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LONG WRITE-UP

1. Introduction

With the increased sophistication of semiconductor technology it is now possible to create man-made objects
which display many of the characteristic properties normally associated with atoms. Electrons are trapped between
two layers of semiconductor, effectively confining them to two-dimensions, and then restricted further by some
lateral confining potential to create what has been termedr#tficial atom or quantum dot. The ability of
experimentalists to manipulate the size and shape of these artificial atoms has opened up a wide range of
possibilities and areas for examination [1,2]. In the future, quantum dots may be used to build more efficient
and precisely controlled lasers, and also as vital components of nanoelectronic devices [3,4]. It is also hoped that
guantum dots may one day be able to help realize the dream of quantum computing [5].

Typical quantum dots of the type described in [1] can range in size from nanometers to a few microns and can
contain anywhere from a few electrons to hundreds of electrons. The electrons are sandwiched between two layers
of semiconductor, which typically have a spacing of approximately 0.5 nm. The lateral confining potential for a
gquantum dot with a large radius can be approximated as a finite square well with rounded edges. For a smaller dot
however, we may instead model it as a smooth function, such as a Gaussian potential,

V(r)=—Voe /%,

or a Pdschl-Teller potential,
V(r) = —Vo/ costt(—r2/R?).

For states near the bottom of the well, a good approximation is that of a harmonic confining potential,
V(r)=—Vo+ 3k%2.

The attraction of this harmonic model is that a simple analytic solution to the single electron Schrddinger equation
exists [6,7].

The main focus of this paper is the calculation of the electronic states in quantum dot¥ sgigctrons by
applying the Hartree—Fock self-consistent field method. Pfannkuche et al. [8] performed Hartree—Fock calculations
for a two-electron quantum dot (artificial helium), and compared with an exact solution to the two-electron system
obtained by direct numerical diagonalization of the two-particle Hamiltonian. In this paper we extend the Hartree—
Fock calculation tav-electron systems.

Ezaki et al. [9] applied a brute force approach by numerically diagonalizingyteéectron Hamiltonian using
Slater determinants which were formed from the solutions to the single-electron problem. Lee et al. [10] also
studied theN-electron problem, but applied a method based on density functional theory. Both groups obtained
results in reasonable agreement with the experimental results reported by Tarucha et al. [11].

Most theoretical models in the literature, including Refs. [9,10], assume a harmonic confining potential when
dealing with isotropic quantum dots. But what is the effect of altering this potential to something that is perhaps
more realistic, such as the Gaussian or Péschl-Teller potentials as suggested above? Section 2 starts by looking
at this problem for a one electron quantum dot system, developing a general method which can be applied to a
number of different potentials. We then describe the theory foikedectron systems and present the associated
Hartree—Fock equations to be solved. Section 3 presents the method of solution¥oeteetron problem and a
description of the developed code for thiathematica packageQDHartreeFock.m. Finally, Section 4 gives an
example and some results obtained using this program.
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2. Theory
2.1. Sngle electron systems

In our model of quantum dot systems, we assume that the confining potential can be separated into gyertical
component and a laterat & (r, ¢)) component. The confining potential in the vertical direction can be thought of
as effectively being a very narrow infinite triangular well [12], whereas the lateral confining potéitinhas a
bowl-like shape. The energy level of the first excited state inzthigection is generally hundreds of times greater
than many of the low energy states in the plane. This property allows us to model electron motion in a quantum
dot as two-dimensional. Thus the Schrddinger equation in plane polar coordinates reads

o,

(‘ o r T V<r>>w<r> =Ey(r),
wherem* is the effective mass, arid? is the two-dimensional Laplacian. We now switch to rescaled atomic units
by settingh =m* =e =aj =1, withaj = 4 eh?/m*e? the effective Bohr radius, andthe dielectric constant.
Assuming a circularly symmetric confining potentia(r, ¢) = V (r), and using separation of variables, we see
thaty (r, ¢) = J%e""‘?’R(r) with R(r) satisfying the radial equation,

19/ 9 m?2
(—5505) +toz+ V(r))R(r) =ER(®), 1)

wherem € Z is a quantum number related to the orbital angular momentum of the system [13].
For the case of a harmonic confining potential of the fafn) = — Vo + %kzrz, there exists a simple analytic
solution to Eq. (1) [6,7]. The solution is

Ry jm(r) = A,,)|m‘r""|e*kr2/2L\n’"|(krz), meZ, n=0,12,..., 2)

where A, |,/ are normalization constants, aridl’"'(x) are the generalized Laguerre polynomials [14]. The
corresponding energy eigenvalues are given by

En.Im :k(2n+|m|+1)— Vo. 3)

Notice that we now have two quantum numbers, corresponding to the fact that we are dealing with a two-
dimensional system. The spin quantum numbet:i/2. With no magnetic field, each of the above energy
eigenstates is actually two-fold degenerate.

2.2. Rayleigh-Ritz variational technique

We would like to be able to solve Eq. (1) for a number of different confining potentiéls. To accomplish
this we use the Rayleigh—Ritz variational technique. The Rayleigh—Ritz variational principle can be used to solve
differential eigenvalue equations by expanding the unknown function in terms of a set of basis functions, and then
reducing the problem to a matrix eigenvalue problem. For completeness we present the basic theory here. We begin
with an equation of the form

Ly (x) = Ay (x),

wherex € R", L is some linear differential operator, (x) are the eigenfunctions, ang are the eigenvalues. The
problem can also be formulated as a functional equation,

[ ¢*@)Le(x) dx

M= T memar

(4)
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It is easy to see that i is an eigenfunction of, say¢ = u,, theni[¢] will be the eigenvalue,,. It can also be
shown that if some functiop causes.[¢] to become stationary, i.e.
S
9] _,
8¢
theng is an eigenfunction of [15]. Alternatively, expanding in terms of a complete set of basis functianér),
so that

)

P(x) =) civi(x)=cv(x),

i=1
where{c}; = ¢;, and{v(x)}; = v; (x), EQ. (4) becomes
Z,‘,j crej fv?‘(x)ﬁvj (x)dx

oiciej [ v e)v;e)dx '
Introducing theRitz matrix A,

Ael= ®)

{A}ij =/v;“(x)£vj(x)dx, (6)
and theoverlap matrix 15,

{B)ij = / i (x)v; (x) dx, (7)
Eq. (5) reads
T Ac
MOI= e
Variation of Eq. (5) with respect to the expansion coefficients
SAl9]

(3C,'

=0,

leads to the generalized matrix eigenvalue equation, known as the Ritz (matrix) equation
Ac = ABc.

In generalA and B are infinite dimensional matrices. Truncatingand B to AV x N matrices, the resulting
N-dimensional matrix eigenvalue problem,

(BK/;AN)CN = ACN, (8)

can be solved for non-singuld, . As a result of this truncation, the eigenvectors and eigenvalues are now
approximations to the actual solutions,

N
P(x) > Par(x) = Y civi(x) = pon ().

i=1
As we increaséV/, we converge to the exact eigenvectors and eigenvalues, with the condition that
Aexact< A[PN],

implying thati[¢ ] is an upper bound for the exact eigenvaluef ¢15].
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2.3. Example: Gaussian confining potential

As an example of a non-harmonic confining potential, consider the Gaussian potential of th¥ fores
—Voe*’Z/RZ. The attraction of this potential is the smooth nature of the Gaussian function near the top of the well.
This avoids any edge effects which may affect other model potentials.

Unlike the harmonic case, simple analytic solutions to this equation are not known. To solve by applying the
Rayleigh—Ritz variational method, we first find a suitable set of basis functions to exgand~or smallr, the
confining potentiaV () behaves like-2,

2/ p2 Vor?
V) = =Voe R = —Vo+ T + 00,

Consequently, if we expangl(r) in terms of the solutions to the harmonic oscillator problem given by Eq. (2),

we can expect rapid convergence for at least the lowest energies which occupy the bottom of the well. We link the
values ofVp and R to the value ok in the harmonic oscillator potential by identifyirig= \/2Vo/ R? in the set of

basis functions,

1.2
Vi (r) = r" e 2L (kr?),

where, for convenience, we lei = |m| € N. Theijth matrix element of thé/” x A/ Ritz matrix given by Eq. (6)
is

® 2
{A}ij = 271/(%11;% (r)v;-’m r) + (% — VoerZ/Rz)v;“(r)vj (r)>rdr, 9)
0

and thei jth matrix element of they” x N overlap matrix given by Eq. (7) is

e ¢]

{B}i, =2n/v?jm (F)vjm (r)rdr. (10)
0

Note that the volume element ix & r dr d¢, since we are working in two dimensions. The factor results from
the integration ovey. The details of the analytic evaluation of the integrals in Egs. (9) and (10) is presented in
Appendices B and C.

With these integrals, we can now solve the generalized matrix eigenvalue problem, Eq. (8). In fact we essentially
have an analytic solution to the problem of the Gaussian well in that we know the value of each of the matrix
elements of4 andB, and can thus determine the solutions to arbitrary accuracy by truncating the matrices to some
suitableN.

The energy levels of the Gaussian potential and, for comparison, the harmonic potential are plotted in Fig. 1.
We observe that the general effect of the Gaussian potential compared to the harmonic potential is a lowering of
corresponding energy states—this effect becoming more pronounced towards the top of the well, as expected. We
also notice that we lose some of the degeneracy associated with the harmonic potential. For example, the states
{n,m} ={1,0} and{0, £2} are degenerate in the harmonic potential, but split in the Gaussian potential. As we
increase the matrix size, we get a higher density of states towards the top of the potential, as expected for the
required transition to the continuum that exists for positive energy. These results agree with those presented by
Adamowski et al. [16].

The method developed here is applicable to many different forms of potential. Even if an analytic solution for
the integral involvingV (r) is not obtainable, numerical integration is usually practicable.
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Fig. 1. Energy levels for a single electron in the Gaus$ian) = fVOe—’Z/R2 (solid lines) and harmoni& (r) = — Vo + %kzr2 (dashed lines)

confining potentials, fol/g = 50 andk = 10, while R = \/2V/ k2. The states are labeled ly, m} and the two potentials are also plotted as
functions ofr. Calculations were performed with a matrix size\df= 20.

2.4. N-electron systems

We now turn to the problem of aN-electron quantum dot system. TNeelectron non-relativistic Hamiltonian
in plane polar coordinates= (r, ¢) is

N hz
H=Hi+Hz= Z(—zm*v,{ + V(ri)) +

i=1 i>j=1

Yool
47'[6}’,']"

wherer;; = |r; —r;|, m* is the effective mass of the electron, aads the dielectric constant (for GaAs
m* >~ 0.065n, ande ~ 12.9¢g). We have separated the Hamiltonian into two pakis; which is a one-electron
operator representing the kinetic energy termspgdwhich is a two-electron operator representing the interaction

potential.
In rescaled atomic units the Schrodinger equation forthelectron system is then

N N
1 1
{Z<—§V§+V(ri)>+ > 7}!/(%612,...,qN)=5‘1’(Q1,qz,...,q1v),
i=1 i>j=1""

whereg; represents collectively both the spatial coordinatand the spin coordinate of tlith electron.

2.5. Hartree—Fock equations

To solve thev-electron Schrodinger equation we use the Hartree—Fock method [15]. The Hartree—Fock approach
is a particular case of the variational method, in which the trial wavefunction is assumed t be . Slater

determinant,
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Yolg)) Yplqy) - Yu(qd)

i ) 1 | Yl VYplg2) -+ Yu(g2)
‘117‘I25~-~aCIN = —F—

3

Yalgn) Yplgn) - Pulgn)

where the symbolsy, 8, ..., v correspond to thevV-particle states labeled by the three quantum numbers
{n,m,mg}, andy (¢;) are the individual electron spin-orbitals.
Using these definitions, the Hartree—Fock equation fot thelectron in the state is

1
(—EVi+vun+¢40»—wf¥wﬁwu%r=&wu%x (11)

where the Coulomb direct potentnalf (r;) represents thaverage potential due to theN — 1 other electrons, and
the exchange potenti®™(¢;) represents aexchangetermdue to spin interactions. These two potentials are given
by

N2
Vi)=Y vieo =3 [P ar,. (12)
HUFEA UFEA Y
and
Y (rpYa(r )
VIV = ) St i < f % dr j)wu(ri) Xaj2mt (13)
e Y

wherexl/zymxst is a spin function. (Note that_ ., is a sum over all thev occupied stateg =, 8, ..., v, such

thatu # A, wherea is the state occupied by thi#h electron.)t, can be interpreted as energy required to remove
an electron form the spin orbital, , or theionization energy of the electron in the state(Koopman'’s Theorem).

3. Solution and implementation with Mathematica

We now develop a method for solving the Hartree—Fock equations self-consistentMatitematica.

Note. In the below definitionssS is the list defining the state of each of tiveelectronsy is the statgn, m, mg}
of the electron being solved fok/ is the number of terms in the expansion, anid the current iteration loop.

3.1. Initialization

We first turn off some warning messages, and define a few useful notations for the direct and exchange integrals.

In[1] := Off[General :: " spell"]; Off[General :: " spelll"];

IN[2] := Needs[" Utilities'Notation™" ]

In[3] := SetOptionsg[Notation, WorkingForm — TraditionalForm];

In[4] := Notation[Z" | [\, S—, N, k-, n-] <= Coulombintegralfi—,j—, -, S—, N_, k_, 7]
In[5] := Notation[l’ie_x,j_[k_, S_, N_,k_, n_] < Exchangelntegralli_,j_,A_, S_, N_, k_, n_]]
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3.2. Smplification of the Hartree—Fock equations

We start by considering the direct and exchange potentials, Egs. (12) and (13). These simplify if we make the
assumption that the wavefunction for thth electron in the state is of the form
gm’oi

i ®i) = Rp(rj) ——. 14
Y (ri, ¢i) x(r)@ (14)

This assumption is valid for systems with complete subshells, and is a good approximation for incomplete
subshells [15]. Expanding; into its explicit dependence on, r;, and¢ = ¢;; = ¢; — ¢; (angle between;
andr ;) we obtain

rij=1ri—rjl= (I’i2+l’12 — 2r,~rj C0$¢))l/2=r>(1+,02 — 2,0C0$(¢j —¢,‘)) (15)

wherer, =maxr;, 7}, r< =min{r;, r;}, p =r</r- and 0< p < 1. Then we can perform the integration oyer
(see Appendix A for details), which gives us simplified forms forﬂ;?eandvfx terms. Eqg. (11) now becomes the
radial Hartree—Fock equation which reads

1/2

1 9 9 (m™)?2
<_2_na_n<r’a_n) + n;rl? +V(ri)+Vf(Vi)—V,\ex(ri)>Rx(Vi)=5ARA(V:‘), (16)
with
=Y f | M(rs>||1°(2 (17)
M#
x [, Vi (6)
VE)R(r) = Zam i Rl [ RLCOR08) T de, (18)
ltaék 0

wherem = m* — m* € Z with £ = rj/ri. The factor ¥|1 — &| results from the integration over and highlights
the singularity a€ =1 (i.e.r; =r;). The termsYy,, (&) are polynomials involving elliptic integrals. The first three
functions are

%o<s>=4l<<— i )

- 1)7?
2 2 =
Q]1(5):2((5 + DK (= 1)2)5 6 —DE(- @—1)2))’
and
4 67+ DK (~5%5) — ¢ ~ DE + DE(—%))
V2(§) =

32 ’
whereK (x) andE (x) are the complete elliptic integrals of the first and second kinds, respectively [17]. Computer
packages, such &dathematica, are able to obtain these functions relatively easily.

IN[6]: =W /:Vm_:=0 /[: WV
2 cos(mg)
= Functlon[{g}, Evaluate[FuIISumpllfy[Collect[Smphfy[(l &) f
V&2 —2cos(9)€ +1

KO, Eu,n,amplify]]]]

dé, o<s<1],
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In[7] := Table[Wm (&), {m, 0, 2}] // TableForm

Out[7] // TableForm=4K (— 4 )

(6 -1)2
2(E+ DK (~7) = € = D*E(-575))
§
A+ 82+ DK (— o) — € —D2E + DE(- 7o)
32
Note thedynamic programming syntax, % /: U,,_ := % /. U,, = ---, which stores the values &f,, under the

symbolJ as they are evaluated.
3.3. Application of the Rayleigh—Ritz variational technique
To solve Eg. (16), we apply the Rayleigh—Ritz variational method as described in §2.2, by expRp@indgn

terms of a complete set of basis functians,. (), and then truncating the expansion aftéterms,

N1
Ru(r) = € i Uy (1), (19)

i=0
with ¢; ,, suitably chosen to normalizR. As our choice of basis functions we use the solutions of a single electron
in a two-dimensional harmonic confining potential given by Eq. (2),

vim (r) = e 2L (kr?), (20)
which we implement irMathematica as
In[8] :=V/: Vi_,m_ = Function[{k, r}, e‘grzrmL?‘(er)];
Following §2.2, the jth matrix element of thé/" x A/ Ritz matrix given by Eq. (6) is
(A)ij = aij + Vij + I — T,

whereq;; are the kinetic energy integralg;; are the confining potential integrals, aﬁﬁi Ifl.x are the direct and
exchange integrals. Thigth matrix element of they” x A overlap matrix given by Eq. (7) is

{B}ij = Bij»

whereg;; are the overlap integrals.
In Mathematica we form the.4 andB matrices of dimension/ by

In[9] :=A/: Apr :=Function[{1, S, k, VO, 5},
Table[ai,j[k, IMI2111 + Vi, [k, VO, IMI2111 + Z[x, S, N, K, 1]
—Lj*[x,s,N, k, 71, {i, 0, N = 1}, {j, 0, N — 1}]]
In[10] := B /: Bar_ := Function[{k, m}, Table[;j[k, Im|], {i, 0, N = 1}, {j, O, N — 1}]]

The kinetic energy integrals are defined by

(08}
1 A2
051] = / (EU;;* (}")'U‘/].)}n)L (r) =+ (’/’21,.2) U;‘jmk (r)vl/"mx (r))r dr. (21)

0
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The required integrals are evaluated in Appendix B using the properties of the generalized Laguerre polynomi-
als [14], and the results are implemented as the elements of a tridiagonal matrix.
i 18. .

N1 =i ke, m_l /3] >i= m;ii)!"s'“";
IN[12] :=ai_j_[k—, m_1/; i > ] =aj,i[k, m];
i+m+1)@i+m!

4Kk™j! ’
The overlap integrals are defined by

IN[13] :=e_,i_[k—,m_]=

]

Bij :/‘v?ij(r)vj)mA(r)r dr, (22)
0
which, again, can be evaluated analytically using the orthogonality relationship of the generalized Laguerre
polynomials [14] (see Appendix B for details).
1 (i+m!
2km+l gy
IN[15] :=Bi_,j_[k—,m_]=0;

IN[14] :=Bi_,i_[k—,m_] =

This definition also allows us to write the normalization condition as,
N—-1N-1
o> B Cim=1&cBe=1. (23)

i=0 j=0
The confining potential integrals are defined by

Vij = f v;)jm)» (F)V(r)v; . (r)rdr. (24)
0

The integrals are easily evaluated for the harmonic confining potemtia),= —Vp + %kzr2 using the results
already obtained from the calculation of the kinetic energy and overlap integrals (see Appendix B). The result is
implemented as follows.

In[16] :=V /: Vi_j_:=V/[: V=V /[: V,

=t

_ 1
= Function [{k, VO, m}, Evaluatel:4kmi!

(((Zi +m+1) - %)(I +m)!; ;

— i+ Mg — (+m+ 1)!3i+1,j)]]

Note that the inclusion of the symmetry requiremeht,= V;;, through the use of dynamic programming increases
efficiency.

The method is easily extended to different confining potentials. For example, in Appendix C we give an analytic
solution for aGaussian confining potential, and integrals for other more complicated potentials may be performed
numerically.

The direct integrals defined by

1 N-1N-1
f VW )0y i (rdr =53 0% 0 Y ¢ g mik™ w20 (i, j.m*), {p.q.m"}].

M#ﬂ 0 ¢=0
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can be implemented iMathematica as

IN[17):=22 | -, S, N, ko, -]
= Module[{a}, o = DeleteCases[S, A];

1 Lengthlo] A A

> ZZcam,,,[[p]]ca[[x]],,,[[q]]k‘““zm-"’WH'-S/%[{i,j,|u[211|},{p—1,q—1,|a[[x,211|}]]
k=1 p=lg=1

where

o[{i, j.m*}. {p.q.m"}]

08} oo

:2kmk+mﬂ+3/2/v;"mx(r)vj’mA(r)/v;",’m,t(ré)vq,mu(ré)
0 0
The exchange integrals defined by

Vo(§)
[1-&]

ré dérdr. (25)

o0

IS'X = fv;f,nA (")fo(f’)vjymx (r)rdr
0
N—-1N-1

1
30 20 2 ChanCamiByp kT S o, g m],

n#k p=0 ¢=0
can be implemented iMathematica as

In[18] : =T, [A_,S_, N_,k_, -]

= Module[{a}, o = DeleteCases[ DeleteCases[S, A, {_, _, —A[I3I}];

1 Lengthle]l ' N A2 oM—3/2¢F g
E Z Z Ca[[lc]],ﬂ[[p]]ca[[lc]],ﬂ[[q]]k_l [20l=lolle,211—-3/ f[{I’J’ |)~[[2]]|}, {p_ 1’ q- 1’ 6[[K’ 2]]}]
k=1 p=1g=1
where

flti, j. m*}. Ap, g, m"}]

o o v
_ 2kmk+mu+3/2f v;f’m (Mvp,mr (r)f Vg FE)V; 0 () |]_m_(§$)| ré& dérdr. (26)

0 0

with m = m* — m* € Z.

It is the calculation of these andf integrals given by Egs. (25) and (26), which is the most time consuming
aspect of the procedure. In both cases we alathematica to perform the integrations overanalytically, and
then overé numerically, withMathematica’'s numerical integratof\Integrate, allowing for the singularity at
£=1.

The details are tedious, and are left for Appendix A. The required code is presented below. (Note the use
of dynamic programming, which increases efficiency by including all necessary symmetries.) To speed up the
computation, the analytic expressions could be exported as Fortran or C code and then integrated numerically
using a suitable quadrature routine.
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In[19] :=o[fi—,j-, m_}, {p-,q-,n-}]
:=D[{i’j’m}a{pa a, n}]_ [{l Js mj, {a, p, n}]=b[{j’i’m}a{pa a, n}]=a[{j’i’m}a{qa p, n}]

= NI ntegrate[Evaluate[ gon+l Igf O[?I (ti» i}, (p» o), 1y[m, n, 51], (£,0,1, oo}]
In[20] = f[{i—’j—’ m_}, {p-, d—, n—}]

= f[{I’J’ m}, {p; g, n}] = f[{p’ g, n}, i, J, m}] = f[{ iy, —=m}, {p,q, _n}] = f[{p9 a, —n}, {i, ], _m}]

= Nlntegrate[Evaluate[ 62'”'“”";”7”;?](“,1}, {p, a}, 2)[Iml, Inl, é‘]], {£,0,1, oo:]

({i, j}. {p.q}. 1) and({{i, j}, {p. ¢}, 2) are defined by
In[21] :=(ti-,j-}, {p-,a-}, 1)

= ({laj}a {p,a}, 1)= ({J’ i} {p,a}, 1)= ({laj}a {a, p}, 1)= ({Ja i}, {d, p}, 1)
= Function[{m, n, &}, Evaluate[(1 + éz)‘m‘”‘:”/ZColIect[Expand[xarbLg(x)Lg(x)Lim(r)L].m(r)],

(xCEDrEDy, Simplify] /. cox@i=rPH- s T o n[61]]

In[22] ::({i—’j—]’ {p-,q-}, 2)
= ({laj}a {p,a}, 2)= ({J’ i} {p,aj, 2)= ({laj}a {a, p}, 2)= ({Ja i} {d, p}, 2)
= Function[{m, n, &}, Evaluate[(1 + EZ)‘m‘”‘?’/ZCoIIect[Expand[xarbLB(r)Lg(x)Lim(r)ij(x)],

(xCEDrCDy, Simplify] /. cox@ti-rbH-- . o7 | o [€1]]
where
IN[23] :=Z /: Zi_ y_,m_,n_: = Function[{£}, £27 L+ &2~ (m+n+1+ 71+ 3)]
3.4. Total energy calculation
The total energy of the system is given by

EW]=(VIRIY) = (Y [HY) + (W |H2|¥).

Note that this isnot just the sum of the individual electron energi&s because the sum over & counts the
kinetic energy and interaction energy with the confining potential once, while the mutual interaction energy is
counted twice. Hence, the total energy can also be written as

EWI=) & — (¥|Hal¥). (27)
s

Using the fact that{ is of the form of a two electron operator, it can be shown (Appendix A) that

1 N-1
(W Hal W) =5 Z( Y it Clm Cpmi Ca

A>p \i,j,p,q=0
KSR, jm*, (py g, mP = 8, e flE, j,m*), (., mm)) (28)

with 0 andf defined as in Egs. (25) and (26).
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The total energy is computed directly as follows.

In[24] := E[S_, N_, k_, n_1:= E[S, N, k, 5]
Length[S]
= Z Esm,n

1Length[8]x INN N N
- 2 22> > Y cspagllilicsp,yllilcspun, s [PICspen,» [l

2 321 p=li=lj=1p=1q=1
_(k—|S[[k,2]]| 151w 211= 3/20(“ - 11] -1, S0, 211}, {p_ 1, q- 1, |SI[M" 2MH
- 58Hl,3]],8[[u,3ﬂk_IS[D"Z]“_ls[[ﬂ’zl]l_alzf({i - 1’j - 1’ |S[[A" 2]]”’ {p_ 1’ q- 1’ |S[[/~L’ 2]]”))

3.5. Hartree—Fock evaluation

The moduleHartreeFock is the main program body for running the Hartree—Fock calculation to solva for
electrons defined by the state ki$t(see the examples section for a detailed explanation) with a matrix (expansion)
size /. Self-consistency is obtained by setting up a while loop which runs until the energy difference between two
consecutive iterations is less th&dnThe parameterk and Vp define the confining potential (e.g., the harmonic
confining potential of the forn¥ (r) = — Vo + %kzrz).

IN[25] :=HartreeFock[S_, N_, §_, k_, VO_]
= Module[{D =26,9=0,71=0, 72=0},
tl=First[Timing[
InitialiseM atrixElements[A/1; 11;
12 = First[Timing[
I nitialiseCoefficients[S, N, kl;
StateSolvelS, NV, k, VO, 51;
While[Abs[D] > §,
n++;
StateSolve[S, N, k, VO, 51;
D=E[S,N,k,n+1]1-E[S, N, Kk, 5]
1
115
Savel ntegrals;
PrintOutput[S, D, 5l;
Print[" Initialization Time=", t1];
Print[" Running Time=", 72]

]

InitialiseM atrixElements is used to help save time with future calculations. All #hagleBracket function
definitions (e, ({i, j}, {p,q}, 1) and {{i, j}, {p, q}, 2)) required for an\/ x A/ matrix expansion are saved in a
file called matrix\V.mx in a subdirectory of the home directory calleFData. This module creates the file and
subdirectory if they do not already exist, and loads the file otherwise. It also loads values for the intemdjs
if they have been saved in the fildgsnx andf.mx.
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In[26] := InitialiseM atrixElements[A/_]
:=Module[{},

SetDirector y[$HomeDirectory];

If[FileNames[" HFData" ] == {}, CreateDirectory[" HFData"]];

If[FileNames[ToFileName[" HFData”, " matrix" <> ToString[N'] <> ".mx"]] == {},
Table[({i, j}, {p, 4}, 1), {i, O, N = 1}, {j, 0, N = 1}, {p, O, N = 1}, {q, O, N = 1}];
Table[({i, j}, {p, 4}, 2), {i, 0, N = 1}, {j, 0, N = 1}, {p, O, N = 1}, {q, O, N = 1}];
DumpSave[ToFileName[" HFData" , " matrix" <> ToString[A'] <> ".mx"], AngleBracket],
Get[ToFileName[" HFData" , " matrix" <> ToStringlV] <> ".mx" 111;

If[FileNames[ToFileName[" HFData" , " d.mx" 11 # {},
Get[ToFileName[" HFData" , " d.mx" 111;

| f[FileNames[ToFileName[" HFData" , " f.mx" 11 # {},
Get[ToFileName[" HFData" , " f.mx" 111;

]

InitialiseCoefficients assigns initial values to the expansion coefficients, and NeesnaliseCoefficients to
normalize them so thaf Be = 1 (Eq. (23)).

In[27] := InitialiseCoefficientsS_, N_, k_]
:=Module[{x, m, n}
x = Table[0, {j, M}];
Do[n = STill1l; m=STilll21;
c/: cspin,o = NormaliseCoefficients|ReplacePart[ x , 1, n+ 1], k, m];
, {i, Length[ST}]

]

In[28] : = NormaliseCoefficientsic_List, k_, m_] := ¢

Ve BLengtniallk, MI.C

StateSolve solves the Rayleigh—Ritz matrix equation, Eq. (8) for each electron in the system, and then assigns a
new set of normalized coefficients based on the solutions.

IN[29] := StateSolve[S_, N_, k_, VO_, 5_]
:=Module[{A, ¢, x},
Do[x = STill;
{e, x} = Transpose[ Select [ (Chop[Eigensystem[(Ba[k, A[211) ~*. Axr[A, S, k, VO, 71 // NIDT,
First[#1] < 0&]];
C/: Gy, y+1 = Part[Nor maliseCoefficients[#1, k, A[[2]11& /@x , L[ 111 + 1];
E [: &1 = elIMLD + 1115
, {i, Length[S1}]
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Upon exiting the self-consistency loop, we save the values far #relf integrals using th&avel ntegrals module

(they are saved to the filesmx and f.mx in the HFData subdirectory of the home directory). This is done to
increase efficiency in further calculations of different electronic configurations for the same potential, since it is
not necessary to reevaluate these time consuming integrals.

In[30] : = Savelntegrals
:=Module[{},
DumpSave[ToFileName[" HFData" , " d.mx" ], 01;
DumpSave[ToFileName[" HFData" , " f.mx" 1, f1;
ResetDirectory[];

]

PrintOutput is a module which can be modified by the user depending upon the desired output. In this example,
the calculated energies (converted to meV) are saved under the sgmant the expansion coefficients under

the symbol. The total energy, number of iterations, and the energy difference between the last two iterations are
printed out. By default, the conversion factors are those of GaAs, which has an effectiveinags065n, and
dielectric constan¢é = 12.9¢¢.

In[31] :=PrintOutput[S_, D_, n_]
= Module[{Hartree: 27.2116, € =12.9, m = 0.065},

mHartree
DOI:QE /: €Length[S1, ST = 10006—258[[i]],n+1;

€ /: €Length(s1, ST = CSTIill,n+1>
{i, ngth[S]}];

mHartree
¢ /. eLength[S] = 100075[8, N, Kk, n+1];

Print[" Total Energy =", & engthis], " MeV"];
Print[" Number of Iterations=", 5+ 1];

mHartree
=

Print [ Convergence=", 1000 >
€

)

To give an idea of the time required for the calculations, the initialization time and the time required to complete
the Hartree—Fock self-consistency loop are also printed out.

4. Examplesand results
In this section we start by explaining the filling order of these quantum dots. This helps explain the data structure

for the state listS. We give an example for both a three- and two-electron GaAs quantum dot system, and then go
on to describe some of the results obtained usingbélartreeFock.m package.
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Fig. 2. Filling order for a two-dimensional system. The top row gives the single electron eigenenergies for the harmonic confining potential
(Vo = 0) for the stategn, m}. We have labeled the full-shells by (**), and the half-filled shells by (*).

4.1. Filling order
We recall that the energy eigenvalues for a single electron in a two-dimensional harmonic oscillator potential is
given by Eq. (3), so that
Enim| = k(Zn + |m| + 1) — Vo.

Assuming that these energy levels hold for systems with more electrons, and then applying Hund'’s rules [15], we
get the filling order described by Fig. 2. We can see that there are full-shellé fo®, 6, 12, ... and half-filled
shellsforN = 4,9, 16, .... In an atomic systems these “magic numbers” would correspond to peaks in the addition
energy of these elements, with full-shells corresponding to larger peaks than the half-filled shells.

4.2. Example

The first step is to load in the package. This can be done either by openiPtHar treeFock.nb file and
evaluating the initialization cells (using the merkKernel | Evaluation | Evaluate Initialisation), or by loading
in the QDHartreeFock.m package. The latter can be done by first saving the package in a directory inside the
ExtraPackages directory in theMathematica folder, and then using<. For example,

<< QDHartreeFock*

We now assign values to the parameterand Vp in the harmonic confining potential of the forw(r) =
— Vo + 3k%r2, sayk = 10 andVp = 100.

In[32] := k = 10.0; Vg = 100.0;

Consider the lowest energy states of the 2- and 3-electron systems according to the filling order i Eigna,
&3 are defined by listing the statés, m, mg} of each electron,

In[33] :=82=1{{0,0,3},{0,0,-3}};
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In[34] =83= {{0’ 0, %}a {Oa 0, _%}a {0, 1a%}};

We set the following parameters which determine the accuracy of the calculation: a matrix (expansion) size of, say
N =4, and a value fo$, the energy difference between the last two iterations, of§say 0.

In[35] ;=N =4; §=10""
We can now run the Hartree—Fock calculations. For the 3-electron system,

In[36] := HartreeFock[S3, N, 8, k, V(]
Total Energy= —267307 meV
Number of Iterations=9
Convergence- 8.38467x 10~/
Initialisation Time= 185749 second
Running Time= 479.86 second

For the 2-electron system,

In[37] :=HartreeFock[S2, NV, 8, k, V(]
Total Energy= —187215 meV
Number of Iterations=9
Convergence- 1.97748x 10~/
Initialisation Time= 1.74997 second
Running Time= 4.9083 second

Notice the significant time saving in both the initialization time and the running time for the solution &f2he
state once th&3 state has been solved for. This is due to the fact that many of the time consuming aspects of the
code are saved after the first tirdar treeFock is run.

Implementation of this procedure was performed wiiththematica version 4.1, running remotely from a DEC
Alpha workstation 500 with 0.5 GB RAM. Convergence was obtainable, witlecoming less than 10 for
anywhere between 4 and 20 iterations depending on the number of electrons in the system.

Calculations were performed for quantum dots with upvte- 18 electrons. As would be expected, calculation
time increased with each extra electron, markedly so when jumping to a higher energy level. The program is limited
in that calculations with matrix (expansion) sizes larger thas- 4 become laborious due to increased running
times and CPU load. This limitation on the expansion means a deficiency in the accuracy of the calculations,
especially as the electron number increases. It also means that calculations with non-harmonic confining potentials
are not feasible for more than one electron with the present code. The limitation is caused by the time required to
calculate the andf terms (see §3.3).

4.3. Addition energy

Due to Coulomb repulsion, the energy of a quantum dot Witk 1 electrons is greater than the energy of a
dot with N electrons. Thus the addition of an electron requires energy to be supplied. The chemical potential is
defined a«(N) = E(N) — E(N — 1) with E(N) being the ground state energy for tNeelectron system. The
capacitative, or addition energy is then

Au(N)=u(N +1) —u(N)=E(N +1) —2E(N) + E(N — 1).
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Fig. 3. Addition energies calculated by the Hartree—Fock methodAfith 4 andk = 10.

We can use this definition to plot the addition energies obtained from our Hartree—Fock calculations (Fig. 3). From
a comparison with the filling order (Fig. 2), we immediately see the expected peaks with 2, 6, and 12 electrons.
We also obtain the smaller half-filling peak&it= 4. However, we notice that the expected small peak#/fer 9

and 16 are not seen. In fact it appears as though we obtained peiks 8tand 14 instead. Possible reasons are
discussed in 84.4.

Tarucha et al. [11] were able to experimentally measure the addition energy of a quantum dot structure (Fig. 4).
As a negative voltage is applied to the side gate, the diameter of the dot becomes smaller and excess electrons are
forced out one at a time until there are none left in the conduction band. A current will flow only if the number of
electrons in the dot changes. As discussed in their paper, this will only happen when certain discrete energies are
supplied, and so current peaks are observed at the corresponding voltages. The voltage difference between current
peaks is a measure of the addition energy, and the experimental data indeed indicates the expected behaviour
associated with a two-dimensional structure.

The experimental data of Tarucha et al. [11] and the theoretical results of Ezaki et al. [9] have energies within
the 0—10 meV range, while our calculations fo& 10 range up to about 120 meV. In order to understand how
the width and depth of the quantum dots affect the absolute scale of Fig. 3, we examined the effect of varying the
parametek (Fig. 5). We observe that asis decreased, the addition energies are shifted down to lower energies.
The peak positions appear to be unaffected, except for the fact that the main peaks become less pronounced. Below
aboutk = 1, we lose the ability to identify the main peaksMt= 2 and 6. This trend agrees with the theoretical
results obtained using density functional theory by Lee et al. [10] (Fig. 6). The overall agreement of the two results
is very pleasing. Note that Lee et al. [10] also get a “bump¥Nat 8 as well as a different energy range from the
experimental data.

The observed trend can be explained by the fact thdt decreases, the well is becoming shallower. Thus,
the effect of the quantum confinement becomes less pronounced and the interaction energies become increasingly
important. The electrons start to show the behaviour of free particles.

Another thing we notice from a comparison with Fig. 4 is that the experimental peaks tend to fall off more
rapidly than all three theoretical results. This is perhaps due to the fact that our calculations, and also those of Lee
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Fig. 4. Addition energies as measured by Tarucha et al. [11] for two different dot sizesafd04 um. Also plotted are the theoretical results
of Ezaki et al. [9].
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Fig. 5. Effect of varying the parameterin the confining potentiaV/ (r) = %kzrz.

et al. [10], are performed for fixeld whereas the experimental technique of slowly altering the voltage to remove
the electrons would scan through a rangé eélues.
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Fig. 6. Theoretical results of Lee et al. [10] calculated using density functional theory. Their values fod, 10, 20 meV, correspond to
k=0.37,094, 188.

4.4, Possiblereasonsfor peakat N =8

Firstly, note that the filling order is ambiguous. For example, the two different filling orders,

N|{0,0}|{0,1} {0, —1}|{0, 2} {0, -2} {1,0}
gty N 1

and

N {0, 0}|{0, 1} {0, —1}|{0, 2} {0,—2} {1,0}
JEIE R 1

are almost degenerate. Choosing one or the other can alter where we observe the “peak”. It is possible that the
actual result should have contributions from both.

Secondly, the Hartree—Fock approximation assumes that each electron moves independently in a mean field
determined by the other electrons. This assumption ignores the effect of electron correlations. The correlation
energy is defined as

goorr _ gexact_ cHF

Pfannkuche et al. [8] showed that correlation was important in their comparison of an exact solution and a Hartree—
Fock solution for artificial helium. Their results were in good agreement for the triplet state calculations, but were
not so for the singlet state. This was due to the exact singlet states containing products of one-patrticle states with
different angular momenta—something not accounted for in the Hartree—Fock solutions.
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Both the lack of correlations and the degeneracy of filling orders can be corrected for by using-a
configuration Hartree-Fock (MCHF) approach [18]. When dealing with atomic systems we can consider linear
combinations of Slater determinants with the samand! quantum numbers but different; and ms called
configuration state functions (CSF). These are denédted. M; SMy), and are better approximations to the total
wavefunction than the single Slater determinant. Better approximations can be made with linear combinations of
CSF,

M M
W(yLS)=Y c;®(yiLS). where) |¢;[*=1
i=1 i=1

These functions are the basis of the MCHF method, just as the Slater determinant was the basis for the Hartree—
Fock method. These functions allow for variation in the angular momentum quantum numbers, which is expected
to fix the problem of degenerate filling orders. Moreover, these functions have the advantage that they can take into
account correlations.

4.5. Exchange effect

To demonstrate the importance of exchange interactions, we also performed calculations based on the original
method of Hartree. In this method, the wavefunction is no longer a Slater determinant, but instead is a simple
product of single electron wavefunctions. The effect of this is that we no longer have the exchange term in the
Hartree—Fock equations; we are instead left with the Hartree equations, which fth thectron in the state
reads

(=3VZ + V() + VL)) vaai) = Exvan ).
with Vf defined as before. Also, since we no longer have a determinantal function, the total energy is now

EW]=) & — (¥|Hal¥),
A
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80 + Hartree
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energy 60 | I
(meV)

40

20 ¢

0 2 4 6 8 10 12
Number of Electrons

Fig. 7. Comparison of a Hartree and a Hartree—Fock calculatioh #01.0.
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with

IN-IN-IN-1
(V| H20¥) = 22(2 Z Z chnlACJmACpmMCq,nﬂk m?—ml=3/24 [{l j.m*) {p ,q,m”}]).

A>p \ i=0 j=0 p=0 ¢=0

We performed a Hartree calculation for a valugef 10 in the harmonic confining potential. The addition energy

was plotted with the corresponding values from the Hartree—Fock calculations (Fig. 7). We can see that we lose
the peaks due to the half-filling of states. This result was of course to be expected, since, without the effect of spin,
there would not be any energy difference when we add electrons with parallel or antiparallel spins.

5. Conclusion

In this paper we have examined the electronic structure of circularly symmetric quantum dat&-alittrons.

As a first step, we investigated the single electron solutions to the Schrédinger equation. A general method was
developed which allows us to treat a wide range of different confining potentials. Analytic solutions for the
eigenstates of a single electron in Gaussian confining potential were obtained.

A Mathematica packageQDHartreeFock.nb was developed which implements the Hartree—Fock method to
solve quantum dot systems witfrelectrons. The addition energies calculated in this manner are in good agreement
with the theoretical work by Lee et al. [10]. The calculations also agree, at least at a qualitative level, with the
experimental results of Tarucha et al. [11]. We also examined the exchange effect ipanticle quantum dot—
making a comparison between the Hartree and Hartree—Fock approximations.

In its present form, the code requires significant amount of CPU time and memory. A conversion of the code to a
more numerical environment, such as Fortran or C, should speed up computation considerably. We will also look at
revising the method to allow faster and more accurate calculation of the many multi-dimensional integrals involved
in the Hartree—Fock formalism. A procedure based on solutions of pairs of differential equations is described by
Fischer et al. [18], and may be adaptable to 2D quantum dot systems. Further research efforts will look towards
anisotropic quantum dots, and the study of transport phenomena in quantum dot systems.
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Appendix A. Simplification for Hartree—Fock calculations
A.1. Smplification of Direct and Exchange potentials

Using the assumption from Eq. (14) and expandipgas in Eg. (15) we can write the direct and exchange
potentials, Eq. (12) as

Vi) = fwwm
HFEL

= R ! dgr;dr;
= L% /‘ rant3) /r T+ p2— 200089, — 12 7

M#

and the exchange potential, Eq. (13) as
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) Yo (r )y (r ;)
VX (ri) = Z%g)%‘h“ﬂ/%d’j

wFL
o
- Zam '"52 )elml ¢’f (rj)R)L(rj)
HFEA 5
27 1 eimqﬁj 4 .
./Z(1+p2—2pc05(¢j_¢i))1/2 pjrjdrj,
0

wherem = m* — m* € Z. Now
2T

1 g@me; .
f r> (1+ p?2 —2pcod¢; — ¢i))Y/? D,
0

27—
i dm(@i+;)

r~ (14 p2 = 2pcoge;)) /> s
—oi
2

— m¢tf 1 e|m¢/ ¢
- r- (1+ p? — 2pcosg;)t/2 ™/
0

2

. 1 cogme;)
_ admei _ J .
=e / r~ (14 p? —2pcog¢;))Y/? ;-
0

where in the last step we have used symmetry arguments to drop the antisymmetric paft-efcesme) +
isin(m¢). This integral can be evaluated for individual to give polynomials involvingk (x) and E(x), the
complete elliptic integrals of the first and second kinds, respectively [17]. We notice that if we change variables
to & =r;/r;, then a factor of 1|1 — &£| may be removed, and we are left with simplified forms of the direct and
exchange potentials, given by Egs. (17) and (18), where we have defined

o cogmae)
V() =(1 S)O/(ng 26 cog )2

A.2. Matrix elements

We want to evaluate the integrals

o[{i, j.m*}. {p. q. m"}]

oo

)

A "

— o +m +3/2/‘v?jm,\(r)vj’,m(r)/v;k,’m,t(ré)vq,mu(rg)
0 0

Vo(§)
11-§]

rédsrdr

wi1Y
=/52'" “'10(2({ jom™). (p.q.m"). 1),
0

and
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flti. j.m*}. {p.q.m"}]

o o
— g Hmt+3/2 f VF s FYVp gt () f Uy i FEV; i (rg)ﬁ”’_(z ré& dg r dr
0 0

[ o1 T @),
= [ “%({u,m*},{p,q,mﬂ},2>ds,
0

where we have defined
o0
(ti, j,m}, {p, g, n}, 1) = 2km+7+3/2 / P22t Ze ek R L1 1y 262) L1 (k262 L (krP) L (kr?) o,
0
and

(o8}
(ti, jom}, Ap, g, n}, 2) = 2k 73/ / pen 2 kit e ke 1 () L1 (k26 ) LI (kr?) L (kr%E?) o,
0

The generalized Laguerre polynomials in these integrals bring in certain power&dfandkr?, so we consider
integrals of the form

o
opm+ntH+n+3/2 / P22+ 21242 2 gk k%7

0
which can be evaluated as

In[38] :=Clear[k]; SetOptiong[Integrate, GenerateConditions— False];
In[39] := okM+n+l+n+3/2 fOOO r2m+2n+2l+217+2£21ye—krze—kr2‘;‘2 dr // Simplify // Power Expand
out[39] = £21(E2 + 1)~/ 1=320 (I 4 m+n+n+ 3)

From this we define the functiof; , ..., from §3.3. We can then expand the generalized Laguerre polynomials,
collect powers ofkr?£2 and kr2, and then match coefficients and use the above result to obtain the integrals
{i, j,m}, {p,q,n}, 1) and({i, j, m}, {p, q, n}, 2). The remaining integration overis performed numerically to
obtaino andf.

A.3. Total energy

For a two electron operat@f; and a determinantal functiok, we can write [19]

N
<‘1’ Z 8ij
i>j=1
where it is understood that in both the bra and the ket, the spin orbital written first is a funcjenasfd the

second is a function af,. Eq. (27) gives the total energy as

EW]=) & — (W|Ha|¥),
s

N
W>= > Lflslij) = tijlslin)]. A1)

i>j=1

where operatol is of the form of a two electron operator. So using the property from Eq. (A.1), we can write
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(W|H2|¥) = (f V5 @)V, (@) Hoy. (gi)¥u(q)) dg j dgi

A>p

- f V5 @)V, (g ) M2y (g ) ¥ (qi) g d‘]i)

= Z(Il +1o).

AFEn

Now, ¥;.(q) = ﬁé”’x‘i’m (r)Xmg, so (using the orthonormality property of the spin functignsve can rewrite
the above integrals as

o0 00 21 21

1
Il=m////R;t(ri)RZ(rj)HZRk(ri)Ru(rj)d¢jd¢irjdrjridri,
0

00O
and
1 o0 00 21 21
L= f f f / R} (ri) RY (r ) Ha Ry, (rj) Ry (ri )€™ P79 dp; dpi 7 drj i i,
0 00O

wherem = m* — m*. Expanding the radial functions as in Eq. (19), we have to evaluate
1 N-1

Il = 47_[2 E C, mlcj,mkcp,ml’“cq,m“
iL,j,p

e

2

2
f Vi (1) Vp i () YH2V j i (1i) Vg min () Agpj by 7 drj i i,

\

and
1 N-1
Iz = m(smg’m/; Z Ci’m)tcj)m)ncp,ml"cq,m”'
ij,p,g=0

21 2

o0 o0
f / f f VF i PV i (7Y H2V () g ()€™ =90 iy iy ) iy .
00O

These integrals have already been computed, and are givierabgf. So we get Eq. (28).

Appendix B. Analyticintegrals

For convenience, when evaluating these below we will change variables, lettiig2, and define the notation

e ¢]

({i,a},{j,ﬁ},m)=/e—xx”’L?(x)Lf(x)dx.
0
The kinetic energy integrals given in Eq. (21) are evaluated as follows.

In[40] := SetAttributeg[k, Constant];
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In[41] :=rule= c_.Lf‘_’(x)ij_‘ (X" 1> 52ty ), {j, b, n);

1 2
In[42] := <((§vi(f);nl)(k, r)\/j(f);nl)(k, N+ %vi,m(k, [V, m(K, r))r // Expand) Dt[r]/.r — \/g //
Simplify // Power Expand // Expand) /.rule

out[42] = ({i —Lm+ 1}, {j — Lm + 1}, m + 1)k™™ — $m({i — L, m + 1}, {j, m}, m)k ™
3 —Lm+ 1, (,mbm+ 0k — Sm({i,m}, {j — Lm + 1}, m)k™™
+ (i, my = Lom + 1, m+ 1k + 3mP({li, m), (j, m}), m — )k
— Im({i,m}, {j,m}, m)k™™ + Z({i, m}, (j, m}), m + L)k~™

The overlap integral given by Eq. (22) becomes

In[43] := <(Vi,m(k, rVj,m(k, Nr // Expand)Dt[r] /.1 — \/E //

Simplify // Power Expand // Expand) /.rule

out[43] = 3k =Y{i, m}, {j, m}, m)
The confining potential integrals given by Eq. (24), for the harmonic potevitial = — Vo + %kzr2 become

|n[44] =Vo=.

'”Hﬂ1=<K6k%2—vwwmﬂsnwmmﬁy//Emmmnounﬁr_>JE//
Simplify // Power Expand // Expand> /.rule

Out] 48] = 3k~ ({i, m}, {j, m},m + 1) — 5k~ ={i,m}, {j, m}, m)Vo

The evaluation of these integrals involving the generalized Laguerre polynomials is given below.
To compute the integral

o0
(ti,m}, {j,m},m)= /xmefolm(x)L;'?(x) dx,
0
we can immediately use the orthogonality relation for the generalized Laguerre polynomials [14], so that
) ) rm+i+1 (m+1i)!
({l7 m}a {]7 m}a m> = 8[,./7 = 8i,j7

i! i!
It follows from this that
'm+1)+G@-H+1) ' .i(m+i)!

(i — 1)! T

li—1m+1,{j-Lm+1lm+1)=8_1;1

To compute the integral

({i, mY, {j,m},m+ 1) = /merle*xL?"(x)L;'?(x) dx,
0
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we use the propertyL? (x) = —(i +a) LY ;(x) — (i + 1)L,+1(x) +(2i +a + 1) L7 (x) [14], so that
oo
({i, mY, {j,m},m+ 1) = /merle*xL?"(x)L;'?(x) dx
0
= —(+m){i — L m}, {j,m},m)+ 2i + m+ D({i,m},{j, m}, m)
— (i—i—l)({i—i—l m}, {J, m},m)
= —(i +m)8i—1, ;T + (20 +m + 18 j FOHED — (i 4 )54 DGR
= —8;’-1,,/%!”2) +8,',j(2] +m+ 1)% — 8;’,,’—1%
= W((Zj +m+18;— m+j+Di—1;— jdij-1).
To compute the integral

({i, m},{j,m},m— 1) = /xm_le_xL;" (x)L’}’(x) dx,
0

we use the property ™ (x) = Y4 _o L¢ (x) [14], so that

({i,m}, {j,m},m — 1) = /xm_le_xL;”(x)L’}’(x) dx,

0
i J

=Y (tn.m =1}, fk.m — 1}, m — 1)
n=0k=0

J Min(i, j)

B S SRALEIN, S ATEND

n=0k=0 n=0 "

(m+j)!
m j!

mi!
mI (Min(i, j) + 1)

_ Fm+MinG, j)+1)  [@5R >
N j<i.

(Note that this term is multiplied by?2, so there is no problem whem=0.)
To compute the integral

o
(iom. (G = Lom -+ 21.m) = [ e L L)oo d,
0
we use the property® ™ (x) = Y4 _o L¢ (x) [14], so that

e @]

({i, m}, {j —1,m+1}, m> = fxme_xL?’(x)Lm+l(x)dx

-~ o
[uN

j—1
= ({{i,m}, tk,m},m)= Za,k
k=0

i+1
%’ 0<i<j— —g(] _1)(m+z)v,
0. iz]

F(m+z+1)




202 SA. McCarthy et al. / Computer Physics Communications 141 (2001) 175-204

where
1, x>0
o) = {o, x<0

is the Heaviside step function. By symmetry, we can also say that

({i—1,m+1},{j,m},m>=9(i—j—l)(mtj)!.
]

To compute the integral
o0
(meU—Lm+&m+n=/f“%%wumﬁﬁmw,
0

we use the property 1(x) = L¥(x) — LY ;(x) [14], so that

(timh j—Lm+1,m+1)

o0

= / X" L () L ) d
0
={{im+1,{j—1m+.m+1)—{i—-1Lm+1L{j —Lm+1,m+1)
s F(m+i+2)_8‘  Tm+i+]
T T )
'm+i+2) irm+i+1
=81 i —8ij i
_ (m+)!

T ((m—i—i—i—l)(Si,jfl—i(Si,j).
By symmetry, we can also say that
r'G+m+2) _s JrG+m+1

(i =Lm+1),{j,m},m+1) R ij 7

8i—1,j

)
-

(m+j+Dsi—1,j— jdij)-

Combining these results we obtain a tridiagonal matrix for the kinetic energy integrals, and a diagonal matrix for
the overlap integrals (83.3).

Appendix C. Gaussian integral

When considering a Gaussian function of the fdritr) = —Voe*rz/Rz, the confining potential integral given
by Eq. (24) becomes
o
~Vo / e /R )V (F)r O
0

Changing variables, so that= kr2 (wherek = /2Vo/R?), this integral becomes an integral ovet [0, co) with
integrand determined as follows.

In[46] := SetAttributes[{R, 8}, Constant];
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In[47] := —Voe‘rz/szi,m(k, NV, m(K, Nrotir] /. r — \/E // Simplify // Power Expand

Out[47] = — & 7R ke dx L (x) L (x) Vo

Dividing through by—*2k—""~1, defining = kR?, and changing variables again so that- Ax, this becomes
In[48] := ﬁ /. First[Solve[ ==kR?, k1] /. x — Bx // Power Expand // Simplify

Out[48] = e ¥ P Dy gL d L7 (xB) L'} (xB)

Dividing through byg”*1, definingy = 8/(8 + 1), and changing variables once more so that yx, we get

(2 X B impli
In[49] := (ﬂm+1 /. X B+l /. Flrst[SoIve[y ==3 +1’ﬂ]] // S|mpI|fy> /.

{y - > —-(1-y), x=xy) > x(1-yp)} // PowerExpand // Simplify
Out[49] = e *x" (1 — y)"+1 dr L (xy) L (xy)

So we want to evaluate

_@(ﬁ(l— y)

m+1 °
meaog—Xgym m
2 z > /x e L' (yx)L] (yx)dx.

Now, the Laguerre polynomials can be written as [20, Eq. (1) of 8§1.7]

+ o
Ly(x)= (n " > 1F1(=n; a4+ 1; x),

where1 F1(—n; o 4+ 1; x) is the Kummer confluent hypergeometric function. We can then use the integral identity
[20, Eq. (29) of §9.4]

oo

[ & R s sFa B s 1) b = T (@) Pl BB 30,

0
whereFy[a; B, B'; v, ¥'; x, y] is the Appell hypergeometric function of the second kind. So

o0 o0

fx'"e_xL?"(VX)L'}’(VX) dx = (l +m> (J +m> /e_xx’" 1Fi(—i;m+ 1 yx) 1Fi(—j;m+ 1 yx)dx
. ; j

0

G +m)( +m)!
N iljlm!

Further simplification is possible using the identity [20, Eq. (108) of §9.4]

Fom+1,—i,—j;m+1m+1;vy,yl

. ’. . 1 B nB 1. xy
FZ[C",B’,B70"O‘7X’)’]—(1 X) (1 y) 2F1<18518 ;O (1—x)(l—y))’

wherexF1(8, B'; «; W{l_”) is the Gauss hypergeometric function. Therefore
o
/xmefogn (yx)L;-" (yx)dx =
0

@ +m)!(j+m)!
i!'jlm!

2
it o y
(1—7/)1“2F1<—z,—];m+1; >
(y — 1?2
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So finally, the integral we want is
Vo (ﬂ)”’+1 (i +m)\(j +m)!

2
-\ f il (1—7/)l+]+m+12F1<—i,—j;M+1; yi)

2 \k (y — 1?2

In terms ofk and Vp this is

Vo (B\A+mMIG+m! iiimi (_- i L)
In[50]_< 2 (k) I!J!m! (1 )’)l I+m 2F1 I, Jam+1’ ()/—1)2 /'

ﬂ 2 2V0 . .
y_>ﬁ—+1/./3—>kR /.R— F//s|m|o||fy> /.

2V
(kK+2Vp) — k(TO + 1) // PowerExpand // Simplify

zmk—2(1n+1)(i +m)!(j +m)!2F1(—i, —jim+1; 4k_‘/2()2)vén+2(% + 1)7i7j*m71
iljlm!
The Gaussian confining potential integral is then implemented as
In[51] :=Clear[V];
In[52]:=V/:Vi_,i_
=V/EVii=V /Y

out[50] = —

= Function [{k, VO, m},

2M/0M2 (i + m)!(j + m)! 2vo\ ~H-m-1 o 4V 02
~ M itjtme (l+T) zFl(_"_J;m"’l; K2 )]
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