
Computer Physics Communications 141 (2001) 175–204
www.elsevier.com/locate/cpc

Electronic structure calculation forN-electron quantum dots✩

S.A. McCarthy, J.B. Wang∗, P.C. Abbott
Department of Physics, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia

Accepted 17 June 2001

Abstract

The Hartree–Fock method for calculating the electronic structure ofN-electron quantum dot systems was implemented in
Mathematica using an easily understood modular code. Calculations were performed for quantum dot systems containing up to
N = 18 electrons. The energy spectra obtained are in good agreement with those previously calculated using density functional
theory. Qualitative agreement with an experimental spectrum is also obtained. 2001 Elsevier Science B.V. All rights reserved.
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sity of Belfast, N. Ireland

Program Summary URL: http://cpc.cs.qub.ac.uk/summaries/ADPE

Programming language used: Mathematica 4.1

Platform: Any platform supporting Mathematica 4.1 (tested using a
remote kernel running on a DEC Alpha workstation 500 with 0.5 GB
RAM)

Number of bytes in distributed program, including test data, etc.:
20 907

Distribution format: tar gzip file

Keywords: Hartree–Fock method, quantum dot, artificial atom,
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Nature of physical problem
Electronic structure ofN -electrons confined in a quantum dot.

Method of solution
The Hartree–Fock self-consistent field method is applied to the
physical problem. The Rayleigh–Ritz variational method is applied
to solve the Hartree–Fock equations, using a mixture of analytic and
numeric computational techniques.

Limitations
Restricted to circularly symmetric quantum dots; limited matrix (ex-
pansion) sizes.

Unusual features
A simple input structure. Analytic reduction of direct and exchange
integrals speeds up computation and improves accuracy.
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* Corresponding author.
E-mail address: wang@physics.uwa.edu.au (J.B. Wang).

0010-4655/01/$ – see front matter 2001 Elsevier Science B.V. All rights reserved.
PII: S0010-4655(01)00401-5

http://cpc.cs.qub.ac.uk/summaries/ADPE


176 S.A. McCarthy et al. / Computer Physics Communications 141 (2001) 175–204

LONG WRITE-UP

1. Introduction

With the increased sophistication of semiconductor technology it is now possible to create man-made objects
which display many of the characteristic properties normally associated with atoms. Electrons are trapped between
two layers of semiconductor, effectively confining them to two-dimensions, and then restricted further by some
lateral confining potential to create what has been termed anartificial atom or quantum dot. The ability of
experimentalists to manipulate the size and shape of these artificial atoms has opened up a wide range of
possibilities and areas for examination [1,2]. In the future, quantum dots may be used to build more efficient
and precisely controlled lasers, and also as vital components of nanoelectronic devices [3,4]. It is also hoped that
quantum dots may one day be able to help realize the dream of quantum computing [5].

Typical quantum dots of the type described in [1] can range in size from nanometers to a few microns and can
contain anywhere from a few electrons to hundreds of electrons. The electrons are sandwiched between two layers
of semiconductor, which typically have a spacing of approximately 0.5 nm. The lateral confining potential for a
quantum dot with a large radius can be approximated as a finite square well with rounded edges. For a smaller dot
however, we may instead model it as a smooth function, such as a Gaussian potential,

V (r) = −V0e−r2/R2
,

or a Pöschl–Teller potential,

V (r) = −V0/cosh2
(−r2/R2).

For states near the bottom of the well, a good approximation is that of a harmonic confining potential,

V (r) = −V0 + 1
2k

2r2.

The attraction of this harmonic model is that a simple analytic solution to the single electron Schrödinger equation
exists [6,7].

The main focus of this paper is the calculation of the electronic states in quantum dots withN -electrons by
applying the Hartree–Fock self-consistent field method. Pfannkuche et al. [8] performed Hartree–Fock calculations
for a two-electron quantum dot (artificial helium), and compared with an exact solution to the two-electron system
obtained by direct numerical diagonalization of the two-particle Hamiltonian. In this paper we extend the Hartree–
Fock calculation toN -electron systems.

Ezaki et al. [9] applied a brute force approach by numerically diagonalizing theN -electron Hamiltonian using
Slater determinants which were formed from the solutions to the single-electron problem. Lee et al. [10] also
studied theN -electron problem, but applied a method based on density functional theory. Both groups obtained
results in reasonable agreement with the experimental results reported by Tarucha et al. [11].

Most theoretical models in the literature, including Refs. [9,10], assume a harmonic confining potential when
dealing with isotropic quantum dots. But what is the effect of altering this potential to something that is perhaps
more realistic, such as the Gaussian or Pöschl–Teller potentials as suggested above? Section 2 starts by looking
at this problem for a one electron quantum dot system, developing a general method which can be applied to a
number of different potentials. We then describe the theory for theN -electron systems and present the associated
Hartree–Fock equations to be solved. Section 3 presents the method of solution for theN -electron problem and a
description of the developed code for theMathematica packageQDHartreeFock.m. Finally, Section 4 gives an
example and some results obtained using this program.
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2. Theory

2.1. Single electron systems

In our model of quantum dot systems, we assume that the confining potential can be separated into a vertical(z)

component and a lateral (r = (r,φ)) component. The confining potential in the vertical direction can be thought of
as effectively being a very narrow infinite triangular well [12], whereas the lateral confining potentialV (r) has a
bowl-like shape. The energy level of the first excited state in thez direction is generally hundreds of times greater
than many of the low energy states in ther-φ plane. This property allows us to model electron motion in a quantum
dot as two-dimensional. Thus the Schrödinger equation in plane polar coordinates reads(

− h̄2

2m∗ ∇2
r + V (r)

)
ψ(r) = Eψ(r),

wherem∗ is the effective mass, and∇2
r is the two-dimensional Laplacian. We now switch to rescaled atomic units

by settingh̄ = m∗ = e = a∗
0 = 1, with a∗

0 = 4πεh̄2/m∗e2 the effective Bohr radius, andε the dielectric constant.
Assuming a circularly symmetric confining potentialV (r,φ) ≡ V (r), and using separation of variables, we see
thatψ(r,φ) = 1√

2π
eimφR(r) with R(r) satisfying the radial equation,

(
− 1

2r

∂

∂r

(
r
∂

∂r

)
+ m2

2r2
+ V (r)

)
R(r) = ER(r), (1)

wherem ∈ Z is a quantum number related to the orbital angular momentum of the system [13].
For the case of a harmonic confining potential of the formV (r) = −V0 + 1

2k
2r2, there exists a simple analytic

solution to Eq. (1) [6,7]. The solution is

Rn,|m|(r) = An,|m|r |m|e−kr2/2L|m|
n (kr2), m ∈ Z, n = 0,1,2, . . . , (2)

where An,|m| are normalization constants, andL|m|
n (x) are the generalized Laguerre polynomials [14]. The

corresponding energy eigenvalues are given by

En,|m| = k
(
2n+ |m| + 1

)− V0. (3)

Notice that we now have two quantum numbers, corresponding to the fact that we are dealing with a two-
dimensional system. The spin quantum number is±1/2. With no magnetic field, each of the above energy
eigenstates is actually two-fold degenerate.

2.2. Rayleigh–Ritz variational technique

We would like to be able to solve Eq. (1) for a number of different confining potentialsV (r). To accomplish
this we use the Rayleigh–Ritz variational technique. The Rayleigh–Ritz variational principle can be used to solve
differential eigenvalue equations by expanding the unknown function in terms of a set of basis functions, and then
reducing the problem to a matrix eigenvalue problem. For completeness we present the basic theory here. We begin
with an equation of the form

Lun(x) = λnun(x),

wherex ∈ R
n, L is some linear differential operator,un(x) are the eigenfunctions, andλn are the eigenvalues. The

problem can also be formulated as a functional equation,

λ[φ] =
∫
φ∗(x)Lφ(x)dx∫
φ∗(x)φ(x)dx

. (4)
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It is easy to see that ifφ is an eigenfunction ofL, sayφ = un, thenλ[φ] will be the eigenvalueλn. It can also be
shown that if some functionφ causesλ[φ] to become stationary, i.e.

δλ[φ]
δφ

= 0,

thenφ is an eigenfunction ofL [15]. Alternatively, expandingφ in terms of a complete set of basis functionsvi(x),
so that

φ(x) =
∞∑
i=1

civi(x) ≡ cTv(x),

where{c}i = ci , and{v(x)}i = vi(x), Eq. (4) becomes

λ[φ] =
∑

i,j c
∗
i cj

∫
v∗
i (x)Lvj (x)dx∑

i,j c
∗
i cj

∫
v∗
i (x)vj (x)dx

. (5)

Introducing theRitz matrix A,

{A}ij =
∫

v∗
i (x)Lvj (x)dx, (6)

and theoverlap matrix B,

{B}ij =
∫

v∗
i (x)vj (x)dx, (7)

Eq. (5) reads

λ[φ] = c†Ac

c†Bc
.

Variation of Eq. (5) with respect to the expansion coefficients

δλ[φ]
δci

= 0,

leads to the generalized matrix eigenvalue equation, known as the Ritz (matrix) equation

Ac = λBc.

In generalA andB are infinite dimensional matrices. TruncatingA andB to N × N matrices, the resulting
N -dimensional matrix eigenvalue problem,(

B−1
N AN

)
cN = λcN , (8)

can be solved for non-singularBN . As a result of this truncation, the eigenvectors and eigenvalues are now
approximations to the actual solutions,

φ(x) � φN (x) =
N∑
i=1

civi(x) ≡ cT
N vN (x).

As we increaseN , we converge to the exact eigenvectors and eigenvalues, with the condition that

λexact� λ[φN ],
implying thatλ[φN ] is an upper bound for the exact eigenvalues ofL [15].
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2.3. Example: Gaussian confining potential

As an example of a non-harmonic confining potential, consider the Gaussian potential of the formV (r) =
−V0e−r2/R2

. The attraction of this potential is the smooth nature of the Gaussian function near the top of the well.
This avoids any edge effects which may affect other model potentials.

Unlike the harmonic case, simple analytic solutions to this equation are not known. To solve by applying the
Rayleigh–Ritz variational method, we first find a suitable set of basis functions to expandR(r). For smallr, the
confining potentialV (r) behaves liker2,

V (r) = −V0e−r2/R2 = −V0 + V0r
2

R2 + O(r4).

Consequently, if we expandR(r) in terms of the solutions to the harmonic oscillator problem given by Eq. (2),
we can expect rapid convergence for at least the lowest energies which occupy the bottom of the well. We link the
values ofV0 andR to the value ofk in the harmonic oscillator potential by identifyingk =√

2V0/R2 in the set of
basis functions,

vi,m(r) = rme−kr2/2Lm
i (kr2),

where, for convenience, we letm = |m| ∈ N. Theij th matrix element of theN ×N Ritz matrix given by Eq. (6)
is

{A}ij = 2π

∞∫
0

(
1

2
v∗′
i,m(r)v′

j,m(r) +
(

m2

2r2 − V0e−r2/R2
)
v∗
i (r)vj (r)

)
r dr, (9)

and theij th matrix element of theN ×N overlap matrix given by Eq. (7) is

{B}i,j = 2π

∞∫
0

v∗
i,m(r)vj,m(r)r dr. (10)

Note that the volume element is dx = r dr dφ, since we are working in two dimensions. The 2π factor results from
the integration overφ. The details of the analytic evaluation of the integrals in Eqs. (9) and (10) is presented in
Appendices B and C.

With these integrals, we can now solve the generalized matrix eigenvalue problem, Eq. (8). In fact we essentially
have an analytic solution to the problem of the Gaussian well in that we know the value of each of the matrix
elements ofA andB, and can thus determine the solutions to arbitrary accuracy by truncating the matrices to some
suitableN .

The energy levels of the Gaussian potential and, for comparison, the harmonic potential are plotted in Fig. 1.
We observe that the general effect of the Gaussian potential compared to the harmonic potential is a lowering of
corresponding energy states—this effect becoming more pronounced towards the top of the well, as expected. We
also notice that we lose some of the degeneracy associated with the harmonic potential. For example, the states
{n,m} = {1,0} and{0,±2} are degenerate in the harmonic potential, but split in the Gaussian potential. As we
increase the matrix size, we get a higher density of states towards the top of the potential, as expected for the
required transition to the continuum that exists for positive energy. These results agree with those presented by
Adamowski et al. [16].

The method developed here is applicable to many different forms of potential. Even if an analytic solution for
the integral involvingV (r) is not obtainable, numerical integration is usually practicable.
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Fig. 1. Energy levels for a single electron in the GaussianV (r) = −V0e−r2/R2
(solid lines) and harmonicV (r) = −V0 + 1

2k
2r2 (dashed lines)

confining potentials, forV0 = 50 andk = 10, whileR =
√

2V0/k
2. The states are labeled by{n,m} and the two potentials are also plotted as

functions ofr . Calculations were performed with a matrix size ofN = 20.

2.4. N -electron systems

We now turn to the problem of anN -electron quantum dot system. TheN -electron non-relativistic Hamiltonian
in plane polar coordinatesr = (r,φ) is

H = H1 +H2 =
N∑
i=1

(
− h̄2

2m∗ ∇2
r i

+ V (r i )

)
+

N∑
i>j=1

e2

4πε

1

rij
,

where rij = |r i − rj |, m∗ is the effective mass of the electron, andε is the dielectric constant (for GaAs
m∗ � 0.065me andε � 12.9ε0). We have separated the Hamiltonian into two parts:H1, which is a one-electron
operator representing the kinetic energy terms andH2, which is a two-electron operator representing the interaction
potential.

In rescaled atomic units the Schrödinger equation for theN -electron system is then[
N∑
i=1

(
−1

2
∇2

ri
+ V (r i )

)
+

N∑
i>j=1

1

rij

]
Ψ (q1, q2, . . . , qN) = EΨ (q1, q2, . . . , qN),

whereqi represents collectively both the spatial coordinater i and the spin coordinate of theith electron.

2.5. Hartree–Fock equations

To solve theN -electron Schrödinger equation we use the Hartree–Fock method [15]. The Hartree–Fock approach
is a particular case of the variational method, in which the trial wavefunction is assumed to be aN × N Slater
determinant,
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Ψ (q1, q2, . . . , qN) = 1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣

ψα(q1) ψβ(q1) · · · ψν(q1)

ψα(q2) ψβ(q2) · · · ψν(q2)

...
...

. . .
...

ψα(qN) ψβ(qN) · · · ψν(qN)

∣∣∣∣∣∣∣∣∣∣∣∣
,

where the symbolsα,β, . . . , ν correspond to theN -particle states labeled by the three quantum numbers
{n,m,mS}, andψλ(qi) are the individual electron spin-orbitals.

Using these definitions, the Hartree–Fock equation for theith electron in the stateλ is(
−1

2
∇2

r i
+ V (r i ) + Vd

λ (r i ) − Vex
λ (qi)

)
ψλ(qi) = Eλψλ(qi), (11)

where the Coulomb direct potentialVd
λ (r i ) represents theaverage potential due to theN − 1 other electrons, and

the exchange potentialVex
λ (qi) represents anexchange term due to spin interactions. These two potentials are given

by

Vd
λ (r i ) =

∑
µ�=λ

Vd
µ(r i ) =

∑
µ�=λ

∫ |ψµ(rj )|2
rij

drj , (12)

and

Vex
λ (qi)ψλ(qi) =

∑
µ�=λ

δmµ
S ,m

λ
S

(∫
ψ∗

µ(rj )ψλ(rj )

rij
drj

)
ψµ(r i )χ1/2,mµ

S
, (13)

whereχ1/2,mµ
S

is a spin function. (Note that
∑

µ�=λ is a sum over all theN occupied statesµ = α,β, . . . , ν, such
thatµ �= λ, whereλ is the state occupied by theith electron.)Eλ can be interpreted as energy required to remove
an electron form the spin orbitalψλ, or theionization energy of the electron in the stateλ (Koopman’s Theorem).

3. Solution and implementation with Mathematica

We now develop a method for solving the Hartree–Fock equations self-consistently withMathematica.

Note. In the below definitions,S is the list defining the state of each of theN electrons,λ is the state{n,m,mS}
of the electron being solved for,N is the number of terms in the expansion, andη is the current iteration loop.

3.1. Initialization

We first turn off some warning messages, and define a few useful notations for the direct and exchange integrals.

In[1] := Off[General :: "spell"]; Off[General :: "spell1"];
In[2] := Needs["Utilities�Notation�"]
In[3] := SetOptions[Notation, WorkingForm → TraditionalForm];
In[4] := Notation

[
Id

i−,j−[λ−,S−,N−, k−, η−] ⇐⇒ CoulombIntegral[i−, j−, λ−,S−,N−, k−, η−]]
In[5] := Notation

[
Iex

i−,j−[λ−,S−,N−, k−, η−] ⇐⇒ ExchangeIntegral[i−, j−, λ−,S−,N−, k−, η−]]
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3.2. Simplification of the Hartree–Fock equations

We start by considering the direct and exchange potentials, Eqs. (12) and (13). These simplify if we make the
assumption that the wavefunction for theith electron in the stateλ is of the form

ψλ(ri , φi) = Rλ(ri)
eimλφi

√
2π

. (14)

This assumption is valid for systems with complete subshells, and is a good approximation for incomplete
subshells [15]. Expandingrij into its explicit dependence onri , rj , andφ = φij = φj − φi (angle betweenr i

andrj ) we obtain

rij = |r i − rj | =
(
r2
i + r2

j − 2rirj cos(φ)
)1/2 = r>

(
1+ ρ2 − 2ρ cos(φj − φi)

)1/2
, (15)

wherer> = max{ri , rj }, r< = min{ri , rj }, ρ = r</r> and 0� ρ < 1. Then we can perform the integration overφ

(see Appendix A for details), which gives us simplified forms for theVd
λ andVex

λ terms. Eq. (11) now becomes the
radial Hartree–Fock equation which reads(

− 1

2ri

∂

∂ri

(
ri

∂

∂ri

)
+ (mλ)2

2r2
i

+ V (ri) + Vd
λ (ri ) − Vex

λ (ri )

)
Rλ(ri) = EλRλ(ri), (16)

with

Vd
λ (r) = 1

2π

∑
µ�=λ

∞∫
0

∣∣Rµ(rξ)
∣∣V0(ξ)

|1− ξ | rξ dξ, (17)

Vex
λ (r)Rλ(r) = 1

2π

∑
µ�=λ

δmµ
S ,m

λ
S
Rµ(r)

∞∫
0

R∗
µ(rξ)Rλ(rξ)

Vm(ξ)

|1− ξ | rξ dξ, (18)

wherem = mλ − mµ ∈ Z with ξ = rj /ri . The factor 1/|1− ξ | results from the integration overφ and highlights
the singularity atξ = 1 (i.e.ri = rj ). The termsVm(ξ) are polynomials involving elliptic integrals. The first three
functions are

V0(ξ) = 4K

(
− 4ξ

(ξ − 1)2

)
,

V1(ξ) =
2
(
(ξ2 + 1)K

(− 4ξ
(ξ−1)2

)− (ξ − 1)2E
(− 4ξ

(ξ−1)2
))

ξ
,

and

V2(ξ) =
4
(
(ξ4 + ξ2 + 1)K

(− 4ξ
(ξ−1)2

)− (ξ − 1)2(ξ2 + 1)E
(− 4ξ

(ξ−1)2
))

3ξ2 ,

whereK(x) andE(x) are the complete elliptic integrals of the first and second kinds, respectively [17]. Computer
packages, such asMathematica, are able to obtain these functions relatively easily.

In[6] := V/:Vm− := V/:Vm

= Function
[
{ξ }, Evaluate

[
FullSimplify

[
Collect

[
Simplify

[
(1 − ξ)

2π∫
0

cos(mφ)√
ξ2 − 2 cos(φ)ξ + 1

dφ, 0 � ξ < 1
]
,

{K(_), E(_), ξ }, Simplify
]]]]
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In[7] := Table[Vm(ξ), {m, 0, 2}] // TableForm

Out[7] // TableForm = 4K

(
− 4ξ

(ξ − 1)2

)
2
(
(ξ2 + 1)K

(− 4ξ
(ξ−1)2

)− (ξ − 1)2E
(− 4ξ

(ξ−1)2
))

ξ

4
(
(ξ4 + ξ2 + 1)K

(− 4ξ
(ξ−1)2

)− (ξ − 1)2(ξ2 + 1)E
(− 4ξ

(ξ−1)2
))

3ξ2

Note thedynamic programming syntax,V /: Vm− := V /: Vm = · · · , which stores the values ofVm under the
symbolV as they are evaluated.

3.3. Application of the Rayleigh–Ritz variational technique

To solve Eq. (16), we apply the Rayleigh–Ritz variational method as described in §2.2, by expandingRλ(ri) in
terms of a complete set of basis functionsvi,mλ (r), and then truncating the expansion afterN terms,

Rλ(r) =
N1∑
i=0

ci,mλvi,mλ (r), (19)

with ci,m suitably chosen to normalizeR. As our choice of basis functions we use the solutions of a single electron
in a two-dimensional harmonic confining potential given by Eq. (2),

vi,m(r) = rme−kr2/2Lm
i (kr2), (20)

which we implement inMathematica as

In[8] := v /: vi−,m− = Function
[{k, r}, e− k

2 r2
rmLm

i (kr2)
];

Following §2.2, theij th matrix element of theN ×N Ritz matrix given by Eq. (6) is

{A}ij = αij + Vij + Id
ij − Iex

ij ,

whereαij are the kinetic energy integrals,Vij are the confining potential integrals, andId
ij , Iex

ij are the direct and
exchange integrals. Theij th matrix element of theN ×N overlap matrix given by Eq. (7) is

{B}ij = βij ,

whereβij are the overlap integrals.
In Mathematica we form theA andB matrices of dimensionN by

In[9] := A/: AN− := Function
[{λ,S, k, V0, η},
Table

[
αi,j[k, |λ[[2]]|] + Vi,j[k, V0, |λ[[2]]|] + Id

i,j[λ,S,N , k, η]
−Iex

i,j [λ,S,N , k, η], {i, 0,N − 1}, { j, 0,N − 1}]]
In[10] := B /: BN− := Function

[{k, m}, Table
[
βi,j[k, |m|], {i, 0,N − 1}, { j, 0,N − 1}]]

The kinetic energy integrals are defined by

αij =
∞∫

0

(
1

2
v′ ∗
i,mλ (r)v

′
j,mλ (r) + (mλ)2

2r2
v∗
i,mλ (r)vj,mλ(r)

)
r dr. (21)
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The required integrals are evaluated in Appendix B using the properties of the generalized Laguerre polynomi-
als [14], and the results are implemented as the elements of a tridiagonal matrix.

In[11] := αi−,j−[k−, m−] /; j > i = (i + m + 1)!δi+1, j

4kmi! ;
In[12] := αi−,j−[k−, m−] /; i > j = αj,i[k, m];
In[13] := αi−,i−[k−, m−] = (2i + m + 1)(i + m)!

4kmi! ;
The overlap integrals are defined by

βij =
∞∫

0

v∗
i,mλ (r)vj,mλ(r)r dr, (22)

which, again, can be evaluated analytically using the orthogonality relationship of the generalized Laguerre
polynomials [14] (see Appendix B for details).

In[14] := βi−,i−[k−, m−] = 1
2km+1

(i + m)!
i! ;

In[15] := βi−,j−[k−, m−] = 0;
This definition also allows us to write the normalization condition as,

N−1∑
i=0

N−1∑
j=0

c∗
i,mλβi,j cj,mλ = 1⇔ c†Bc = 1. (23)

The confining potential integrals are defined by

Vij =
∞∫

0

v∗
i,mλ (r)V (r)vj,mλ (r)r dr. (24)

The integrals are easily evaluated for the harmonic confining potential,V (r) = −V0 + 1
2k

2r2 using the results
already obtained from the calculation of the kinetic energy and overlap integrals (see Appendix B). The result is
implemented as follows.

In[16] := V /: Vi−,j− := V /: Vi,j = V /: Vj,i

= Function
[
{k, V0, m}, Evaluate

[
1

4kmi!
((

(2i + m + 1) − 2V0
k

)
(i + m)!δi, j

− i(i + m)!δi−1, j − (i + m + 1)!δi+1, j

)]]

Note that the inclusion of the symmetry requirement,Vij = Vji , through the use of dynamic programming increases
efficiency.

The method is easily extended to different confining potentials. For example, in Appendix C we give an analytic
solution for aGaussian confining potential, and integrals for other more complicated potentials may be performed
numerically.

The direct integrals defined by

Id
ij =

∞∫
0

Vd
λ (r)v

∗
i,mλ (r)vj,mλ (r)r dr = 1

2

∑
µ�=λ

N−1∑
p=0

N−1∑
q=0

c∗
p,mµcq,mµk−mλ−mµ−3/2d

[{i, j,mλ}, {p,q,mµ}],
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can be implemented inMathematica as

In[17] := Id
i−,j−[λ−,S−,N−, k−, η−]

:= Module

[
{σ }, σ = DeleteCases[S, λ];

1
2

Length[σ ]∑
κ=1

N∑
p=1

N∑
q=1

cσ [[κ]],η[[p]]cσ [[κ]],η[[q]]k−|λ[[2]]|−|σ [[κ,2]]|−3/2d
[{i, j, |λ[[2]]|}, { p − 1, q − 1, |σ [[κ, 2]]|}]

]

where

d
[{i, j,mλ}, {p,q,mµ}]
= 2km

λ+mµ+3/2

∞∫
0

v∗
i,mλ (r)vj,mλ (r)

∞∫
0

v∗
p,mµ(rξ)vq,mµ(rξ)

V0(ξ)

|1− ξ | rξ dξr dr. (25)

The exchange integrals defined by

Iex
ij =

∞∫
0

v∗
i,mλ (r)Vex

λ (r)vj,mλ (r)r dr

= 1

2

∑
µ�=λ

N−1∑
p=0

N−1∑
q=0

c∗
p,mµcq,mµδmµ

S ,m
λ
S
k−mλ−mµ−3/2f

[{i, j,mλ}, {p,q,mµ}],
can be implemented inMathematica as

In[18] := Iex
i−,j−[λ−,S−,N−, k−, η−]

:= Module

[
{σ }, σ = DeleteCases

[
DeleteCases[S, λ], {_,_,−λ[[3]]}];

1
2

Length[σ ]∑
κ=1

N∑
p=1

N∑
q=1

cσ [[κ]],η[[p]]cσ [[κ]],η[[q]]k−|λ[[2]]|−|σ [[κ,2]]|−3/2f
[{i, j, |λ[[2]]|}, { p − 1, q − 1, σ [[κ, 2]]}]

]

where

f
[{i, j,mλ}, {p,q,mµ}]

= 2km
λ+mµ+3/2

∞∫
0

v∗
i,mλ (r)vp,mµ(r)

∞∫
0

v∗
q,mµ(rξ)vj,mλ (rξ)

Vm(ξ)

|1− ξ | rξ dξr dr. (26)

with m = mλ − mµ ∈ Z.
It is the calculation of thesed andf integrals given by Eqs. (25) and (26), which is the most time consuming

aspect of the procedure. In both cases we allowMathematica to perform the integrations overr analytically, and
then overξ numerically, withMathematica’s numerical integrator,NIntegrate, allowing for the singularity at
ξ = 1.

The details are tedious, and are left for Appendix A. The required code is presented below. (Note the use
of dynamic programming, which increases efficiency by including all necessary symmetries.) To speed up the
computation, the analytic expressions could be exported as Fortran or C code and then integrated numerically
using a suitable quadrature routine.
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In[19] := d
[{i−, j−, m−}, {p−, q−, n−}]

:= d
[{i, j, m}, { p, q, n}]= d

[{i, j, m}, {q, p, n}]= d
[{ j, i, m}, { p, q, n}]= d

[{ j, i, m}, {q, p,n}]
= NIntegrate

[
Evaluate

[
1

2π
ξ2n+1 V0[ξ ]

|1 − ξ | 〈{i, j}, { p, q}, 1〉[m,n, ξ ]
]
, {ξ, 0, 1,∞}

]

In[20] := f
[{i−, j−, m−}, {p−, q−, n−}]

:= f
[{i, j, m}, { p, q, n}]= f

[{p, q, n}, {i, j, m}]= f
[{ i, j,−m}, { p, q,−n}]= f

[{p, q,−n}, { i, j,−m}]
= NIntegrate

[
Evaluate

[
1

2π
ξ2|n|+1 V|m−n|[ξ ]

|1 − ξ | 〈{i, j}, { p, q}, 2〉[|m|, |n|, ξ ]
]
, {ξ, 0, 1,∞}

]

〈{i, j }, {p,q},1〉 and〈{i, j }, {p,q},2〉 are defined by

In[21] := 〈{i−, j−}, {p−, q−}, 1
〉

:= 〈{i, j}, { p, q}, 1
〉= 〈{ j, i}, { p, q}, 1

〉= 〈{i, j}, {q, p}, 1
〉= 〈{ j, i}, {q, p}, 1

〉
= Function

[{m, n, ξ }, Evaluate
[
(1 + ξ 2)−m−n−3/2Collect[Expand[xarbLn

p(x)Ln
q(x)Lm

i (r)Lm
j (r)],

{x(_:1)r(_:1)}, Simplify] /. c−.xa+η−.rb+l−. :→ cIl,η,m,n[ξ ]]]
In[22] := 〈{i−, j−}, {p−, q−}, 2

〉
:= 〈{i, j}, { p, q}, 2

〉= 〈{ j, i}, { p, q}, 2
〉= 〈{i, j}, {q, p}, 2

〉= 〈{ j, i}, {q, p}, 2
〉

= Function
[{m, n, ξ }, Evaluate

[
(1 + ξ 2)−m−n−3/2Collect[Expand[xarbLn

p(r)Ln
q(x)Lm

i (r)Lm
j (x)],

{x(_:1)r(_:1)}, Simplify] /. c−.xa+η−.rb+l−. :→ cIl,η,m,n[ξ ]]]
where

In[23] := I /: Il−,η−,m−,n−: = Function
[{ξ }, ξ2η(1 + ξ2)−l−ηΓ

(
m + n + l + η + 3

2

)]
3.4. Total energy calculation

The total energyE of the system is given by

E[Ψ ] = 〈Ψ |H|Ψ 〉 = 〈Ψ |H1|Ψ 〉 + 〈Ψ |H2|Ψ 〉.
Note that this isnot just the sum of the individual electron energiesEλ, because the sum over allEλ counts the
kinetic energy and interaction energy with the confining potential once, while the mutual interaction energy is
counted twice. Hence, the total energy can also be written as

E[Ψ ] =
∑
λ

Eλ − 〈Ψ |H2|Ψ 〉. (27)

Using the fact thatH2 is of the form of a two electron operator, it can be shown (Appendix A) that

〈Ψ |H2|Ψ 〉 = 1

2

∑
λ>µ

( N−1∑
i,j,p,q=0

ci,mλcj,mλcp,mµcq,mµ

· k−mλ−mµ−3/2(d[{i, j,mλ}, {p,q,mµ}] − δmλ
S,m

µ
S
f[{i, j,mλ}, {p,q,mµ}])

)
, (28)

with d andf defined as in Eqs. (25) and (26).
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The total energy is computed directly as follows.

In[24] := E[S−,N−, k−, η−] := E[S,N , k, η]

=
Length[S]∑

λ=1
ES[[λ]],η

−1
2

Length[S]∑
λ=1

λ−1∑
µ=1

N∑
i=1

N∑
j=1

N∑
p=1

N∑
q=1

cS[[λ]],η[[i]]cS[[λ]],η[[j]]cS[[µ]],η[[p]]cS[[µ]],η[[q]]

·(k−|S[[λ,2]]|−|S[[µ,2]]|−3/2d({i − 1, j − 1, |S[[λ, 2]]|}, {p − 1, q − 1, |S[[µ, 2]]|})
− δS[[λ,3]],S[[µ,3]]k−|S[[λ,2]]|−|S[[µ,2]]|−3/2f({i − 1, j − 1, |S[[λ, 2]]|}, {p − 1, q − 1, |S[[µ, 2]]|}))

3.5. Hartree–Fock evaluation

The moduleHartreeFock is the main program body for running the Hartree–Fock calculation to solve forN

electrons defined by the state listS (see the examples section for a detailed explanation) with a matrix (expansion)
sizeN . Self-consistency is obtained by setting up a while loop which runs until the energy difference between two
consecutive iterations is less thanδ. The parametersk andV0 define the confining potential (e.g., the harmonic
confining potential of the formV (r) = −V0 + 1

2k
2r2).

In[25] := HartreeFock[S−,N−, δ−, k−, V0−]
:= Module

[{D = 2δ, η = 0, τ1 = 0, τ2 = 0},
τ1 = First[Timing[

InitialiseMatrixElements[N ]; ]];
τ2 = First[Timing[

InitialiseCoefficients[S,N , k];
StateSolve[S,N , k, V0,η];
While[Abs[D] > δ,

η + +;
StateSolve[S,N , k, V0,η];
D = E[S,N , k, η + 1] − E[S,N , k, η]

]
]];
SaveIntegrals;
PrintOutput[S,D, η];
Print["Initialization Time = ", τ1];
Print["Running Time = ", τ2]]

InitialiseMatrixElements is used to help save time with future calculations. All theAngleBracket function
definitions (ie, 〈{i, j }, {p,q},1〉 and 〈{i, j }, {p,q},2〉) required for anN × N matrix expansion are saved in a
file calledmatrixN .mx in a subdirectory of the home directory calledHFData. This module creates the file and
subdirectory if they do not already exist, and loads the file otherwise. It also loads values for the integralsd andf

if they have been saved in the filesd.mx andf.mx.



188 S.A. McCarthy et al. / Computer Physics Communications 141 (2001) 175–204

In[26] := InitialiseMatrixElements[N−]
:= Module

[{},
SetDirectory[$HomeDirectory];
If[FileNames["HFData"] == {}, CreateDirectory["HFData"]];
If[FileNames[ToFileName["HFData′′, "matrix" <> ToString[N ] <> ".mx"]] == {},

Table[〈{i, j}, { p, q}, 1〉, {i, 0,N − 1}, {j, 0,N − 1}, {p, 0,N − 1}, {q, 0,N − 1}];
Table[〈{i, j}, { p, q}, 2〉, {i, 0,N − 1}, {j, 0,N − 1}, {p, 0,N − 1}, {q, 0,N − 1}];
DumpSave[ToFileName["HFData", "matrix"<> ToString[N ] <> ".mx"], AngleBracket],
Get[ToFileName["HFData", "matrix"<> ToString[N ] <> ".mx"]]];

If[FileNames[ToFileName["HFData", "d.mx"]] �= {},
Get[ToFileName["HFData", "d.mx"]]];

If[FileNames[ToFileName["HFData", "f.mx"]] �= {},
Get[ToFileName["HFData", "f.mx"]]];]

InitialiseCoefficients assigns initial values to the expansion coefficients, and usesNormaliseCoefficients to
normalize them so thatc†Bc = 1 (Eq. (23)).

In[27] := InitialiseCoefficients[S−,N−, k−]
:= Module

[{χ, m, n}
χ = Table[0, { j,N }];
Do[n = S[[i]][[1]]; m = S[[i]][[2]]];

c /: cS[[i]],0 = NormaliseCoefficients[ReplacePart[χ, 1, n+ 1], k, m];
, {i, Length[S]}]]

In[28] := NormaliseCoefficients[c−List, k−, m−] := c√
c.BLength[c][k, m].c;

StateSolve solves the Rayleigh–Ritz matrix equation, Eq. (8) for each electron in the system, and then assigns a
new set of normalized coefficients based on the solutions.

In[29] := StateSolve[S−,N−, k−, V0−, η−]
:= Module

[{λ, ε,χ},
Do
[
λ = S[[i]];
{ε,χ} = Transpose

[
Select

[
(Chop[Eigensystem[(BN [k, λ[[2]]])−1.AN [λ,S, k, V0, η] // N]])T,

First[#1] < 0&
]];

c /: cλ,η+1 = Part[NormaliseCoefficients[#1, k, λ[[2]]]&/@χ,λ[[1]]+ 1];
E /: Eλ,η+1 = ε[[λ[[1]] + 1]];
, {i, Length[S]}]]
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Upon exiting the self-consistency loop, we save the values for thed andf integrals using theSaveIntegrals module
(they are saved to the filesd.mx and f.mx in the HFData subdirectory of the home directory). This is done to
increase efficiency in further calculations of different electronic configurations for the same potential, since it is
not necessary to reevaluate these time consuming integrals.

In[30] := SaveIntegrals

:= Module
[{},

DumpSave[ToFileName["HFData", "d.mx"],d];
DumpSave[ToFileName["HFData", "f.mx"], f];
ResetDirectory[];]

PrintOutput is a module which can be modified by the user depending upon the desired output. In this example,
the calculated energies (converted to meV) are saved under the symbolE, and the expansion coefficients under
the symbolC. The total energy, number of iterations, and the energy difference between the last two iterations are
printed out. By default, the conversion factors are those of GaAs, which has an effective massm∗ = 0.065me and
dielectric constantε = 12.9ε0.

In[31] := PrintOutput[S−,D−, η−]
:= Module

[
{Hartree = 27.2116, ε = 12.9, m = 0.065},

Do
[
E/: ELength[S],S[[i]] = 1000

mHartree
ε2

ES[[i]],η+1;
C/: CLength[S],S[[i]] = cS[[i]],η+1,

{i, Length[S]}
]
;

E/: ELength[S] = 1000
mHartree

ε2
E[S,N , k, η + 1];

Print["Total Energy = ", ELength[S], "meV"];
Print["Number of Iterations = ", η + 1];
Print

[
"Convergence = ", 1000

mHartree

ε2
D
]

]

To give an idea of the time required for the calculations, the initialization time and the time required to complete
the Hartree–Fock self-consistency loop are also printed out.

4. Examples and results

In this section we start by explaining the filling order of these quantum dots. This helps explain the data structure
for the state listS. We give an example for both a three- and two-electron GaAs quantum dot system, and then go
on to describe some of the results obtained using theQDHartreeFock.m package.
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Fig. 2. Filling order for a two-dimensional system. The top row gives the single electron eigenenergies for the harmonic confining potential
(V0 = 0) for the states{n,m}. We have labeled the full-shells by (**), and the half-filled shells by (*).

4.1. Filling order

We recall that the energy eigenvalues for a single electron in a two-dimensional harmonic oscillator potential is
given by Eq. (3), so that

En,|m| = k
(
2n+ |m| + 1

)− V0.

Assuming that these energy levels hold for systems with more electrons, and then applying Hund’s rules [15], we
get the filling order described by Fig. 2. We can see that there are full-shells forN = 2,6,12, . . . and half-filled
shells forN = 4,9,16, . . . . In an atomic systems these “magic numbers” would correspond to peaks in the addition
energy of these elements, with full-shells corresponding to larger peaks than the half-filled shells.

4.2. Example

The first step is to load in the package. This can be done either by opening theQDHartreeFock.nb file and
evaluating the initialization cells (using the menu:Kernel | Evaluation | Evaluate Initialisation), or by loading
in the QDHartreeFock.m package. The latter can be done by first saving the package in a directory inside the
ExtraPackages directory in theMathematica folder, and then using<<. For example,

<< QDHartreeFock�

We now assign values to the parametersk and V0 in the harmonic confining potential of the formV (r) =
−V0 + 1

2k
2r2, sayk = 10 andV0 = 100.

In[32] := k = 10.0; V0 = 100.0;
Consider the lowest energy states of the 2- and 3-electron systems according to the filling order in Fig. 2,S2 and
S3 are defined by listing the states{n,m,mS} of each electron,

In[33] := S2 = {{0, 0, 1
2

}
,
{

0, 0,− 1
2

}};
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In[34] := S3 = {{0, 0, 1
2

}
,
{

0, 0,− 1
2

}
, {0, 1, 1

2 }};
We set the following parameters which determine the accuracy of the calculation: a matrix (expansion) size of, say
N = 4, and a value forδ, the energy difference between the last two iterations, of, sayδ = 10−7.

In[35] := N = 4; δ = 10−7

We can now run the Hartree–Fock calculations. For the 3-electron system,

In[36] := HartreeFock[S3,N , δ, k, V0]
Total Energy= −2673.07 meV

Number of Iterations= 9

Convergence= 8.38467× 10−7

Initialisation Time= 185.749 second

Running Time= 479.86 second

For the 2-electron system,

In[37] := HartreeFock[S2,N , δ, k, V0]
Total Energy= −1872.15 meV

Number of Iterations= 9

Convergence= 1.97748× 10−7

Initialisation Time= 1.74997 second

Running Time= 4.9083 second

Notice the significant time saving in both the initialization time and the running time for the solution of theS2
state once theS3 state has been solved for. This is due to the fact that many of the time consuming aspects of the
code are saved after the first timeHartreeFock is run.

Implementation of this procedure was performed withMathematica version 4.1, running remotely from a DEC
Alpha workstation 500 with 0.5 GB RAM. Convergence was obtainable, withδ becoming less than 10−7 for
anywhere between 4 and 20 iterations depending on the number of electrons in the system.

Calculations were performed for quantum dots with up toN = 18 electrons. As would be expected, calculation
time increased with each extra electron, markedly so when jumping to a higher energy level. The program is limited
in that calculations with matrix (expansion) sizes larger thanN = 4 become laborious due to increased running
times and CPU load. This limitation on the expansion means a deficiency in the accuracy of the calculations,
especially as the electron number increases. It also means that calculations with non-harmonic confining potentials
are not feasible for more than one electron with the present code. The limitation is caused by the time required to
calculate thed andf terms (see §3.3).

4.3. Addition energy

Due to Coulomb repulsion, the energy of a quantum dot withN + 1 electrons is greater than the energy of a
dot with N electrons. Thus the addition of an electron requires energy to be supplied. The chemical potential is
defined asµ(N) ≡ E(N) − E(N − 1) with E(N) being the ground state energy for theN -electron system. The
capacitative, or addition energy is then

1µ(N) = µ(N + 1)− µ(N) = E(N + 1) − 2E(N) + E(N − 1).
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Fig. 3. Addition energies calculated by the Hartree–Fock method withN = 4 andk = 10.

We can use this definition to plot the addition energies obtained from our Hartree–Fock calculations (Fig. 3). From
a comparison with the filling order (Fig. 2), we immediately see the expected peaks with 2, 6, and 12 electrons.
We also obtain the smaller half-filling peak atN = 4. However, we notice that the expected small peaks forN = 9
and 16 are not seen. In fact it appears as though we obtained peaks atN = 8 and 14 instead. Possible reasons are
discussed in §4.4.

Tarucha et al. [11] were able to experimentally measure the addition energy of a quantum dot structure (Fig. 4).
As a negative voltage is applied to the side gate, the diameter of the dot becomes smaller and excess electrons are
forced out one at a time until there are none left in the conduction band. A current will flow only if the number of
electrons in the dot changes. As discussed in their paper, this will only happen when certain discrete energies are
supplied, and so current peaks are observed at the corresponding voltages. The voltage difference between current
peaks is a measure of the addition energy, and the experimental data indeed indicates the expected behaviour
associated with a two-dimensional structure.

The experimental data of Tarucha et al. [11] and the theoretical results of Ezaki et al. [9] have energies within
the 0–10 meV range, while our calculations fork = 10 range up to about 120 meV. In order to understand how
the width and depth of the quantum dots affect the absolute scale of Fig. 3, we examined the effect of varying the
parameterk (Fig. 5). We observe that ask is decreased, the addition energies are shifted down to lower energies.
The peak positions appear to be unaffected, except for the fact that the main peaks become less pronounced. Below
aboutk = 1, we lose the ability to identify the main peaks atN = 2 and 6. This trend agrees with the theoretical
results obtained using density functional theory by Lee et al. [10] (Fig. 6). The overall agreement of the two results
is very pleasing. Note that Lee et al. [10] also get a “bump” atN = 8 as well as a different energy range from the
experimental data.

The observed trend can be explained by the fact that ask decreases, the well is becoming shallower. Thus,
the effect of the quantum confinement becomes less pronounced and the interaction energies become increasingly
important. The electrons start to show the behaviour of free particles.

Another thing we notice from a comparison with Fig. 4 is that the experimental peaks tend to fall off more
rapidly than all three theoretical results. This is perhaps due to the fact that our calculations, and also those of Lee
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Fig. 4. Addition energies as measured by Tarucha et al. [11] for two different dot sizes of 0.5 and 0.4 µm. Also plotted are the theoretical results
of Ezaki et al. [9].

Fig. 5. Effect of varying the parameterk in the confining potentialV (r) = 1
2k

2r2.

et al. [10], are performed for fixedk, whereas the experimental technique of slowly altering the voltage to remove
the electrons would scan through a range ofk values.
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Fig. 6. Theoretical results of Lee et al. [10] calculated using density functional theory. Their values forh̄ω = 4, 10, 20 meV, correspond to
k = 0.37, 0.94, 1.88.

4.4. Possible reasons for peak at N = 8

Firstly, note that the filling order is ambiguous. For example, the two different filling orders,

N {0,0} {0,1} {0,−1} {0,2} {0,−2} {1,0}
8 ↑↓ ↑↓ ↑↓ ↑ ↑

and

N {0,0} {0,1} {0,−1} {0,2} {0,−2} {1,0}
8 ↑↓ ↑↓ ↑↓ ↑ ↑

are almost degenerate. Choosing one or the other can alter where we observe the “peak”. It is possible that the
actual result should have contributions from both.

Secondly, the Hartree–Fock approximation assumes that each electron moves independently in a mean field
determined by the other electrons. This assumption ignores the effect of electron correlations. The correlation
energy is defined as

Ecorr = Eexact− EHF

Pfannkuche et al. [8] showed that correlation was important in their comparison of an exact solution and a Hartree–
Fock solution for artificial helium. Their results were in good agreement for the triplet state calculations, but were
not so for the singlet state. This was due to the exact singlet states containing products of one-particle states with
different angular momenta—something not accounted for in the Hartree–Fock solutions.
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Both the lack of correlations and the degeneracy of filling orders can be corrected for by using amulti-
configuration Hartree–Fock (MCHF) approach [18]. When dealing with atomic systems we can consider linear
combinations of Slater determinants with the samen and l quantum numbers but differentml andmS called
configuration state functions (CSF). These are denotedΦ(γLMLSMS), and are better approximations to the total
wavefunction than the single Slater determinant. Better approximations can be made with linear combinations of
CSF,

Ψ (γLS) =
M∑
i=1

ciΦ(γiLS), where
M∑
i=1

|ci |2 = 1.

These functions are the basis of the MCHF method, just as the Slater determinant was the basis for the Hartree–
Fock method. These functions allow for variation in the angular momentum quantum numbers, which is expected
to fix the problem of degenerate filling orders. Moreover, these functions have the advantage that they can take into
account correlations.

4.5. Exchange effect

To demonstrate the importance of exchange interactions, we also performed calculations based on the original
method of Hartree. In this method, the wavefunction is no longer a Slater determinant, but instead is a simple
product of single electron wavefunctions. The effect of this is that we no longer have the exchange term in the
Hartree–Fock equations; we are instead left with the Hartree equations, which for theith electron in the stateλ
reads(−1

2∇2
r i

+ V (ri) +Vd
λ (r i )

)
ψλ(qi) = Eλψλ(qi),

with Vd
λ defined as before. Also, since we no longer have a determinantal function, the total energy is now

E[Ψ ] =
∑
λ

Eλ − 〈Ψ |H2|Ψ 〉,

Fig. 7. Comparison of a Hartree and a Hartree–Fock calculation fork = 10.
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with

〈Ψ |H2|Ψ 〉 = 1

2

∑
λ>µ

(N−1∑
i=0

N−1∑
j=0

N−1∑
p=0

N−1∑
q=0

ci,mλcj,mλcp,mµcq,mµk−mλ−mµ−3/2
d
[{i, j,mλ}, {p,q,mµ}]

)
.

We performed a Hartree calculation for a value ofk = 10 in the harmonic confining potential. The addition energy
was plotted with the corresponding values from the Hartree–Fock calculations (Fig. 7). We can see that we lose
the peaks due to the half-filling of states. This result was of course to be expected, since, without the effect of spin,
there would not be any energy difference when we add electrons with parallel or antiparallel spins.

5. Conclusion

In this paper we have examined the electronic structure of circularly symmetric quantum dots withN -electrons.
As a first step, we investigated the single electron solutions to the Schrödinger equation. A general method was
developed which allows us to treat a wide range of different confining potentials. Analytic solutions for the
eigenstates of a single electron in Gaussian confining potential were obtained.

A Mathematica package,QDHartreeFock.nb was developed which implements the Hartree–Fock method to
solve quantum dot systems withN -electrons. The addition energies calculated in this manner are in good agreement
with the theoretical work by Lee et al. [10]. The calculations also agree, at least at a qualitative level, with the
experimental results of Tarucha et al. [11]. We also examined the exchange effect in anN -particle quantum dot—
making a comparison between the Hartree and Hartree–Fock approximations.

In its present form, the code requires significant amount of CPU time and memory. A conversion of the code to a
more numerical environment, such as Fortran or C, should speed up computation considerably. We will also look at
revising the method to allow faster and more accurate calculation of the many multi-dimensional integrals involved
in the Hartree–Fock formalism. A procedure based on solutions of pairs of differential equations is described by
Fischer et al. [18], and may be adaptable to 2D quantum dot systems. Further research efforts will look towards
anisotropic quantum dots, and the study of transport phenomena in quantum dot systems.
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Appendix A. Simplification for Hartree–Fock calculations

A.1. Simplification of Direct and Exchange potentials

Using the assumption from Eq. (14) and expandingrij as in Eq. (15) we can write the direct and exchange
potentials, Eq. (12) as

Vd
λ (r i ) =

∑
µ�=λ

∫ |ψµ(rj )|2
rij

drj

=
∑
µ�=λ

1

2π

∞∫
0

∣∣Rn,m(rj )
∣∣2 2π∫

0

1

r>

1

(1+ ρ2 − 2ρ cos(φj − φi))1/2
dφ rj drj ,

and the exchange potential, Eq. (13) as
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Vex
λ (r i )ψλ(r i ) =

∑
µ�=λ

δmµ
S ,m

λ
S
ψµ(r i )

∫
ψ∗

µ(rj )ψλ(rj )

rij
drj

=
∑
µ�=λ

δmµ
S ,m

λ
S

1

2π
R∗

µ(ri)e
imµφi

∞∫
0

R∗
µ(rj )Rλ(rj )

·
2π∫
0

1

r>

eimφj

(1+ ρ2 − 2ρ cos(φj − φi))1/2 dφj rj drj ,

wherem = mλ − mµ ∈ Z. Now

2π∫
0

1

r>

eimφj

(1+ ρ2 − 2ρ cos(φj − φi))1/2 dφj

=
2π−φi∫
−φi

1

r>

eim(φi+φj )

(1+ ρ2 − 2ρ cos(φj ))1/2 dφj

= eimφi

2π∫
0

1

r>

eimφj

(1+ ρ2 − 2ρ cos(φj ))1/2 dφj

= eimφi

2π∫
0

1

r>

cos(mφj )

(1+ ρ2 − 2ρ cos(φj ))1/2 dφj ,

where in the last step we have used symmetry arguments to drop the antisymmetric part of eimφ = cos(mφ) +
i sin(mφ). This integral can be evaluated for individualm, to give polynomials involvingK(x) andE(x), the
complete elliptic integrals of the first and second kinds, respectively [17]. We notice that if we change variables
to ξ = rj /ri , then a factor of 1/|1 − ξ | may be removed, and we are left with simplified forms of the direct and
exchange potentials, given by Eqs. (17) and (18), where we have defined

Vm(ξ) = (1− ξ)

2π∫
0

cos(mφ)

(1+ ξ2 − 2ξ cos(φ))1/2 dφ.

A.2. Matrix elements

We want to evaluate the integrals

d
[{i, j,mλ}, {p,q,mµ}]
= 2km

λ+mµ+3/2

∞∫
0

v∗
i,mλ (r)vj,mλ (r)

∞∫
0

v∗
p,mµ(rξ)vq,mµ(rξ)

V0(ξ)

|1− ξ | rξ dξ r dr

=
∞∫

0

ξ2mµ+1 V0(ξ)

|1− ξ |
〈{i, j,mλ}, {p,q,mµ},1

〉
dξ,

and
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f
[{i, j,mλ}, {p,q,mµ}]

= 2km
λ+mµ+3/2

∞∫
0

v∗
i,mλ (r)vp,mµ(r)

∞∫
0

v∗
q,mµ(rξ)vj,mλ (rξ)

Vm(ξ)

|1− ξ | rξ dξ r dr

=
∞∫

0

ξ2mµ+1 Vm(ξ)

|1− ξ |
〈{i, j,mλ}, {p,q,mµ},2

〉
dξ,

where we have defined

〈{i, j,m}, {p,q,n},1
〉= 2km+n+3/2

∞∫
0

r2m+2n+2e−kr2
e−kr2ξ2

Ln
p(kr

2ξ2)Ln
q(kr

2ξ2)Lm
i (kr2)Lm

j (kr2)dr,

and

〈{i, j,m}, {p,q,n},2
〉= 2km+n+3/2

∞∫
0

r2m+2n+2e−kr2
e−kr2ξ2

Ln
p(kr

2)Ln
q(kr

2ξ2)Lm
i (kr2)Lm

j (kr2ξ2)dr,

The generalized Laguerre polynomials in these integrals bring in certain powers ofkr2ξ2 andkr2, so we consider
integrals of the form

2km+n+l+η+3/2

∞∫
0

r2m+2n+2l+2η+2ξ2ηe−kr2
e−kr2ξ2

dr

which can be evaluated as

In[38] := Clear[k]; SetOptions[Integrate, GenerateConditions→ False];
In[39] := 2km+n+l+η+3/2 ∫ ∞

0 r2m+2n+2l+2η+2ξ2ηe−kr2
e−kr2ξ2

dr // Simplify // PowerExpand

Out[39] = ξ2η(ξ2 + 1)−l−m−n−η−3/2Γ
(
l +m + n + η + 3

2

)
From this we define the function,Il,η,m,n from §3.3. We can then expand the generalized Laguerre polynomials,
collect powers ofkr2ξ2 and kr2, and then match coefficients and use the above result to obtain the integrals
〈{i, j,m}, {p,q,n},1〉 and〈{i, j,m}, {p,q,n},2〉. The remaining integration overr is performed numerically to
obtaind andf.

A.3. Total energy

For a two electron operatorgij and a determinantal functionΨ , we can write [19]〈
Ψ

∣∣∣∣∣
N∑

i>j=1

gij

∣∣∣∣∣Ψ
〉

=
N∑

i>j=1

[〈ij |g|ij 〉 − 〈ij |g|j i〉], (A.1)

where it is understood that in both the bra and the ket, the spin orbital written first is a function ofq1, and the
second is a function ofq2. Eq. (27) gives the total energy as

E[Ψ ] =
∑
λ

Eλ − 〈Ψ |H2|Ψ 〉,

where operatorH2 is of the form of a two electron operator. So using the property from Eq. (A.1), we can write
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〈Ψ |H2|Ψ 〉 =
∑
λ>µ

(∫∫
ψ∗

λ (qi)ψ
∗
µ(qj )H2ψλ(qi)ψµ(qj )dqj dqi

−
∫∫

ψ∗
λ(qi)ψ

∗
µ(qj )H2ψλ(qj )ψµ(qi)dqj dqi

)

=
∑
λ �=µ

(I1 + I2).

Now, ψλ(q) = 1√
2π

eimλφRλ(r)χmλ
S
, so (using the orthonormality property of the spin functionsχ ) we can rewrite

the above integrals as

I1 = 1

4π2

∞∫
0

∞∫
0

2π∫
0

2π∫
0

R∗
λ(ri )R

∗
µ(rj )H2Rλ(ri)Rµ(rj )dφj dφi rj drj ri dri,

and

I2 = 1

4π2

∞∫
0

∞∫
0

2π∫
0

2π∫
0

R∗
λ(ri )R

∗
µ(rj )H2Rλ(rj )Rµ(ri)eim(φj−φi ) dφj dφi rj drj ri dri,

wherem = mλ − mµ. Expanding the radial functions as in Eq. (19), we have to evaluate

I1 = 1

4π2

N−1∑
i,j,p,q=0

ci,mλcj,mλcp,mµcq,mµ

·
∞∫

0

∞∫
0

2π∫
0

2π∫
0

vi,mλ (ri )vp,mµ(rj )H2vj,mλ (ri)vq,mµ(rj )dφj dφi rj drj ri dri,

and

I2 = 1

4π2
δmλ

S,m
µ
S

N−1∑
i,j,p,q=0

ci,mλcj,mλcp,mµcq,mµ

·
∞∫

0

∞∫
0

2π∫
0

2π∫
0

v∗
i,mλ (ri )v

∗
p,mµ(rj )H2vj,mλ (rj )vq,mµ(ri)eim(φj−φi ) dφj dφi rj drj ri dri .

These integrals have already been computed, and are given byd, andf. So we get Eq. (28).

Appendix B. Analytic integrals

For convenience, when evaluating these below we will change variables, lettingx = kr2, and define the notation

〈{i, α}, {j,β},m〉=
∞∫

0

e−xxmLα
i (x)L

β

j (x)dx.

The kinetic energy integrals given in Eq. (21) are evaluated as follows.

In[40] := SetAttributes[k, Constant];
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In[41] := rule = c−.La−
i− (x)Lb−

j− (x)xn−. :→ ex

Dt[x]
〈{i, a}, {j, b}, n

〉
c;

In[42] :=
(((

1
2

v(0,1)
i,m (k, r)v(0,1)

j,m (k, r) + m2

2r2
vi,m(k, r)vj,m(k, r)

)
r // Expand

)
Dt[r] /. r →

√
x
k

//

Simplify // PowerExpand // Expand

)
/. rule

Out[42] = 〈{i − 1,m + 1}, {j − 1,m + 1},m+ 1
〉
k−m − 1

2m
〈{i − 1,m+ 1}, {j,m},m〉k−m

+ 1
2

〈{i − 1,m + 1}, {j,m},m+ 1
〉
k−m − 1

2m
〈{i,m}, {j − 1,m + 1},m〉k−m

+ 1
2

〈{i,m}, {j − 1,m+ 1},m+ 1
〉
k−m + 1

2m
2
〈{i,m}, {j,m},m− 1

〉
k−m

− 1
2m
〈{i,m}, {j,m},m〉k−m + 1

4

〈{i,m}, {j,m},m+ 1
〉
k−m

The overlap integral given by Eq. (22) becomes

In[43] :=
(

(vi,m(k, r)vj,m(k, r)r // Expand)Dt[r] /. r →
√

x
k

//

Simplify // PowerExpand // Expand

)
/. rule

Out[43] = 1
2k

−m−1
〈{i,m}, {j,m},m〉

The confining potential integrals given by Eq. (24), for the harmonic potentialV (r) = −V0 + 1
2k

2r2 become

In[44] := V0 = .

In[45] :=
(((1

2 k2r2 − V0
)
vi,m(k, r)vj,m(k, r)r // Expand

)
Dt[r] /. r →

√
x
k

//

Simplify // PowerExpand // Expand

)
/. rule

Out[45] = 1
4k

−m
〈{i,m}, {j,m},m+ 1

〉− 1
2k

−m−1
〈{i,m}, {j,m},m〉V0

The evaluation of these integrals involving the generalized Laguerre polynomials is given below.
To compute the integral

〈{i,m}, {j,m},m〉=
∞∫

0

xme−xLm
i (x)Lm

j (x)dx,

we can immediately use the orthogonality relation for the generalized Laguerre polynomials [14], so that〈{i,m}, {j,m},m〉= δi,j
Γ (m + i + 1)

i! = δi,j
(m + i)!

i! .

It follows from this that〈{i − 1,m + 1}, {j − 1,m+ 1},m+ 1
〉= δi−1,j−1

Γ ((m + 1) + (i − 1) + 1)

(i − 1)! = δi,j
i(m + i)!

i! .

To compute the integral

〈{i,m}, {j,m},m+ 1
〉=

∞∫
0

xm+1e−xLm
i (x)Lm

j (x)dx,
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we use the propertyxLα
i (x) = −(i + α)Lα

i−1(x)− (i + 1)Lα
i+1(x)+ (2i + α + 1)Lα

i (x) [14], so that

〈{i,m}, {j,m},m+ 1
〉 =

∞∫
0

xm+1e−xLm
i (x)Lm

j (x)dx

= −(i +m)
〈{i − 1,m}, {j,m},m〉+ (2i + m + 1)

〈{i,m}, {j,m},m〉
− (i + 1)

〈{i + 1,m}, {j,m},m〉
= −(i +m)δi−1,j

Γ (m+i)
j ! + (2i + m + 1)δi,j

Γ (m+i+1)
i! − (i + 1)δi+1,j

Γ (m+i+2)
(i+1)!

= −δi−1,j
Γ (m+j+2)

j ! + δi,j (2j + m + 1)Γ (m+j+1)
j ! − δi,j−1

jΓ (m+j+1)
j !

= (m+j)!
j !

(
(2j + m + 1)δi,j − (m + j + 1)δi−1,j − jδi,j−1

)
.

To compute the integral

〈{i,m}, {j,m},m− 1
〉=

∞∫
0

xm−1e−xLm
i (x)Lm

j (x)dx,

we use the propertyLα+1
i (x) =∑i

k=0L
α
k (x) [14], so that

〈{i,m}, {j,m},m− 1
〉 =

∞∫
0

xm−1e−xLm
i (x)Lm

j (x)dx,

=
i∑

n=0

j∑
k=0

〈{n,m − 1}, {k,m− 1},m− 1
〉

=
i∑

n=0

j∑
k=0

δn,k
Γ (m + n)

n! =
Min(i,j)∑

n=0

Γ (m + n)

n!

= Γ (m + Min(i, j) + 1)

mΓ (Min(i, j) + 1)
=
{

(m+i)!
mi! j � i,

(m+j)!
mj ! j < i.

(Note that this term is multiplied bym2, so there is no problem whenm = 0.)
To compute the integral

〈{i,m}, {j − 1,m+ 1},m〉=
∞∫

0

xme−xLm
i (x)Lm+1

j−1 (x)dx,

we use the propertyLα+1
i (x) =∑i

k=0L
α
k (x) [14], so that

〈{i,m}, {j − 1,m+ 1},m〉 =
∞∫

0

xme−xLm
i (x)Lm+1

j−1 (x)dx

=
j−1∑
k=0

〈{i,m}, {k,m},m〉= j−1∑
k=0

δi,k
Γ (m + i + 1)

i!

=
{

Γ (m+i+1)
i! , 0 � i � j − 1

0, i � j
= θ(j − i − 1)

(m + i)!
i! ,
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where

θ(x) =
{

1, x � 0
0, x < 0

is the Heaviside step function. By symmetry, we can also say that〈{i − 1,m + 1}, {j,m},m〉= θ(i − j − 1)
(m+ j)!

j ! .

To compute the integral

〈{i,m}, {j − 1,m+ 1},m + 1
〉=

∞∫
0

xm+1e−xLm
i (x)Lm+1

j−1 (x)dx,

we use the propertyLα−1
i (x) = Lα

i (x)− Lα
i−1(x) [14], so that〈{i,m}, {j − 1,m+ 1},m + 1

〉
=

∞∫
0

xm+1e−xLm
i (x)Lm+1

j−1 (x)dx

= 〈{i,m + 1}, {j − 1,m+ 1},m+ 1
〉− 〈{i − 1,m + 1}, {j − 1,m+ 1},m+ 1

〉
= δi,j−1

Γ (m + i + 2)

i! − δi−1,j−1
Γ (m+ i + 1)

(i − 1)!
= δi,j−1

Γ (m + i + 2)

i! − δi,j
iΓ (m + i + 1)

i!
= (m + i)!

i!
(
(m + i + 1)δi,j−1 − iδi,j

)
.

By symmetry, we can also say that

〈{i − 1,m + 1}, {j,m},m+ 1
〉 = δi−1,j

Γ (j + m + 2)

j ! − δi,j
jΓ (j +m + 1)

j !
= (m + j)

j !
(
(m + j + 1)δi−1,j − jδi,j

)
.

Combining these results we obtain a tridiagonal matrix for the kinetic energy integrals, and a diagonal matrix for
the overlap integrals (§3.3).

Appendix C. Gaussian integral

When considering a Gaussian function of the formV (r) = −V0e−r2/R2
, the confining potential integral given

by Eq. (24) becomes

−V0

∞∫
0

e−r2/R2
v∗
i,m(r)vj,m(r)r dr.

Changing variables, so thatx = kr2 (wherek =√
2V0/R2), this integral becomes an integral overr = [0,∞) with

integrand determined as follows.

In[46] := SetAttributes[{R, β}, Constant];
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In[47] := −V0e−r2/R2
vi,m(k, r)vj,m(k, r)r Dt[r] /. r →

√
x
k

// Simplify // PowerExpand

Out[47] = −1
2e

(−1− 1
R2k

)x
k−m−1xm dxLm

i (x)Lm
j (x)V0

Dividing through by−V0
2 k−m−1, definingβ = kR2, and changing variables again so thatx → βx, this becomes

In[48] := %

− V0
2 k−m−1

/. First
[
Solve[β == kR2, k]] /. x → βx // PowerExpand // Simplify

Out[48] = e−x(β+1)xmβm+1 dxLm
i (xβ)L

m
j (xβ)

Dividing through byβm+1, definingγ = β/(β + 1), and changing variables once more so thatx → γ x, we get

In[49] :=
(

%

βm+1
/. x → x

β + 1
/. First

[
Solve

[
γ == β

β + 1
, β

]]
// Simplify

)
/.

{(γ − 1) → −(1 − γ ), (x − xγ ) → x(1 − γ )} // PowerExpand // Simplify

Out[49] = e−xxm(1− γ )m+1 dxLm
i (xγ )Lm

j (xγ )

So we want to evaluate

−V0

2

(
β(1− γ )

k

)m+1 ∞∫
0

xme−xLm
i (γ x)Lm

j (γ x)dx.

Now, the Laguerre polynomials can be written as [20, Eq. (1) of §1.7]

Lα
n(x) =

(
n+ α

n

)
1F1(−n;α + 1;x),

where1F1(−n;α + 1;x) is the Kummer confluent hypergeometric function. We can then use the integral identity
[20, Eq. (29) of §9.4]

∞∫
0

e−t tα−1
1F1(β;γ ;xt) 1F1(β

′;γ ′;yt)dt = Γ (α)F2[α;β,β ′;γ, γ ′;x, y],

whereF2[α;β,β ′;γ, γ ′;x, y] is the Appell hypergeometric function of the second kind. So

∞∫
0

xme−xLm
i (γ x)Lm

j (γ x)dx =
(
i + m

i

)(
j +m

j

) ∞∫
0

e−xxm
1F1(−i;m+ 1;γ x) 1F1(−j ;m+ 1;γ x)dx

= (i + m)!(j + m)!
i!j !m! F2[m + 1;−i,−j ;m+ 1,m+ 1;γ, γ ].

Further simplification is possible using the identity [20, Eq. (108) of §9.4]

F2[α;β,β ′;α,α;x, y] = (1− x)−β(1− y)−β ′
2F1

(
β,β ′;α; xy

(1− x)(1− y)

)
,

where2F1(β,β
′;α; xy

(1−x)(1−y)
) is the Gauss hypergeometric function. Therefore

∞∫
0

xme−xLm
i (γ x)Lm

j (γ x)dx = (i + m)!(j + m)!
i!j !m! (1− γ )i+j

2F1

(
−i,−j ;m+ 1; γ 2

(γ − 1)2

)
.
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So finally, the integral we want is

−V0

2

(
β

k

)m+1
(i + m)!(j + m)!

i!j !m! (1− γ )i+j+m+1
2F1

(
−i,−j ;m+ 1; γ 2

(γ − 1)2

)
.

In terms ofk andV0 this is

In[50] :=
(

−V0

2

(
β

k

)
(i + m)!(j + m)!

i!j!m! (1 − γ )i+j+m+1
2F1

(
−i,−j;m + 1; γ 2

(γ − 1)2

)
/.

γ → β

β + 1
/. β → kR2 /. R →

√
2V0

k2
// Simplify

)
/.

(k + 2V0) → k
(

2V0

k
+ 1
)

// PowerExpand // Simplify

Out[50] = −2mk−2(m+1)(i + m)!(j + m)! 2F1
(−i,−j ;m+ 1; 4V 2

0
k2

)
V m+2

0

( 2V0
k

+ 1
)−i−j−m−1

i!j !m!
The Gaussian confining potential integral is then implemented as

In[51] := Clear[V];
In[52] := V /: Vi−,j−

:= V /: Vi,j = V /: Vj,i

= Function
[
{k, V0, m},

− 2mV0m+2

k2(m+1)

(i + m)!(j + m)!
i!j!m!

(
1 + 2V0

k

)−i−j−m−1

2F1

(
−i,−j;m + 1; 4V02

k2

)]
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