


Fundamental Constants of Atomic Physics
in the International System of Units (SI)

Permeability Constant o =4n-10""VsA 'm™!

of Vacuum =1.256637...-10 VsA 'm™!
Permittivity Constant g = eeH!

of Vacuum = 8.8541878...-10 *AsV " 'm™'

Velocity of Light in Vacuum ¢ =2.99792458-10°ms '
Boltzmann’s Constant kK =1.380658-10"2JK !
Faraday Constant F  =9.6485309-10*Cmol '
Elementary Charge e =1.6021773-10""C
Rest Mass of the Electron my = 9.1093897- 10" kg
Specific Charge of the e/my=1.75881962-10"' Ckg !
Electron
Rest Mass of the Proton
Planck’s Constant

m, =1.6726231-10"""kg

h  =6.626755-10"%*Js

h  =h/2n=1.0545887-10"*Js
R, =1.0973731534-10'"m ™!

P

Rydberg Constant

Bohr Radius ay =0.529177249-10""m
Bohr Magneton ug = 9.2740154- 10”2 Am?*(= 1/T)
Nuclear Magneton Uy = 5.0507866- 10~% Am?

Compton Wavelength of A, =2.42631058-10""?m
the Electron

Fine Structure Constant a =7.29735308-107°

Avogadro’s number Ny = 6.022045-10% mol™'

Energy Conversion Table see inside back cover




Energy Conversion Table

J eV cm K
1 Joule (J) =|1 6.24146 - 10'® [5.03404 - 102 | 7.24290 - 102
1 eVolt (eV) =| 1.60219 - 10~ '°|1 8.06548 - 10° | 1.16045 - 10*
1cm™! =11.98648 - 10°2%|1.23985 - 10 * |1 1.43879
1K =11.38066 - 102} 8.61735 - 10~° |6.95030 - 10~ !| 1
Explanation

The energy E is quoted in Joule (J) or watt-seconds (Ws)

1J=1Ws.

In spectroscopy, one frequently quotes the term values in wavenumbers

v=E/hc.

The conversion factor is

E/v=hc=1.98648 -10 2 J/cm~".

Another energy unit, especially in collision experiments, is the electron volt
(eVolt, eV). The voltage Vis given in volts, and the energy conversion factor is
obtained from E = eV:

E/V=e=1.60219-10""]/V.

In the case of thermal excitation with the heat energy kT, the absolute tem-
perature is a measure of the energy. From E = kT we obtain the conversion

factor

E/T=k=1.38066-10"2J/K.
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A Fundamental Experiment in Quantum Physics:
The Wave-Particle Dualism of Matter

42h 18"

80 40 0 40 80 x/um

When helium atoms all having the same direction and velocity are passed through a double-slit apparatus,
each atom produces a strictly localised point of impact on a screen behind the slits; the atoms appear
be essentially particles. If the experiment is allowed to run for a longer time, so that a large number of im-
pact points is registered on the screen, then an interference pattern appears, analogous to that seen in
Young's double-slit experiment with light; the helium atoms thus behave in this case as waves. The seven
images show the measured intensity distribution on the screen as a function of time (5" to 42h18") after
starting the experiment. This experiment demonstrates the wave-particle dualism of matter in an impres-
sive fashion. How quantum theory bridges the apparent contradiction: pointlike particle on the one hand,
extended wave on the other, is a subject treated in this book. These experiments on helium atoms were
carried out by O. Carnal, J. Mlynek: Phys. Rev. Lett. 66, 2689 (1991) and Ch. Kurtsiefer, T. Pfau, J. Mly-
nek: Nature 386, 150 (1997). More details are given in Sect. 6.6.



Preface to the Sixth Edition

Since a new edition of our book has once again become necessary, we have as be-
fore taken the opportunity to include the latest developments in atomic and quantum
physics. These areas continue to yield new and fascinating experimental and theoret-
ical results which are of fundamental importance and are also extremely interesting
to students of science. As a result of newly developed experimental methods and
theoretical techniques, it has also become possible to find solutions to some long-es-
tablished problems. In this spirit we have added an entire new chapter dealing with
entangled wavefunctions, the Einstein-Podolsky-Rosen paradox, Bell’s inequalities,
the paradox of Schrédinger’s cat and the concept of decoherence. In addition, we
have treated new ideas relating to quantum computers and the numerous quantum-
physical schemes for constructing them. These new concepts exemplify the rapidly-
developing area of quantum information.

Finally, in this new chapter we have included the experimental realisation of the
Bose-Einstein condensation and of the atom laser, which promise important new ap-
plications.

In Chap. 22, “Modern methods of optical spectroscopy”, we have added a new
section on nondestructive photon detection as an example of efficient methods for
investigating the interactions between atoms and photons in resonant cavities. Con-
sidering the current importance of these areas, we emphasize references to the origi-
nal literature. These can be found in the Bibliography.

In treating all of these subjects, we have as usual made an effort to give a read-
ily understandable description, in line with the tradition of this book.

Once again, we express our gratitude to those students, colleagues and other
readers of the book who have made a number of suggestions for its improvement.
Our special thanks go to our colleagues Th. Hiinsch, J. Mlynek and T. Pfau for pro-
viding us with coloured figures of their newest experimental results. We thank Ms.
Irmgard Mdller for her quick and careful preparation of the new parts of the manu-
script. We are grateful to Springer-Verlag. in particular Dr. H.J. Koélsch and Mr.
C.-D. Bachem for their efficient cooperation as always, and Prof. W.D. Brewer for
his excellent translation of the new chapters.

Stuttgart, March 2000 H. Haken H.C. Wolf



Preface to the Fourth Edition

This fourth edition contains a few additional figures. Otherwise only typographical er-
rors have been removed.

The final chapter on Fundamentals of the Quantum Theory of Chemical Bonding
is continued in an extended way in the textbook Molecular Physics and Elements of
Quantum Chemistry by the same authors. This book contains, in particular, a profound
presentation of group theory as applied to atoms and molecules. Furthermore, the in-
teraction between atoms and molecules and light is treated in detail.

We thank again Springer-Verlag, in particular Dr. H.J. Kélsch and Mr. C.-D.
Bachem for their excellent cooperation as always, and Prof. W.D. Brewer for his con-
tinuous support in translating our German text.

Stuttgart, February 1994 H. Haken H.C. Wolf



Preface to the First Edition

A thorough knowledge of the physics of atoms and quanta is clearly a must for every
student of physics but also for students of neighbouring disciplines such as chemistry
and electrical engineering. What these students especially need is a coherent presenta-
tion of both the experimental and the theoretical aspects of atomic and quantum phys-
ics. Indeed, this field could evolve only through the intimate interaction between in-
genious experiments and an equally ingenious development of bold new ideas.

It is well known that the study of the microworld of atoms caused a revolution of
physical thought, and that fundamental ideas of classical physics, such as those on
measurability, had to be abandoned. But atomic and quantum physics is not only a
fascinating field with respect to the development of far-reaching new physical ideas.
It is also of enormous importance as a basis for other fields. For instance, it provides
chemistry with a conceptual basis through the quantum theory of chemical bonding.
Modern solid-state physics, with its numerous applications in communication and com-
puter technology, rests on the fundamental concepts first developed in atomic and
quantum physics. Among the many other important technical applications we mention
just the laser, a now widely used light source which produces light whose physical
nature is quite different from that of conventional lamps.

In this book we have tried to convey to the reader some of the fascination which
atomic and quantum physics still gives a physicist studying this field. We have tried
to elaborate on the fundamental facts and basic theoretical methods, leaving aside all
superfluous material. The text emerged from lectures which the authors, an experimen-
talist and a theoretician, have given at the University of Stuttgart for many years. These
lectures were matched with respect to their experimental and theoretical contents.

We have occasionally included in the text some more difficult theoretical sections,
in order to give a student who wants to penetrate further into this field a self-contained
presentation. The chapters which are more difficult to read are marked by an asterisk.
They can be skipped on a first reading of this book. We have included chapters impor-
tant for chemistry, such as the chapter on the quantum theory of the chemical bond,
which may also serve as a starting point for studying solid-state physics. We have fur-
ther included chapters on spin resonance. Though we explicitly deal with electron spins,
similar ideas apply to nuclear spins. The methods of spin resonance play a fundamental
role in modern physical, chemical and biological investigations as well as in medical
diagnostics (nuclear spin tomography). Recent developments in atomic physics, such
as studies on Rydberg atoms, are taken into account, and we elaborate the basic
features of laser light and nonlinear spectroscopy. We hope that readers will find
atomic and quantum physics just as fascinating as did the students of our lectures.

The present text is a translation of the second German edition Atom- and Quanten-
physik. We wish to thank Prof. W.D. Brewer for the excellent translation and the most
valuable suggestions he made for the improvement of the book. Our thanks also go
to Dr. J. v. Schiitz and Mr. K. Zeile for the critical reading of the manuscript, to Ms.
S. Schmiech and Dr. H. Ohno for the drawings, and to Mr. G. Haubs for the careful



X Preface to the First Edition

proofreading. We would like to thank Mrs. U. Funke for her precious help in typing
new chapters. Last, but not least, we wish to thank Springer-Verlag, and in particular
H. Lotsch and G.M. Hayes, for their excellent cooperation.

Stuttgart, February 1984 H. Haken H.C. Wolf
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List of the Most Important Symbols Used

The numbers of the equations in which the symbols are defined are given in parenthe-
ses; the numbers in square brackets refer to the section of the book. The Greek symbols

are at the end of the list.

13.18, 20.13)

A Vector potential H Hamilton function,
A Amplitude or constant Hamiltonian operator
A Mass number (2.2) or area H,  Hermite polynomial
a Interval factor or fine struc- h Planck’s constant
ture constant (12.28) and h =h/2n
hyperfine splitting (20.10) I,I  Nuclear angular momentum
ay Bohr radius of the H atom in and corresponding quantum
its ground state (8.8) number (20.1)
B Magnetic induction I Abbreviation for integrals
b*,b Creation and annihilation opera- [16.13] or intensity
tors for the harmonic oscillator i Imaginary unit (i = V’Tl)
b Constant, impact parameter J,J Total angular momentum of an
C Constant electron shell and correspond-
c Velocity of light, series expan- ing quantum number (17.5)
sion coefficient J.j  Total angular momentum of
c.c. Complex conjugate an electron and corresponding
D Dipole moment quantum number [12.7]
d Constant i Operator for the total angular
dv Infinitesimal volume element momentum
E Electric field strength k Boltzmann’s constant, force
E Energy, total energy, energy constant
eigenvalue k Wavevector
Ey,  Kinetic energy L,L Resultant orbital angular
E,,  Potential energy momentum and corresponding
E o Total energy guantum number (17.3)
e Proton charge L,  Laguerre polynomial (10.81)
—e Electron charge I,/ Orbital angular momentum of
e Exponential function an electron and corresponding
F Electric field strength (14.1) quantum number
F,F  Total angular momentum of an I Angular momentum operator
atom, including nuclear angu- m, my Mass
lar momentum and correspond- m Magnetic quantum number
ing quantum number (20.6) m, — for angular momentum
F Amplitude of the magnetic in- my — for spin
duction [14.4, 14.5] m;  Magnetic quantum number for
f Spring constant total angular momentum
g Landé g factor (12.10, 16, 21, m,  Rest mass, especially that of

the electron



XX

N, n

Pj
Pl

P

0.q
R(r)

X

X

Particle number, particle num-
ber density

Normalisation factor
Principal quantum number or
number of photons or an
integer

Spectral radiation flux density
(5.2) or probability

Legendre polynomial

(m # 0) Associated Legendre
function

Momentum, expectation value
of momentum

Nuclear quadrupole moment
(20.20)

Charge

Radial part of the hydrogen
wavefunction

Position coordinate (three-di-
mensional vector)

Distance

Resultant spin (17.4)

Symbol for orbital angular
momentum L =0

Electron spin and correspond-
ing quantum number (12.15)
Spin operator = (8, §,, §.)
Absolute temperature
Longitudinal relaxation time
Transverse relaxation time
Time

Spectral energy density (5.2),
atomic mass unit [2.2]
Volume, potential, electric
voltage

Expectation value of the
potential energy

Velocity, particle velocity
Particle coordinate (one-
dimensional)

Expectation value of position

Y; (0, @) Spherical harmonic func-

QR N

i | =

tions (10.10, 48 — 50)

Nuclear charge

Fine structure constant [8.10]
or absorption coefficient (2.22)
Constant

Decay constant

Decay constant or linewidth
gyromagnetic ratio (12.12)

List of the Most Important Symbols Used

V2 Laplace operator
= 8%/ 0x*+ 8% dy*+ 8%/ 87>

AE  Energy uncertainty

Ak Wavenumber uncertainty

Ap  Momentum uncertainty

At Time uncertainty ( = finite
measurement time)

AV Finite volume element

Aw Uncertainty in the angular fre-
quency

Ax  Position uncertainty

d(x) Dirac delta function (see mathe-

matics appendix)

Kronecker delta symbol:

Oyy=1foru=v,9,,=0forutv

£ Dimensionless energy (9.83)

¢ Energy contributions to pertur-
bation theory

&  Permittivity constant of
vacuum

0 Angle coordinate (10.2)

K Defined in (10.54)

A Wavelength (exception: expan-
sion parameter in [15.2.1, 2])
Mean free path [2.4.3]

u, 1 Magnetic moment (12.1)

Reduced mass (8.15)

Bohr magneton (12.8)

Nuclear magneton (20.3)

Frequency [8.1]

Wavenumber [8.1]

Dimensionless coordinate (9.83)

Charge density, density of

states, mass density; or dimen-

sionless distance

Scattering coefficient, interac-

tion cross section (2.16)

Torque (12.2)

Phase

Phase angle, angle coordinate

¢(x) Wavefunction of a particle

¢1, ¢, ¢ Spin wavefunctions

Wavefunction

Wavefunction of several electrons

Generalised quantum

mechanical operator

Frequency [14.4, 14.5, 15.3]

Angular frequency 2nv, or

eigenvalue [9.3.6]

means “corresponds to”

I ATIE TN <~ ]
-

Q

S

ER0 eSS

[I>



1. Introduction

1.1 Classical Physics and Quantum Mechanics

Atomic and quantum physics, which are introduced in this book, are essentially prod-
ucts of the first third of this century. The division of classical physics into branches
such as mechanics, acoustics, thermodynamics, electricity, and optics had to be
enlarged when — as a consequence of the increasing knowledge of the structure of
matter — atoms and quanta became the objects of physical research. Thus, in the twen-
tieth century, classical physics has been complemented by atomic physics and the
physics of light or energy quanta. The goal of atomic physics is an understanding of the
structure of atoms and their interactions with one another and with electric and mag-
netic fields. Atoms are made up of positively charged nuclei and negatively charged
electrons. The electromagnetic forces through which these particles interact are well
known in classical physics.

The physics of atomic nuclei cannot be understood on the basis of these forces
alone. A new force — the nuclear or strong force — determines the structures of nuclei,
and the typical binding energies are orders of magnitude larger than those of the elec-
trons in atoms. The study of nuclei, of elementary particles, and the whole of high
energy physics thus form their own branches of physics. They will not be treated in this
book.

1.2 Short Historical Review

The word atom comes from the Greek and means “the indivisible”, the smallest com-
ponent of matter, which cannot be further divided. This concept was introduced in the
5th and 4th centuries B.C. by Greek natural philosophers. The first atomic theories of
the structure of matter were those of Democrites (460 —370 B.C.), Plato (429 —348),
and Aristotle (384 —322). It required more than two millenia until this speculative
atomism grew into an exact atomic physics in the modern sense.

The meaning of the word arom becomes less subject to misinterpretation if it is
translated into Latin: an individuum is the smallest unit of a large set which possesses
all the essential characteristics of the set. In this sense, an atom is in fact indivisible.
One can, to be sure, split a hydrogen atom into a proton and an electron, but the
hydrogen is destroyed in the process. For example, one can no longer observe the
spectral lines characteristic of hydrogen in its optical spectrum.

Atomism as understood by modern science was first discovered for matter, then for
electricity, and finally for energy.

The atomism of matter, the recognition of the fact that all the chemical elements are
composed of atoms, followed from chemical investigations. The laws of constant and
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multiple proportions, formulated by J. L. Proust ca. 1799 and by Dalton ca. 1803,
can be explained very simply by the atomic hypothesis:

The reaction equations

14 g nitrogen + 16 g oxygen yield 30 g NO  and
14 g nitrogen + 32 g oxygen yield 46 g NO,

mean: the atomic weights of nitrogen and oxygen are related as 14:16.

Only whole atoms are react with one another. The first atomic model (W, Prout, 1815)
assumed that the atoms of all elements are put together out of hydrogen atoms. As a
heuristic principle this hypothesis finally led to a scheme for ordering the elements
based on their chemical properties, the periodic system of L. Meyer and D. I. Mendeleev
(1869). More about this subject may be found in introductory textbooks on chemistry.

About the same time (1808), it was found by Gay-Lussac that not only the weights
but also the volumes of gaseous reactants occur as ratios of small integers. In the above
example,

1 volume nitrogen + 1 volume oxygen yield 2 volumes NO

1 volume nitrogen + 2 volumes oxygen yield 2 volumes NO,.

Similar observations led to the Aypothesis of Avogadro (1811): Equal volumes of gases
under similar conditions (pressure, temperature) contain equal numbers of molecules.

Continued investigations of gases in the course of the 19th century led to the
atomism of heat, that is, to the explanation of heat in general and of the thermodynam-
ic laws in particular as consequences of atomic motion and collisions. In about 1870,
the first theory to encompass a whole branch of physics, the kinetic theory of gases,
was completed by the physicists Clausius and Boltzmann.

The atomism of electricity was discovered in 1833 by the English scientist Michael
Faraday. Based on the quantitative evaluation of exceedingly careful measurements of
the electrolysis of liquids, he formulated his famous laws:

The quantity of an element which is separated is proportional to the quantity of
charge transported in the process,

and

various elements are separated into equivalent weights by the same quantity of
charge.

From this, Faraday concluded:

There are “atoms” of electricity — it was only after 70 years that their mass and
charge could be determined —

and
these “atoms” of electricity — the electrons — are bound to atoms of matter.

The discovery of the atomism of energy can be dated exactly: on December 14,
1900, Planck announced the derivation of his laws for black body radiation in a lecture
before the Physical Society in Berlin. In order to derive these laws, he assumed that the
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energy of harmonic oscillators can only take on discrete values — quite contradictory
to the classical view, in which the energy values form a continuum.

This date can be called the birth date of quantum theory. The further development
of atomic and quantum physics is the subject of this book.

Our knowledge of the structure of atoms was influenced strongly by the investiga-
tion of optical spectra. After Kirchhoff and Bunsen had shown, about 1860, that
optical spectra are characteristic of the elements which are emitting or absorbing the
light, Balmer (1885) succeeded in finding an ordering principle in atomic spectra, ex-
pressed in the formula (8.1) which bears his name and which describes the spectral lines
emitted from hydrogen atoms. As a result of the atomic model proposed by Rutherford
(1911), Bohr was able, in 1913, to formulate the basic principles of the quantisation of
electron orbits in atoms. These quantisation rules were considerably extended by Som-
merfeld. A parallel development was the concept of matter waves, carried out by De
Broglie. The actual breakthrough was attained by Born, Heisenberg, Schrédinger,
Pauli, Dirac, and other researchers in the decade between 1920 and 1930.

The problems of atomic physics which are of current interest in research are:

— an increasingly detailed description of the structure of electronic shells of atoms and
their excitations,
— the interactions between atoms and radiation fields, for example in view of their

applications in optical pumping (Chap. 21) and in laser physics (Chap. 22),

Atomic Physics
Basic Research
Determination of Atomic Data

Physics Technology Applications

Solid State Physics Quantum Electronics Determination of Units
Ideal and defect structures Lasers, frequency standards, Fundamental constants
navigation, geodetics
Chemical Physics Medical Technology Space Research
Formation of molecules, Radiation effects Earth and planetary
chemical reactions atmospheres, weather
Astrophysics Communications Technology Environment
Atomic spectroscopy Laser techniques, Detection of pollutants
ionosphere
Plasma Physics Energy Problems
Excitation mechanisms New methods of energy
production
Biophysics

Complex molecular structures

Geophysics
Earth’s magnetic field

Fig. 1.1. The relevance of
atomic physics for other
disciplines of science and
technology



4 1. Introduction

— the interactions of atoms among themselves due to collisions in the gas phase and
during the formation of molecules,

— the physical principles which lead to the formation of condensed phases from single
atoms, and their properties.

Thus molecular and solid state physics are based on atomic physics, and chemistry
as well makes constant use of its laws and principles.

Atomic physics is furthermore a basic science for many other disciplines of re-
search, technology, and applications. A few examples are shown in Fig. 1.1.

The following chapters do not give a historical or a chronological presentation; they
do, however, show the general line of developments and discoveries. An inductive ap-
proach is often used. It is of little use in physics to content oneself with the acquisition
of factual knowledge. A physicist must learn to analyse, to explain, and to extract the
essentials from experimental findings. In this way, one develops models for nature. In
the process, it is important to recognise relationships to other experimental results and
to be able to predict the outcome of new experiments. The predictions must then be ex-
perimentally tested. Because of this process, physics is not a dead, finalised science, but
rather is in a constant state of development, since new experimental techniques open up
new areas of research while, on the other hand, the process of developing physical
concepts gives the impulse for ever newer experiments.



2. The Mass and Size of the Atom

2.1 What is an Atom?

An atom is the smallest unchangeable component of a chemical element. Unchangeable
means in this case by chemical means; i.e., by reactions with acids or bases or the effect
of moderate temperatures, atoms may only be slightly changed, namely, in their degree
of ionisation. Moderate temperatures refers here to temperatures whose equivalent
energy kT (k is Boltzmann’s constant, 7" the temperature in K) is not larger than a few
electron volts (eV) (see Table 8.1).

2.2 Determination of the Mass

Beginning with Dalton’s law of constant and multiple proportions, and Avogadro’s
hypothesis, according to which equal volumes of gas contain the same number of mole-
cules or atoms, we introduce relative atomic masses (also called atomic weights) A, It
was first discovered with the methods of chemistry that these atomic weights are ap-
proximately whole-number multiples of the atomic mass of the hydrogen atom. The
relative atomic masses of nitrogen and oxygen are then A4,4(N) = 14, A,,(0) = 16.
For this reason, an atomic mass unit has been defined, 1 u (abbreviation for unit,
previously also referred to as 1 amu), which is approximately equal to the mass of a
hydrogen atom. Since 1961 the unit of atomic mass has been based on the carbon atom
2C with A,y = 12.00000 u and is thus no longer exactly equal to the mass of the H
atom. The use of C as base substance was found to be expedient for the experimental
precision determination of atomic masses by chemical means. We have as definition

1u=1/12 of the mass of a neutral carbon atom with nuclear charge 6
and mass number 12, i.e., %C . (2.1

Earlier scales were defined somewhat differently: the old “chemical” scale was based
on oxygen in the naturally occurring isotope mixture:

1 amuy,, = 1/16 (average mass of O atoms in the natural isotopic mixture)
and the old “physical” scale was based on the oxygen isotope '°0:

1 amu 16 = 1/16 (mass of an '°0 atom).
The following conversion formulae hold:

AMU et AMU 160 Utz = 0.99996: 0.99968 : 1.00000 (2.2)
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and

Are],chem: A rel, 160 + Arel,12c = 1.00004:1.00032:1.00000 . (2.3)

The absolute atomic masses can be obtained from the relative masses using the concept
of the mole.

1 mole of a substance is, according to Avogadro, as many grams as the relative
atomic weight (in the case of molecules, as the correspondingly defined relative molec-
ular weight). Thus, 1 mole of the carbon isotope ’éC is 12 grams. 1 mole of any sub-
stance contains the same number (N,) of atoms (molecules).

The number N, which is defined in this way is called Avogadro’s number (in the
German literature, it is called the Loschmidt number after the Austrian physicist Lo-
schmidt who determined it in 1865 by measurements on gases). Experimental methods
for its determination will be discussed in the following section.

The absolute atomic mass m,,, can therefore be obtained by measuring
Avogadro’s number. We have:

N SE RS = Mass of 1 mole of the substance . (2.4)

Na

The determination of atomic masses is thus based on the determination of Avogadro’s
number; the size of the latter depends evidently on the choice of the base substance for
the mole. N, is currently defined as the number of carbon atoms in 12.000 g of iso-
topically pure '2C.

The present best value for Ny is

N, = (6.022045 +0.000005) - 10* mole .
With this value, we can write (2.4) in the form

Matom = %€ foram] . 2.5
A

For the conversion of the mass unit u into other units the following relations hold:
MeV

CZ

1 u = (1.660565 + 0.000005) - 10 *" kg = 931.478

(2.6)

This last conversion results from the mass-energy equivalence E = mc?. MeV is a meas-
ure of energy (see Table 8.1), ¢ is the velocity of light. Numerical values for masses m,
relative atomic masses A, and the mass number A of a few atoms are shown in Table
2.1.

Table 2.1. Mass number, mass, and relative atomic mass of several atoms

Mass number Mass m Apg

A [kel
H atom 1 1.67342-10° % 1.007825
C atom 12 19.92516- 10~ %7 12.000000

O atom 16 26.5584 : 10~ %7 15.99491
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The mass number A of an atom is the integer which is closest to its relative atomic
mass A.;. It is found in nuclear physics that A4 is equal to the number of nucleons
(protons and neutrons) in the atomic nucleus.

2.3 Methods for Determining Avogadro’s Number

2.3.1 Electrolysis

In electrolytic decomposition of salts from a solution, the amount of salt decomposed
is proportional to the charge which flows through the electrolyte. For one mole of a
monovalent substance, a charge of 96485 As (ampere-seconds) is required. This is the
Faraday constant F. Thus, since each ion carries one elementary charge e, we have the
relation N, = F/e. The elementary charge e denotes the charge on a single electron (see
Sect. 6.3). For example, in order to electrodeposit one mole or 63.5 g of copper from a
solution of CuSQO, in water, 2N electrons are necessary, since the copper ion is doubly
positively charged. By weighing the amount of material deposited and measuring the
electric current as well as the time, one can obtain the constant N, .

2.3.2 The Gas Constant and Boltzmann’s Constant

The universal gas constant R and Boltzmann’s constant & are related through the equa-
tion k = R/Njy.

The gas constant can be determined by means of the ideal-gas law pV' = RT; the
Boltzmann constant, for example, from sedimentation equilibria (Perrin, 1908). In the
latter method, the density distribution of small suspended particles in a liquid, deter-
mined by the simultaneous action of gravity and the Brownian molecular motion, is
given by the equation

ny, = nge M 2.7

where n, is the number of particles in a unit volume at a height A, n, the number of par-
ticles in a unit volume at height 4 = 0, m the mass of the particles, g the acceleration of
gravity, k the Boltzmann constant, and 7 the absolute temperature. In Fig. 2.1, a model

Fig. 2.1. Sedimentation equilibrium: distribution of suspended mastix spheres
of 0.6 pm diameter at four different heights in the field of view of a micro-
scope (after Perrin)
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experiment demonstrating sedimentation is shown. The formula given by (2.7) is a
special case of the famous Boltzmann distribution. Since we will use this distribution in
numerous places in this book, we will give an explicit general formula for it here. The
exact derivation may be found in texts on statistical physics. According to the Boltz-
mann distribution, the number of particles with energies in the interval E ... E+dE in
thermal equilibrium is given by

nedE = NZ(T)e “*Tg(E)dE, (2.8)

where, generalising (2.7), the following quantities appear: N is the total number of par-
ticles, Z(T) is the partition function. The latter ensures that, integrating over the whole
energy range, one obtains the total particle number N, i.e., { nzdE = N. It is therefore
given by Z(T) ' = fexp(— E/kT)g(E)dE. Finally, g(E) is the density of states; it is
necessary since, for example, particles with the same energy can be moving in different
directions, i.e., there can be more than one state with the energy E.

A completely satisfactory definition of g(E) only becomes possible with the help of
quantum mechanics. Using quantum numbers, of which we will later encounter a num-
ber of examples, one can count the number of “states” in the interval E ... E+dE.

2.3.3 X-Ray Diffraction in Crystals

With x-radiation of a known wavelength, one can determine the lattice constant, or the
volume of an atom or molecule in a crystal. The volume of a mole V, is then N4 times
the atomic volume. For one mole one thus has

NaVaom = mol=M/Q! (2.9)

where M denotes the molar mass and p the mass density.

Figure 2.2 illustrates the principle; it shows a section of a NaCl lattice. NaCl crystal-
lises in the face-centred cubic structure. The NaCl lattice can be built up from two face-
centred cubic lattices containing the Na* and the Cl~ ions. These ions occupy the
corners of cubes of side a/2, where a is the edge length of the Na* or CI~ unit cell. The
unit cell is the smallest unit of a crystal, in the sense that the crystal structure consists of
a repetition of this element in each of the three dimensions of space.

The size of @ can be determined by x-ray diffraction if the x-ray wavelength is
known (Sect. 2.4.5). In a cube of volume (a/2)°, there are 4/8 = 1/2NaCl molecules,
since each ion belongs to 8 cubes. The number of molecules per unit volume is therefore

Fig. 2.2. Section of a NaCl lattice. The unit cell of the face-centred
a cubic lattice is a cube of side a. It contains one face-centred cubic cell
2 each of Na* and of C1~ ions
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n=(1/2)(2/a)’. (2.10)
When we set this equal to the quotient N/ Vo = Na 0/M, we obtain

4M 4.58.4
a’o  (5.63)°-107%.2.16
6.05-10* (kmol) ' with ¢=5.63-10"%cm and o=2.16gem °.

Ny = =6.05-10%mol ™" or (2.11)

The accuracy of a measurement of N, by this method is about 5 - 10 ~ ¢ (relative uncer-
tainty). The density g cannot, up to now, be determined with greater accuracy. How-
ever, the lattice constant @ can be obtained with much greater accuracy using an x-ray
interferometer of Si single crystals, resulting in a relative error of 6 - 10 ~ %, This method
becomes an absolute technique for determining N, if the measurement of the x-ray
wavelength is made using a mechanically ruled grating and can thus be related to the
meter directly. This becomes possible with the method of grazing-incidence diffraction;
in the normal-incidence method, the mechanically prepared rulings are too wide
relative to the wavelength.

2.3.4 Determination Using Radioactive Decay

Among the many other methods with which N, has been determined, we will only men-
tion here that of Rutherford and Royds from the year 1909.

In the experimental setup shown in Fig. 2.3, a radon source is contained in the in-
terior of the glass tube A. The « particles which are emitted by this source can pass
through the thin walls of tube A. In the second, thick-walled tube B, the & particles,

Fig. 2.3. Experimental arrangement of Rutherford and Royds:
Phil. Mag. 17, 281 (1909). The thin-walled glass tube A contains the
c-active gas radon, 222Rn. The helium atoms which collect after
some days in the evacuated space B are compressed into the capil-
lary C and detected in the spectrum of a gas discharge. The mercury
levelling vessels serve to compress the gases

—~ Hg _
levelling
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which are the atomic nuclei of helium atoms, collect as He gas. Through ionisation pro-
cesses in the source, in the glass walls, and in the gas, electrons are set free which can
combine with the ¢ particles and make them into He atoms. Ignition of a gas discharge
in tube C excites these atoms and causes them to emit light; spectral analysis shows that
the gas is, in fact, helium.

In this manner, it was demonstrated that « particles are helium nuclei. If one meas-
ures the quantity of gas which is formed in a certain time, and knows the decay rate of
the source (e.g., by counting with a Geiger counter or scintillation detector), one can
determine the number of atoms per unit volume and thus N, .

2.4 Determination of the Size of the Atom

2.4.1 Application of the Kinetic Theory of Gases

The kinetic theory of gases describes the macroscopic state variables of gases such as
pressure and temperature on an atomic basis. Its application to the explanation of the
macroscopically measurable quantities relevant to gases also leads to a determination
of the size of the atoms. To understand this, we must first recall the arguments which
provide convincing evidence for the correctness of the kinetic theory.

The ideal-gas law states

pV=nRT, (2.12)

where p is the pressure, ¥ the volume, n the number of moles, R the universal gas con-
stant, and 7 the temperature.

At constant temperature, this is Boyle’s law. Equation (2.12) can also be derived
kinetically. To do this, one calculates the number of particles in a given volume which
collide with a unit surface of the walls per unit time and thereby transfer momentum to
the walls (this is the number of particles contained in the so-called Maxwellian cylinder
of length v). The pressure which is exerted by the gas on the walls is then given by

p=(1/3)Nmv?, (2.13)

where m is the mass of the particles (gas atoms or molecules), 2 is their mean-square
velocity, and N is the number of particles per unit volume. Since the mean kinetic
energy muv2/2 of a free particle in thermal equilibrium is equal to (3/2) kT, (2.13) be-
comes p = Nk T. This equation is identical to the ideal-gas law, as one immediately re-
cognises upon multiplication by the molar volume V;:

PVinot = NViokT = NAKT =RT. (2.14)

The demonstration that the kinetic theory gives a good description of the physical be-
haviour of gases is provided by experimental testing of the predictions of the theory.
For example, the distribution of the molecular velocities in a gas which can be derived
from the kinetic theory (Maxwell distribution) has been experimentally verified with
great accuracy. This distribution is again a spec1a1 case of the Boltzmann distribution
[cf. (2.8)]. Here the energy of a particle is £ = mv 2/2. We wish to calculate the number
of particles, n(v)dv, whose absolute velocity, independent of direction, lies in the



2.4 Determination of the Size of the Atom 11

interval v ... v+dv. Thus we must recalculate the density function g(E) in terms of a
new density function g(v), using the condition

g(E)dE = g(v)dv .

Since the calculations yield no physical insights, we will only give the end result, the
Maxwellian velocity distribution:

372
2 m 2
n)dv=nyv? |/ = [— ) e-™"%*Tgy 2.15
0 |/ - (kT) (2.15)

with n(v)dv being the number of particles with a velocity in the interval v ... v +dv
and ng the total number of particles. In the experimental test of the velocity distribu-
tion, the relative number of gas atoms with a given velocity v is measured.

2.4.2 The Interaction Cross Section

The size of an atom in a gas may be measured from the interaction cross section with
which the atom collides with other atoms. The derivation of the concept interaction
cross section is illustrated in Fig. 2.4. A beam of atoms of type 1 (beam cross-sectional
area A, particle radius ry, particle number density Ny) strikes a layer made of atoms of
type 2 (layer thickness Ax, particle radius r,, particle number density n). We ask,
“How many atoms of type 1 collide with those of type 2 and are deflected from their
course, so that they do not pass undisturbed through the layer?” This interaction cross
section is thus frequently referred to in physical language as a scattering cross section.

1
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|
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Fig. 2.4. Definition and measurement of interaction
cross sections. Upper part: The interaction cross sec-
g NN tion of particles with radius r, with those of radius r,
N is found to be (r,+r,)*n. Centre part: Out of N
No,Ty particles which reach the volume element of thick-

L — ness Ax from the left, N pass through undeflected.
In this manner, the interaction cross section may be
experimentally determined. Lower part: Derivation
of (2.20). The radii of particles 1 and 2 are combined
into the radius (r; +ry)
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The problem corresponds roughly to the following macroscopic situation: someone
is standing in front of a forest and shoots a bullet from a rifle. The probability that the
bullet will pass through the forest undeflected is larger, the smaller the thickness and
the density of the trees. If one shoots repeatedly and counts the number of undeflected
bullets relative to the total number fired, it is possible to determine the thickness of the
trees (that is, their interaction cross section). In order to do so, one must know their
density. Naturally, one would not use such a method for a real forest. In atomic
physics, it is, however, necessary, since it is not possible to put a meter stick up to an
atom as it is to a tree. The same problem occurs in a number of contexts in physics: for
example, in nuclear physics, a collision between two particles can be used to determine
the interaction cross section for a nuclear or particle reaction. In atomic physics, we
shall see that the interaction between a light quantum and an atom is described by a
cross section. Because of its wide application in many areas of physics, the concept of
the interaction cross section will be treated in some detail here.

A collision between atoms of radii r; and r, leads to a deflection of the atoms out of
their initial directions when it occurs within an area ¢ = (r, + r,)*n (see Fig. 2.4). We
may thus combine the deflection of both colliding particles into a common cross
section. The probability of a collision is then given as the quotient of the number of
favorable to the number of possible cases:

W= Area of all the interaction cross sections in the volume of the beam

Total area A

This is valid under the assumption that the areas nr? of various particles which are
located behind one another do not overlap. This is fulfilled for a sufficiently small layer
thickness. In order to calculate the number of deflected atoms in a finite layer of thick-
ness L, we first divide up the layer into thin layers of thickness Ax. If N atoms enter a
thin layer at the position x (see Fig. 2.4), a number AN is deflected out of the beam
after passing through the distance Ax:

Total number of atoms in the volume - o

AN= —-WN = — N. (2.16)

Total area

Since the total number of atoms in a given volume is given by the product of particle
number density » with the area A4 and the layer thickness Ax, we obtain from (2.16)

AN = —_”ijﬂN. (2.17)

If we replace differences by the corresponding infinitesimal quantities, we have
dN/N = —nodx. (2.18)

To obtain the number of atoms which are deflected (or not deflected, respectively)
along the entire length x, we integrate (2.18):

InN= —nox+InN,. (2.19)

Here, InN, is a constant of integration, with N, being the number of particles which
are incident at the point x=0. From this relation we obtain immediately
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N = Nyexp(—nax) as the number of particles which are still present after a distance x,
or, after passing through a total length L

N = Nye "ok, (2.20)
The number of deflected atoms is correspondingly
Nican = No(1 _e_naL) . (2.21)

The product no = « is also denoted as the (macroscopic) scattering coefficient and o as
the (microscopic) total interaction cross section.

From a measurement of ¢ follows, according to o = (r;+r,)*n, the quantity
(r{+ry). In the case of identical atoms with r = r; = r,, we have thus determined r, i.e.,
the size of the atoms.

obing

Incident Transmitted
beam beam §

Fig. 2.5. Attenuation of a light beam on
passing through an absorbing medium

We will frequently encounter the concept of the interaction cross section, which we
have defined here, in later sections of this book. Figure 2.5 shows the dependence of
the intensity of a light beam on the thickness of absorbing medium through which the
beam has passed, as described by (2.20). For the absorption of /ight by atoms or mole-
cules, the Lambert-Beers law is valid:

I= Ioe—ﬂw" (2.22)

where [ is the transmitted intensity, [, the incident intensity, and « the absorption
coefficient per absorbing particle. n is again the number density of atoms or molecules
in the absorbing medium.
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2.4.3 Experimental Determination of Interaction Cross Sections

Interaction cross sections can be directly measured by collision experiments using an
atomic beam and a gas target. An apparatus for such measurements is shown in Fig.
2.6.

Gas

Manometer
Gas catcher

Scattering
1 chamber
Pump

Fig. 2.6. Setup for measuring scattering cross sections of atoms by atoms. A beam of gas atoms enters the
scattering chamber through the slits S. Scattering by the gas atoms in the chamber leads to an attenuation of
the beam which arrives at the catcher

Frequently, however, interaction cross sections or atomic sizes are determined indi-
rectly. For example, one measures the mean free path A, which we define with the help
of (2.20): A is the distance L or x, after which the initial density N, has been reduced to
Ny/e. Thus, with (2.20), where n is again the particle number density, and taking
rn=rn=r,

a1t 1

5 . (2.23)
dnren an

Up to now, we have assumed that the target atoms are at rest. If they are also in
motion, the expression for A must be modified somewhat. We give the result without
derivation:

1
4nl/§r2n -

The mean free path thus defined enters into macroscopically measurable quantities,
for example the viscosity 5. The viscosity is in fact a measure of the momentum trans-
fer between atoms or molecules in gases or liquids and therefore also depends on the
frequency of collisions between the particles. The mean free path can thus also be
macroscopically determined. The detailed relation is (without derivation)

A (2.24)

where 7 is the viscosity, o the density, A the mean free path, and ¢ the mean velocity of
the particles. The quantity # can be measured, e.g., from the flow velocity through a
capillary.
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Another method for measuring A results from thermal conductivity in gases. The
latter also depends on the frequency of collisions between the particles and the energy
transfer which thus occurs. Here we have — likewise without derivation — a relation
between the heat flow dQ/dt and the thermal gradient d7/dx which produces it:

dQ/dt = — dyc- A - dT/dx, (2.26)

where dQ is the differential quantity of heat, Ay¢ the thermal conductivity, and A the
cross-sectional area of the heat transport medium. The thermal conductivity Arc
depends upon the mean free path according to the relation

lTC=%k51. (2.27)

Table 2.2 on p. 20 contains some values for atomic radii. Further details and the deriva-
tions which we have passed over here may be found in standard texts on experimental
physics.

2.4.4 Determining the Atomic Size from the Covolume

The Van der Waals equation for one mole of a real gas states
(P+a/VH(V-b)=RT. (2.28)

Here the expression a/ 12 denotes the “internal pressure” which adds to the external
pressure P and is due to the forces between the particles. Another correction due to the
internal forces is the reduction of the free volume V of the gas by the volume of the
gas particles (the so-called covolume). This quantity b, which can be experimentally
determined by measuring the P-V diagram of the equation of state, is equal to the
fourfold volume of the particles. We thus have

b=4-——.r* N,\. (2.29)

2.4.5 Atomic Sizes from X-Ray Diffraction Measurements on Crystals

The famous experiment of von Laue, Friedrich, and Knipping in 1912 on the diffrac-

tion of x-radiation in crystals yielded:

— the final proof that crystals are built up of atoms,

— the wavelength of x-radiation,

— the lattice constant of crystals — and with it, information on the size of the atoms in
the crystal.

Figure 2.7 shows the experimental set-up schematically. For an exact derivation of
the interference conditions, one would have to treat the interference from a three-di-
mensional lattice. Here we will use the simplified method of Bragg (1913) to illustrate
how the lattice constants can be determined.

X-ray diffraction may be regarded as a reflection of x-radiation by the so-called lat-
tice planes at certain specular angles. A lattice plane is a plane in a crystal which is oc-
cupied by atoms. In a crystal there is a large number of families of parallel and equi-
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Crystal

Polychromatic
x-ray beam

Monochromatic
diffracted rays

Photographic
plate

Fig. 2.7. X-ray diffraction from a single crystal after von Laue; schematic of the experimental arrangement.
X-radiation with a continuous distribution of wavelengths (polychromatic or white x-radiation) is diffracted
by a single crystal. The conditions for interference from a three-dimensional lattice yield constructive
interference at particular directions in space and at particular wavelengths. One thus observes interference
maxima, which correspond to certain discrete wavelengths (monochromatic x-radiation)

\.gii._.7101 .
\\\ (010)

&
Fig. 2.8. Simple cubic lattice with several lattice planes. These are characterised by the Miller Indices. The
spacing between two parallel lattice planes decreases with increasing Miller indices

Fig. 2.9a, b. Derivation of the Bragg Law of Re-
flection. The horizontal lines symbolise lattice
planes, from which the incident x-radiation ar-
riving at angle 6 is scattered. a) Each atom of a
lattice plane acts as a scattering centre. b) The
derivation of the Bragg condition for the reflec-
tion of x-radiation from a lattice plane
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distant lattice planes. They are distinguished from one another by their spacing, by the
density of atoms within the planes, and by their orientations within the crystal lattice
(see Fig. 2.8). According to Huygens’ principle, each atom which is struck by the in-
cident x-radiation acts as the source point for a new elementary wave (Fig. 2.9a). These
elementary waves produce constructive interferences at certain angles. The reflection
condition is derived as follows: amplification occurs when the path difference A be-
tween two adjacent beams corresponds to a whole multiple of the wavelength, nA. For
the path difference A we have, according to Fig. 2.9b,

A=AB+BC—-AE =2AB—- AE = .Zd —2AD cos@. (2.30)
sin @
With the relation AD = d/tan@, one obtains from (2.30)
A=2-9 (1_cos?p),
sin @

or, finally, the condition for constructive interference
A=2dsinf=ni. (2.31)

The various methods of observing x-ray diffraction from crystals which are used in
practice differ in the following ways:

— In the Laue method one uses a single crystal, a particular value of the angle of inci-
dence, and x-radiation with a continuous spectrum (“polychromatic” x-rays). The
condition for constructive interference is fulfilled for individual points in the plane
of observation for particular wavelengths.

— In the Bragg rotating-crystal method one also uses a single crystal, but mono-
chromatic x-rays. The crystal is rotated, so that the angle of incidence varies
through a continuous range of values. The condition for constructive interference is
fulfilled for various lattice planes successively.

— In the Debye-Scherrer method (Figs. 2.10, 11), the sample is polycrystalline or
powdered. The x-rays are monochromatic. Since each lattice plane occurs in all pos-
sible orientations relative to the incident beam, one obtains interference cones
whose intersection with the plane of observation gives interference rings.

Equation (2.31) relates the wavelength of the x-rays to the lattice constant or the
spacing of the lattice planes. The x-ray wavelength can be measured by other means
than with crystal interferences. Its measurement can be directly correlated to the meter
by utilising x-ray interference at grazing incidence from a diffraction grating. Since it is
not possible to manufacture diffraction gratings with a grating constant of the order of
x-ray wavelengths, one uses coarse gratings, for example with 50 lines/mm, and lets the
x-radiation strike the grating at a grazing angle of less than 1°. Since the index of
refraction of x-rays is somewhat smaller than 1, total reflection occurs when the angle
of incidence is sufficiently small. The effective grating constant is then the projection
of the actual line spacing at this angle. It is sufficiently small to permit the measure-
ment of the x-ray wavelength.

We make two additional remarks concerning x-ray diffraction.

— In practice, x-ray diffraction is much more complicated than indicated above. The
exact intensity distribution in the diffraction pattern must be carefully determined,
and account must be taken of the fact that the scattering centres are not points, but
instead are electronic shells with a finite extension. A complete, quantitative ana-
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Fig. 2.10. Debye-Scherrer method: x-ray
diffraction of monochromatic x-radia-
tion by a polycrystalline sample Z. On
the film, the intersections of the diffrac-
tion cones from the various families of
lattice planes appear as rings. To
generate monochromatic x-radiation,
one uses either the socalled characteristic
x-ray lines (Fig. 18.3), or a single crystal
may be employed as a monochromator
according to the principle of (2.31)
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Fig. 2.11. Debye-Scherrer diagram of MgO [from Gerthsen, Kneser, Vogel: Physik, 13th ed. (Springer, Ber-
lin, Heidelberg, New York 1978) Fig. 12.37]

lysis of x-ray diffraction patterns leads finally to an exact determination of the elec-
tron density with the sample crystal lattice. From it, we obtain not only the spacing
between the atoms in the lattice, but also their sizes and even their shapes. Figures
2.12 and 2.13 illustrate experimentally determined electron density distributions in
crystals. A contour map of this type raises the question, “Where does an atom have
its boundary?”, and this leads in turn to the question,

“What do we really mean by the size of an atom?”

— In the case of hard spheres, the size can be defined exactly. For atoms, the concept
“size” cannot be defined without reference to the method of measurement. Various
methods are sensitive to different properties of the atom, which depend on the “size
of the atom” in differing ways.

Let us consider the methods of investigation described above once more in light of
this remark.

From the viscosity # one obtains a measure of the interatomic distance in the
presence of thermal motion. Because the atoms are not perfectly hard spheres, the
radius determined in this manner will, however, be a function of the velocity. Further-
more, the results depend on the shape of the atom; the spatial extension of the elec-
tronic shells of atoms and molecules deviates more or less strongly from a spherical
shape, in general.

The covolume b in the real-gas law is derived under the assumption that the atoms
are elastic spheres. The lattice plane spacing d measures an equilibrium distance
between the particles in the crystal lattice.
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Fig. 2.12. The electron density
distribution in the anthracene
molecule determined by V. L.
Sinclair, J. M. Robertson, A.
McL. Mathieson: Acta Crystal-
logr. 3, 254 (1950). Lines of equal
electron density (“contour lines™)
are plotted

Fig. 2.13. Distribution of the electron
density in the basal plane of NaCl from
x-ray analysis by Schoknecht: Z. Natur-
forsch. 12a, 983 (1957). The solid curves
are again lines of equal electron density



20 2. The Mass and Size of the Atom

1t should therefore not be surprising that the values of atomic radii measured by the
various methods deviate somewhat from each other — the order of magnitude is,
however, always the same — a few Angstroms. Table 2.2 shows a comparison of the
measured values.

Table 2.2. Atomic radii [A], measured by various methods (1 A = 0.1 nm)

from n from d from b
Neon 1.18 1.60 1.2
Argon 1.44 1.90 1.48
Krypton 1.58 1.97 1.58

Xenon 1.75 2.20 1.72

2.4.6 Can Individual Atoms Be Seen?

The resolving power of a microscope is defined as the smallest spacing between two
structures in an object which can still be imaged separately. According to Abbé’s
theory of image formation, the resolving power is limited by diffraction in the opening
of the lens which forms the image. In texts on optics, the condition that — in addition
to the zeroth order — at least one additional diffraction maximum is necessary in order
to form an image, is used to derive the equation for resolving power,

d=—* (2.32)

nsine
where d is the resolving power, 4 the wavelength, n the index of refraction, and « the
angular opening of the lens. For visible light, one obtains a resolution of ca. 5000 Aor
500 nm.

For other types of electromagnetic radiation, the theoretical resolving power cannot
be reached. For x-rays, it is not possible to construct suitable lenses, since the index of
refraction of all substances for x-radiation is approximately equal to 1. Electrons may
be deflected by electric and by magnetic fields; thus, they may be used to construct
lenses for electrons and to form images. Because of the unavoidable “lens
aberrations”, however, it is only possible to work with beams of very small divergence
in electron microscopes. Table 2.3 gives an overview of the resolving powers of various
methods of image formation.

Table 2.3. Resolving powers for various wavelengths

Resolving Power [A] Remarks
theory practice
Light ca. 5000 ca. 5000
Dark field ca. 500 ca. 500 No image formation,
only diffraction pattern
Xrays (A =1 A) 1 several 100 No lenses
Electrons 0.04 0.7 Lens aberrations

(100000 Volt 2 4 = 0.037 A)
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In recent years, great success in the effort to form images of individual atoms has
been obtained with special types of electron microscopes: with the field emission micro-
scope it has been possible to visualize single atoms or large molecules on the tips of
fine metal points (Fig. 2.14), and with the scanning electron microscope it has proved
possible to form images of atoms and molecules. Here the attainable resolution is
about 5 A or 0.5 nm. With high-voltage electron microscopes, one can now obtain a
resolution of 0.15 nm. This makes it possible to image the individual atoms in mole-
cules and in crystals. An example is shown in Fig. 2.15.

Finally, using the scanning tunnel microscope, it is possible to resolve the atomic
or molecular structure of surfaces and to make the individual structural elements visi-
ble. In this apparatus, which was developed by Binnig and Rohrer, an extremely fine
metal point is moved over the surface to be observed at a distance of less than 1 nm.

Fig. 2.14. Image of the point of a tungsten needle with a field emission microscope, developed
by F. W. Miiller. The picture was provided by the Leybold-Heraeus Co. in Cologne. The
image can easily be produced as a lecture demonstration. The various lattice planes which
intersect the tip of the needle have differing emission probabilities for the field emission of
electrons; this produces the geometric pattern of light and dark regions. This pattern reflects
the crystal lattice geometry. Barium atoms were then vapour-deposited onto the tungsten
needle. Where they are present, the emission probability is increased, so that they appear as
bright points in the image. During the vapour deposition one can observe them falling onto
the point like snowflakes. It can be shown in this manner that individual atoms become visible

Fig. 2.15. An electron microscope picture of hexa-deca-
chloro-copper-phthalocyanin - molecules. The molecules
were produced as a ca. 10 monolayer thick, crystalline
growth-layer on the alkali halide crystal which serves as
substrate. The image formation and processing were done
with a 500 kV high-resolution electron microscope and
with a special image enhancement technique. The central
copper atoms are especially clear, as are the 16 peripheral
chlorine atoms. (The picture was kindly placed at our dis-
posal by Prof. N. Uyeda, Kyoto University)
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The tunnel current between the substrate and the point is a measure of the distance,
of the charge density, and of the electrical work function for charges leaving the
substrate. These quantities change from place to place on an atomic scale; thus, one
can obtain a picture of the substrate surface. In Fig. 2.16, the atomic structure of
single molecules of copper phthalocyanine 1s shown.

The imaging and manipulation of individual atoms or molecules on solid surfaces
has become possible with this instrument. More details are given in Haken and Wolf,
Molecular Physics and Elements of Quantum Chemistry, Sect. 2.1.

Fig. 2.16. A picture obtained with the
scanning tunnel microscope, showing
copper phthalocyanine molecules on a
copper substrate surface. From P.H.
Lippel, R.J. Wilson et al., Phys. Rev.
Lett. 62, 171 (1989). At the lower right,
the calculated charge density 2 A above
the molecular plane is shown

Individual atoms can thus in fact be made visible. Much older are methods of ex-
perimentally observing processes which involve single atoms.

Single atomic processes (nuclear decays) were made visible in the first years of re-
search into radioactive decay by using the “spinthariscope” (Fig. 2.17). This is nothing
more than a fluorescent screen, which produces light flashes upon bombardment with
decay products from radioactive material and which may be observed with a
magnifying lens. With this instrument, single atomic events — decays — were counted
in Rutherford’s laboratory at the beginning of this century. Today, scintillation
detectors or semiconductor detectors are used for this purpose.

A scintillation detector operates according to the following principles: when radia-
tion from a radioactive decay falls on a Nal crystal, the crystal produces light flashes,
which can be amplified in a photomultiplier tube (PMT) (Fig. 2.18). In this way, in-
dividual events can be conveniently registered. For example: one electron with an
energy of 10000 eV produces ca. 200 light quanta in the scintillator (it requires on aver-
age about 50 eV per light quantum). Each light quantum creates one photoelectron at
the photocathode of the PMT. The PMT amplifies each of these electrons about
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Radioactive P
g L, Scintillator
Magnifying , ¢ Light guide
lens
Eve Photocathode
Fluorescent
screen
Fig.2.17. Spinthariscope, schematic illustration. Electrodes
The fluorescent screen scintillates due to the irradia- (“dynodes”)
tion from the radioactive source. The scintillation
processes may be observed through the magnifying
lens
Fig. 2.18. Schematic diagram of a scintillation detec- p Anode
tor. The light flashes which are produced in the scin-
tillator by the incident radiation pass through the
light guide to the photocathode of an electron multi- Counting
plier tube. The photoelectrons which are released by electronics
the cathode are amplified in a series of steps and

registered at the anode as a current pulse

10°-fold, so that per light quantum, about 10° electrons are released from the anode.
This results in a charge per incident electron (beta particle) of 310~ '2C, which can
easily be measured.

Individual ions can be caught in an electromagnetic ion trap, stored there, and spec-
troscopically studied as isolated particles. An ion trap is shown in Fig. 2.19. It localizes
the particle by making use of inhomogeneous electromagnetic fields of suitable geome-
try (quadrupole field). The localized ion can be excited to luminescence with narrow-
band laser light; Fig. 2.20 shows an example. Thus, the interaction between the radia-
tion field and individual ions can be investigated. Such studies are also the goal in the
development of the one-atom maser, as described by H. Walther (e.g. H. Walther:
Europhysics News 19, 105 (1988)). Here, it is possible to observe the energy exchange
between an individual atom and the electromagnetic field in a resonant cavity.

An arrangement which played an especially important role in the early period of
modern atomic physics and which is still in use today for the excitation of atoms and
for producing particle beams is the gas discharge tube, Fig. 2.21. It can be employed
both for exciting the emission of light from the atoms of the gas inside the tube and for
the production of cathode and canal rays. Pliicker described cathode rays for the first
time in 1859. They were given that name because they could be observed through a hole
in the anode and seemed to emanate from the cathode. In fact, they are generated in the
gas volume. The rays which strike the fluorescent screen in front of the hole in the
cathode, the canal rays, were discovered in 1886 by Goldstein. In 1897, Thomson show-
ed that the cathode rays consists of negatively charged particles — the electrons. Wien
demonstrated in 1900 that the canal rays are electrically charged atoms, that is, ions.
They also are formed in the region of the gas discharge through collisions with charged
particles which have been accelerated by the electric field.

Atoms as the basic particles of matter have been thus theoretically and experimen-
tally detected and made visible in the course of the past century.
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Fig. 2.19. Schematic view of an electrodynamic ion trap (Paul
trap). It is made of a ring with a hyperbolic surface and two
hyperbolic caps. A high-frequency electric field maintains the
ions on small circular orbits; the field vanishes at the center
point. From P.E. Toschek, The Art of Measurement (VCH,
Weinheim 1988). More information can also be found in F.
Diedrich and H. Walther: Phys. Rev. Lett. 58, 203 (1987). See
also the Nobel prize lecture of W. Paul: Angew. Chem. Intl.
Ed. 29, 739 (1990)

Fig. 2.20. Imaging of individual atoms. In the center of
an ion trap, a barium ion has been localized and excited
by laser light to resonance fluorescence; it becomes visi-
ble as a luminous spot. From P.E. Toschek and W.
Neuhauser: Atomic Physics 7, ed. by D. Kleppner and
F.M. Pipkin (Plenum, New York 1981)

Fig. 2.21. A gas discharge tube for producing cathode rays.
Between the cathode and the anode is a potential difference
of several thousand volts. The fluorescence which appears
in the tube and the formation of cathode rays depend
strongly on the gas pressure. In the field-free region between
the cathode and the fluorescent screen one observes the
canal beam, which consists of positive ions. The cathode
and canal rays produced in this manner were particularly
important in the early period of atomic physics for the in-
vestigation of charge, mass, and scattering cross sections of
electrons and ions
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Problems

2.1 a) Colloidal particles are dispersed in a liquid. Show that at equilibrium, the num-
ber of particles per cm? is given by a Boltzmann distribution:

Ny
nh)y=nyexp— | — Vie—0)gh| ,
0 €Xp [RT (o @)g}

where N, is Avogadro’s number, R is the gas constant, 7 is the absolute temperature,
Vis the volume of the particles, g is the density of the particles, o' is the density of the
liquid, g is the acceleration due to gravity, 4 is the height and n is the number of par-
ticles at the height 4 = 0.

b) Determine Avogadro’s number, using the above relation and the following ex-
perimental data:

ny =134 particles/cm®, n(h = 0.0030 cm) = 67 particles/cm’, o = 1.23 g/cm’, o' =
1.00 g/cm3, T =293 K, particle diameter = 4.24- 10 7 cm.

Hint: To derive an expression for n(h), use the barometric altitude formula:
dp = —o(h)gdh. Treat the particles as heavy, non-interacting molecules of an ideal
gas and use the ideal gas equation p¥ = RT to obtain the relation between dp and dp or
dn.

2.2 Liquid helium (atomic weight 4.003) has a density o = 0.13 g/cm®. Estimate the
radius of a He atom, assuming that the atoms are packed in the densest possible confi-
guration, which fills 74% of the space.

2.3 Canalrays, i.e., positive ion rays are generated in a gas discharge tube. How often
does an ion (r = 0.05 nm) collide with an atom of the ideal filler gas (r = 0.1 nm) if it
travels 1 m in a straight path through the discharge tube and if the pressure in the tube
is 1 mbar? 10~ *>mbar? 10~ *mbar and the temperature 7 = 300K? (1 mbar corre-
sponds to 10° Pa).

Hint: The ions do not have a Maxwell-Boltzmann velocity distribution. All the particles
are assumed to have the same velocity.

2.4 The covolume of helium gas was determined from pressure-volume diagrams to
be b = 0.0237 litre/mole. The covolume of mercury is 0.01696 litre/mole. What is the
size of the atoms in the two gases?

2.5 a) Why are monochromatic x-rays used for the Debye-Scherrer method, and how
are they produced? Does the diffraction cone with the smallest apex angle represent
the smallest or the largest lattice plane spacing? How large is this spacing if a first-order
angle a = 5° is measured between the surface of the cone and the undiffracted beam?
(Assume that the quantum energy of the x-rays is 50 keV, E, ., = 50 keV).

b) The angle of maximum intensity of the first order reflection of x-rays with
wavelength 4 = 2.1 A from the cleaved surface of a NaCl crystal is measured to be
6 =22°10". Calculate the lattice constant of the NaCl crystal. Use the result to derive

Avogadro’s number. The density of NaCl is ¢ = 2.163 gcm °.
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2.6 Monochromatic x-rays (4 = 0.5 A) fall on a sample of KCI powder. A flat photo-
graphic plate is set up 1 m from the powder and perpendicular to the beam. Calculate
the radii of the sections of the Bragg diffraction cone (Fig. 2.10) for first- and second-
order diffraction, assuming a lattice-plane spacing of 3.14 A.

2.7 A tight bunch of slow neutrons (2 eV), Wl;liCh is produced in a nuclear reactor,
lands on a crystal with a lattice spacing of 1.60 A. Determine the Bragg angle for first-
order diffraction.

Hint: Use (7.1) for the wavelength of the neutrons.

2.8 Atoms of an unknown element are deposited onto a perfectly planar crystal sur-
face and are to be studied using a scanning tunneling microscope. The microscope
employs a tungsten needle tip. What is the minimum size of the unknown atoms (r,),
and how far apart must they be spaced, in order that they can be distinguished (take
e.g. the criterion that the minimum measureable height 44 = 30% of the W atomic
diameter)?

Hint: Use a geometric sphere model, in which the radius of the W atom at the tip is
0.16 nm.



