of two new chapters: one on
photonic-crystal optics and another on ultrafast optics. These deal with developments
that have had a substantial and growing impact on photonics over the past decade.

The new chapter on photonic-crystal optics provides a foundation for understand-
ing the optics of layered media, including Bragg gratings, with the help of a matrix
approach. Propagation of light in one-dimensional periodic media is examined using
Bloch modes with matrix and Fourier methods. The concept of the photonic bandgap
is introduced. Light propagation in two- and three-dimensional photonic crystals, and
the associated dispersion relations and bandgap structures, are developed. Sections on
photonic-crystal waveguides, holey fibers, and photonic-crystal resonators have also
been added at appropriate locations in other chapters.

The new chapter on ultrafast optics contains sections on picosecond and femto-
second optical pulses and their characterization, shaping, and compression, as well as
their propagation in optical fibers, in the domain of linear optics. Sections on ultrafast
nonlinear optics include pulsed parametric interactions and optical solitons. Methods
for the detection of ultrafast optical pulses using available detectors, which are rela-
tively slow, are reviewed.

In addition to these two new chapters, the chapter on optical interconnects and
switches has been completely rewritten and supplemented with topics such as wave-
length and time routing and switching, FBGs, WGRs, SOAs, TOADs, and packet
switches. The chapter on optical fiber communications has also been significantly
updated and supplemented with material on WDM networks; it now offers concise
descriptions of topics such as dispersion compensation and management, optical am-
plifiers, and soliton optical communications.

Continuing advances in device-fabrication technology have stimulated the emer-
gence of nanophotonics, which deals with optical processes that take place over
subwavelength (nanometer) spatial scales. Nanophotonic devices and systems include
quantum-confined structures, such as quantum dots, nanoparticles, and nanoscale
periodic structures used to synthesize metamaterials with exotic optical properties
such as negative refractive index. They also include configurations in which light (or
its interaction with matter) is confined to nanometer-size (rather than micrometer-
size) regions near boundaries, as in surface plasmon optics. Evanescent fields, such
as those produced at a surface where total internal reflection occurs, also exhibit such

XX
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confinement. Evanescent fields are present in the immediate vicinity of subwavelength-
size apertures, such as the open tip of a tapered optical fiber. Their use allows imaging
with resolution beyond the diffraction limit and forms the basis of near-field optics.
Many of these emerging areas are described at suitable locations in the Second Edition.

New sections have been added in the process of updating the various chapters. New
topics introduced in the early chapters include: Laguerre-Gaussian beams; near-field
imaging; the Sellmeier equation; fast and slow light; optics of conductive media and
plasmonics; doubly negative metamaterials; the Poincaré sphere and Stokes parame-
ters; polarization mode dispersion; whispering-gallery modes; microresonators; optical
coherence tomography; and photon orbital angular momentum.

In the chapters on laser optics, new topics include: rare-earth and Raman fiber
amplifiers and lasers; EUV, X-ray, and free-electron lasers; and chemical and random
lasers. In the area of optoelectronics, new topics include: gallium nitride-based struc-
tures and devices; superluminescent diodes; organic and white-light LEDs; quantum-
confined lasers; quantum cascade lasers; microcavity lasers; photonic-crystal lasers;
array detectors; low-noise APDs; SPADs; and QWIPs.

The chapter on nonlinear optics has been supplemented with material on parametric-
interaction tuning curves; quasi-phase-matching devices; two-wave mixing and cross-
phase modulation; THz generation; and other nonlinear optical phenomena associated
with narrow optical pulses, including chirp pulse amplification and supercontinuum
light generation. The chapter on electro-optics now includes a discussion of electroab-
sorption modulators.

Appendix C on modes of linear systems has been expanded and now offers an
overview of the concept of modes as they appear in numerous locations within the
book. Finally, additional exercises and problems have been provided, and these are
now numbered disjointly to avoid confusion.
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PREFACE TO THE FIRST EDITION

Optics is an old and venerable subject involving the generation, propagation, and de-
tection of light. Three major developments, which have been achieved in the last thirty
years, are responsible for the rejuvenation of optics and for its increasing importance
in modern technology: the invention of the laser, the fabrication of low-loss optical
fibers, and the introduction of semiconductor optical devices. As a result of these de-
velopments, new disciplines have emerged and new terms describing these disciplines
have come into use: electro-optics, optoelectronics, quantum electronics, quantum
optics, and lightwave technology. Although there is a lack of complete agreement
about the precise usages of these terms, there is a general consensus regarding their
meanings.

Photonics

Electro-optics is generally reserved for optical devices in which electrical effects play a
role (lasers, and electro-optic modulators and switches, for example). Oproelectronics,
on the other hand, typically refers to devices and systems that are essentially electronic
in nature but involve light (examples are light-emitting diodes, liquid-crystal display
devices, and array photodetectors). The term quantum electronics is used in connection
with devices and systems that rely principally on the interaction of light with matter
(lasers and nonlinear optical devices used for optical amplification and wave mixing
serve as examples). Studies of the quantum and coherence properties of light lie within
the realm of quantum optics. The term lightwave technology has been used to describe
devices and systems that are used in optical communications and optical signal pro-
cessing.

In recent years, the term photonics has come into use. This term, which was coined
in analogy with electronics, reflects the growing tie between optics and electronics
forged by the increasing role that semiconductor materials and devices play in optical
systems. Electronics involves the control of electric-charge flow (in vacuum or in
matter); photonics involves the control of photons (in free space or in matter). The
two disciplines clearly overlap since electrons often control the flow of photons and,
conversely, photons control the flow of electrons. The term photonics also reflects the
importance of the photon nature of light in describing the operation of many optical
devices.

Scope

This book provides an introduction to the fundamentals of photonics. The term pho-
tonics is used broadly to encompass all of the aforementioned areas, including the
following:

m The generation of coherent light by lasers, and incoherent light by luminescence
sources such as light-emitting diodes.

m The transmission of light in free space, through conventional optical components
such as lenses, apertures, and imaging systems, and through waveguides such as
optical fibers.

m The modulation, switching, and scanning of light by the use of electrically, acous-
tically, or optically controlled devices.

m The amplification and frequency conversion of light by the use of wave interac-
tions in nonlinear materials.

m The detection of light.

XXiii
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These areas have found ever-increasing applications in optical communications, signal
processing, computing, sensing, display, printing, and energy transport.

Approach and Presentation

The underpinnings of photonics are provided in a number of chapters that offer concise
introductions to:

m The four theories of light (each successively more advanced than the preceding):
ray optics, wave optics, electromagnetic optics, and photon optics.

m The theory of interaction of light with matter.

m The theory of semiconductor materials and their optical properties.

These chapters serve as basic building blocks that are used in other chapters to describe
the generation of light (by lasers and light-emitting diodes); the transmission of light
(by optical beams, diffraction, imaging, optical waveguides, and optical fibers); the
modulation and switching of light (by the use of electro-optic, acousto-optic, and
nonlinear-optic devices); and the detection of light (by means of photodetectors). Many
applications and examples of real systems are provided so that the book is a blend
theory and practice. The final chapter is devoted to the study of fiber-optic communica-
tions, which provides an especially rich example in which the generation, transmission,
modulation, and detection of light are all part of a single photonic system used for the
transmission of information.

The theories of light are presented at progressively increasing levels of difficulty.
Thus light is described first as rays, then scalar waves, then electromagnetic waves,
and finally, photons. Each of these descriptions has its domain of applicability. Our
approach is to draw from the simplest theory that adequately describes the phenomenon
or intended application. Ray optics is therefore used to describe imaging systems and
the confinement of light in waveguides and optical resonators. Scalar wave theory
provides a description of optical beams, which are essential for the understanding of
lasers, and of Fourier optics, which is useful for describing coherent optical systems
and holography. Electromagnetic theory provides the basis for the polarization and
dispersion of light, and the optics of guided waves, fibers, and resonators. Photon optics
serves to describe the interactions of light with matter, explaining such processes as
light generation and detection, and light mixing in nonlinear media.

Intended Audience
Fundamentals of Photonics is meant to serve as:

= An introductory textbook for students in electrical engineering or applied physics
at the senior or first-year graduate level.

m A self-contained work for self-study.

m A text for programs of continuing professional development offered by industry,
universities, and professional societies.

The reader is assumed to have a background in engineering or applied physics,
including courses in modern physics, electricity and magnetism, and wave motion.
Some knowledge of linear systems and elementary quantum mechanics is helpful
but not essential. Our intent has been to provide an introduction to photonics that
emphasizes the concepts governing applications of current interest. The book should,
therefore, not be considered as a compendium that encompasses all photonic devices
and systems. Indeed, some areas of photonics are not included at all, and many of the
individual chapters could easily have been expanded into separate monographs.
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Problems, Reading Lists, and Appendices

A set of problems is provided at the end of each chapter. Problems are numbered
in accordance with the chapter sections to which they apply. Quite often, problems
deal with ideas or applications not mentioned in the text, analytical derivations, and
numerical computations designed to illustrate the magnitudes of important quantities.
Problems marked with asterisks are of a more advanced nature. A number of exer-
cises also appear within the text of each chapter to help the reader develop a better
understanding of (or to introduce an extension of) the material.

Appendices summarize the properties of one- and two-dimensional Fourier trans-
forms, linear-systems theory, and modes of linear systems (which are important in
polarization devices, optical waveguides, and resonators); these are called upon at
appropriate points throughout the book. Each chapter ends with a reading list that
includes a selection of important books, review articles, and a few classic papers of
special significance.
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Light can be described as an electromagnetic wave phenomenon governed by the
same theoretical principles that govern all other forms of electromagnetic radiation,
such as radio waves and X-rays. This conception of light is called electromagnetic
optics. Electromagnetic radiation propagates in the form of two mutually coupled
vector waves, an electric-field wave and a magnetic-field wave. Nevertheless, it is
possible to describe many optical phenomena using a simplified scalar wave theory
in which light is described by a single scalar wavefunction. This approximate way of
treating light is called scalar wave optics, or simply wave optics.

When light waves propagate through and around objects whose dimensions are
much greater than the wavelength of the light, the wave nature is not readily discerned
and the behavior of light can be adequately described by rays obeying a set of geomet-
rical rules. This model of light is called ray optics. From a mathematical perspective,
ray optics is the limit of wave optics when the wavelength is infinitesimally small.

Thus, electromagnetic optics encompasses wave optics, which in turn encompasses
ray optics, as illustrated in Fig. 1.0-1. Ray optics and wave optics are approximate
theories that derive validity from their successes in producing results that approximate
those based on the more rigorous electromagnetic theory.

—— Quantum Optics Figure 1.0-1 The theory of quantum optics
) provides an explanation for virtually all optical

Electromagnetic phenomena. The electromagnetic theory of light
Optics (electromagnetic optics) provides the most com-

Wave Optics plete treatment of light within the confines of clas-

sical optics. Wave optics is a scalar approximation
of electromagnetic optics. Ray optics is the limit
of wave optics when the wavelength is very short.

Ray Optics

Although electromagnetic optics provides the most complete treatment of light
within the confines of classical optics, certain optical phenomena are characteristically
quantum mechanical in nature and cannot be explained classically. These nonclassical
phenomena are described by a quantum version of electromagnetic theory known as
quantum electrodynamics. For optical phenomena, this theory is also referred to as
quantum optics.

Historically, the theories of optics developed roughly in the following order: (1) ray
optics — (2) wave optics — (3) electromagnetic optics — (4) quantum optics. These
models are progressively more complex and sophisticated, and were developed suc-
cessively to provide explanations for the outcomes of increasingly subtle and precise
optical experiments. The optimal choice of a model is the simplest one that satisfacto-
rily describes a particular phenomenon, but it is sometimes difficult to know a priori
which model achieves this. Experience is often the best guide.

For pedagogical reasons, the initial chapters of this book follow the historical order
indicated above. Each model of light begins with a set of postulates (provided without
proof), from which a large body of results are generated. The postulates of each model
are shown to arise as special cases of the next-higher-level model. In this chapter we
begin with ray optics.
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This Chapter

Ray optics is the simplest theory of light. Light is described by rays that travel in
different optical media in accordance with a set of geometrical rules. Ray optics is
therefore also called geometrical optics. Ray optics is an approximate theory. Al-
though it adequately describes most of our daily experiences with light, there are many
phenomena that ray optics cannot adequately construe (as amply attested to by the
remaining chapters of this book).

Ray optics is concerned with the locations and directions of light rays. It is therefore
useful in studying image formation — the collection of rays from each point of an
object and their redirection by an optical component onto a corresponding point of an
image. Ray optics permits us to determine the conditions under which light is guided
within a given medium, such as a glass fiber. In isotropic media, optical rays point in
the direction of the flow of optical energy. Ray bundles can be constructed in which the
density of rays is proportional to the density of light energy. When light is generated
isotropically from a point source, for example, the energy associated with the rays in a
given cone is proportional to the solid angle of the cone. Rays may be traced through
an optical system to determine the optical energy crossing a given area.

This chapter begins with a set of postulates from which we derive the simple rules
that govern the propagation of light rays through optical media. In Sec. 1.2 these
rules are applied to simple optical components, such as mirrors and planar or spher-
ical boundaries between different optical media. Ray propagation in inhomogeneous
(graded-index) optical media is examined in Sec. 1.3. Graded-index optics is the basis
of a technology that has become an important part of modern optics.

Optical components are often centered about an optical axis, with respect to which
the rays travel at small inclinations. Such rays are called paraxial rays and the as-
sumption that the rays have this property is the basis of paraxial optics. The change in
the position and inclination of a paraxial ray as it travels through an optical system can
be efficiently described by the use of a 2 x 2-matrix algebra. Section 1.4 is devoted to
this algebraic tool, which is known as matrix optics.

1.1 POSTULATES OF RAY OPTICS

Postulates of Ray Optics

m Light travels in the form of rays. The rays are emitted by light sources and can
be observed when they reach an optical detector.

® An optical medium is characterized by a quantity n > 1, called the refractive
index. The refractive index n = ¢,/c where ¢, is the speed of light in free space
and c is the speed of light in the medium. Therefore, the time taken by light to
travel a distance d is d/c = nd/c,. It is proportional to the product nd, which
is known as the optical pathlength.

» In an inhomogeneous medium the refractive index n(r) is a function of the
position r = (x,y, z). The optical pathlength along a given path between two
points A and B is therefore

B
Optical pathlength = / n(r) ds, (1.1-1)
A

where ds is the differential element of length along the path. The time taken by
light to travel from A to B is proportional to the optical pathlength.
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= Fermat’s Principle. Optical rays traveling between two points, A and B, fol-
low a path such that the time of travel (or the optical pathlength) between the
two points is an extremum relative to neighboring paths. This is expressed
mathematically as

B
(5/ n(r)ds =0, (1.1-2)
A

where the symbol §, which is read “the variation of,” signifies that the optical
pathlength is either minimized or maximized, or is a point of inflection. It is,
however, usually a minimum, in which case:

Light rays travel along the path of least time.

Sometimes the minimum time is shared by more than one path, which are then
all followed simultaneously by the rays. An example in which the pathlength is
maximized is provided in Prob. 1.1-2.

In this chapter we use the postulates of ray optics to determine the rules governing
the propagation of light rays, their reflection and refraction at the boundaries between
different media, and their transmission through various optical components. A wealth
of results applicable to numerous optical systems are obtained without the need for any
other assumptions or rules regarding the nature of light.

Propagation in a Homogeneous Medium

In a homogeneous medium the refractive index is the same everywhere, and so is the
speed of light. The path of minimum time, required by Fermat’s principle, is therefore
also the path of minimum distance. The principle of the path of minimum distance
is known as Hero’s principle. The path of minimum distance between two points is
a straight line so that in a homogeneous medium, light rays travel in straight lines
(Fig. 1.1-1).

P

Figure 1.1-1 Light rays travel in straight lines. Shadows are perfect projections of stops.
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Reflection from a Mirror

Mirrors are made of certain highly polished metallic surfaces, or metallic or dielectric
films deposited on a substrate such as glass. Light reflects from mirrors in accordance
with the law of reflection:

The reflected ray lies in the plane of incidence; the angle of reflection equals the
angle of incidence.

The plane of incidence is the plane formed by the incident ray and the normal to the
mirror at the point of incidence. The angles of incidence and reflection, 6 and ¢, are
defined in Fig. 1.1-2(a). To prove the law of reflection we simply use Hero’s principle.
Examine a ray that travels from point A to point C' after reflection from the planar
mirror in Fig. 1.1-2(b). According to Hero’s principle, for a mirror of infinitesimal
thickness, the distance AB + BC must be minimum. If C” is a mirror image of C, then
BC = BC(C', so that AB + BC’ must be a minimum. This occurs when ABC’ is a
straight line, i.e., when B coincides with B’ so that § = ¢’.

Plane of

incidence \

Mirror

Reflected
ray

Normal
to mirror

Incident
ray

(@) (b)

Figure 1.1-2 (a) Reflection from the surface of a curved mirror. (b) Geometrical construction to
prove the law of reflection.

Reflection and Refraction at the Boundary Between Two Media

At the boundary between two media of refractive indices n; and n9 an incident ray is
split into two — a reflected ray and a refracted (or transmitted) ray (Fig. 1.1-3). The
reflected ray obeys the law of reflection. The refracted ray obeys the law of refraction:

The refracted ray lies in the plane of incidence; the angle of refraction 05 is
related to the angle of incidence 6, by Snell’s law,

ny Sin91 =Ny sin92. (11—3)
Snell’s Law

The proportion in which the light is reflected and refracted is not described by ray
optics.
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Reflected
ray

/
!

!
'Refracted

Normal to 7
boundary | ray
]
’1 1
. I Plane of
Incident incidence

ray ny
n

Figure 1.1-3 Reflection and refraction at the boundary between two media.

|
EXERCISE 1.1-1

Proof of Snell's Law. The proof of Snell’s law is an exercise in the application of Fermat’s
principle. Referring to Fig. 1.1-4, we seek to minimize the optical pathlength n; AB+ns BC between
points A and C. We therefore have the following optimization problem: Minimize n,d; sec; +
nydsy sec 6o with respect to the angles ; and 6, subject to the condition d, tan 6, + ds tanfy, = d.
Show that the solution of this constrained minimization problem yields Snell’s law.

ny | m

B Figure 1.1-4 Construction to prove Snell’s law.

The three simple rules — propagation in straight lines and the laws of reflection and
refraction — are applied in Sec. 1.2 to several geometrical configurations of mirrors
and transparent optical components, without further recourse to Fermat’s principle.

1.2 SIMPLE OPTICAL COMPONENTS

A. Mirrors

Planar Mirrors

A planar mirror reflects the rays originating from a point P; such that the reflected rays
appear to originate from a point P, behind the mirror, called the image (Fig. 1.2-1).

Paraboloidal Mirrors

The surface of a paraboloidal mirror is a reflective paraboloid of revolution. It has the
useful property of focusing all incident rays parallel to its axis to a single point, called
the focus or focal point. The distance PF' = f defined in Fig. 1.2-2 is known as
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the focal length. Paraboloidal mirrors are often used as light-collecting elements in
telescopes. They are also used to render parallel the rays from a point source of light,
such as a flashlight bulb or a light-emitting diode, located at the focus. When used in
this manner, the device is known as a collimator.

Mirror
Mirror
2\
"3
Py Py -

Figure 1.2-1 Reflection of light from a planar ~ Figure 1.2-2 Focusing of light by a parabo-
MIrror. loidal mirror.

Elliptical Mirrors

An elliptical mirror reflects all the rays emitted from one of its two foci, e.g., P;, and
images them onto the other focus, P (Fig. 1.2-3). In accordance with Hero’s principle,
the distances traveled by the light from P, to P, along any of the paths are equal.

- Figure 1.2-3 Reflection from an elliptical
P Py mirror.

Spherical Mirrors

A spherical mirror is easier to fabricate than a paraboloidal mirror or an elliptical
mirror. However, it has neither the focusing property of the paraboloidal mirror nor the
imaging property of the elliptical mirror. As illustrated in Fig. 1.2-4, parallel rays meet
the axis at different points; their envelope (the dashed curve) is called the caustic curve.
Nevertheless, parallel rays close to the axis are approximately focused onto a single
point F' at distance (—R)/2 from the mirror center C. By convention, the radius of
curvature R is negative for concave mirrors and positive for convex mirrors.

Paraxial Rays Reflected from Spherical Mirrors

Rays that make small angles (such that sinf ~ ) with the mirror’s axis are called
paraxial rays. In the paraxial approximation, where only paraxial rays are consid-
ered, a spherical mirror has a focusing property like that of the paraboloidal mirror and
an imaging property like that of the elliptical mirror. The body of rules that results from
this approximation forms paraxial optics, also called first-order optics or Gaussian
optics.
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SR - Spherical e -
e IR mirror .
7 A ,'I
’ //\ !
| C%F/ | C
S~ . .- s - _ _R
- cry — PGP
Figure 1.2-4 Reflection of parallel rays Figure 1.2-5 A spherical mirror approxi-
from a concave spherical mirror. mates a paraboloidal mirror for paraxial rays.

A spherical mirror of radius R therefore acts like a paraboloidal mirror of focal
length f = R/2. This is, in fact, plausible since at points near the axis, a parabola
can be approximated by a circle with radius equal to the parabola’s radius of curvature
(Fig. 1.2-5).

All paraxial rays originating from each point on the axis of a spherical mirror are
reflected and focused onto a single corresponding point on the axis. This can be seen
(Fig. 1.2-6) by examining a ray emitted at an angle ¢; from a point P; at a distance z;
away from a concave mirror of radius R, and reflecting at angle (—65) to meet the axis
at a point P, that is a distance z5 away from the mirror. The angle 5 is negative since
the ray is traveling downward. Since the three angles of a triangle add to 180°, we have
01 = 0o — 6 and (—0;) = Oy + 0, so that (—6s) + 61 = 26,. If 6, is sufficiently small,
the approximation tan 6y ~ 6, may be used, so that 6y ~ y/(—R), from which

2
(—02) + 0, ~ 7_@;{) : (1.2-1)

—~

where y is the height of the point at which the reflection occurs. Recall that R is
negative since the mirror is concave. Similarly, if 6; and 6y are small, 6; ~ y/z
and (—62) = y/z2, so that (1.2-1) yields y/z1 + y/z2 =~ 2y/(—R), whereupon

1 1 2
— "t — . 1.2-2
Z1 Z9 (—R) ( )

2N

3 R & (-RN 0

Figure 1.2-6 Reflection of paraxial rays from a concave spherical mirror of radius R < 0.
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This relation holds regardless of y (i.e., regardless of #;) as long as the approxima-
tion is valid. This means that all paraxial rays originating from point P; arrive at Ps.
The distances z; and 29 are measured in a coordinate system in which the z axis points
to the left. Points of negative z therefore lie to the right of the mirror.

According to (1.2-2), rays that are emitted from a point very far out on the z axis
(21 = 00) are focused to a point F at a distance zo = (—R)/2. This means that within
the paraxial approximation, all rays coming from infinity (parallel to the axis of the
mirror) are focused to a point at a distance f from the mirror, which is known as its
focal length:

f=—2, (1.2-3)
Focal Length
Spherical Mirror

Equation (1.2-2) is usually written in the form

11
—+ = (1.2-4)

1
21 22 f Imaging Equation
(Paraxial Rays)

which is known as the imaging equation. Both the incident and the reflected rays must
be paraxial for this equation to hold.

|
EXERCISE 1.2-1

Image Formation by a Spherical Mirror.  Show that, within the paraxial approximation, rays
originating from a point P; = (y, z1) are reflected to a point P, = (ya, 22), where z; and z; satisfy
(1.2-4) and yo = —y122/2; (Fig. 1.2-7). This means that rays from each point in the plane z = z;
meet at a single corresponding point in the plane z = z», so that the mirror acts as an image-formation
system with magnification —z5/z;. Negative magnification means that the image is inverted.

P1=(yy, 7y)

Figure 1.2-7 Image formation by a
spherical mirror. Four particular rays are
illustrated.

P2=(y2, Zz)

B. Planar Boundaries

The relation between the angles of refraction and incidence, 65 and 64, at a planar
boundary between two media of refractive indices n; and no is governed by Snell’s
law (1.1-3). This relation is plotted in Fig. 1.2-8 for two cases:

m External Refraction (ny < ng). When the ray is incident from the medium of
smaller refractive index, #; < 6; and the refracted ray bends away from the
boundary.
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» [nternal Refraction (n1 > ng). If the incident ray is in a medium of higher
refractive index, 63 > 6, and the refracted ray bends toward the boundary.

n, / ny n, A n, 0.
90°
f B
= ny/n,=/2/3
91 - 1
02
/ L 3/2
/Y % B
> / o1
—_— —_— 0 91 90°
External refraction Internal refraction

Figure 1.2-8 Relation between the angles of refraction and incidence.

The refracted rays bend in such a way as to minimize the optical pathlength, i.e.,
to increase the pathlength in the lower-index medium at the expense of pathlength in
the higher-index medium. In both cases, when the angles are small (i.e., the rays are
paraxial), the relation between 0, and 0; is approximately linear, n16; =~ mny0s, or
92 ~ (77,1/712)01.

Total Internal Reflection

For internal refraction (n1 > ns), the angle of refraction is greater than the angle of
incidence, 6> > 04, so that as #; increases, 0, reaches 90° when 61 = .., the critical
angle (see Fig. 1.2-8). This occurs when n; sin 6. = ng sin(mw/2) = no, so that

e _1 N2
. =sIn"~ —

(1.2-5)

n Critical Angle

When 6; > 6., Snell’s law (1.1-3) cannot be satisfied and refraction does not occur.
The incident ray is then totally reflected as if the surface were a perfect mirror [Fig. 1.2-
9(a)]. This phenomenon, called total internal reflection (TIR), is the basis of many
optical devices and systems, such as reflecting prisms [Fig. 1.2-9(b)], light-emitting
diode collimators (Fig. 1.2-14), and optical fibers (Sec. 1.2D). Electromagnetic optics
(Fresnel’s equations in Chapter 6) reveals that all of the energy is carried by the
reflected light so that the process of total internal reflection is highly efficient.

n| n,

(@) (b) (©)

Figure 1.2-9 () Total internal reflection at a planar boundary. (b) The reflecting prism. If n; > /2
and ny, = 1 (air), then §, < 45°; since ny ~ 1.5 > /2 for glass, and #; = 45°, the ray is totally
reflected. (c) Rays are guided by total internal reflection from the internal surface of an optical fiber.
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Prisms

A prism of apex angle « and refractive index n (Fig. 1.2-10) deflects a ray incident at
an angle 6 by an angle

0;=6—a+sin"! [\/ n? —sin?# sin o — sin 6 cos a} . (1.2-6)

This equation is arrived at by using Snell’s law twice, at the two refracting surfaces
of the prism. When « is very small (thin prism) and 6 is also very small (paraxial
approximation), (1.2-6) may be approximated by

Oq = (n—1)a. (1.2-7)
60°
=459

400 \\ //// a=30°

& \\\ _~ 1/’/ =100
o T SZh

—7

e 90°

0

Figure 1.2-10 (a) Ray deflection by a prism. (b) Graph of (1.2-6) for the deflection angle 6, as a
function of the angle of incidence 0, for different apex angles o and n = 1.5. When both « and 6 are
small the angle of deflection 64 ~ (n — 1), which is approximately independent of 6, as is evident
for the o« = 10° curve. When € = 0° and o = 45°, total internal reflection occurs, as illustrated in
Fig. 1.2-9(b).

Beamsplitters

The beamsplitter is an optical component that splits an incident ray into a reflected ray
and a transmitted ray, as illustrated in Fig. 1.2-11. The relative proportions of light
transmitted and reflected are established by Fresnel’s equations in electromagnetic
optics (Chapter 6). Beamsplitters are also frequently used to combine two light rays
into one [Fig. 1.2-11(c)]. Beamsplitters are usually constructed by depositing a thin
semitransparent metallic or dielectric film on a glass substrate. A thin bare glass plate,
such as a microscope slide, can also serve as a beamsplitter although the fraction of
light reflected is small. Transparent plastic materials are often used in place of glass.

A A l
(a) Partially reflective mirror (b) Thin glass plate (¢) Beam combiner

Figure 1.2-11 Beamsplitters and beam combiners.
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Beam Directors

Simple optical components can be used to direct rays in particular directions. The
devices illustrated in Fig. 1.2-12 redirect incident rays into rays tilted at fixed angles
with respect to each other. The biprism depicted in Fig. 1.2-12(a) is the juxtaposition
of a prism and an identical inverted prism. The Fresnel biprism portrayed in Fig. 1.2-
12(b) is formed from rows of adjacently placed tiny prisms. This device is equivalent to
a biprism but is thinner and lighter. The cone-shaped optic depicted in Fig. 1.2-12(c),
known as an axicon, converts incident rays into a collection of circularly symmetric
rays directed toward its central axis in the form of a cone. It has the same cross section
as the biprism, namely an isosceles triangle.

i
T
e

Figure 1.2-12 (a) Biprism. (b) Fresnel
biprism. (c) Plano-convex axicon.

(@) (b)

C. Spherical Boundaries and Lenses

We now examine the refraction of rays from a spherical boundary of radius R between
two media of refractive indices n; and nq. By convention, R is positive for a convex
boundary and negative for a concave boundary. The results are obtained by applying
Snell’s law, which relates the angles of incidence and refraction relative to the normal
to the surface, defined by the radius vector from the center C'. These angles are to
be distinguished from the angles #; and 5, which are defined relative to the z axis.
Considering only paraxial rays making small angles with the axis of the system so that
sin f &~ # and tan 6 ~ 6, the following properties may be shown to hold:

® A ray making an angle ¢; with the z axis and meeting the boundary at a point of
height y where it makes an angle 6y with the radius vector [see Fig. 1.2-13(a)]
changes direction at the boundary so that the refracted ray makes an angle ¢, with
the z axis and an angle 05 with the radius vector. With the help of Exercise 1.2-2,

we obtain n ne —ni Yy
Oy x —0h — —=

no no R
]

(1.2-8)

(@)

Figure 1.2-13 Refraction at a
convex spherical boundary (R > 0).
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m All paraxial rays originating from a point P, = (1, 1) in the z = z; plane meet
at a point P, = (y9, 22) in the z = 2, plane (see Exercise 1.2-2), where

ny N2 n2 — Ny

N — 1.2-9
Z1 Z9 R ( )
and
yo = — A2, (1.2-10)
no 21
The z = z; and z = 29 planes are said to be conjugate planes. Every point

in the first plane has a corresponding point (image) in the second with magnifi-
cation —(ny/ng)(22/21). Again, negative magnification means that the image is
inverted. By convention P; is measured in a coordinate system pointing to the left
and P, in a coordinate system pointing to the right (e.g., if P; lies to the left of
the boundary, then z5 would be negative).

The similarities between these properties and those of the spherical mirror are evi-
dent. It is important to remember that the image formation properties described above
are approximate. They hold only for paraxial rays. Rays of large angles do not obey
these paraxial laws; the deviation results in image distortion called aberration.

|
EXERCISE 1.2-2

Image Formation. Derive (1.2-8). Prove that paraxial rays originating from P; pass through P,
when (1.2-9) and (1.2-10) are satisfied.

EXERCISE 1.2-3

Aberration-Free Imaging Surface. Determine the equation of a convex aspherical (nonspheri-
cal) surface between media of refractive indices n; and n» such that all rays (not necessarily paraxial)
from an axial point P, at a distance z; to the left of the surface are imaged onto an axial point P, at
a distance z to the right of the surface [Fig. 1.2-13(a)]. Hint: In accordance with Fermat’s principle
the optical pathlengths between the two points must be equal for all paths.

|

EXAMPLE 1.2-1. Collimator for LED Light. Light emitted by an LED (Sec. 18.1) is often
collimated by making use of an optic whose surface takes the form of a paraboloid of revolution
(Fig. 1.2-14). The LED is placed at the focus of the paraboloid by inserting its hemispherical dome
(darker blue) into a recess formed in the narrow end of the optic. Rays emanating from the sides of
the LED dome impinge on the paraboloidal boundary at angles of incidence greater than the critical
angle and are thus reflected out of the device via total internal reflection. Rays emanating from the
central portion of the LED dome are refracted out of the device at the spherical boundary. Optical
systems that combine reflection and refraction are known as catadioptric systems.

Reflected rays Refracted rays Reflected rays
T T T T T T Figure 1.2-14 Cross section of a collimator for
| Lcalbouy, | LED light. LED collimators come in many config-
S5 ld‘i’{, urations but most make use of both total internal

reflection and refraction to provide rays of light
that are approximately parallel at the exit. Such
devices are often fabricated from molded acrylic or
polycarbonate plastic, which have refractive indices

&\\v//% < similar to that of glass (n ~ 1.5). The diameter of

S LD the narrow end of the optic illustrated is ~ 1 cm.

Total £
internal
reflection
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Spherical Lenses

A spherical lens is bounded by two spherical surfaces. It is, therefore, defined com-
pletely by the radii R; and R, of its two surfaces, its thickness A, and the refractive
index n of the material (Fig. 1.2-15). A glass lens in air can be regarded as a combina-
tion of two spherical boundaries, air-to-glass and glass-to-air.

Figure 1.2-15 A biconvex spherical lens.

\/ Rll"””’

A

A ray crossing the first surface at height y and angle #; with the z axis [Fig. 1.2-
16(a)] is traced by applying (1.2-8) at the first surface to obtain the inclination angle
0 of the refracted ray, which we extend until it meets the second surface. We then use
(1.2-8) once more with 6 replacing #; to obtain the inclination angle 65 of the ray after
refraction from the second surface. The results are in general complex. When the lens
is thin, however, it can be assumed that the incident ray emerges from the lens at about
the same height y at which it enters. Under this assumption, the following relations
obtain:

m The angles of the refracted and incident rays are related by (see Exercise 1.2-4)

0y = 0, — % (1.2-11)

where f, called the focal length, is given by

(1.2-12)
Focal Length
Thin Spherical Lens

I |
4 of )

(a) ®)
Figure 1.2-16 (a) Ray bending by a thin lens. (b) Image formation by a thin lens.

m All rays originating from a point P, = (y1, 21) meet at a point P, = (y2, 22)
[Fig. 1.2-16(b)] (see Exercise 1.2-4), where

= (1.2-13)
21 22 / Imaging Equation
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and

Y2 = ——Y1. (1.2-14)
Magpnification

These results are identical to those for the spherical mirror [see (1.2-4) and Exer-
cise 1.2-1].

These equations indicate that each point in the z = z; plane is imaged onto a
corresponding point in the z = 2o plane with the magnification factor —z5/z1. The
magnification is unity when z; = 2o = 2f. The focal length f of a lens therefore
completely determines its effect on paraxial rays. As indicated earlier, P, and P, are
measured in coordinate systems pointing to the left and right, respectively, and the
radii of curvatures I?; and R» are positive for convex surfaces and negative for concave
surfaces. For the biconvex lens shown in Fig. 1.2-15, R, is positive and R, is negative,
so that the two terms of (1.2-12) add and provide a positive f.

|
EXERCISE 1.2-4

Proof of the Thin Lens Formulas. Using (1.2-8), along with the definition of the focal length
given in (1.2-12), prove (1.2-11) and (1.2-13).

It is emphasized once again that the foregoing relations hold only for paraxial rays.
The presence of nonparaxial rays results in aberrations, as illustrated in Fig. 1.2-17.

Figure 1.2-17 Nonparaxial rays do not meet
at the paraxial focus. The dashed envelope of the
refracted rays is known as the caustic curve.

Convex and Concave Lenses

Lenses are transparent optical devices that bend rays in a manner prescribed by the
shapes of their surfaces. Most common lenses, such as the biconvex lens considered
above, are spherical lenses. Lenses that consist of a single piece of material (glass and
plastic are favored in the visible) are called simple lenses, while lenses that comprise
multiple simple lenses, usually along a common axis, are known as compound lenses.

The surface of a lens can be convex or concave, depending on whether it projects
out of, or recedes into the body of the lens, respectively, or it can be planar, indicating
that it has a flat surface. A cylindrical lens is curved in only one direction; it thus has
a focal length f for rays in the y—z plane, and no focusing power for rays in the x—z
plane. A lens in which one surface is convex and the other concave is called a meniscus
lens (these are often used for spectacles). A lens in which one or both surfaces have a
shape that is neither spherical nor cylindrical is known as an aspheric lens.
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Several different types of lenses are illustrated in Fig. 1.2-18. Biconvex and plano-
convex lenses result in the convergence of rays and are useful for image formation,
as depicted in Fig. 1.2-16. Biconcave and plano-concave lenses lead to the diver-
gence of rays and are used in projection and focal-length expansion. A Fresnel lens
is constructed by removing the nonrefracting portions of a conventional lens. Hence,
the Fresnel-lens equivalent [Fig. 1.2-18(e)] of a plano-convex lens [Fig. 1.2-18(b)]
is a flattened set of concentric surfaces with identical curvature at all locations on
the surface (except at the stepwise discontinuities). The Fresnel design allows for
the construction of thin, light, and inexpensive plastic lenses with sizes that range
from meters to micrometers and short focal lengths. Fresnel lenses can be converging,
diverging, or cylindrical.

Figure 1.2-18 Lenses: (a)

Biconvex; (b) Plano-convex;
— (¢) Concave; (d) Plano-
concave. (e) Fresnel-lens

counterpart of the plano-
F convex lens displayed in

— e
. —
7ﬁ: # ? (b); the curvatures are the
same everywhere on the two

(@) ) (©) (@) (e) surfaces.

D. Light Guides

Light may be guided from one location to another by use of a set of lenses or mirrors,
as illustrated schematically in Fig. 1.2-19. Since refractive elements (such as lenses)
are usually partially reflective and since mirrors are partially absorptive, the cumula-
tive loss of optical power will be significant when the number of guiding elements
is large. Components in which these effects are minimized can be fabricated (e.g.,
antireflection-coated lenses), but the system is generally cumbersome and costly.

Figure 1.2-19 Guiding light: (@) lenses; (b) mirrors; (c) total internal reflection.

An ideal mechanism for guiding light is that of total internal reflection at the bound-
ary between two media of different refractive indices. Rays are reflected repeatedly
without undergoing refraction. Glass fibers of high chemical purity are used to guide
light for tens of kilometers with relatively low loss of optical power.

An optical fiber is a light conduit made of two concentric glass (or plastic) cylinders
(Fig. 1.2-20). The inner, called the core, has a refractive index n;, and the outer, called
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the cladding, has a slightly smaller refractive index, ne < m;. Light rays traveling in
the core are totally reflected from the cladding if their angle of incidence is greater

than the critical angle, § > 6, = sin™* (ng/ny). The rays making an angle § = 90° — 6
with the optical axis are therefore confined in the fiber core if § < 6., where 6. =
90° — 0. = cos~!(ny/n1). Optical fibers are used in optical communication systems
(see Chapters 10 and 25). Some important properties of optical fibers are derived in
Exercise 1.2-5.

Cladding

Core 7 7

Figure 1.2-20 The optical fiber. Light rays are guided by multiple total internal reflections. Here
0 represents the angle measured from the axis of the optical fiber so that its complement § = 90° — 6
is the angle of incidence at the dielectric interface.

EXERCISE 1.2-5

Numerical Aperture and Angle of Acceptance of an Optical Fiber. An optical fiber
is illuminated by light from a source (e.g., a light-emitting diode, LED). The refractive indices of
the core and cladding of the fiber are n, and ng, respectively, and the refractive index of air is 1
(see Fig. 1.2-21). Show that the half-angle 6, of the cone of rays accepted by the fiber (transmitted
through the fiber without undergoing refraction at the cladding) is given by

NA =sinf, = /n? —n3. (1.2-15)

Numerical Aperture
Optical Fiber

The angle 6, is called the acceptance angle and the parameter NA = sinf, is known as the
numerical aperture of the fiber. Calculate the numerical aperture and acceptance angle for a silica-
glass fiber with n; = 1.475 and ny = 1.460. Silica glass, also known as fused silica, is amorphous
silicon dioxide (SiO,). It is widely used because of its excellent optical and mechanical properties.
Moreover, its refractive index can be readily modified by doping (e.g., with GeOs).

‘ Cladding 7y

Figure 1.2-21  Acceptance angle of an optical fiber.

Trapping of Light in Media of High Refractive Index

It is often difficult for light originating inside a medium of large refractive index to
be extracted into air, especially if the surfaces of the medium are parallel. This occurs
since certain rays undergo multiple total internal reflections without ever refracting into
air. The principle is illustrated in Exercise 1.2-6.
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EXERCISE 1.2-6
Light Trapped in a Light-Emitting Diode.

(a) Assume that light is generated in all directions inside a material of refractive index n cut in the
shape of a parallelepiped (Fig. 1.2-22). The material is surrounded by air with unity refractive
index. This process occurs in light-emitting diodes (see Sec. 18.1B). What is the angle of the
cone of light rays (inside the material) that will emerge from each face? What happens to the
other rays? What is the numerical value of this angle for GaAs (n = 3.6)?

Figure 1.2-22 Trapping of light in a paral-
lelepiped of high refractive index.

(b) Assume that when light is generated isotropically the amount of optical power associated with
the rays in a given cone is proportional to the solid angle of the cone. Show that the ratio of
the optical power that is extracted from the material to the total generated optical power is

3 (1 —/1—1/n? ), provided that n > v/2. What is the numerical value of this ratio for GaAs?

1.3 GRADED-INDEX OPTICS

A graded-index (GRIN) material has a refractive index that varies with position in
accordance with a continuous function n(r). These materials are often fabricated by
adding impurities (dopants) of controlled concentrations. In a GRIN medium the optical
rays follow curved trajectories, instead of straight lines. By appropriate choice of
n(r), a GRIN plate can have the same effect on light rays as a conventional optical
component, such as a prism or lens.

A. The Ray Equation

To determine the trajectories of light rays in an inhomogeneous medium with refractive
index n(r), we use Fermat’s principle,

B
5/ n(r)ds =0, (1.3-1)
A

where ds is a differential length along the ray trajectory between A and B. If the
trajectory is described by the function z(s), y(s), and z(s), where s is the length of the
trajectory (Fig. 1.3-1), then using the calculus of variations it can be shown that™ z(s),

T See, e.g., R. Weinstock, Calculus of Variations: With Applications to Physics and Engineering, 1952; Dover,
1974.
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y(s), and z(s) must satisfy three partial differential equations,

A Y _on (AN _on (N _on o
ds \ ds) Oz’ ds \'"ds oy’ ds \ 'ds) 0z’ '

By defining the vector r(s), whose components are z(s), y(s), and z(s), (1.3-2) may
be written in the compact vector form

a (ndr> _vn, (13-3)
ds \ ds Ray Equation

where Vn, the gradient of n, is a vector with Cartesian components On/dx, On/dy,
and On/0z. Equation (1.3-3) is known as the ray equation.

!

ds | B Figure 1.3-1 The ray trajectory is described
parametrically by three functions z(s), y(s), and
z(s), or by two functions z(z) and y(z).

/X

One approach to solving the ray equation is to describe the trajectory by two func-
tions x(z) and y(z), write ds = dz+/1 + (dz/dz)? + (dy/dz)?, and substitute in
(1.3-3) to obtain two partial differential equations for x(z) and y(z). The algebra is
generally not trivial, but it simplifies considerably when the paraxial approximation is
used.

The Paraxial Ray Equation

In the paraxial approximation, the trajectory is almost parallel to the z axis, so that
ds =~ dz (Fig. 1.3-2). The ray equations (1.3-2) then simplify to

d dx on d dy on
dz (n dz) oz’ dz < dz) dy P(araxia)l
Ray Equations

Given n = n(x,y, z), these two partial differential equations may be solved for the
trajectory x(z) and y(z).

In the limiting case of a homogeneous medium for which 7 is independent of x, v, z,
(1.3-4) gives d*z/dz? = 0 and d?y/dz? = 0, from which it follows that  and y are
linear functions of z, so that the trajectories are straight lines. More interesting cases
will be examined subsequently.
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e 7

o

Figure 1.3-2 Trajectory of a paraxial ray in a graded-index medium.

B. Graded-Index Optical Components
Graded-Index Slab

Consider a slab of material whose refractive index n = n(y) is uniform in the x and
z directions but varies continuously in the y direction (Fig. 1.3-3). The trajectories of
paraxial rays in the y—z plane are described by the paraxial ray equation

d ( dy\ dn
" ("dz> =5 (1.3-5)

from which
d*y 1 dn(y)

d2 n(y) dy

(1.3-6)

Given n(y) and initial conditions (y and dy/dz at z = 0), (1.3-6) can be solved for the
function y(z), which describes the ray trajectories.

T y
dn
y+Ay m n(y)+ dy Ay

y 0(y) n(y)

4 Refractive index

Figure 1.3-3 Refraction in a graded-index slab.

[l Derivation of the Paraxial Ray Equation in a Graded-Index Slab Using Snell’s Law.
Equation (1.3-6) may also be derived by the direct use of Snell’s law (Fig. 1.3-3). Let §(y) ~ dy/dz
be the angle that the ray makes with the z axis at the position (y, z). After traveling through a layer
of thickness Ay the ray changes its angle to 8(y + Ay). The two angles are related by Snell’s law
where 6, as defined in Fig. 1.3-3, is the complement of the angle of incidence (refraction):

n(y) cos O(y) = n(y + Ay) cos 0(y + Ay)

= [n(y) +

d de

a Ayl | cosO(y) — — Ay sinf(y)| , (1.3-7)
dy dy

where we have applied the expansion f(y+ Ay) = f(y) + (df /dy) Ay to the functions f(y) = n(y)
and f(y) = cosd(y). In the limit Ay — 0, after eliminating the term in (Ay)?, we obtain the
differential equation

d—y =n @ tan 6. (1.3-8)

For paraxial rays 6 is very small so that tanf ~ 6. Substituting # = dy/dz in (1.3-8), we obtain
(1.3-6). [
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EXAMPLE 1.3-1. Slab with Parabolic Index Profile. =~ An important particular distribution
for the graded refractive index is

n*(y) = ng (1—ay?). (1.3-9)

This is a symmetric function of y that has its maximum value at y = 0 (Fig. 1.3-4). A glass slab with
this profile is known by the trade name SELFOC. Usually, « is chosen to be sufficiently small so that
o?y? < 1 for all y of interest. Under this condition, n(y) = no\/1 — a®y® = no(1 — 2a?y?); ie.,
n(y) is a parabolic distribution. Also, because n(y) —ng < ny, the fractional change of the refractive
index is very small. Taking the derivative of (1.3-9), the right-hand side of (1.3-6) is (1/n)dn/dy =
—(no/n)%*a?y ~ —a’y, so that (1.3-6) becomes

d*y 2

2 ~—ay. (1.3-10)
The solutions of this equation are harmonic functions with period 27 /. Assuming an initial position
y(0) = yo and an initial slope dy/dz = 6, at z = 0 inside the GRIN medium,

0
y(z) = yocosaz + EO sin az, (1.3-11)

from which the slope of the trajectory is

dy

0(z) = =

= —ypasin az + 6y cos az. (1.3-12)

The ray oscillates about the center of the slab with a period (distance) 27/« known as the pitch, as
illustrated in Fig. 1.3-4.

ol n(y)

Figure 1.3-4 Trajectory of a ray in a GRIN slab of parabolic index profile (SELFOC).

The maximum excursion of the ray is Ymax = /¥ + (fo/a)? and the maximum angle is 0y =
QYmax- The validity of this approximate analysis is ensured if 0. < 1. If 2y, is smaller than
the thickness of the slab, the ray remains confined and the slab serves as a light guide. Figure 1.3-5
shows the trajectories of a number of rays transmitted through a SELFOC slab. Note that all rays have
the same pitch. This GRIN slab may be used as a lens, as demonstrated in Exercise 1.3-1.

N S
.

TeS~———

2

1 d 1

Figure 1.3-5 Trajectories of rays from an external point source in a SELFOC slab.
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|
EXERCISE 1.3-1

The GRIN Slab as a Lens. Show that a SELFOC slab of length d < /2« and refractive index
given by (1.3-9) acts as a cylindrical lens (a lens with focusing power in the y—z plane) of focal length

1
N —————. 1.3-1
/ noasin(ad) (1.3-13)

Show that the principal point (defined in Fig. 1.3-6) lies at a distance from the slab edge AH =
(1/npcr) tan(ced/2). Sketch the ray trajectories in the special cases d = m/« and 7/2a.

y

— >
Yo

Figure 1.3-6 The SELFOC slab used as
a lens; F' is the focal point and H is the
> ;
= A I;\ principal point.

Graded-Index Fibers

A graded-index fiber is a glass cylinder with a refractive index n that varies as a
function of the radial distance from its axis. In the paraxial approximation, the ray
trajectories are governed by the paraxial ray equations (1.3-4). Consider, for example,
the distribution

n® =ng[1-ao® (2 +y?)]. (1.3-14)

Substituting (1.3-14) into (1.3-4) and assuming that o(2? + y?) < 1 for all z and y
of interest, we obtain

d*z 2 d*y 2

] ~ —ar, T2 ~ —ay. (1.3-15)
Both = and y are therefore harmonic functions of z with period 27 /. The initial
positions (xo, yo) and angles (8,0 = dz/dz and 6,9 = dy/dz) at z = 0 determine the
amplitudes and phases of these harmonic functions. Because of the circular symmetry,
there is no loss of generality in choosing xy = 0. The solution of (1.3-15) is then

991:0 .
x(z) = — sinaz
o (1.3-16)

o
y(z) = P sin az + yo cos az.
«

If 6,0 = 0, i.e., the incident ray lies in a meridional plane (a plane passing through
the axis of the cylinder, in this case the y—z plane), the ray continues to lie in that plane
following a sinusoidal trajectory similar to that in the GRIN slab [Fig. 1.3-7(a)].

On the other hand, if 8,0 = 0, and 0,9 = ayo, then

x(z) = ygsin az
(2) = o (13-17)
y(z) = yo cos az,
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Figure 1.3-7 (a) Meridional and (b) helical rays in a graded-index fiber with parabolic index
profile.

so that the ray follows a helical trajectory lying on the surface of a cylinder of radius
Yo [Fig. 1.3-7(b)]. In both cases the ray remains confined within the fiber, so that the
fiber serves as a light guide. Other helical patterns are generated with different incident
rays.

Graded-index fibers and their use in optical fiber communications are discussed in
Chapters 10 and 25.

. _________________________________________________________________________|
EXERCISE 1.3-2

Numerical Aperture of the Graded-Index Fiber. Consider a graded-index fiber with the
index profile provided in (1.3-14) and radius a. A ray is incident from air into the fiber at its center,
which then makes an angle 6, with the fiber axis in the medium (see Fig. 1.3-8). Show, in the paraxial
approximation, that the numerical aperture is

NA =sinf, = ngaa, (1.3-18)
Numerical Aperture
Graded-Index Fiber

where 6, is the maximum acceptance angle for which the ray trajectory is confined within the fiber.
Compare this to the numerical aperture of a step-index fiber such as the one discussed in Exercise 1.2-
5. To make the comparison fair, take the refractive indices of the core and cladding of the step-index
fiber to be n1 = ng and ny = ngV'1 — a2a? = ny(1 — 3a’a?), respectively.

Figure 1.3-8 Acceptance angle of a graded-index optical fiber.
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*C. The Eikonal Equation

The ray trajectories are often characterized by the surfaces to which they are normal.
Let S(r) be a scalar function such that its equilevel surfaces, S(r) = constant, are
everywhere normal to the rays (Fig. 1.3-9). If S(r) is known, the ray trajectories can
readily be constructed since the normal to the equilevel surfaces at a position r is in the
direction of the gradient vector VS(r). The function S(r), called the eikonal, is akin
to the potential function V' (r) in electrostatics; the role of the optical rays is played by
the lines of electric field E = —VV.

— Rays Figure 1.3-9 Ray trajectories are normal to the surfaces

of constant S(r).
>

~ ™— S(r) = constant

To satisfy Fermat’s principle (which is the main postulate of ray optics) the eikonal
S(r) must satisfy a partial differential equation known as the eikonal equation,

aS\* [/0S\?> [0S\*
() (B (@) o

which is usually written in the vector form

|VS|? = n?, (1.3-20)
Eikonal Equation

where |VS?| = VS - VS. The proof of the eikonal equation from Fermat’s principle is
a mathematical exercise that lies beyond the scope of this book.” Conversely, Fermat’s
principle (and the ray equation) can be shown to follow from the eikonal equation.
Therefore, either Fermat’s principle or the eikonal equation may be regarded as the
principal postulate of ray optics.

Integrating the eikonal equation (1.3-20) along a ray trajectory between points A
and B gives

B B
[VS|ds = / n ds = optical pathlength between A and B.
A

(1.3-21)
This means that the difference S(rp)—S(r 4) represents the optical pathlength between
A and B. In the electrostatics analogy, the optical pathlength plays the role of the
potential difference.
To determine the ray trajectories in an inhomogeneous medium of refractive index
n(r), we can either solve the ray equation (1.3-3), as we have done earlier, or solve the
eikonal equation for S(r), from which we calculate the gradient V S.

S(e) = S(ea) = [

A

T See, e.g., M. Born and E. Wolf, Principles of Optics, Cambridge University Press, 7th expanded and corrected
ed. 2002.
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If the medium is homogeneous, i.e., n(r) is constant, the magnitude of VS is
constant, so that the wavefront normals (rays) must be straight lines. The surfaces
S(r) = constant may be parallel planes or concentric spheres, as illustrated in Fig. 1.3-

10.
S(r) = constant /
\ /Y
_; >
—
—> Rays ))>>>>> —> Rays
—>
— -
—_—>
\

AN

Figure 1.3-10 Rays and surfaces of constant S(r) in a homogeneous medium.

The eikonal equation is revisited from the point-of-view of the relation between ray
optics and wave optics in Sec. 2.3.

1.4 MATRIX OPTICS

Matrix optics is a technique for tracing paraxial rays. The rays are assumed to travel
only within a single plane, so that the formalism is applicable to systems with planar
geometry and to meridional rays in circularly symmetric systems.

A ray is described by its position and its angle with respect to the optical axis. These
variables are altered as the ray travels through the system. In the paraxial approxima-
tion, the position and angle at the input and output planes of an optical system are
related by two linear algebraic equations. As a result, the optical system is described
by a 2 x 2 matrix called the ray-transfer matrix.

The convenience of using matrix methods lies in the fact that the ray-transfer matrix
of a cascade of optical components (or systems) is a product of the ray-transfer matrices
of the individual components (or systems). Matrix optics therefore provides a formal
mechanism for describing complex optical systems in the paraxial approximation.

A. The Ray-Transfer Matrix

Consider a circularly symmetric optical system formed by a succession of refracting
and reflecting surfaces all centered about the same axis (optical axis). The z axis lies
along the optical axis and points in the general direction in which the rays travel.
Consider rays in a plane containing the optical axes, say the y—z plane. We proceed
to trace a ray as it travels through the system, i.e., as it crosses the transverse planes
at different axial distances. A ray crossing the transverse plane at z is completely
characterized by the coordinate of y of its crossing point and the angle € (Fig. 1.4-
1).

An optical system is a set of optical components placed between two transverse
planes at z; and 29, referred to as the input and output planes, respectively. The system
is characterized completely by its effect on an incoming ray of arbitrary position and
direction (y1, 61). It steers the ray so that it has new position and direction (y2, 62) at
the output plane (Fig. 1.4-2).
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>
>

Ray

A

Figure 1.4-1 A ray is charac-
terized by its coordinate y and its

angle 6.
Optical _
axis 7
Input Output
o161 | Optical system | 02,60
)7
Input Output Figure 1.4-2 A ray enters an
plane f@l plane optical system at location z; with
position y; and angle ¢, and leaves
/ Pt at position y» and angle 65.
Y1 Vs
Optical
71 2 z  axis

In the paraxial approximation, when all angles are sufficiently small so that sin § ~
0, the relation between (y2,02) and (yi1, 61) is linear and can generally be written in
the form

Y2 = Ay1 + Bb, (1.4-1)
0y = Cy; + Db, (1.4-2)

where A, B, C, and D are real numbers. Equations (1.4-1) and (1.4-2) may be conve-
niently written in matrix form as

v2| _ |A Bl |wn
4] [¢ B[] 1+
The matrix M, whose elements are A, B, C, and D, characterizes the optical system
completely since it permits (y2, 62 ) to be determined for any (y1, 61 ). It is known as the
ray-transfer matrix. As will be seen in the examples provided in Sec. 1.4B, angles
that turn out to be negative point downward from the z axis in their direction of travel.

Radii that turn out to be negative indicate concave surfaces whereas those that are
positive indicate convex surfaces.

|
EXERCISE 1.4-1

Special Forms of the Ray-Transfer Matrix. —Consider the following situations in which one
of the four elements of the ray-transfer matrix vanishes:

(a) Show that A = 0 represents a focusing system, in which all rays entering the system at a particular
angle, whatever their position, leave at a single position.

(b) Show that B = 0 represents an imaging system, in which all rays entering the system at a
particular position, whatever their angle, leave at a single position.

(c) What are the special features of a system for which C =0 or D = 0?
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B. Matrices of Simple Optical Components

Free-Space Propagation

Since rays travel along straight lines in a medium of uniform refractive index such as
free space, a ray traversing a distance d is altered in accordance with yo = y; + 61 d
and 6, = 0;. The ray-transfer matrix is therefore

1 d
M= [0 1] . (1.4-4)

d

Refraction at a Planar Boundary

At a planar boundary between two media of refractive indices n; and ng, the ray
angle changes in accordance with Snell’s law n4 sin; = ns sin 6s. In the paraxial
approximation, n16; & nyfs. The position of the ray is not altered, y» = ;. The
ray-transfer matrix is

np ny

/!

(1.4-5)

=
I
—
o
3
o
[ E—

n2

Refraction at a Spherical Boundary

The relation between 6; and 65 for paraxial rays refracted at a spherical boundary
between two media is provided in (1.2-8). The ray height is not altered, y» ~ y;. The
ray-transfer matrix is

1 0
M = _ (nQ—nl) ny| - (1 .4—6)

ngR na

Convex: R > 0; concave: R<0

Transmission Through a Thin Lens

The relation between 6 and 65 for paraxial rays transmitted through a thin lens of focal
length f is given in (1.2-11). Since the height remains unchanged (y2 = 1), we have

=

1 0
\/f M= {_} 1}. (1.4-7)

Convex: f> 0; concave: f<0

Reflection from a Planar Mirror

Upon reflection from a planar mirror, the ray position is not altered, y» = ;. Adopting
the convention that the z axis points in the general direction of travel of the rays, i.e.,
toward the mirror for the incident rays and away from it for the reflected rays, we
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conclude that 6, = 6;. The ray-transfer matrix is therefore the identity matrix

0 1 (1.4-8)

Reflection from a Spherical Mirror

Using (1.2-1), and the convention that the z axis follows the general direction of the
rays as they reflect from mirrors, we similarly obtain

R M= F (1)] . (1.4-9)
R

Concave: R < 0; convex: R >0

Note the similarity between the ray-transfer matrices of a spherical mirror (1.4-9) and
a thin lens (1.4-7). A mirror with radius of curvature R bends rays in a manner that is
identical to that of a thin lens with focal length f = —R/2.

C. Matrices of Cascaded Optical Components

A cascade of N optical components or systems whose ray-transfer matrices are
M, M., ... My is equivalent to a single optical system of ray-transfer matrix

— My | —| My |—---— My |[— M=My- - -MM,.

(1.4-10)
Note the order of matrix multiplication: The matrix of the system that is crossed by the
rays is first placed to the right, so that it operates on the column matrix of the incident
ray first. A sequence of matrix multiplications is not, in general, commutative, although
it is associative.

|
EXERCISE 1.4-2

A Set of Parallel Transparent Plates. Consider a set of N parallel planar transparent plates
of refractive indices n1, no, . .. ,ny and thicknesses dq, ds, ..., dy, placed in air (n = 1) normal to
the z axis. Using induction, show that the ray-transfer matrix is

1 ny ny . ny 1

(1.4-11)

[
=
Il
1
=
i =
X
Sl
| S

Note that the order in which the plates are placed does not affect the overall ray-transfer matrix. What
is the ray-transfer matrix of an inhomogeneous transparent plate of thickness d, and refractive index
n(z)?
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EXERCISE 1.4-3

A Gap Followed by a Thin Lens. Show that the ray-transfer matrix of a distance d of free
space followed by a lens of focal length f is

)
M= {_1 1 ij 1] . (1.4-12)
f

EXERCISE 1.4-4

Imaging with a Thin Lens. Derive an expression for the ray-transfer matrix of a system com-
prised of free space/thin lens/free space, as shown in Fig. 1.4-3. Show that if the imaging condition
(1/dy +1/dy =1/ f) is satisfied, all rays originating from a single point in the input plane reach the
output plane at the single point ¥, regardless of their angles. Also show that if d; = f, all parallel
incident rays are focused by the lens onto a single point in the output plane.

il |
Figure 1.4-3 Single-lens imaging

\/ ‘ system.

%
f— Al —fe— o —]
I —

Imaging with an Arbitrary Paraxial Optical System

A paraxial system comprising an arbitrary set of cascaded optical elements is char-
acterized completely by the four elements A, B, C, D of its ray-transfer matrix M.
Alternatively, the system may be characterized by the locations of four cardinal points:
two focal points that determine the transmission of rays between its input and output
planes. In accordance with (1.4-3), an incoming ray parallel to the optical axis (f; = 0)
at height g; exits the system at height y» = Ay; and angle 6, = Cy;. This ray
crosses the axis at a point F' called the back focal point, which is located a distance
y2/02 = A/C from the system’s back vertex V, as shown in Fig. 1.4-4(a). The
intersection of the extensions of the incoming and outgoing rays defines the back
principal point H, which lies at a distance f = y;/02 = —1/C to the left of F,
and is known as the back focal length. The back principal point H is thus located at a
distance h = —1/C+A/ C to the left of the back vertex V. Note that the locations of the
focal and principal points are independent of y; as long as the paraxial approximation
is applicable.

Similarly, rays parallel to the axis but entering the system in the opposite direction
(from right to left) are focused to the front focal point F” and define the front prin-
cipal point H’, which lies at a distance h’ from the front vertex V. The front focal
point lies at a distance f’ to the left of H', where f’ is the front focal length. These
distances may be expressed in terms of the elements of the inverse ray-transfer matrix

L [A BT 1 D -B

via the relations —f’ = —1/C’ and —h' = —1/C’ + A’/C’. The determinant of M,
denoted det[M], is given by AD — BC.
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In summary, the focal lengths and locations of the principal points may be deter-
mined from the ABCD parameters by use of the following relations:

f=-1/¢, h=(1-Af (1.4-14)
fl=detM] f, K =—f+Df. (1.4-15)

Negative signs indicate directions opposite to those denoted by the arrows in Fig. 1.4-
4(a). The four distances may alternatively be established by tracing two rays, parallel
to the optical axis but pointing in opposite directions, through the system. The ABCD
parameters may be determined from f, f’, h, and b’ by inverting (1.4-14) and (1.4-15).

| Z |

(b)

Figure 1.4-4 (a) Paraxial system representing an arbitrary set of cascaded optical elements. The
designations F', V, and H represent the focal, vertex, and principal points, respectively, whereas f and
h represent the focal length and distance from the principal point to the vertex, respectively. Primed
quantities refer to the input plane while unprimed quantities refer to the output plane. (b) Imaging
with this system. The refractive indices of the media in which the optical system is embedded are
denoted n; and no, as shown.

The imaging condition is determined by considering the geometry portrayed in
Fig. 1.4-4(b). Since so/f = f'/s1, the imaging condition is simply s1s; = ff’, or
equivalently (z; — f')(z2 — f) = ff, which leads to

!
LA (1.4-16)
Z1 z92

If the refractive indices of the media within which the system is embedded are equal,

then det[M] = 1 and, in accordance with (1.4-15), we have f’ = f. The imaging
condition in (1.4-16) then reduces to the familiar imaging equation 1 /2y +1/zo =1/ f
[see (1.2-4)]; note, however, that here the distances z; and z5 are measured from the
principal points H' and H, respectively.

. _________________________________________________________________________|
EXERCISE 1.4-5

Imaging with a Thick Lens. Consider a glass lens of refractive index n, thickness d, and two
spherical surfaces of equal radii R. Determine the ray-transfer matrix of the lens assuming that it is
placed in air (unity refractive index). Show that the back and front focal lengths are equal (f' = f)
and that the principal points are located at equal distances from the vertices (b’ = h), where

I _ (n-1f, n-1d

i {2 - R} (1.4-17)
B (n—1)fd

h= (1.4-18)

Demonstrate that the transfer matrix of the system between two conjugate planes at distances z; and
zy from the principal points of the lens (i.e., at distances dy = z; — h' and do = 2z, — h from the
vertices) that satisfies the imaging equation yields B = 0, indicating that it does indeed satisfy the
imaging condition [see Exercise 1.4-1(b)].
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D. Periodic Optical Systems

A periodic optical system is a cascade of identical unit systems. An example is a
sequence of equally spaced identical relay lenses used to guide light, as shown in
Fig. 1.2-19(a). Another example is the reflection of light between two mirrors that
form an optical resonator (see Sec. 11.2A); in that case, the ray repeatedly traverses
the same unit system (a round trip of reflections). Even a homogeneous medium, such
as a glass fiber, may be considered as a periodic system if it is divided into contiguous
identical segments of equal length. We proceed to formulate a general theory of ray
propagation in periodic optical systems using matrix methods.

Difference Equation for the Ray Position

A periodic system is composed of a cascade of identical unit systems (stages), each
with a ray-transfer matrix (A, B, C, D), as shown in Fig. 1.4-5. A ray enters the system
with initial position y, and slope 6. To determine the position and slope (Y, 0., ) of
the ray at the exit of the mth stage, we apply the ABC D matrix m times,

ym| _ [A B]" [wo
|:0m:| = [C D] {90} . (1.4-19)
We can also iteratively apply the relations

Ym+1 = AYm + BO,, (1.4-20)
Oms1 = Cym + DO, (1.4-21)

to determine (y1,671) from (yo,8), then (y2,62) from (y1,6:), and so on, using a
software routine.

&ABZ]»AB—> | A B LA B DA B | S
90CD1CD c D CngCDmH
1 2 m-1 m m+ 1

Figure 1.4-5 A cascade of identical optical systems.

It is of interest to derive equations that govern the dynamics of the position y,,,
m = 0,1,..., irrespective of the angle ,,. This is achieved by eliminating 8,,, from
(1.4-20) and (1.4-21). From (1.4-20)

m - A m
0, — %. (1.4-22)

Replacing m with m + 1 in (1.4-22) yields

m - A m
Oyt = M%Ry“ (1.4-23)

Substituting (1.4-22) and (1.4-23) into (1.4-21) gives

Ym+2 = 2bym+1 - F2ym7 (14—24)
Recurrence Relation
for Ray Position
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where AL D
b— ;; (1.4-25)
F? = AD — BC = det[M], (1.4-26)

and det[M] is the determinant of M.

Equation (1.4-24) is a linear difference equation governing the ray position y,,. It
can be solved iteratively by computing y, from gy and y;, then y3 from y; and y-, and
so on. The quantity y; may be computed from yq and 6 by use of (1.4-20) with m = 0.

Itis useful, however, to derive an explicit expression for ¥, by solving the difference
equation (1.4-24). As with linear differential equations, a solution satisfying a linear
difference equation and the initial conditions is a unique solution. It is therefore appro-
priate to make a judicious guess for the solution of (1.4-24). We use a trial solution of
the geometric form

Ym = Yoh™, (1.4-27)

where h is a constant. Substituting (1.4-27) into (1.4-24) immediately shows that the
trial solution is suitable provided that h satisfies the quadratic algebraic equation

h? — 2bh 4+ F? =0, (1.4-28)

from which
h=b+xjVF2%—b2 (1.4-29)

The results can be presented in a more compact form by defining the variable
@ =cos L (b/F), (1.4-30)

so that b = F cos, vV F? — b?> = Fsiny, and therefore h = F(cosp £ jsing) =
F exp(+jp), whereupon (1.4-27) becomes y,,, = yoF"™ exp(Ejmey).

A general solution may be constructed from the two solutions with positive and
negative signs by forming their linear combination. The sum of the two exponential
functions can always be written as a harmonic (circular) function, so that

Ym = YmaxF" sin(me + ¢o), (1.4-31)

where ymax and g are constants to be determined from the initial conditions ¥y and
y1. In particular, setting m = 0 we obtain ymax = Yo/ sin .

The parameter F' is related to the determinant of the ray-transfer matrix of the unit
system by F' = y/det[M)]. It can be shown that regardless of the unit system, det[M] =
ny/ng, where ny and ny are the refractive indices of the initial and final sections
of the unit system. This general result is easily verified for the ray-transfer matrices
of all the optical components considered in this section. Since the determinant of a
product of two matrices is the product of their determinants, it follows that the relation
det[M] = ny /ns is applicable to any cascade of these optical components. For exam-
ple, if det[M;] = ny /ng and det[Mg] = no/ns, then det[MaM;] = (ng/ng)(n1/n2) =
n1/n3. In most applications the first and last stages are air (n = 1) so that ny = na,
which leads to det[M] = 1 and F' = 1. In that case the solution for the ray position is

Ym = Ymax SIN(Me + o). (1.4-32)
Ray Position
Periodic System




1.4 MATRIXOPTICS 35

We shall henceforth assume that ' = 1. The corresponding solution for the ray angle
is obtained by use of the relation 6,, = (y;,+1 — Aym)/B, which is derived from
(1.4-20).

Condition for a Harmonic Trajectory

For y,,, to be a harmonic (instead of hyperbolic) function, ¢ = cos~! b must be real.
This requires that

b|<1 or iA4+D|<1 (1.4-33)
Stability Condition

If, instead, |b| > 1, ¢ is then imaginary and the solution is a hyperbolic function (cosh
or sinh), which increases without bound, as illustrated in Fig. 1.4-6(a). A harmonic
solution ensures that 1, is bounded for all m, with a maximum value of y,,,.. The
bound |b] < 1 therefore provides a condition of stability (boundedness) of the ray
trajectory.

Since y,,, and y,,+1 are both harmonic functions, so too is the ray angle corre-
sponding to (1.4-32), by virtue of (1.4-22) and trigonometric identities. Thus, 6,, =
Omax sin(me + ¢1), where the constants 0y, and ¢, are determined by the initial
conditions. The maximum angle 6,,,,, must be sufficiently small so that the paraxial
approximation, which underlies this analysis, is applicable.
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Figure 1.4-6 Examples of trajectories in periodic optical systems: (a) unstable trajectory (b >
1); (b) stable and periodic trajectory (p = 67/11; period = 11 stages); (c) stable but nonperiodic
trajectory (¢ = 1.5).

3Y

Condition for a Periodic Trajectory

The harmonic function (1.4-32) is periodic in m if it is possible to find an integer s such
that ¥,,4+s = Yy, for all m. The smallest integer is the period. The ray then retraces its
path after s stages. This condition is satisfied if s¢p = 2mq, where ¢ is an integer.
Thus, the necessary and sufficient condition for a periodic trajectory is that ¢ /27 is a
rational number ¢/s. If o = 67/11, for example, then ¢ /27 = 3/11 and the trajectory
is periodic with period s = 11 stages. This case is illustrated in Fig. 1.4-6()). Periodic
optical systems will be revisited in Chapter 7.
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Summary

A paraxial ray (0,.x << 1) traveling through a cascade of identical unit optical
systems, each with a ray-transfer matrix with elements (A, B, C, D) such that
AD — BC = 1, follows a harmonic (and therefore bounded) trajectory if the
condition |1 (A+ D)| < 1, called the stability condition, is satisfied. The position
at the mth stage is then ¥, = Ymaxsin(me + @o), m = 0,1,2,..., where
© = cos™ [ (A+ D)] The constants yiax and ¢ are determined from the initial
positions yg and y; = Ayy + By, where 90 is the initial ray inclination. The
ray angles are related to the positions by 6,,, = (Ym+1 — Ay, )/B and follow a
harmonic function 6,,, = Opax sin(mey + ¢1). The ray trajectory is periodic with
period s if /27 is a rational number g/ s.

EXAMPLE 1.4-1. A Sequence of Equally Spaced Identical Lenses. A set of identical
lenses of focal length f separated by distance d, as shown in Fig. 1.4-7, may be used to relay light
between two locations. The unit system, a distance of d of free space followed by a lens, has a
ray- transfer matrix given by (1.4-12); A=1,B =d, C = —1/f, D =1 — d/f. The parameter
b= 1(A+ D) = 1— d/2f and the determinant is unity. The condition for a stable ray trajectory,
o] < Tor—1 < b < 1, is therefore

0<d<4f, (1.4-34)

so that the spacing between the lenses must be smaller than four times the focal length. Under this
condition the positions of paraxial rays obey the harmonic function

Ym = Ymax SIN(Mp + o), @ =cos! (1 — %) (1.4-35)
I
i Figure 1.4-7 A periodic sequence of
! v: : . lenses.

When d = 2f, ¢ = 7/2, and /21 = 1/4, so that the trajectory of an arbitrary ray is periodic with
period equal to four stages. When d = f, ¢ = 7/3, and /27 = 1/6, so that the ray trajectory is
periodic and retraces itself each six stages. These cases are illustrated in Fig. 1.4-8.
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Figure 1.4-8 Examples of stable ray trajectories in a periodic lens system: (a) d = 2f; (b)) d = f.
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EXERCISE 1.4-6

A Periodic Set of Pairs of Different Lenses. Examine the trajectories of paraxial rays
through a periodic system comprising a sequence of lens pairs with alternating focal lengths f; and
f2, as shown in Fig. 1.4-9. Show that the ray trajectory is bounded (stable) if

d d
0< <1 - ﬂ) (1 - R) <1. (1.4-36)

| fl/\ fz/\il h /\ fz/\“ fl/\ f
| | o

— d —|«— d —|«— d —|~—d —|~— d —]—d —|
Figure 1.4-9 A periodic sequence of lens pairs.

EXERCISE 1.4-7

An Optical Resonator.  Paraxial rays are reflected repeatedly between two spherical mirrors of
radii R, and R, separated by a distance d (Fig. 1.4-10). Regarding this as a periodic system whose
unit system is a single round trip between the mirrors, determine the condition of stability for the ray
trajectory. Optical resonators will be studied in detail in Chapter 11.

Figure 1.4-10 The optical resonator as a
i periodic optical system.
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PROBLEMS

1.1-2  Fermat’s Principle with Maximum Time. Consider the elliptical mirror shown in Fig. P1.1-
2(a), whose foci are denoted A and B. Geometrical properties of the ellipse dictate that the
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pathlength AP B is identical to the pathlengths AP’ B and AP" B for adjacent points on the

ellipse.

(a) Now consider another mirror with a radius of curvature smaller than that of the elliptical
mirror, but tangent to it at P, as displayed in Fig. P1.1-2(b). Show that the path APB
followed by the light ray in traveling between points A and B is a path of maximum time,
i.e., is greater than the adjacent paths AQ’'B and AQ"B.

(b) Finally, consider a mirror that crosses the ellipse, but is tangent to it at P, as illustrated
in Fig. P1.1-2(c). Show that the possible ray paths AQ’'B, APB, and AQ" B exhibit a
point of inflection.

(@)

Figure P1.1-2 (a) Reflection from an elliptical mirror. (b) Reflection from an inscribed
tangential mirror with greater curvature. (c¢) Reflection from a tangential mirror with
curvature changing from concave to convex.

Transmission through Planar Plates.

(a) Use Snell’s law to show that a ray entering a planar plate of thickness d and refractive
index n; (placed in air; n & 1) emerges parallel to its initial direction. The ray need not
be paraxial. Derive an expression for the lateral displacement of the ray as a function of
the angle of incidence 6. Explain your results in terms of Fermat’s principle.

(b) If the plate instead comprises a stack of N parallel layers stacked against each other
with thicknesses di, d>,...,dx and refractive indices nq,ns,...,ny, show that the
transmitted ray is parallel to the incident ray. If 6,, is the angle of the ray in the mth
layer, show that n,, sinf,, =sinf, m =1,2,....

Lens in Water. Determine the focal length f of a biconvex lens with radii 20 cm and 30 cm

and refractive index n = 1.5. What is the focal length when the lens is immersed in water

(n=14/3)?

Numerical Aperture of a Cladless Fiber. Determine the numerical aperture and the accep-

tance angle of an optical fiber if the refractive index of the core is n; = 1.46 and the cladding

is stripped out (replaced with air ny ~ 1).

Fiber Coupling Spheres. Tiny glass balls are often used as lenses to couple light into and

out of optical fibers. The fiber end is located at a distance f from the sphere. For a sphere of

radius @ = 1 mm and refractive index n = 1.8, determine f such that a ray parallel to the
optical axis at a distance y = 0.7 mm is focused onto the fiber, as illustrated in Fig. P1.2-10.

‘«TZa—» ! ’-7

Fiber

Lens

Figure P1.2-10 Focusing light into an optical fiber with a spherical glass ball.

Extraction of Light from a High-Refractive-Index Medium. Assume that light is gener-
ated isotropically in all directions inside a material of refractive index n = 3.7 cut in the
shape of a parallelepiped and placed in air (n = 1) (see Exercise 1.2-6).

(a) If a reflective material acting as a perfect mirror is coated on all sides except the front
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side, determine the percentage of light that may be extracted from the front side.

(b) If another transparent material of refractive index n = 1.4 is placed on the front side,
would that help extract some of the trapped light?

Axially Graded Plate. A plate of thickness d is oriented normal to the z axis. The refractive
index n(z) is graded in the z direction. Show that a ray entering the plate from air at an
incidence angle 6 in the y—z plane makes an angle 6(z) at position z in the medium given
by n(z) sin 0(z) = sin 6. Show that the ray emerges into air parallel to the original incident
ray. Hint: You may use the results of Prob. 1.2-7. Show that the ray position y(z) inside the
plate obeys the differential equation (dy/dz)? = (n?/sin®§ — 1)1

Ray Trajectories in GRIN Fibers. Consider a graded-index optical fiber with cylindrical
symmetry about the z axis and refractive index n(p), p = /x2 + y2. Let (p, ¢, z) be the
position vector in a cylindrical coordinate system. Rewrite the paraxial ray equations, (1.3-
4), in a cylindrical system and derive differential equations for p and ¢ as functions of z.

Ray-Transfer Matrix of a Lens System. Determine the ray-transfer matrix for an optical
system made of a thin convex lens of focal length f and a thin concave lens of focal length
— f separated by a distance f. Discuss the imaging properties of this composite lens.

Ray-Transfer Matrix of a GRIN Plate. Determine the ray-transfer matrix of a SELFOC plate
li.c., a graded-index material with parabolic refractive index n(y) ~ no(1 — Ja?y?)] of
thickness d.

The GRIN Plate as a Periodic System. Consider the trajectories of paraxial rays inside
a SELFOC plate normal to the z axis. This system may be regarded as a periodic system
comprising a sequence of identical contiguous plates, each of thickness d. Using the result of
Prob. 1.4-9, determine the stability condition of the ray trajectory. Is this condition dependent
on the choice of d?

Recurrence Relation for a Planar-Mirror Resonator. Consider a planar-mirror optical
resonator, with mirror separation d, as a periodic optical system. Determine the unit ray-
transfer matrix for this system, demonstrating that b = 1 and F' = 1. Show that there is then
only a single root to the quadratic equation (1.4-28) so that the ray position must then take
the form o + m [, where a and 3 are constants.

4 x 4 Ray-Transfer Matrix for Skewed Rays. Matrix methods may be generalized to
describe skewed paraxial rays in circularly symmetric systems, and to astigmatic (non-
circularly symmetric) systems. A ray crossing the plane z = 0 is generally characterized by
four variables — the coordinates (x,y) of its position in the plane, and the angles (6,,6,)
that its projections in the x—z and y—z planes make with the z axis. The emerging ray is
also characterized by four variables that are linearly related to the initial four variables. The
optical system may then be characterized completely, within the paraxial approximation, by
a4 x 4 matrix.

X

(a) Determine the 4 X 4 ray-transfer matrix of a distance d in free ?
space.

(b) Determine the 4 x 4 ray-transfer matrix of a thin cylindrical lens
with focal length f oriented in the y direction. The cylindrical lens
has focal length f for rays in the y—z plane, and no focusing power
for rays in the x—z plane. Z
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Light propagates in the form of waves. In free space, light waves travel with a constant
speed, ¢, = 3.0 x 10® m/s (30 cm/ns or 0.3 mm/ps or 0.3 pm/fs or 0.3 nm/as). As
illustrated in Fig. 2.0-1, the range of optical wavelengths comprises three principal
sub-regions: infrared (0.760 to 300 pm), visible (390 to 760 nm), and ultraviolet (10 to
390 nm). The corresponding range of optical frequencies stretches from 1 THz in the
far-infrared to 30 PHz in the extreme ultravjolet.
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Figure 2.0-1 Optical frequencies and wavelengths. The infrared (IR) region of the spectrum
comprises the near-infrared (NIR), mid-infrared (MIR), and far-infrared (FIR) bands. The MWIR
and LWIR bands both lie within the MIR band; radiation in these regions can penetrate the
atmosphere. The ultraviolet (UV) region comprises the near-ultraviolet (NUV), mid-ultraviolet
(MUYV) or deep-ultraviolet (DUV), far-ultraviolet (FUV), and extreme-ultraviolet (EUV or XUV)
bands. The vacuum ultraviolet (VUV) consists of the FUV and EUV bands. The ultraviolet region is
also divided into the UVA, UVB, and UVC bands, which have chemical and biological significance.
The infrared, visible, and ultraviolet regions are gathered under the rubric “optical” since they make
use of similar types of components (e.g., lenses and mirrors). The terahertz (THz) region occupies
frequencies that stretch from 0.3 to 3 THz, corresponding to wavelengths that extend from 1 mm to
100 pim; the THz region partially overlaps the FIR band. For X-ray wavelengths, see Fig. 16.3-7.

The wave theory of light encompasses the ray theory (Fig. 2.0-2). Strictly speaking,
ray optics is the limit of wave optics when the wavelength is infinitesimally short.
However, the wavelength need not actually be zero for the ray-optics theory to be
useful. As long as the light waves propagate through and around objects whose dimen-
sions are much greater than the wavelength, the ray theory suffices for describing most
optical phenomena. Because the wavelength of visible light is much smaller than the
dimensions of the usual objects we encounter on a daily basis, the manifestations of
the wave nature of light are usually not apparent without careful observation.

Wave Optics
Figure 2.0-2 Wave optics encompasses ray

optics. Ray optics is the limit of wave optics when
the wavelength is very short.

Ray Optics

42



2.1 POSTULATES OF WAVE OPTICS 43

This Chapter

In the context of wave optics, light is described by a scalar function, called the wave-
function, that obeys a second-order differential equation known as the wave equation.
A discussion of the physical significance of the wavefunction is deferred to Chap-
ter 5, where we consider electromagnetic optics; it will become apparent there that
the wavefunction represents any of the components of the electric or magnetic fields.
The wave equation, together with a relation between the optical power density and
the wavefunction, constitute the postulates of the scalar-wave model of light known
as wave optics. The consequences of these simple postulates are manifold and far
reaching. Wave optics constitutes a basis for describing a host of optical phenomena
that fall outside the confines of ray optics, including interference and diffraction, as
will become clear in this and the following two chapters (Chapters 3 and 4).

Wave optics does have its limitations, however. It is not capable of providing a
complete picture of the reflection and refraction of light at the boundaries between
various media, nor can it accommodate optical phenomena that require a vector formu-
lation, such as polarization effects. Those issues will be considered from a fundamental
perspective in Chapters 5-8, as will the conditions under which scalar wave optics
provides a good approximation to electromagnetic optics.

The chapter begins with the postulates of wave optics (Sec. 2.1). In Secs. 2.2-2.5
we consider monochromatic waves. Elementary waves, such as the plane wave, the
spherical wave, and paraxial waves are introduced in Sec. 2.2. Section 2.3 establishes
how ray optics is formally derived from wave optics. The interaction of optical waves
with simple optical components such as mirrors, prisms, lenses, and various graded-
index elements is examined in Sec. 2.4. Interference, an important manifestation of
the wave nature of light, is the subject of Secs. 2.5 and 2.6, where polychromatic and
pulsed light are discussed.

2.1 POSTULATES OF WAVE OPTICS

The Wave Equation

Light propagates in the form of waves. In free space, light waves travel with speed c,. A
homogeneous transparent medium such as glass is characterized by a single constant,
its refractive index n (> 1). In a medium of refractive index n, light waves travel with
a reduced speed

c=—. (2.1-1)
n Speed of Light
in a Medium

An optical wave is described mathematically by a real function of positionr = (z, y, 2)
and time ¢, denoted u(r, t) and known as the wavefunction. It satisfies a partial differ-
ential equation called the wave equation,

1 0%u

v - 2t
c? Ot?

=0, (2.1-2)
Wave Equation

where V2 is the Laplacian operator, which is V? = 0?/02% + 0%/0y* + 0?/02? in
Cartesian coordinates. Any function that satisfies (2.1-2) represents a possible optical
wave.
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Because the wave equation is linear, the principle of superposition applies: if
uy(r, t) and us(r, t) represent possible optical waves, then u(r,t) = uq(r,t) +ua(r, t)
also represents a possible optical wave.

At the boundary between two different media, the wavefunction changes in a way
that depends on their refractive indices. However, the laws that govern this change
depend on the physical significance assigned to the wavefunction which, as will be
seen in Chapter 5, is an electromagnetic-field component. The underlying physical
origin of the refractive index derives from electromagnetic optics (Sec. 5.5B).

The wave equation is also approximately applicable for media with refractive in-
dices that are position dependent, provided that the variation is slow within distances
of the order of a wavelength. The medium is then said to be locally homogeneous.
For such media, n in (2.1-1) and c in (2.1-2) are simply replaced by the appropriate
position-dependent functions n(r) and ¢(r), respectively.

Intensity, Power, and Energy
The optical intensity I(r,t), defined as the optical power per unit area (units of
watts/ cm?), is proportional to the average of the squared wavefunction:

I(r,t) = 2(u?(r,t)). (2.1-3)
Optical Intensity

The operation () denotes averaging over a time interval much longer than the time of
an optical cycle, but much shorter than any other time of interest (such as the duration
of a pulse of light). The duration of an optical cycle is very short: 2 x 107 s = 2fs
for light of wavelength 600 nm, as an example. This concept is further elucidated in
Sec. 2.6. The quantity I(r, ) is sometimes also called the irradiance.

Although the physical significance of the wavefunction u(r, ¢) has not been explic-
itly specified, (2.1-3) represents its connection with a physically measurable quantity
— the optical intensity. There is some arbitrariness in the definition of the wavefunction
and its relation to the intensity. For example, (2.1-3) could have been written without
the factor 2 and the wavefunction scaled by a factor v/2, in which case the intensity
would remain the same. The choice of the factor 2 in (2.1-3) will later prove convenient,
however.

The optical power P(¢) (units of watts) flowing into an area A normal to the direc-
tion of propagation of light is the integrated intensity

P(t) = / I(r,t)dA. (2.1-4)
A
The optical energy E (units of joules) collected in a given time interval is the integral

of the optical power over the time interval.

2.2 MONOCHROMATIC WAVES

A monochromatic wave is represented by a wavefunction with harmonic time depen-
dence,

u(r,t) = a(r) cos[2mvt + ¢(r)], (2.2-1)
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as illustrated in Fig. 2.2-1(a), where

a(r) = amplitude
¢(r) = phase
v = frequency (cycles/s or Hz)
= 27 = angular frequency (radians/s or s 1)
T =1/v =27 /w = period (s).
Both the amplitude and phase are generally position dependent, but the wavefunction

is a harmonic function of time with frequency v at all positions. Optical waves have
frequencies that lie in the range 3 x 10! to 3 x 10'® Hz, as depicted in Fig. 2.0-1.

u(r)
T Vv

T AT
VYV

(a) (b)

Figure 2.2-1 Representations of a monochromatic wave at a fixed position r: (a) the wavefunction
u(t) is a harmonic function of time; (b) the complex amplitude U = aexp(jp) is a fixed phasor;
(c) the complex wavefunction U (t) = U exp(j2mvt) is a phasor rotating with angular velocity w =
2mv radians/s.

Re{U}

A. Complex Representation and the Helmholtz Equation

Complex Wavefunction

It is convenient to represent the real wavefunction u(r,¢) in (2.2-1) in terms of a
complex function

U(r,t) = a(r) exp[jp(r)] exp(j2nvt), (2.2-2)
so that
u(r,t) =Re{U(r,t)} = 3[U(r,t) + U*(r,1)], (2.2-3)

where the symbol * signifies complex conjugation. The function U (r, ¢), known as the
complex wavefunction, describes the wave completely; the wavefunction u(r, ) is
simply its real part. Like the wavefunction u(r, t), the complex wavefunction U (r,t)
must also satisfy the wave equation

VU - <—=0. (2.2-4)
¢ Wave Equation

The two functions satisfy the same boundary conditions.
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Complex Amplitude
Equation (2.2-2) may be written in the form

U(r,t) = U(r) exp(j2nvt), (2.2-5)

where the time-independent factor U(r) = a(r) exp[jp(r)] is referred to as the com-
plex amplitude of the wave. The wavefunction u(r, t) is therefore related to the com-
plex amplitude by
u(r,t) = Re{U(r) exp(j2nvt)} = 5[U(r) exp(j2nvt) + U*(r) exp(—j2nvt)] .
(2.2-6)
At a given position r, the complex amplitude U (r) is a complex variable [depicted
in Fig. 2.2-1(b)] whose magnitude |U(r)| = a(r) is the amplitude of the wave and
whose argument arg{U (r)} = ¢(r) is the phase. The complex wavefunction U (r, t),
shown in Fig. 2.2-1(¢), is represented graphically by a phasor that rotates with angular
velocity w = 27w radians/s. Its initial value at ¢ = 0 is the complex amplitude U (r).

1
2

The Helmholtz Equation
Substituting U(r,t) = U(r) exp(j27vt) from (2.2-5) into the wave equation (2.2-4)
leads to a differential equation for the complex amplitude U (r):

VU + kU =0, (2.2-7)
Helmholtz Equation

which is known as the Helmholtz equation, where

g 2™ _
C

(2.2-8)

w
¢ Wavenumber

is referred to as the wavenumber. Different solutions are obtained from different
boundary conditions.

Optical Intensity
The optical intensity is determined by inserting (2.2-1) into (2.1-3):

2u?(r,t) = 2a°(r) cos® [2nut + ©(r)]
= |U(r)]* {1 + cos (2 [2mvt + ¢(r)])} . (2.2-9)

Averaging (2.2-9) over a time longer than an optical period, 1/v, causes the second
term of (2.2-9) to vanish, whereupon

I(r) =|U(r)]*. (2.2-10)
Optical Intensity

The optical intensity of a monochromatic wave is the absolute square of its
complex amplitude.

The intensity of a monochromatic wave does not vary with time.
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Wavefronts

The wavefronts are the surfaces of equal phase, ¢(r) = constant. The constants are
often taken to be multiples of 27 so that ¢(r) = 2mq, where ¢ is an integer. The
wavefront normal at position r is parallel to the gradient vector V(r) (a vector that
has components dp/dx, Op/dy, and Op/Jz in a Cartesian coordinate system). It
represents the direction at which the rate of change of the phase is maximum.

Summary

® A monochromatic wave of frequency v is described by a complex wavefunction
U(r,t) = U(r) exp(j2nvt), which satisfies the wave equation.

m The complex amplitude U (r) satisfies the Helmholtz equation; its magnitude
|U(r)| and argument arg{U(r)} are the amplitude and phase of the wave,
respectively. The optical intensity is I(r) = |U(r)|>. The wavefronts are the
surfaces of constant phase, p(r) = arg{U(r)} = 27q (¢ = integer).

» The wavefunction u(r, t) is the real part of the complex wavefunction, u(r,t) =
Re{U(r,t)}. The wavefunction also satisfies the wave equation.

B. Elementary Waves

The simplest solutions of the Helmholtz equation in a homogeneous medium are the
plane wave and the spherical wave.

The Plane Wave

The plane wave has complex amplitude
U(r) = Aexp(—jk-r) = Aexp [—j(kyx + kyy + k. 2)] , (2.2-11)

where A is a complex constant called the complex envelope that represents the strength
of the wave, and k = (k, k,, k) is called the wavevector.” Substituting (2.2-11) into
the Helmholtz equation (2.2-7) yields the relation k2 + kg + k2 = k2, so that the
magnitude of the wavevector k is the wavenumber k.

Since the phase of the wave is arg{U (r)} = arg{ A} — k-r, the surfaces of constant
phase (wavefronts) obey k- r = k,x + kyy+k.z = 2mq+arg{ A} with ¢ integer. This
is the equation describing parallel planes perpendicular to the wavevector k (hence the
name “plane wave”). Consecutive planes are separated by a distance A = 27 /k, so that

A= —, (2.2-12)
Wavelength

where ) is called the wavelength. The plane wave has a constant intensity I(r) = |A|?
everywhere in space so that it carries infinite power. This wave is clearly an idealization
since it exists everywhere and at all times.

" The complex wavefunction for a monochromatic plane wave is written in a form commonly used in electrical
engineering: U(r,t) = A exp[j(wt — k - r)]. In the physics literature, this same wave is usually written as
Ul(r,t) = A exp|[—i(wt—k-r)]; correspondence is attained by simply replacing i with —j, where i = j = /—1.
This choice has no bearing on the final result, as is evidenced by observing that the wavefunction u(r, t) in (2.2-
13) takes the form of a cosine function, for which cos(z) = cos(—xz).
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If the z axis is taken along the direction of the wavevector k, then U(r) =
Aexp(—jkz) and the corresponding wavefunction obtained from (2.2-6) is

u(r,t) = |A| cos [2mvt — kz + arg{A}| = |A| cos 2nv(t — z/c) + arg{A}] .

(2.2-13)

The wavefunction is therefore periodic in time with period 1/v, and periodic in space
with period 27 /k, which is equal to the wavelength A (see Fig. 2.2-2). Since the phase
of the complex wavefunction, arg{U (r,t)} = 27v(t — z/c) + arg{ A}, varies with
time and position as a function of the variable ¢t — z/c (see Fig. 2.2-2), c is called the
phase velocity of the wave.

XA — A | u(x, z, 1))

u(x, z, 1)

A —| 1/ |—

O AAAAAD
17 | VVVVVY

~ Y

Figure 2.2-2 The wavefunction of a plane wave traveling in the z direction, schematically drawn
as a graded red pattern, is a periodic function of z with spatial period A, and a periodic function of
t with temporal period 1/v. The surfaces of constant phase (wavefronts) comprise a parallel set of
planes normal to the z axis. The wavelengths displayed in Fig. 2.0-1 are in free space (A = A,).

In a medium of refractive index n, the wave has phase velocity ¢ = ¢,/n and
wavelength A = ¢/v = ¢,/nv, so that A = \,/n where \, = ¢,/v is the wavelength
in free space. Thus, for a given frequency v, the wavelength in the medium is reduced
relative to that in free space by the factor n. As a consequence, the wavenumber
k = 2w /X is increased relative to that in free space (k, = 27/\,) by the factor n.

As a monochromatic wave propagates through media of different refractive in-
dices its frequency remains the same, but its velocity, wavelength, and wavenum-
ber are altered:

Co Aok, (2.2-14)

n n

The Spherical Wave

Another simple solution of the Helmholtz equation (in spherical coordinates) is the
spherical wave complex amplitude

Ur) = % exp(—jkr), (2.2-15)

where 7 is the distance from the origin, ¥ = 27v/¢c = w/c is the wavenumber, and
Ay is a constant. The intensity I(r) = |Ag|?/r? is inversely proportional to the square
of the distance. Taking arg{Ao} = 0 for simplicity, the wavefronts are the surfaces
kr = 2mq or r = g\, where q is an integer. These are concentric spheres separated by
aradial distance A = 27 /k that advance radially at the phase velocity ¢ (Fig. 2.2-3).
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Figure 2.2-3 Cross section of the wave-
function of a spherical wave. The associated
wavefronts are a set of concentric spheres.

A spherical wave originating at the position ry has a complex amplitude U(r) =
(Ag/|r —ro|) exp(—jk |r — rg|). Its wavefronts are spheres centered about ry. A wave
with complex amplitude U(r) = (Ag/r)exp(+jkr) is a spherical wave traveling
inwardly (toward the origin) instead of outwardly (away from the origin).

Fresnel Approximation of the Spherical Wave: The Paraboloidal Wave
Let us examine a spherical wave (originating at r = 0) at points r = (z, vy, ) that are
sufficiently close to the z axis but far from the origin, so that /22 + y? < z. The
paraxial approximation of ray optics (Sec. 1.2) would be applicable were these points
the endpoints of rays beginning at the origin. Denoting 6% = (22 + 3?)/2% < 1, we
use an approximation based on the Taylor-series expansion:

92 4
T:\/x2+y2+22:z\/1+92:z<1+28+-">

62 2 2
mo(14 L) s Y (2.2-16)
2 2z

This expression, r &~ z + (z® + y?)/2z, is now substituted into the phase of U(r)
in (2.2-15). A less accurate expression, r ~ z, can be substituted for the magnitude
since it is less sensitive to errors than is the phase. The result is known as the Fresnel
approximation of a spherical wave:

(2.2-17)
Fresnel Approximation
of a Spherical Wave

x? +y2}

AO
~— —jk —jk
U(r) . exp(—jkz)exp [ Tk—5,

This approximation plays an important role in simplifying the theory of optical-wave
transmission through apertures (diffraction), as discussed in Chapter 4.

The complex amplitude in (2.2-17) may be viewed as representing a plane wave
Ag exp(—jkz) modulated by the factor (1/z) exp|—jk(x? + y?)/2z], which involves
the phase k(22 + 3?)/2z. This phase factor serves to bend the planar wavefronts of the
plane wave into paraboloidal surfaces (Fig. 2.2-4), since the equation of a paraboloid
of revolution is (22 + 3?)/z = constant. In this region the spherical wave is well
approximated by a paraboloidal wave. When z becomes very large, the paraboloidal
phase factor in (2.2-17) approaches 0 so that the overall phase of the wave becomes
kz. Since the magnitude Ay/z varies slowly with z, the spherical wave eventually
approaches the plane wave exp(—jkz), as illustrated in Fig. 2.2-4.

The condition of validity for the Fresnel approximation is not simply that % < 1,
however. Although the third term of the series expansion, #*/8, may be very small
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X = Paraboloidal
—_——
Figure 2.2-4 A spherical wave may

/

/ f be approximated at points near the z
ffa\\ axis and sufficiently far from the origin
&y z by a paraboloidal wave. For points very

\\ far from the origin, the spherical wave

approaches a plane wave.
Spherical = Planar

in comparison with the second and first terms, when multiplied by kz it can become
comi)arable to 7r The agprommatlon used in the foregoing is therefore valid when
k20 /8 < 7, or (x2 +y*)? < 4z3\. For points (x, ) lymg within a circle of radius a
centered about the z axis, the validity condition is thus a* < 423\ or

Ne62,
4

<1, (2.2-18)

where 6,,, = a/z is the maximum angle and

N

Np = — (2.2-19)
Fresnel Number

is known as the Fresnel number.

|
EXERCISE 2.2-1

Validity of the Fresnel Approximation. Determine the radius of a circle within which a spher-
ical wave of wavelength A = 633 nm, originating at a distance 1 m away, may be approximated by a
paraboloidal wave. Determine the maximum angle 6,,, and the Fresnel number Np.

C. Paraxial Waves

A wave is said to be paraxial if its wavefront normals are paraxial rays. One way of
constructing a paraxial wave is to start with a plane wave A exp(—jkz), regard it as a
“carrier” wave, and modify or “modulate” its complex envelope A, making it a slowly
varying function of position, A(r), so that the complex amplitude of the modulated
wave becomes

U(r) = A(r) exp(—jkz). (2.2-20)

The variation of the envelope A(r) and its derivative with position z must be slow
within the distance of a wavelength A = 27 /k so that the wave approximately main-
tains its underlying plane-wave nature.

The wavefunction of a paraxial wave, u(r,t) = |A(r)| cos[2mvt—kz+arg{A(r)}],
is sketched in Fig. 2.2-5(a) as a function of z att = 0 and x = y = 0. It is a sinusoidal
function of z with amplitude |A(0,0, z)| and phase arg{A(0,0, z)}, both of which
vary slowly with z. Since the phase arg{ A(z,y, z)} changes little within the distance
of a wavelength, the planar wavefronts kz = 2mq of the carrier plane wave bend only
slightly, so that their normals form paraxial rays [Fig. 2.2-5(b)].
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Figure 2.2-5 (a) Wavefunction of a paraxial wave at point on the z axis as a function of the axial
distance z. (b) The wavefronts and wavefront normals of a paraxial wave in the x—z plane.

The Paraxial Helmholtz Equation

For the paraxial wave (2.2-20) to satisfy the Helmholtz equation (2.2-7), the complex
envelope A(r) must satisfy another partial differential equation that is obtained by
substituting (2.2-20) into (2.2-7). The assumption that A(r) varies slowly with respect
to z signifies that within a distance Az = A, the change A A is much smaller than A
itself, i.e., AA < A. This inequality of complex variables applies to the magnitudes
of the real and imaginary parts separately. Since AA = (0A/0z)Az = (0A/0z) A, it
follows that 0A/0z < A/\ = Ak/2m, so that

94 A, (2.2-21)
0z

The derivative 0A/0z itself must also vary slowly within the distance A, so that
0?A)0z* < kOA/9z, which provides

%A

— < KA. 2.2-22

02 < ( )
Substituting (2.2-20) into (2.2-7), and neglecting 92 A/9z% in comparison with k 0A /0=
or k%A, leads to a partial differential equation for the complex envelope A(r):

0A
V2A—j2k— =0, (2.2-23)
0z Paraxial Helmholtz Equation

where V2. = 02 /022 + 9% /0y is the transverse Laplacian operator.

Equation (2.2-23) is the slowly varying envelope approximation of the Helmholtz
equation. We shall simply call it the paraxial Helmholtz equation. It bears some
similarity to the Schrédinger equation of quantum physics [see (14.1-1)]. The simplest
solution of the paraxial Helmholtz equation is the paraboloidal wave (Exercise 2.2-2),
which is the paraxial approximation of a spherical wave. One of the most interesting
and useful solutions, however, is the Gaussian beam, to which Chapter 3 is devoted.

|
EXERCISE 2.2-2

The Paraboloidal Wave and the Gaussian Beam. Verify that a paraboloidal wave with
the complex envelope A(r) = (Ap/z)exp[—jk(z? + y?)/22] [see (2.2-17)] satisfies the paraxial
Helmbholtz equation (2.2-23). Show that the wave whose complex envelope is given by A(r) =
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[4:1/q(2)] exp|—jk(z? + y?)/2q(z)], where q(z) = = + jzo and 2o is a constant, also satisfies the
paraxial Helmholtz equation. This wave, called the Gaussian beam, is the subject of Chapter 3. Sketch
the intensity of the Gaussian beam in the plane z = 0.

*2.3 RELATION BETWEEN WAVE OPTICS AND RAY OPTICS

We proceed to show that ray optics emerges as the limit of wave optics when the
wavelength A, — 0. Consider a monochromatic wave of free-space wavelength A,
in a medium with refractive index n(r) that varies sufficiently slowly with position
so that the medium may be regarded as locally homogeneous. We write the complex
amplitude in (2.2-5) in the form

U(I‘) = a(r) eXp[*jk‘oS(I')] ) (2.3-1)

where a(r) is its magnitude, —k,S(r) is its phase, and k, = 27/, is the free-space
wavenumber. We assume that a(r) varies sufficiently slowly with r that it may be
regarded as constant within the distance of a wavelength .

The wavefronts are the surfaces S(r) = constant and the wavefront normals point
in the direction of the gradient vector VS. In the neighborhood of a given position rg,
the wave can be locally regarded as a plane wave with amplitude a(r() and wavevector
k with magnitude & = n(rg)k, and direction parallel to the gradient vector VS atrg. A
different neighborhood exhibits a local plane wave of different amplitude and different
wavevector.

In ray optics it was shown that the optical rays are normal to the equilevel sur-
faces of a function S(r) called the eikonal (see Sec. 1.3C). We therefore associate
the local wavevectors (wavefront normals) in wave optics with the ray of ray optics
and recognize that the function S(r), which is proportional to the phase of the wave,
is nothing but the eikonal of ray optics (Fig. 2.3-1). This association has a formal
mathematical basis, as will be demonstrated shortly. With this analogy, ray optics can
serve to determine the approximate effects of optical components on the wavefront
normals, as illustrated in Fig. 2.3-1.

v
e <€ == My
«“ ™ )

Figure 2.3-1 (a) The rays of ray optics are orthogonal to the wavefronts of wave optics (see also
Fig. 1.3-10). (b) The effect of a lens on rays and wavefronts.

The Eikonal Equation
Substituting (2.3-1) into the Helmholtz equation (2.2-7) provides

k2 [n* — |VSP] a+ V?a — jk, [2VS - Va+aV?S] =0, (2.3-2)

where a = a(r) and S = S(r). The real and imaginary parts of the left-hand side
of (2.3-2) must both vanish. Equating the real part to zero and using k, = 27/\,, we
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obtain

(2.3-3)

2 2
VS[2=n?+ (A) Via,

27 a

The assumption that a varies slowly over the distance )\, means that \2V?a/a < 1,
so that the second term of the right-hand side may be neglected in the limit A\, — 0,
whereupon

IVS|? ~ n?. (2.3-4)
Eikonal Equation

This is the eikonal equation (1.3-20), which may be regarded as the main postulate of
ray optics (Fermat’s principle can be derived from the eikonal equation and vice versa).

Thus, the scalar function S(r), which is proportional to the phase in wave optics, is
the eikonal of ray optics. This is also consistent with the observation that in ray optics
S(rp) — S(r4) equals the optical pathlength between the points r 4 and r .

The eikonal equation is the limit of the Helmholtz equation when A, — 0. Given
n(r) we may use the eikonal equation to determine S(r). By equating the imaginary
part of (2.3-2) to zero, we obtain a relation between a and S, thereby permitting us to
determine the wavefunction.

2.4 SIMPLE OPTICAL COMPONENTS

In this section we examine the effects of optical components, such as mirrors, trans-
parent plates, prisms, and lenses, on optical waves.

A. Reflection and Refraction

Reflection from a Planar Mirror

A plane wave of wavevector k; is incident onto a planar mirror located in free space
in the z = 0 plane. A reflected plane wave of wavevector ks is created. The angles
of incidence and reflection are 6; and 65, as illustrated in Fig. 2.4-1. The sum of the
two waves satisfies the Helmholtz equation if the wavenumber is the same, i.e., if
k1 = ko = k,. Certain boundary conditions must be satisfied at the surface of the
mirror. Since these conditions are the same at all points (z, y), it is necessary that the
phases of the two waves match, i.e.,

ki-r=ky-r forall r = (x,y,0). (2.4-1)

This phase-matching condition may also be regarded as matching of the tangential
components of the two wavevectors in the mirror plane. Substituting r = (z,y,0),
ki = (kosinfy,0,k,cos6;), and ko = (k,sinfs, 0, —k, cosfs) into (2.4-1), we
obtain k,xsinf; = k,xsin sy, from which ; = 6, so that the angles of incidence
and reflection must be equal. Thus, the law of reflection of optical rays is applicable to
the wavevectors of plane waves.

Reflection and Refraction at a Planar Dielectric Boundary

We now consider a plane wave of wavevector k; incident on a planar boundary between
two homogeneous media of refractive indices n; and ny. The boundary lies in the



54 CHAPTER 2 WAVE OPTICS

'y Figure 2.4-1 Reflection of a plane wave from
a planar mirror. Phase matching at the surface of

S rrrrryJg|—— . R . .
Ty z the mirror requires that the angles of incidence and
/S reflection be equal.
4
g
Kk,
z = 0 plane (Fig. 2.4-2). Refracted and reflected plane waves of wavevectors ko

and k3 emerge. The combination of the three waves satisfies the Helmholtz equation
everywhere if each of the waves has the appropriate wavenumber in the medium in
which it propagates (k1 = ks = n1k, and ko = noko).

)
e Figure 2.4-2 Refraction of a plane wave at a
dielectric boundary. The wavefronts are matched
b4 at the boundary so that the distance between
wavefronts for the incident wave, A\;/sinf, =

Ao/ sin by, equals that for the refracted wave,
Ao/ sinfy = A, /ng sin 6y, from which Snell’s law
follows.

Since the boundary conditions are invariant to = and y, it is necessary that the phases
of the three waves match, i.e.,

ki'r=ky - r=ks-r forall r = (z,y,0). (2.4-2)

This phase-matching condition is tantamount to matching the tangential components of
the three wavevectors at the boundary plane. Since k1 = (n1k, sin 6,0, n1k, cos6;),
ks = (n1k,sinfs,0, —n1k, cos f3), and ko = (nak, sin by, 0, nok, cos 62), where 61,
05, and 03 are the angles of incidence, refraction, and reflection, respectively, it follows
from (2.4-2) that §; = 63 and n; sin#; = ns sin 6. These are the laws of reflection
and refraction (Snell’s law) of ray optics, now applicable to the wavevectors.

It is not possible to determine the amplitudes of the reflected and refracted waves
using scalar wave optics since the boundary conditions are not completely specified in
this theory. This will be achieved in Sec. 6.2 using electromagnetic optics (Chapters 5
and 6).

B. Transmission Through Optical Components

We now proceed to examine the transmission of optical waves through transparent
optical components such as plates, prisms, and lenses. The effect of reflection at the
surfaces of these components will be ignored, since it cannot be properly accounted
for using the scalar wave theory of light. Nor can the effect of absorption in the
material, which is relegated to Sec. 5.5. The principal emphasis here is on the phase
shift introduced by these components and on the associated wavefront bending.
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Transparent Plate

Consider first the transmission of a plane wave through a transparent plate of refractive
index n and thickness d surrounded by free space. The surfaces of the plate are the
planes z = 0 and z = d and the incident wave travels in the z direction (Fig. 2.4-3).
Let U(z,y, z) be the complex amplitude of the wave. Since external and internal reflec-
tions are ignored, U (z,y, z) is assumed to be continuous at the boundaries. The ratio
t(z,y) = U(x,y,d)/U(x,y,0) therefore represents the complex amplitude trans-
mittance of the plate; it permits us to determine U (z,y, d) for arbitrary U (x, y, 0) at
the input. The effect of reflection is considered in Sec. 6.2 and the effect of multiple
internal reflections within the plate is examined in Sec. 11.1.

wave through a transparent plate.

T e

Figure 2.4-3 Transmission of a plane

Once inside the plate, the wave continues to propagate as a plane wave with
wavenumber nk,, so that U(x,y, z) is proportional to exp(—jnk,z). Thus, the ratio
U(z,y,d)/U(z,y,0) = exp(—jnk,d), so that

t(z,y) = exp(—jnk.d) . (2.4-3)
Transmittance
Transparent Plate

The plate is seen to introduce a phase shift nk,d = 27(d/\).

If the incident plane wave makes an angle 6 with respect to the z axis and has
wavevector k (Fig. 2.4-4), the refracted and transmitted waves are also plane waves
with wavevectors k; and k and angles 6; and 6, respectively, where 61 and 6 are related
by Snell’s law: sin § = nsin #;. The complex amplitude U (z, y, ) inside the plate is
now proportional to exp(—jk; - r) = exp[—jnk,(zcosf; + xsinb,)], so that the
complex amplitude transmittance of the plate U (x,y, d)/U(x,y,0) is

t(z,y) = exp (—jnkodcos b)) . (2.4-4)

If the angle of incidence 6 is small (i.e., if the incident wave is paraxial), then
01 ~ 6/n is also small and the approximation cos¢; ~ 1 — %9% yields t(z,y) =
exp(—jnk,d) exp(jk.0%d/2n). If the plate is sufficiently thin, and the angle @ is suffi-
ciently small such that k,0%d /2n < 27 [or (d/),)0?/2n < 1], then the transmittance
of the plate may be approximated by (2.4-3). Under these conditions the transmittance
of the plate is approximately independent of the angle 6.

Thin Transparent Plate of Varying Thickness

We now determine the amplitude transmittance of a thin transparent plate whose thick-
ness d(x,y) varies smoothly as a function of x and y, assuming that the incident wave
is an arbitrary paraxial wave. The plate lies between the planes z = 0 and z = d,
which are regarded as the boundaries encasing the optical component (Fig. 2.4-5).
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Figure 2.4-4 Transmission of an oblique Figure 2.4-5 A transparent plate of vary-
plane wave through a thin transparent plate. ing thickness.

In the vicinity of the position (x,y,0) the incident paraxial wave may be regarded
locally as a plane wave traveling along a direction that makes a small angle with the z
axis. It crosses a thin plate of material of thickness d(x,y) surrounded by thin layers
of air of total thickness dy — d(z,y). In accordance with the approximate relation
(2.4-3), the local transmittance is the product of the transmittances of a thin layer of
air of thickness dy — d(x,y) and a thin layer of material of thickness d(x,y), so that
t(z,y) = exp[—jnk.d(z,y)] exp[—jk,(do — d(z,y))], from which

t(x,y) = hoexp[—j(n — 1)kod(z,y)], (2.4-5)
Transmittance
Variable-Thickness Plate

where hg = exp(—jkodo) is a constant phase factor. This relation is valid in the
paraxial approximation (where all angles 6 are small) and when the thickness dy is
sufficiently small so that (do/\,)0%/2n < 1.

EXERCISE 2.4-1

Transmission Through a Prism. Use (2.4-5) to show that the complex amplitude transmittance
of a thin inverted prism with small apex angle & < 1 and thickness do (Fig. 2.4-6) is t(z,y) =
ho exp[—j (n —1)a k,z], where hg = exp(—jk,do). The transmittance is independent of y since the
prism extends in the y direction. What is the effect of the prism on an incident plane wave traveling
in the z direction? Compare your results with that obtained via the ray-optics model, as provided in
(1.2-7).

l«— do —>

Figure 2.4-6 Transmission of a plane
wave through a thin prism.
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EXAMPLE 2.4-1. Transmission Through a Biprism and an Axicon. The biprism de-
picted in Fig. 1.2-12(a) comprises an inverted prism, such as that illustrated in Fig. 2.4-6, juxtaposed
with an identical uninverted prism. Taking its thickness to be dj and its edge angle a < 1, the results
of Exercise 2.4-1 generalize to t(x,y) = ho{exp[—j (n — Dak,z] + exp[+j (n — Dak,z]} =
2hg cos [(n — 1)a kox], with hg = exp(—jkodp). The biprism thus converts an incident plane wave
into a pair of waves that are tilted with respect to each other. The Fresnel biprism portrayed in Fig. 1.2-
12(b) behaves in the same way.

The cone-shaped axicon shown in Fig. 1.2-12(c) is constructed by rotating the prism cross section
depicted in Fig. 2.4-6 about a horizontal axis located at its top edge, from ¢ = —m to 7. At any
angle ¢, the cross section of this device is an isosceles triangle of thickness dy and edge angle o <
1. Using polar coordinates and integrating the results presented in Exercise 2.4-1 over ¢ provides
t(z,y) = ho |, exp[—j (n—1) a (k, cos @)z — j (n— 1) a (K, sin ) y] dés = ho |, exp[—j (n—
1) akor/22 + y? sin(¢ + 0)] do. Since the integration is over 2, the integral is independent of
0. Given that [ _exp(—jusin¢)d¢ = 2mJo(u), where Jo(u) is the Bessel function of the first
kind and zeroth order, the amplitude transmittance may be rewritten as t(z,y) = 2whoJy[(n —

1) a ky/x? + y2]. The axicon thus converts an incident plane wave into an infinite number of plane
waves, all directed toward its central axis in the form of a cone of half angle (n — 1)a. This device
may be used to convert a plane wave into a Bessel beam (see Sec. 3.5A and Example 4.3-5).

Thin Lens

The general expression (2.4-5) for the complex amplitude transmittance of a thin trans-
parent plate of variable thickness is now applied to the plano-convex thin lens shown
in Fig. 2.4-7. Since the lens is the cap of a sphere of radius R, the thickness at the point

(xvy) is d(éﬂ,y) = dO _PiQ: dO - (R—@),OI’
d(z,y) = do — [R - Jm} : (2.4-6)

This expression may be simplified by considering onlgf points for which x and y are
sufficiently small in comparison with R so that 2% + 3* < R?. In that case

2 2 2 2
\/m:m/l—ix;y %R(l—m;]:py), (2.4-7)

where we have used the same Taylor-series expansion that led to the Fresnel approx-
imation of a spherical wave in (2.2-17). Using this approximation in (2.4-6) then
provides

%+ y2

d ~dy— ——>—. 2.4-8
(J?, y) 0 2R ( )

Finally, substitution into (2.4-5) yields

2 2
t(z, ) ~ ho exp [jkw} , (2.4-9)
2f Transmittance
Thin Lens
where
R
f= (2.4-10)
n—1

is the focal length of the lens (see Sec. 1.2C) and hy = exp(—jnk,dy) is another
constant phase factor that is usually of no significance.
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Figure 2.4-7 A plano-convex thin lens.
The lens imparts a phase proportional to
2% + y? to an incident plane wave, thereby

z transforming it into a paraboloidal wave
centered at a distance f from the lens (see
Exercise 2.4-3).

— dy

EXERCISE 2.4-2

Double-Convex Lens. Show that the complex amplitude transmittance of the double-convex
lens (also called a spherical lens) shown in Fig. 2.4-8 is given by (2.4-9) with

1 11
7= (n—1) (H - R—2) . (2.4-11)

You may prove this either by using the general formula (2.4-5) or by regarding the double-convex lens
as a cascade of two plano-convex lenses. Recall that, by convention, the radius of a convex/concave
surface is positive/negative, so that R; is positive and R, is negative for the lens displayed in Fig. 2.4-
8. The parameter f is recognized as the focal length of the lens [see (1.2-12)].

R
\/ Figure 2.4-8 A double-convex lens.

EXERCISE 2.4-3

Focusing of a Plane Wave by a Thin Lens. Show that when a plane wave is transmitted
through a thin lens of focal length f in a direction parallel to the axis of the lens, it is converted
into a paraboloidal wave (the Fresnel approximation of a spherical wave) centered about a point at a
distance f from the lens, as illustrated in Fig. 2.4-9. What is the effect of the lens on a plane wave
incident at a small angle 6?

((( Figure 2.4-9 A thin lens transforms a
\ 2 plane wave into a paraboloidal wave.
SR

EXERCISE 2.4-4

Imaging Property of a Lens. Show that a paraboloidal wave centered at the point P; (Fig. 2.4-
10) is converted by a lens of focal length f into a paraboloidal wave centered at P, where 1/z; +
1/2z5 = 1/ f, a formula known as the imaging equation.

» » Figure 2.4-10 A lens transforms a
g 1 ) ))))) (((( 3 ..~ . paraboloidal wave into another paraboloidal
: i ¢ wave. The two waves are centered at
distances that satisfy the imaging equation.

21 <2
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Diffraction Gratings

A diffraction grating is an optical component that serves to periodically modulate
the phase or amplitude of an incident wave. It can be made of a transparent plate with
periodically varying thickness or periodically graded refractive index (see Sec. 2.4C).
Repetitive arrays of diffracting elements such as apertures, obstacles, or absorbing
elements (see Sec. 4.3) can also be used for this purpose. A reflection diffraction
grating is often fabricated from a periodically ruled thin film of aluminum that has
been evaporated onto a glass substrate.

Consider a diffraction grating made of a thin transparent plate placed in the z = 0
plane whose thickness varies periodically in the = direction with period A (Fig. 2.4-
11). As will be demonstrated in Exercise 2.4-5, this plate converts an incident plane
wave of wavelength A < A, traveling at a small angle #; with respect to the z axis, into
several plane waves at small angles with respect to the z axis:

A
04 ~ 0; + qK , (2.4-12)
Grating Equation

where ¢ = 0,4+1,+2,..., is called the diffraction order. Successive diffracted waves
are separated by an angle # = A/A, as shown schematically in Fig. 2.4-11.

||||||||||||” with periodically varying thickness serves

as a diffraction grating. It splits an incident
plane wave into multiple plane waves travel-

//////// ing in different directions.

|
EXERCISE 2.4-5
Transmission Through a Diffraction Grating.

IR
o |
|iN1‘1'1””'“”::””””

(a) The thickness of a thin transparent plate varies sinusoidally in the 2 direction, d(z, y) = 3do[1+
cos(2mxz/A)], as illustrated in Fig. 2.4-11. Show that the complex amplitude transmittance is
t(z,y) = ho exp|—j 1 (n — 1)k,do cos(2mx/A)] where hg = exp[—ji(n + 1)k,do).

(b) Show that an incident plane wave traveling at a small angle #; with respect to the z direction is
transmitted in the form of a sum of plane waves traveling at angles 6, given by (2.4-12). Hint:
Expand the periodic function t(z,y) in a Fourier series.

Equation (2.4-12) is valid only in the paraxial approximation, when all angles are
small, and when the period A is much greater than the wavelength A. A more general
analysis of a thin diffraction grating that does not rely on the paraxial approximation
reveals that an incident plane wave at an angle 6; gives rise to a collection of plane
waves at angles 6, that satisty

sin 6, = sin0; + q% . (2.4-13)

This result may be derived by expanding the periodic transmittance t(z,y) as a sum
of Fourier components of the form exp(—jq2mx/A), where ¢ = 0,£1,£2,... is
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the diffraction order. An incident plane wave exp(—jkz sin#f;), modulated by the
harmonic component exp(—jg2mwz/A), generates a transmitted plane wave at the angle
6, given by exp(—jkx sinf,) o exp(—jkx sinb;) exp(—jg2mz/A). This leads to the
phase-matching condition k sin 6, = k sin 6,+¢2m/A. Equation (2.4-13) follows since
k = 2m/\; this result is also applicable to waves reflected from the grating.

Diffraction gratings are used as filters and spectrum analyzers. Since the angles
0, depend on the wavelength A (and therefore on the frequency v), an incident poly-
chromatic wave is separated by the grating into its spectral components (Fig. 2.4-12).
Diffraction gratings have found numerous applications in spectroscopy.

R
G
B
Figure 2.4-12 A diffraction grating directs two
R+G+B R+G4+p Waves of different wavelengths, A\; and )., into
two different directions, #; and 6. It therefore
serves as a spectrum analyzer or a spectrometer.
B
G
R

C. Graded-Index Optical Components

The effect of a prism, lens, or diffraction grating on an incident optical wave lies in the
phase shift it imparts, which serves to bend the wavefront in some prescribed manner.
This phase shift is controlled by the variation in the thickness of the material with the
transverse distance from the optical axis (linearly, quadratically, or periodically, in the
cases of a prism, lens, and diffraction grating, respectively). The same phase shift may
instead be introduced by a transparent planar plate of fixed thickness but with varying
refractive index. This is a result of the fact that the thickness and refractive index appear
as a product in (2.4-3).

The complex amplitude transmittance of a thin transparent planar plate of thickness
do and graded refractive index n(z,y) is, from (2.4-3),

t(z,y) = exp [—jn(z, y)kodo] - (2.4-14)
Transmittance
Graded-Index Thin Plate

By selecting the appropriate variation of n(x,y) with x and y, the action of any
constant-index thin optical component can be reproduced, as demonstrated in Exer-
cise 2.4-6.

EXERCISE 2.4-6

Graded-Index Lens. Show that a thin plate of uniform thickness dg (Fig. 2.4-13) and quadrati-
cally graded refractive index n(z,y) = no[l — $02(2? + y?)], with ady < 1, acts as a lens of focal
length f = 1/ngdya? (see Exercise 1.3-1).

as a lens.

‘ ‘ (((((( 2 Figure 2.4-13 A graded-index plate acts
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2.5 INTERFERENCE

When two or more optical waves are simultaneously present in the same region of
space and time, the total wavefunction is the sum of the individual wavefunctions. This
basic principle of superposition follows from the linearity of the wave equation. For
monochromatic waves of the same frequency, the superposition principle carries over
to the complex amplitudes, which follows from the linearity of the Helmholtz equation.

The superposition principle does not apply to the optical intensity since the intensity
of the sum of two or more waves is not necessarily the sum of their intensities. The
disparity is associated with interference. The phenomenon of interference cannot be
explained on the basis of ray optics since it is dependent on the phase relationship
between the superposed waves.

In this section we examine the interference between two or more monochromatic
waves of the same frequency. The interference of waves of different frequencies is
discussed in Sec. 2.6.

A. Interference of Two Waves

When two monochromatic waves with complex amplitudes Uy (r) and Us(r) are super-
posed, the result is a monochromatic wave of the same frequency that has a complex
amplitude

U(r) = Ui(r) + Us(r) . (2.5-1)

In accordance with (2.2-10), the intensities of the constituent waves are [} = |U; |2 and
I = |Us|?, while the intensity of the total wave is

I=UP = U+ Us)? = |Ui]* + |Us|* + U Uy + UL Us. (2.5-2)
The explicit dependence on r has been omitted for convenience. Substituting

Uy =1 exp(joi1)  and Uy = /I exp(jia) (2.5-3)

into (2.5-2), where ¢ and (9 are the phases of the two waves, we obtain

I=05L+1+2+I11I5 cosp, (2.5-4)
Interference Equation

with
=2 — 1. (2.5-5)

This relation, called the interference equation, can also be understood in terms of
the geometry of the phasor diagram displayed in Fig. 2.5-1(a), which demonstrates that
the magnitude of the phasor U is sensitive not only to the magnitudes of the constituent
phasors but also to the phase difference ¢.

It is clear, therefore, that the intensity of the sum of the two waves is not the
sum of their intensities [Fig. 2.5-1(b)]; an additional term, attributed to interference
between the two waves, is present in (2.5-4). This term may be positive or negative,
corresponding to constructive or destructive interference, respectively. If [y = I» = I,
for example, then (2.5-4) yields I = 2I(1 + cosp) = 4Iycos?(p/2), so that for
¢ = 0, I = 4], (i.e., the total intensity is four times the intensity of each of the
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Am 2w 0 2w 4w @

Figure 2.5-1 (a) Phasor diagram for the superposition of two waves of intensities J; and I» and
phase difference ¢ = po — ;. (b) Dependence of the total intensity  on the phase difference ¢.

superposed waves). For ¢ = , on the other hand, the superposed waves cancel one
another and the total intensity / = 0. Complete cancellation of the intensity in a region
of space is generally not possible unless the intensities of the constituent superposed
waves are equal. When ¢ = 7/2 or 37/2, the interference term vanishes and I = 21;
for these special phase relationships the total intensity is the sum of the constituent
intensities. The strong dependence of the intensity I on the phase difference  permits
us to measure phase differences by detecting light intensity. This principle is used in
numerous optical systems.

Interference is accompanied by a spatial redistribution of the optical intensity with-
out a violation of power conservation. For example, the two waves may have uniform
intensities /; and I5 in a particular plane, but as a result of a position-dependent phase
difference ¢, the total intensity can be smaller than 7; 4 I at some positions and larger
at others, with the total power (integral of the intensity) conserved.

Interference is not observed under ordinary lighting conditions since the random
fluctuations of the phases (1 and o cause the phase difference ¢ to assume random
values that are uniformly distributed between 0 and 27, so that cos ¢ averages to 0 and
the interference term washes out. Light with such randomness is said to be partially
coherent and Chapter 12 is devoted to its study. The analysis carried out here, and in
subsequent chapters prior to Chapter 12, assume that the light is coherent, and therefore
deterministic.

Interferometers

Consider the superposition of two plane waves, each of intensity Iy, propagating in the
z direction, and assume that one wave is delayed by a distance d with respect to the
other so that U; = /Iy exp(—jkz) and Uy = /Iy exp[—jk(z — d)]. The intensity
I of the sum of these two waves can be determined by substituting I; = Is = Iy and
@ = kd = 2mwd/ ) into the interference equation (2.5-4),

I=2I, [1 + cos (27ri>} . (2.5-6)

The dependence of I on the delay d is sketched in Fig. 2.5-2. When the delay is an
integer multiple of A, complete constructive interference occurs and the total intensity
I = 4I,. On the other hand, when d is an odd integer multiple of \/2, complete
destructive interference occurs and I = 0. The average intensity is the sum of the two
intensities, i.e., 21.

An interferometer is an optical instrument that splits a wave into two waves us-
ing a beamsplitter, delays them by unequal distances, redirects them using mirrors,
recombines them using another (or the same) beamsplitter, and detects the intensity of
their superposition. Three important examples are illustrated in Fig. 2.5-3: the Mach-
Zehnder interferometer, the Michelson interferometer, and the Sagnac interfero-
meter.
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Figure 2.5-2 Dependence of the intensity I of
the superposition of two waves, each of intensity
Iy, on the delay distance d. When the delay
distance is a multiple of A, the interference is
constructive; when it is an odd multiple of \/2,
the interference is destructive.

Uz | [l ui
(a) Mach-Zehnder (b) Michelson (c) Sagnac

Figure 2.5-3 Interferometers: A wave Uj is split into two waves U; and U, (they are shown as
shaded light and dark for ease of visualization but are actually congruent). After traveling through
different paths, the waves are recombined into a superposition wave U = U; + U, whose intensity is
recorded. The waves are split and recombined using beamsplitters. In the Sagnac interferometer the
two waves travel through the same path, but in opposite directions.

Since the intensity I is sensitive to the phase ¢ = 2wd/\ = 27nd /g = 27wnvd/c,,
where d is the difference between the distances traveled by the two waves, the inter-
ferometer can be used to measure small changes in the distance d, the refractive index
n, or the wavelength ), (or frequency v). For example, if d/)\, = 10, a change of the
refractive index of only An = 10~* corresponds to an easily observable phase change
Ay = 27. The phase ¢ also changes by a full 27 if d changes by a wavelength A. An
incremental change of the frequency Av = ¢/d has the same effect.

Interferometers have numerous applications. These include the determination of
distance in metrological applications such as strain measurement and surface profiling;
refractive-index measurements; and spectrometry for the analysis of polychromatic
light (see Sec. 12.2B). In the Sagnac interferometer the optical paths are identical but
opposite in direction, so that rotation of the interferometer results in a phase shift ¢
proportional to the angular velocity of rotation. This system can therefore be used as
a gyroscope. Because of its precision, optical interferometry is also being co-opted to
detect the passage of gravitational waves, as discussed subsequently.

Finally, we demonstrate that energy conservation in an interferometer requires that
the phases of the waves reflected and transmitted at a beamsplitter differ by 7 /2. Each
of the interferometers considered in Fig. 2.5-3 has an output wave U = U; + U, that
exits from one side of the beamsplitter and also another output wave U’ = Uj + U}
that exits from the opposite side. Energy conservation dictates that the sum of the
intensities of these two waves must equal the intensity of the incident wave, so that
if one output wave has high intensity by virtue of constructive interference, the other
must have low intensity by virtue of destructive interference. This complementarity can
only be achieved if the phase differences ( and ¢, associated with the components of
output waves U and U’, respectively, differ by 7. Since the components of U and the
components of U’ experience the same pathlength differences, and the same numbers
of reflections from mirrors, the 7 phase difference must be attributable to different
phases introduced by the beamsplitter upon reflection and transmission. Examination
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of the three interferometers in Fig. 2.5-3 reveals that for one output wave, each of the
components i