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Abstract

A computational technique for the energy levels calculation of an electron confined by a 3D InAs quantum dot (QD)
embedded in GaAs semiconductor matrix is presented. Based on the effective one electronic band Hamiltonian, the energy
and position dependent electron effective mass approximation, a finite height hard-wall 3D confinement potential, and the Ben
Daniel–Duke boundary conditions, the problem is formulated and solved for the disk, ellipsoid, and conical-shaped InAs/GaAs
QDs. To calculate the ground state and first excited state energy levels, the nonlinear 3D Schrödinger is solved with a developed
nonlinear iterative algorithm to obtain the final self-consistent solutions. In the iteration loops, the Schrödinger equation is
discretized with a nonuniform mesh finite difference method, and the corresponding matrix eigenvalue problem is solved
with the balanced and shifted QR method. The proposed computational method has a monotonically convergent property for
all simulation cases. The computed results show that for different quantum dot shapes, the parabolic band approximation is
applicable only for relatively large dot volume. For the first excited states the non-parabolicity effect also has been found to
be stronger than it at ground state. The QD model and numerical method presented here provide a novel way to calculate the
energy levels of QD and it is also useful to clarify principal dependencies of QD energy states on material band parameter and
QDs size for various QD shapes. 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

In recent years, the study of semiconductor quantum
dots (QDs) has been of a great interest (see [1–4] and
references therein). Especially, during the last decade
with modern nanotechnologies, it has become possi-
ble to fabricate realistic semiconductor QDs in labo-
ratories. Unique electronic characteristics of the QDs
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make it possible to model atomic physics in macro-
scopic systems experimentally and theoretically [5].
The semiconductor QDs are very attractive in micro-
and nano-optoelectronics applications; furthermore,
the spectral broadening in semiconductor quantum
dots caused by the nonuniformity in the QD size and
shape is the major concerns in the practical laser and
optical applications [1,4,6–8]. Various experimental
results demonstrate the InAs/GaAs quantum dots can
have diverse shapes, such as disk, ellipsoid, or coni-
cal shapes with a circular top view cross section and
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a large area-to-height aspect ratio [9–15]. The shape
of quantum dots is debated intensively in theoreti-
cal works, since an accurate calculation of the elec-
tronic structure obviously depends on the dot shape.
The commonly used shapes include disk [16,17], ellip-
soid [18,19], and conical shapes [20,21]. The energy
level calculation has been done using the effective-
mass approximation with [16,17,20–26] and without
[18,19,27,28] the coordinate dependence for the ef-
fective mass. The variations in the dot size and shape
can produce an energy fluctuation significantly in the
strong confinement region. In addition, the theoret-
ical modeling of quantum dot electronic properties
can be done by different schemes. For a class of dif-
ferent models [16,20,24,27,29–33], one needs an as-
sumption about the electronic confinement potential
in the system. Among those used confinement poten-

tial models (the parabolic lateral potential, the infi-
nite wall potential), a finite hard wall boundary poten-
tial model is the most realistic. However, in this case
the nonlinear model problem cannot be solved ana-
lytically and exactly, and on the other hand the com-
puter simulation provides a new alternative to solve
the problem numerically. Unfortunately, most of de-
veloped calculation were done within only the simple
parabolic band approximation for the electron effec-
tive mass [24,27,31–33]. It will produce an error in the
electron energy level estimations for InAs/GaAs semi-
conductor QDs.

In this study we calculate and compare the electron
energy spectra for three-dimensional small InAs/GaAs
quantum dots of different shapes (see Fig. 1): disk,
ellipsoid, and conical shape. All of them are cylin-
drically symmetric (with the circular top view cross

Fig. 1. Schematic diagrams for different shapes semiconductor QD: (a) disk-shaped, (b) ellipsoid-shaped, and (c) conical-shaped QD.
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section). We use the effective one electronic band
Hamiltonian, the energy and position dependent ef-
fective mass (non-parabolic) approximation, and the
Ben Daniel–Duke boundary conditions in this study.
A hard-wall (of finite height) 3D confinement poten-
tial induced by real discontinuity of the conduction
band at the edge of the dot is also considered in the
simulation. To calculate the ground state and first ex-
cited state energy levels, the nonlinear 3D Schrödinger
is solved with a novel nonlinear iterative algorithm
to obtain the final self-consistent solutions. The non-
linear iteration scheme consists of (i) set an initial
energyE for starting simulation, (ii) compute effec-
tive massm(E, r) with the energyE, (iii) solve the
Schrödinger equation for the energyE, (iv) update the
newer energy and back to step (ii). The feedback it-
eration will be terminated when a specified stopping
criterion on energy is reached. In the iteration loops,
the Schrödinger equation is discretized with a nonuni-
form mesh finite difference method [34], and the cor-
responding matrix eigenvalue problem is solved with
the balanced and shifted QR method [35]. The inverse
iteration technique [36,37] is also applied to calcu-
late the wave functions. The proposed computational
method has a monotonically convergent property for
all simulation cases. The computed results show that
for different quantum dot shapes, the parabolic band
approximation is applicable only for large dot volume.
For the first excited states the non-parabolicity effect
also has been found to be stronger than it at ground
state.

This paper is organized as follows. In Section 2, the
model and computer simulation algorithm are stated.
The results and discussion are presented in Section 3.
Section 4 is the conclusion.

2. Model and simulation technique

We consider semiconductor QDs in the one-band
envelope-function formalism for electrons in which
the effective Hamiltonian is given by [38,39]

Ĥ = − h̄2

2
∇r

(
1

m(E, r)

)
∇r + V (r), (1)

where∇r stands for the spatial gradient,m(E, r), the
electron effective mass, is a function of both energyE

and position. The expression ofm(E, r) is as follows:

1
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= P 2

h̄2

[
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E +Eg(r)+
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]
, (2)

V (r) = Ec(r) is the confinement potential,Ec(r),
Eg(r) and 
(r) denote, respectively, the position
dependent electron band edge, band gap, and the
spin-orbit splitting in the valence band, andP is the
momentum matrix element.

We investigate quantum dots of disk, ellipsoid, and
conical shapes with the base (top view) radiusR0
and heightz0 in the cylindrical coordinates(R,φ, z).
Since the system is cylindrically symmetric, the wave
function can be written as

Ψ (r)=Φ(R,z)exp(ilφ), (3)

wherel = 0,±1,±2, . . . is the electron orbital quan-
tum number. It remains to be a two-dimensional prob-
lem in (R, z) coordinates:
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whereV1(R, z) = 0 (i = 1) inside andV2(R, z) = V0
(i = 2) outside the dot. The boundary conditions are

Φ1(R, z)=Φ2(R, z), z= fS(R),

1

m1(E)

{
∂Φ1(R, z)

∂R
+ dfS

dR

∂Φ1(R, z)

∂z

}∣∣∣∣
z=fS(R)

= 1

m2(E)

{
∂Φ2(R, z)

∂R
+ df s

dR

∂Φ2(R, z)

∂z

}∣∣∣∣
z=fS(R)

,

(5)

where z = fS(R) (S is disk, ellipsoid, or conical-
shaped QD) is the contour of the structure’s cross
section on the(R, z) plane. The structure shape is
generated by the rotation of this contour around the
z-axis.

Based on the fact that the electron effective mass is a
spatial and energy dependent function, the Schrödinger
equation is a nonlinear equation in energy. It is evident
that the dependence relationship is not only appearing
in Schrödinger equation itself but also on the bound-
ary conditions of the model. To compute the final con-
vergent solution of the model for different shape QDs
self-consistently, a computational algorithm, as shown
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Fig. 2. A solution procedure for the semiconductor QD simulation.

in Fig. 2, for such nonlinear problem is proposed.
Due to the energy dependence of the electron effec-
tive mass, our calculation consists of iteration loops to
reach a “self-consistent” energy solution. The nonlin-
ear iteration scheme consists of (i) set an initial energy
E for starting simulation, (ii) compute effective mass
m(E, r) with the energyE, (iii) solve the Schrödinger
equation for the energyE, (iv) update the newer en-
ergy and back to step (ii). The feedback iteration will
be terminated when a specified stopping criterion on
energy is reached. In each iteration we use a central
difference method with nonuniform mesh technique
[34] to discretize the nonlinear Schrödinger equation
for disk, ellipsoid, and conical-shaped QDs. The dis-
cretized Schrödinger equation together with its bound-
ary conditions (5) leads to a matrix eigenvalue prob-
lem

AX = λX, (6)

where A is the matrix rising from the discretized
Schrödinger equation and boundary conditions,X and
λ are the corresponding eigenvectors (wave functions)
and the eigenvalues (energy levels).

In the solution of this matrix eigenvalue problem,
the QR algorithm is applied. The QR method is the
dominant method for solving nonsymmetric matrix
eigenvalue problem [35]. Because the matrixA in
Eq. (6) is an energy dependent, five diagonal, non-
symmetric, and large sparse matrix, the eigenvalues
of such matrix can be very sensitive to small changes
in the matrix elements [40]. Therefore, a balancing
algorithm to reduce the sensitivity of eigenvalues of
the matrixA to small changes in the matrix elements
is used firstly [36,40]. The main idea of balancing is
making use of similarity transformations to set corre-
sponding rows and columns of the matrix have com-
parable norms, thus reducing the overall norm of the
matrix while leaving the eigenvalues unchanged. Then



70 Y. Li et al. / Computer Physics Communications 141 (2001) 66–72

the balanced matrixA is transformed into a simpler
upper Hessenberg form [36,40]. In this transforma-
tion process, the elimination method is applied to re-
duce the balanced matrixA to the Hessenberg matrix
form. The eigenvalues of the upper Hessenberg ma-
trix are directly computed with the shifted QR method
[35,36,40]. The balanced and shifted QR scheme used
for the eigenvalues calculation is the most stable and
robust method in semiconductor QD simulation. When
an eigenvalue is found, the corresponding eigenvec-
tor of this eigenvalue is calculated with the inverse it-
eration method [36,37]. The fundamental idea of this
method is to solve the linear system

(A− ζ I)y = b, (7)

whereb is a trial vector andζ is one of the computed
eigenvalues of matrixA. The solutiony will be the
candidate for the eigenvector corresponding toζ. In
the solution of Eq. (7), we set the trial vectorb to be a
nonzero unit vector. The exact wave function should
vanish only at infinity physically, but to simulate
the QD within a finite region efficiently we have to
set a zero value at a finite distance artificially. This
computational consideration is designed only for the
numerical simulation purpose. The artificial boundary
is taken far enough so that it does not significant affect
the results. In our calculation experience, the proposed

computational method converges monotonically and
a strict convergence criteria (the maximum norm
error is less than 10−15 eV) on energies can be
reached by only 14–15 feedback nonlinear iterative
loops.

3. Results and discussion

The energy spectrum of the dot consists of a set
of discrete levels numerated by the set of numbers
{n, l}, wheren is the nth solution of the problem
with the fixed l. In the calculations of the electron
energy spectra for narrow gap InAs cylindrical QDs
in GaAs matrix we choose the semiconductor band
structure parameters [41] for InAs: energy gap is
E1g = 0.42 eV, spin-orbit splitting is
1 = 0.48 eV,
the value of the non-parabolicity parameter isE1p =
3m0P

2
1 /h̄

2 = 22.2 eV, m0 is the free electron ef-
fective mass. For GaAs we choose:E2g = 1.52 eV,

2 = 0.34 eV, E2p = 24.2 eV. The band offset is
taken asV0 = 0.77 eV. First of all, to test the robust-
ness of the algorithm, we present the achieved con-
vergence rate of the proposed nonlinear iterative al-
gorithm. As shown in Fig. 3, this method compute
energy efficiently and has a good convergent rate for
the ground state energy level calculation with non-

Fig. 3. The achieved convergent rate of the proposed iterative scheme for the ground state energy level calculation.
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parabolic band approximation, where the dot shape
is taken as conical-shaped QD,R0 = 10.0 nm, the
dot volumeV = 750 nm3, and (n = 1, l = 0). In
addition, we also obtain similar convergent results
for other simulation cases with various QD sizes and
shapes.

As shown in Fig. 4, the calculated ground state
{1,0} energy depending on the dot volume is pre-
sented. For all calculations, the radiusR is fixed at
10.0 nm. For a fixed dot volumeV , the disk-shaped
QD has higher geometry aspect ratio, so it has higher
energy level for both the parabolic and non-parabolic
band approximations then other shapes. For the first
excited state, as shown in Fig. 5, we also have simi-
lar comparison results. Furthermore, the non-parabolic
correction leads to a decreasing in the state energy

when dot volume is increased. The difference between
parabolic (whenmi(E) = mi0, i = 1,2 — the band
edge electronic effective mass) and non-parabolic ap-
proximation results gains∼0.15 eV for the disk-
shaped QD with the dot volumeV ≈ 750 nm3. This
difference can exceed known electron–electron inter-
action corrections [24,27,31–33]. For dots have large
volume (V > 2000 nm3) the results from parabolic
band approximation converge to the results calculated
with non-parabolic band approximation. Fig. 5 shows
the first {1,1} excited energy states of the dot. As
can be seen from the figure, the non-parabolic ap-
proximation leads to large corrections in this case.
A difference in energy between parabolic and non-
parabolic estimations can gain 0.2 eV for conical
shape QD.

Fig. 4. Ground state (l = 0) energy with non-parabolic (solid line) and parabolic (dot line) band effective mass approximations for (a) disk,
(b) ellipsoid, and (c) conical shape InAs/GaAs QDs.

Fig. 5. Excited state (l = 1) energy with non-parabolic (solid line) and parabolic (dot line) band effective mass approximations for (a) disk,
(b) ellipsoid, and (c) conical shape InAs/GaAs QDs.
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4. Conclusion

A novel computational technique for the energy lev-
els calculation of an electron confined by a 3D InAs
quantum dot embedded in GaAs semiconductor ma-
trix has been presented. With the developed QD simu-
lator, we have found that the widely used the parabolic
band approximation lead to a large discrepancy in cal-
culation results for electron energy states in various
small QDs. This parabolic approximation can be used
only for large size QDs in the calculation of ground
and first excited state energies. The modeling, numeri-
cal method, and study presented here not only provide
a novel way to calculate the energy levels of QD but
also are useful to clarify principal dependencies of QD
energy states on material band parameter and QDs size
for various QD shapes.

Based on the effective one electronic band Hamil-
tonian, the energy and position dependent electron ef-
fective mass approximation, a finite height hard-wall
3D confinement potential, and the Ben Daniel–Duke
boundary conditions, the 3D model has been formu-
lated and solved for the disk, ellipsoid, and conical-
shaped InAs/GaAs QDs. To calculate the ground state
(l = 0) and first excited state (l = 1) energy levels, the
nonlinear 3D Schrödinger has been solved with a de-
veloped nonlinear iterative algorithm to obtain the fi-
nal self-consistent solutions. In the iteration loops, the
Schrödinger equation was discretized with a nonuni-
form mesh finite difference method, and the corre-
sponding matrix eigenvalue problem was solved with
the balanced and shifted QR method. The proposed
computational method presented a monotonically con-
vergent property for both the ground and first excited
energy states with various QD shapes. The computed
results show that for different QD shapes, the par-
abolic band approximation is applicable only for rel-
atively large dot volume. For the first excited states
the non-parabolicity effect also has been found to be
stronger than it at ground state.
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