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Foreword

What is solid state physics about? Take all the fundamentals of physics, including
classical and quantum mechanics, electromagnetism, thermodynamics and statisti-
cal physics, and put them all together to study a piece of matter. Most physicists
worldwide work in this field, largely interdisciplinary, overlapping with chemistry,
engineering, biology and medicine. Sensors, solar panels, batteries, light emitting
diodes, flat displays, touch screens, computer devices, optical fibers, field emitters,
high performance coolers; these are all examples of technologies resulting from
solid state physics applications. Cyber-physical systems in the 4.0 industry,
internet-of-things (IoT), lab-on-a-chip; all rely on the applications of solid state
systems.

Merging together all the fundamentals of physics into a piece of matter sounds
beautiful, but it also sounds very complicated! The concepts and mathematical
machinery that are needed to understand the main electrical, magnetic, thermal and
optical properties of materials have to be in place. It is necessary to draw con-
nections from the quantum mechanics to the physical properties of matter; from
continuity relations to transport phenomena; from the Maxwell equations to optical
observables. To achieve such an endeavor, a researcher needs a textbook that was
tailored towards the best learning experience. And this is exactly what has been
delivered by this book.

Solid State Properties—from bulk to nano was built based on the class notes
of the MIT Professors Mildred Spiewak Dresselhaus and Gene Dresselhaus, with
the contribution of many of their students and post-doctoral fellows, over decades.
Professors Mildred and Gene Dresselhaus had the unique view of those who pio-
neered many discoveries on materials science, and followed the processes from the
discovery of the basic concepts up to applications. One example was the study and
development of graphite intercalated compounds in the 1970s, a material that is
today the basis of chargeable cell phone and electric car batteries, and it keeps
improving grateful to nanotechnology. Professors Stephen B. Cronin and Antonio
Gomes Souza Filho were former students of Profs. Dresselhaus, and today they
hold worldwide recognition in the fields of transport and optics of nanostructures.
Because I had the experience of working with Profs. Dresselhaus on a similar
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project, the publication of their group theory class notes, I understand the important
role played by Profs. Cronin and Souza Filho on transforming class notes into a
self-contained textbook, working under the high standards of Professors Mildred
and Gene Dresselhaus.

When travelling from bulk to nano, the book provides a sharp cut on the modern
view of solid state science. It shows how the basic concepts that were introduced in
the physics of bulk materials over the last century are developing while nanoscience
and nanotechnology are taking place. This overview makes the reader capable not
only of understanding the present materials science, but most importantly, the
reader is able to evaluate the limitations of the modern concepts, to go beyond the
well-established knowledge. Solid State Properties—from bulk to nano is the
textbook for those who want to understand modern scientific papers related to novel
materials properties, and for those who want to work and have an impact in the
field.

Belo Horizonte
April 2017

Ado Jorio

vi Foreword



Preface

We had the great pleasure and honor of having Mildred (Millie) Dresselhaus serve
as our Ph.D. advisor. She taught us more than we could ever express in words, and
she was patient as we worked to learn the material now contained in this book.
Several years ago, when we approached Millie about publishing her class notes, we
thought this would be an easy task since her husband Gene Dresselhaus had already
formatted those notes beautifully in LaTex. But Millie, as in all her work, had very
high standards and insisted that we update it to include new low-dimensional
materials that would be of particular interest to present-day students. As a result,
revisions went on for two and a half years. We were just completing the final
checking of the textbook when Millie passed away on February 20, 2017. Despite
her age, this news came as a shock because she had been working actively up until
two weeks before her death. In fact, we were actually having trouble keeping up
with her. We were deeply saddened to hear the news of her sudden passing. We had
lost a great scientist, mentor, advisor, and friend.

This book is based on an introductory solid state physics class (MIT course
number 6.732) that Millie started teaching in the mid-1970s and continued teaching
and revising until 2005. Continuing in Millie’s footsteps, we have taught a version
of the course at the University of Southern California since 2007 as have several of
her other former students and postdocs, including Ado Jorio at the Universidade
Federal de Minas Gerais (Brazil) and Antonio Gomes Souza Filho at the
Universidade Federal do Ceará (Brazil). For us, as for many of Millie’s former
students, this course was the single most important class that shaped our academic
career.

Solid State Properties: From Bulk to Nano fills a gap between many of the basic
solid state physics and materials science books that are currently available. It is
written for a mixed audience of electrical engineering and applied physics students
who have some knowledge of elementary undergraduate quantum mechanics and
statistical mechanics. This book is organized into three parts: (I) Electronic
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Structure, (II) Transport Properties, and (III) Optical Properties. Each topic is
explained in the context of bulk materials and then extended to low-dimensional
materials where applicable. The chapters end with homework problems to provide
students an opportunity to engage with the material more intimately.

As we were finishing the book, Millie expressed her appreciation for the many
former students who contributed to its development. Millie wrote: “For me, it was
former students who took an old version of my introductory solid state course
starting in the 1970s and continuing through decades of different students coming
from different countries around the world with different interests and needs. Over
my (45 years) active classroom teaching career (from the 1960s to 2005), I enjoyed
being in the classroom, learning with the many students I had the opportunity to
work with.” This was a genuine trait of Millie while at the top of her field to think
of herself as learning along with her students.

We are extremely grateful to all graduate students in Prof. Cronin’s group at
USC who from 2011 to 2017 worked diligently creating figures, implementing
changes in LaTex, and checking sources in the literature. Without their massive
effort, the publication of this book would not have been possible.

It has been a tremendous honor to have played a role in publishing this book. We
hope that, because of Millie’s diligence and expertise, it will continue to teach and
inspire another generation of scientists and engineers.

Los Angeles, CA, USA Stephen B. Cronin
March 2017 Professor of Electrical Engineering

Physics, and Chemistry
University of Southern California

Fortaleza, Brazil Antonio Gomes Souza Filho
March 2017 Professor of Physics, Universidade

Federal do Ceará
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In Memory Of

Mildred Dresselhaus (1930–2017), also known as Queen of Carbon, had an illus-
trious career that spanned six decades. She was the first female Professor to receive
full tenure at the Massachusetts Institute of Technology in 1968. She published
more than 1700 scientific papers, co-wrote eight books and received various awards
and accolades for her contributions to science and technology during the course of
her life. She was awarded the National Medal of Science in 1990, the 11th Annual
Heinz Award in 2005, the Oersted Medal in 2008, and the Kavli Prize in 2012. She
was also co-recipient of the Enrico Fermi Award in 2012. She received the
Presidential Medal of Freedom from President Obama in 2012. Mildred
Dresselhaus served as the director of the Office of Science at the US Department of

Photograph courtesy of Micheline Pelletier taken for Millie’s L’Oreal/UNESCO Women in
Science Prize 2007
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Energy from 2000 to 2001 and as a chair of the governing board of the American
Institute of Physics from 2003 to 2008. She was also the president of American
Physical Society, the first female president of the American Association for the
Advancement of Science, and the treasurer of the National Academy of Sciences.

Every morning, Millie would leave her house by 5:30 AM, and her car was
always the first car in the parking lot at MIT. As a Ph.D. student, she studied under
Enrico Fermi at the University of Chicago. He too was an early riser, and, since he
lived nearby, they had plenty of time to discuss science as they walked to school
together. Millie often spoke of those conversations and their influence on her
studies in that challenging academic program. It was at Chicago that she met her
future husband Gene Dresselhaus, and in 1960, they were both hired by MIT
Lincoln Laboratory. One of the main reasons Millie decided to study carbon was
that it was relatively unpopular. She wanted to work on a project that most people
thought was hard and not that interesting, so that it would be okay if she had to stay
home with a sick child. As an icon for women in science and a strong advocate for
women in STEM, she worked tirelessly to expand opportunities for women in
science.

x In Memory Of
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Chapter 1
Crystal Lattices in Real and Reciprocal Space

1.1 Introduction

In describing the physical properties of solids, it is important to discuss periodicity
of the lattice structures. Many of the properties we commonly discuss for solids
are obtained by using the model of a perfect periodic lattice. Some examples of
periodic lattices occur in one dimension (1D), two dimensions (2D) and in three
dimensions (3D), as discussed in the next sections. In practice, it is very hard to
find a solid which is perfectly crystalline, that is, without any defects or impurities.
Most of the crystalline solids in reality are composed of small crystals, and grain
boundaries also break the periodicity of the lattice. Suchdefects are very important for
nanocrystals, because such systems are very small and are on the nanometer (nm)
scale. The degree of disorder and density of defects are of great interest because
defects provide interesting materials properties. The role of point defects, edges and
grain boundarieswill be treatedwhendiscussing electronic, optical andothermaterial
properties. There are some solids whose atomic structure is highly disordered and
they are called amorphous solids, which are characterized by the absence of any long
range order. However, some short range order between the atoms may still exist.
Quasi-periodicity also exists in solid materials, being a special kind of symmetry
exhibited by the so called quasi-crystals, but we do not discuss such materials in this
book.

In this chapter, we focus on introducing the fundamental concepts of periodic
solids, discussing periodic lattices in real and reciprocal space.We start the discussion
by considering the structural arrangement of the atoms and their ordering in a three
dimensional (3D) periodic structure. Afterwards, we describe the periodic lattices in
reciprocal space. In many cases it is also of interest and convenience to introduce
reciprocal space (or momentum space) where the length scale is measured in wave
vectors discussed in Sect. 1.3. It is typically more convenient mathematically to
use reciprocal space (kx , ky , kz) rather than real space (x, y, z) for calculating the
physical properties of crystalline solids. We also introduce the Brillouin zone in this
chapter and give some examples of the Brillouin zone for cubic and two dimensional
(2D) hexagonal lattices, including atom counting in unit cells in both real space and
reciprocal space.

© Springer-Verlag GmbH Germany, DE 2018
M. Dresselhaus et al., Solid State Properties, Graduate Texts in Physics,
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1.2 Crystalline Lattices: Real Space

1.2.1 Bravais Lattices

In crystalline solids, atoms (or groups of atoms) are arranged in uniform periodic
arrays called lattices. We start by describing these lattices by their abstract geometric
considerations, not specific to any material. A three-dimensional Bravais lattice is
defined as the set of all points R given by the vector

R = n1a1 + n2a2 + n3a3 (1.1)

where a1, a2, and a3 are any three vectors not all in the same plane, and n1, n2, and n3
are integers of all± values including 0. The three vectors ai are called primitive basis
vectors that generate the entire lattice, which extends to infinity in all three directions.
Figures1.1a and 1.2b show examples of 2D and 3D Bravais lattices, which satisfy
the definition given by (1.1). It is important to note that the primitive basis vectors for
a given Bravais lattice are not unique. This is illustrated in Fig. 1.1c, where several
possible pairs of primitive basis vectors are drawn for a 2D Bravais lattice.

Fig. 1.1 a and c Examples of several 2D (two dimensional) lattices indicating several possible sets
of primitive basis vectors. b A 3D cubic Bravais lattices
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1.2.2 Unit Cells

A unit cell is a volume of space that fills all (3D) space when translated by the vectors
of the periodic Bravais lattice vector R. The primitive unit cell has the minimum
volume that, when translated by all the vectors in the Bravais lattice, fills all of
space without unit cell overlapping with another, and without leaving any voids. A
primitive unit cell must contain one lattice point. However, in a crystalline solid,
there can be one or more atoms per lattice site and one or more atoms per unit cell.
As with primitive basis vectors, primitive unit cells are not unique. By far, the most
common primitive unit cell is the Wigner–Seitz cell, which is constructed by first
drawing lines connecting a lattice point to all neighboring points in the lattice and
then bisecting each line with a plane normal to this line, as illustrated in Fig. 1.2a. The
smallest polyhedron bound by these planes is the Wigner–Seitz unit cell. Figure1.2b
shows the Wigner–Seitz unit cell for a body centered cubic Bravais lattice, where
square and hexagonal faces are seen.

Two-dimensional Bravais lattices are classified into 5 lattice types, based on their
symmetry considerations, as listed in Fig. 1.3. The most general lowest symmetry
lattice is the oblique lattice, which is invariant only under rotation of π . There are
four special lattice types that are invariant under various other rotations and reflection
symmetry operators. The restrictions on the unit cell axes and angles for these special
lattice types are listed in Fig. 1.3.Monolayeredmaterials, such as graphene and boron
nitride, would be described by such structures. Such monolayered structures can be
large and have very many unit cells (quasi-infinite) or they can be of finite size, or
they can be ribbons with a nanoscale width and a long length.

In three dimensions, there are 14 Bravais lattices, again classified by their symme-
try considerations, as listed in Table1.1. Here, the triclinic lattice is the most general,
and there are 13 more special lattice types. In Table1.1, these are grouped into seven
types of unit cell symmetry categories according to the restrictions on the unit cell
axes and angles for each of these 3D Bravais lattice types. For example, there are
3 cubic lattices, which include simple cubic (SC), body centered cubic (BCC), and
face centered cubic (FCC).

Fig. 1.2 The Wigner–Seitz unit cell for a a 2D and for b a 3D Bravais lattice



6 1 Crystal Lattices in Real and Reciprocal Space

Fig. 1.3 General 3-dimensional unit cell and 5 types of two-dimensional Bravais Lattices in two
dimensions

Table 1.1 Restrictions on cell axes and angles for the 14 types of Bravais Lattices in three dimen-
sions. These 14 lattice types are distributed among the 7 crystal systems, and each lattice type is
indicated by a symbol, which denotes the following 7 crystal systems P = primitive, C = centered,
I = inversion symmetry, F = face centered, and R = rhombohedral

Crystal system Number of lattices (symbol) Restrictions on cell axes and
angles

Triclinic 1 (P) a1 �= a2 �= a3
α �= β �= γ

Monoclinic 2 (P, C) a1 �= a2 �= a3
α �= γ , β = 90◦

Orthorhombic 4 (P, C, I, F) a1 �= a2 �= a3
α = β = γ = 90◦

Tetragonal 2 (P, I) a1 = a2 �= a3
α = β = γ = 90◦

Cubic 3 (P, I, F) a1 = a2 = a3
α = β = γ = 90◦

Trigonal 1 (R) a1 = a2 = a3
α = β = γ ≤ 120◦, �= 90◦

Hexagonal 1 (P) a1 = a2 �= a3
α = β = 90◦, γ = 120◦

1.3 Lattices in Reciprocal Space

1.3.1 Crystal Planes and Miller Indices

The orientation of lattice planes in a crystal are typically specified by their Miller
indices, which are determined by taking the reciprocal of the intercept of the three
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Fig. 1.4 General lattice plane intercepting the x , y, and z axes at pa1, qa2, and sa3, respectively.
The Miller indices (hkl) are obtained by multiplying the reciprocal of these intercepts (1/p, 1/q,
1/s) by their lowest common denominator as shown in the figure

Fig. 1.5 Three lattice planes in a simple cubic lattice: a (100) plane, b (110) plane, and c (111)
plane

vectors x, y, z with the planes shown in Fig. 1.4. This figure illustrates this general
scheme in three dimensions with intercepts at integers p, q, and s. To describe the
plane, we write the reciprocal of these intercepts as, (1/p, 1/q, 1/s), and we then
multiply these numbers by their lowest common denominators to obtain a set of
integers (hkl). We refer to these three numbers h, k, and l as the Miller indices.
Figure1.5 shows the lattice planes in a simple cubic lattice for the high symmetry
(100), (110), and (111) planes, which are also labelled by their (hkl) indices.

1.3.2 Reciprocal Lattice Vectors

The reciprocal space lattice is defined by the set of all wavevectorsK that yield plane
waves (eik·r) with the periodicity of the real space lattice, denoted by the real space
lattice vectors R. Mathematically, this can be written for any r as
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eiK·(R+r) = eiK·r (1.2)

or

eiK·R = 1 (1.3)

for all R in the real space lattice shown in Fig. 1.5. This leads to the general relation

K · R = 2πN , (1.4)

where N is any integer. Given a particular Bravais lattice with primitive vectors a1,
a2, and a3, as in Fig. 1.4, we can construct the corresponding reciprocal space lattice
using the reciprocal space vectors (b1,b2,b3) defined as.

b1 = 2π
a2 × a3

a1 · (a2 × a3)
,b2 = 2π

a3 × a1
a2 · (a3 × a1)

,b3 = 2π
a1 × a2

a3 · (a1 × a2)
. (1.5)

These three vectors define a reciprocal lattice of the general form

K = k1b1 + k2b2 + k3b3 (1.6)

where ki are integers, such that the productK · R = 2πN as given by (1.4), and (1.6),
as shown by the lattice plane in Fig. 1.5 and specified by miller indices in Fig. 1.4.

1.4 The Brillouin Zone

The Brillouin zone is the Wigner–Seitz primitive cell of the reciprocal lattice. While
the terms, the Brillouin zone and Wigner–Seitz unit cell both refer to the same
geometrical construction, the Wigner–Seitz cell is typically reserved for describing
real space lattices and the Brillouin zone is reserved for reciprocal space lattices. The
Brillouin zone is particularly important in calculating and discussing the band theory
of solids, which will be discussed in the following chapters. We now give examples
of unit cells in real space and reciprocal space of materials that we use throughout
the book for explaining concepts and for practical device applications in this book
and generally.

1.4.1 Graphene and Boron Nitride

Figure1.6 shows the real space and reciprocal space lattices for the 2D hexagonal
lattice of graphene and Boron Nitride (BN). The vectors ai and bi are the real space
and corresponding reciprocal space unit vectors, respectively. In the x, y coordinate
system, these basis vectors can be written as
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Fig. 1.6 Real space lattice for a hexagonal monolayer of a graphene and b boron nitride. c The
reciprocal space lattice for a 2D hexagonal lattices generally. The shaded hexagon in a is the
Wigner–Seitz unit cell in real space and in c is the corresponding Brillouin zone in reciprocal space

a1 =
(√

3

2
a,

a

2

)
, a2 =

(√
3

2
a,−a

2

)
, (1.7)

where a = 1.42Å, which is the nearest neighbor distance in graphene, for which
the graphene unit cell has two carbon atoms. Closely related to this nearest neighbor
distance are the magnitude of the lattice vectors |a1| = |a2| = 1.42 × √

3Å. The
corresponding reciprocal lattice vectors are given by

b1 =
(

2π√
3a

,
2π

a

)
,b2 =

(
2π√
3a

,−2π

a

)
, (1.8)

and have for graphene a magnitude of 2π/1.42
√
3Å−1, as shown in Fig. 2.6.

The shaded hexagons in Fig. 1.6a, b indicate the graphene (Fig. 1.6a) and boron
nitride (Fig. 1.6b) Wigner–Seitz unit cell, while the shaded hexagon in Fig. 1.6c
depicts the Brillouin zone for these hexagonal lattices. These 2D crystal have two
crystallographically equivalent atoms per unit cell labeled A and B, which are the
same chemical element (Carbon) for graphene, but are different for BN, where the
atomic species are Boron and Nitrogen. This difference in the chemical species
has a profound consequences on the electronic properties leading graphene to be a
semimetal and BN to be an insulator. Notice that the reciprocal space Brillouin zone
is rotated by 30◦ or equivalently by 90◦ from the real space Wigner–Seitz unit cell.
We will use graphene as a model 2D material throughout this book to demonstrate
its unique physical and chemical properties.

1.4.2 Diamond and Zinc Blende Lattices

The diamond crystal structure (or related zinc blende structure) are two crystal struc-
tures found in many semiconducting and insulating materials. For example, silicon

http://dx.doi.org/10.1007/978-3-662-55922-2_2
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Fig. 1.7 Conventional cubic cell of a a diamond lattice and b a zinc blende lattice, highlighting
that all atoms are the same in a but different in b

and germanium crystallize in the diamond structure (see Fig. 1.7a), while many III–V
compound semiconductors, such as GaAs and InSb, crystallize in the zinc blende
structure (see Fig. 1.7b). Both of these lattice structures consist of two interpenetrat-
ing FCC lattices displaced from one another along the body diagonal by one quarter
of the diagonal length (a/4, a/4, a/4), as shown in Fig. 1.7a, b. That is, the underly-
ing lattice structure is FCC with two atoms per lattice unit cell, one at (0, 0, 0) and
one at (1/4, 1/4, 1/4). For the diamond lattice, the two atoms are both of the same
atomic species (see Fig. 1.7a), while in the zincblende structure (Fig. 1.7b), every
other atomic site is occupied by a different kind of ion (e.g., Ga and As). The four
nearest neighbor bonds have been drawn in the figure and they form a tetrahedral
structure, whereby each black atom has a nearest neighbor gray atom and vice-versa.

The primitive translation vectors of the real space FCC lattice can be written as

a1 = 1

2
a(ŷ + ẑ); a2 = 1

2
a(ẑ + x̂); a3 = 1

2
a(x̂ + ŷ). (1.9)

It follows that the corresponding primitive translation vectors of the reciprocal lattice
are given by

b1 = 2π

a
(−x̂ + ŷ + ẑ); b2 = 2π

a
(x̂ − ŷ + ẑ); b3 = 2π

a
(x̂ + ŷ − ẑ). (1.10)

The shortest eight translation vectors in the reciprocal lattice are given by

K = 2π

a
(±x̂ ± ŷ ± ẑ). (1.11)

From this, we can show that the reciprocal space lattice, thereby, forms a BCC
lattice. That is, the BCC lattice is the reciprocal to the FCC lattice, and vice versa.
The Brillouin zone for the FCC lattice results in a truncated octahedron, as shown
in Fig. 1.8. In this structure, the hexagonal faces bisect the lines joining the central
point to the points on the vertices. The square faces bisect lines joining the central
point to the central points in neighboring cubic cells.
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Fig. 1.8 Brillouin zone of a
face centered cubic lattice
(FCC)

Problems

1.1 Draw the Wigner–Seitz cell for:

(a) a 2D rectangular lattice.
(b) a 2D hexagonal lattice.

1.2 Consider a 2D rectangular lattice with a1 > a2.

(a) Write an expression for the set of real space lattice vectors R.
(b) Draw the real space lattice with the Wigner–Seitz unit cell.
(c) Write an expression for the set of reciprocal space lattice vectors G, in terms of

the magnitudes of the real space lattice vectors |a1| and |a2|.
(d) Draw the reciprocal space lattice with the Wigner–Seitz unit cell.

1.3 Repeat Problem1.2 for a 2D hexagonal lattice.

1.4 GaAs has the zinc blende crystal structure. It has a lattice constant of 0.565nm.
Determine the number of Ga and As atoms per cm3 in the material.

1.5 Ge has the diamond crystal structure and has the same lattice constant as GaAs.

(a) Determine the number of Ge atoms per cm3.
(b) What is the distance (center to center) between nearest Ge atoms?
(c) What is the number density of Ge atoms?
(d) What is the mass density (grams/cm3) of crystalline Ge?

1.6 Amaterial consists of two atoms, A and B, that have effective radii, 0.21nm and
0.18nm, respectively. The lattice of the material has the BCC structure with atom A
at the corners and atom B in the center of the cube. Assuming that the atoms are hard
spheres and that the crystal structure is formed when the atoms that can touch one
another are indeed touching, what is the lattice constant and the volume densities of
atoms A and B.

(a) If the crystal is formed with atoms B at the corners and atom A at the center,
what is the lattice constant and what are the atom densities of atoms A and B?
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(b) When the smaller atoms touch, what is the size of the largest ball that fits along
the body diagonal?

1.7 Consider the (100), (110), and (111) planes of Si. Which plane has the highest
surface density of atoms? Which has the smallest surface density? What are those
two densities?

1.8 Consider the three dimensional simple cubic lattice with a lattice constant a0.

(a) Sketch the following planes: (100), (130), (230).
(b) Sketch the following directions in the lattice: [110], [311], [123].
(c) What is the distance between nearest (111) planes?

1.9 Determine the angle between tetrahedral bonds in Si. These angles are the same
as the body diagonals of a cube. (Hint: use the law of cosines to find the angle.)

1.10 Show that the face centered cubic lattice is the reciprocal to the body centered
cubic lattice.

1.11 Find the reciprocal lattice to an orthorhombic lattice with a1 > a2 > a3 and
α = β = γ = 90◦.

1.12 Consider the two-dimensional simple triangular lattice for a free electronmetal
with two electrons/atom.

(a) Assuming a lattice constant of a, find the areas of the electron and hole pockets
that are formed in the second and first Brillouin zones, respectively.

(b) Find the shapes of the electron and hole Fermi surfaces in the reduced Brillouin
zone, obtained through translation by a reciprocal lattice vector.



Chapter 2
Electronic Properties of Solids

2.1 Introduction

In this chapter we present some methods that are employed in performing electronic
structure calculations. We start by presenting a general quantum mechanical frame-
work to describe a molecule or a solid. We then introduce the Born–Oppenheimer
approximation (also called the adiabatic approximation), which allows us to reduce
the problem to its corresponding electronic part. In the following, we introduce the
independent-electron approximation and the main methods commonly used to solve
the electronic problem.

2.2 Hamiltonian of the System

The system Hamiltonian is the starting point for calculating the electronic structure
of molecules and solids. The Hamiltonian can be generally written as: Martin 2004

Ĥ = − �
2

2me

∑

i

∇2
i − 1

4πε0

∑

i

∑

I

Z I e2

|ri − RI | + 1

8πε0

∑

i

∑

j �=i

e2

|ri − r j |

−
∑

I

�
2

2MI
∇2

I + 1

8πε0

∑

I

∑

J �=I

Z I Z J e2

|RI − RJ | (2.1)

where i, j label the electrons and I, J label the related atomic nuclei. The quantities
MI , ZI and RI are, respectively, the mass, the atomic number, and the position of
nucleus I . The electron charge and mass are, respectively, written as −e and me,
and ri represents the position of the electron i . The first three terms in (2.1) account,
respectively, for the kinetic energy of the electrons, the electron-nucleon Coulomb
interaction, and the electron-electron Coulomb interaction. The fourth term describes
the kinetic energy of the nuclei and the last term is the nucleon-nucleon Coulomb
interaction.

An important aspect of this problem is the fact that the nuclei are much more mas-
sive than the electrons. This makes the kinetic energy of the nuclei small compared

© Springer-Verlag GmbH Germany, DE 2018
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to the other contributions to the Hamiltonian in (2.1). This allows us to decou-
ple the nuclear and electronic contributions to (2.1) and to work on them sepa-
rately. This constitutes a practical and useful simplification which makes both the
structural optimization and electronic structure calculations easier to perform, but
still provides sufficient accuracy for many physical problems. This is the so-called
Born–Oppenheimer (BO)Martin 2004 or adiabatic approximation, which is a useful
approximation formany purposes, such as for the calculation of the vibrationalmodes
in solids. We should point out that the limitation of the BO approximation has been
recently discussed for graphene and carbon nanotubes. A widely used approach is to
consider the energy from the remaining electronic problem as an extra term added to
the ion-ion interaction and to perform a subsequent geometrical optimization based
on this effective interatomic potential. By considering the BO approximation, the
problem is reduced to the electronic Hamiltonian Ĥe given by:

Ĥe = − �
2

2me

∑

i

∇2
i − 1

4πε0

∑

i

∑

I

Z I e2

|ri − RI | + 1

8πε0

∑

i

∑

j �=i

e2

|ri − r j | (2.2)

where the atomic positions entered as parameters.

2.3 The Electronic Problem

By considering theBO approximation, the electronic problem is simplified compared
to the initial problem. However, it is still not easy to solve this problem within the
BO approximation. A set of widely used strategies employs the independent-electron
approximation. This mean-field approximation consists of defining one-electron
wavefunctions that can be obtained from a one-electron Schrödinger equation. This
is a significant simplification but gives very satisfactory results for many interest-
ing physical systems and is used in most theoretical calculations of the electronic
structure of molecules and solid state materials.

2.3.1 The Hartree Method

Hartree was a pioneer in developing the first quantitative electronic calculations
for multi-electron systems (Hartree 1928). The Hartree method starts with the one
electron equation which is written as:

ĤHTψσ
i (r) = − �

2

2me
∇2ψσ

i (r) + VHTψσ
i (r) = εσ

i ψσ
i (r) (2.3)
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whereσ represents the spin and VHT is an effectiveHartree potential for each electron
in the presence of the others. A different potential is defined for each electron in order
to avoid self-interaction of the electron with itself. In order to obtain the ground state
of the system, one fills the electronic states starting from the lowest energy levels,
though always obeying the Pauli exclusion principle. (see Slater 1930)

2.3.2 Hartree–Fock (HF) Method

In 1930, Fock expanded Hartree’s method by using an anti-symmetric wavefunction
in terms of a Slater determinant written using one-electron Schrödinger wavefunc-
tions. (see Fock 1930) The one-electron equations are then obtained by finding the
corresponding wavefunctions that minimize the total energy obtained as the expecta-
tion energy εσ

i for the full Hamiltonian. This process yields the following equations:

ĤHFψσ
i (r) =

[
− �

2

2me
∇2 + Vext (r) + VHT (r) + Vxc(r)

]
ψσ
i (r)

= εσ
i ψσ

i (r) (2.4)

in which Vext is the external potential, VHT is the Hartree potential and Vxc is the
exchange potential. VHT and Vxc are written as:

VHT (r) = e2

4πε0

∑

j,σ j

∫
dr′ ψ

σ j∗
j (r′)ψσ j

j (r′)
|r − r′| (2.5)

Vxc(r) = − e2

4πε0

∑

j

∫
dr′ ψ

σ∗
j (r′)ψσ

i (r′)
|r − r′|

ψσ
j (r)

ψσ
i (r)

. (2.6)

Note that, unlike the original Hartree approach, the mean Coulomb interaction in the
Hartree–Fock approach VHT includes a self-interaction contribution. The additional
exchange term Vxc, which does not have a classical analogue, also contains such
a self-interaction energy, but with an opposite sign so that the final result does not
depend on self-interactions. The presence of the exchange potential Vxc is the main
difference between the HF and the Hartree approaches. (see Fock 1930)

Themeaning of the exchange term Vxc(r) is not easy to understand at first because
there is no classical analog. The physics behind it relies on the foundations of the
independent electron approximation. Without considering any approximation, the
solution for the electronic problem consists of a multi-electron wavefunction Ψ ,
which is a function of the coordinates for all the electrons ri , i = 1, 2, 3, . . . , N .
Since the electrons are Fermions, they should obey Pauli’s exclusion principle which
is reflected by the fact that the electronic wavefunction has to be anti-symmetric with
respect to any permutation involving the positions of any two electrons i and j , such
that:
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Ψ (r1, r2, . . . , ri , . . . , r j , . . . , rN−1, rN ) = −Ψ (r1, r2, . . . , r j , . . . , ri , . . . , rN−1, rN ). (2.7)

In addition, we expect thewavefunctionΨ dependence on the different ri coordinates
to be correlated in a more general way, so that the behavior ofΨ relative to a given ri
depends on the values of the r j with j �= i . However, when we use the independent
electron approximation, we are restricting Ψ to have the form given by a Slater
determinant. (see Slater 1929) By doing that, we are intrinsically losing information
which can be directly associated with the electronic correlation. While the Hartree
potential, in both the Hartree and HF approaches, represents the interaction of any
electron with the system’s electronic cloud, the correlation between electrons is
related to the specific interaction of a given electron with any single electron in the
system. This is not a simple problem to solve and accounting for this correlation is a
central problem in the electronic structure research field. The HF method, however,
is a first step in this direction because the exchange potential Vxc in (2.6) represents
two aspects of such a correlation:

1. Self-interaction contributions are removed;
2. Short range interactions related to the Pauli’s exclusion principle are

accounted for.

As can be seen from (2.6), Vxc lowers the energy and Vxc can be interpreted
as the interaction of the electron with an agent usually referred to as an “exchange
hole”.According to the expression for the exchange potential, this positive “exchange
charge density” is determined by the electronic density (which is a sum over the j
states) surrounding the electron i , and Vext favors a ferromagnetic ordering of the
electronic spins, since this interaction involves only electrons with the same spin.
This is a consequence of Hund’s rule which states that as the number of electrons
start to fill a set of degenerate atomic states, the electrons will evenly fill the available
states so as to maximize the total spin as much as possible, only starting to occupy
orbitals with opposite spin when there are no available empty states in the first spin
state. Note also that there is no energy lowering associated with two electrons with
the same spin occupying the same electron orbital, since the j = i contribution in
the sum in (2.6) cancels with the corresponding self-interacting term in the sum from
(2.5), constituting a clear manifestation of Pauli’s exclusion principle. (see Pauli
1925)

2.3.3 Density Functional Theory

Not all correlation effects are accounted for by the exchange energy term Vxc which is
added in the HF approach discussed in Sect. 2.3.2. In this regard, the introduction of
Density Functional Theory (DFT) represents an important advancement in the field
of electronic band structure calculations. (see Hohenberg and Kohn 1964) DFT has,
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in fact, become a standard tool for condensed matter physics and is widely accessible
for many applications.

As we will see, DFT allows us to recast the many-electron problem into a set of
one-electron Schrödinger-like equations. However, in contrast to the Hartree and HF
approaches, the DFT approach is a more complete theory but its practical imple-
mentation demands other approximations to be made. The electronic density n(r) is
the main parameter in DFT and its key role can be understood in terms of the two
Hohenberg–Kohn theorems given below, which constitute the basis of DFT: (see
Hohenberg and Kohn 1964)

1st Theorem: If a system of interacting electrons is immersed in an external
potential Vext , this potential is uniquely determined (except by a constant) by
the electronic density n0 of the ground state (GS).
2nd Theorem: Let E[n] be the functional for the energy relative to the electronic
density n(r) for a given Vext (r). Then this functional has its global minimum
(GS energy) for the exact electronic density n0(r) corresponding to the ground
state.

The first theorem states that all the system properties are determined by the elec-
tronic density for the ground state since n0 determines Vext , which determines the
Hamiltonian, which in turn defines the ground state and all the excited states. Also,
we can use the energy functional E[n] (see (2.8) where this functional is written
as Eel[n]) to determine the exact ground state energy and density. It is important
to note, however, that DFT is not only a ground state theory, but instead gives the
system’s Hamiltonian which is, in principle, all we need to obtain the ground state
and all the excited states. However, the ground state can be obtained in a systematic
way within DFT. The energy functional EHK [n] in the Hohenberg–Kohn approach
is written as:

EHK [n] = T [n] + Eel[n] +
∫

drVext (r)n(r) (2.8)

where T [n] is the kinetic energy functional, Vext is the external potential felt by the
electrons (including the contribution from the nuclei) and the electronic energy Eel [n]
accounts for all the electron-electron interactions.

Despite having the correct tool to obtain the electronic ground state (i.e., the
minimization of E[n] relative to n), it is still not clear how to proceed in using this
tool. The necessary recipe is given by the Kohn–Sham ansatz. (see Kohn and Sham
1965) According to this ansatz, the ground state electronic density of our system can
be written as the ground state of an auxiliary system of non-interacting electrons.
The one-electron wavefunctions ψσ

i for this auxiliary system are determined by
Schrödinger-like equations of the form:
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Ĥσ
auxψ

σ
i (r) = − �

2

2me
∇2ψσ

i (r) + V σψσ
i (r) = εσ

i ψσ
i (r) (2.9)

where σ labels the electron spin. The electronic density n(r) is written as:

n(r) =
∑

σ

N σ∑

i=1

|ψσ
i (r)|2 (2.10)

where the N σ is the total number of electrons in each spin state σ . The corresponding
auxiliary kinetic energy is:

Taux = − �
2

2me

∑

σ

N σ∑

i=1

〈ψσ
i |∇2|ψσ

i 〉 = �
2

2me

∑

σ

N σ∑

i=1

∫
dr|∇ψσ

i (r)|2. (2.11)

The classical Coulomb interaction for the electron-electron repulsion ECI is given
by

ECI [n] = 1

8πε0

∫ ∫
drdr′ n(r)n(r′)

|r − r′| , (2.12)

where the ε0 is the vacuum dielectric permittivity. By summing up these terms, the
expression for the Kohn–Sham energy functional reads:

EKS[n] = Taux [n] +
∫

drVext (r)n(r) + ECI [n] + Exc[n] (2.13)

where Vext is the external potential (including the contribution from the nuclei) and
Exc is the energy functional which accounts for the exchange and all the correlation
effects. If we consider the Hohenberg–Kohn energy EHK = EKS , we have:

Exc[n] = T [n] − Taux [n] + Eel[n] − ECI [n] (2.14)

which indicates that Exc contains the exchange contribution and all the other correla-
tion effects related to both the kinetic energy and the electron-electron interactions.
Here lies the main problem of DFT: we do not know the exact form of Exc. Even
though DFT yields the exact solution for the electronic problem, its practical imple-
mentation requires an approximation regarding the form of the exchange and corre-
lation energy terms. The usual approach is to write this energy as:

Exc[n] =
∫

drn(r)εxc([n], r) (2.15)

where εxc([n], r) is the exchange-correlation energy per electron at the position r
for a given density n(r). The minimization of the energy functional is obtained by
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varying the one-electron wavefunctions ψσ
i and using the Lagrange multipliers εσ

i
corresponding to the normalization constraint 〈ψσ

i |ψσ
i 〉 = 1:

δ
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∑
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∫
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=
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i
+ δEext [n]
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i
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− εσ
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2

2me
∇2ψσ
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δEext [n]
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+ δEHT [n]
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i
− εσ

i ψσ
i = 0 (2.16)

This minimization of the energy functional is carried out so that the electrons obey:

− �
2

2me
∇2ψσ

i (r) +
(
Vext (r) + VHT (r) + εxc(r)

)
ψσ
i = εσ

i ψσ
i . (2.17)

Here the Hartree potential VHT (r) which represents the interaction of any electron
with its surrounding electronic cloud, is given by:

VHT [n] = 1

8πε0

∫
dr′ n(r)

|r − r′| (2.18)

in which Vext and εext are the external potential and exchange-correlation energy
per electron, respectively. Equation (2.17) is the well-known Kohn–Sham equation
for the auxiliary problem. This is the basis for many theoretical calculations of the
electronic structure that have been performed on molecules and solids.

2.4 Plane Wave and Localized Basis Sets

In order to solve Schrödinger’s equation for a molecule or solid, one first has to
choose a basis-set to use for the electronic wavefunctions. In order to obtain precise
results, the first property we expect from a basis set is completeness:

∑

i

|φi 〉〈φi | = 1. (2.19)

It turns out that, in practice, it is never possible to use such a complete set. Plane
waves, for instance, constitute a basis set which is naturally complete, but only as
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long as an infinite number of plane waves are explicitly included. However, in a
numerical implementation, one always has to use a finite discretized set of states
which is a subset of the total plane wave set. In this case, the systematic way to
improve the accuracy of the calculation is to increase the number of functions in the
basis set. Such an improvement is not boundless, since computational resources have
a finite processing capability.

One alternative to planewaves is to use theLinear Combination of Atomic Orbitals
(LCAO) method. Here, the basis consists of functions corresponding to the electronic
states from the isolated atoms. Despite its simplicity, this method yields quite accu-
rate results, and it constitutes the foundation of several computational packages and
studies in the literature. The main advantages of this method are the reduced compu-
tational cost and the easy association of the molecular levels with the atomic orbitals.
One major drawback of this approach is the difficulty in assessing its validity, given
the impossibility to systematically improve the basis set, and to calculate the remain-
ing error.

Let us examine the use of the LCAO by expanding the electronic wavefunctions
from a crystal in terms of a local orbital basis. In such a basis, each orbital basis
function is associated with an atom in the structure. One appropriate choice for these
orbitals are functions centered on the atomic sites. These functions can be written
as:

φ j (r − R) = φα(r − rP − R) = φR
n j l jm j

(ρ) = φR
n j l j (ρ)Yl jm j (ρ̂) (2.20)

where the coordinate ρ is

ρ = r − rP − R (2.21)

and rP is the position of the Pth atom in the crystal unit cell (relative to the origin
of the unit cell), α enumerates the atomic orbitals centered at P , and R is a lattice
vector from the Bravais lattice (which localizes the origin of its corresponding cell).
In this terminology, we define j to represent the (P, α) pair. The l j , m j and n j

in (2.20) represent the angular momentum, its projection on a given axis, and the
number of different functions with the same angular momentum, respectively. Also,
the Yl jm j (ρ̂) functions denote the spherical harmonics, which provide basis functions
for the (l j ,m j ) states. We list the spherical harmonics for l j = 0, 1, 2 below:

Y0,0(θ, φ) = 1

2

√
1

π
(2.22)

Y1,0(θ, φ) = 1

2

√
3

2π
cos θ (2.23)

Y1,±1(θ, φ) = ∓1

2

√
3

2π
e±iφ sin θ (2.24)
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Fig. 2.1 Spherical
harmonics in the Y±

l,|m| form.
These harmonics are used to
describe s- (l=0,m=0); p-
(l=1, m=-1,0,+1) and d-states
(l=2, m=-2,-1,0,+1,+2)

Y2,0(θ, φ) = 1

4

√
5

π
(3 cos2 θ − 1) (2.25)

Y2,±1(θ, φ) = ∓1

2

√
15

2π
e±iφ sin θ cos θ (2.26)

Y2,±2(θ, φ) = 1

4

√
15

2π
e±2iφ sin2 θ. (2.27)

Orbitals withm = 0 are real, while real orbitals for the m �= 0 cases can be obtained
by the following transformation:

Y±
l,|m| = 1

2
(Yl,m ± Yl,−m). (2.28)

Plots for the individual Y±
l,|m| are shown in Fig. 2.1.

It is often more convenient to use the complex e±imφ expressions in actual cal-
culations since this functional form allows us to simplify the calculation of the two-
centered integrals contributing to the Hamiltonian matrix elements as discussed in
the next section.

2.5 Hamiltonian Matrix Elements

TheHamiltonianmatrix elements are written in terms of the localized basis functions
used in the form of angular momentum spherical harmonics in Sect. 2.4:

Hj,l(R′,R′′) =
∫

dr3φ∗
j (r − R′)Ĥφl(r − R′′). (2.29)

In addition, the translational crystal symmetry allows us to write:

Hj,l(R′ − R′′′,R′′ − R′′′) = Hj,l(R′,R′′) (2.30)
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so that the R′ and R′′ dependence of Hj,l(R′,R′′) is determined exclusively by the
difference between lattice vectors R = R′′ −R′. Using this fact, we can refer all the
lattice vectors to a common origin by writing

Hj,l (R
′,R′′) = Hj,l (0,R

′′ − R′) = Hj,l (R) =
∫

dr3φ∗
j (r)Ĥφl (r − R), (2.31)

where the matrix elements only involve the lattice vector to the common origin.
Similarly, the wavefunction overlap terms are given by:

Sj,l(R) =
∫

dr3φ∗
j (r)φl(r − R). (2.32)

The one electron Hamiltonian operator then has the form:

Ĥ = T̂ +
∑

p,R

V (|r − rp − R|) (2.33)

where T̂ is the one-electron kinetic energy operator and V (|r − rp − R|) is the
potential energy decomposed into a sum of spherically symmetric terms centered at
the atoms located at positions rp relative to the unit cell located at R. The kinetic
energy contribution to the Hamiltonian matrix elements can be composed of one- or
two-centered integrals depending on whether or not the orbitals i and j are centered
at the same atom. Since the potential can be viewed as a sum of spherically symmetric
terms, the contributions of the potential to the Hamiltonian matrix element can also
have three-center integrals as well as one- and two-center integrals. We can readily
notice four different types of potential energy contributions:

• One-center: when both orbitals and the potential are centered on the same atom;
• Two-center 1: when the orbitals are centered on different atoms and the potential
is on one of these atoms;

• Two-center 2:when both orbitals are centered on the same atom and the potential
is on another atom;

• Three-center: when both orbitals and the potential are all centered on different
atoms.

The overlap terms are always composed of one- or two-center integrals. The impor-
tant aspects of the integration can be easily addressed for the two-center integrals.
Let Mlm,l ′m ′ be a two-center integral, between two orbitals from different atoms, cor-
responding to the kinetic or potential energy contributions to a Hamiltonian matrix
element or to an overlap matrix element. For simplicity, let us suppose that the line
joining the two centers corresponds to the z-axis. We can then write:

Mlm,l ′m ′ =
∫

f1(ρ1) f2(ρ2)Y
∗
l,m(ρ̂1)Yl ′,m ′(ρ̂2)d

3r (2.34)
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Fig. 2.2 Different two-centered integral schemes for theHamiltonianmatrix elements using a local-
ized basis, and using the following notation: l = 0, 1, 2, 3, . . . denotes respectively s, p, d, f, . . .
and m = 0,±1,±2, . . . denotes respectively σ, π, δ angular momentum states

with

ρ̂i = r − ri
|r − ri | i = 1, 2. (2.35)

The φ dependence from this integral can be isolated so that:

Mlm,l ′m ′ = Mll ′m

2π

∫ 2π

0
e−imφeim

′φdφ = Mll ′mδmm ′ . (2.36)

Equation2.36 represents a significant simplification for the calculation of these angu-
lar momentum terms. The usual nomenclature for such quantities is to denote orbital
quantum number l = 0, 1, 2, 3, . . . by s, p, d, f, . . . and m = 0,±1,±2, . . . by
σ, π, δ, . . .. In Fig. 2.2 we illustrate the different integral schemes for l = 0, 1, 2.

2.6 Bloch Functions

Even with the simplifications introduced in the last section, it is impractical to work
with the Hamiltonian in the simple atomic orbitals representation for a periodic solid.
Instead we take the advantage of the periodicity V(r) of a crystalline lattice. Bloch’s
theorem (see Bloch 1928) indicates that we can write the eigenfunctions φ jk(r) for
electrons in a periodic potential and in a single unit cell as:
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φ jk(r) = N jk

∑

R

eik·Rφ j (r − R) (2.37)

where N jk is a normalization constant. In the case of an infinite crystal, k is a
vector which can assume any value within the first Brillouin Zone (BZ). Within this
approach we redirect our attention from a set of vectors R which extend along the
infinite real space to a set of lattice vectors k in reciprocal space which are contained
within a finite portion (determined by the BZ) of reciprocal space. By utilizing the
periodicity of the crystal in Bloch’s theorem (2.37), it is straightforward to show
that the Hamiltonian elements Hj,l(k) for an electron in a periodic potential can be
written as

Hj,l(k) =
∑

R

eik·RHj,l(R). (2.38)

Analogously, for the overlapmatrix elements Si, j , we can also utilizeBloch’s theorem
to write

Sj,l(k) =
∑

R

eik·RSj,l(R). (2.39)

Now, we can then expand the electronic eigenfunctions ψ in terms of the eigenfunc-
tions φ jk(r) as:

Ψα(r) =
∑

j

c jαφ jk(r). (2.40)

Hence, the Schrödinger equation now reads:

ĤΨα(r) = EαΨα(r) (2.41)

or alternatively, when using the LCAO basis we can write:

∑

j

c jα Ĥφ jk(r) = Eα

∑

j

c jαφ jk(r). (2.42)

If we multiply on the left by φ∗
lk(r) and integrate over space, we end up with:

∑

j

c jα

∫
φ∗
lk(r)Ĥφ jk(r)d3r = Eα

∑

j

c jα

∫
φ∗
lk(r)φ jk(r)d3r (2.43)

∑

j

c jαHl, j (k) =
∑

j

c jαEαSl, j (k) (2.44)
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Hcα = EαScα, (2.45)

where H and S are square matrices with elements Hl, j (k) and Sl, j (k), respectively,
and cα is a column vector with matrix elements c jα . The energy eigenvalues are then
obtained algebraically by the secular equation:

|H − EαS| = 0 (2.46)

where | | denotes the determinant commonly used to solve the eigenvalue problem
explicitly.

A computational procedure is then used to calculate the electronic structure E(k),
where we use a discrete set of vectors ki , i = 1, 2, 3, . . . , N . These k vectors
represent how the electronic states behave as a function of k. Since the Hamiltonian
matrix elements coupling different k vectors are zero, we can write the secular (2.46)
in block diagonal form in terms of the energy levels Ei for the various i eigenvalues
each of which can have degenerate energy levels depending on the symmetry of the
crystal structures. More explicitly

∣∣∣∣∣∣∣∣∣∣∣

H(k1) − EαS(k1) 0 0 . . . 0
0 H(k2) − EαS(k2) 0 . . . 0
0 0 H(k3) − EαS(k3) . . . 0
...

...
...

. . .
...

0 0 0 . . . H(kN ) − EαS(kN )

∣∣∣∣∣∣∣∣∣∣∣

= 0

(2.47)

and such a matrix diagonalization can be broken into smaller sub-blocks:

|H(ki ) − EαS(ki )| = 0, i = 1, 2, 3, . . . , N (2.48)

for each k-point ki , and at high symmetry points the various blocks will show the
appropriate degeneracies satisfying the symmetry requirements of the potential. For
these k-points where degeneracies in energy occur, we select appropriate linear com-
binations of the wave functions which are each orthogonal to one another.

2.7 The Slater–Koster Approach

Felix Bloch introduced the concept of an electronic energy band structure E(k)

and his famous “Bloch’s Theorem” to handle the symmetry of a periodic lattice.
(see Bloch 1928) Later, Jones and co-workers were the first to expand the original s-
symmetry-only approach to take into account a basis of different orbitals. (see Jones et
al. 1934) However, the Tight-Binding (TB) model in the form it is widely used today



26 2 Electronic Properties of Solids

was presented by Slater and Koster. (see Slater and Koster 1954) This is the simplest
model to solve the electronic problem of periodic systems and, despite its simplicity,
it gives excellent results and deep insight into the solid state lattice periodicity and
surface phenomena. In this TB approach, one uses a basis of highly localized atomic
orbitals and considers the Hamiltonianmatrix elements of the system using empirical
parameters that work well for rapid calculations of real materials. (see M. Martin
1970)

The TB parameters are further simplified by discarding three-center-integral con-
tributions to the Hamiltonian martix elements. (see Slater and Koster 1954) We are
then restricted to considering only the one-center and two-center contributions. The
two-center integrals are then simplified using (2.36). However when applying (2.36),
one can argue that the choice for the axis will in general not coincide with the line
joining the atoms. However it is always possible to write the spherical harmonics
relative to the bond line as a linear combinations of the spherical harmonics relative
to the z-axis. Using these transformations we can write the two-center-integral con-
tributions to the Hamiltonian matrix elements as a linear combination of the Mll ′m
terms using (2.36). Slater and Koster came up with expressions for the elements
involving the s, p and d orbitals. (see Slater and Koster 1954) Below we reproduce
these relations for the case of s and p orbitals, using the same notation used in (2.36)
and are described in the caption to Fig. 2.2.

Ms,s = Ms,s,σ (2.49)

Ms,pz = z2Ms,p,σ (2.50)

Mpx ,px = x2Mp,p,σ + (1 − x2)Mp,p,π (2.51)

Mpx ,py = xy(Mp,p,σ − Mp,p,π ). (2.52)

The TB parameters are fitted to reproduce the crystal properties (such as electronic
energy bands or lattice parameters) of a givenmodel system. In addition, one also has
to define a cutoff radius for the distance between the atoms so that the Hamiltonian
matrix elements for the atomic orbitals are zero when the atoms are separated by a
distance larger than the specified cutoff.
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Chapter 3
Weak and Tight Binding Approximations
for Simple Solid State Models

3.1 Introduction

Many of the physical properties of solids are closely related to the electronic energy
dispersion relations E(k) in these materials, and in particular to the behavior of E(k)
within a few electron volts (eV) in energy from the Fermi level E f . Conversely, the
analysis of transport (discussed in Part I) and other physicalmeasurements (discussed
in other parts of this book) provides a great deal of information about E(k). Although
transport measurements do not generally provide the most sensitive tool for studying
E(k), measurements of the electronic conductivity andHall effect are fundamental to
solid state physics because they canbe carried out onnearly allmaterials and therefore
provide a valuable tool for characterizing the carrier density, carrier type and carrier
mobility of materials. To provide the necessary background for the discussion of
transport properties, we give here a brief review of the Energy dispersion relations
E(k) in solids. In this connection, we consider in Chap.3 the two limiting cases
of weak and tight binding, which are useful and simple approximations for giving
physical insights. In Chap.4 we discuss E(k) for real solids including prototype
metals, semiconductors, semimetals and insulators.

3.2 One Electron E(K) in Solids

3.2.1 Weak Binding or the Nearly Free Electron Approximation

The simplest model for discussing the electronic behavior of electrons in solids is the
so called weak binding or nearly free electron approximation. This model is based
on the following four assumptions:
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1. The periodic potential V (r) = V (r + Rn) is sufficiently weak so that the
electrons behave if they were almost free.

2. The effect of a periodic potential on the nearly free electron is treated within
the framework of perturbation theory.

3. The potential V (r) can be an arbitrary periodic potential.
4. This model is appropriate for describing valence electrons in simple metals.

The weak binding approximation has achieved some success in describing the
electronic properties of valence electrons in many simple metals. For the core elec-
trons closest to the nucleus, however, the potential energy is comparable to the kinetic
energy so that core electrons are tightly bound and the weak binding approximation
is not appropriate. If the electrons are, on the other hand, strongly bound to the atomic
nucleus, the tight binding approximation, discussed in Sect. 3.2.2 is appropriate.

In the weak binding approximation, we solve the Schrödinger equation in the
limit of a very weak periodic potential V (r)

H ψ = H0 + V (r) = Eψ. (3.1)

Using time–independent perturbation theory (see AppendixA), we write the energy
E(k) as

E(k) = E (0)(k) + E (1)(k) + E (2)(k) + ... (3.2)

and take the unperturbed (free electron solution) E (0)(k) to correspond to V (r) = 0
so that E (0)(k) is the plane wave, free electron, solution

E (0)(k) = �
2k2

2m
, (3.3)

in which m is the free electron mass. The corresponding normalized eigenfunctions
are the plane wave states

ψ
(0)
k (r) = eik·r

Ω1/2
(3.4)

in which Ω is the volume of the crystal.
The first order correction to the energy E (1)(k) is the diagonal matrix element of

the perturbation potential taken between the unperturbed states:

E (1)(k) 〈ψ(0)
k | V (r) | ψ

(0)
k 〉 = 1

Ω

∫
Ω
e−ik·rV (r)eik·rd3r

1
Ω0

∫
Ω0
V (r)d3r = V (r)

(3.5)

where V (r), denotes the average over the unit cell of the crystal, and the value of V (r)
is independent of k, whereΩ0 is the volume of the unit cell and is independent of the
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choice of the origin of the coordinate system. Thus, in first order perturbation theory,
we merely add a constant energy V (r) to the energy of the free electron parti-
cle energy, and that constant term is exactly the mean potential energy seen by
the electron, averaged over the unit cell. The terms of particular interest arise in
second order perturbation theory and are

E (2)(k) =
′∑

k′

|〈k′|V (r)|k〉|2
E (0)(k) − E (0)(k′)

(3.6)

where the prime over the summation indicates that k′ �= k or more explicitly that
the coupling of wave vectors is second order couple different wave vector. We next
compute the off-diagonal matrix element 〈k′|V (r)|k〉 in (3.6) as follows:

〈k′|V (r)|k〉 = ∫
Ω

ψ
(0)∗
k′ V (r)ψ(0)

k d3r

= 1
Ω

∫
Ω
e−i(k′−k) · r V (r)d3r

= 1
Ω

∫
Ω
eiq·rV (r)d3r

(3.7)

where q is the difference wave vector q = k − k′ and the integration is over the
whole crystal. We now exploit the periodicity of the potential V (r). Let r = r ′ +Rn

where r ′ is an arbitrary vector in a unit cell and Rn is a periodic lattice vector. Then
because of the periodicity V (r) = V (r ′)

〈k′|V (r)|k〉 = 1

Ω

∑

n

∫

Ω0

eiq·(r′+Rn)V (r ′)d3r ′ (3.8)

where the sum is over all unit cells and the integration is over the volume Ω0 of one
unit cell. Then

〈k′|V (r)|k〉 = 1

Ω

∑

n

eiq·Rn

∫

Ω0

eiq·r′V (r ′)d3r ′. (3.9)

Writing the following expressions for the lattice vectors Rn and for the difference
wave vectors q

Rn = ∑3
j=1 n ja j

q = ∑3
j=1 α jb j

(3.10)

where n j is an integer, and a j and b j are unit vectors in real and reciprocal space,
respectively. The lattice sum

∑
n e

iq·Rn can then be carried out exactly to yield
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∑

n

eiq·Rn =
⎡

⎣
3∏

j=1

1 − e2π i N jα j

1 − e2π iα j

⎤

⎦ (3.11)

where N = N1N2N3 is the total number of unit cells in the crystal and α j is a real
number. This sum generally fluctuates wildly as q varies but averages to zero. The
total sum is appreciable only if

q =
3∑

j=1

m jb j (3.12)

wherem j is an integer and b j is a primitive vector in reciprocal space, so that qmust
be a reciprocal lattice vectorG. Hence, since bj ·Rn = 2πl jn where l jn is an integer,
we can write ∑

n

eiq·Rn = Nδq,G (3.13)

where δ is the Kronecker delta function which vanishes unless q = G.
This discussion shows that thematrix element 〈k′|V (r)|k〉 is only important when

q = G is a reciprocal lattice vector = k−k′ fromwhich we conclude that the periodic
potential V (r) only connects wave vectors k and k′ separated by a reciprocal lattice
vector. We note that this is the same relation that determines the Brillouin zone
boundary. The matrix element 〈k′|V (r)|k〉 is then

〈k′|V (r)|k〉 = N

Ω

∫

Ω0

eiG·r ′
V (r ′)d3r ′δk′−k,G (3.14)

where
N

Ω
= 1

Ω0
(3.15)

and the integration in (3.14) is over the unit cell with a volume Ω0. We introduce
VG, which is the Fourier coefficient of the periodic potential V (r) where

VG = 1

Ω0

∫

Ω0

eiG·r ′
V (r ′)d3r ′ (3.16)

so that
〈k′|V (r)|k〉 = δk−k′,G VG. (3.17)

We can now use this matrix element to calculate the 2nd order change in the energy
based on perturbation theory (see Appendix A)
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E (2)(k) =
∑

G

|VG|2
k2 − (k ′)2

(
2m

�2

)

= 2m

�2

∑

G

|VG|2
k2 − |G + k|2 . (3.18)

We observe that when k2 = |G+k|2, the denominator in (3.18) vanishes and E (2)(k)
can become very large. This condition is identical with the Laue X-ray diffraction
condition. Thus, at a Brillouin zone boundary, the weak perturbing potential can have
a very large effect and therefore non–degenerate perturbation theory will not work
in this case.

For k values near a Brillouin zone boundary, we must then use degenerate per-
turbation theory (see AppendixB). Since the matrix elements coupling the plane
wave states k and k + G do not vanish, first-order degenerate perturbation theory is
sufficient and leads to the determinantal equation coupling two states separated by a
reciprocal lattice vector G.

∣
∣
∣
∣
E (0)(k) + E (1)(k) − E 〈k + G|V (r)|k〉

〈k|V (r)|k + G〉 E (0)(k + G) + E (1)(k + G) − E

∣
∣
∣
∣ = 0 (3.19)

in which

E (0)(k) �
2k2/2m

E (0)(k + G)
[
�
2|k + G|2] /2m

(3.20)

and both

E (1)(k) = 〈k|V (r)|k〉 = V (r) = V0 (3.21)

and

E (1)(k + G) = 〈k + G|V (r)|k + G〉 = V0. (3.22)

are equal to the same constant value V0. Solution of the determinantal equation (3.19)
yields:

[E − V0 − E (0)(k)][E − V0 − E (0)(k + G)] − |VG|2 = 0, (3.23)

or equivalently we can write this in one expanded algebraic form

E2−E[2V0+E (0)(k)+E (0)(k+G)]+[V0+E (0)(k)][V0+E (0)(k+G)]−|VG|2 = 0.
(3.24)

Solution of the quadratic equation (3.24) yields

E± = V0 + 1

2
[E (0)(k) + E (0)(k + G)] ±

√
1

4
[E (0)(k) − E (0)(k + G)]2 + |VG|2

(3.25)
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and we come out with two solutions for the two strongly coupled states. It is of
interest to look at these two solutions in two limiting cases:

Case (i)

|VG| � 1

2
|[E (0)(k) − E (0)(k + G)]|

In the case of small |VG|, we can expand the square root expression in (3.25) for
small |VG| to obtain:

E(k) = V0 + 1
2 [E (0)(k) + E (0)(k + G)]

± 1
2 [E (0)(k) − E (0)(k + G)] · [1 + 2|VG|2

[E (0)(k)−E (0)(k+G)]2 + . . .] (3.26)

which simplifies to the two solutions:

E−(k) = V0 + E (0)(k) + |VG|2
E (0)(k) − E (0)(k + G)

(3.27)

E+(k) = V0 + E (0)(k + G) + |VG|2
E (0)(k + G) − E (0)(k)

(3.28)

and we recover the result in (3.18) obtained before using non–degenerate perturba-
tion theory. This result in (3.18) is valid far from the Brillouin zone boundary, but
near the zone boundary the more complete expression of (3.25) must be used.

Case (ii)

|VG| � 1

2
|[E (0)(k) − E (0)(k + G)]|

Sufficiently close to the Brillouin zone boundary we have large |VG| yielding the
relation:

|E (0)(k) − E (0)(k + G)| � |VG| (3.29)

so we can expand E(k) as given by (3.25) to obtain

E±(k) = 1

2
[E (0)(k) + E (0)(k + G)] + V0 ±

[

|VG| + 1

8

[E (0)(k) − E (0)(k + G)]2
|VG| + ...

]

(3.30)

∼= 1

2
[E (0)(k) + E (0)(k + G)] + V0 ± |VG|, (3.31)

so that at the Brillouin zone boundary E+(k) is elevated by |VG|, while E−(k) is
depressed by |VG| and the band gap that is formed is 2|VG|, whereG is the reciprocal
lattice vector for which E(kB.Z .) = E(kB.Z . +G) in which the subscript B.Z. denotes
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Fig. 3.1 One dimensional
electronic energy bands for
the nearly free electron
model shown in the extended
Brillouin zone scheme. The
dashed curve corresponds to
the case of free electrons and
the solid curves to the case
where a weak periodic
potential is present. The band
gaps at the zone boundaries
have a magnitude of 2|VG|

the Brillouin zone boundary and VG is the Fourier transform of the periodic potential
in real space given by

VG = 1

Ω0

∫

Ω0

eiG·rV (r)d3r. (3.32)

From this discussion it is clear that every Fourier component of the periodic
potential gives rise to a specific band gap in reciprocal space. We see further that the
band gap represents a range of energy values for which there is no solution to the
eigenvalue problem of (3.19) for real k (see Fig. 3.1). In the band gap we assign an
imaginary value to the wave vector which can be interpreted as a highly damped and
non–propagating plane wave with wavevector G.

We note that for such a plane wave the larger the value ofG, the smaller the value
of VG, so that higher Fourier components give rise to smaller band gaps. Near these
energy discontinuities at the Brillouin zone boundary, the wave functions become
linear combinations of the unperturbed states

ψk = α1ψ
(0)
k + β1ψ

(0)
k+G

ψk+G = α2ψ
(0)
k + β2ψ

(0)
k+G

(3.33)

and at the zone boundary itself, instead of traveling waves eik·r, the wave functions
become standing waves cos(k · r) and sin(k · r). We note that the cos(k · r) solution
corresponds to a maximum in the charge density at the lattice sites and therefore
corresponds to an energyminimum (for which the lower level in some cases would be
identified with a valence band extrema). Likewise, the sin(k ·r) solution corresponds
to a minimum in the charge density and therefore corresponds to a maximum in the
energy, thus forming the upper level which in some cases would be identified with
an unoccupied conduction band state.
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Fig. 3.2 a One dimensional electronic energy bands for the nearly free electron model shown in
the reduced Brillouin zone scheme for the three bands of lowest energy. b The same E(k) as in
(a) but now shown in the extended zone scheme. The shaded areas denote the band gaps between
bands n and n + 1 and the white areas denote the band states

In constructing E(k) for the reduced Brillouin zone scheme, we make use of the
periodicity of E(k) in reciprocal space

E(k + G) = E(k), (3.34)

and consider only one unit cell in reciprocal space. The reduced zone scheme more
clearly illustrates the formation of energy bands (labeled (1) and (2) in Fig. 3.2),
band gaps Eg and band widths (defined in Fig. 3.2 as the range of energy between
the minimum (Emin) and the maximum (Emax ) energy for a given band).

We now discuss the connection between the E(k) relations shown above and the
transport properties of solids, which can be illustrated by considering the case of
a semiconductor. An intrinsic semiconductor at temperature T = 0 has no carriers
so that the Fermi level runs right through the band gap. On the diagram of Fig. 3.2,
this would mean that the Fermi level might run between bands (1) and (2), so that
band (1) is completely occupied and band (2) is completely empty. One further
property of the semiconductor is that the band gap Eg be small enough so that at
some temperature (e.g., room temperature) there will be a reasonable number of ther-
mally excited carriers, perhaps 1015/cm3. The doping with donor (electron donating)
impurities will raise the Fermi level above the conduction band edge and doping with
acceptor (electron extracting) impuritieswill lower the Fermi level below the valence
band edge. Neglecting for the moment the effect of impurities on the E(k) relations
for the perfectly periodic crystal, let us consider what happens when we raise the
Fermi level into the bands. If we know the shape of the E(k) curve, we can estimate
the velocity of the electrons and also the so–called m∗ of the electrons. From the
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diagram in Fig. 3.2 we see that the conduction bands tend to fill up electron states
starting at their energy band extrema.

Since the energy bands have zero slope about their extrema, we can write E(k)
as a quadratic form in k. It is convenient to write the proportionality in terms of the
quantity called the effective mass m∗ defined as

E(k) = E(0) + �
2k2

2m∗ (3.35)

so that m∗ is defined by
1

m∗ ≡ ∂2E(k)

�2∂k2
(3.36)

and we can say in some approximate way that an electron in a solid moves as if it
were a free electron but with an effective mass m∗ rather than a free electron mass
m. The larger the band curvature, the smaller the effective mass. The mean velocity
of the electron vk is also found from E(k), according to the relation

vk = 1

�

∂E(k)

∂k
. (3.37)

For this reason the energy dispersion relations E(k) are very important in the deter-
mination of the transport properties for electrons and hole carriers in solids, where a
hole is defined as a positively charged carrier in the valence band state from which
an electron has been excited to the conduction band.

3.2.2 Tight Binding Approximation

In the tight binding approximation a number of assumptions are made and these are
different from the assumptions that are made for the weak binding approximation.
The assumptions for the tight binding approximation are:

1. The energy eigenvalues and eigenfunctions are known for an electron in an
isolated atom.

2. When the atoms are brought together to form a solid, the atoms remain
sufficiently far apart from each other, so that each electron can be assigned
to a particular atomic site. This assumption is not valid for valence electrons
in metals which are not localized, and for this reason, the valence electrons
are best treated by the weak binding approximation.

3. The periodic potential of the lattice V(r) is approximated by a superposition
of atomic potentials.
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Fig. 3.3 Definition of the
vectors used in the tight
binding approximation

4. Perturbation theory can be used to treat the difference between the actual
potential and the atomic potential.

Thus, both the weak and tight binding approximations are based on perturbation
theory. For the weak binding approximation the unperturbed state is the free electron
plane–wave state, while for the tight binding approximation, the unperturbed state
is the atomic state. In the case of the weak binding approximation, the perturbation
Hamiltonian is the weak periodic potential itself, while for the tight binding case, the
perturbation is the difference between the periodic potential and the atomic potential
around which the electron is localized.

We review here the major features of the tight binding approximation. Let φ(r −
Rn) denote the atomic wave function for an atom where r andRn are each measured
with respect to the atom, and the vector r − Rn is the atomic position measured
relative to the lattice vector Rn as shown in Fig. 3.3. The Schrödinger equation for
an electron in an isolated atom is then:

[

− �
2

2m
∇2 +U (r − Rn) − E (0)

]

φ(r − Rn) = 0 (3.38)

where U (r − Rn) is the atomic potential and E (0) is the atomic eigenvalue (see
Fig. 3.3).

We now assume that the atoms are brought together to form the crystal for which
V (r) is the periodic potential, andψ(r) and E(k) are, respectively, the wave function
and energy eigenvalue for the electron in the crystal:

[

− �
2

2m
∇2 + V (r) − E

]

ψ(r) = 0. (3.39)

In the tight binding approximation, we write V (r) as a sum of atomic potentials:

V (r) �
∑

n

U (r − Rn). (3.40)
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If the interaction between neighboring atoms is ignored, then each state has a degen-
eracy of N = number of atoms in the crystal. However, the interaction between the
atoms in the crystal lifts this degeneracy (see Fig. 3.4).

The energy eigenvalues E(k) in the tight binding approximation for a non–
degenerate s–state is simply given by

E(k) = 〈k|H |k〉
〈k|k〉 (3.41)

because s states are non-degenerate if spin is not considered. The normalization
factor in the denominator 〈k|k〉 is inserted because the wave functions ψk(r) in the
tight binding approximation are usually not normalized. The Hamiltonian in the tight
binding approximation is written as

H = − �
2

2m
∇2 + V (r) =

{

− �
2

2m
∇2 + [V (r) −U (r − Rn)] +U (r − Rn)

}

(3.42)
H = H0 + H ′ (3.43)

in which H0 is the atomic Hamiltonian at site n

H0 = − �
2

2m
∇2 +U (r − Rn) (3.44)

and the perturbation H ′ is the difference between the actual periodic potential and
the atomic potential at lattice site n

H ′ = V (r) −U (r − Rn). (3.45)

We construct the wave functions for the unperturbed problem as a linear combination
of atomic functions φ j (r − Rn) labeled by quantum number j

ψ j (r) =
N∑

n=1

C j,nφ j (r − Rn) (3.46)

so that ψ j (r) is an eigenstate of a Hamiltonian satisfying the periodic potential of
the lattice. In this treatment we assume that the tight binding wave–functions ψ j

can be identified with a single atomic state φ j ; this approximation must be relaxed
in dealing with degenerate levels. According to Bloch’s theorem, ψ j (r) in the solid
must satisfy the relation:

ψ j (r + Rm) = eik·Rmψ j (r) (3.47)
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Fig. 3.4 The relation
between atomic states on the
right and the broadening due
to the presence of
neighboring atoms seen on
the left. As the interatomic
distance decreases (going to
the left in the diagram), the
level broadening increases so
that a band of levels occurs
at atomic separations
characteristic of solids

where Rm is an arbitrary lattice vector. This restriction imposes a special form on
the coefficients C j,n as described below.

Substitution of the expansion in the atomic functions ψ j (r) from (3.46) into the
left side of (3.47) yields:

ψ j (r + Rm) = ∑
n C j,n φ j (r − Rn + Rm)

= ∑
Q C j,Q+m φ j (r − RQ)

= ∑
n C j,n+m φ(r − Rn)

(3.48)

where we have utilized the substitution RQ = Rn − Rm and the fact that Q is a
dummy index. Now for the right side of the Bloch theorem (3.47) we have

eik·Rmψ j (r) =
∑

n

C j,ne
ik·Rmφ j (r − Rn). (3.49)

The coefficientsC j,n which relate the actual wave functionψ j (r) to the atomic func-
tions φ j (r−Rn) are therefore not arbitrary but must thus satisfy both the periodicity
of the potential in the variable r as well as Bloch’s theorem:

C j,n+m = eik·RmC j,n (3.50)

which can be accomplished by setting:

C j,n = ξ j e
ik·Rn (3.51)

where the new coefficient ξ j is independent of the band index n. We therefore obtain:

ψ j,k(r) = ξ j

∑

n

eik·Rnφ j (r − Rn) (3.52)
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Fig. 3.5 Definition of ρnm ,
with a magnitude denoting
the distance between atoms
at Rm and Rn in the crystal
lattice

where j is an index labeling the particular atomic state of degeneracy N , and k is
the quantum number for the translation operator that labels the Bloch state ψ j,k(r).

For simplicity, we will limit the present discussion of the tight binding approxi-
mation to s–bands (non–degenerate atomic states) and therefore we can suppress the
j index of the wave functions. (The treatment for p–bands is similar to what we will
do here, but more complicated because of the degeneracy of the atomic p states and
also higher momentum states, should they be important.) To find the matrix elements
of the Hamiltonian we write

〈k′|H |k〉 = |ξ |2
∑

n,m

ei(k·Rn−k′ ·Rm )

∫

Ω

φ∗(r − Rm)H φ(r − Rn)d
3r (3.53)

in which the integration is carried out throughout the volume of the crystal. Since
H is a function which is periodic in the lattice, and the only important distance (see
Fig. 3.5) is

(Rn − Rm) = ρnm . (3.54)

We then write the integral in (3.53) as:

〈k′|H |k〉 = |ξ |2
∑

Rm

ei(k−k′)·Rm
∑

ρnm

eik·ρnmHmn(ρnm) (3.55)

where we have written the matrix element Hmn(ρnm) as

Hmn(ρnm) =
∫

Ω

φ∗(r−Rm)H φ(r−Rm−ρnm)d3r =
∫

Ω

φ∗(r ′)H φ(r ′−ρnm)d3r ′.

(3.56)

We note here that because of the lattice periodicity of the Hamiltonian H and the
wave functionφ, the integral in (3.56) depends only onρnm and not onRm . According
to (3.13), the first and largest term is the sum in (3.55) is

∑

Rm

ei(k−k′)·Rm = δk′,k+GN (3.57)
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where G is a reciprocal lattice vector. It is convenient to restrict the k vectors to lie
within the first Brillouin zone (i.e., we limit ourselves to reduced wave vectors k in
reciprocal space). This is consistent with the manner of counting states for a crystal
with periodic boundary conditions of length d on a side

kid = 2πmi for each direction i (3.58)

where mi is an integer in the range 1 ≤ mi < Ni , and Ni ≈ N 1/3 where N is the
total number of unit cells in the crystal. From (3.58) we have

ki = 2πmi

d
. (3.59)

The maximum value that a particular mi can assume is Ni and the maximum
value for ki is 2π/a at the Brillouin zone boundary, since Ni/d = 1/a. With this
restriction, k and k′ must both lie within the 1st B.Z. and thus cannot differ by any
reciprocal lattice vector other thanG = 0. We thus obtain the following form for the
matrix element ofH (and also for the corresponding forms for the matrix elements
of H0 and H ′):

〈k′|H |k〉 = |ξ |2Nδk,k′
∑

ρnm

eik·ρnmHmn(ρnm) (3.60)

yielding the following result for energy eigenvalues

E(k) = 〈k|H |k〉
〈k|k〉 =

∑
ρnm

eik·ρnmHmn(ρnm)
∑

ρnm
eik·ρnmSmn(ρnm)

(3.61)

in which the orthonormalization is given by

〈k′|k〉 = |ξ |2δk,k′ N
∑

ρnm

eik·ρnmSmn(ρnm) (3.62)

where the matrix element Smn(ρnm) measures the overlap of atomic functions on
different sites

Smn(ρnm) =
∫

Ω

φ∗(r)φ(r − ρnm)d3r. (3.63)

The overlap integralSmn(ρnm)will be nearly 1whenρnm = 0 andwill fall off rapidly
as ρnm increases, which exemplifies the spirit of the tight binding approximation. By
selecting k vectors that lie within the first Brillouin zone, the orthogonality condition
on thewave functionψk(r) is automatically satisfied.WritingH = H0+H ′ yields:
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Hmn = ∫

Ω

φ∗(r − Rm)
[
− �

2

2m∇2 +U (r − Rn)
]
φ(r − Rn)d3r

+ ∫

Ω

φ∗(r − Rm)[V (r) −U (r − Rn)]φ(r − Rn)d3r
(3.64)

or
Hmn = E (0)Smn(ρnm) + H ′

mn(ρnm) (3.65)

in which the perturbation Hamiltonian H ′ = V (r) − U (r − Rn) is the difference
between the periodic potential and the atomic potential in whichH ′ gets large only
close to an atomic site. The general expression for the tight binding approximation
thus becomes:

E(k) = E (0) +
∑

ρnm
eik·ρnmH ′

mn(ρnm)
∑

ρnm
eik·ρnmSmn(ρnm)

. (3.66)

In the spirit of the tight binding approximation, the second term in (3.66) is assumed to
be small, which is a good approximation if the overlap of the atomic wave functions
is small. We classify the sum over ρnm according to the distance between site m
and site n: (i) zero distance, (ii) the nearest neighbor distance, (iii) the next nearest
neighbor distance, etc.

∑

ρnm

eik·ρnmH ′
mn(ρnm) = H ′

nn(0) +
∑

ρ1

eik·ρnmH ′
mn(ρnm) + .... (3.67)

The zeroth neighbor term H ′
nn(0) in (3.67) results in a constant additive energy,

independent of k that comes directly from the atomic potential. The sum over nearest
neighbor distances ρ1 gives rise to a k–dependent perturbation, and hence is of
particular interest in calculating the electronic band structure. The termsH ′

nn(0) and
the sum over the nearest neighbor terms in (3.67) are of comparable magnitude, as
can be seen by the following argument. In the integral of the k-independent term

H ′
nn(0) =

∫
φ∗(r − Rn)[V −U (r − Rn)]φ(r − Rn)d

3r (3.68)

we note that |φ(r − Rn)|2 has an appreciable amplitude only in the vicinity of the
site Rn . But at site Rn , the potential energy term [V −U (r −Rn)] = H ′ is a small
term, so that H ′

nn(0) represents the product of a small term times a large term. On
the other hand, the integral H ′

mn(ρnm) taken over nearest neighbor distances has a
factor [V − U (r − Rn)] which is large near the mth site; however, in this case the
wave functions φ∗(r − Rm) and φ(r − Rn) are on different atomic sites and have
only a small overlap on nearest neighbor sites. Therefore H ′

mn(ρnm) over nearest
neighbor sites also results in the product of a large quantity times a small quantity.

In treating the denominator in the perturbation term of (3.66), we must carry out
the summation:
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∑

ρnm

eik·ρnmSmn(ρnm) = Snn(0) +
∑

ρ1

eik·ρnmSmn(ρnm) + .... (3.69)

In this case the leading termSnn(0) is approximately unity and the overlap integral
Smn(ρnm) over nearest neighbor sites is small, and can be neglected to lowest order in
comparison with unity. The nearest neighbor term in (3.69) is of comparable relative
magnitude to the next nearest neighbor terms arising fromH ′

mn(ρnm) in (3.67).
We will next make several explicit evaluations of E(k) in the tight–binding

limit to show how this method directly incorporates the crystal symmetry. For
illustrative purposes we will give results for the simple cubic lattice (SC), the
body centered cubic lattice (BCC), and the face centered cubic lattice (FCC). We
shall assume here that the overlap of atomic potentials on neighboring sites is suffi-
ciently weak so that only nearest neighbor terms need be considered in the sum on
H ′

mn and only the leading term need be considered in the sum on Smn .
For the simple cubic structure there are 6 terms in the nearest neighbor sum on

H ′
mn in (3.66) with the ρ1 vectors given by:

ρ1 = a(±1, 0, 0), a(0,±1, 0), a(0, 0,±1). (3.70)

By symmetry, H ′
mn(ρ1) is the same for all of the ρ1 vectors so that

E(k) = E (0) + H ′
nn(0) + 2H ′

mn(ρ1)[cos kxa + cos kya + cos kza] + ... (3.71)

where ρ1 = the nearest neighbor separation and kx , ky , kz are components of the
wave vector k in the first Brillouin zone.

The dispersion relation E(k) in (3.71) clearly satisfies three properties which
characterize the energy eigenvalues in typical periodic structures:

1. Periodicity in k space under translation by a reciprocal lattice vector k → k+G,
2. E(k) is an even function of k (i.e., E(k) = E(−k))
3. The derivative of E(k) vanishes (∂E/∂k = 0) at the Brillouin zone boundary

In the above expression (3.71) for E(k), the maximum value for the term in brackets
is ± 3. Therefore for a simple cubic lattice in the tight binding approximation we
obtain a bandwidth of 12 H ′

mn(ρ1) from nearest neighbor interactions as shown in
Fig. 3.6.

Because of the different locations of the nearest neighbor atoms in the case of the
BCC and FCC lattices, the expressions for E(k)will be different for the various cubic

Fig. 3.6 The relation
between the atomic levels
and the broadened level in
the tight binding
approximation
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lattices. Thus the form of the tight binding approximation explicitly takes account of
the crystal structure. The results for the simple cubic, body centered cubic and face
centered cubic lattices are summarized below.

Simple cubic

E(k) = const + 2H ′
mn(ρ1)[cos kxa + cos kya + cos kza] + ... (3.72)

Body centered cubic

The eight ρ1 vectors for the nearest neighbor distances in the BCC structure are
(±a/2,±a/2,±a/2) so that there are 8 exponential terms which combine in pairs
such as:

[

exp
ikxa

2
exp

ikya

2
exp

ikza

2
+ exp

−ikxa

2
exp

ikya

2
exp

ikza

2

]

(3.73)

to yield for an intermediate sum

2 cos(
kxa

2
) exp

ikya

2
exp

ikza

2
. (3.74)

Thus by carrying out the summation over x , y, and z for the BCC structure, we
obtain:

E(k) = const + 8H ′
mn(ρ1) cos(

kxa

2
) cos(

kya

2
) cos(

kza

2
) + .... (3.75)

whereH ′
mn(ρ1) is the matrix element of the perturbation Hamiltonian taken between

nearest neighbor atomic orbitals for the BCC lattice.

Face centered cubic

For the FCC structure there are 12 nearest neighbor distances ρ1: (0,± a
2 ,± a

2 ),
(± a

2 ,± a
2 , 0), (± a

2 , 0,± a
2 ), so that the twelve exponential terms combine in groups

of 4 to yield:

exp ikx a
2 exp ikya

2 + exp ikx a
2 exp −ikya

2 + exp −ikx a
2 exp ikya

2 +
exp −ikx a

2 exp −ikya
2 = 4 cos( kxa2 ) cos( kya2 ),

(3.76)

thus resulting in the energy dispersion relation

E(k) = const + 4H ′
mn(ρ1)[

cos( kya2 ) cos( kza2 ) + cos( kxa2 ) cos( kza2 ) + cos( kxa2 ) cos( kya2 )
]

+ ...
(3.77)
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We note that E(k) for the FCC is different from that for the SC or BCC structures.
We thus see that the tight-binding approximation has symmetry considerations built
into its formulation by consideration of the symmetrical arrangement of the atoms
in each crystal lattice. The situation is quite different in the weak binding approxi-
mation where symmetry enters into the form of V (r) and determines which Fourier
components VG will be important in creating band gaps.

3.2.3 Comparison of Weak and Tight Binding
Approximations

We will now make some general statements about bandwidths and forbidden band
gaps which follow from either the tight binding or the weak binding (nearly free
electron) approximations. With increasing energy, the bandwidth tends to increase.
When using the tight–binding picture, the higher energy atomic states are less closely
bound to the nucleus, and the resulting increased overlap of thewave functions results
in a larger value forH ′

mn(ρ1) in the case of the higher atomic states: that is, for silicon,
which has 4 valence electrons in the n = 3 shell, the overlap integral H ′

mn(ρ1) will
be smaller than for germanium which is isoelectronic to silicon but has instead 4
valence electrons in the n = 4 atomic shell. On the weak–binding picture, the same
result follows, since for higher energies, the electrons are more nearly free; therefore,
there are more allowed energy ranges available, or equivalently, the energy range of
the forbidden states is smaller. Also in the weak–binding approximation, the band
gap of 2|VG| tends to decrease as G increases, because of the oscillatory character
of e−iG·r in

VG = 1

Ω0

∫

Ω0

e−iG·rV (r)d3r. (3.78)

From the point of view of the tight–binding approximation, the increasing band-
width with increasing energy (see Fig. 3.7) is also equivalent to a decrease in the

Fig. 3.7 Schematic diagram
of the quantized energy
levels n = 1, 2, 3 showing
the increased bandwidth and
decreased band gap in the
tight binding approximation
as n increases and the
interatomic separation
decreases
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forbidden band gap. At the same time, the atomic states at higher energies become
more closely spaced, so that the increased bandwidth eventually results in increased
band overlaps.

When band overlaps occur, the tight-binding approximation, as given above, must
be generalized to treat coupled or interacting bands using degenerate perturbation
theory (see AppendixB).

3.2.4 Tight Binding Approximation with 2 Atoms/Unit Cell

1D Solid: Polyacetylene

We present here a simple example of the tight binding approximation for a simplified
version of polyacetylene, which has two carbon atoms (with their appended hydro-
gens) per unit cell. In Fig. 3.8 we show, within the box defined by the dotted lines, the
unit cell for trans-polyacetylene (CH)x . This unit cell of an infinite one-dimensional
chain contains two inequivalent carbon atoms, A and B. There is one π -electron
per carbon atom, thus giving rise to two π -energy bands in the first Brillouin zone.
These two bands are called bonding π -bands for the valence band, and anti-bonding
π -bands for the conduction band.

The lattice unit vector and the reciprocal lattice unit vector of this one-dimensional
polyacetylene chain are given by a1 = (a, 0, 0) and b1 = (2π/a, 0, 0), respectively.
The Brillouin zone in 1D is the line segment −π/a < k < π/a and the Brillouin
zone boundary is at k = ±π/a. The Bloch orbitals consisting of A and B atoms are
given by

ψ j (r) = 1√
N

∑

Rα

eikRαφ j (r − Rα), (α = A,B) (3.79)

where the summation is taken over the atom site coordinate Rα for the A or the B
carbon atoms in the solid.

To solve for the energy eigenvalues and wavefunctions, we need to solve the
general equation:

Fig. 3.8 The unit cell of
trans-polyacetylene bounded
by a box defined by the
dashed lines, and showing
two inequivalent carbon
atoms, A and B bonded to
hydrogen atoms, within the
unit cell (See Saito et al.
1998)
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H ψ = ESψ (3.80)

where H is the n × n tight binding matrix Hamiltonian for the n coupled bands
(n = 2 in the case of polyacetylene) and S is the corresponding n × n overlap
integral matrix. To obtain a solution to this matrix equation, we require that the
determinant |H − ES | vanish. This approach is easily generalized to periodic
structures with more than 2 atoms per unit cell.

The (2× 2) matrix Hamiltonian,Hαβ , (α, β = A, B) is obtained by substituting
(3.79) into (3.80) and normalizing the wave functions appropriately

H j j ′(k) = 〈ψ j |H |ψ j ′ 〉, S j j ′(k) = 〈ψ j |ψ j ′ 〉 ( j, j ′ = 1, 2), (3.81)

where the integrals over the Bloch orbitals,H j j ′(k) andS j j ′(k), are called transfer
integral matrices and the overlap integral matrices, respectively. When α = β = A,
we obtain the diagonal matrix element

HAA(r) = 1

N

∑

R,R′
eik(R−R′)〈φA(r − R′)|H |φA(r − R)〉

= 1

N

∑

R′=R

E2p + 1

N

∑

R′=R±a

e±ika〈φA(r − R′)|H |φA(r − R)〉
+ (terms equal to or more distant than R′ = R ± 2a)

= E2p + (terms equal to or more distant than R′ = R ± 2a).

(3.82)

In (3.82) the main contribution to the matrix elementHAA comes from R′ = R, and
this gives the orbital energy of the 2p level, E2p. We note that E2p is not simply the
atomic energy value for the free atom, because the Hamiltonian H also includes a
crystal potential contribution. The next order contribution to HAA in (3.82) comes
from terms in R′ = R ± a, which are here neglected for simplicity. Similarly, HBB

also gives E2p to the same order of approximation.
Next let us consider the off-diagonal matrix element HAB(r) which explicitly

couples the A unit to the B unit. The largest contribution to HAB(r) arises when
atoms A and B are nearest neighbors. Thus, in the summation over R′, we only
consider the leading terms with R′ = R ± a/2 as a first approximation and neglect
more distant terms to obtain

HAB(r) = 1

N

∑

R

{
e−ika/2〈φA(r − R)|H |φB(r − R − a/2)〉

+ eika/2〈φA(r − R)|H |φB(r − R + a/2)〉}
= 2γ0 cos(ka/2)

(3.83)

where γ0 is the transfer integral or carbon-carbon interaction energy appearing in
(3.83) and is denoted by

γ0 = 〈φA(r − R)|H |φB(r − R ± a/2)〉. (3.84)
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Herewehave assumed that all theπ bondingorbitals are of equal length (1.5Åbonds).
In the real (CH)x compound, bond alternation occurs, in which the bonding between
adjacent carbon atoms alternates between single bonds (1.7Å) and double bonds
(1.3Å). With this bond alternation, the two matrix elements between atomic wave-
functions in (3.83) are no longer equal. Although the distortion of the lattice lowers
the total energy, the electronic energy always decreasesmore than the lattice energy in
a one-dimensional material. This distortion that makes the lattice by a process called
the Peierls instability. This instability arises, for example, when a distortion is intro-
duced into a system previously containing degenerate states with 2 equivalent atoms
per unit cell. The distortion making the atoms inequivalent increases the unit cell by
a factor of 2 and concurrently decreases the reciprocal lattice by a factor of 2. If the
energy band was formally half filled, a band gap is introduced by the Peierls instabil-
ity at the Fermi level, which lowers the total energy of the system. It is stressed here
that γ0 has a negative value which means that γ0 is an attractive potential that bonds
atoms together to form a condensed state of matter. The matrix element HBA(r) is
obtained from HAB(r) through the Hermitian conjugation relation HBA = H ∗

AB ,
but since HAB is real in this case, we obtain HBA = HAB .

The overlap matrix Si j can be calculated by a similar method as was used for
Hi j , except that the intra-atomic integralSi j yields a unit matrix in the limit of large
interatomic distances, if we also assume that the atomic wavefunction is normalized
so that SAA = SBB = 1. It is assumed that for polyacetylene, the SAA and SBB

matrix elements are still approximately unity. For the off-diagonal matrix element
for polyacetylene, we have SAB = SBA = 2s cos(ka/2), where s is an overlap
integral between the nearest A and B atoms,

s = 〈φA(r − R)|φB(r − R ± a/2)〉. (3.85)

The secular equation for the 2pz orbital of CHx is obtained by setting the determinant
of |H − ES | to zero to obtain

∣
∣
∣
∣
E2p − E 2(γ0 − sE) cos(ka/2)
2(γ0 − sE) cos(ka/2) E2p − E

∣
∣
∣
∣

= (E2p − E)2 − 4(γ0 − sE)2 cos2(ka/2)
= 0

(3.86)

yielding the eigenvalues of the energy dispersion relations of (3.86)

E±(k) = E2p ± 2γ0 cos(ka/2)

1 ± 2s cos(ka/2)
, (−π

a
< k <

π

a
) (3.87)

inwhich the+ sign is associatedwith the bondingπ -band and the− sign is associated
with the antibonding π∗-band, as shown in Fig. 3.9. Here it is noted that by setting
E2p to zero (thereby defining the origin of the energy), the levels E+ and E− are
degenerate at ka = ±π . Figure3.9 is constructed for γ0 < 0 and s > 0.
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Fig. 3.9 The energy dispersion relation E±(k) for polyacetylene [(CH)x ], given by (3.87) with
values for the parameters tγ0 = −1 and s = 0.2. Curves E+(k) and E−(k) are called bonding π

and antibonding π∗ energy bands, respectively, and the energy is plotted in units of γ0 (See Saito
et al. 1998)

Fig. 3.10 Real and reciprocal space for graphene. (a) The unit cell (rhombus) with their basis
vectors a1 and a2. A and B stand for the two non-equivalent carbon atoms in the unit cell. (b)
Brillouin zone (enclosed in the rhombus) with reciprocal lattice vectros b1 and b2. The reciprocal
space structure has two inequivalent Dirac points K and K ′

Since there are two π electrons per unit cell, each with a different spin orientation,
both electrons occupy the bonding π energy band. The effect of the inter-atomic
bonding is to lower the total energy below E2p.

2D Solid: Graphene

A simple and elegant example for ilustrating band structure calculations using tight
binding is graphene. In this truly two-dimensional (2D) system, carbon atoms are
arranged in a hexagonal lattice as schematically shown in Fig. 3.10(a). The graphene
unit vectors a1 and a2 can bewritten in cartesian coordinates as a1 = a(

√
3/2î+1/2ĵ)

and a2 = a(
√
3/2î − 1/2ĵ), where a = |a1| = |a2|, and a = 2.46Å = 0.246 nm

while î and ĵ are unit vectors along the x and y directions, respectively. Direct
calculation show that these vectors do not form an orthogonal basis: a1 · a2 = a2/2
as shown in Fig. 3.10(a) the unit cell has two inequivalent atoms labeled A and B.
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In Fig. 3.10(b) the unit vectors in reciprocal space are shown and the unit cell here
is also hexagonal and has two inequivalent Dirac K and K ′ points in the reciprocal
latticewhich are calledDirac points formonolayer graphene. At these high symmetry
points the electronic energy in the valence and conduction bands are degenerate, and
linear E(k) relations can be used closed to the K and K ′ points in the Brillouin zone.

The electronic energy dispersion relations for graphene are calculated by solving
the eigenvalue problem for a HamiltonianH (2x2) and an overlap matrixS (2x2),
associated with the two non-equivalent carbon atoms in the honeycomb 2D lattice
[see Fig. 3.10], within the tight-binding approximation,

H =
(

ε2p −γ0 f (k)
−γ0 f (k)∗ ε2p

)

and S =
(

1 s f (k)
s f (k)∗ 1

)

, (3.88)

where ε2p is the site energy of the 2p atomic orbital and

f (k) = eikxa/
√
3 + 2e−ikx a/2

√
3 cos

kya

2
, (3.89)

wherea = |a1| = |a2| = √
3aC−C. Solution of the secular equation det(H −ES ) =

0 implied by (3.88) leads to the eigenvalues

E±(k) = ε2p ± γ0w(k)

1 ∓ sw(k)
, (3.90)

for the C-C nearest neighbor overlap energy γ0 > 0 (here we conventionally use
γ0 as a positive value) where s denotes the overlap of the electronic wavefunctions
on adjacent sites, and E+ and E− correspond to the π∗ conduction band and the π

valence band, respectively. The function w(k) in (3.90) is given by

w(k) = √| f (k)|2 =
√

1 + 4 cos

√
3kxa

2
cos

kya

2
+ 4 cos2

kya

2
(3.91)

leading in the limit s = 0 and ε2p = 0 to a symmetric form for the dispersion
relations E(kx , ky) for electrons in graphene

E±(kx , ky) = ±γo

{

1 + 4 cos

√
3kxa

2
cos

kya

2
+ 4 cos2

kya

2

}

, (3.92)

where a = 1.421 x
√
3Å is the lattice constant for a 2D graphene layer and γo is the

nearest-neighbor C-C energy overlap integral.
In Fig. 3.11, a plot is shown of the electronic dispersion relations for a 2Dgraphene

lattice as a function of (kx , ky) in the 2D hexagonal Brillouin zone [see Fig. 3.10] that
is obtained by using (3.91) and adopting the parameters γo = 3.013eV, s = 0.129,
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Fig. 3.11 Energy dispersion
of the bonding π and
anti-bonding π∗ bands for
the 2D graphene layer using
γ0 = 3.03 eV and s = 0.129
[see (3.90)]. The inset on the
right shows the energy
dispersion calculated for
graphene along high
symmetry directions in the
Brillouin zone (See Saito
et al. 1998)

and ε2p = 0. In the limit s = 0 and ε2p = 0, the valence π and conduction π∗ bands
become symmetric with respect to each other. Near the K point in the Brillouin zone,
E±(k) has a linear dependence on k = |k| measured from the K point so that,

ω(k) =
√
3

2
ka + ... (3.93)

For ka << 1, (3.90) reduces to

E(k) = ±
√
3

2
γ0ka = ±3

2
γ0kaC−C, (3.94)

where aC−C is the nearest neighbor carbon-carbon distance. If the physical phenom-
ena under consideration only involve small k vectors, it is convenient to use (3.94)
to calculate the electronic transition energies. For larger k vectors a more detailed
E(k) is necessary to reflect the trigonal warping effect that occurs for this lattice.
The linear dispersion is a special feature of graphene for low k values, thus leading
value to interpretation that low energy electrons of graphene propagate as massless
particles that mimic photon propagation in this limit.

Problems

3.1 This problem is a review of the nearly free electron approximation.

(a) Write a general expression for the E(k) relations for the empty lattice (i.e.,
V (r) = 0) for a two dimensional square lattice.

(b) Find E(k) explicitly along Γ − X and X − L for the lowest 3 energy levels
including the degeneracies of each level. Plot E(k) for these levels. (Note: theΓ

point is (π/a)(0, 0); the X point is (π/a)(1, 0); and the L point is (π/a)(1, 1)).
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(c) Suppose that small carrier pockets are formed in the energy bands about points
Γ , X and L of the square lattice Brillouin Zone. In each case, indicate the shape
of this carrier pocket and the number of equivalent full carrier pockets that are
formed. Bemore quantitative here. Suppose that the carrier pocket allows 0.01%
occupation of the zone with carriers.

(d) Find the wave functions corresponding to the three lowest X point energy levels
in the empty lattice model.

(e) Using first order degenerate perturbation theory, find the effect of a small peri-
odic potential V (r) on producing band gaps for these X point energy levels
according to the nearly free electron approximation. Which degeneracies in (d)
are thus lifted?

3.2 This problem is to review the tight binding approximation as applied to graphene.

(a) Suppose that the overlap integral for the electrons on adjacent sites vanishes
(s = 0). Sketch the effect of taking s = 0 on the dispersion relations (Fig. 3.11).
This approximation is sometimes used for describing the electronic properties
of carbon nanotubes.

(b) By considering k points close to the K or K ′ points in the Brillouin zone, find
the effect of (3.94) and show that the resulting constant energy surface forms a
cone. Due to the linear k dependence, this has been called the Dirac cone.

(c) Discuss the consequences of this linear electronic dispersion relation on the
effective mass of the charge carrier as a function of k.

3.3 This problem is to review the tight binding approximation as applied to poly-
acetylene.

(a) To satisfy the bonding requirements of carbon, polyacetylene has alternating
single and double bonds with bond lengths of 1.7Å and 1.3Å, respectively (see
Sect. 3.2.4). Please clarify why single and double bonds are needed from a
chemical point of view. What modification to the electronic dispersion relations
does this bond alternation give rise to (see Fig. 3.9)? Sketch the effect on Fig. 3.8
of introducing these differences in the bond lengths.

(b) In this treatment, the effect of the hydrogen atoms has been ignored. What
physical argument can you give to justify the approximation that has been made
here?

3.4 Consider the nearly free electron picture of a crystalline solid in the limit that
the periodic potential vanishes V (n) = 0.

(a) What is the difference in energy between a simple cubic lattice and a face
centered cubic lattice for the lowest two energy levels at the Γ point (k = 0)
and the X point at the Brillouin zone boundary in the (100) direction? To start
this problem specify the lattice vectors that you are using to specify the simple
cubic lattice and the face centered cubic lattice.

(b) What is the difference in the corresponding degeneracies for the levels in part
(a)?
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(c) Suppose that a stress is applied along the (001) direction to lower the symmetry
of the lattice for the simple cubic lattice and for the face centered cubic lattice,
giving each a tetragonal distortion. What splitting in the energy levels in parts
(a) and (b) would you expect?

3.5 Imagine that we have a single (100) monolayer of sodium. Treating this mono-
layer as a 2D metal, find an expression for the Fermi energy in terms of the lattice
constant a, assuming 1 free electron/atom and an effective mass equal to the free
electron mass.

3.6 Inmany practical cases, the transport properties depend primarily on two energy
bands that are strongly coupled. (This is called the simple two band model.)

(a) For the case of the two bandmodel, write down the differential equation satisfied
by the periodic part of the Bloch function Ψnk = eik·r unk(r), where the Bloch
function is unk(r) and V (r) is the periodic potential.

(b) Using degenerate first order perturbation theory for two coupled bands, derive
the k dependence of the energy E(k) for bands with extrema at k = 0. This
solution for 2 coupled bands is exact.

(c) Show that the effective mass for each of the bands increases with increasing |k|.
The results you have derived in this problem form the basis of k ·p perturbation
theory, an important topic in solid state physics.

3.7 Consider the two-dimensional simple equilateral triangular lattice for a free
electron metal with two electrons/atom.

(a) Assuming a lattice constant of a, find the areas of the electron and hole pockets
that are formed in the second and first Brillouin zones, respectively, for this 2D
simple triangular lattice.

(b) Find the shapes of the electron and hole Fermi surfaces in the reduced Brillouin
zone, obtained through translation by the appropriate reciprocal lattice vector,
and write dow the appropriate reciprocal lattice vector.

Suggested Reading

R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial
College Press, 1998)



Chapter 4
Examples of Energy Bands in Solids

4.1 Introduction

In Fig. 4.1 we present some schematic examples of energy bands which are represen-
tative of metals, semiconductors and insulators, and we point out some of the char-
acteristic features in each case. Figure4.1 distinguishes in a schematic way between
insulators (a), metals (b), semimetals (c), a thermally excited semiconductor (d) for
which at temperature T = 0 all states in the valence band are occupied and all states
in the conduction band are unoccupied, assuming no impurities or crystal defects.
Finally in Fig. 4.1e, we see a p-doped semiconductor which is deficient in electrons,
not having sufficient electrons to fill the valence band completely, as in the case of
(d). The semiconductor (e) will have a non-zero carrier density at T = 0, while for
a semiconductor (d), the carrier density will be zero at T = 0.

Figure4.2 shows a schematic view of the electron dispersion relations for an insu-
lator (a), while (c) shows dispersion relations for a metal. In the case of Fig. 4.2b,
we have a semimetal with no dopants, so that at T = 0, we have a semimetal where
the number of electrons equals the number of holes, but a metal with a low carrier
density if the electron and hole densities are not equal to one another at T = 0.

In this chapter we examine a number of representative E(k) diagrams for illustra-
tive materials. For each of the E(k) diagrams we consider the following questions:

1. Is thematerial ametal, a semiconductor (with a direct or indirect gap), a semimetal
or an insulator?

2. Towhich atomic (molecular) levels do the bands in the band diagram correspond?
Which bands are important in determining the electronic structure? What are the
bandwidths, bandgaps?

3. What information does the E(k) diagram provide concerning the following ques-
tions:

a. Where are the carriers located in the Brillouin zone?
b. Are the carriers electrons or holes?
c. Are there many or few carriers?
d. How many carrier pockets of each type are there in the Brillouin zone?
e. What is the shape of the Fermi surface?
f. Are the carrier velocities high or low?

© Springer-Verlag GmbH Germany, DE 2018
M. Dresselhaus et al., Solid State Properties, Graduate Texts in Physics,
https://doi.org/10.1007/978-3-662-55922-2_4
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Fig. 4.1 Schematic electron occupancy of allowed energy bands for an insulator, metal, semimetal
and semiconductor. The vertical extent of the boxes indicates the allowed energy regions: the shaded
areas indicate the regions filled with electrons. In a semimetal (such as bismuth) one band is almost
filled and another band is nearly empty at a temperature of absolute zero (T = 0) with the electron
density equal to the hole density. A pure semiconductor (such as silicon) becomes an insulator
at T = 0. Panel d shows an intrinsic semiconductor at a finite temperature, with carriers that
are thermally excited. Panel e shows a p-doped semiconductor that is electron-deficient, as, for
example, because of the introduction of acceptor impurities

Fig. 4.2 Occupied states and band structures givinga an insulator,b ametal or a semimetal because
of band overlap, and c a metal because of partial occupation of an electron band. In b the band
overlap for a 3D solid need not occur at the same wave vector k in the Brillouin zone

g. Are the carrier mobilities for each carrier pocket high or low?

4. What information is provided concerning the optical properties?

a. Where in the Brillouin Zone is the threshold for optical transitions?
b. At what photon energy does the optical threshold occur?
c. For semiconductors, does the threshold correspond to a direct energy gap or

an indirect gap involving a phonon-assisted transition?

In order to illustrate how to answers these questions, we now consider the elec-
tronic band structure of some illustrative materials in some detail.
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4.2 Metals

4.2.1 Alkali Metals–e.g., Sodium

For the alkali metals the valence electrons are nearly free and the weak binding
approximation describes these electrons quite well. The Fermi surface is nearly
spherical and the energy band gaps are small. The crystal structure for the alkali
metals is body centered cubic (BCC) (the unit cell in reciprocal space is shown in
Fig. 4.3b) and the E(k) diagram (Fig. 4.3a) is drawn starting with the bottom of the
half–filled conduction band. For example, the E(k) diagram in Fig. 4.3 for sodium,
representing the 3s conduction band, begins at∼−0.6 Rydberg. The electron energy
is given in Rydbergs, where 1 Rydberg = 13.6 eV, the ionization energy of a hydro-
gen atom. The filled valence bands, corresponding to the 1s, 2s and 2p atomic levels,
lie much lower in energy and are not shown in Fig. 4.3.

For the case of sodium, the 3s conduction band is very nearly free electron–like and
the E(k) relations are closely isotropic. Thus the E(k) relations along the Δ(100),
Σ(110) and Λ(111) directions [see Fig. 4.3b] are essentially coincident and can be
so plotted, as shown in Fig. 4.3a. For these metals, the Fermi level is determined so
that the 3s band is exactly half–occupied, since the Brillouin zone is large enough
to accommodate 2 electrons per unit cell. Thus the radius of the Fermi surface kF
satisfies the relation

Fig. 4.3 a Energy dispersion relations E(k) for the nearly free electron metal sodium which has
an atomic configuration 1s22s22p63s. b The Brillouin zone for the BCC lattice showing the high
symmetry points and axes. Sodium can be considered as a prototype alkali metal crystalline solid
for discussing the dispersion relations for nearly free electron metals. Reprinted with permission
from Physical Review, vol. 128 p. 82. Copyright (1962) and Physical Review B, vol. 7 p. 2416
Copyright (1973) American Physical Society
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4

3
πk3F = 1

2
VB.Z. = 1

2
(2)

(
2π

a

)3

, or
kF a

2π
∼ 0.63, (4.1)

where VB.Z. and a are, respectively, the volume of the Brillouin zone and the lat-
tice constant. For the alkali metals, the effective mass m∗ is nearly equal to the free
electron mass m and the Fermi surface is nearly spherical and never comes close to
the Brillouin zone boundary. The zone boundary for the Σ , Λ and Δ directions are
indicated in the E(k) diagram of Fig. 4.3a by vertical lines. For the alkali metals, the
band gaps are very small compared to the band widths and the E(k) relations are par-
abolic (E = �

2k2/2m∗) almost up to the Brillouin zone boundaries. By comparing
E(k) for Na with the BCC empty lattice bands (see Fig. 4.4) for which the potential
V (r) = 0, we can see the effect of the very weak periodic potential in partially lifting
the band degeneracy at the various high symmetry points in the Brillouin zone. The
threshold for optical transitions corresponds to photons having sufficient energy to
take an electron from an occupied state at kF to an unoccupied state at kF , since
the wave vector for photons is very small compared with the Fermi wave vector kF
and since wave vector conservation (also called crystal momentum conservation) is
required for optical transitions. The threshold for optical transitions from the highest
occupied state to an empty state with the same wave vector, as indicated by the �ω

value and a vertical arrow in Fig. 4.3a. Because of the low density of initial and final
states for a given energy separation, wewould expect optical interband transitions for
alkali metals to be very weak and this is in agreement with experimental observations
for all the alkali metals. The notation “a.u.” in Fig. 4.3a stands for atomic units and
expresses lattice constants in units of Bohr radii, which is the radius of the hydrogen
atom (one Bohr radius is 0.529Å(0.0529nm)).

4.2.2 Noble Metals

The noble metals are copper, silver and gold and they crystallize in a face centered
cubic (FCC) structure; the usual notation for the high symmetry points in the FCC
Brillouin zone are shown on the diagram in Fig. 4.5a. As in the case of the alkali
metals, the noble metals have one valence electron/atom and therefore one electron
per primitive unit cell. However, the free electron picture does not work so well for
the noble metals, as you can see by looking at the energy band diagram for copper
given in Fig. 4.5b.

In the case of copper, the bands near the Fermi level are derived from the 4s
and 3d atomic levels which are clearly seen in the empty lattice model shown in
Fig. 4.5. The so-called 4s and 3d bands accommodate a total of 12 electrons, while
the number of available electrons is 11. Therefore the Fermi level must cross these
bands. Consequently copper is metallic. In Fig. 4.5b we see that the 3d valence bands
are relatively flat and show little dependence on wave vector k. We can trace the 3d
bands by starting at k = 0 with the Γ25′ and Γ12 levels derived from the angular
momentum L = 2 state. On the other hand, the 4s band has a strong k–dependence
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Fig. 4.4 a E(k) for a BCC lattice in the empty lattice approximation, V ≡ 0. b E(k) for sodium,
showing the effect of a weak periodic potential V (r) in lifting accidental band degeneracies at
k = 0 and at the zone boundaries (high symmetry points) in the Brillouin zone, such as Γ (k =
0, 0, 0), H(k = 8, 0, 0), P(k = 4, 4, 4), N (k = 4, 4, 0). The Fermi level goes through the 3s
band in the solid state. Note that the splittings of the energy bands are quite different for the various
energy bands E(k) and at different high symmetry points. Reprinted with permission from Physical
Review B, vol. 7 p. 2416 Copyright (1973) American Physical Society
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Fig. 4.5 a Brillouin zone for a FCC lattice showing high symmetry points. b The calculated energy
bands for copper along the various high symmetry axes of the FCC Brillouin zone shown in a.
Reprinted with permission from Physical Review, vol. 125 p. 109 Copyright (1962) American
Physical Society

and a large curvature. This 4s band can be traced by starting atk = 0with theΓ1 level.
About halfway between Γ and X , the 4s level approaches the 3d levels and amixing
or hybridization of the 3d and 4s levels occurs. As we further approach the X–point,
we can again pick up the 4s band (beyond where the interaction with the 3d bands
occurs) because of its high curvature (due to the strong dependence of the energy
on wavevector). This 4s band eventually crosses the Fermi level before reaching the
Brillouin Zone boundary at the X point. A similar mixing or hybridization between
the 4s and 3d bands occurs in going from Γ to L , except that in this case the 4s band
reaches the Brillouin Zone boundary before crossing the Fermi level.

Of particular significance for the transport properties of copper is the energy gap
that opens up at the L–point in the valence band. In this case, the band gap is between
the L2′ level below the Fermi level EF and the L1 level above EF . Since this bandgap
is comparable with the typical bandwidths in copper, we cannot expect the Fermi
surface to be free electron–like.

By looking at the energy bands E(k) along the major high symmetry directions,
such as the (100), (110) and (111) directions, we can readily trace the origin of
the copper Fermi surface [see Fig. 4.6]. Here we see basically a spherical Fermi
surface with necks pulled out in the (111) directions and making contact with the
Brillouin zone boundary through these necks, thereby linking the Fermi surface in
one Brillouin zone to that in the next Brillouin zone in the extended zone scheme. In
the (100) direction, the cross section of the Fermi surface is nearly circular, indicative
of the nearly parabolic E(k) relation of the 4s band at the Fermi level in going from
Γ to X. In contrast, in going from Γ to L, the 4s band never crosses the Fermi
level. Instead, the 4s level is depressed from the free electron parabolic curve as
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Fig. 4.6 A sketch of the
Fermi surface of copper
inscribed within the FCC
Brillouin zone. Reprinted
with permission from
Physical Review, vol. 125 p.
109 Copyright (1962)
American Physical Society

the Brillouin zone boundary is reached, thereby producing a high density of states
near the Brillouin zone boundary. Thus, near the zone boundary, more electrons
can be accommodated per unit energy range, or to say this another way, there will
be increasingly more k vectors with approximately the same energy. This causes
the constant energy surfaces to be pulled out in the direction of the Brillouin zone
boundary [see Fig. 4.6]. This “pulling out” effect follows both from the weak binding
and tight binding approximations and results in a high density of states near the zone
boundary that was also seen in Fig. 4.5. The effect is more pronounced as the strength
of the periodic potential (Vr) increases.

If the periodic potential is sufficiently strong so that the resulting bandgap at the
zone boundary straddles the Fermi level, as occurs at the L–point in copper, the
Fermi surface makes contact with the Brillouin zone boundary. The resulting Fermi
surfaces are called open surfaces because the Fermi surfaces between neighboring
Brillouin zones are connected to each other. The electrons associated with the necks
of the Fermi surface are contained in the electron pocket shown in the E(k) diagram
away from the L–point in the LW direction which is ⊥ to the {111} direction in
reciprocal space. The copper Fermi surface shown in Fig. 4.6 bounds electron states.
Hole pockets are formed in copper and constitute the unoccupied space between the
electron surfaces in the extended zone scheme. Direct evidence for hole pockets is
provided by Fermi surface measurements to be described later in this book.

From the E(k) diagram for copper [Fig. 4.5b] we see that the threshold for
optical interband transitions occurs for photon energies large enough to take an elec-
tron at constant k–vector from a filled 3d level to an unoccupied state above the Fermi
level. Such interband transitions can be made near the L–point in the Brillouin zone
[as shown in Fig. 4.5b]. Because of the high density of initial states in the d–band,
these transitions will be quite intense. The occurrence of these interband transitions
at ∼2 eV gives rise to a large absorption of electromagnetic energy in this photon
energy region. The reddish color of copper metal is thus due to a higher reflectivity
for photons in the red (below the threshold for interband transitions) than for photons
in the blue (above this energy threshold).
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4.2.3 Polyvalent Metals

The simplest example of a polyvalent metal is aluminum with 3 electrons/atom and
having a 3s23p electronic configuration for its three valence electrons. (As far as
the number of electrons/atom is concerned, two electrons/atom completely fill a
non-degenerate bands—one for spin up, the other for spin down.) Because of the
partial filling of the 3s23p6 bands, aluminum is a metal. Aluminum crystallizes
in the FCC structure so we can use the same notation as for the Brillouin zone
in Fig. 4.5a. The electronic energy bands for aluminum (see Fig. 4.7) are very free
electron–like. This follows from the small magnitudes of the band gaps relative to
the band widths on the energy band diagram shown in Fig. 4.7. The lowest valence
band shown in Fig. 4.7 is the 3s band which can be traced by starting at zero energy
at the Γ point (k = 0) and going out to X4 at the X–point, to W3 at the W–point, to
L ′
2 at the L–point and back to Γ1 at the Γ point (k = 0). Since this 3s band always

lies below the Fermi level, it is completely filled, containing 2 electrons. The third
valence electron partially occupies the second and third p–bands (which are more
accurately described as hybridized 3p–bands with some admixture of the 3s bands
with which they hybridize). From Fig. 4.7 we can see that the second band is partly
filled; the occupied states extend from the Brillouin zone boundary inward toward
the center of the zone; this can be seen in going from the X point to Γ , on the curve
labeled Δ1. Since the second band starts near the center of the Brillouin zone remain
unoccupied, the volume enclosed by the Fermi surface in the second band is a hole
pocket. The aluminum Fermi surface showing the holes in Zone 2 is presented in

Fig. 4.7 Electronic energy band diagram for aluminum which is metallic and crystallizes in a FCC
structure. The dashed lines correspond to the free electron model and the solid curves include the
effect of the periodic potential V (r). Reprinted with permission from Physical Review, vol. 125 p.
109 Copyright (1962) American Physical Society
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Fig. 4.8 The three valence electrons for aluminum occupy three Brillouin zones. Zone 1 is com-
pletely occupied. Zone 2 in nearly filled with electrons and is best described as a hole surface,
where the holes occupy the interior portion of the second zone, shown in the figure. Zone 3 is a
complex electron structure with occupied electron states near the Brillouin zone boundaries, and
the occupied states are shown only in part for clarity. Reprinted with permission from Physical
Review, vol. 118 p. 1190 Copyright (1960) American Physical Society

Fig. 4.8. Because E(k) for the second band in the vicinity of EF is free electron–like,
the masses for the holes are approximately equal to the free electron mass.

The 3rd zone electron pockets are small and are found around the K– and W–
points as can be seen in Fig. 4.7. These electron pockets are k space volumes that
enclose electron states (see Fig. 4.8), and because of the large curvature of E(k),
these electrons have relatively small effective masses. Figure4.7 gives no evidence
for any 4th zone pieces of Fermi surface, and for this reason we can conclude that
all the electrons are either in the second band or in the third zone pieces of Fermi
surface. Therefore we conclude that the total electron concentration is sufficient to
exactly fill a half of the volume of the Brillouin zone VBZ :

Ve,2 + Ve,3 = VBZ

2
. (4.2)

With regard to the second zone, it is partially filled with electrons and the rest of the
zone is empty (since holes correspond to the unfilled states):

Vh,2 + Ve,2 = VBZ , (4.3)

so that the volume that is empty slightly exceeds the volume that is occupied. There-
fore we focus attention on the more dominant second zone holes. Substitution of
(4.2) into (4.3) then yields volumes for the second zone holes and the third zone
electrons

Vh,2 − Ve,3 = VBZ

2
(4.4)

where the subscripts e, h on the volumes in k space refer to electrons and holes.
This notation also contains the Brillouin zone (B.Z.) index which is given for each
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of the carrier pockets in the B.Z. Because of the small masses and high mobility of
the 3rd zone electrons, they play a more important role in the transport properties of
aluminum than would be expected from their small numbers.

From the E(k) diagram in Fig. 4.7 we see that at the same k–points (near the
K– andW–points in the Brillouin zone) there are occupied 3s levels and are unoccu-
pied 3p levels are separated by ∼1eV. From this we conclude that optical interband
transitions should be observable in the 1eV photon energy range. Such interband
transitions are in fact observed experimentally and are responsible for the departures
from the nearly perfect reflectivity of aluminum mirrors that can be made in the
vicinity of 1 eV.

4.3 Semiconductors

Assume that we have a semiconductor at T = 0 K with no impurities. The Fermi
level will then lie within a band gap. Under these conditions, there are no carri-
ers, and there is no Fermi surface. We now illustrate the energy band structure for
several representative semiconductors in the limit of T = 0K and no impurities.
Semiconductors having no impurities or defects and no carriers are called intrinsic
semiconductors.

4.3.1 PbTe

In Fig. 4.9 we illustrate a simplified version of the electronic energy bands for PbTe.
This direct gap semiconductor [see Fig. 4.10a] is chosen initially for illustrative pur-
poses because the energy bands in the valence and conduction bands that are of most
importance in determining the physical properties of PbTe when this semiconduc-
tor is non-degenerate. Therefore, the energy states in PbTe near EF are simpler to
understand than for the more common semiconductors silicon and germanium, and
for many of the III–V and II–VI compound semiconductors, for which the valence
band is degenerate.

In Fig. 4.9, we show the position of EF for the idealized conditions of the intrin-
sic (no carriers at T = 0) semiconductor PbTe. From a diagram like this, we can
obtain a great deal of information which could be useful for making semiconductor
devices. For example, we can calculate the effective masses from the band curva-
tures, and also the electron velocities from the slopes of the E(k) dispersion relations
shown in Fig. 4.9. PbTe is also a commonly used thermoelectric material, and for
this reason density functional theory based calculations of the band structure have
been made (Hummer et al. 2007). Since 2015, this material has become interesting
for its topological behaviors.

Suppose we add impurities (e.g., donor impurities) to PbTe. The donor impurities
will raise the Fermi level and an electron pocket will eventually be formed in the
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Fig. 4.9 a Energy band structure and density of states for PbTe obtained from an empirical
pseudopotential calculation. The inset shows the localization of pockets at the Brillouin zone.
Reprinted with permission from Physical Review B, vol. 11 p. 651 Copyright (1962) American
Physical Society

Fig. 4.10 Optical absorption processes for a a direct band gap semiconductor without doping, and
for b an indirect band gap semiconductor where the optical transition is from one point in the BZ
to another point and a phonon is necessary to conserve energy and momentum, and c a direct band
gap semiconductor with the conduction band filled to the level shown

L−
6 conduction band about the L–point (see Fig. 4.9). This electron pocket has been

described in terms of an ellipsoidal Fermi surface because the band curvature is
different as we move away from the L point in the LΓ direction as compared with
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the band curvature as we move away from L point on the Brillouin zone boundary
in other directions (e.g., the LW direction). Figure 4.9 shows E(k) from L to Γ

corresponding to the (111) direction. Since the effective masses

1

m∗
i j

= 1

�2

∂2E(k)

∂ki∂k j
(4.5)

for both the valence and conductionbands in the longitudinal LΓ direction are heavier
than in the LK and LW directions, the ellipsoids of revolution approximating the
carrier pockets are prolate for both holes and electrons. The L and Σ point room
temperature band gaps are 0.311 and 0.360 eV, respectively. For the electrons, the
effective mass parameters arem⊥ = 0.053me andm‖ = 0.620me. The experimental
hole effective masses at the L point are m⊥ = 0.0246me and m‖ = 0.236me and at
the Σ point, the hole effective mass values are m⊥ = 0.124me and m‖ = 1.24me.
Thus for the L-point carrier pockets, the semi-major axis of the constant energy
surface along LΓ will be longer than along LK . From the E(k) diagram for PbTe in
Fig. 4.9, one would expect that hole carriers could be thermally excited to a second
band at the Σ point, which is indicated on the E(k) diagram. At room temperature,
these Σ point hole carriers contribute significantly to the transport properties.

Because of the small gap (0.311 eV) in PbTe at the L–point, the threshold for
interband transitions will occur at infrared frequencies. PbTe crystals can be prepared
either p–type or n–type, but they are never perfectly stoichiometric. Therefore, at
room temperature the Fermi level EF often lies in either the valence or conduction
band for actual PbTe crystals. Since optical transitions conserve wavevector, the
interband transitions will occur at kF [see Fig. 4.10c] and at a higher photon energy
than for the undoped PbTe. This increase in the threshold energy for interband tran-
sitions in degenerate semiconductors (where EF lies within either the valence or
conduction bands) is called the Burstein shift.

4.3.2 Germanium

We will next look at the E(k) relations for: (1) the group IV semiconductors which
crystallize in the diamond structure and (2) the closely related III–V compound
semiconductors which crystallize in the zinc blende structure (see Fig. 4.11 for a
schematic diagram for common group IV and III–V semiconductors). These semi-
conductors have degenerate valence bands at k = 0 [see Fig. 4.11d] and for this
reason have more complicated E(k) relations for hole carriers than is the case for the
lead salts discussed in Sect. 4.3.1 for a simplified version of Ge that neglects the spin-
orbit interaction. The E(k) diagram for germanium is shown in Fig. 4.12. Ge is an
indirect gap semiconductor with a bandgap occurring between the top of the valence
band at Γ25′ , and the bottom of the lowest conduction band at L1. Since the valence
and conduction band extrema occur at different points in the Brillouin zone, Ge is
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Fig. 4.11 Important details of the band structure of typical group IV semiconductors (like Si and
Ge) and for various III–V semiconductors. Reprinted with permission from Physical Review B,
vol. 10 p. 5095 Copyright (1974) American Physical Society

an indirect gap semiconductor [see Fig. 4.10b]. Using the same arguments as were
given in Sect. 4.3.1 for the Fermi surface of PbTe, we see that the constant energy
surfaces for electrons in germanium are ellipsoids of revolution [see Fig. 4.11c]. As
for the case of PbTe, the ellipsoids of revolution are elongated along Γ L which is
the heavy mass direction in this case. Since the multiplicity of L–points is 8, we
have 8 half–ellipsoids of this kind within the first Brillouin zone, just as for the case
of PbTe. By translation of these half–ellipsoids by a reciprocal lattice vector, we
can form 4 full–ellipsoids. The E(k) diagram for germanium (see Fig. 4.12) further
shows that the next highest conduction band above the L point minimum is at the
Γ –point (k = 0) and after that along the Γ X axis at a point commonly labelled as a
Δ–point. Because of the degeneracy of the highest valence band, the Fermi surface
for holes in germanium is more complicated than for electrons. The lowest direct
band gap in germanium is at k = 0 between the Γ25′ valence band and the Γ2′ con-
duction band. From the E(k) diagram we note that the electron effective mass for
the Γ2′ conduction band is very small because of the high curvature of the Γ2′ band
about k = 0, and this effective mass is isotropic so that the constant energy surfaces
are spheres.
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Fig. 4.12 a Electronic energy band structure of Ge without spin-orbit interaction. Reprinted with
permission from Physical Review B, vol. 70, p. 235204 Copyright (2004) American Physical Soci-
ety. b The electronic energy bands of Ge near k = 0 when the spin-orbit interaction is included.
Reprinted with permission from Journal of Chemical Physics, vol. 101 p. 1607 Copyright (1994)
American Institute of Physics

Fig. 4.13 Illustration of the
indirect emission of light due
to carriers and phonons in
Ge. [hν is the photon energy;
ΔE is the energy delivered
to an electron; Ep is the
energy delivered to the
lattice (phonon energy)]

The optical properties for germanium show a very weak optical absorption for
photon energies corresponding to the indirect gap (see Fig. 4.13). Since the valence
and conduction band extrema occur at a different k–point in the Brillouin zone, the
indirect gap excitation requires a phonon to conserve crystal momentum. Hence the
threshold for this indirect transition is

(�ω)threshold = EL1 − EΓ25′ − Ephonon. (4.6)

The optical absorption for germanium increases rapidly above the photon energy
corresponding to the direct band gap EΓ2′ – EΓ25′ , because of the higher probability
for the direct optical excitation process. However, the absorption here remains low
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Fig. 4.14 Electronic energy
band structure of Si.
Reprinted with permission
from Physical Review B, vol.
70 p. 235204 Copyright
(2004) American Physical
Society

compared with the absorption at yet higher photon energies because of the low den-
sity of states for the Γ –point transition, as seen from the E(k) diagram. Very high
optical absorption, however, occurs for photon energies corresponding to the energy
separation between the L3′ and L1 bands. This energy band separation is approx-
imately the same for a large range of k values, thereby giving rise to a very large
joint density of states (the number of states with constant energy separation per unit
energy range). A large joint density of states arising from the tracking of conduction
and valence bands is found for germanium, silicon and the III–V compound semi-
conductors, and for this reason these materials tend to have high dielectric constants
(to be discussed in Part III of this book which focuses on optical properties).

4.3.3 Silicon

From the energy band diagram for silicon shown in Fig. 4.14, we see that the energy
bands of Si are quite similar to those for germanium. E(k) for Si and Ge, however,
differ in detail. For example, in the case of silicon, the electron pockets are formed
around aΔ point located along theΓX (100) direction. For silicon there are 6 electron
pockets within the first Brillouin zone instead of the 8 half–pockets which occur in
germanium. The constant energy surfaces are again ellipsoids of revolution with a
heavy longitudinal mass and a light transverse effective mass [see Fig. 4.11e]. The
second type of electron pocket that is energetically favored is about the L1 point, but
to fill electrons there, we would need to raise the Fermi energy by ∼1eV for Si.

Silicon is of course the most important semiconductor for device applications and
is at the heart of semiconductor technology for transistors, integrated circuits, and
many electronic devices. The optical properties of silicon also havemany similarities
to those in germanium, but show differences in detail. For Si, the indirect gap [see
Fig. 4.10b] occurs at∼1eVand is between theΓ25′ valenceband and theΔ conduction
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Fig. 4.15 a Plot of theoretical density of states in the valence and conduction bands of silicon, and
b the corresponding E(k) curves showing the symbols for the high symmetry points of the band
structure. Reprinted with permission from Physical Review B, vol. 14 p. 556 Copyright (1976)
American Physical Society

band extrema. Just as in the case for germanium, strong optical absorption occurs for
large volumes of the Brillouin zone at energies comparable to the L3′ → L1 energy
separation for germanium, because of the “tracking” of the valence and conduction
bands in momentum space. The density of electron states for Si covering a wide
energy range is shown in Fig. 4.15a, and the corresponding energy band diagram is
shown in Fig. 4.15b. Most of the features in the density of states can be identified
from the band model, as is shown in Fig. 4.15a for Si.

4.3.4 III–V Compound Semiconductors

Another important class of semiconductors is the III–V compound semiconductors
which crystallize in the zinc blende structure; this structure is like the diamond
structure except that the two atoms/unit cell are of a different chemical species.
The III–V compounds also have many practical applications, such as semiconductor
lasers for fast electronics and communications, GaAs in light emitting diodes, and
InSb for infrared detectors. In Fig. 4.16 the E(k) diagram for GaAs is shown and we
see that the electronic levels are very similar to those of Si and Ge. One exception
is that the lowest conduction band for GaAs is at k = 0 so that both valence and
conduction band extrema are at k = 0. Thus GaAs is a direct gap semiconductor
[see Fig. 4.10a], and for this reason, GaAs shows a stronger andmore sharply defined
optical absorption threshold than Si or Ge. Figure4.11b shows a schematic of the
conduction bands for GaAs. Here we see that the lowest conduction band for GaAs
has high curvature and therefore a small effective mass that is noteworthy. This
effective mass is isotropic so that the constant energy surface for electrons in GaAs
is a sphere and there is just one such sphere in the Brillouin zone. The next lowest
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Fig. 4.16 Electronic energy
band structure of the III–V
compound GaAs. Reprinted
with permission from
Physical Review B, vol. 14
p. 556 Copyright (1976)
American Physical Society

Fig. 4.17 Electronic energy
band structure of the III–V
compound InSb. Reprinted
with permission from
Physical Review B, vol. 14
p. 556 Copyright (1976)
American Physical Society

conduction band is at a Δ point, and a significant carrier density can be excited into
this Δ point pocket at high temperatures.

The constant energy surface for electrons in the direct gap semiconductor InSb
shown in Fig. 4.17 is likewise a sphere, because InSb is also a direct gap semicon-
ductor. InSb differs from GaAs insofar as InSb has a very small band gap (∼0.2eV),
occurring in the infrared. Both direct and indirect band gap materials are found in the
III–V compound semiconductor family. Except for optical phenomena close to the
band gap, these compound semiconductors all exhibit very similar optical properties
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Fig. 4.18 a Electronic energy band structure of gray tin, including the spin-orbit interaction. b
Detailed diagram of the energy bands of gray tin near k = 0, including details about the spin-orbit
interaction. The Fermi level goes through the degeneracy point between the filled valence band
and the empty conduction band in the idealized model for gray tin at Γ = 0. The Γ −

7 hole band
has the same symmetry as the conduction band for Ge when spin–orbit interaction is included, as
shown in Fig. 4.12b. The Γ +

7 hole band has the same symmetry as the “split–off” valence band for
Ge when spin–orbit interaction is included. Reprinted with permission from IEEE Proceedings-I
Communications Speech and Vision, vol. 129 p. 189 Copyright (1982) IEEE

which are associated with the band-tracking phenomena, whereby an energy band
in the valence band and another in the conduction band are separated by a similar
energy over a large range of k values.

4.3.5 Zero Gap Semiconductors – Gray Tin

It is also possible to have a so-called zero gap semiconductor material. An example of
such amaterial is gray tinwhich also crystallizes in the diamond structure. The energy
bandmodel for gray tin including spin–orbit interaction is shown inFig. 4.18a.On this
diagram the zero gap occurs between the Γ8+ valence band and the Γ8− conduction
band, and the Fermi level runs right through this degeneracy point between these
bands. Spin–orbit interaction (to be discussed later in this book) is very important
for gray tin in the region of the k = 0 band degeneracy. A detailed diagram of the
energy bands near k = 0 and including the effect of spin–orbit interaction is shown
in Fig. 4.18b. In gray tin the effective mass for the conduction band is much lighter
than for the valence band, and this effect can be clearly seen by the band curvatures
shown in Fig. 4.18b.

Optical transitions inFig. 4.18b, labeledB, occur in the far infrared spectral region.
These transitions occur from the upper valence band to the conduction band. In
the near infrared, interband transitions labeled A are induced from the Γ −

7 valence
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band to the Γ +
8 conduction band. We note that gray tin is classified as a zero gap

semiconductor rather than a semimetal (see Sect. 4.4) because there are no band
overlaps in a zero-gap semiconductor with interband transitions occurring anywhere
in theBrillouin zone. Because of the zero band gap in grey tin, impurities play amajor
role in determining the position of the Fermi level. Gray tin is normally prepared
n-type which means that there are some electrons present in the conduction band (for
example, a typical electron concentration would be 1015/cm3 which amounts to less
than 1 carrier/107 atoms).

4.3.6 Transition Metal Dichalcogenides, Such as MoS2
and WS2

The absence of an intrinsic band gap in graphene presents a challenge for the use of
graphene in electronic and energy conversion devices. As a result, other 2D layered
materials with finite band gap energies have begun to receive increasing attention.
Of particular interest are the layered transition metal dichalcogenides, such as MoS2
and WSe2. While bulk MoS2 is an indirect band gap semiconductor with a band gap
of 1.2eV, quantum confinement increases the indirect band gap of bulkMoS2 beyond
the direct band gap at the K-point in the Brillouin zone, as shown in Fig. 4.19a. As a
result, monolayerMoS2 is a direct band gap semiconductor with a band gap of 1.9eV
and the luminescence quantum efficiency of atomically thin MoS2 is four orders of
magnitude higher than for bulk MoS2. Monolayer crystals of other transition metal
dichalcogenides, such as WS2 and WSe2, also shift to direct band gap semiconduc-
tors from their indirect bulk counterparts, as shown in Fig. 4.19b. These monolayer
crystals have created a new class of direct band gap semiconductors with promising
optoelectronic properties, and these have received a large amount of international
attention.

4.3.7 Molecular Semiconductors – Fullerenes

Other examples of semiconductors are molecular solids such as C60 (see Fig. 4.20).
For the case of solid C60, we show in Fig. 4.20a a C60 molecule, which crystallizes
in a FCC structure with four C60 molecules per conventional simple cubic unit cell.
A small distortion of the bonds, lengthening the C–C bond lengths of the single
bonds to 1.46Å and shortening the double bonds to 1.40Å, stabilizes a band gap
of ∼1.5eV [see Fig. 4.20b]. In this semiconductor, the energy bandwidths are very
small compared with the band gaps, so that this material can be considered as an
organic molecular semiconductor. The transport properties of C60 differ markedly
from those for conventional group IV or III–V semiconductors, which have much
wider band widths.
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Fig. 4.19 Band structures calculated from first-principles density functional theory (DFT) for bulk
and monolayer MoS2 (a) and WS2 (b). Reprinted with permission from Nature Nanotechnology,
vol. 7, p. 699 (2012)

Fig. 4.20 a Structure of the icosahedral C60 molecule, and b the calculated one-electron electronic
energy band structure of FCC solid C60. The Fermi energy lies between the occupied valence levels
and the empty conduction levels. Reprinted with permission from the International Journal of
Quantum Chemistry, vol. 54 p. 265 Copyright (1995) Wiley
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4.4 Semimetals

Another type of material that commonly occurs in nature is the semimetal. Semimet-
als have exactly the correct number of electrons to completely fill an integral number
of Brillouin zones. Nevertheless, in a semimetal the highest occupied Brillouin zone
is not filled up completely, since some of the electrons find lower energy states in
“higher” zones (see Fig. 4.2). For semimetals the number of electrons that spill over
into a higherBrillouin zone is exactly equal to the number of holes that are left behind.
This is illustrated schematically in Fig. 4.21awhere a two-dimensional Brillouin zone
is shown and a circular Fermi surface of equal area is inscribed. Here we can easily
see the electrons in the second zone at the zone edges and the holes at the zone
corners that are left behind in the first zone. Translation by a reciprocal lattice vector
brings two pieces of the electron surface together to form a surface in the shape of a
lens, and the 4 pieces at the zone corners form a rosette shaped hole pocket. Typical
examples of semimetals are bismuth and graphite. For these semimetals the carrier
density is very low, on the order of one carrier/106 atoms.

The carrier density of a semimetal is thus not very different from that which
occurs in doped semiconductors, but the behavior of the conductivity σ(T ) as a
function of temperature is very different. For intrinsic semiconductors, the carriers
which are excited thermally contribute significantly to conduction. Consequently, the
conductivity tends to rise rapidly with increasing temperature. For a semimetal, the
carrier concentration does not change strongly with temperature because the carrier
density is determined by the band overlap. Since the electron scattering by lattice
vibrations increases with increasing temperature, the conductivity of semimetals
tends to fall as the temperature increases.

4.4.1 Graphene

Graphene is a special case of a semimetal. It consists of a single atomic layer and
its electronic structure was theoretically investigated in 1947 in a pioneering work
of Wallace. A breakthrough in carbon science was the isolation of graphene single
layers by the micromechanical cleavage of graphite which allowed a series of pio-
neering experiments to be performed, thus revealing striking physical phenomena in
graphene, such as ballistic transport, and quantum Hall effect at room temperature
and typical relativistic phenomena, such as the Berry phase and the Klein paradox.
In graphene, the electronic dispersion relation E(k) is linear in k and isotropic near
the K point, thus forming the so called Dirac cone. In a neutral graphene system,
the valence and conduction bands touch each other at the six K and K

′
points (see

Fig. 3.11) in the Brillouin zone which defines the Dirac point or the Fermi surface.

http://dx.doi.org/10.1007/978-3-662-55922-2_3
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Fig. 4.21 a Schematic diagram of a semimetal in two dimensions. b Schematic diagram of the
energy bands E(k) of bismuth showing electron pockets at the L point and a hole pocket at the T
point. The T point is the point at the Brillouin zone boundary in the {111} direction along which
a stretching distortion occurs in real space, and the L points refer to the 3 other equivalent {11̄1̄},
{1̄11̄}, and {1̄1̄1} directions, before the distortions are introduced

4.4.2 Bismuth

A schematic diagram of the energy bands of the semimetal bismuth is shown in
Fig. 4.21b. In the absence of external doping, electron and hole carriers exist in
bismuth in equal numbers but at different locations in the Brillouin zone. For Bi,
electrons are at the L–point, and holes are at the T –point [see Fig. 4.21b]. The crystal
structure for Bi can be understood from the NaCl structure by considering a very
small displacement of the Na FCC structure relative to the Cl FCC structure along
one of the body 111 diagonals and an elongation of that body diagonal relative to
the other 3 body diagonals. The special {111} direction corresponds to T − L in the
Brillouin zone (see Fig. 4.21b), while the other three {111} directions are labelled in
this figure as T − L .

Instead of a band gap between the valence and conduction bands (as occurs for
semiconductors), semimetals are characterized by a band overlap in the meV range.
In bismuth, a small band gap also occurs at the L–point between the conduction
band and a lower filled valence band. Because the coupling between these L-point
valence and conduction bands is very strong, some of the effective mass components
for the electrons in bismuth are anomalously small. As far as the optical properties
of bismuth are concerned, bismuth behaves much like a metal with a high reflectivity
at low frequencies due to the presence of intrinsic high mobility free carriers.

http://dx.doi.org/10.1007/978-3-662-55922-2_4
http://dx.doi.org/10.1007/978-3-662-55922-2_4
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4.5 Insulators

The electronic structure of insulators is similar to that of semiconductors, in so far
as both insulators and semiconductors have a band gap separating the valence and
conduction bands. However, in the case of insulators, the band gap is so large that
thermal energies are not sufficient to excite a significant number of carriers across
the band gap.

Even in insulators there is often a measurable electrical conductivity. For these
materials, the band electronic transport processes become less important relative
to charge hopping from one atom to another by over-coming a potential barrier.
Ionic conduction can also occur in insulating ionic crystals. From a practical point
of view, one of the most important applications of insulators is for the control of
electrical breakdown phenomena.

The principal experimental methods for studying the electronic energy bands
depend on the nature of the solid. For insulators, the optical properties are the most
important, while for semiconductors both optical and transport studies are important.
For metals, optical properties are less important and Fermi surface studies become
more important.

In the case of insulators, electrical conductivity can arise through the motion of
lattice ions as they move from one lattice vacancy to another, or from one interstitial
site to another. Ionic conduction therefore occurs through the presence of lattice
defects, and is promoted in materials with open crystal structures. In ionic crystals,
there are relatively few mobile electrons or holes even at high temperature, so that
conduction in these materials is predominantly due to the motions of ions.

Ionic conductivity (σionic) is proportional both to the density of lattice defects
(vacancies and interstitials) and to the diffusion rate, so that we can write

σionic ∼ e−(E+E0)/kBT (4.7)

where E0 here denotes the activation energy for ionic motion and E is the energy
for the formation of a defect (a vacancy, a vacancy pair, or an interstitial). Being
an activated process, ionic conduction is enhanced at elevated temperatures. Since
defects in ionic crystals can be observed visibly as the migration of color through
the crystal, ionic conductivity can be distinguished from electronic conductivity by
comparing the transport of charge with the transport of mass, as can, for example, be
measured by the amount of material that is plated out on electrodes in contact with
the ionic crystal.

4.5.1 Rare Gas and Ionic Crystals

The simplest insulator is a solid formed of rare gas atoms. An example of a rare
gas insulator is solid argon, which crystallizes in the FCC structure with one Ar
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Fig. 4.22 Electronic energy band structure of Argon. Reprinted with permission from Physical
Review B, Vol. 1 p. 3464 Copyright (1970) American Physical Society

atom/primitive unit cell. With an atomic configuration 3s23p6, argon has filled 3s
and 3p bands which are easily identified in the energy band diagram in Fig. 4.22.
These occupied bands have very narrow bandwidths compared to their band gaps and
are therefore well described by the tight binding approximation. Figure4.22 shows
that the higher energy states forming the conduction bands (the hybridized 4s and
3d bands) show more dispersion than the more tightly bound valence band states.
The band diagram (Fig. 4.22) shows argon to have a direct band gap at the Γ point
which is about 1 Rydberg or 13.6 eV. Although the 4s and 3d bands have similar
energies, identification with the atomic levels can easily be made near k = 0 where
the lower lying Γ1 4s-band has considerably more band curvature than the 3d levels
which are easily identified because of their degeneracies [the so called three-fold tg
(Γ25′) and the two-fold eg (Γ12) crystal field levels for d-bands in a cubic crystal].

Another example of an insulator formed from a closed shell configuration is found
in Fig. 4.23. Here the closed shell configuration results from charge transfer, as occurs
in all ionic crystals. For example in the ionic crystal LiF (or in other alkali halide
compounds which have a fcc structure), the valence band is identified with the filled
anion orbitals (fluorine p–orbitals in this case) and at much higher energy, the empty
cation conduction band levels will lie (lithium s–orbitals, in this case). Because of the
wide band gap separation in the alkali halides between the valence and conduction
bands, such materials are transparent at optical frequencies.
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Fig. 4.23 Band structure of
the alkali halide insulator
LiF. This ionic crystal is used
extensively for UV optical
components because of its
large band gap. The inset
shows the Brillouin zone of
LiF and the line symmetry
used for plotting the energy
dispersion relations.
Reprinted with permission
from Physical Review B, vol.
21 p. 799 Copyright (1980)
American Physical Society

4.5.2 Boron Nitride

In Chap.1, the real space and reciprocal space lattices were given for the 2D
hexagonal lattice of boron nitride (BN) (see Fig. 1.6b). Two-dimensional hexagon
BN is an insulator with a band gap of 5.8eV. The electronic band structure and the
corresponding Brillouin zone of 2D hexagonal boron nitride is shown in Fig. 4.24.
Here, a direct band gap can be seen at the P-point (or K-point) in the Brillouin zone.
This corresponds to the same point at which the conduction and valence band of
graphene touch each other, and in this case the band gap is opened because of the
breaking symmetry of the A and B sublattices.

4.5.3 Wide Bandgap Semiconductors

Insulating behavior can also occur for wide bandgap semiconductors with covalent
bonding, such as diamond, ZnS andGaP (see Fig. 4.25). The E(k) diagrams for these
materials are very similar to the dispersion relations for typical III–V semiconducting
compounds and for the group IV semiconductors silicon and germanium; the main

http://dx.doi.org/10.1007/978-3-662-55922-2_1
http://dx.doi.org/10.1007/978-3-662-55922-2_1
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Fig. 4.24 Two–dimensional band structure and corresponding Brillouin zone of hexagonal boron
nitride (h-BN). Reprinted with permission from Physical Review B, vol. 30 p. 6051 Copyright
(1984) American Physical Society

Fig. 4.25 Electronic energy band structure of a cubic ZnS, a direct gap semi–insulating II–VI
semiconductor, where the lined region defines the bandgap occurring at different wavevectors, and
in b the band structure for cubic GaP, an indirect gap semi–insulating III–V semiconductor is
shown. These wide bandgap semiconductors are of interest for their optical properties. Reprinted
with permission from Physical Review, vol. 179 p. 740 Copyright (1969) and Physical Review B,
vol. 14 p. 556 Copyright (1976) American Physical Society
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Fig. 4.26 Band structure and unit cell of ReO3. (L.F. Mattheiss Phys. Rev. 181, 987, (1969))

difference, however, is the large band gap separating valence and conduction bands
in hexagonal crystals like h-BN.

Problems

4.1 Consider the diagram for the electronic dispersion relations E(k) for ReO3

shown below. The atomic configuration for Re is 4 f 145d56s2 and for O is 2s22p4,
and the ReO3 unit cell and Brillouin zone are shown in Fig. 4.26.

(a) How many atoms per unit cell are there (see diagram in Fig. 4.26))?
(b) Which bands are associated with the Re and which with the oxygen?
(c) Is ReO3 a semiconductor or a metal?
(d) Where in theBrillouin zone are the carrier pockets located?Estimate the effective

masses for the carriers qualitatively.
(e) How many electrons are contained in the carrier pockets?
(f) What is the shape of the Fermi surface?
(g) Where in the Brillouin zone does the lowest energy optical transition occur? Is

this transition expected to be strong or weak? Why?

4.2 Consider the band structure diagram given below for tellurium which crystal-
lizes in a hexagonal structure with three Te atoms/unit cell. The atomic configuration
for tellurium is 5s25p4. (Note: in the diagram the authors use Z rather than A in the
hexagonal Brillouin zone.)

(a) Sketch the approximate position of the Fermi Level EF on the band diagram and
give your reasons for this placement of EF .
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Fig. 4.27 First Brillouin zone (left) and electronic band structure of tellurium (right)

(b) Indicate which energy bands on the diagram correspond to s, p and d bands. If
the energy bands with these atomic origins are not shown, are they at higher or
lower energy than those shown in the diagram?

(c) From the diagram, where will carrier pockets be formed by thermal excitation?
Identify the carrier pockets for electrons or holes. How many carrier pockets of
each type are there?

(d) From the band diagram, what is the shape of the constant energy surfaces for
electrons and for holes? Along which directions will electrons (holes) have light
effective masses and along which directions will the masses be heavy?

(e) Is tellurium transparent to visible light (λ = 500nm)? Explain! Is the optical
absorption strong or weak at the threshold for optical transitions (e.g., in com-
parison to GaAs)? Explain! (Fig. 4.27)

4.3 MoS2 is a layered material, like graphite, that can be exfoliated to form mono-
layer MoS2 using the Scotch tape? method. The energy band diagrams for bulk and
monolayer MoS2 are shown in Fig. 4.19.

(a) At what point in the Brillouin zone do the band gaps of bulk and monolayer
MoS2 occur?

(b) Do thesematerials (bulk andmonolayerMoS2) have direct or indirect band gaps?
Explain from the E(k) diagram.

(c) Where in the Brillouin zone does the lowest energy optical transition occur in
bulk MoS2 and in monolayer MoS2?

4.4 Figure4.28 shows the energy band diagrams for 3 different types of carbon
nanotubes. Doubly degenerate bands are plotted with bold lines. For each of these
nanotubes

(a) Indicate whether a particular nanotube is metallic or semiconducting.
(b) Where in the Brillouin zone is the band gap?
(c) How many atoms are there in the unit cell?
(d) Estimate the band gap of the semiconducting nanotube?
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Fig. 4.28 One-dimensional energy dispersion relations for a (5,5), b (9,0), and c (10,0) carbon
nanotubes. The energies are normalized by the parameter t = 2.9eV (R. Saito, Physical Properties
of Carbon Nanotubes, Imperial College Press, 1998)

4.5 KMoO3 crystallizes in a cubic perovskite structure, where the atomic electronic
configurations are K: 4s, Mo: 4d55s, and O: 2s22p4. The calculated electronic band
structure is shown in Fig. 4.29. Note 1 Rydberg is 13.6 eV.

(a) Based on the one electron band diagram, is the material a metal, semiconductor
or insulator?

(b) Where is the Fermi level in this material?
(c) Which energy bands at k = 0 (the Γ -point) are derived from oxygen atomic

levels?
(d) Which energy bands at k = 0 are derived from K atomic levels? and which from

Mo atomic levels? Which are hybridized?
(e) What is the shape of the Fermi surface (or surfaces) around k = 0? Are the

carriers at the Fermi level electrons or holes?
(f) Suppose that we could prepare KNbO3 and KZrO3 in the same cubic crystal

structure (Nb: 4d45s and Zr: 4d25s2). What would you expect the shape of the
Fermi surfaces to be in these cases?What is the nature of the electronic transport
for each of the 3 cases (Mo, Nb, & Zr)?

4.6 Consider the E(k) diagram shown (Fig. 4.30) for a skutterudite CoSb3 crystal
and the diagram for the atoms in the unit cell.

(a) How many Co and Sb atoms are there per unit cell?
(b) In the tight binding limit, which bands of Co and which bands of Sb would

you expect to be bonding states and which to be antibonding states? The atomic
configurations for Co and Sb are: Co 3d74s2 and Sb 5s25p3. The band diagram
shown in Fig. 4.30 may provide some clues, but you will need to use physical
arguments beyond what you see in the diagram.
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Fig. 4.29 The calculated electronic band structure of KMoO3. From Mattheiss, L. F. “Energy
Bands for KNiF3, SrTiO3, KMoO3 and KTaO3.”Physical Review B, 6 (1972) 4718

Fig. 4.30 a The skutterudite structure of CoSb3. Black balls represent Co and gray balls represent
Sb. The size of the atoms is arbitrary. b Electronic band structure of the skutterudite CoSb3. From
Sofo, J.O., and G.D. Mahan. “Electronic structure of CoSb3: A narrow-band-gap semiconductor.
”Physical Review B 58.23 (1998): 15620
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Fig. 4.31 a Structure of CoSi2. Black balls represent Co and gray Si. The size of the atoms is arbi-
trary. b Electronic band structure of CoSi2. From Lambrecht, Walter RL, Niels E. Christensen, and
Peter Blöchl. “Electronic structure and properties of NiSi2 and CoSi2 in the fluorite and adamantane
structures.”Physical Review B 36.5 (1987): 2493

(c) Is CoSb3 a semiconductor, semimetal or a metal?
(d) Where are the electron and hole carrier pockets expected to form? What is their

multiplicity within the Brillouin zone?
(e) Do you expect the carriers to have high or low mobility relative to Cu or to Si?

What is the basis for your conclusion?
(f) Upon doping, this material has a high potential for thermoelectric applications.

Can you offer an explanation for why this might occur?

4.7 Find an expression for the Fermi energy EF for the following cases:

(a) a 3D nearly free electron metal like Na which crystallizes in a BCC lattice, with
lattice constant a.

(b) a 3D metal Na0.5K0.5 alloy with the BCC structure where the lattice constant for
Na is a and that for K is b.

(c) a 2D monolayer of Na atoms.
(d) For which case would you expect the carrier mobility to be the greatest and why?

4.8 Consider a two-dimensional (2D) honeycomb lattice (see Fig. 3.10) with two
atoms per unit cell.

(a) Find the smallest unit cell in real space. How many atoms are in a unit cell?
Assume that a carbon atom sits at each corner of the hexagon and that the sheet
is infinite in the plane but only one atomic layer thick.

(b) What is the corresponding unit cell in reciprocal space?
(c) Write an expression for the electronic dispersion relations E(k) for a non-

degenerate band in the 2D honeycomb lattice.
(d) Plot your results in (c) preferably using MATLAB, along the x and y directions.

4.9 Consider the picture for the cubic crystal CoSi2 shown (Fig. 4.31). The atomic
configuration for a free Co atom is 3d74s2 and for a Si atom is 3s23p2 (Fig. 4.31).

http://dx.doi.org/10.1007/978-3-662-55922-2_3
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Fig. 4.32 Electronic band structure of HfC. FromWeinberger, P., et al. “On the electronic structure
of HfC, TaC and UC.”Journal of Physics C: Solid State Physics 12.5 (1979): 801

(a) From the band diagram, is CoSi2 a metal, semiconductor, semimetal, or insula-
tor? Why?

(b) Find the crystal structure for CoSi2 using your favorite reference, e.g., Wyckoff.
(c) Indicate at the zone center which bands are Co d-bands.
(d) Which are the Si derived s and p-bands at the center of the Brillouin zone?
(e) Where are the holes?
(f) Where are the electrons?
(g) Do you expect CoSi2 to be a high mobility material? Why?
(h) What is the threshold for optical transitions? Will the intensity for these optical

transitions be small or large, and why?

4.10 The diagram (Fig. 4.32) shows the electron energy bands ofHfCwhich crystal-
lizes in theNaCl structure (two interpenetrating fcc lattices). The free atom electronic
configurations which constitute the valence and conduction bands in the solid are
5d26s2for hafnium and 2s22p2 for carbon.

(a) Is hafnium carbide (HfC) a metal, semiconductor, or an insulator? Explain the
reason for your answer.

(b) How many atoms are in its primitive unit cell?
(c) How many valence electrons are there per unit cell? Enough to fill how many

energy bands?
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(d) Identify in the diagram (e.g., at the Γ point) the carbon 2s and 2p bands; the
hafnium 5d and 6s bands. Are there other bands of importance in the diagram?
If so, what is their identification?

(e) Using the results in the last part of this problem, state which bands are fully
occupied, totally empty, or partly filled. Where then in the Brillouin zone are the
electrons and the holes located?

(f) How many carrier pockets are there about k = 0 and what is the shape of their
Fermi surfaces? Sketch the (100) cross-section of the Fermi surface.

(g) Indicate on the diagram the lowest energy for optical transitions near k = 0.

Suggested Readings

F. Bassani, G. Pastori Paravicini, Electronic States and Optical Transitions in Solids. Chapter 4
(1993)

R.E. Peierls, Quantum Theory of Solids. Chapter 4
B. Segall, Energy Band of Aluminum. Phys. Rev. B 124, 1797 (1961)
J.C. Slater, Quantum Theory of Atoms and Molecules. Chapter 10

Reference

K. Hummer, A. Gruneis, G. Kresse, Structural and electronic properties of lead chalcogenides from
first principles. Phys. Rev. B 75, 195211 (2007)



Chapter 5
Effective Mass Theory

5.1 Introduction

The effective mass model for a crystalline solid is simple but it is very instructive
for use in discussing the electronic properties of solids because it allows a simple
treatment of the electrons for certain energies and wave vectors (maxima andminima
in E(k) curves) as if the electrons were almost free. In this simple theory, the only
effect of the crystal lattice is to change the mass of the electrons in the sense that,
in the solid, the effective mass of the carrier of electrical charge can be larger or
smaller than the mass of free electron. (In some special cases, such as graphene, this
mass can be zero close to the Dirac points.) Furthermore, this mass also depends
on the direction the electron is moving. Therefore, the effective mass can be used
for describing many electronic properties of the solid state using a classical theory,
just by considering the electrons as having a wavevector dependent effective mass,
which as we will see, carries information about the electronic band structure and its
anisotropy. The fact that, in the solid, electrons have an effective mass different from
that of free electrons is a consequence of a more profound concept, in the sense that
in the solid we should not treat the electron as a classical particle, but rather as a
quantum particle interacting with a periodic potential provided by the lattice.

5.2 Wavepackets in Crystals and the Group Velocity
of Electrons in Solids

In a crystal lattice, the electronic motion is induced by an applied field which is
conveniently described by a wavepacket composed of eigenstates of the unperturbed
crystal. These eigenstates are Bloch functions which reflect the lattice symmetry

ψnk(r) = eik·runk(r) (5.1)

© Springer-Verlag GmbH Germany, DE 2018
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and are associated with an electronic band n, where n is a quantum number. These
wavepackets are solutions of the time-dependent Schrödinger equation

H0ψn(r, t) = i�
∂ψn(r, t)

∂t
(5.2)

where the time independent part of the Hamiltonian H0 can be written as

H0 = p2

2m
+ V (r), (5.3)

where V (r) = V (r + Rn) is a periodic potential reflecting the crystal symmetry of
the lattice. The wave packets ψn(r, t) can be written in terms of the Bloch states
ψnk(r) as

ψn(r, t) =
∑

k

An,k(t)ψnk(r) =
∫

d3k An,k(t)ψnk(r) (5.4)

where we have replaced the sum by an integral over the Brillouin zone, since
the allowed k values for a macroscopic solid are very closely spaced, thus being
appropriately treated as continuous in this approximation. If this HamiltonianH0 is
time-independent, as is often the case, we can write

An,k(t) = An,ke
−iωn(k)t (5.5)

where
�ωn(k) = En(k) (5.6)

and thereby obtain

ψn(r, t) =
∫

d3k An,kunk(r)ei[k·r−ωn(k)t]. (5.7)

We can localize the wavepacket in k-space by requiring that the coefficients An,k be
large only in a confined region of k-space, centered at k = k0. If we now expand the
band energy in a Taylor series around k = k0, we obtain:

En(k) = En(k0) + (k − k0) · ∂En(k)

∂k

∣∣∣∣
k=k0

+ · · · , (5.8)

where we have written k as
k = k0 + (k − k0). (5.9)

Since |k − k0| is assumed to be small compared with Brillouin zone dimensions,
we are justified in retaining only the first two terms of the Taylor expansion in (5.8)
given above. Substitution into (5.4) for the wavepacket yields:



5.2 Wavepackets in Crystals and the Group Velocity of Electrons in Solids 91

ψn(r, t) � ei(k0·r−ωn(k0)t)
∫

d3k An,k unk(r)e
i(k−k0)·

[
r− ∂ωn (k)

∂k t
]

(5.10)

where
�ωn(k0) = En(k0) (5.11)

and

�
∂ωn(k)

∂k
= ∂En(k)

∂k
. (5.12)

The derivative ∂ωn(k)/∂k which appears in the phase factor of (5.10) is evaluated
at k = k0. Except for the periodic function unk(r), (5.10) is in the standard form for
a wavepacket moving with “group velocity” vg

vg ≡ ∂ωn(k)

∂k
, (5.13)

so that

vg = 1

�

∂En(k)

∂k
, (5.14)

while the phase velocity

vp = ωn(k)

k
= ∂En(k)

�∂k
. (5.15)

In the limit of free electrons the group velocity becomes

vg = p
m

= �k
m

(5.16)

and vg = vp in the free electron limit. This result also follows from the above
discussion using

En(k) = �
2k2

2m
(5.17)

∂En(k)

�∂k
= �k

m
. (5.18)

We shall show later that the electron wavepacket moves through the crystal very
much like a free electron, provided that the wavepacket remains localized in k space
during the time interval of interest, for the particular problem under consideration.
Because of the uncertainty principle, the localization of a wavepacket in reciprocal
space implies a delocalization of the wavepacket in real space.

We use wavepackets to describe electronic states in a solid when the crystal is
perturbed in some way (e.g., by an applied electric or magnetic field). We make fre-
quent applications of wavepackets to transport theory (e.g., electrical conductivity).
In many practical applications of transport theory, use is made of the Effective-Mass
Theorem, which is one of the most important results of transport theory.
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We note that the above discussion for the wavepacket is given in terms of the
perfect crystal. In our discussion of the Effective-Mass Theorem we will see that
these wavepackets are also of use in describing situations where the Hamiltonian
which enters Schrödinger’s equation contains both the unperturbed Hamiltonian of
the perfect crystalH0 and the perturbation HamiltonianH ′ arising from an external
perturbation. Common perturbations are applied electric or magnetic fields, or a
lattice defect, or the presence of an impurity atom at a lattice site.

5.3 The Effective Mass Theorem

Weshall nowpresent theEffectiveMass theorem,which is central to the consideration
of the electrical and optical properties of solids. An elementary proof of the theorem
will be given here for a simple but important case, namely a non-degenerate band
which canbe identifiedwith the corresponding atomic statewhere the interactionwith
the lattice is negligible. The theorem can be also discussed from a more advanced
point of view which considers also the case of degenerate bands but this is not
considered here.

For many practical situations, we find a solid material to be present in the
environment of some perturbing field (e.g., an externally applied electric field, or
the perturbation created by an impurity atom or a crystal defect). The perturbation
may be either time-dependent or time-independent and it can be treated in the effec-
tive mass approximation whereby the periodic potential is replaced by an effective
Hamiltonian based on the E(k) relations for the perfect crystal.

Let us start with the time-dependent Schrödinger’s equation

(H0 + H ′)ψn(r, t) = i�
∂ψn(r, t)

∂t
. (5.19)

We then substitute the expansion for the wave packet

ψn(r, t) =
∫

d3k Ank(t)e
ik·runk(r) (5.20)

into Schrödinger’s equation and make use of the Bloch solution

H0e
ik·runk(r) = En(k)eik·runk(r) (5.21)

to obtain:

(H0 + H ′)ψn(r, t) = ∫
d3k[En(k) + H ′]Ank(t)eik·runk(r) = i�(∂ψn(r, t)/∂t)

= i�
∫
d3k Ȧnk(t)eik·runk(r).

(5.22)
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It then follows fromBloch’s theorem that En(k) is a periodic function in the reciprocal
lattice. We can therefore expand En(k) in a Fourier series in the direct lattice

En(k) =
∑

R�

En� e
ik·R� (5.23)

where the R� are lattice vectors. Now consider the differential operator En(−i∇)

formed by replacing k by −i∇

En(−i∇) =
∑

R�

En� e
R�·∇. (5.24)

Consider the effect of En(−i∇) on an arbitrary function f (r). Since eR�·∇ can be
expanded in a Taylor series, we obtain

eR�·∇ f (r) = [1 + R� · ∇ + 1
2(R� · ∇)(R� · ∇) + · · · ] f (r)

= f (r) + R� · ∇ f (r) + 1
2! R�,αR�,β

∂2

∂rα∂rβ
f (r) + · · ·

= f (r + R�).

(5.25)

Thus the effect of En(−i∇) on a Bloch state is to produce En(k) because

En(−i∇)ψnk(r) =
∑

R�

En�ψnk(r+R�) =
∑

R�

En�e
ik·R�eik·runk(r) = En(k)ψnk(r),

(5.26)
since from Bloch’s theorem ψnk(r + R�) can be written as

ψnk(r + R�) = eik·R�

[
eik·runk(r)

]
. (5.27)

Substitution of
En(−i∇)ψnk(r) = En(k)ψnk(r) (5.28)

from (5.26) into Schrödinger’s equation (5.22) yields:

∫
d3k

[
En(−i∇)+H ′

]
Ank(t)e

ik·runk(r) =
[
En(−i∇)+H ′

] ∫
d3k Ank(t)e

ik·runk(r)
(5.29)

so that [
En(−i∇) + H ′

]
ψn(r, t) = i�

∂ψn(r, t)
∂t

. (5.30)

The result of (5.30) is called the effective mass theorem. We observe that the
original crystal Hamiltonian p2/2m + V (r) does not appear in this equation. It has
instead been replaced by an effective Hamiltonian which is an operator formed from
the solution E(k) for the perfect crystal in which we replace k by−i∇. For example,
for the free electron (V (r) ≡ 0)
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En(−i∇) → −�
2∇2

2m
. (5.31)

In applying the effective mass theorem, we assume that E(k) is known either from
the results of a theoretical calculation or from the analysis of experimental results.
What is important here is that once E(k) is known, the effect of various perturbations
on the ideal crystal can be treated in terms of the solution to the energy levels of the
perfect crystal, without recourse to consideration of the full Hamiltonian. In practical
cases, the solution to the effective mass equation is much easier to carry out than the
solution to the original Schrödinger’s equation.

According to the above discussion, we have assumed that E(k) is specified
throughout the Brillouin zone. For many practical applications, the region of
k-space which is of importance is confined to a small portion of the Brillouin zone.
In such cases it is only necessary to specify E(k) in a local region (or regions) and to
localize our wavepacket solutions to these local regions of k-space. Suppose that we
localize the wavepacket around k = k0, and we correspondingly expand our Bloch
functions around k0,

ψnk(r) = eik·runk(r) � eik·runk0(r) = ei(k−k0)·rψnk0(r) (5.32)

where we have noted that unk(r) � unk0(r) has only a weak dependence on k. Then
our wavepacket can be written as

ψn(r, t) =
∫

d3k Ank(t)e
i(k−k0)·rψnk0(r) = F(r, t)ψnk0(r) (5.33)

where F(r, t) is called the amplitude or envelope function and is defined by

F(r, t) =
∫

d3k Ank(t)e
i(k−k0)·r. (5.34)

Since the time dependent Fourier coefficients Ank(t) are assumed here to be large
only near k = k0, then F(r, t) will be a slowly varying function of r, because in this
case

ei(k−k0)r � 1 + i(k − k0) · r + · · · . (5.35)

It can be shown that the envelope function also satisfies the effective mass equation

[
En(−i∇) + H ′

]
F(r, t) = i�

∂F(r, t)
∂t

(5.36)

where we now replace k − k0 in En(k) by −i∇. This form of the effective mass
equation is useful for treating the problem of donor and acceptor impurity states
in semiconductors, where k0 is taken as the wavevector of where the energy band
extremum occurs.
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5.4 Application of the Effective Mass Theorem to Donor
Impurity Levels in a Semiconductor

Suppose that we add an impurity from column V in the Periodic Table to a semi-
conductor such as silicon or germanium, which are both members of column IV of
the periodic table. This impurity atom will have one more electron than is needed to
satisfy the valency requirements for the tetrahedral bonds which the germanium or
silicon atoms form with their 4 valence electrons (see Fig. 5.1).

This extra electron from the impurity atom will be free to wander through the
lattice, subject, of course, to the coulomb attraction of this electron to the ion core
which will have one unit of positive charge. We will consider here the case where we
add just a small number of these impurity atoms so that we may focus our attention
on a single, isolated substitutional impurity atom in an otherwise perfect lattice. In
the course of this discussion we will define more carefully what the limits on the
impurity concentration must be so that the treatment given here is applicable.

Let us also assume that the conduction band of the host semiconductor in the
vicinity of the band “minimum” at k0 has the simple analytic form

Ec(k) � Ec(k0) + �
2(k − k0)2

2m∗ . (5.37)

We can consider this expression for the conduction band level Ec(k) as a special case
of the Taylor expansion of E(k) about an energy band minimum at k = k0. For the
present discussion, E(k) is assumed to be isotropic in k; this typically occurs in cubic
semiconductors with band extrema at k = 0. The quantity m∗ in this equation is the
effective mass for the electrons. We will see that the energy levels corresponding to
the donor electron will lie in the band gap below the conduction band minimum as
indicated in the diagram in Fig. 5.2. To solve for the impurity levels explicitly, we
may use the time-independent form of the effectivemass theorem derived from (5.36)

[
En(−i∇) + H ′

]
F(r) = (E − Ec)F(r). (5.38)

Fig. 5.1 Crystal structure of
diamond, showing the
tetrahedral bonding
arrangement of the carbon
atoms with an Sb+ ion on
one of the diamond lattice
sites and a free donor
electron available for
conduction. Reprinted with
permission from John Wiley
& Sons Inc, Sze and Ng,
Physics of Semiconductor
Devices
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Fig. 5.2 Schematic band diagram showing donor levels in a semiconductor

Equation (5.38) is applicable to the impurity problem in a semiconductor provided
that the amplitude function F(r) is sufficiently slowly varying over a unit cell. In
the course of this discussion, we will see that the donor electron in a column IV
semiconductor (or III–V or II–VI compound semiconductor) will wander over many
lattice sites before being scattered by a lattice defect and therefore this approximation
on F(r) will be justified.

For a singly ionized donor impurity (such as arsenic in germanium), the perturbing
potential H ′ can be represented as a Coulomb potential

H ′ = − e2

εr
(5.39)

where ε is an average dielectric constant of the crystal medium which the donor
electron sees as it wanders through the crystal. Experimental data on donor impurity
states indicate that ε is very closely equal to the low frequency limit of the electronic
dielectric constant ε1(ω)|ω=0,whichwewill discuss extensively in treating the optical
properties of solids (Part III of this book). The above discussion involving an isotropic
E(k) is also appropriate for some semiconductors with a conduction band minimum
at k0 = 0. The Effective Mass equation for the unperturbed crystal is then

En(−i∇) = − �
2

2m∗ ∇2 (5.40)

in which we have replaced k by −i∇.
The donor impurity problem in the effective mass approximation thus becomes

[
− �

2

2m∗ ∇2 − e2

εr

]
F(r) = (E − Ec)F(r) (5.41)
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where all energies are measured with respect to the bottom of the conduction band
Ec. If we replace m∗ by m and e2/ε by e2, we immediately recognize this equation
as Schrödinger’s equation for a hydrogen atom under the identification of the energy
eigenvalues with

En = e2

2n2a0
= me4

2n2�2
(5.42)

where a0 is the Bohr radius a0 = �
2/me2. This identification immediately allows us

to write E� for the donor energy levels as

E� = Ec − m∗e4

2ε2�2�2
(5.43)

where � = 1, 2, 3, . . . is an integer denoting the donor level quantum numbers and
we identify the bottom of the conduction band Ec as the ionization energy for this
effective hydrogenic problem. Physically, thismeans that the donor levels correspond
to bound (localized) states, while the band states above Ec correspond to delocalized
nearly-free electron-like states. The lowest or “ground-state” donor energy level is
then written as

Ed = E�=1 = Ec − m∗e4

2ε2�2
. (5.44)

It is convenient to identify the “effective” first Bohr radius a∗
0 for the donor level as

a∗
0 = ε�

2

m∗e2
(5.45)

and to recognize that the wave function for the ground state donor level will be of
the form

F(r) = C e−r/a∗
0 (5.46)

whereC is the normalization constant and a∗
0 is an effective ground state donor level.

Thus using the effective mass theorem the solutions to (5.41) for a semiconductor
are hydrogenic energy levels with the substitutions m → m∗, e2 → (e2/ε) and the
ionization energy, usually taken as the zero of energy for the hydrogen atom, now
becomes, the conduction band extremum Ec.

For a semiconductor like germanium, we have a very large dielectric constant,
ε � 16. The value for the effective mass is somewhat more difficult to specify in
germanium since the constant energy surfaces for germanium are located about the
L-points in the Brillouin zone (see Sect. 4.3.2) and are ellipsoids of revolution. Since
the constant energy surfaces for such semiconductors are non-spherical, the effective
mass tensor is anisotropic. However we will write down an average effective mass
value m∗/m � 0.12 so that we can estimate pertinent magnitudes for the donor
levels in a typical semiconductor. With these values for ε and m∗, we obtain:

http://dx.doi.org/10.1007/978-3-662-55922-2_4
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Ec − Ed � 0.007 eV (5.47)

and the effective Bohr radius
a∗
0 � 70Å. (5.48)

These values are to be compared with the ionization energy of 13.6eV for the
hydrogen atom and with the hydrogenic Bohr radius of a0 = �

2/me2 = 0.5Å.
Thus, we see that a∗

0 is indeed large enough to satisfy the requirement that F(r)
be slowly varying over a unit cell. On the other hand, if a∗

0 were to be comparable to
a lattice unit cell dimension, then F(r) could not be considered as a slowly varying
function of r and generalizations of the above treatment would have to be made.
Such generalizations involve: (1) treating E(k) over a wider region of k-space, and
(2) relaxing the condition that impurity levels are to be associated with a single band.
From the uncertainty principle, the localization in momentum space for the impurity
state requires a delocalization in real space; and likewise, the converse is true, that a
localized impurity in real space corresponds to a delocalized description in k-space.
Thus “shallow” hydrogenic donor levels (close in energy to the band extremum) can
be attributed to a specific band at a specific energy extremum at k0 in the Brillouin
zone. On the other hand, “deep” donor levels (far in energy from the band extremum)
are not hydrogenic and have a more complicated energy level E(k) structure. Deep
donor levels cannot be readily associated with a specific band or a specific k point
in the Brillouin zone.

In dealing with this impurity problem, it is helpful to discuss the donor levels in
silicon and germanium. For example in silicon where the conduction band extrema
are at the Δ point (see Sect. 4.3.3), the effective mass theorem requires us to replace
E(−i∇) by

En(−i∇) → − �
2

2m∗
�

∂2

∂x2
− �

2

2m∗
t

(
∂2

∂y2
+ ∂2

∂z2

)
(5.49)

where m∗
l and m

∗
t denote the longitudinal and transverse effective mass components

of the effective mass tensor, and the resulting Schrödinger’s equation can no longer
be solved analytically. Although this is a very interesting problem from a practical
point of view, it is important to note that numerical solutions are needed in this case.

5.5 Quasi-classical Electron Dynamics

According to the “Correspondence Principle” of Quantum Mechanics, wavepacket
solutions of Schrödinger’s equation (see Sect. 5.2) follow the trajectories of classical
particles and satisfy Newton’s laws. One can also give a Correspondence Princi-
ple argument for the form which is assumed by the velocity and acceleration of a
wavepacket. According to the Correspondence Principle, the connection between
the classical Hamiltonian and the quantum mechanical Hamiltonian is made by the

http://dx.doi.org/10.1007/978-3-662-55922-2_4
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identification of p → (�/ i)∇. Thus, we write

En(−i∇) + H ′(r) ↔ En(p/�) + H ′(r) = Hclassical(p, r). (5.50)

In classical mechanics, Hamilton’s equations give the velocity according to :

ṙ = ∂H

∂p
= ∇pH = ∂E(k)

�∂k
(5.51)

in agreement with the group velocity for a wavepacket given by (5.13). Hamilton’s
equation for the acceleration is given by:

ṗ = −∂H

∂r
= −∂H ′(r)

∂r
. (5.52)

For example, in the case of an applied electric fieldE, the perturbationHamiltonian is

H ′(r) = −er · E (5.53)

so that
ṗ = �k̇ = eE. (5.54)

In this equation eE is the classical Coulomb force on an electric charge due to an
applied field E. It can be shown that in the presence of a magnetic field B, the
acceleration theorem follows the Lorentz force equation

ṗ = �k̇ = e[E + (1/c)v × B] (5.55)

where

v = ∂E(k)

�∂k
. (5.56)

In the crystal, the crystal momentum �k for the wavepacket plays the role of the
momentum for a classical particle.

5.6 Quasi-classical Theory of Electrical Conductivity –
Ohm’s Law

We will now apply the idea of the quasi-classical electron dynamics in a solid to
the problem of the electrical conductivity for a metal with an arbitrary Fermi sur-
face and band structure. The electron is treated here as a wavepacket with momen-
tum �k moving in an external electric field E in compliance with Newton’s laws.
Because of the acceleration theorem, we can think of the electric field as creating a
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Fig. 5.3 Displaced Fermi surface at t = δt under the action of an electric field E

“displacement” of the electron distribution in k-space. We remember that the Fermi
surface encloses the region of occupied states within the Brillouin zone. The effect
of the electric field is to change the wave vector k of an electron by

δk = e

�
Eδt (5.57)

(where we note that the charge on the electron e is a negative number). We picture
the displacement δk of (5.57) by the displacement of the Fermi surface in a time δt
shown in Fig. 5.3. From this diagram we see that the incremental volume of k-space
δ3Vk which is “swept out” in the time δt due to the presence of the field E is

δ3Vk = d2SF n̂ · δk = d2SF n̂ ·
( e

�
Eδt

)
(5.58)

and the electron density n is found from

n = 2

(2π)3

∫

E≤EF

d3k (5.59)

where d2SF is the element of area on the Fermi surface and n̂ in (5.58) is a unit vector
normal to this element of area and δ3Vk → d3k both denote elements of volume in
k-space. The definition of the electrical current density is the current flowing through
a unit area in real space and is given by the product of the [number of electrons per
unit volume] with the [charge per electron] and with the [group velocity] so that the
element of the current density δj given in (5.60) created by applying the electric field
E for a time interval δt is given by

δj =
∫

[2/(2π)3] · [δ3Vk] · [e] · [vg] (5.60)

where vg is the group velocity for an electron wavepacket and 2/(2π)3 is the density
of electronic states in k-space (including the spin degeneracy of two) because we
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can put 2 electrons (with ↑ and ↓ spins) in each phase space state. Substitution for
δ3Vk in (5.58) yields the instantaneous rate of change of the current density averaged
over the Fermi surface

∂j
∂t

= e2

4π3�

∮ ∮
vg n̂ · E d2SF = e2

4π3�

∮ ∮
vg

(
vg · E
|vg|

)
(d2SF ) (5.61)

since the group velocity vg given by (5.13) is directed normal to the Fermi surface.
In a real solid, the electrons will not be accelerated indefinitely, but will eventually
collide with an impurity, or a lattice defect or a lattice vibration (phonon).

These collisions will serve to maintain the displacement of the Fermi surface at
some steady state value, depending on τ , the average time between collisions, which
defines the relaxation time τ to return to equilibrium. This relaxation time τ can be
introduced through the expression

n(t) = n(0)e−t/τ (5.62)

where n(t) is the number of electrons that have not yet made a collision at time t ,
assuming that the last collision had been made at time t = 0. The relaxation time τ

is here given by the average time between collisions

〈t〉 = 1

τ

∫ ∞

0
te−t/τdt = τ. (5.63)

If in (5.57), we set 〈δt〉 = τ and write the average current density as j = 〈δj〉, then
we obtain from (5.64)

j = e2τ

4π3�

∫
vg

vg · E
|vg| (d2SF ). (5.64)

We define the conductivity tensor
↔
σ as j =↔

σ ·E, so that (5.64) provides an explicit
expression for the symmetric second rank tensor

↔
σ .

↔
σ= e2τ

4π3�

∫
vgvg
|vg| (d2SF ). (5.65)

In the free electron limit
↔
σ becomes a scalar (isotropic conduction) and is given

by the Drude formula which we derive below from (5.65). Using the equations for
the free electron limit

E = �
2k2/2m

EF = �
2k2F/2m

vg = �kF/m.

(5.66)

We then obtain
vgvg → v2x = v2y = v2z = v2/3 (5.67)
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∫
d2SF = 4πk2F , (5.68)

so that the number of electrons/unit volume can be written as:

n = 1

4π3

4π

3
k3F . (5.69)

Therefore

j = e2τ

4π3�

(
�kF
m

)
1

3
E(4πk2F ) = ne2τ

m
E. (5.70)

Thus the free electron limit gives Ohm’s law in the familiar form

σ = ne2τ

m
= neμ, (5.71)

showing that the electrical conductivity, in the diffusion regime where carrier scat-
tering is important, depends on both the carrier density n and the carrier mobility μ.
For low dimensional systems, that are important on the nano-scale, ballistic transport
is dominant, and in this regime the carriers can go from the anode to the cathode
without scattering. This regime will be considered in a later chapter in this book.

A slightly modified form of Ohm’s law is also applicable to conduction in a
material for which the energy dispersion relations have a simple parabolic form and
m has been replaced by the effective mass m∗, E(k) = �

2k2/2m∗. In this case σ is
given by

σ = ne2τ/m∗ (5.72)

where the effective mass is found from the band curvature 1/m∗ = ∂2E/�
2∂k2.

The generalization of Ohm’s law can also be made to deal with solids for which the
effective mass tensor is anisotropic and this will be discussed in Chap.7.

Problems

5.1 Show that the spatial probability density for a free electron propagating in one
dimension is constant.

5.2 Show that the envelope function F(r, t) in (5.34) also satisfies the effective
mass equation [

En(−i∇) + H ′
]
F(r, t) = i�

∂F(r, t)
∂t

5.3 Consider a one dimensional linear chain containing N atoms and with lattice
constant a, such that the chain length is L = Na. Show that the average group
velocity for a filled band in this one dimensional system is zero.

http://dx.doi.org/10.1007/978-3-662-55922-2_7
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5.4 Consider that an electronmoving in a crystal can be described by a superposition
of Bloch waves such that the Bloch wave functions are

ψk(x, t) = ei(kx−ω(k)t uk(x)

and the wave packet is

�(x, t) =
∫ +∞

∞
e(k−ko)2/α2

ei(kx−ω(k)t uk(x)uk(x)dk.

(a) Identify the envelope function in the wave packet �(x, t).
(b) If α is much smaller than the size of the Brillouin zone, the envelope function

is peaked around k0 uk(x) = uk0(x) does not depend on k and the dispersion of
electronic states ω(k) = E(k)/� is linear, that is

ω(k) = vg(k − k0) + ω(k0).

Show that the maximum of the probability distribution associated with this wave
packet moves with group velocity vg .

5.5 Consider a crystal with electrons having the dispersion relation

Ee = h2

2

(
k2x
m11

+ k2y
m22

+ k2z
m33

)
(5.73)

with the values: m11 = m0, m22 = m0
3 , m33 = m0

9 and denote the Fermi energy by EF .

(a) Find an expression for the length of the Fermi wave vector along the shortest
distance in momentum space.

(b) What is the length of the Fermi wave vector along a (111) direction?

5.6 (a) Derive an expression for the temperature dependence of the Fermi energy
EF for an intrinsic semiconductor (e.g., GaAs). Assume the electrons (me =
0.067m0) go into a spherical carrier pocket at k = 0 and that the holes are in a
degenerate band at k = 0 with heavy holes (mhh = 0.62m0) and light holes (mlh

= 0.074m0). Assume the split off band is fully occupied by electrons.
(b) Does EF increase or decrease with increasing temperature?

5.7 Suppose that you have a hydrogenic donor impurity in GaAs (m∗
i i = 0.07m0

and ε = 15).

(a) Give an example of a substitutional impurity that will produce such donor states.
At which site?

(b) At what donor concentration will the donor electron orbitals start to overlap and
an impurity band will be formed?

(c) If the material is compensated, does this modify your answer to (b)? Explain!
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Chapter 6
Lattice Vibrations

6.1 Introduction

Condensed matter systems are not only probed by electrons for their electronic exci-
tational structures, but also their structures can experience perturbations in response
to photonswhich are carriers of electromagnetic radiation andwhich can also provide
thermal energy in the form of waves, which are called phonons. At low frequencies
these lattice vibrational waves are described by quantum oscillators called acoustic
waveswith themotion of harmonic oscillators. For crystal latticeswithmore than one
atom per unit cell, optical branches with higher energy excitations are also created.
For infrared excitation radiation in the terahertz (THz) range, the lattice energies
are linearly dependent on wave vector. Most laboratory experiments start with pho-
ton energies above a few meV to probe the energies of weakly bonded impurity
levels, out to the infrared range (0.1–1.5eV) and to the visible range (1.5–2.8eV).
The vibrations of the atoms are, however, described by the motion of the carriers of
thermal energy called phonons. The harmonic oscillators describing these systems
are discussed in Sect. 6.2 from a quantum mechanical standpoint. These harmonic
oscillators are introduced into a solid with periodic boundary conditions in Sect. 6.3,
where photons are introduced to create and annihilate the phonons. Examples of
phonon dispersion relations for some specific materials systems in three dimensions
are given in Sect. 6.4. The probing of phonon lattice vibrations by electrons is dis-
cussed in Sect. 6.5 where the electron-phonon interaction is also discussed briefly.

6.2 Quantum Harmonic Oscillators

In this section we briefly review the solution of the harmonic oscillator problem in
quantummechanics using raising and lowering operators.We can think of the phonon
as a vibration of a crystal lattice caused by thermal excitation. The Hamiltonian for
this problem of the one dimensional harmonic oscillator is written as:

© Springer-Verlag GmbH Germany, DE 2018
M. Dresselhaus et al., Solid State Properties, Graduate Texts in Physics,
https://doi.org/10.1007/978-3-662-55922-2_6
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H = p2

2m
+ 1

2
κx2. (6.1)

Classically, we know that the frequency of oscillation is given by ω = √
κ/m so that

it is natural to think of the quantum mechanical description to be a wave with the
same frequency as described by the Hamiltonian

H = p2

2m
+ 1

2
mω2x2. (6.2)

We define the lowering and raising operators â and â† for the harmonic oscillator,
respectively, by

â = p̂ − iωmx̂√
2�ωm

(6.3)

and

â† = p̂ + iωmx̂√
2�ωm

. (6.4)

where ω is the frequency of the wave. Since the displacement of the harmonic oscil-
lator x̂ and its momentum do not commute, the Heisenberg uncertainty principle
gives [ p̂, x̂] = �/ i , then it follows that

[â, â†] = 1 (6.5)

so that

Ĥ = 1

2m

[
( p̂ + iωmx̂)( p̂ − iωmx̂) + m�ω

]
(6.6)

= �ω[â†â + 1/2]. (6.7)

Let
N̂ = â†â (6.8)

denote the number operator and we denote the eigenstates of this operator N̂ by |n〉,
so that

N̂ |n〉 = n|n〉 (6.9)

where n is any real integer. However

〈n|N̂ |n〉 = 〈n|â†â|n〉 = 〈y|y〉 = n ≥ 0 (6.10)

where |y〉 = a|n〉 implies that n is a non-negative integer. We note with regard
to (6.10) that the absolute value square of any wavefunction cannot be negative,
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because quantum mechanically, this quantity signifies a probability. Hence n is a
positive number or zero.

The action of the lowering operator is found from consideration of

N̂ â|n〉 = â†ââ|n〉 = (ââ† − 1)â|n〉 = (n − 1)â|n〉. (6.11)

Hence we find that
â|n〉 = c|n − 1〉. (6.12)

However from (6.10), we have

〈n|â†â|n〉 = |c|2, (6.13)

and also from (6.10) we have
〈n|â†â|n〉 = n, (6.14)

so that
c = √

n (6.15)

and
â|n〉 = √

n|n − 1〉. (6.16)

Since the operator â lowers the quantum number of the state, â is called the annihi-
lation or lowering operator, which physically corresponds to the annihilation of one
quantum of phonon energy. From this argument you can also see that n has to be an
integer. The null state is obtained for n = 0 at which point the phonon has the energy
of the vacuum.

To obtain the corresponding raising operator, which corresponds to increasing the
phonon energy by one energy quantum, we write

N̂ â†|n〉 = â†ââ†|n〉 = â†(1 + â†â)|n〉 = (n + 1)â†|n〉. (6.17)

Hence we obtain
â†|n〉 = √

n + 1|n + 1〉 (6.18)

so that â† is called a creation operator or a raising operator. Finally, for the Hamil-
tonian in (6.7) we write

Ĥ |n〉 = �ω[N̂ + 1/2]|n〉 = �ω(n + 1/2)|n〉 (6.19)

so that the eigenvalues for the harmonic oscillator are written as:

E = �ω(n + 1/2) n = 0, 1, 2, . . . . (6.20)

where the ground state energy of the phonon is �ω/2.



108 6 Lattice Vibrations

6.3 Phonons in 1D Solids

6.3.1 A Monoatomic Chain

In this section we relate the lattice vibrations of the crystal to harmonic oscilla-
tors and formally identify the quanta of the lattice vibrations with phonons, as sug-
gested in Sect. 6.2. Consider the 1-D crystalline solid model which is formed by
a harmonic oscillator as vibrating atoms connected to one another with springs as
shown in Fig. 6.1.

The Hamiltonian for this case is written as

Ĥ =
N∑

s=1

(
p2s
2ms

+ 1

2
κ[(qs+1)

2 − (qs)
2]

)
. (6.21)

This equation does not look like a set of independent harmonic oscillators since qs
and qs+1 are coupled. Physically the atoms in the crystal are coupled by long range
forces that allow the atoms to vibrate around their equilibrium positions in the solid.
In the (6.21), the subscript s is used to include as many atoms as we consider relevant
for describing a given phenomenon. In most of the cases, the interactions with the
first neighbors are enough to get the main physical insights, but including up to three
neighbor interactions accounts for many phenomena observed in real crystals. To
obtain normal mode solutions we write

qs =
(
1/

√
N

)∑
k Qkeiksa

ps =
(
1/

√
N

)∑
k Pke

iksa .

(6.22)

These Qk’s and Pk’s are called the phonon coordinates. Since the atoms obey the
uncertainty principle, it is straightforward that their operators obey the relation

[ p̂s, q̂s ′ ] = (�/ i)δss ′ . (6.23)

The operators related to phonon coordinates corresponding to the atoms will also
follow the uncertainty principle, so that

[P̂k, Q̂k ′ ] = (�/ i)δkk ′ . (6.24)

Fig. 6.1 Spring model for a 1D crystalline solid
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The Hamiltonian operator for 1D lattice vibrations in phonon coordinates is then
written as

Ĥ =
∑
k

(
1

2
P̂†
k P̂k + 1

2
ω2
k Q̂

†
k Q̂k

)
. (6.25)

Similar to the harmonic oscillator, the Hamiltonian given by (6.21) can be written
in terms of â and â† operators as

âk = i P̂†
k + ωk Q̂k√
2�ωk

, (6.26)

â†k = −i P̂k + ωk Q̂
†
k√

2�ωk
. (6.27)

The Hamiltonian thus becomes using annihilation and creation operators:

Ĥ =
∑
k

�ωk(â
†
k âk + 1/2) (6.28)

these yielding energy eigenvalues

E =
∑
k

(nk + 1/2)�ωk . (6.29)

The quantum excitation for the lattice vibration of the linear chain can be iden-
tified as a phonon, and the state vector of a system of phonons is written as
|n1, n2, . . . , nk, . . .〉. To annihilate or create a phonon in mode k with energy
(nk + 1/2)�ω, we then write

âk |n1, n2, . . . , nk, . . .〉 = √
nk |n1, n2, . . . , nk − 1, . . .〉 (6.30)

â†k |n1, n2, . . . , nk, . . .〉 = √
nk + 1 |n1, n2, . . . , nk + 1, . . .〉 (6.31)

from which the probabilities nk and (nk + 1) are obtained for the annihilation and
creation processes, as described above.

Fig. 6.2 Actual site lattices
defining the waves in a 1D
solid for different wave
lengths corresponding to the
solutions at the k points
where the standing waves are
the solutions of the
dynamical motion
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Fig. 6.3 Phonon dispersion relation for a 1D solid formed by a linear monoatomic chain

The solution of the Hamiltonian for a linear chain considering nearest neighbor
interactions only gives rise to the 1-D phonon dispersion relation as shown in Fig. 6.3.
A detailed derivation of this relation can be find in standard text books and here is
left as an exercise in the problem set for this chapter.

ωk ≡ √
2κ(1 − cos ka) = √

4κ/m| sin(ka/2)|. (6.32)

Equation (6.32) describes the waves that are allowed to propagate along the chain.
Any wave whose frequency does not depend on phonon wave vector k as dictated
by the dispersion relation in (6.32), does not propagate and is an evanescent wave
which dies out in intensity after a while. By considering the small wave vector region
(k → 0) or equivalently by considering large wave length phonons, (6.32) can be
written as

ωk = √
κ/m ak = vsk, (6.33)

where we used the approximation sin(ka/2) 	 ka/2 and vs = √
κ/m. In (6.33),

both phase velocity (ω/k) and group velocity (∂ω/∂k) of the wave are equal to vs ,
which is identified with the sound velocity in the solid. The physical meaning is
that for very long wavelength phonons, the wave propagation does not depend on
the details of the atomic structure and it behaves just like a propagating wave in a
continuous elastic medium.

We should also discuss these other limit, the short wavelength limit, whose min-
imum value is just two lattice spacings (λmin = 2a) which implies k = π/a. In this
limit, where k is on the Brillouin zone boundary, the group velocity is zero, thus
meaning that the solutions of (6.32) for periodic structures are standing waves at the
points k = π/(na), where n = ±1,±2,±3, . . ..

It should be pointed out that the standing wave has a special feature. It is defined
only for the actual site of the lattice, as illustrated in Fig. 6.2 for two different wave
lengths, i.e. λ = 6a and λ = 3a. We emphasize that the positions of the atoms are the
same for different wave vectors, and this is possible because of the 2π/a periodicity
of the lattice and by the fact that the wave is defined for the actual physical sites
of the lattice. For the example shown in Fig. 6.2, one wave is obtained by summing
over a distance 4π/a in reciprocal space (2 reciprocal lattice vectors). The physical
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interpretation for this observation is that any waves with a shorter wavelength can
be described by a wave with a longer wavelength, and we just need to consider the
first Brillouin zone for describing the system in both cases.

6.3.2 Diatomic Linear Chain

We now discuss another model for a 1D solid for which the unit cell has two atoms
with mass M and m as shown in Fig. 6.4. Since we have two atoms in the lattice, we
can label the atom with a mass m by even (2n) and the atom with mass M by odd
(2n + 1) numbers. Similar to what was done with the monoatomic chain, the forces
on each atom, can be written by considering just the nearest neighbor interactions to
obtain

m
d2u2n
dt2

= −κ(2u2n − u2n+1 − u2n−1) (6.34)

M
d2u2n+1

dt2
= −κ(2u2n+1 − u2n − u2n+2). (6.35)

These two equations are coupled to each other and they can be solved by means of
a wave-like solution, so that

u2n = A2ne
i(kan−ωt) (6.36)

u2n+1 = A2n+1e
i(ka(2n+1)−ωt) (6.37)

where A2n and A2n+1 denote the amplitudes of the vibrations of the two atoms. By
inserting (6.36) and (6.37) into the equations of motion, we obtain

(mω2 − 2κ)A2n + κ(eikan + e−ikan)A2n+1 = 0 (6.38)

κ(eikan + e−ikan)A2n + (Mω2 − 2κ)A2n+1 = 0 (6.39)

Fig. 6.4 1D model for solid based on a diatomic linear chain. The plots were constructed using
arbitrary constants and M = 1.6m
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The above equations can be written in matrix form as

(
mω2 − 2κ κ(eikan + e−ikan)

κ(eikan + e−ikan) Mω2 − 2κ

)(
A2n

A2n+1

)
=

(
0
0

)
.

(6.40)

The solutions for this eigenvalue equation are obtained when the determinant is
zero, that is

∣∣∣∣ mω2 − 2κ κ(eikan + e−ikan)

κ(eikan + e−ikan) Mω2 − 2κ

∣∣∣∣ = 0. (6.41)

After a little algebra, we obtain

ω2 = κ

(
1

m
+ 1

M

)
± κ

[(
1

m
+ 1

M

)2

− 4

mM
sin2

(
ka

2

)]1/2

, (6.42)

which represents the phonon dispersion relation for a linear chain with two atoms per
unit cell. The plot of the (6.42) is shown in Fig. 6.5, where we can notice, as compared
with themonoatomic linear chainwith one atom per unit cell, the presence of a higher
energy branch, which we call the optical phonon branch. Therefore, we now have
two branches to the frequency versus wavevector plot in Fig. 6.5 because there are
two atoms per unit cell.

Let us analyse the function and the Brillouin zone center (k = 0) and the Brillouin
zone boundary (k = π/a). For k = 0, it is clear that one solution leads to ω(0) = 0

and the other solution leads to ω(0) =
[
κ

(
1
m + 1

M

)]1/2

. On the other hand, at the

Brillouin zone boundary (k = π/a) we can note a gap of in the phonon dispersion
and this energy gap is due to the different mass of the atoms. This gap closes if we
make the atoms in the unit cell have the same mass.

We can now analyse the amplitudes A2n and A2n+1 for the Brillouin zone center
modes k = 0. By working with the (6.38), we find for the acoustic mode (ω(0) = 0)

Fig. 6.5 Phonon dispersion for a 1D solid formed by a diatomic linear chain
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for which we have that A2n = A2n+1 implies that the atoms are moving in phase.

However, for the optical branch (ω(0) =
√
2κ( 1

m + 1
M )), we find that −m/MA2n =

A2n+1, thus meaning that these atoms are moving out of phase. The discussion above
is appropriate for the longitudinal modes but we can also include the transverse mode
and calculate the phonon dispersion branches for the resulting linear chain in this
case. This interesting case is left as an exercise in the Problem set listed at the end
of this chapter.

We now use the concepts of Sect. 6.3 for phonons in real crystals in the next
section, Sect. 6.4.

6.4 Phonons in 3D Crystals

In this section, we give some examples of phonons is 3D crystals. The first example
is the zone center atomic displacements in graphite shown in Fig. 6.6. Graphite has
4 carbon atoms per unit cell, so that there are 12 zone center lattice modes. Twelve
modes of these normal modes, 3 are acoustic modes and 9 are optic modes as shown.

Fig. 6.6 The 9 zone center
optical phonon modes in
graphite. Here the A2u , B1g1,
and B2g2 modes are
non-degenerate while the
E1u , E2g and E2g2 modes
are two-fold degenerate
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The next example is the phonon dispersion curves for diamond. The 3D structure
for the diamond lattice is shown in Fig. 1.7a and the phonon dispersion relations are
shown in Fig. 6.7 (curves are calculations and points are experimental). Diamond has
2 carbon atoms per fcc unit cell, thus 6 phonon branches. There are 3 acoustic and 3
are optic modes. The zone center optic modes are Raman active.

The next example is the phonon dispersion curves for Silicon and Germanium
shown in Fig. 6.8a, b, respectively. Solid lines denote the phonon dispersion cal-
culations by using ab initio models and points are experimental data from neutron
scattering. It can be noticed that Si and Ge have very similar phonon dispersion
as expected because they have the same basis structure but only different lattice
parameters and atomic masses. The main difference relies on the highest frequency
mode and this is in part due to the large mass of Ge as compared to Si. Silicon

Fig. 6.7 Phonon dispersion curves in diamond calculated by using ab initio methods (P. Pavone,
K. Karch, O. Schiitt, W. Windl, D. Strauch, P. Giannozzi, and S. Baroni, Phys. Rev. B 48, 3156
(1993)). The solid and open symbols are, respectively, experimental neutron scattering (J.L.Warren,
J.L. Yarnell, G. Dolling, and R.A. Cowley, Phys. Rev. 158, 805 (1967)) and synchrotron scattering
data. (E. Burkel, Inelastic Scattering of X Rays tooth Very High Energy Resolution, Vol. 125.) of
Springer Tracts in Modern Physics (Springer, Berlin, 1991)). The first Brillouin zone is shown as
an inset

Fig. 6.8 Phonon dispersion
curves in Si (a) and Ge (b)
calculated by using ab initio
methods (P. Giannozzi, S. De
Gironcoli, P. Pavone, and S.
Baroni, Phys. Rev. B 43(9),
7231 (1991)). The solid and
open symbols are,
respectively, experimental
neutron scattering and
synchrotron scattering data

http://dx.doi.org/10.1007/978-3-662-55922-2_1
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Fig. 6.9 Phonon dispersion
curves in GaAs (a) and GaSb
(b) calculated by using ab
initio methods (P. Giannozzi,
S. De Gironcoli, P. Pavone,
and S. Baroni, Phys. Rev. B
43(9), 7231 (1991)). The
solid and open symbols are,
respectively, experimental
neutron scattering and
synchrotron scattering data

and Ge, like diamond, has 2 atoms per fcc unit cell (see Fig. 1.7a), and therefore
has 6 phonon branches. The zone center optic modes are Raman active. There are 3
acoustic branches and 3 are optically active modes.

The next example is the phonon dispersion curves for GaAs and GaSb shown in
Fig. 6.9a, b, respectively. These curves were calculated by using ab initio methods.
GaAsandGaSb, like diamond, has 2 atomsper fcc unit cell, thus 6branches.However,
the two atoms are different andGaAs andGaSb, therefore, lacks inversion symmetry.
The zone center optic modes are as a consequence both are infrared active and also
Raman active. There are 3 acoustic branches and 3 are optic modes, all of which
can be probed by optical spectroscopy techniques, as discussed further in Sect. 6.5.
Phonon dispersion in 2D materials are left to the problems at the end of this chapter.

6.5 Electron-Phonon Interaction

The basic Hamiltonian for the electron-lattice system is

H =
∑
k

p2k
2m

+ 1

2

′∑
kk′

e2

|rk − rk′ | +
∑
i

P2
i

2M
+ 1

2

′∑
i i ′

Vion(Ri −Ri ′)+
∑
k,i

Vel−ion(rk −Ri )

(6.43)
where

H = Helectron + Hion + Helectron-ion (6.44)

consisting of the

Helectron =
∑
k

p2k
2m

+ 1

2

′∑
kk ′

e2

|rk − rk ′ | (6.45)

http://dx.doi.org/10.1007/978-3-662-55922-2_1
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Hion =
∑
i

P2
i

2M
+ 1

2

′∑
i i ′

Vion(Ri − Ri ′) (6.46)

Helectron-ion =
∑
k,i

Vel−ion(rk − Ri ) (6.47)

The electron-ion interaction (Helectron-ion) term can be separated into two parts:
the interaction of electrons with ions in their equilibrium positions, and an additional
term due to lattice vibrations and this term is treated in perturbation theory:

Hel-ion = H 0
el-ion + Hel-phonon (6.48)∑

k,i

Vel-ion(rk − Ri ) =
∑
k,i

Vel-ion(rk − (R0
i + si )) (6.49)

=
∑
k,i

Vel-ion(rk − R0
i )

−
∑
k,i

si · ∇Vel-ion(rk − R0
i ) (6.50)

= H 0
el-ion + Hel-phonon. (6.51)

In solving the Hamiltonian H of (6.43), we seek a solution of the total problem in
the form

� = ψ(r1, r2, . . . ,R1,R2, . . .)ϕ(R1,R2, . . .) (6.52)

such that
H � = E�. (6.53)

We then use an adiabatic approximation, which solves the electron part of the Hamil-
tonian by

(Helectron + H 0
el-ion)ψ = Eelψ. (6.54)

Neglecting theHel-phonon term at first, which we consider as a perturbation, we write:

Hionϕ = (E − Eel)ϕ = Eionϕ (6.55)

and we have thus decoupled the electron-lattice system. This is valid for small per-
turbations by electromagnetic fields which are used as a probe.

Equation (6.55) gives us the phonon spectra and harmonic oscillator-like wave
functions, as discussed in the previous section (Sect. 6.3). The term that was left out
in the above discussion is the electron-phonon interaction

Hel-phonon = −
∑
k,i

si · ∇Vel-ion(rk − R0
i ) (6.56)
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which we now treat as a perturbation. We rewrite (6.55) by introducing normal
coordinates, as before;

si = 1√
NM

∑
q, j

Qq, j e
iq·R0

i ê j (6.57)

where j is the polarization index and ê j is a unit displacement vector for mode j .
Hence we obtain

Hel-phonon = −
∑
k,i

1√
NM

∑
q, j

Qq, j e
iq·R0

i ê j · ∇Vel-ion(rk − R0
i ) (6.58)

where now this term in operator notation, reads

Q̂q, j =
(

�

2ωq, j

) 1
2

(âq, j + â†−q, j ). (6.59)

Writing below the time dependence explicitly for the raising and lowering operators

âq, j (t) = âq, j e
−iωq, j t (6.60)

â†q, j (t) = â†q, j e
iωq, j t (6.61)

we obtain

Ĥel-phonon = −
∑
q, j

(
�

2MNωq, j

) 1
2

(âq, j e
−iωq, j t + â†q, j e

iωq, j t )

×
∑
k,i

(eiqR
0
i + eiqR

0
i )ê j · ∇Vel-ion(rk − R0

i ) (6.62)

which can be written as

Ĥel-phonon = −
∑
q, j

(
�

2NMωq, j

) 1
2

(
âq, j

∑
k,i

ei(qR
0
i −ωq, j t)ê j · ∇(rk − R0

i ) + c.c.

)

If we are only interested in the interaction of one electron with a phonon on a
particular phonon branch, say the longitudinal acoustic (LA) branch, then we drop
the summation over j and k and write

Ĥel-phonon = −
∑
q

(
�

2NMωq

) 1
2

(
âq

∑
i

ei(q·R0
i −ωqt)ê · ∇Vel-ion(r − R0

i ) + c.c.

)

(6.63)
where the 1st term in the brackets corresponds to phonon absorption and the c.c.
term corresponds to phonon emission.
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With Hel-phonon in hand, we can directly solve transport problems (e.g., τ due to
phonon scattering), and optical problems (e.g., indirect transitions), since all these
types of problems involve matrix elements 〈 f |Hel-phonon|i〉 that couple initial states
i and final states f .

Problems

6.1 By considering (6.21) which defines the interaction between the atoms in a 1D
solid crystalline model and the uncertainty relations for phonon coordinates, derive
(6.32). In this derivation consider nearest neighbor interactions only.

6.2 Wediscuss in the chapter the diatomic linear chainmodel by consideringonly the
nearest neighbor interactions. However, the linear chain model has been successfully
used for describing the propagation of longitudinal optical modes in semiconductors,
such as GaAs by considering the interactions with next nearest neighbors.

(a) Calculate the phonon dispersion for a diatomic linear chain by considering
the interactions with the next nearest neighbors and compare with the results
obtained for also considering the nearest neighbor interaction.

(b) By using this model show that the spring constant associated with nearest (κ)
and next nearest (q1 and q2) neighbors can be written as

k = mM

2(m + M)
ω2
LO(�)

q1 = ω2
L A(X)m − 2κ

4

q2 = ω2
LO(X)M − 2κ

4

6.3 Consider the Si and SiC bulk materials. In the “back-scattering”geometry the
longitudinal optical modes are allowed, and along the c-axis direction and these
crystals can be described by the linear chain model. The experimental frequencies
for Si are 517 cm−1 for the LO (�), 409 cm−1 LO (X ), and 409 cm−1 LA (X )
modes, [LA means longitudinal acoustic and LO longitudinal optical]. For SiC the
frequencies are : 972 cm−1 LO (�), 829 cm−1 LO (X ), and 640 cm−1 LA (X ). By
using the results obtained in the previous problem, calculate k, q1, and q2.
The atomic masses of Si and C are respectively 28.09 and 12.01 a.m.u, and the data
in Table6.1 are multiplied by a factor of 1.672 × 10−18.

6.4 Consider the diatomic linear chain model discussed in Sect. 6.3.2 regarding the
transverse modes.
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Table 6.1 Spring constants associated with nearest (k) and next nearest (q1 and q2) neighbors.
Bezerra et al. 2000

k q1 q2

Si 112.41 13.95 13.95

SiC 236.18 52.85 4.53

(a) Show that for the transverse modes, the dynamical equations are given by

mÿ2n = 2κα

d
[6y2n + y2n−2 + y2n+2 − 4y2n+1 − 4y2n−1]

Mÿ2n+1 = 2κα

d
[6y2n+1 + y2n−1 + y2n+3 − 4y2n − 4y2n+2]

(b) By considering harmonic solutions for the transversemotion y2n=A2ne−i[ωt−nka]
and y2n+1 = A2n+1e−i[ωt−(n+ 1

2 )ka], show that the phonon dispersion for trans-
verse optical and acoustic motions is given by

ω2 = 2κα

mM
[(m + M)(3 + coska) ± [(m + M)2(3 + coska)2−

mM(cos2ka − 2coska + 1)]1/2]

where κα is the transverse effective spring constant.

6.5 Reflectivity measurements show that the LO and TO phonon (ωLO and ωTO)
features for NaCl in the reflectivity spectra occur at 38 and 61 µm, respectively.

(a) From this information, estimate the force constant κ for the TO phonon mode
assuming only nearest neighbor interactions.

(b) From the measured ωLO and ωTO splitting find the magnitude of the lattice
polarization contribution to the dielectric constant for crystalline NaCl.

(c) Is the frequency difference (ωLO − ωTO) for NaCl expected to be temperature
dependent? Why?

(d) Suppose that we have a material where there are 3 atoms per unit cell so that
there are two different transverse optical frequencies ωTO1 and ωTO2. Assume
further that, for this material, the dielectric function has a frequency dependence
given by

ε(ω) = A + B1

ω2 − ω2
TO1

+ B2

ω2 − ω2
TO2

then generalize the Lyddane–Sachs–Teller relationwhen applying it to thismate-
rial.
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Fig. 6.10 The unit cell of C24FeCl3

6.6 Consider a stage 2 graphite–FeCl3 layered compound (chemical formula
C24FeCl3) with a unit cell consisting of 5 distinct layers, as indicated in the dia-
gram, with the force constants κ1, κ2, and κ3 coupling the carbon-chlorine layers, the
chlorine-iron layers and the carbon-carbon layers, respectively. ThemassesMC,MCl,
and MFe denote the mass densities in the carbon, chlorine, and iron layers, respec-
tively. Assume that d1, d2, and d3 give the interlayer separation between carbon-
chlorine layers, chlorine-iron layers and carbon-carbon layers, respectively. In solv-
ing this problem consider the number of layers, number of atoms per unit cell, and
masses for each type of layer shown in Fig. 6.10.

(a) What are the mode frequencies for phonons propagating perpendicular to the
layer planes (z-direction)?

(b) Whichmodes are excited by incident electromagnetic radiation at their respective
mode frequencies?

(c) Which modes are Raman-active?
(d) With which experimental technique could youmeasure the entire phonon branch

ω(qz), for all qz?

6.7 Starting from the raising and lowering operators for harmonic oscillator wave
functions, find the following matrix elements taken between harmonic oscillator
states.

(a) 〈n|x |n′〉
(b) 〈n|x2|n′〉
(c) 〈n|x3|n′〉
(d) 〈n|p|n′〉
(e) Show that the equipartition theorem applies to harmonic oscillator states: half

the total energy goes into kinetic energy, and half into potential energy.

6.8 (a) Do you expect the LO phonon frequency for diamond to be higher or lower
than that in GaAs? Why?
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(b) Do you expect the LO–TO phonon splitting for diamond to be higher or lower
than that for GaAs? Why?

(c) What experimental technique would you use to check these predictions? Why?
Note: In a cubicmaterialwith opticmodes, theTOmodes are two-fold degenerate
near the center of the Brillouin zone.

Reference

E.F. Bezerra et al., Appl. Phys. Letters 77, 4316 (2000)
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Chapter 7
Basic Transport Phenomena

7.1 Introduction

In this section we study some of the transport properties for metals and semiconduc-
tors. An intrinsic semiconductor, meaning the absence of doping by foreign atoms,
has no carriers at T = 0K and therefore there is no transport of carriers under the
influence of external fields. However at finite temperatures there are thermally gener-
ated carriers. Impurities also can serve to generate carriers and interesting transport
properties. For insulators, there is very little charge transport and in this case, the
defects and the ions themselves can participate in charge transport under the influence
of external applied fields. Metals make use of the Fermi–Dirac distribution function
for describing the electron and hole carrier densities, but metals are otherwise similar
to semiconductors, for which the Maxwell–Boltzmann distribution function is usu-
ally applicable because of their much lower carrier densities so that electron-electron
(hole-hole) interactions are less important.

At finite fields, the electrical conductivity will depend on the product of the carrier
density and the carrier mobility. For a one carrier type system, the Hall effect gives a
measure of the carrier density and the magnetoresistance likewise gives the mobility,
the key parameters governing the transport properties of a semiconductor. From the
standpoint of device applications, the carrier density and the carrier mobility are the
parameters of greatest importance.

To the extent that electrons can be considered as particles, the electrical conduc-
tivity, the electronic contribution to the thermal conductivity and the magnetoresis-
tance are all found by solving the Boltzmann equation. For the case of nano-scale
systems, where the wave aspects of the electron must be considered (called meso-
scopic physics), more sophisticated approaches to the transport properties must be
considered. To review the standard procedures for the transport properties of classi-
cal electrons (and holes), we briefly review the Boltzmann equation and its solution
in the Sect. 7.2, and make use of the Boltzmann equation throughout the chapter.

© Springer-Verlag GmbH Germany, DE 2018
M. Dresselhaus et al., Solid State Properties, Graduate Texts in Physics,
https://doi.org/10.1007/978-3-662-55922-2_7
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7.2 The Boltzmann Equation

The Boltzmann transport equation is a statement that in the steady state, there is no
net change in the distribution function f (r,k, t)which determines the probability of
finding an electron at position r, with crystal momentum k and at time t . Therefore
we obtain a zero sum for the changes in f (r,k, t) due to the 3 processes of diffusion,
the effect of forces and fields, and of collisions:

∂ f (r,k, t)

∂t

∣
∣
∣
∣
diffusion

+ ∂ f (r,k, t)

∂t

∣
∣
∣
∣
fields

+ ∂ f (r,k, t)

∂t

∣
∣
∣
∣
collisions

= 0. (7.1)

It is customary to substitute the following differential form for the diffusion process

∂ f (r,k, t)

∂t

∣
∣
∣
∣
diffusion

= −v(k) · ∂ f (r,k, t)

∂r
(7.2)

which expresses the continuity equation in real space in the absence of forces, fields
and collisions. For the forces and fields, we write correspondingly

∂ f (r,k, t)

∂t

∣
∣
∣
∣
fields

= −∂k
∂t

· ∂ f (r,k, t)

∂k
(7.3)

and by combining (7.1), (7.2), and (7.3), we obtain the Boltzmann equation:

∂ f (r,k, t)

∂t
+ v(k) · ∂ f (r,k, t)

∂r
+ ∂k

∂t
· ∂ f (r,k, t)

∂k
= ∂ f (r,k, t)

∂t

∣
∣
∣
∣
collisions

(7.4)

for which the three derivatives for all the variables of the distribution function on
the left hand side of the equation balance the collision terms appearing on the right
hand side of (7.4). The first term in (7.4) gives the explicit time dependence of the
distribution function f (r,k, t) and is needed for the solution of the time dependent
driving forces or for impulse perturbations.

Boltzmann’s equation is usually solved using two approximations:

1. The perturbation due to external fields and forces is assumed to be small so that
the distribution function can be linearized and written as:

f (r,k) = f0(E) + f1(r,k) (7.5)

where f0(E) is the equilibrium distribution function (the Fermi function), which
depends only on the energy E , while f1(r,k) is the perturbation term giving the
departure from equilibrium.

2. The collision term in the Boltzmann equation is written in the relaxation time
approximation so that the system returns to equilibrium uniformly:
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∂ f

∂t

∣
∣
∣
∣
collisions

= − ( f − f0)

τ
= − f1

τ
(7.6)

where τ denotes the relaxation time and in general is a function of crystalmomentum,
i.e., τ = τ(k) and the scattering process. The physical interpretation of the relaxation
time is the time associated with the rate of return to the equilibrium distribution when
the external fields or thermal gradients are switched off. Solution to (7.6) when the
fields are switched off at t = 0 leads to

∂ f

∂t
= − ( f − f0)

τ
(7.7)

which has solutions

f (t) = f0+
[

f (0) − f0

]

e−t/τ (7.8)

where f0 is the equilibrium distribution function and f (0) is the distribution function
at time t = 0. The relaxation process described by (7.8) follows a Poisson distrib-
ution, indicating that collisions relax the distribution function f (t) exponentially to
f0 with a time constant τ .
With these approximations, the Boltzmann equation is solved to find the distribu-

tion functionwhich in turn determines the number density n(r, t) and current density.
The current density j(r, t) is given by

j(r, t) = e

4π3

∫

v(k) f (r,k, t)d3k (7.9)

in which the crystal momentum �k plays the role of the momentum p in specifying
a volume in phase space d3k. Every element of size h (Planck’s constant) in phase
space can accommodate one spin ↑ and one spin ↓ electron. The carrier density
n(r, t) is thus simply given by integration of the distribution function over k-space

n(r, t) = 1

4π3

∫

f (r,k, t)d3k (7.10)

where d3k is an element of 3D wavevector space. The velocity of a carrier with
crystal momentum �k is related to the E(k) dispersion expression by

v(k) = 1

�

∂E(k)

∂k
(7.11)

and f0(E) is the Fermi distribution function

f0(E) = 1

1 + e(E−EF )/kBT
(7.12)
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which defines the equilibrium state in which EF is the Fermi energy and kB is the
Boltzmann constant for a Fermi distribution.

7.3 Electrical Conductivity

To calculate the static electrical conductivity, we consider an applied electric field
E which, for convenience, we will take to be along the x-direction. We will assume
for the present that there is no magnetic field and that there are no thermal gradients
present. The electrical conductivity is expressed in terms of the conductivity tensor
↔
σ which is evaluated explicitly from the relation

j =↔
σ ·E, (7.13)

from solution of (7.9), using v(k) from (7.11) and the distribution function f (r,k, t)
from solution of the Boltzmann equation represented by (7.4). The first term in (7.4)
vanishes since the dc applied field E has no time dependence.

For the second term in the Boltzmann equation (7.4), v(k) · ∂ f (r,k, t)/∂r, we
note that

∂ f

∂r
� ∂ f0

∂r
= ∂ f0

∂T

∂T

∂r
. (7.14)

Since there are no thermal gradients present in the simplest calculation of the elec-
trical conductivity given in this section, the term ∂ f

∂r does not contribute to (7.4). For
the third term in (7.4), which we write as

k̇ · ∂ f (r,k, t)

∂k
=

∑

α

k̇α

∂ f (r,k, t)

∂kα

(7.15)

where the right hand side shows the summation over the vector components. We
do get a contribution to the sum over α in (7.15), since the equations of motion
(F = ma) give

�k̇ = eE (7.16)

and
∂ f (r,k, t)

∂k
= ∂( f0 + f1)

∂k
= ∂ f0

∂E

∂E

∂k
+ ∂ f1

∂k
. (7.17)

In considering the linearizedBoltzmann equation of (7.17),we retain only the leading
terms in the perturbing electric field, so that (∂ f1/∂k) can be neglected and only the
term (∂ f0/∂E)�v(k) need be retained. We thus obtain the linearized Boltzmann
equation for the case of an applied static electric field and no thermal gradients:

k̇ · ∂ f (r,k, t)

∂k
= φ

τ

∂ f0
∂E

= − f1
τ

(7.18)



7.3 Electrical Conductivity 129

where it is convenient to write:

f1 = −φ

(
∂ f0
∂E

)

(7.19)

in order to show the (∂ f0/∂E) dependence explicitly. Substitution of (7.16) and
(7.17) into (7.18) yields

[
eE
�

(
∂ f0
∂E

)

]

· [�v(k)] = φ(k)

τ
(
∂ f0
∂E

) (7.20)

so that
φ(k) = eτE · v(k). (7.21)

Thus we can relate φ(k) to f1(k) by

f1(k) = −φ(k)
∂ f0(E)

∂E
= −eτE · v(k)

∂ f0(E)

∂E
. (7.22)

The current density is then found from the distribution function f (k) by calcula-
tion of the average value of 〈nev〉 over all k-space

j = 1

4π3

∫

ev(k) f (k)d3k = 1

4π3

∫

ev(k) f1(k)d3k (7.23)

since ∫

ev(k) f0(k)d3k = 0. (7.24)

Equation (7.24) states that no net current flows in the absence of an applied electric
field, which is another statement of the equilibrium condition. Substitution for f1(k)

given by (7.22) into (7.23) for j yields

j = − e2E
4π3

·
∫

τvv
∂ f0
∂E

d3k (7.25)

where in general τ = τ(k) and reflects a variety of scattering mechanisms, each
having a different k dependence and v is given by (7.11). A comparison of (7.25)
and (7.13) thus yields the desired result for the conductivity tensor

↔
σ

↔
σ= − e2

4π3

∫

τvv
∂ f0
∂E

d3k (7.26)

where
↔
σ is a symmetric second rank tensor (σi j = σ j i ). The evaluation of the integral

in (7.26) over all k-space depends on the E(k) relations through the vv terms and
the temperature dependence comes through the ∂ f0/∂E term. We will in Sect. 7.4



130 7 Basic Transport Phenomena

evaluate (7.26) for the simple example of a metal, and in Sect. 7.5 do the same for
an intrinsic semiconductor.

7.4 Electrical Conductivity of Metals

To exploit the energy dependence of (∂ f0/∂E) in applying (7.26) to metals, it is
more convenient to evaluate

↔
σ if we replace

∫

d3k with an integral over the constant
energy surfaces

∫

d3k =
∫

d2Sdk⊥ ≡
∫

d2SdE/|∂E/∂k|. (7.27)

Thus (7.26) is written as

↔
σ= − e2

4π3

∫
τvv

|∂E/∂k|
∂ f0
∂E

d2S dE . (7.28)

From the Fermi–Dirac distribution function f0(E) shown in Fig. 7.1, we see that the
derivative (−∂ f0/∂E) can approximately be replaced by a δ-function for the case of
a metal, so that (7.28) can be written as

↔
σ= e2

4π3�

∫

Fermi surface
τvv

d2S

v
. (7.29)

For a cubic crystal, [vxvx ] = v2/3 and thus the conductivity tensor
↔
σ has only

diagonal components σ that are all the diagonal components of
↔
σ are equal to each

other:

σ = e2

4π3�

∫

Fermi surface
τv

d2S

3
= ne2τ

m∗ (7.30)

since
n = (1/4π3)(4π/3)k3F (7.31)

and
vF = �kF/m. (7.32)

The result
σ = ne2τ/m∗ (7.33)

is called the Drude formula for the dc electrical conductivity. Generalization of this
methodology to metals with anisotropic Fermi surfaces or with more than one type
of carrier can be done directly and requires detailed numerical calculations in most
cases for real metals.
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Fig. 7.1 Schematic plot of
f0(E) and −∂ f0(E)/∂E for
a metal showing the
δ-function like behavior near
the Fermi level EF for the
derivative

7.5 Electrical Conductivity of Semiconductors

We show in this section that the simple Drude model σ = ne2τ/m∗ can also be
recovered for a semiconductor from the general relation given by (7.26), using a
simple parabolic band model and a constant relaxation time approximation. When a
more complete theory is used or is needed to describe specific physical phenomena,
departures from the simple Drude model will result.

In deriving the Drude model for a semiconductor we make three approximations:

• Approximation #1
In the case of electron states in intrinsic semiconductors having no donor or accep-
tor impurities, we have the condition (E − EF ) � kBT since EF is in the band
gap and E is the energy of an electron in the conduction band, as shown in Fig. 7.2.
Thus, the first approximation is equivalent to writing

f0(E) = 1

1 + exp[(E − EF )/kBT ] � exp[−(E − EF )/kBT ] (7.34)

Fig. 7.2 Electron and hole states in the conduction and valence bands of an intrinsic semiconductor.
aLocation of EF with approximately similar properties for electrons and holes.bThe corresponding
density of states for electrons and holes. c The Fermi functions for electrons (solid curve) and
holes (dashed curve). d The occupation (or density) of electron and hole states in an intrinsic
semiconductor at a finite temperature
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which is equivalent to using the Maxwell–Boltzmann distribution in place of the
full Fermi–Dirac distribution. Since E is usually measured with respect to the bot-
tom of the conduction band, EF is a negative energy and it is therefore convenient
to write f0(E) as

f0(E) � e−|EF |/kBT e−E/kBT (7.35)

so that the derivative of the Fermi function becomes

∂ f0(E)

∂E
= −e−|EF |/kBT

kBT
e−E/kBT . (7.36)

• Approximation #2
For simplicity we assume a constant relaxation time τ that is independent of k
and E . This approximation is made for simplicity and may not be valid for spe-
cific physical situations. Some common scattering mechanisms yield an energy-
dependent relaxation time τ = τ0(E/kBT )r , for which r = −1/2 and r = +3/2,
respectively, for acoustic deformation potential scattering or ionized impurity scat-
tering.

• Approximation #3
To illustrate the explicit evaluationof the integral in (7.26),we consider the simplest
case, assuming an isotropic, parabolic band E = �

2k2/2m∗ for the evaluation of
v = ∂E/�∂k about the conduction band extremum.

Using this third approximation we can write

vv= 1
3v

2
↔
1

k2 = 2m∗E/�
2

2kdk = 2m∗dE/�
2

v2 = 2E/m∗
v = �k/m∗

(7.37)

where
↔
1 is the unit second rank tensor. We next convert (7.26) to an integration over

energy and write

d3k = 4πk2dk = 4π
√
2(m∗/�

2)3/2
√
EdE (7.38)

so that (7.26) becomes

σ = e2τ

4π3

(
8
√
2π

√
m∗

3�3kBT

)

e−|EF/kBT
∫ ∞

0
E3/2dEe−E/kBT (7.39)

in which the integral over energy E is extended to ∞ because there is negligible
contribution for large E and because the definite integral
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∫ ∞

0
x pdxe−x = Γ (p + 1) (7.40)

can be evaluated exactly, Γ (p) being the Γ function which has the property

Γ (p + 1)= pΓ (p)
Γ (1/2)= √

π.
(7.41)

Substitution of (7.40) into (7.39) thus yields

σ = 2e2τ

m∗

(
m∗kBT
2π�2

)3/2

e−|EF |/kBT (7.42)

which gives the temperature dependence of σ . Now the carrier density calculated
using the same approximations becomes

n = (4π3)−1
∫

f0(E) d3k

= (4π3)−1 e−|EF |/kBT ∫

e−E/kBT 4π k2dk

= (
√
2/π2)

(

m∗/�
2

)3/2

e−|EF |/kBT ∫ ∞
0

√
EdEe−E/kBT

(7.43)

where ∫ ∞

0

√
EdEe−E/kBT =

√
π

2
(kBT )3/2 (7.44)

which gives the final result for the temperature dependence of the carrier density

n = 2

(
m∗kBT
2π�2

)3/2

e−|EF |/kBT (7.45)

so that by substitution into (7.42), the Drude formula is recovered

σ = ne2τ

m∗ (7.46)

for a semiconductor with constant τ and isotropic, parabolic dispersion relations.
To find σ for a semiconductor with more than one spherical carrier pocket, the

conductivities per carrier pocket are added

σ =
∑

i

σi (7.47)

where i is the carrier pocket index. We use these simple formulae to make rough
estimates for the carrier density and electrical conductivity of semiconductors. For
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more quantitative analysis, the details of the E(k) relation must be considered, as
well as an energy dependent τ and use of the complete Fermi function.

The electrical conductivity and carrier density of a semiconductor with one carrier
type exhibits an exponential temperature dependence so that the slope of ln σ vs
1/T yields an activation energy (see Fig. 7.3). The plot of ln σ vs 1/T is called
an “Arrhenius plot”. If a plot of ln σ vs 1/T exhibits one temperature range with
activation energy EA1 and a second temperature range with activation energy EA2,
then two carrier behavior is suggested. Also in such cases, the activation energies
can be extracted from an Arrhenius plot as shown in the schematic of Fig. 7.3.

7.5.1 Ellipsoidal Carrier Pockets

The conductivity results given above for a spherical Fermi surface can easily be
generalized to an ellipsoidal Fermi surface which is commonly found in degenerate
semiconductors. Semiconductors are degenerate at T = 0 when the Fermi level is in
the valence or conduction band rather than in the energy band gap.

For an ellipsoidal Fermi surface, we write the electronic dispersion relation as

E(k) = �
2k2x

2mxx
+ �

2k2y
2myy

+ �
2k2z

2mzz
(7.48)

where the effective mass components mxx ,myy and mzz are appropriate to the band
curvatures in the x, y, z directions, respectively. Substitution of

k ′
α = kα

√

m0/mα (7.49)

for α = x, y, z brings (7.48) into spherical form

E(k′) = �
2k ′2

2m0
(7.50)

Fig. 7.3 Schematic diagram
of an Arrhenius plot of ln σ

vs 1/T showing two carrier
types with different
activation energies,
indicating that one carrier
type dominates transport at
low temperature and another
carrier type is dominant at
high temperatures
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where k ′2 = k ′2
x + k ′2

y + k ′2
z . For the volume element d3k in (7.26) we have

d3k =
√

mxxmyymzz/m3
0 d

3k ′ (7.51)

and the carrier density associated with a single carrier pocket becomes

ni = 2
√
mxxmyymzz

(
kBT

2π�2

)3/2

e−|EF |/kBT . (7.52)

For an ellipsoidal constant energy surface (see Fig. 7.4), the directions of the
electric field, electron velocity and electron acceleration will in general be different.
Let (x, y, z) be the coordinate system for the major axes of the constant energy
ellipsoid and (X,Y, Z) be the laboratory coordinate system. Then in the laboratory
system the current density j and electric field E are related by

⎛

⎝

jX
jY
jZ

⎞

⎠ =
⎛

⎝

σXX σXY σXZ

σY X σYY σY Z

σZ X σZY σZ Z

⎞

⎠

⎛

⎝

EX

EY

EZ

⎞

⎠ (7.53)

As an example, suppose that the electric field is applied in the XY plane along the
X axis at an angle θ with respect to the x axis of the constant energy ellipsoid
(see Fig. 7.4). The conductivity tensor is easily written in the xyz crystal coordinate
system where the xyz axes are along the principal axes of the ellipsoid:

⎛

⎝

jx
jy
jz

⎞

⎠ = ne2τ

⎛

⎝

1/mxx 0 0
0 1/myy 0
0 0 1/mzz

⎞

⎠

⎛

⎝

E cos θ

E sin θ

0

⎞

⎠ (7.54)

A coordinate transformation from the crystal axes to the laboratory frame allows us
to relate

↔
σ crystal which we have written easily by (7.54) to

↔
σ Lab which we measure

by (7.53). In general
↔
σ Lab= R

↔
σ crystal R

−1 (7.55)

Fig. 7.4 Schematic diagram
of an ellipsoidal constant
energy surface
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where R is the rotational transformation matrix

R =
⎛

⎝

cos θ sin θ 0
− sin θ cos θ 0

0 0 1

⎞

⎠ (7.56)

and R−1 is the inverse of the rotational transformation matrix

R−1 =
⎛

⎝

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

⎞

⎠ (7.57)

so that the conductivity tensor
↔
σ Lab in the lab frame becomes:

↔
σ Lab= ne2τ

⎛

⎝

cos2 θ/mxx + sin2 θ/myy cos θ sin θ(1/myy − 1/mxx ) 0
cos θ sin θ(1/myy − 1/mxx ) sin2 θ/mxx + cos2 θ/myy 0

0 0 1/mzz

⎞

⎠

(7.58)
Semiconductorswith ellipsoidal Fermi surfaces usually have several such surfaces

located in crystallographically equivalent locations in the Brillouin zone. In the case
of cubic symmetry, the sum of the conductivity components results in an isotropic
conductivity even though the contribution from each ellipsoid is anisotropic. Thus
measurement of the electrical conductivity provides no information on the anisotropy
of the Fermi surfaces of cubicmaterials. However, measurement of themagnetoresis-
tance does provide such information, since the application of a magnetic field gives
special importance to the magnetic field direction, thereby lowering the effective
crystal symmetry.

7.6 Electrons and Holes in Intrinsic Semiconductors

Intrinsic semiconductors refer to semiconductors with no environmental or inten-
tional doping and no departures from perfect stoichiometry. In this section we con-
sider the symmetry between electron and holes and we show how the Fermi energy is
found for such semiconductors. In Sect. 7.7, we consider the corresponding issues for
doped semiconductors containing impurities or departures from ideal stoichiometry.

In the absence of doping, carriers are generated by thermal or optical excitations.
Thus at T = 0, all valence band states are occupied and all conduction band states are
unoccupied or empty. Thus, for each electron that is excited into the conduction band,
a hole is left behind in the valence band. For intrinsic semiconductors, conduction is
by both holes and electrons. The Fermi level is thus determined by the condition that
the number of electrons is equal to the number of holes. Writing gv(Eh) and gc(Ee)

as the density of hole states in the valence band and electron states in the conduction
band, respectively, we obtain
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Fig. 7.5 Schematic diagram
of the band gap in a
semiconductor showing the
symmetry of electrons and
holes. The diagram is drawn
for the case that the electron
and hole dispersion relations
are the same and the effective
masses are the same

nh =
∫ ∞

0
gv(Eh) f̂0(Eh + Eh

F )dEh =
∫ ∞

0
gc(Ee) f̂0(Ee + Ee

F )dEe = ne (7.59)

where the notation we have used is shown in Fig. 7.5. Here the energy gap Eg is
written as the sum of the Fermi energies for electrons and holes, both taken as
positive numbers

Ee
F + Eh

F = Eg, (7.60)

and the Fermi functions f̂0 are written so as to include explicitly the Fermi energy.
The condition ne = nh for intrinsic semiconductors is used to determine the position
of the Fermi levels for electrons and holes within the band gap. If the band curvatures
of the valence and conduction bands are the same, then their effective masses have
the same magnitude and EF lies at midgap. We also derive in this section the general
result for the placement of EF when m∗

e �= m∗
h .

On the basis of this interpretation, the holes obey Fermi statistics as do the elec-
trons, only we must measure the hole energies downward, while electron energies
are measured upwards, as indicated in Fig. 7.5. This approach clearly builds on the
symmetry relation between electrons and holes. It is convenient to measure electron
energies Ee with respect to the bottom of the conduction band Ec so that Ee = E−Ec

and to measure hole energies Eh with respect to the top of the valence band Ev so
that Eh = −(E − Ev). The Fermi level for the electrons is −Ee

F (measured from
the bottom of the conduction band which is taken as E = 0) and for holes it is −Eh

F
(measured from the top of the valence band which is taken as E = 0 for holes), so
that Ee

F and Eh
F have positive values. Referring to (7.59), f̂0(Ee + Ee

F ) denotes the
Fermi function for electrons where E − EF is written explicitly

f̂0(Ee + Ee
F ) = 1

1 + exp[(Ee + Ee
F )/kBT ] (7.61)
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and is consistent with the definitions given above. A similar expression to (7.61)
follows for the corresponding f̂0(Eh + Eh

F ) for holes.
In a typical intrinsic semiconductor, the magnitudes of the energies Ee

F and Eh
F

are both much greater than thermal energies, i.e., |Ee
F | � kBT and |Eh

F | � kBT ,
where kBT at room temperature is ∼25meV. Thus the distribution functions can be
approximated by the Boltzmann form

f̂0(Ee + Ee
F )�e−(Ee+Ee

F )/kBT

f̂0(Eh + Eh
F )�e−(Eh+Eh

F )/kBT .
(7.62)

Ifme andmh are, respectively, the electron and hole effective masses and if we write
the dispersion relations around the valence and conduction band extrema as

Ee = �
2k2/(2me)

Eh = �
2k2/(2mh)

(7.63)

then the density of states for electrons at the bottom of the conduction band and for
holes at the top of the valence band can be written in their respective nearly free
electron forms (see (7.64))

gc(Ee)= 1
2π2

(

2me/�
2

)3/2

E1/2
e

gv(Eh)= 1
2π2

(

2mh/�
2

)3/2

E1/2
h .

(7.64)

These expressions follow from

n = 1

4π3

4π

3
k3 (7.65)

and substitution of k via the simple parabolic relation

E = �
2k2

2m∗ (7.66)

so that

n = 1

3π2

(
2m∗E

�2

)3/2

(7.67)

and

g(E) = dn

dE
= 1

2π2

(
2m∗

�2

)3/2

E1/2. (7.68)

Substitution of this density of states expression into (7.45) results in a carrier
density
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ne = 2

(
mekBT

2π�2

)3/2

e−Ee
F/kBT . (7.69)

Likewise for holes we obtain

nh = 2

(
mhkBT

2π�2

)3/2

e−Eh
F/kBT . (7.70)

Thus the famous product rule is obtained

nenh = 4

(
kBT

2π�2

)3

(memh)
3/2e−Eg/kBT (7.71)

where Eg = Ee
F + Eh

F . But for an intrinsic semiconductor ne = nh . Thus by taking
the square root of the above expression, we obtain both ne and nh separately

ne = nh = 2

(
kBT

2π�2

)3/2

(memh)
3/4e−Eg/2kBT . (7.72)

Comparison with the expressions given in (7.69) and (7.70) for ne and nh allows us
to solve for the Fermi levels Ee

F and Eh
F

ne = 2

(
mekBT

2π�2

)3/2

e−Ee
F/kBT = 2

(
kBT

2π�2

)3/2

(memh)
3/4e−Eg/2kBT (7.73)

so that
exp(−Ee

F/kBT ) = (mh/me)
3/4 exp(−Eg/2kBT ) (7.74)

and

Ee
F = Eg

2
− 3

4
kBT ln(mh/me). (7.75)

If me = mh , we obtain the simple result that Ee
F = Eg/2 which says that the Fermi

level lies in the middle of the energy gap. However, if the masses are not equal,
EF will lie closer to the band edge with higher curvature, thereby enhancing the
Boltzmann factor term in the thermal excitation process, to compensate for the lower
density of states for the higher curvature band.

If however me � mh , the Fermi level approaches the conduction band edge and
the full Fermi functions have to be considered. In this case

ne = 1

2π2

(
2me

�2

)3/2 ∫ ∞

Ec

(E − Ec)
1/2dE

exp[(E − Ee
F )/kBT ] + 1

≡ NeF1/2

(
Ee

F − Ec

kBT

)

(7.76)
where Ec denotes the bottom of the conduction band, Ee

F is the Fermi energy for
electrons which here is allowed the possibility of moving up into the conduction band
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(and therefore its sign cannot be predetermined), and Ne is the “effective electron
density” which, in accordance with (7.69), is given by

Ne = 2

(
mekBT

2π�2

)3/2

. (7.77)

The Fermi integral in (7.76) is written in standard form as

Fj (η) = 1

j !
∫ ∞

0

x jdx

exp(x − η) + 1
. (7.78)

We can take Fj (η) from the tables in Blakemore, “Semiconductor Statistics” (Appen-
dix B). For the semiconductor limit (η < −4), then Fj (η) → exp(η). Clearly, when
the full version of Fj (η) is required to describe the carrier density, then Fj (η) is also
needed to describe the conductivity. These refinements are important for a detailed
solution of the transport properties of semiconductors over the entire temperature
range of interest, and eventually in the presence of doping.

7.7 Donor and Acceptor Doping of Semiconductors

In general a semiconductor has electron and hole carriers due to the presence of impu-
rities, whether intentional or otherwise, as well as from thermal excitation processes.
For many applications, impurities are intentionally introduced to generate carriers:
donor impurities to generate electrons in n-type semiconductors, and acceptor impu-
rities to generate holes in p-type semiconductors. Assuming for the moment that
each donor contributes one electron to the conduction band, then the donors can
contribute an excess carrier concentration up to Nd , where Nd is the donor impurity
concentration. Similarly, if every acceptor contributes one hole to the valence band,
then the excess hole concentration will be Na , where Na is the acceptor impurity con-
centration. In general, the semiconductor is partly compensated, which means that
both donor and acceptor impurities are present, thereby giving a partial cancellation
to the net carrier concentration. Furthermore, at finite temperatures, the donor and
acceptor levels will be partially occupied, so that somewhat less than the maximum
charge will be released as mobile charge into the conduction and valence bands.
The density of electrons bound to a donor site nd is found from the grand canonical
ensemble in statistical mechanics as

nd
Nd

=
∑

j N j e−(E j−μN j )/kBT

∑

j e
−(E j−μN j )/kBT

(7.79)

where E j and N j are, respectively, the energy and number of electrons that can
be placed in state j , and μ is the chemical potential (Fermi energy). Referring to
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Table 7.1 Occupation of
impurity states in the grand
canonical ensemble

States N j Spin E j

1 0 – 0

2 1 ↑ −Ed

3 1 ↓ −Ed

4 2 ↑↓ −Ed + ECoulomb

Table7.1, the system can be found in one of three states: one where no electrons
are present in state j (hence no contribution is made to the energy), and two states
where one electron is present (one with spin ↑, the other with spin ↓) corresponding
to the donor energy Ed , where the sign is included directly so that Ed has a positive
energy value. Placing two electrons in the same energy state would result in a very
high energy because of the Coulomb repulsion between the two electrons; therefore
this possibility is neglected in practical calculations. Writing either N j = 0, 1 for
the 3 states of importance, we obtain for the relative ion concentration of occupied
donor sites

nd
Nd

= 2e−(εd−μ)/kBT

1 + 2e−(εd−μ)/kBT
= 1

1 + 1
2e

(εd−μ)/kBT
= 1

1 + 1
2e

−(Ed−Ee
F )/kBT

(7.80)

in which Ed and Ee
F are positive numbers, but lie below the zero of energy which is

taken to be at the bottom of the conduction band. The energy εd denotes the energy
for the donor level and is a negative number relative to the zero of energy.

Consequently, the concentration of electrons thermally ionized into the conduction
band will be

Nd − nd = Nd

1 + 2e(Ed−Ee
F )/kBT

= ne − nh (7.81)

wherene andnh are themobile electron andhole concentrations.At low temperatures,
where Ed ∼ kBT , almost all of the carriers in the conduction band will be generated
by the ionized donors, so that nh � ne and (Nd −nd) � ne. The Fermi level will then
adjust itself so that Nd − nd � ne. From (7.45) and (7.81) the following equation
determines Ee

F :

ne = 2

(
mekBT

2π�2

)3/2

e−Ee
F/kBT � Nd

1 + 2e(Ed−Ee
F )/kBT

. (7.82)

Solution of (7.82) shows that the presence of the ionized donor carriers moves the
Fermi level up above the middle of the band gap and close to the bottom of the
conduction band. For the donor impurity problem, the Fermi level will be close to
the position of the donor level Ed , as shown in Fig. 7.6.

The position of the Fermi level also varies with temperature. Fig. 7.6 assumes that
almost all the donor electrons (or acceptor holes) are ionized and are in the conduction
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Fig. 7.6 Variation of the Fermi energy (EF ) with donor and acceptor concentrations, shown by the
solid curve. For a heavily doped n-type semiconductor, EF is close to the donor level Ed , while for
a heavily doped p-type semiconductor, EF is close to Ea . This plot is made assuming almost all
the donor and acceptor states are ionized

band, which is typical of temperatures where the n-type (or p-type) semiconductor
would be used for electron (or hole) transport.

Figure7.7a shows the dependence of the Fermi level on temperature. Here T1
denotes the temperature at which the thermal excitation of intrinsic electrons and
holes become important, and T1 is normally a high temperature. In contrast, T2 is
normally a very low temperature and denotes the temperature below which donor-
generated electrons begin to freeze out in impurity level bound states and no longer
contribute to conduction. This carrier freeze-out is illustrated in Fig. 7.7b. In the
temperature range T2 < T < T1, the Fermi level in Fig. 7.7a falls as T increases
according to

EF = Ec − kBT ln(Nc/Nd) (7.83)

where Nc = 2mekBT/(2π�
2). In Fig. 7.7b we see the temperature dependence of

the carrier concentration in the intrinsic range (T > T1), the saturation range (T2 <

T < T1), and finally the low temperature range (T < T2) where carriers freeze out
into bound states in the impurity band at Ed . The plot of the electron density n in
Fig. 7.7b is presented as a function of (1000/T ) and the corresponding temperature
values are shown on the upper scale of the figure.

For the case of acceptor impurities, an ionized acceptor level releases a hole into
the valence band, or alternatively, an electron from the valence band gets excited into
an acceptor level, leaving a hole behind. At very low temperature, the acceptor levels
are filled with holes under freeze-out conditions. Because of hole-hole Coulomb
repulsion, we can place no more than one hole in each acceptor level. A singly
occupied hole can have either spin up or spin down. Thus for the acceptor levels, a
formula analogous to (7.80) for donors is obtained for the occupation of an acceptor
level

na
Na

= 1

1 + 1
2e

−(Ea−Eh
F )/kBT

(7.84)

so that the essential symmetry between holes and electrons is maintained. To obtain
the hole concentration in the valence band, we use a formula analogous to (7.81).



7.7 Donor and Acceptor Doping of Semiconductors 143

Fig. 7.7 a Temperature dependence of the Fermi energy for an n-type doped semiconductor. See
the text for definitions of T1 and T2. Here EFi denotes the position of the Fermi level in the
high temperature limit where the thermal excitation of carriers far exceeds the electron density
contributed by the donor impurities. b Temperature dependence of the electron density for Si doped
with 1015 cm−3 donors where the electron density is plotted as a function of 1000/T in units of K−1.
Reprinted with permission from John Wiley & Sons Inc, Sze and Ng, Physics of Semiconductor
Devices

A situation which commonly arises for the acceptor levels relates to the degen-
eracy of the valence bands for group IV and III–V compound semiconductors. We
will illustrate the degenerate valence band in the case where spin-orbit interaction is
considered (which is usually the situation that is relevant for opto-electronic applica-
tions). Under strong spin-orbit interaction we have a degenerate heavy and light hole
band and a lower lying split-off band. The two degenerate bands are only weakly
coupled, so that we can approximate the impurity acceptor levels by hydrogenic
acceptor levels for the heavy hole εa,h and light hole εa,l bands. In this case the
split-off band does not contribute significantly because it lies much lower in energy.
The density of holes bound to both types of acceptor sites is given by

na
Na

=
∑

j N j e−(E j−μN j )/kBT

∑

j e
−(E j−μN j )/kBT

, (7.85)

following (7.79), where we note that the heavy hole and light hole bands can each
accommodate one spin up and one spin down electron for each wavevector k. Using
the same arguments as above, we obtain:

na
Na

= 2e−(εa,l−μ)/kBT + 2e−(εa,h−μ)/kBT

1 + 2e−(εa,l−μ)/kBT + 2e−(εa,h−μ)/kBT
(7.86)

so that
na
Na

= 1 + e−(εa,h−εa,l )/kBT

1 + 1
2e

(εa,l−μ)/kBT + e−(εa,h−εa,l )/kBT
. (7.87)
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If the thermal energy is large in comparison to the difference between the acceptor
levels for the heavy and light hole bands, then

[(εa,h − εa,l)/kBT ] � 1 (7.88)

and
exp[−(εa,h − εa,l)/kBT ] � 1 (7.89)

so that the ratio of the density of holes bound to acceptor sites becomes

na
Na

� 1

1 + 1
4e

−(εa,l−μ)/kBT
= 1

1 + 1
4e

(Ea−Eh
F )/kBT

(7.90)

where Ea and Eh
F are positive values corresponding to εa,l and μ, respectively. From

(7.81) and (7.90), the temperature dependence of EF can be calculated for the case
of doped semiconductors considering the doping by donor and acceptor impurities,
either separately or at the same time. Figure7.6 shows the doping dependence of EF

for p-doped semiconductors as well as for n-doped semiconductors.

7.8 Characterization of Semiconductors

In describing the electrical conductivity of semiconductors, it is customary to write
the conductivity as

σ = ne|e|μe + nh |e|μh (7.91)

in which ne and nh are the carrier densities for the carriers, and μe and μh are their
mobilities. We have shown in (7.46) that for cubic materials the static conductivity
can under certain approximations be written as

σ = ne2τ

m∗ (7.92)

for each carrier type, so that the mobilities and effective masses are related by

μe = |e|〈τe〉
me

(7.93)

and

μh = |e|〈τh〉
mh

(7.94)

which show that materials with small effective masses have high mobilities. By writ-
ing the electrical conductivity as a product of the carrier density with the mobility, it
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Fig. 7.8 Temperature
dependence of the electron
concentration for intrinsic Si
and Ge in the range
250 < T < 500K. Circles
indicate the doping levels
that must be exceeded to
have extrinsic carriers
dominate over thermally
excited carriers at 300K.
Reprinted with permission
from John Wiley & Sons Inc,
Sze and Ng, Physics of
Semiconductor Devices

is easy to contrast the temperature dependence of σ for metals and semiconductors.
For metals, the carrier density n is essentially independent of T , while μ is temper-
ature dependent. In contrast, n for semiconductors is highly temperature dependent
in the intrinsic regime [see Fig. 7.7b] and μ is relatively less temperature dependent.
Fig. 7.8 shows the carrier concentration for intrinsic Si and Ge in the neighborhood
of room temperature (250 < T < 500K), demonstrating the rapid increase of the
carrier concentration with increasing temperature. These values of n indicate the
doping levels necessary to exceed the intrinsic carrier level to a desired level at a
given temperature. Fig. 7.9 shows the mobility for n-type Si samples with various
impurity levels. The observed temperature dependence can be explained by the dif-
ferent temperature dependences of the impurity scattering and phonon scattering
mechanisms (see Fig. 7.10).

A table of typical mobilities for semiconductors is given in Table7.2. By way of
comparison, μ for copper at room temperature is 35cm2/V·s. When using conduc-
tivity formulae in esu units, remember that the mobility is expressed in cm2/V·s and
that all the numbers in Table7.2 have to be multiplied by 300 to match the units given
here in this book.
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Fig. 7.9 Temperature dependence of themobility for n-type Si for a series of samples with different
impurity concentrations. Note that the mobility is not as strong a function of temperature as is the
carrier density shown in Fig. 7.8. At low temperature, impurity scattering by the donor impurity
ions becomes important, as shown in the inset. The different temperature dependences of impurity
and electron-phonon scattering allows one to identify the important scattering mechanisms exper-
imentally. Reproduced with permission from Springer-Verlag, Yu and Cardona, Fundamentals of
Semiconductors: Physics and Materials Properties

In the characterization of a semiconductor for device applications, researchers are
expected to provide information on the carrier density and mobility, preferably as a

Fig. 7.10 Temperature
dependence of the mobility
for n-type GaAs, showing
the separate and combined
carrier scattering processes.
Reprinted with permission
from J. Appl. Phys. 41, 3088
(1970)
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Table 7.2 Mobilities for some typical semiconductors at room temperature in units of cm2/V · s
Crystal Electrons Holes Crystal Electrons Holes

Diamond 1800 1200 GaAs 8000 300

Si 1350 480 GaSb 5000 1000

Ge 3600 1800 PbS 550 600

InSb 77,000 750 PbSe 1020 930

InAs 30,000 460 PbTe 2500 1000

InP 4600 100 AgCl 50 –

AlAs 280 – KBr (100K) 100 –

AlSb 900 400 SiC 100 10–20

Table 7.3 Semiconductor effective masses of electrons and holes in direct gap semiconductors

Crystal Electron Holes Spin-orbit

me/m0 mhh/m0 mlh/m0 msoh/m0 Δ(eV)

InSb 0.015 0.39 0.021 (0.11) 0.82

InAs 0.026 0.41 0.025 0.08 0.43

InP 0.073 0.4 (0.078) (0.15) 0.11

GaSb 0.047 0.3 0.06 (0.14) 0.80

GaAs 0.066 0.5 0.082 0.17 0.34

function of temperature. Such plots are shown in Figs. 7.8 and 7.9. When presenting
characterization data in condensed form, the carrier density andmobility of semicon-
ductors are traditionally given at 300 and 77K. Other information on the values of
the parameters commonly used in semiconductor physics are values of the effective
masses (Table7.3) and of the energy gaps (Table7.4).
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Table 7.4 Semiconductor energy gaps between the valence and conduction bands

Crystal Gapa Eg , eV Crystal Gapa Eg , eV

0K 300K 0K 300K

Diamond i 5.4 – HgTeb d – –

Si i 1.17 1.11 PbS d 0.286 0.34-0.37

Ge i 0.744 0.66 PbSe i 0.165 0.27

αSn d 0.00 0.00 PbTe i 0.190 0.29

InSb d 0.23 0.17 CdS d 2.582 2.42

InAs d 0.43 0.36 CdSe d 1.840 1.74

InP d 1.42 1.27 CdTe d 1.607 1.44

GaP i 2.32 2.25 ZnO − 3.436 3.2

GaAs d 1.52 1.43 ZnS − 3.91 3.6

GaSb d 0.81 0.68 SnTe d 0.3 0.18

AlSb i 1.65 1.6 AgCl − – 3.2

SiC(hex) i 3.0 – AgI − – 2.8

Te d 0.33 – Cu2O d 2.172 –

ZnSb − 0.56 0.56 TiO2 − 3.03 –
aThe indirect gap is labeled by i , and the direct gap is labeled by d
bHgTe is a zero gap semiconductor, and because of non-ideal stoichiometry, the Fermi level may
be in the valence or conduction band

Problems

7.1 Suppose that you have a semimetal with three equivalent electron pockets along
the (1, 1̄, 1̄), (1̄, 1, 1̄) and (1̄, 1̄, 1) directions with

E(k) = �
2k2el
2mel

+ �
2k2et
2met

(where mel = m0 and met = 0.01m0), and a single hole pocket along the (1,1,1)
direction

E(k) = �
2k2hl
2mhl

+ �
2k2ht
2mht

(where mhl = m0 and mht = 0.1m0). We note here that this semimetal (which is a
simplification of the Bi electronic structure) does not strictly have cubic symmetry,
although we use a cubic coordinate system for simplicity. Use these values for the
longitudinal and transverse effective mass components for electrons and holes, and
assume the band overlap for electrons and holes is 100meV:

(a) Find the carrier density for electrons and holes for this semimetal at T = 0 and at
a low but finite temperature T at T = 10K and T = 100K. State your definition
of low T .

(b) Find the Fermi energy for electrons and holes.
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(c) Find the electrical conductivity in the (111) direction at temperature T , using
your results from (a).

(d) What are the qualitative differences between the electrical conductivity for
a semimetal (band overlap of 100meV) and a semiconductor (band gap of
100meV) keeping all other band parameters the same?

7.2 (a) Suppose that we apply stress to a highly degenerate Si sample where the
Fermi level lies at an energy EF above the conduction band minimum. Assume
that the stress Σ is applied along the (1,0,0) direction such that the conduction
band along the stress direction is lowered, while maintaining the same indirect
band gap Eg for the (0,Δ, 0) and (0, 0,Δ) conduction band minima as before
the stress was applied. Assume that the change in band gap with stress for
the (Δ, 0, 0) minima is linear with stress (∂Eg/∂Σ = αΣ) and assume for
simplicity that the total carrier density n = 6 × 1018/cm3 is independent of
stress. Write an expression for the stress level at which all the carriers will be
in the (Δ, 0, 0) conduction band minima at T = 0K. Explain qualitatively the
effect of increasing temperature on this system.

(b) What is the electrical conductivity for the Si sample in part (a) when all the
electrons are in the (100) and (1̄00) carrier pockets and when the electric field
is oriented along the E ‖ (011) direction? Assume that the longitudinal and
transverse effective mass components are ml = 0.92m0 and mt = 0.19m0,
respectively, and for simplicity assume that the effective mass components do
not change with stress.

7.3 The valence band edge of lead telluride (PbTe) consists of 4 degenerate ellip-
soidal hole pockets at the L-points (masses mt = 0.03m0 and m� = 0.24m0). For
this simplified version of PbTe, assume that the conduction band edge is a mirror
image of the valence band edge (i.e., the same masses and degeneracies and that the
L-points in the Brillouin zone are all equivalent initially). The direct band gap Eg

and the static dielectric constant ε0 are 0.310eV and 412, respectively at 300K, and
assume for simplicity that Eg and ε0 are independent of temperature. Evaluate the
effect of T and dopant concentration on EF :

(a) First find Ed , the energy of the donor level. At which temperature range are most
of the donor states ionized?

(b) Find EF (0K), EF (300K), and ni (300K) for intrinsic PbTe.
(c) Find EF (0K), EF (300K), and ni (300K) for lightly doped (Nd = 1016

carriers/cm3) PbTe. Justify your choice of the distribution function for this dop-
ing level.

(d) Repeat (c) for heavily doped (Nd = 1019 carriers/cm3) PbTe, assuming that the
carrier masses do not change with doping.

7.4 Silicon crystallizes in the diamond structure. The lowest conduction band is at a
Δ–point of the F.C.C. Brillouin zone 0.85 of the distance from Γ to X along a (100)
direction, and its equivalent directions in the Brillouin zone. Six (6) ellipsoidal con-
stant energy surfaces (ellipsoids of revolution) are formed, following the dispersion
relation:
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E(k) = �
2k2�
2m�

+ �
2(k2t1 + k2t2)

2mt

wherem� is the longitudinal effectivemass component along theΓ Xdirection andmt

is the transverse effective mass component perpendicular to this direction. Assume
that each carrier pocket contains 1018 electrons/cm3 and τ = 10−14 s is the relaxation
time. For (m�/m0) = 0.98 and (mt /m0) = 0.19, find the contribution to the electrical
conductivity from a single carrier pocket (labeled [1] in Fig. 7.11) for the following
cases:

(a) The electric field E ‖ (001).
(b) The electric field E ‖ (111).
(c) Find the contribution to the electrical conductivity from all 6 electron pockets

for E ‖ (001) and E ‖ (111) [see (a) and (b)]. It can generally be shown that, for
cubic materials, σ is independent of the direction of the applied electric field.

7.5 Consider the direct band gap semiconductor GaAs (at room temperature Eg =
1.43eV) with 1016 hydrogenic donor impurities/cm3.

(a) Write an expression for the temperature dependence of the Fermi level. Take
Eg = 1.42eV for the direct band gap, m∗

e = 0.07m0 for the conduction band
mass and mhh = 0.68m0, m lh = 0.12m0 for the heavy and light holes bands and
ignore the effect of the split–off band Δ = 0.33eV below the top of the valence
band. The static dielectric constant for GaAs is 15.

(b) Find the value of the Fermi energy at 300K and at 30K.
(c) What are the electron and hole carrier concentrations at room temperature

(300K)? at 30K?
(d) Estimate the hole concentration in the split–off band (m∗

soh = 0.20m0). This
calculation should justify the neglect of the split–off band in the calculation in
(a).

(e) Why must the spin orbit interaction be included when considering acceptor
doping in GaAs?

Fig. 7.11 Carrier pockets
for silicon within the
Brillouin zone
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(f) At what doping concentration would you expect a substitutional impurity in
GaAs to start forming an impurity band for the electron? How does an impurity
band differ from an isolated impurity level?

(g) The bandgap for the indirect gap semiconductor AlAs (with the same crystal
structure and nearly identical lattice constants as the direct gap semiconductor
GaAs) is 2.13eV. Why is it not correct to use Vegard’s law to find the bandgap
for Ga0.9Al0.1As? Hint: Vegard’s law is an interpolation formula for property X
given by

X (x) = X (0) + x[X (1) − X (0)]

where x is the concentration of Al in the alloy Ga1−xAlxAs.

7.6 The direct band gap semiconductorGaAs has a band gap of 1.43eV at 300K, and
a second higher-lying conduction band extremum at the X -point in the Brillouin zone
is 0.35eV above the Γ point conduction band minimum. Assume effective masses
me(Γ ) = 0.065m0 for the Γ -point electrons, ml(X) = 1.2m0 and mt (X) = 0.3m0

for the X -point electrons, and mhh(Γ ) = 0.5m0 and mlh(Γ ) = 0.12m0 for the
Γ -point heavy and light holes. Assume all bands are parabolic.

(a) With intrinsic material and only thermal excitation, at what temperature and
carrier concentration will the number of Γ point electrons equal the number of
X -point electrons?

(b) For n-type material at T = 0K, what is the carrier concentration just before the
X -point electrons start to fill? Assume a step function Fermi distribution.

(c) Where does the Fermi level lie for cases (a) and (b)?
(d) Physically, what happens to the temperature dependence of the Fermi level as

the X -point electrons start to fill? Indicate the conditions that must be satisfied
when both Γ -point and X -point electrons are present?

(e) Compare the electrical conductivity of case (a) and case (b). Include contributions
from all carriers in both cases.

7.7 Suppose that you have just discovered a new cubic compound semiconductor
called novelite which crystallizes in the zincblende structure, a common crystal
structure for III–Vcompound semiconductors such asGaAs. Suppose that the valence
band maxima are at the Γ point (k = 0) are associated with constant energy surfaces
that are approximately spherical and consist of a heavy hole band (m∗

hh = m0),
a degenerate light hole band (m∗

lh = m0/3), and a split-off band (m∗
soh = m0/5)

which is 0.1eV below the valence band maximum. Suppose that the conduction
band minima are at all Σ points crystallographically equivalent to (0.85,0.85,0)π/a.
These equivalent points are all located along all the equivalent {110} directions (Γ K ).
Assume the following dispersion relations for the electrons

Ec(k) = �
2

2

(
k21
m∗

1

+ k22
m∗

2

+ k23
m∗

3

)
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where the k1 and k2 vectors are, respectively, along the (110) and (11̄0) directions,
andk3 is along the (001) direction.Assume that along the longitudinal (110) direction
m∗

1 = m0, and along the directions transverse to this direction take m∗
2 = m0/3 and

m∗
3 = m0/9.

(a) If each electron carrier pocket hasn electrons, find an expression for theminimum
kF for a single electron ellipsoid in terms of n and the effectivemass components.

(b) What is the length of kF along the (111) direction relative to the minimum kF?
(c) How many equivalent electron ellipsoids are there?
(d) Find an expression for the density of states for the electrons.
(e) Find an expression for the density of states for the holes.
(f) Find an expression for the Fermi energy at temperature T if no dopants are added

and all the carriers are generated thermally.
(g) Assuming equal relaxation times for all the holes and electrons, find the relative

contributions of each electron and hole carrier type to the electrical conductivity
(assume E ‖ (110)).

7.8 Suppose that you have an fcc semimetal with 2 atoms per unit cell. Suppose that
the electrons are at the L points, π/a(1, 1, 1), (m∗

l = 0.3m0 and m∗
t = 0.1m0) in

the Brillouin zone and the holes are in a single carrier pocket at the Γ point (k = 0)
with m∗

h = 0.3m0, and assume that the energy overlap for this semimetal is 10meV.

(a) Find the position of the Fermi level for the 3 dimensional semimetal at T = 0.
(b) What is the smallest phonon wavevector required for inter-pocket scattering

between the electron pockets for this 3D semimetal?
(c) What is the smallest vector for inter-pocket scattering if umklapp processes were

to occur?
(d) Suppose that the semimetal is now prepared as a thin layer (quantum well)

between alkali halide insulating barriers with the (001) crystalline direction nor-
mal to the thin layer of the semimetal (layer thickness = 50Å). Find an expression
for the energy of the lowest subband of the L point electrons as a function of the
semimetal layer thickness.

(e) Atwhat layer thickness does the thin film experience a semimetal-semiconductor
transition?

(f) Suppose that the semimetal thin film is grown along a (111) direction. Is the
layer thickness for the semimetal-semiconductor transition larger, smaller or the
same as in (d)? Why?

(g) Design an experiment that will tell you that the semimetal-semiconductor tran-
sition has occurred.

7.9 Suppose that we apply a stress along the (111̄) direction of germanium so that all
the electron carriers will be thermally excited into a single (111̄) carrier pocket. For
germanium use ml = 1.58m0 and mt = 0.082m0 for the conduction band ellipsoids
and mhl = 0.04m0 and mhh = 0.3m0 for the light and heavy holes.

(a) If an electric field is now applied along the (112) direction, find the magnitude of
the conductivity for thermally excited carriers in intrinsic germanium. Consider
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the contribution of both electrons and holes (ignore the effect of stress on the
hole bands).

(b) Along which direction does the current flow?
(c) What is the smallest wave vector for scattering an electron from one electron

carrier pocket to another in germanium in the absence of stress?

Suggested Readings
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N.W. Ashcroft, N.D. Mermin, Solid State Physics (Holt, Rinehart and Winston, 1976). Chap. 13
A.C. Smith, J.F. Janak, R.B. Adler,Electronic Conduction in Solids (McGraw-Hill, 0, 1967). Chaps.
7, 8, and 9



Chapter 8
Thermal Transport

8.1 Introduction

The electrons in solids not only conduct electricity but also conduct heat, as they trans-
fer energy from a hot junction to a cold junction. Just as the electrical conductivity
characterizes the response of a material to an applied voltage, the thermal conduc-
tivity likewise characterizes the material with regard to heat flow in the presence of a
temperature gradient. In fact, the electrical conductivity and thermal conductivity are
coupled, since thermal conduction also transports charge and electrical conduction
also transports energy. This coupling between electrical and thermal transport gives
rise to thermo-electricity. In this chapter, we discuss first the thermal conductivity
for metals, semiconductors and insulators and then consider the coupling between
electrical and thermal transport which gives rise to thermoelectric phenomena. In
Chap.9, we discuss scattering mechanisms for electrons and phonons which relates
closely to thermal transport.

8.2 Thermal Conductivity

8.2.1 General Considerations

Thermal transport in most materials systems, like electrical transport, follows from
the Boltzmann equation. We will first derive a general expression for the electronic
contribution to the thermal conductivity using Boltzmann’s equation. We will then
apply this general expression to find the thermal conductivity for metals and then for

semiconductors. The total thermal conductivity
↔
κ of any material is, of course, the

superposition of the electronic part
↔
κ e with the lattice part

↔
κ L :

↔
κ=↔

κ e + ↔
κ L . (8.1)
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We now consider the calculation of the electronic contribution to the thermal con-
ductivity. The lattice contribution to the thermal conductivity is considered for the
case of insulators in Sect. 8.2.4 where the contribution from the lattice vibration is
discussed in terms of phonons which are the carriers of thermal energy. The appli-
cation of a temperature gradient to a solid gives rise to a flow of heat. We define U
as the thermal current that is driven by the thermal energy E − EF , which in turn is
defined as the excess energy of an electron above the equilibrium energy EF , where
is the Fermi energy. Neglecting time dependent effects, we define U as

U = 1

4π3

∫
v (E − EF ) f (r,k)d3k (8.2)

where the distribution function f (r,k) is related to the Fermi function f0 by f =
f0 + f1. Under equilibrium conditions, there is no thermal current density

∫
v(E − EF ) f0 d

3k = 0 (8.3)

so that the thermal current is driven by the thermal gradient which causes a departure
from the equilibrium distribution occurring at the Fermi energy EF :

U = 1

4π3

∫
v(E − EF ) f1 d

3k. (8.4)

Here the electronic contribution to the thermal conductivity tensor
↔
κ e is defined by

the relation

U = − ↔
κ e ·∂T

∂r
. (8.5)

Assuming no explicit time dependence for the distribution function, the function f1
representing the departure of the distribution from equilibrium is found from solution
of Boltzmann’s equation

v · ∂ f

∂r
+ k̇ · ∂ f

∂k
= − f1

τ
(8.6)

for a time independent temperature gradient. In the absence of an electric field, k̇ = 0
and the drift velocity v is found from the equation

v · ∂ f

∂r
= − f1

τ
. (8.7)

Using the linear approximation for the term ∂ f /∂r in the Boltzmann equation, we
obtain
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∂ f
∂r

∼= ∂ f0
∂r = ∂

∂r

[
1

1+e(E−EF )/kB T

]

=
{
− e(E−EF )/kB T

[1+e(E−EF )/kB T ]2
} {

− 1
kBT

∂EF
∂r − (E−EF )

kBT 2
∂T
∂r

}

=
{
kBT

∂ f0
∂E }{− 1

kBT
∂T
∂r

} {
∂EF
∂T + (E−EF )

T

}

= − ∂ f0
∂E

{
∂EF
∂T + (E−EF )

T

}
∂T
∂r .

(8.8)

We will now give some typical values for these two terms for semiconductors and
metals. For semiconductors, we evaluate the expression in (8.8) by referring to (7.75)

EF = 1

2
Eg − 3

4
kBT ln(mh/me) (8.9)

from which

∂EF

∂T
∼ 3

4
kB ln(mh/me) (8.10)

showing that the temperature dependence of EF arises from the inequality of the
valence and conduction band effective masses. If mh = me, which would be the
case of strongly coupled “mirror” bands, then ∂EF/∂T would vanish. However, for
a significant mass difference such as mh/me = 2, we obtain ∂E f /∂T ∼ 0.5kB from
(8.10). For a band gap of 0.5 eV and the Fermi level in the middle of the energy gap,
we obtain for the other term in (8.8)

[(E − EF )/T ] ≈ [0.5/(1/40)]kB = 20kB (8.11)

where kBT ≈ 1/40 eV at room temperature. Thus for a semiconductor, the term
(E − EF )/T is much larger than the term (∂EF/∂T ).

For a metal with a spherical Fermi surface, the following relation

EF = E0
F − π2

12

(kBT )2

E0
F

(8.12)

is derived in standard textbooks on statistical mechanics, so that at room temperature
and assuming that for a typical metal E0

F = 5 eV, we obtain from (8.12)

∣∣∣∣∂EF

∂T

∣∣∣∣ = π2

6

(kBT )

E0
F

kB ≈ 10

6

(
1
40

)
5

kB ≈ 8 × 10−3kB . (8.13)

Thus, for both semiconductors and metals, the term (E − EF )/T tends to dominate
over (∂EF/∂T ), though there can be situations where the term (∂EF/∂T ) cannot be
neglected. In this presentation, we will temporarily neglect the term ∇EF in (8.8)

http://dx.doi.org/10.1007/978-3-662-55922-2_7
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whenwe calculate the electronic contribution to the thermal conductivity, but wewill
include this term formally in our derivation of thermoelectric effects in Sect. 8.3.

Typically, the electron energies of importance in any transport problem are those
within kBT of the Fermi energy so that for many applications for metals, we can
make the rough approximation,

E − EF

T
≈ kB (8.14)

though the results given in this section are derived without the above approximation
for (E − EF )/T . Rather, all integrations are carried out in terms of the variable
(E − EF )/T .

We return now to the solution of the Boltzmann’s equation in the relaxation time
approximation

∂ f

∂r
=

(
−∂ f0

∂E

) (
E − EF

T

) (
∂T

∂r

)
. (8.15)

Solution of the Boltzmann’s equation in the absence of an electric field yields

f1 = −τv ·
(

∂ f

∂r

)
= τv

(
∂ f0
∂E

) (
E − EF

T

)
∂T

∂r
. (8.16)

Substitution of f1 in (8.4) for the thermal current

U = 1

4π3

∫
v(E − FF ) f1d

3k (8.17)

then results in

U = 1

4π3T

(
∂T

∂r

)
·
∫

τvv(E − EF )2
(

∂ f0
∂E

)
d3k. (8.18)

Using the definition of the thermal conductivity tensor
↔
κ e given by (8.5) we write

the electronic contribution to the thermal conductivity
↔
κ e as

↔
κ e= −1

4π3T

∫
τvv(E − EF )2

(
∂ f0
∂E

)
d3k (8.19)

where d3k = d2S dk⊥ = d2S dE/|∂E/∂k| = d2SdE/(�v) is used to exploit our
knowledge of the dependence of the distribution function on the energy, as discussed
below.
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8.2.2 Thermal Conductivity for Metals

In the case of a metal, the integral for
↔
κ e given by (8.19) can be evaluated easily

by converting the integral over phase space
∫
d3k to an integral over

∫
dE d2SF

in order to exploit the δ-function property of −(∂ f0/∂E). We then make use of the
following result that can be found in any standard statistical mechanics text (see for
example, F. Reif, “Fundamentals of Statistical and Thermal Physics”)

∫
G(E)

(
−∂ f0

∂E

)
dE = G(EF ) + π2

6
(kBT )2

[
∂2G

∂E2

]
EF

+ . . . (8.20)

It is necessary to consider the expansion given in (8.20) for solving (8.19) since

G(EF ) vanishes at E = EF for the integral defined in (8.19) for
↔
κ e. To solve the

integral equation of (8.19), we therefore make the identification of

G(E) = g(E)(E − EF )2 (8.21)

where

g(E) = 1

4π3

∫
τvvd2S/�v (8.22)

so that G(EF ) = 0 and (∂G/∂E)|EF = 0, while

[
∂2G

∂E2

]
EF

= G ′′(EF ) = 2g(EF ). (8.23)

These relations will be used again in connection with the calculation of the ther-
mopower in Sect. 8.3.1. For the case of the thermal conductivity for a metal we then
obtain

↔
κ e= π2

3
(kBT )2g(EF ) = (kBT )2

12π�

∫
τvv

d2SF
v

(8.24)

where the integration is over the Fermi surface. We immediately recognize that the
integral appearing in (8.24) is the same as that for the electrical conductivity (see
(7.26) and (7.29))

↔
σ= e2

4π3�

∫
τvv

d2SF
v

(8.25)

so that the electronic contribution to the thermal conductivity and the electrical
conductivity tensors are proportional to each other

↔
κ e=↔

σ T

(
π2k2B
3e2

)
(8.26)

http://dx.doi.org/10.1007/978-3-662-55922-2_7
http://dx.doi.org/10.1007/978-3-662-55922-2_7
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and (8.26) is known as the Wiedemann–Franz Law. The physical basis for this rela-
tion is that in electrical conduction each electron carries a charge e and experiences
an electrical force eE so that the electrical current per unit field is e2. In thermal
conduction, each electron carries a unit of thermal energy kBT and experiences a
thermal force kB∂T/∂r so that the heat current per unit thermal gradient is propor-
tional to k2BT . Therefore the ratio of |κe|/|σ | must be on the order of (k2BT/e2). The
Wiedemann–Franz law suggests that the ratio κe/(σT ) should be a constant (called
the Lorenz number1), independent of materials properties

∣∣∣ κe

σT

∣∣∣ = π2

3

(
kB
e

)2

= 2.45 × 10−8 watt ohm/deg2. (8.27)

The ratio (κe/σT ) is approximately constant for all metals at high temperatures
T > ΘD and at very low temperatures T � ΘD , where ΘD is the Debye tempera-
ture. The derivation of the Wiedemann–Franz Law depends on the relaxation time
approximation, which is valid at high temperatures T > ΘD where the electron scat-
tering is dominated by the quasi-elastic phonon scattering process. TheWiedemann–
Franz Law is also valid at very low temperatures T � ΘD where phonon scattering
is unimportant and the dominant scattering mechanism is impurity and lattice defect
scattering, both of which tend to be elastic scattering processes. These scattering
processes are discussed in Chap.9 where we discuss in more detail the tempera-
ture dependence for κ . When specific scattering processes are considered in detail,
the value of the Lorenz number may then change. The Lorentz number has been
reported as varying from 2.23× 10−8 	K−2 for Cu at 0◦C to 3.2× 10−8 	K−2 for
tungsten at 100◦C. In fact, the Wiedemann–Franz Law works well for high and low
(few Kelvins) temperatures but it is not accurate at intermediate temperatures. In the
case the of graphene (a 2D material) the Lorenz number has been measured as being
3.23× 10−8 	K−2.

The temperature dependence of the thermal conductivity of a metal is given in
Fig. 8.1. From (8.27) we can write the following relation for the electronic contribu-
tion to the thermal conductivity κe when the Wiedemann–Franz law is satisfied

κe =
(
ne2τ

m∗

)
T

π2

3

(
kB
e

)2

. (8.28)

At very low temperatures where scattering by impurities, defects, and crystal bound-
aries is dominant, σ is independent of T and therefore is independent from the
Wiedemann–Franz law, where κe ∼ T . At somewhat higher temperatures, but still
in the regime T � ΘD , electron-phonon scattering starts to dominate and κe starts
to decrease. In this regime, the electrical conductivity exhibits a T−5 dependence.
However, only small q phonons participate in this regime. Thus it is only the phonon

1This number is 2.44 x 10−8 WΩK−2 and was discovered by Ludvig Lorenz in 1872.

http://dx.doi.org/10.1007/978-3-662-55922-2_9
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Fig. 8.1 The temperature dependence of the thermal conductivity of copper. Note that both κ and
T are plotted on linear scales. At low temperatures where the phonon density is low, the thermal
transport is by electrons predominantly, while at high temperatures, thermal transport by phonons
becomes more important.

density which increases as T 3 that is relevant to the phonon-electron scattering,
thereby yielding an electrical resistivity with a T 3 dependence and a conductivity
with a T−3 dependence. Using (8.28), we thus find that in the low T range, where only
low q phonons participate in thermal transport, κe should show a T−2 dependence, in
agreement with Fig. 8.1. At high T where all the phonons contribute to thermal trans-
port, we have σ ∼ 1/T so that κe becomes independent of T . Since ΘD ∼ 300 K
for Cu, the temperature range of Fig. 8.1 is well below the Debye temperature for
copper.

The Wiedemann-Franz law does not hold for electrons confined in low dimen-
sions, as theoretically predicted byKane andFisher 1996, and experimentally demon-
strated by Wakeham et al. 2011 in the metallic phase of quasi-one-dimensional
Li0.9Mo6O17 where the ratio of thermal and electrical conductivity diverges with
decreasing temperature.

8.2.3 Thermal Conductivity for Semiconductors

For the case of non-degenerate semiconductors, the integral for
↔
κ e in (8.19) is eval-

uated by replacing (E − EF ) → E , since in a semiconductor the electrons that can
conduct heat must be in the conduction band, and the lowest energy an electron can
have in the thermal conduction process is at the conduction band minimum which is
taken as the zero of energy in these calculations. Then the thermal conductivity for
a non-degenerate semiconductor can be written as

↔
κ e= 1

4π3T

∫
τvv E2

(
− ∂ f0

∂E

)
d3k. (8.29)
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For intrinsic semiconductors, the Fermi distribution function can normally be approx-
imated by the Maxwell–Boltzmann distribution so that

(∂ f0/∂E) → −(1/kBT )e(−|Ee
F |/kBT )e(−E/kBT ). (8.30)

The doping level in a semiconductor is normally very much lower than 2 electrons
per atom (which would be necessary to fill a band) so that the Fermi level remains
close to the band edges. For a parabolic band we have E = �

2k2/2m∗, so that the
volume element in reciprocal space can be written as

∫
d3k =

∫
4πk2dk =

∫ ∞

0
2π(2m∗/�

2)3/2E1/2dE, (8.31)

and v = (1/�)(∂E/∂k) = �k/m. Assuming a constant relaxation time, we then

substitute all these terms into (8.29) for
↔
κ e and integrate over the energy E to obtain

for a diagonal component of the tensor

κexx= (1/4π3T )
∫

τv2x E
2

[
(kBT )−1e−|Ee

F |(/kBT ) e−E/(kBT )

]
2π(2m∗/�

2)3/2E1/2dE

=
[
kB(kBT )τ/(3π2m∗)

]
(2m∗kBT/�

2)3/2 e−|Ee
F |/(kBT )

∫ ∞
0 x7/2e−xdx

(8.32)

where
∫ ∞
0 x7/2e−xdx = 105

√
π/8, fromwhich it follows that κexx has a temperature

dependence of the form
T 5/2e−|Ee

F |/(kBT ) (8.33)

in which the exponential term is dominant for temperatures of physical interest,
where kBT � |Ee

F |. We note from (7.42) that for a semiconductor, the temperature
dependence of the electrical conductivity is given by

σxx = 2e2τ

m∗

(
m∗kBT
2π�2

)3/2

e−|Ee
F |/(kBT ). (8.34)

Assuming cubic symmetry for simplicity, we can write the conductivity tensor as

↔
σ=

⎛
⎝σxx 0 0

0 σxx 0
0 0 σxx

⎞
⎠ (8.35)

so that the electronic contribution to the thermal conductivity of a semiconductor
can be written as

κexx =
(
35

2

)(
k2B
e2

)
σxx T (8.36)

http://dx.doi.org/10.1007/978-3-662-55922-2_7


8.2 Thermal Conductivity 163

where

σxx = ne2τ/mxx = neμxx (8.37)

and we note that the coefficient (35/2) for this calculation for semiconductors is
different from the corresponding coefficient (π2/3) for metals (see (8.27)). Except
for numerical constants, the formal results relating the electronic contribution to
the thermal conductivity κexx and σxx are similar for metals and semiconductors,
with the electronic thermal conductivity and electronic electrical conductivity being
proportional to one another. For low symmetry materials, the electrical and thermal
conductivity tensors have off-diagonal elements.

A major difference between semiconductors and metals is the magnitude of the
electrical conductivity, and hence of the electronic contribution to the thermal con-
ductivity. Since σxx is much smaller for semiconductors than for metals, κe for semi-
conductors is relatively unimportant, and the thermal conductivity tends to be dom-
inated by the lattice contribution κL .

8.2.4 Thermal Conductivity for Insulators

In the case of insulators, heat is only carried by phonons (lattice vibrations). The
thermal conductivity in insulators therefore depends on the phonon scattering mech-
anisms (see Chap.9). The lattice thermal conductivity is calculated from kinetic
theory and is given by

κL = Cpvq�ph

3
(8.38)

whereCp is the heat capacity, vq is the average phonon velocity and�ph is the phonon
mean free path. As discussed above, the total thermal conductivity of a solid is given
as the sum of the lattice contribution κL and the electronic contribution κe. For metals
the electronic contribution dominates, while for insulators and semiconductors the
phonon contribution dominates. Let us now consider the temperature dependence
of κexx (see Fig. 8.2), for heat conduction by phonons. At very low T in the defect
scattering range, the heat capacity has a dependence Cp ∝ T 3 while vq and �ph are
almost independent of T . As T increases and we enter the phonon-phonon scattering
regime due to normal scattering processes and involving only low q phonons, Cp is
still increasing with T but the increase is slower than T 3, while vq remains indepen-
dent of T and �ph. As T increases further, the thermal conductivity increases more
and more gradually and eventually starts to decrease because of phonon-phonon
scattering events, for which the density of phonons available for scattering depends
on the Bose–Einstein factor [exp(�ω/kBT ) − 1]. This causes a peak in κL(T ). The
decrease in κL(T ) becomes more pronounced as Cp becomes independent of T and
�ph continues to be proportional to [exp(�ω̄/kBT )−1] where ω̄ is a typical phonon

http://dx.doi.org/10.1007/978-3-662-55922-2_9
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Fig. 8.2 Temperature
dependence of the thermal
conductivity of a highly
purified insulating crystal of
NaF. Note that both κ and T
are plotted on a log scale,
and that the peak in κ occurs
at quite a low temperature
(∼17 K).

frequency (see Sect. 9.4.1). As T increases further, we eventually enter the T � ΘD

regime, where ΘD is the Debye temperature. In this regime, the temperature depen-
dence of �ph simply becomes �ph ∼ (1/T ). Referring to Fig. 8.2 for κ(T ) for NaF
we see that the peak in κ occurs at about 18K where the complete Bose–Einstein
factor [exp(�ω̄/kBT ) − 1] must be used to describe the T dependence of κL . For
much of the temperature range in Fig. 8.2, only low q phonons participate in the
thermal conduction process. At higher temperatures where larger q phonons con-
tribute to thermal conduction, umklapp processes become important in the phonon
scattering process, as discussed in Sect. 9.3.1. The discussion in this section regard-
ing phonons also applies to the lattice contribution to the thermal conductivity for
metals, semimetals and semiconductors.

8.3 Thermoelectric Phenomena

In many metals and semiconductors there exists a significant coupling between the
electrical current and the thermal current. This coupling can be appreciated byobserv-
ing that when electrons carry thermal current, they are also transporting charge and
therefore generating electric fields. This coupling between the charge transport and
heat transport gives rise to thermoelectric phenomena. In our discussion of thermo-
electric phenomena we start with a general derivation of the coupled equations for
the electrical current density j and the thermal current density U defined in (8.4):

http://dx.doi.org/10.1007/978-3-662-55922-2_9
http://dx.doi.org/10.1007/978-3-662-55922-2_9
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j = e

4π3

∫
v f1d3k (8.39)

U = 1

4π3

∫
v(E − EF ) f1d

3k (8.40)

and the perturbation to the distribution function f1 is found from solution of Boltz-
mann’s equation in the relaxation time approximation:

v · ∂ f

∂r
+ k̇ · ∂ f

∂k
= − ( f − f0)

τ
, (8.41)

which is written here for the case of time independent forces and fields. Substituting
for (∂ f/∂r) from (8.8) and (8.15), for ∂ f/∂k from (7.17), and using the fact that
∂ f/∂k = (∂ f0/∂E)(∂E/∂k) yields

v · (∂ f0/∂E)

[
(eE − ∇EF ) − (E − EF )

T
(∇T )

]
= − f1

τ
, (8.42)

so that the solution to the Boltzmann equation in the presence of an electric field and
a temperature gradient is

f1 = vτ · (∂ f0/∂E)

{
[(E − EF )/T ]∇T − eE + ∇EF

}
, (8.43)

in which e is negative for electrons and positive for holes. The electrical and thermal
currents in the presence of both an applied electric field and a temperature gradient
can thus be obtained by substituting f1 into j and U in (8.39) and (8.40) to yield
expressions of the form:

j = e2
↔
κ 0 ·

(
E − 1

e
∇EF

)
− (e/T )

↔
κ 1 ·∇T (8.44)

and

U = e
↔
κ 1 ·

(
E − 1

e
∇EF

)
− (1/T )

↔
κ 2 ·∇T (8.45)

where the thermal conductivity tensor
↔
κ 0 is related to the electrical conductivity

tensor
↔
σ by

↔
κ 0= 1

4π3

∫
τvv(−∂ f0/∂E)d3k =

↔
σ

e2
, (8.46)

and

↔
κ 1= 1

4π3

∫
τvv(E − EF )

(
− ∂ f0

∂E

)
d3k, (8.47)

http://dx.doi.org/10.1007/978-3-662-55922-2_7
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and
↔
κ 2 is related to the thermal conductivity tensor

↔
κ e by

↔
κ 2= 1

4π3

∫
τvv(E − EF )2(−∂ f0/∂E)d3k = T

↔
κ e . (8.48)

Note that the integrands for
↔
κ 1 and

↔
κ 2 are both related to that for

↔
κ 0 by introducing

factors of (E − EF ) and (E − EF )2, respectively. Note also that the same integral
↔
κ 1 occurs in the expression for the electric current j induced by a thermal gradient
∇T and in the expression for the thermal current U induced by an electric field E.
The motion of charged carriers across a temperature gradient results in a flow of

electric current expressed by the term −(e/T )(
↔
κ 1) · ∇T . This term is the origin of

thermoelectric effects.
The discussion up to this point has been general. If specific boundary conditions

are imposed, we obtain a variety of thermoelectric effects such as the Seebeck effect,
the Peltier effect and the Thomson effect. We now define the conditions under which
each of these thermoelectric effects occur.

We define the thermopower
↔
S (Seebeck coefficient) and the Thomson coefficient

Tb under conditions of zero current flow. Then referring to (8.44), we obtain under
open circuit conditions

j = 0 = e2
↔
κ 0 ·

(
E − 1

e
∇EF

)
− (e/T )

↔
κ 1 ·∇T (8.49)

so that the Seebeck coefficient
↔
S is defined by

E − 1

e
∇EF = (1/eT )

↔
κ

−1

0 · ↔
κ 1 · ∇T ≡ ↔

S ·∇T, (8.50)

andS is sometimes also called the thermopower. Using the relation∇EF = ∂EF
∂T ∇T

we obtain the definition for the Thomson coefficient Tb

E =
(
1

e

∂EF

∂T
+ ↔

S

)
∇T ≡ ↔

T b ·∇T (8.51)

where
↔
T b= T

∂

∂T

↔
S . (8.52)

For many thermoelectric systems of interest,
↔
S has a linear temperature depen-

dence, and in this case it follows from (8.52) that
↔
T b and the Seebeck coefficient

↔
S for such systems are almost equivalent for practical purposes. Therefore the
Seebeck and Thomson coefficients are used almost interchangeably in the literature,
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but one should always check that the conditions required for the use of (8.52) are
satisfied before using this relation.

From (8.50) and neglecting the term in ∇EF , as is usually done, we have

↔
S= (1/eT )

↔
κ

−1

0 · ↔
κ 1 (8.53)

which is simplified by assuming an isotropic medium, yielding the scalar quantities

S = (1/eT )(κ1/κ0). (8.54)

However in an anisotropic medium, the tensor components of
↔
S are found from

Si j = (1/eT )(κ−1
0 )iα(κ1)α j , (8.55)

where the Einstein summation convention is assumed in summing over α. Fig. 8.3
shows a schematic diagram for measuring the thermopower or Seebeck effect in
an n-type semiconductor. At the hot junction the Fermi level is higher than at the
cold junction. Electrons will move from the hot junction to the cold junction in an
attempt to equalize the Fermi level, thereby creating an electric field which can be
measured in terms of the open circuit voltage V shown in Fig. 8.3.

Another important thermoelectric coefficient is the Peltier coefficient
↔
Π which is

a second rank tensor defined as the proportionality between the two vectors U and j

U ≡ ↔
Π ·j (8.56)

in the absence of a thermal gradient.
For ∇T = 0, (8.44) and (8.45) become

j = e2
↔
κ 0 ·

(
E − 1

e
∇EF

)
(8.57)

Fig. 8.3 Determination of
the Seebeck effect for an
n-type semiconductor. In the
presence of a temperature
gradient, electrons will move
from the hot junction to the
cold junction, thereby
creating an electric field and
a voltage V across the
semiconductor.
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U = e
↔
κ 1 ·

(
E − 1

e
∇EF

)
(8.58)

so that
U = (1/e)

↔
κ 1 ·(↔

κ 0)
−1 · j = ↔

Π ·j (8.59)

where ↔
Π= (1/e)

↔
κ 1 ·(↔

κ 0)
−1. (8.60)

Comparing (8.53) and (8.60) we see that
↔
Π and

↔
S are related by

↔
Π= T

↔
S , (8.61)

where T is the temperature. For isotropic materials, the Peltier coefficient thus
becomes a scalar, and is proportional to the thermopower S :

Π = 1

e

(
κ1/κ0

)
= TS , (8.62)

while for anisotropic materials the tensor components of
↔
Π can be found in analogy

with (8.55).Wenote that both
↔
S and

↔
Π exhibit a linear dependence on e and therefore

depend explicitly on the sign of the carrier, and measurements of
↔
S or

↔
Π can be

used to determine whether transport is dominated by electrons or holes.

We have already considered the evaluation of
↔
κ 0 in treating the electrical conduc-

tivity and
↔
κ 2 in treating the thermal conductivity. To treat thermoelectric phenomena,

we need now to evaluate
↔
κ 1

↔
κ 1= 1

4π3

∫
τvv(E − EF )(−∂ f0/∂E)d3k. (8.63)

In Sect. 8.3.1 we evaluate
↔
κ 1 for the case of a metal and in Sect. 8.3.2 we eval-

uate
↔
κ 1 for the case of the electrons in an intrinsic semiconductor. In practice, the

thermopower is of interest for heavily doped semiconductors, which are either degen-
erate with the Fermi level in the conduction or valence band or very close to these
band edges. In general, a thermoelectric device has both n-type and p-type legs or
constituents.

8.3.1 Thermoelectric Phenomena in Metals

All thermoelectric effects inmetals depend on the tensor
↔
κ 1 whichwe evaluate below

for the case of a metal. We can then obtain the thermopower
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↔
S= 1

eT

(
↔
κ 1 · ↔

κ
−1

0

)
(8.64)

or the Peltier coefficient
↔
Π= 1

e

(
↔
κ 1 · ↔

κ
−1

0

)
(8.65)

or the Thomson coefficient
↔
T b= T

∂

∂T

↔
S . (8.66)

Toevaluate
↔
κ 1 formetalswewish to exploit the δ-function behavior of (−∂ f0/∂E).

This is accomplished by converting the integration over d3k to an integration over
dE and over a constant energy surface, d3k = d2S dE/�v. From Fermi statistics
we have the general relation (see (8.20))

∫
G(E)

(
− ∂ f0

∂E

)
dE = G(EF ) + π2

6

(
kBT

)2
[
∂2G

∂E2

]
EF

+ · · · . (8.67)

For the integral in (8.63) which defines
↔
κ 1, we can write

G(E) = g(E)(E − EF ) (8.68)

where

g(E) = 1

4π3

∫
τvv d2S/v (8.69)

and the integration in (8.69) is carried out over a constant energy surface at energy
E . The differentiation of G(E) then yields

G ′(E)= g′(E)(E − EF ) + g(E)

G ′′(E)= g′′(E)(E − EF ) + 2g′(E).
(8.70)

Evaluation of (8.70) at E = EF yields

G(EF )= 0
G ′′(EF )= 2g′(EF ).

(8.71)

We therefore obtain
↔
κ 1= π2

3

(
kBT

)2
g′(EF ). (8.72)

We interpret g′(EF ) in (8.72) to mean that the same integral
↔
κ 0 which determines

the conductivity tensor is evaluated on a constant energy surface E , and g′(EF ) is the
energy derivative of that integral evaluated at the Fermi energy EF . The temperature
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dependence of g′(EF ) is related to the temperature dependence of τ , since v is
essentially temperature independent. For example,wewill see inChap. 9 that acoustic
phonon scattering in the high temperature limit T � ΘD yields a temperature

dependence τ ∼ T−1 so that
↔
κ 1 in this important case for metals will be proportional

to T .
For a spherical constant energy surface E = �

2k2/2m∗ and assuming a relaxation
time τ that is independent of energy, we can readily evaluate (8.72) to obtain

g(E) = τ

3π2m∗

(
2m∗

�2

)3/2

E3/2 (8.73)

g′(EF ) = τ

2π2m∗

(
2m∗

�2

)3/2

E1/2
F (8.74)

and

κ1 = τ

6m∗

(
2m∗

�2

)3/2

E1/2
F (kBT )2. (8.75)

Using the same approximations, we can write for κ0:

κ0 = τ

3π2m∗

(
2m∗

�2

)3/2

E3/2
F (8.76)

so that from (8.64) we have for the Seebeck coefficient

S = κ1

κ0eT
= π2kB

2e

kBT

EF
(8.77)

for a simple metal. From (8.77) we see thatS exhibits a linear dependence on T and
a sensitivity to the sign of the carriers. We note from (8.64) that a low carrier density
implies a large S value. Thus degenerate semiconductors (heavily doped with n ∼
1018–1019/cm3) tend to have higher thermopowers than metals. The derivation given
here works as a good approximation for very heavily doped semiconductors with
simple band structures. In general, practical thermoelectric material do not have
simple band structures, so more sophisticated calculations need to be made. In this
case, density functional theory is commonly used.

8.3.2 Thermopower for Intrinsic Semiconductors

In this section we evaluate
↔
κ 1 for electrons in an intrinsic or lightly doped semi-

conductor for illustrative purposes. Intrinsic semiconductors are not important for

http://dx.doi.org/10.1007/978-3-662-55922-2_9
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Fig. 8.4 Schematic E
versus k diagram, showing
that E = 0 is the lowest
electronic energy for heat
conduction.

practical thermoelectric devices since the contributions of electrons and holes to the

matrix
↔
κ 1 are of opposite signs and tend to cancel. Thus it is only heavily doped

semiconductors with a single carrier type that are important for thermoelectric appli-
cations.

The evaluation of the general expression for the integral
↔
κ 1

↔
κ 1= 1

4π3

∫
τvv(E − EF )

(
− ∂ f0

∂E

)
d3k (8.78)

is different for semiconductors and metals. Referring to Fig. 8.4 for an intrinsic
semiconductor we need to make the substitution (E − EF ) → E in (8.78), since
only conduction electrons can carry heat. Of course phonons also carry heat and this
is discussed in Sect. 8.5.

The equilibriumdistribution function for an intrinsic semiconductor can bewritten
as

f0 = e−E/(kBT ) e−|Ee
F |/(kBT ) (8.79)

so that

∂ f0
∂E

= − 1

kBT
e−E/(kBT ) e−|Ee

F |/(kBT ). (8.80)

To evaluate d3k we need to assume a model for E(k). For simplicity and for illus-
tration, assume a simple parabolic band

E = �
2k2/2m∗ (8.81)

d3k = 4πk2dk (8.82)

so that

d3k = 2π

(
2m∗

�2

)3/2

E1/2dE (8.83)
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and also

v = 1

�
(∂E/∂k) = �k/m∗. (8.84)

Substitution into the equation for
↔
κ 1 for a semiconductor with the simple energy

dispersion relation E= �
2k2/2m∗ then yields upon integration from (8.78)

κ1xx = 5τkBT

m∗

(
m∗kBT/2π�

2

)3/2

e−|Ee
F |/(kBT ). (8.85)

This expression is valid for a semiconductor with a simple parabolic band for which
the Fermi level is far from the band edge (E − EF ) � kBT . The thermopower is
then found by substitution

S = 1

eT

(
κ1xx/κ0xx

)
(8.86)

where the expression for κ0xx = σxx/e2 is given by (8.46). We thus obtain the result

S = 5

2

kB
e

(8.87)

which is a constant independent of temperature, independent of the band structure,
but sensitive to the sign of the carriers. The calculation in this section is for the
contribution of electrons. In an actual intrinsic semiconductor, the contribution of
both electrons and holes to κ1 must be found. Likewise the calculation for κ0xx would
also include contributions from both electrons and holes. Since the contribution to
(1/e)κ1xx for holes and electrons are of opposite sign, we can from (8.87) expect
that S for holes will cancel S for electrons for an intrinsic semiconductor, while
the κ0 for holes and electrons will add.

Materials with a high thermopower or Seebeck coefficient are heavily doped
degenerate semiconductors for which the Fermi level is close to the band edge or
even within the conduction band for electrons or the valence band for holes. In either
of the two cases, the complete Fermi function must be used. SinceS depends on the
sign of the charge carriers, thermoelectric materials are doped either heavily doped
n-type or heavily doped p-type semiconductors to prevent cancellation of the con-
tribution from electrons and holes. For intrinsic semiconductors, carriers are created
by thermal excitations so that these materials have approximately equal concentra-
tions of electrons and holes and cannot be used for most practical thermoelectric
applications.
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8.3.3 Effect of Thermoelectricity on the Thermal
Conductivity

From the coupled equations given by (8.44) and (8.45) it is seen that the proportion-
ality between the thermal current U and the temperature gradient ∇T in the absence

of electrical current (j = 0) contains terms related to
↔
κ 1. We now solve (8.44) and

(8.45) to find the contribution of the thermoelectric terms to the electronic thermal
conductivity. When j = 0, (8.44) becomes

(
E − 1

e
∇EF

)
= 1

eT

↔
κ−1

0 · ↔
κ 1 ·∇T (8.88)

so that

U = −(1/T )

[
↔
κ 2 − ↔

κ 1 ·
↔

κ−1
0 · ↔

κ 1

]
· ∇T (8.89)

where
↔
κ 0,

↔
κ 1, and

↔
κ 2 are given by (8.46), (8.47), and (8.48), respectively, or

↔
κ 0= 1

4π3�

∫
τvv

d2SF
v

, (8.90)

↔
κ 1= π2

3

(
kBT

)2(
∂

↔
κ 0

∂E

)
EF

, (8.91)

and
↔
κ 2= (kBT )2

12π�

∫
τvv

d2SF
v

. (8.92)

We now evaluate the contribution to the thermal conductivity from the thermoelectric
coupling effects for the case of a metal having a simple dispersion relation

E = �
2k2/2m∗. (8.93)

In the case where τ is considered to be independent of E , (8.91) and (8.90), respec-
tively, provide expressions for κ1 and κ0 from which

1

T
κ1κ

−1
0 κ1 = π4nτ

4m∗ k2BT

(
kBT

EF

)2

(8.94)

so that from (8.28) and (8.94) the total electronic thermal conductivity for the metal
becomes

κe = π2nτ

3m∗ k2BT

[
1 − 3π2

4

(
kBT

EF

)2]
. (8.95)
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For typical metals (T/TF ) ∼ (1/30) at room temperature so that the thermoelec-
tric correction term is less than 1%. For highly degenerate semiconductors as are of
interest for thermoelectric applications, the complete Fermi function must be consid-
ered. Nevertheless, for most thermoelectric applications, the contribution of phonons
strongly dominates over that of electrons, and the thermal transport of thermoelectric
materials requires detailed consideration of phonons and electron-phonon interac-
tion.

8.4 Thermoelectric Measurements

8.4.1 Seebeck Effect (Thermopower)

The thermopower S as defined in (8.50) and is the characteristic coefficient in the
Seebeck effect, where a metal subjected to a thermal gradient∇T exhibits an electric
field E = S∇T . The measurements are made under an open-circuit voltage V and
under conditions of no current flow.

In the application of the Seebeck effect to thermocouple operation, we usually
measure the difference in thermopower SA − SB between two different metals A
and B by measuring the open circuit voltage VAB as shown in Fig. 8.5. This voltage
can be calculated from

VAB= − ∮
E · dr = − ∮

S ∂T
∂r dr

= ∫ T1
T0

SBdT + ∫ T2
T1

SAdT + ∫ T0
T2

SBdT

= ∫ T2
T1

(SA − SB)dT .

(8.96)

With T1 �= T2, an open-circuit potential difference VAB can be measured and (8.96)
shows that VAB is independent of the temperature T0 for the simple case considered.
Thus if T1 is known and VAB is measured, then the temperature T2 can be found from

Fig. 8.5 Thermopower
between two different metals
showing the principle of
operation of a thermocouple
material or device under
open circuit conditions (i.e.,
j = 0).
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the calibration table of the thermocouple. From the simple expression of (8.77)

S = π2kB
2e

(
kBT

EF

)
(8.97)

a linear dependence ofS on T is predicted for simple metals. For actual thermocou-
ples used for temperature measurements, the S (T ) dependence is approximately
linear, but is given by an accurate calibration table to account for small deviations
from this linear relation that occur because of the simplifying approximations made
in the actual devices where the electrons actually interact with phonons and with
other electrons and such effects need to be considered for real materials and real
devices. Thermocouples are calibrated at several fixed temperatures and the cali-
bration table actually used data comes from a fit made for these thermal data to a
polynomial function that is approximately linear in T .

8.4.2 Peltier Effect

The Peltier effect is the observation of a thermal current U = ↔
Π ·j in the presence of

an electric current j with no thermal gradient (∇T = 0) so that

↔
Π= T

↔
S . (8.98)

The Peltier effectmeasures the heat generated (or absorbed) at the junction of two dis-
similar metals held at constant temperature, when an electric current passes through
the junction. Sending electric current around a circuit of two dissimilar metals cools
one junction and heats another and is the basis for the operation of thermoelectric
coolers. This thermoelectric effect is represented schematically in Fig. 8.6. Because
of the similarities between the Peltier coefficient and the Seebeck coefficient, mate-

rials exhibiting a large Seebeck effect also show a large Peltier effect. Since both
↔
S

and
↔
Π are proportional to (1/e), the sign of

↔
S and

↔
Π is negative for electrons and

positive for holes in the case of degenerate semiconductors. Reversing the direction
of j, will interchange the junctions where heat is generated (absorbed).

Fig. 8.6 A heat engine
based on the Peltier Effect
with heat (ΠA − ΠB) j
introduced at one junction
and extracted at another
under the conditions of no
temperature gradient
(∇T = 0).
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Fig. 8.7 The Thomson term
in an n-type semiconductor
produces (a) heating when j
and ∇T are in the same
direction and (b) cooling
when j and ∇T are in
opposite directions.

8.4.3 Thomson Effect

Assume that we have an electric circuit consisting of a single metal conductor. The
power, generated in a sample, such as an n-type semiconductor, as shown in Fig. 8.7,
is

P = j · E (8.99)

where the electric field can be obtained from (8.49) and (8.51) as

E = (
↔

σ−1) · j− ↔
T b ·∇T (8.100)

where
↔
T b is the Thomson coefficient defined in (8.51) and is related to the Seebeck

coefficient
↔
S as discussed in Sects. 8.3 and 8.3.1. Substitution of (8.100) into (8.99)

yields the total power dissipation

P = j · (
↔

σ−1) · j − j· ↔
T b ·∇T . (8.101)

The first term in (8.101) is the conventional joule heating term while the second
term is the contribution from the Thomson effect. For an n-type semiconductor
↔
T b is negative. Thus when j and ∇T are parallel, heating will result, as in Fig. 8.7a.
However if j and∇T are antiparallel, as in Fig. 8.7b, coolingwill occur. Thus reversal
of the direction of j without changing the direction of ∇T will reverse the sign of
the Thomson contribution. Likewise, a reversal in the direction of ∇T keeping the
direction of j unchanged will also reverse the sign of the Thomson contribution.

Thus, if either (but not both) the directions of the electric current or the direction
of the thermal gradient is reversed, an absorption of heat from the surroundings will
take place. The Thomson effect is utilized in thermoelectric refrigerators which are
useful as practical low temperature laboratory coolers. Referring to Fig. 8.8, we see
a schematic diagram explaining the operation of a thermoelectric cooler. We see that

for a degenerate n-type semiconductor where the Thomson term
↔
T b, the Seebeck

term
↔
S , and the Peltier term

↔
Π are all negative, and when j and ∇T are antiparallel,

then cooling occurs and heat is extracted from the cold junction and transferred to
the heat sink at temperature TH . For the p-type leg, all the thermoelectric coefficients
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Fig. 8.8 Schematic diagram
of a thermoelectric cooler.
The heat sinks and cold
junctions are metals that
form ohmic contacts to the
active thermoelectric n-type
and p-type semiconductors.

are positive, so (8.101) shows that cooling occurs when j and ∇T are parallel. Thus
both the n-type and p-type legs in a thermoelectric element contribute to cooling in
a thermoelectric cooler.

8.4.4 The Kelvin Relations

The three thermoelectric effects are related and the relations between these coeffi-
cients were first derived by Lord Kelvin after he became a Lord and changed his
family name from Thomson to Kelvin. The Kelvin relations are based on arguments
of irreversible thermodynamics and relate Π ,S , and Tb.

If we define the thermopower SAB = SB − SA and the Peltier coefficient
similarly ΠAB = ΠA − ΠB for material A joined to material B, then we obtain the
first Kelvin relation:

SAB = ΠAB

T
. (8.102)

The Thomson coefficient Tb is defined by

Tb = T
∂S

∂T
(8.103)

which allows determination of the Seebeck coefficient at temperature T0 by integra-
tion of (8.103)

S (T0) =
∫ T0

0

[
Tb(T )

T

]
dT . (8.104)

Furthermore, from the above definitions, we deduce the second Kelvin relation

Tb,A − Tb,B = T
∂SAB

∂T
= T

∂SA

∂T
− T

∂SB

∂T
(8.105)
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fromwhich we obtain an expression relating all three thermoelectric coefficients, the
Seebeck coefficient S , the Peltier coefficient Π and the Thomson coefficient Tb,A

according to

Tb,A = T
∂SA

∂T
= T

∂(ΠA/T )

∂T
= ∂ΠA

∂T
− ΠA

T
= ∂ΠA

∂T
− SA. (8.106)

8.4.5 The Thermoelectric Figure of Merit

A good thermoelectric material for cooling applications must have a high thermo-
electric figure of merit, ZT , which is a dimensionless parameter defined by

ZT = S 2σ

κ
T (8.107)

where S is the thermoelectric power (Seebeck coefficient), σ is the electrical con-
ductivity, and κ is the thermal conductivity. In order to achieve a high ZT , one
requires a high thermoelectric power S to couple electrons transport and tempera-
ture differences, a high electrical conductivity σ to maintain high carrier mobility,
and a low thermal conductivity κ to retain the applied thermal gradient. In gen-
eral, it is difficult in practical systems to increase ZT for the following reasons:
increasing S for simple materials also leads to a simultaneous decrease in σ , and
an increase in σ leads to a comparable increase in the electronic contribution to κ

because of the Wiedemann–Franz law. So with known conventional solids, a limit is
rapidly obtained where a modification to any one of the three parameters S , σ , or
κ adversely affects the other transport coefficients, so that the resulting ZT does not
vary significantly. Currently, the commercially available materials with the highest
ZT values are Bi2Te3 alloys such as Bi0.5Sb1.5Te3 with ZT ∼ 1 at 300K.

Only small increases in ZT were achieved in the 1960–1990 period. Since 1994,
new interest has been revived in thermoelectricity with the discovery of (1) new
materials: skutterudites – CeFe4−xCoxSb12 or LaFe4−xCoxSb12 for 0 < x < 4,
which offer promise for higher ZT values in bulk materials, and (2) low dimensional
systems (quantum wells, quantum wires) which offer promise for enhanced ZT
relative to their higher ZT bulk counterparts Z values in the same material. Thus
thermoelectricity has again become an active research field with significant progress
made since 1994 and quite a lot of this progress since 1994 involves the use of
nanomaterials.
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8.5 The Phonon Drag Effect

For a simple metal such as an alkali metal one would expect the thermopower S
to be given by the simple expression in (8.77), and to be negative since the carriers
are electrons. This is true at room temperature for all of the alkali metals except Li.
Furthermore,S is positive for the noble metals Au, Ag and Cu. The anomalous sign
ofS in these metals can be understood by recalling the complex Fermi surfaces for
these metals (see Fig. 4.6), where we note that copper in fact exhibits hole orbits in
the extended zone. In general, withmultiple carrier types as occur in semiconductors,
the interpretation of thermopower data can become complicated.

Another complication which must also be considered, especially at low tempera-
tures, is the phonon drag effect. In the presence of a thermal gradient, the phonons
will diffuse and “drag” the electrons along with them because of the electron-phonon
interaction (discussed in Chap.6). For a simple explanation of phonon drag, consider
a gas of phononswith an average energy density Eph/V where V is the volume.Using
kinetic theory, we find that the phonon gas exerts a pressure

P = 1

3

(
Eph

V

)
(8.108)

on the electron gas. In the presence of a thermal gradient, the electrons are subject
to a force density

Fx/V = −dP/dx = − 1

3V

(
dEph

dT

)
dT

dx
. (8.109)

To prevent the flow of current, this force must be balanced by the electric force. Thus,
for an electron density n, we obtain

− neEx + Fx/V = 0 (8.110)

giving a phonon-drag contribution to the thermopower. Using the definition of the
Seebeck coefficient for an open circuit system, we can write

Sph = Ex

(dT/dx)
≈ −

(
1

3enV

)
dEph

dT
= Cph

3en
(8.111)

whereCph is the phonon heat capacity per unit volume. Although this is only a rough
approximate derivation, it predicts the correct temperature dependence, in that the
phonon-drag contribution is important at temperatureswhere the phonon specific heat
is large. The total thermopower is a sum of the diffusion contribution (considered in
Sect. 8.4.1) and the phonon drag termSph in (8.111).

http://dx.doi.org/10.1007/978-3-662-55922-2_4
http://dx.doi.org/10.1007/978-3-662-55922-2_6
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The phonon drag effect depends on the electron-phonon coupling; at higher tem-
peratures where the phonon-phonon coupling (Umklapp processes) becomes more
important than the electron-phonon coupling, phonondrag effects become less impor-
tant as is discussed in the next chapter (see Sect. 9.4.4).

Problems

For problems 8.1–8.7 below, assume the following properties for Bi2Te3

• Effective masses: mx = 0.02, my = 0.08, mz = 0.32
• Mobility: μx = 1200cm2V−1

• Lattice thermal conductivity: κL = 1.5 Wm−1K−1

Perform all calculations at room temperature, T = 300K.

8.1 Write a function in Matlab or Mathematica (or other software of your choice)
that calculates the dimensionless Fermi integral:

Fi = Fi (ζ
∗) =

∫ ∞

0

xidx

e(x−ζ ∗) + 1
(8.112)

where

ζ ∗ = EF

kBT
(8.113)

8.2 The transport coefficients of a bulk (3D) material in the constant relaxation time
approximation are given by the following Boltzmann transport equations:

σ = e

3π2

(
2kBT

�2

) 3
2

(mxmymz)
1
2 μx

(
3

2
F1/2

)
(8.114)

S = −kB
e

(
5F3/2

3F1/2
− ζ ∗

)
(8.115)

κe = k2BT

3π2e

(
2kBT

�2

) 3
2

(mxmymz)
1
2 μx

(
7

2
F5/2 − 25F2

3/2

6F1/2

)
(8.116)

Using these equations, write functions in MatLab for the following quantities:

(a) Electrical conductivity (σ )
(b) Seebeck coefficient (S ) in units of μV/K
(c) Electrical component of the thermal conductivity (κe).

Plot these coefficients as a function of Fermi level EF (or chemical potential).

http://dx.doi.org/10.1007/978-3-662-55922-2_9
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8.3 The transport coefficients of a 2D material in the constant relaxation time
approximation are given by the following Boltzmann transport equations:

σ = e

2πa

(
2kBT

�2

)
(mxmy)

1
2 μx (F0) (8.117)

S = −kB
e

(
2F1

F0
− ζ ∗

)
(8.118)

κe = k2BT

2πae

(
2kBT

�2

)
(mxmy)

1
2 μx

(
3F2 − 4F2

1

F0

)
(8.119)

For a 5nm quantum well (a = 5nm), write functions in MatLab for the following
quantities:

(a) Electrical conductivity (σ )
(b) Seebeck coefficient (S ) in units of μV/K
(c) Electrical component of the thermal conductivity (κe).

Plot these coefficients as a function of Fermi level EF (or chemical potential).

8.4 In 1D, the transport coefficients are given by

σ = 2e

πa2

(
2kBT

�2

) 1
2

m
1
2
x μx

(
1

2
F− 1

2

)
(8.120)

S = −kB
e

(
3F1/2

3F−1/2
− ζ ∗

)
(8.121)

κe = 2k2BT

π2ae

(
kBT

�2

) 1
2

m
1
2
x μx

(
5

2
F3/2 − 9F2

1/2

2F−1/2

)
(8.122)

For a nanowire with a 5nm × 5nm square cross section, write functions in Matlab
for the following quantities

(a) Electrical conductivity (σ )
(b) Seebeck coefficient (S ) in units of μV/K
(c) Electrical component of the thermal conductivity (κe).

Plot these coefficients as a function of Fermi level EF (or chemical potential).

8.5 The thermoelectric figure of merit is given by

Z = S 2σ

κe + κL
(8.123)
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Using the functions derived in the problems above, plot the dimensionless figure of
merit ZT (at room temperature) as a function of the Fermi energy for the three cases

(a) 3D bulk
(b) 2D (5nm width)
(c) 1D (5nm × 5nm cross section)

8.6 Find the optimum value for ZT (with respect to the Fermi energy) for each of
the 3 cases above. Plot the optimum ZT value as a function of quantum well width
and nanowire width for 1, 2, 3, 4 and 5nm.

8.7 The Wiedemann-Franz Law states that

K = σT
π2k2B
3e2

(8.124)

On this basis, explain how it is possible for sapphire to be both an excellent thermal
conductor and an excellent electrical insulator.

8.8 Suppose that you measure the thermal conductivity of a sample at 100◦C. How
would you estimate the fraction of the heat that is carried by electron (or hole)
carriers?

8.9 Suppose that Si is doped with an isoelectronic impurity in column IV of the
periodic table (such as Ge or Sn), will the doping effect be greater on the electrical
conductivity or on the thermal conductivity, and why?

8.10 Could this thermoelectric cooler (see figure below) be modified to become a
thermoelectric heater? If so, explain how it can be done.



Suggested Readings 183

Suggested Readings

Ziman,Principles of the Theory of Solids (CambridgeUniversity Press, Cambridge, 1972). Chapters
7

F. Reif, Fundamentals of Statistical and Thermal Physics (McGraw-Hill, New York, 2008)
C. Kittel, Introduction to Solid State Physics (Wiley, New York, 2005)
H. Rosenberg, The Solid State (Oxford University Press, New York, 2004)
Wolfe, Holonyak, Stillman, Physical Properties of Semiconductors (Prentice Hall, Englewood
Cliffs, 1989). Chapter 5

Fong et al., Measurement of the electronic thermal conductance channels and heat capacity of
graphene at low temperature. Phys. Rev. X 3, 041008 (2013)

References

C.L. Kane, M.P.A. Fisher, Thermal transport in a Luttinger liquid. Phys. Rev. Lett. 76, 3192 (1996)
Nicholas Wakeham, Alimamy F. Bangura, Xu Xiaofeng, Jean-Francois Mercure, Martha Green-
blatt, Nigel E. Hussey, Gross violation of the Wiedemann Franz law in a quasi-one-dimensional
conductor. Nat. Commun. 2, 396 (2011)



Chapter 9
Electron and Phonon Scattering

9.1 Electron Scattering

The thermal properties of solid materials depend on the availability of carriers and
on their scattering rates. In the previous chapters, we focused on the carriers and their
generation. In this Chapter we focus on the relevant electron and phonon scattering
mechanisms.

Electron scattering brings an electronic systemwhich has been subjected to exter-
nal perturbations back to equilibrium. Collisions also alter the momentum of all the
carriers, as the electrons are brought back into equilibrium. Electron collisions can
occur through a variety of mechanisms, such as electron-phonon, electron-impurity,
electron-defect, electron-boundary and electron-electron scattering processes. Elec-
tron scattering is handled here by considering the collision term in the Boltzmann
equation.

In principle, the collision rates can be calculated from using scattering theory in
single form.Todo this,we introduce a transition probability S(k,k′) for scattering the
electron from a statek to a statek′. Since electrons obey the Pauli principle, scattering
will occur from an occupied to an unoccupied state. The process of scattering from k
to k′ decreases the distribution function f (r,k, t) depending on the probability that
k is occupied and that k′ is unoccupied. The process of scattering an electron from
k′ to k increases the distribution function f (r,k, t) and depends on the probability
that state k′ is occupied and state k is unoccupied. We will use the following notation
for describing a general scattering process:

• fk is the probability that an electron occupied with initial state k
• [1 − fk] is the probability that state k is unoccupied
• S(k,k′) is the probability per unit time that an electron in state k will be
scattered to state k′

• S(k′,k) is the probability per unit time that an electron in state k′ will be
scattered back into state k.

© Springer-Verlag GmbH Germany, DE 2018
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Using these definitions, the rate of change of the distribution function in the
Boltzmann equation (see (7.4)) due to collisions can be written as:

∂ f (r,k, t)

∂t

∣
∣
∣
∣
collisions

=
∫

d3k ′[ fk ′(1 − fk)S(k′,k) − fk(1 − fk ′)S(k,k′)] (9.1)

where d3k ′ is a volume element ink′ space. The integration in (9.1) is over k space and
the spherical coordinate system is shown in Fig. 9.1, together with the arbitrary force
F responsible for the scattering event that introduces a perturbation described by

fk = f0k + ∂ f0k
∂E

�

m∗ k · F + . . . (9.2)

where f0k denotes the equilibrium distribution. Using Fermi’s Golden Rule for the
transition probability per unit time between states k and k′ we can write

S(k,k′) � 2π

�
|Hkk′ |2{δ[E(k)] − δ[E(k′)]} (9.3)

where the matrix element of the Hamiltonian coupling states k and k′ is

Hkk′ = 1

N

∫

V
ψ∗

k (r)∇Vψk′(r)d3r, (9.4)

in which N is the number of unit cells in the sample and ∇V is the perturbation
Hamiltonian term responsible for the scattering event associated with the force F.

At equilibrium fk = f0(E) and the principle of detailed balance applies

S(k′,k) f0(E
′)[1 − f0(E)] = S(k,k′) f0(E)[1 − f0(E

′)] (9.5)

so that the distribution function does not experience a net change via collisions when
in the equilibrium state:

Fig. 9.1 Coordinate system
in reciprocal space for an
electron with wave vector k
(along the kz axis) scattering
into a state with wavevector
k′ in an arbitrary force field
F. The scattering center is at
the origin of the coordinate
system. For simplicity the
event is rotated so that F has
no ky component

http://dx.doi.org/10.1007/978-3-662-55922-2_7
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(∂ f (r,k, t)/∂t)|collisions = 0. (9.6)

We define collisions as elastic collisions when E(k′) = E(k) and in this case
f0(E ′) = f0(E) so that S(k′,k) = S(k,k′). Collisions for which E(k′) �= E(k) are
termed inelastic collisions. The term quasi-elastic is used to characterize collisions
where the percentage change in energy is small. For our purposes here, we shall con-
sider S(k,k′) as a known function which can be calculated quantum mechanically
by a detailed consideration of the scattering mechanisms which are important for
a given practical case; this statement is true in principle, but in practice S(k,k′) is
usually specified in an approximate way.

The return to equilibrium depends on the frequency of collisions and the effec-
tiveness of a scattering event in randomizing the motion of the electrons. Thus, small
angle scattering is not as effective in restoring a system to equilibrium as for the case
of large angle scattering. For this reason we distinguish between τD , the time for
the system to be restored to equilibrium, and τc, the time between collisions. These
times are related by

τD = τc

1 − cos θ
(9.7)

where θ is themean change of angle of the electron velocity on collision (see Fig. 9.1).
The time τD is the quantity which enters into Boltzmann’s equation as the relaxation
time, while 1/τc determines the actual scattering rate.

The mean free time between collisions, τc, is related to several other quantities of
interest: the mean free path � f , the scattering cross section σd , and the concentration
of scattering centers Nc by

τc = 1

Ncσdv
(9.8)

where v is the drift velocity given by

v = � f

τc
= 1

Ncσdτc
(9.9)

and v is in the directionof the electron transport. From (9.9),we see that � f = 1/Ncσd .
The drift velocity is of course very much smaller in magnitude than the instan-
taneous velocity of the electron at the Fermi level, which is typically of magnitude
vF ∼ 108 cm/s. Electron scattering centers include phonons, impurities, dislocations,
vacancies, the crystal surface, etc.

The most important electron scattering mechanism for both metals and semicon-
ductors is electron-phonon scattering (scattering of electrons by the thermal motion
of the lattice), though the scattering processes for metals differs in detail from those
in semiconductors. In the case of metals, much of the Brillouin zone is occupied by
electrons, while in the case of semiconductors, most of the Brillouin zone is unoc-
cupied, and represents states into which electrons can be scattered. In the case of
metals, electrons are scattered from one point on the Fermi surface to another point
on the Fermi surface, and a large change in momentum occurs, corresponding to a
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large change in k. In the case of semiconductors, changes in wave vector from k to
−k normally correspond to a very small change in wave vector, and thus changes
from k to −k can be accomplished much more easily in the case of semiconductors.
By the same token, small angle scattering (which is not so efficient for returning the
system to equilibrium) is especially important for semiconductors where the change
in wavevector is small. Since the scattering processes in semiconductors and metals
are quite different, they will be discussed separately in the next sections.

Scattering probabilities for more than one scattering process are taken to be addi-
tive and therefore so are the reciprocal scattering times and scattering rates. For the
total reciprocal scattering time (τ−1)total we write:

(τ−1)total =
∑

i

τ−1
i (9.10)

since 1/τ is proportional to the scattering probability. Equation (9.10) is commonly
referred to as “Matthiessen’s rule” Metals have large Fermi wavevectors kF , and
therefore large momentum transfersΔk can occur as a result of electronic collisions.
In contrast, for semiconductors, kF is small and so also is Δk on collision.

9.2 Scattering Processes in Semiconductors

9.2.1 Electron-Phonon Scattering in Semiconductors

Electron-phonon scattering is the dominant scatteringmechanism in crystalline semi-
conductors except at very low temperatures where the phonon density is low. Con-
servation of energy in the scattering process, which creates or absorbs a phonon of
energy �ω(q), is written as:

Ei − E f = ±�ω(q) = �
2

2m∗ (k2i − k2f ), (9.11)

where Ei is the initial energy, E f is the final energy, ki the initial wavevector, and
k f the final wavevector. Here, the “+” sign corresponds to the creation of phonons
(the phonon emission process), while the “−” sign corresponds to the annihilation
of phonons (the phonon absorption process). Conservation of momentum in the
scattering of an electron by a phonon of wavevector q yields

ki − kf = ±q. (9.12)

For semiconductors, the electrons involved in the scattering event generally remain
in the vicinity of a single band extremum and involve only a small change in k and
hence only low phonon q vectors participate. The probability that an electron makes
a transition from an initial state i to a final state f is proportional to:
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(a) the availability of final states for electrons,
(b) the probability of absorbing or emitting a phonon,
(c) the strength of the electron-phonon coupling or electron-phonon interac-

tion.

The first factor, the availability of final states, is proportional to the density of
final electron states ρ(E f ) times the probability that the final state is unoccupied.
This occupation probability for a semiconductor is assumed to be unity since the
conduction band is essentially empty. For a simple parabolic band, ρ(E f ) is (from
(7.64)):

ρ(E f ) = (2m∗)3/2E1/2
f

2π2�3
= (2m∗)3/2

[Ei ± �ω(q)]1/2
2π2�3

, (9.13)

where (9.11) has been employed and the “+” sign corresponds to absorption of a
phonon and the “−” sign corresponds to phonon emission.

The probability of absorbing or emitting a phonon is proportional to the electron-
phonon couplingG(q) and to the phonon density n(q) for absorption, and the phonon
density [1 + n(q)] for emission, where n(q) is given by the Bose-Einstein factor

n(q) = 1

e�ω(q)/kBT − 1
. (9.14)

Combining the terms in (9.13) and (9.14) gives a scattering probability (or 1/τc)
proportional to a sum over final states

1

τc
∼ (2m∗)3/2

2π2�3

∑

q

G(q)

[ [Ei + �ω(q)]1/2
e�ω(q)/kBT − 1

+ [Ei − �ω(q)]1/2
1 − e−�ω(q)/kBT

]

(9.15)

where the first term in the big bracket of (9.15) corresponds to phonon absorption
and the second term to phonon emission. If Ei < �ω(q), only the phonon absorption
process is energetically allowed.

The electron-phonon coupling coefficientG(q) in (9.15) depends on the electron-
phonon coupling mechanism. There are three important coupling mechanisms in
semiconductors which we briefly describe below: electromagnetic coupling, piezo-
electric coupling, and deformation-potential coupling.

Electromagnetic Coupling

This coupling is important only for semiconductors where the charge distribution has
different signs on neighboring ion sites when two species of atoms are involved. In
this case, the oscillatory electric field can give rise to oscillating dipolemoments asso-
ciatedwith themotion of neighboring ion sites in the opticalmodes (see Fig. 9.2). The
electromagnetic coupling mechanism is important in coupling electrons to optical
phonon modes in III-V and II-VI compound semiconductors, but does not contribute
in the case of silicon. To describe the optical modes we can use the Einstein approxi-

http://dx.doi.org/10.1007/978-3-662-55922-2_7
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Fig. 9.2 Displacements u(r)
of atoms in a diatomic chain
for longitudinal optical (LO)
and transverse optical (TO)
phonons at a the center and
b the edge of the Brillouin
zone. The lighter mass atoms
are indicated by open circles.
For zone edge optical
phonons, only the lighter
atoms are displaced

mation, sinceω(q) is only weakly dependent on q for the optical modes of frequency
ω0. In this case �ω0 � kBT and �ω0 � E where E is the electron energy, so that
from (9.15) the collision rate is proportional to

1

τc
∼ m∗3/2(�ω0)

1/2

e�ω0/kBT − 1
. (9.16)

Thus, the collision rate depends on the temperature T , the optical phonon frequency
ω0 and the electron effectivemassm∗. The correspondingmobility for optical phonon
scattering is

μ = e〈τ 〉
m∗ ∼ e(e�ω0/kBT − 1)

m∗5/2(�ω0)1/2
(9.17)

Thus for optical phonon scattering, the mobility μ is independent of the electron
energy E and decreases with increasing temperature.

Piezoelectric Coupling

As in the case of electromagnetic coupling, piezoelectric coupling is important in
semiconductors which are ionic or partly ionic. If these crystals lack inversion sym-
metry, then acousticmode vibrations generate regions of compression and rarefaction
in a crystal which in here lead to the generation of electric fields (see Fig. 9.3). The
piezoelectric scattering mechanism is thus associated with the coupling between
electrons and phonons arising from these electromagnetic fields. The zincblende
structure of the III–V compounds (e.g., GaAs) lacks inversion symmetry. In this case
the perturbation potential is given by

ΔV (r, t) = −ieεpz

ε0q
∇ · u(r, t) (9.18)
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Fig. 9.3 Displacements u(r)
of atoms on a diatomic chain
for longitudinal acoustic
(LA) and transverse acoustic
(TA) phonons at a the center
and b the edge of the
Brillouin zone. The lighter
mass atoms are indicated by
open circles. For zone edge
acoustic phonons, only the
heavier atoms are displaced

where εpz is the piezoelectric coefficient and u(r, t) = u exp(iq · r − ωt) is the dis-
placement during a normalmode oscillation.Note that the phase ofΔV (r, t) in piezo-
electric coupling is shifted by π/2 relative to the case of electromagnetic coupling.

Deformation-Potential Coupling

The deformation-potential coupling mechanism is associated with energy shifts of
the energy band extrema caused by the compression and rarefaction of crystals dur-
ing acoustic mode vibrations. The deformation potential scattering mechanism is
important in crystals like silicon which have inversion symmetry (and hence no
piezoelectric scattering coupling) and have the same species on each site (and hence
no electromagnetic coupling). The longitudinal acoustic modes are important for
phonon coupling in n-type Si and Ge where the conduction band minima occur away
from k = 0.

For deformation potential coupling, it is the LA acoustical phonons that are most
important, though contributions by LO optical phonons still make some contribution.
For the acoustic phonons, we have the condition �ω � kBT and �ω � E , while for
the optical phonons it is usually the case that �ω � kBT at room temperature. For the
range of acoustic phonon modes of interest, G(q) ∼ q, where q is the phonon wave
vector and ω ∼ q for acoustic phonons. Furthermore for the LA phonon branch, the
phonon absorption process will depend on n(q) in accordance with the Bose factor

1

e�ω/kBT − 1
� 1

[

1 + �ω
kBT

+ · · ·
]

− 1
∼ kBT

�ω
∼ kBT

q
, (9.19)

while for phonon emission

1

1 − e−�ω/kBT
� 1

1 −
[

1 − �ω
kBT

+ · · ·
] ∼ kBT

�ω
∼ kBT

q
. (9.20)
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Therefore, in considering both phonon absorption and phonon emission, the respec-
tive factors

G(q)[e�ω/kBT − 1]−1

and
G(q)[1 − e−�ω/kBT ]−1

are both independent of q for the LA branch. Consequently for the acoustic phonon
scattering process, the carrier mobility μ decreases with increasing T according to
(see (9.15))

μ = e〈τ 〉
m∗ ∼ m∗−5/2E−1/2(kBT )−1. (9.21)

For the optical LO contribution, we have a G(q) independent of q but an E1/2 factor
is introduced by (9.15) for both phonon absorption and emission, leading to the
same basic dependence as given by (9.21). Thus, we find that the temperature and
energy dependence of the mobility μ is different for the various electron-phonon
coupling mechanisms. These differences in the E and T dependences can thus be
used to identify which scattering mechanism is dominant in specific semiconducting
samples. Furthermore, when explicit account is taken of the energy dependence of
τ , then departures from the strict Drude model σ = ne2τ/m∗ can be expected.

9.2.2 Ionized Impurity Scattering

As the temperature is reduced, phonon scattering becomes less important so that in
this regime, ionized impurity scattering and other defect scattering mechanisms can
become dominant. Ionized impurity scattering can also be important in heavily doped
semiconductors over a wider temperature range because of the larger defect density.
This scattering mechanism involves the deflection of an electron with velocity v by
the Coulomb field of an ion with charge Ze, as modified by the dielectric constant
ε of the medium and by the screening of the impurity ion by free electrons (see
Fig. 9.4). Most electrons are scattered through small angles as they are scattered by
ionized impurities. The perturbation potential is given by

ΔV (r) = ±Ze2

4πε0r
(9.22)

and the± signs denote the different scattering trajectories for electrons and holes (see
Fig. 9.4). In (9.22) the screening of the electron by the semiconductor environment
is handled by the static dielectric constant of the semiconductor ε0. Because of the
long-range nature of the Coulomb interaction, screening by other free carriers and
by other ionized impurities could be important. Such screening effects are further
discussed in Sect. 9.2.4.
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Fig. 9.4 Trajectories of
electrons and holes in
ionized impurity scattering.
The scattering center is at the
origin

The scattering rate 1/τI due to ionized impurity scattering is given to a good
approximation by the Conwell–Weisskopf formula

1

τI
∼ Z2NI

m∗1/2E3/2
�n

{

1+
[

4πεE

Ze2N 1/3
I

]2
}

(9.23)

inwhich NI is the ionized charged impurity density. TheConwell–Weisskopf formula
works quite well for heavily doped semiconductors. We note here that τI ∼ E3/2, so
that it is the low energy electrons that aremost affected by ionized impurity scattering
(see Fig. 7.10).

Neutral impurities also introduce a scattering potential, but it is much weaker
than that for the ionized impurity. Free carriers can polarize a neutral impurity and
interact with the resulting dipole moment, or can undergo an exchange interaction.
In the case of neutral impurity scattering, the perturbation potential is given by

ΔV (r) � �
2

m∗

(
rB
r5

)1/2

(9.24)

where rB is the ground state Bohr radius of the electron in a doped semiconductor
and r is the distance of the electron to the neutral impurity scattering center.

9.2.3 Other Scattering Mechanisms

Other scattering mechanisms in semiconductors include:

(a) neutral impurity centers — these make contributions at very low temper-
atures, and are mentioned in Sect. 9.2.2. Neutral impurity centers can also
cause local strain effects which scatter carriers.

http://dx.doi.org/10.1007/978-3-662-55922-2_7
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(b) dislocations — these defects give rise to anisotropic scattering at low
temperatures.

(c) boundary scattering by crystal surfaces— this scattering becomes increas-
ingly important, the smaller the crystal size. Boundary scattering can
become a dominant scattering mechanism in nanostructures (e.g., quan-
tum wells, quantum wires and quantum dots), when the sample size in the
confinement direction is smaller that the bulk mean free path. These elec-
trons do not reach equilibrium and are therefore called ballistic electrons
(or holes).

(d) intervalley scattering from one equivalent conduction band minimum to
another. This scattering process requires a phonon with large q and con-
sequently results in a relatively large energy transfer.

(e) electron-electron scattering – similar to charged impurity scattering in
being dominated by a Coulomb scattering mechanism, except that spin
effects become important for spin–spin scattering. This mechanism can
be important in distributing energy and momentum among the electrons in
the solid and thus can act in conjunction with other scattering mechanisms
in establishing equilibrium.

(f) electron-hole scattering — depends on having both electrons and holes
present. Because the electron and hole motions induced by an applied
electric field are in opposite directions, electron-hole scattering tends to
reverse the direction of the incident electrons and holes. Radiative recom-
bination, i.e., electron-hole recombination with the emission of a photon,
must also be considered.

(g) ballistic carriers — charge carriers passing through sample without scat-
tering and not coming to equilibrium with the lattice.

9.2.4 Screening Effects in Semiconductors

In the vicinity of a charged impurity or an acoustic phonon, charge carriers are
accumulated or depleted by the scattering potential, giving rise to a charge density

ρ(r) = e[n(r) − p(r) + N−
a (r) − N+

d (r)] = en∗(r) (9.25)

where n(r), p(r), N−
a (r), N+

d (r), and n∗(r) are, respectively, the electron, hole,
ionized acceptor, ionizeddonor, and effective total carrier concentrations as a function
of distance r to the scatterer. We can then write expressions for these quantities in
terms of their excess charge above the uniform potential in the absence of the charge
perturbation

n(r) = n + δn(r)
N+
d (r) = N+

d + δN+
d (r),

(9.26)
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and similarly for the holes and acceptors. The space charge ρ(r) is related to the
perturbing potential by Poisson’s equation

∇2φ(r) = −ρ(r)
ε0

. (9.27)

Approximate relations for the excess concentrations are

δn(r)/n � −eφ(r)/(kBT )

δN+
d (r)/N+

d � eφ(r)/(kBT )
(9.28)

and similar relations for the holes. Substitution of (9.25) into (9.26) and (9.28) yield

∇2φ(r) = − n∗e2

ε0kBT
φ(r). (9.29)

We define an effective Debye screening length λ such that

λ2 = ε0kBT

n∗e2
. (9.30)

For a spherically symmetric potential (9.29) becomes

d2

dr2

(

rφ(r)

)

= rφ(r)

λ2
(9.31)

which yields a solution

φ(r) = Ze2

4πε0r
e−r/λ. (9.32)

Thus, the screening effect produces an exponential decay of the scattering potential
φ(r) with a characteristic length λ that depends through (9.30) on the effective
electron concentration.When the concentration gets large, λ decreases and screening
becomes more effective.

When applying screening effects to the ionized impurity scattering problem, we
Fourier expand the scattering potential to take advantage of the overall periodicity
of the lattice

ΔV (r) =
∑

G

AG exp(iG · r) (9.33)

where the Fourier coefficients are given by

AG = 1

V

∫

V
∇V (r) exp(−iG · r)d3r (9.34)
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and the matrix element of the perturbation Hamiltonian in (9.4) becomes

Hk,k′ = 1

N

∑

G

∫

V
e−ik·ru∗

k(r)AGe
−iG·reik

′ ·ruk ′(r)d3r. (9.35)

We note that the integral in (9.35) vanishes unless k − k′ = G so that

Hk,k′ = AG

N

∫

V
u∗
k(r)uk ′(r)d3r (9.36)

within the first Brillouin zone so that for parabolic bands uk(r) = uk ′(r) and

Hk,k′ = Ak−k′ . (9.37)

Now substituting for the scattering potential in (9.34) we obtain

AG = Ze2

4πε0V

∫

V
exp(−iG · r)d3r (9.38)

where d3r = r2 sin θdθdφdr so that, for φ(r) depending only on r , the angular
integration gives 4π and the spatial integration gives

AG = Ze2

ε0V |G|2 (9.39)

and

Hk,k′ = Ze2

ε0V |k − k′|2 . (9.40)

Equations (9.39) and (9.40) are valid for the scattering potential without screening.
When screening is included in considering the ionized impurity scattering mecha-
nism, the integration becomes

AG = Ze2

4πε0V

∫

V
e−r/λe−iG·rd3r = Ze2

ε0V [|G|2 + |1/λ|2] (9.41)

and

Hk,k′ = Ze2

ε0V [|k − k′|2 + |1/λ|2] (9.42)

so that screening clearly reduces the scattering due to ionized impurity scattering.
The discussion given here also extends to the case of scattering in metals, which is
treated below.
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Fig. 9.5 Typical temperature dependence of the carrier mobility in semiconductors, showing the
effect of the dominant scattering mechanisms and the temperature dependence of each

Combining the various scattering mechanisms discussed above for semiconduc-
tors, the picture givenbyFig. 9.5 emerges.Herewe see the temperature dependence of
each of the important scatteringmechanisms and the effect of each of these processes
on the carrier mobility. Here it is seen that screening effects are important for carrier
mobilities at low temperature.

9.3 Electron Scattering in Metals

Basically the same scatteringmechanisms are present inmetals as in semiconductors,
but because of the large number of occupied states in the conduction bands of metals,
the temperature dependences of the various scatteringmechanisms are quite different.

9.3.1 Electron-Phonon Scattering in Metals

In metals as in semiconductors, the dominant scattering mechanism is usually
electron-phonon scattering. In the case of metals, electron scattering is mainly asso-
ciated with an electromagnetic interaction of ions with nearby electrons, the longer
range interactions being screened by the numerous mobile electrons. For metals,
we must therefore consider explicitly the probability that a state k is occupied f0(k)

or unoccupied [1 − f0(k)]. The scattering rate is found by explicit consideration of
the scattering rate into a state k and the scattering out of that state. Using the same
arguments as in Sect. 9.2.1, the collision term in Boltzmann’s equation is given by
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Table 9.1 Debye temperature of several metals

Symbol Metal ΘD(K)

⊕ Au 175

◦ Na 202

� Cu 333

� Al 395

• Ni 472

∂ f
∂t

∣
∣
∣
collisions

∼ 1
τ

�

∑

q G(q)

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

scattering into k
︷ ︸︸ ︷

[1 − f0(k)]
[

f0(k − q)n(q)
︸ ︷︷ ︸

phonon absorption

+ f0(k + q)[1 + n(q)]
︸ ︷︷ ︸

phonon emission

]

−

scattering out of k
︷ ︸︸ ︷

[ f0(k)]
[

[1 − f0(k + q)]n(q)
︸ ︷︷ ︸

phonon absorption

+[1 − f0(k − q)][1 + n(q)]
︸ ︷︷ ︸

phonon emission

]

⎫

⎪⎪⎪⎬

⎪⎪⎪⎭

(9.43)

Here the first term in (9.43) is associated with scattering electrons into an element of
phase space at k with a probability given by [1 − f0(k)] that state k is unoccupied
and has contributions from both phonon absorption processes and phonon emission
processes. The second term arises from electrons scattered out of state k and here,
too, there are contributions from both phonon absorption processes and phonon
emission processes. The equilibrium distribution function f0(k) for the electron is
the Fermi distribution function while the function n(q) for the phonons is the Bose
distribution function (15.10). Phonon absorptiondepends on the phonondensityn(q),
while phonon emission depends on the factor {1+n(q)}. These factors arise from
the properties of the creation and annihilation operators for phonons (to be further
discussed in the Problem set). The density of final states for metals is the density
of states at the Fermi level which is consequently approximately independent of
energy and temperature. In metals, the condition that electron scattering takes place
to states near the Fermi level implies that the largest phonon wave vector in an
electron collision is 2kF where kF is the electron wave vector at the Fermi surface.

Of particular interest is the temperature dependence of the phonon scattering
mechanism in the limit of lowandhigh temperatures. Experimentally, the temperature
dependence of the resistivity of metals can be plotted on a universal curve (see
Fig. 9.6) in terms of ρT /ρΘD vs. T/ΘD where ΘD is the Debye temperature. This
plot includes data for several metals, and values for the Debye temperature of these
metals are given with the figure (Table9.1).

In accordance with the plot in Fig. 9.6, T � ΘD defines the low temperature
limit and T � ΘD the high temperature limit. Except for the very low temperature

http://dx.doi.org/10.1007/978-3-662-55922-2_15
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Fig. 9.6 Universal curve of
the temperature dependence
of the ideal resistivity of
various metals normalized to
the value at the Debye
temperature as a function of
the dimensionless
temperature T/ΘD

defect scattering limit, the electron-phonon scatteringmechanism dominates, and the
temperature dependence of the scattering rate depends on the product of the density
of phonon states and the phonon occupation, since the electron-phonon coupling
coefficient is essentially independent of T . The phonon concentration in the high
temperature limit becomes

n(q) = 1

exp(�ω/kBT ) − 1
≈ kBT

�ω
(9.44)

since (�ω/kBT ) � 1, so that from (9.44) we have 1/τ ∼ T and σ = neμ ∼ T−1.
In this high temperature limit, the scattering is quasi-elastic and involves large-angle
scattering, since phonon wave vectors up to the Debye wave vector qD are involved
in the electron scattering, where qD is related to the Debye frequency ωD and to the
Debye temperature ΘD according to

�ωD = kBΘD = �qDvq (9.45)

where vq is the velocity of sound.
We can interpret qD as the radius of a Debye sphere in k-space which defines

the range of accessible q vectors for scattering, i.e., 0 < q < qD . The magnitude of
wave vector qD is comparable to the Brillouin zone dimensions but the energy change
of an electron (ΔE) on scattering by a phonon will be less than kBΘD � 1/40eV
so that the restriction of (ΔE)max � kBΘD implies that the maximum electronic
energy change on scattering will be small compared with the Fermi energy EF . We
thus obtain that for T > ΘD (the high temperature regime), ΔE < kBT and the
scattering will be quasi-elastic as illustrated in Fig. 9.7a.

In the opposite limit, T � ΘD , we have �ωq � kBT (because only low frequency
acoustic phonons are available for scattering) and in the low temperature limit there
is the possibility that ΔE > kBT , which implies inelastic scattering. In the low
temperature limit, T � ΘD , the scattering is also small-angle scattering, since only
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Fig. 9.7 a Scattering of electrons on the Fermi surface of a metal. Large angle scattering dominates
at high temperature (T > ΘD) and this regime is called the “quasi-elastic” limit. b Small angle
scattering is important at low temperature (T < ΘD) and is in general an inelastic scattering process

Fig. 9.8 Geometry of the
scattering process, where θ is
the scattering angle between
the incident and scattered
electron wave vectors ki and
k f , respectively, and q is the
phonon wave vector

low energy (low q wave vector) phonons are available for scattering (as illustrated
in Fig. 9.7b). At low temperature, the phonon density contributes a factor of T 3 to
the scattering rate (9.43) when the sum over phonon states is converted to an integral
and q2dq is written in terms of the dimensionless variable �ωq/kBT with ω = vqq.
Since small momentum transfer gives rise to small angle scattering, the diagram in
Fig. 9.8 involves Fig. 9.7. Because of the small energy transfer we can write,

|ki − kf | ∼ k f (1 − cos θ) ≈ 1

2
k f θ

2 ≈ 1

2
k f (q/k f )

2 (9.46)

so that another factor of q2 appears in the integration over qwhen calculating (1/τD).
Thus, the electron scattering rate at low temperature is predicted to be proportional
to T 5 so that σ ∼ T−5 (Bloch–Grüneisen formula). Thus, when phonon scattering
is the dominant scattering mechanism in metals, the following results are obtained:

σ ∼ ΘD/T T � ΘD (9.47)

σ ∼ (ΘD/T )5 T � ΘD (9.48)
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Fig. 9.9 Schematic diagram
showing the relation between
the phonon wave vector q
and the electron wave
vectors k and k′ in two
Brillouin zones separated by
the reciprocal lattice vector
G (umklapp process)

In practice, the resistivity of metals at very low temperatures is dominated by other
scattering mechanisms, such as impurities, boundary scattering, etc., and at very low
T , electron-phonon scattering (see (9.48)) is relatively unimportant.

The possibility of umklapp processes further increases the range of phononmodes
that can contribute to electron scattering in electron-phonon scattering processes. In
an umklapp process, a non-vanishing reciprocal lattice vector can be involved in the
momentum conservation relation, as shown in the schematic diagram of Fig. 9.9.

In this diagram, the relation between the wave vectors for the phonon and for the
incident and scattered electrons G = k + q + k′ is shown when crystal momentum
is conserved for a non-vanishing reciprocal lattice vectorG. Thus, phonons involved
in an umklapp process have large wave vectors with magnitudes of about 1/3 of
the Brillouin zone dimensions. Therefore, substantial energies can be transferred
on collision through an umklapp process. At low temperatures, normal scattering
processes (i.e., normal as distinguished from umklapp processes) play an important
part in completing the return to equilibrium of an excited electron in a metal, while
at high temperatures, umklapp processes become more important.

The discussion presented up to this point is applicable to the creation or absorption
of a single phonon in a particular scattering event. Since the restoring forces for lattice
vibrations in solids are not strictly harmonic, anharmonic corrections to the restoring
forces give rise tomultiphonon processeswheremore than one phonon can be created
or annihilated in a single scattering event. Experimental evidence for multiphonon
processes is provided in both optical and transport studies. In some cases, more
than one phonon at the same frequency can be created (harmonics), while in other
cases, multiple phonons at different frequencies (overtones and combination modes
comprising phonons with two different frequencies) are involved.

9.3.2 Other Scattering Mechanisms in Metals

At very low temperatures where phonon scattering is of less importance, other scat-
tering mechanisms become important, and we can write

1

τ
=

∑

i

1

τi
(9.49)
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where the sum is over all the scattering processes, according to Matthiessen’s rule.

(a) Charged impurity scattering — The effect of charged impurity scattering
(Z being the difference in the charge on the impurity site as compared
with the charge on a regular lattice site) is of less importance in metals
than in semiconductors, because of the strong screening effects by the free
electrons in metals.

(b) Neutral impurities — This process pertains to scattering centers having
the same charge as the host. Such scattering has less effect on the transport
properties than scattering by charged impurity sites, because of the much
weaker scattering potential.

(c) Vacancies, interstitials, dislocations, size-dependent effects — the effects
for these defects on the transport properties are similar to those for semi-
conductors. Boundary scattering can become very important in metal
nanostructures when the sample length in some direction becomes less
than the mean free path in the corresponding bulk crystal. In this case bal-
listic transport can occur by electrons that remain out of equilibrium until
reaching the boundary of the sample.

For most metals, phonon scattering is relatively unimportant at liquid helium
temperatures, so that resistivity measurements at 4K provide one sensitive method
for the detection of impurities and crystal defects. In fact, in characterizing the
quality of a high purity metal sample, it is customary to specify the resistivity ratio
ρ(300K)/ρ(4K). This quantity is usually called the residual resistivity ratio (RRR),
or the residual resistance ratio. In contrast, a typical semiconductor is characterized
by its conductivity and Hall coefficient at room temperature and at 77K.

9.4 Phonon Scattering

Whereas electron scattering is important in electronic transport properties, phonon
scattering is important in thermal transport, particularly for the case of insulators
where heat is carried mainly by phonons. The major scattering mechanisms for
phonons are phonon-phonon scattering, phonon-boundary scattering, defect-phonon
scattering, and phonon-electron scattering which are briefly discussed in the follow-
ing subsections.

9.4.1 Phonon-Phonon Scattering

The dominant phonon scattering process in crystalline materials is usually phonon-
phonon scattering. Phonons are scattered by other phonons because of anharmonic
terms in the restoring potential. This scattering process permits:
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• two phonons to combine to form a third phonon or
• one phonon to break up into two phonons.

In these anharmonic processes, energy and wavevector conservation apply:

q1 + q2 = q3 normal processes (9.50)

or
q1 + q2 = q3 + Q umklapp processes (9.51)

where Q corresponds to a phonon wave vector of magnitude equal to a non-zero
reciprocal lattice vector. Umklapp processes are important when q1 or q2 are large,
i.e., comparable to a reciprocal lattice vector (see Fig. 9.10).Whenumklapp processes
(see Fig. 9.10) are present, the scattered phonon wavevector q3 can be in a direction
opposite to the energy flow, thereby giving rise to thermal resistance. Because of the
high momentum transfer and the large phonon energies that are involved, umklapp
processes dominate the thermal conductivity at high T .

The phonon density is proportional to the Bose factor so that the scattering rate
is proportional to

1

τph
∼ 1

(e�ω/(kBT ) − 1)
. (9.52)

At high temperatures T � ΘD , the scattering time thus varies as T−1 since

τph ∼ (e�ω/kBT − 1) ∼ �ω/kBT (9.53)

while at low temperatures T ∼ ΘD , an exponential temperature dependence for τph
is found

τph ∼ e�ω/kBT − 1. (9.54)

These temperature dependences are important in considering the lattice contribution
to the thermal conductivity (see Sect. 2.4).

Fig. 9.10 Phonon-phonon umklapp processes. Here Q is a non-zero reciprocal lattice vector, and
q1 and q2 are the incident phonon wavevectors involved in the scattering process, while q3 is the
wavevector of the scattered phonon. The vertical dashed line denotes the Brillouin’s zone boundary
(Z.B.)

http://dx.doi.org/10.1007/978-3-662-55922-2_2
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Fig. 9.11 For insulators, we
often plot both the thermal
conductivity κ and the
temperature T on log scales.
The various curves here are
for LiF with different
concentrations of Li isotopes
6Li and 7Li. For highly
perfect crystals, it is possible
to observe the scattering
effects due to Li ions of
different masses, which act
as lattice defects but have
little effect on the electronic
properties. Reproduced with
permission from Physical
Review, vol. 156, pp.
975–988 Copyright (1967)
American Physical Society

9.4.2 Phonon-Boundary Scattering

Phonon-boundary scattering is important at low temperatures where the phonon
density is low. In this regime, the scattering time is independent of T . The ther-
mal conductivity in this range is proportional to the phonon density which is in
turn proportional to T 3. Phonon-boundary scattering is also very important for low
dimensional systems where the sample size in some dimension is less than the corre-
sponding phonon mean free path in the bulk 3D crystal. Phonon-boundary scattering
combined with phonon-phonon scattering results in a thermal conductivity κ for
insulators with the general shape shown in Fig. 9.11 (see Sect. 8.2.4). The lattice
thermal conductivity follows the relation

κL = CpvqΛph/3 (9.55)

where the phonon mean free path Λph is related to the phonon scattering probability
(1/τph) by

τph = Λph/vq (9.56)

in which vq is the velocity of sound and Cp is the heat capacity at constant pres-
sure. Phonon-boundary scattering becomes more important as the crystallite size

http://dx.doi.org/10.1007/978-3-662-55922-2_8
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decreases. The scattering conditions at the boundary can be specular (where after
scattering only q⊥ is reversed and q‖ is unchanged) for a very smooth sample surface,
or the scattering conditions can be diffuse (where after scattering the q is random-
ized) for a rough sample surface. Periodic corrugations on a surface can also give
rise to interesting scattering effects for both electrons and phonons.

9.4.3 Defect-Phonon Scattering

Defect-phonon scattering includes a variety of crystal defects, charged and uncharged
impurities and different isotopes of the host constituents. The thermal conductivity
curves in Fig. 9.11 show the scattering effects due to different isotopes of Li. The
low mass of Li makes it possible to see such effects clearly. Isotope effects are
also important in graphite and diamond which have the highest thermal conductivity
of any solid, and also have several isotopes with large fractional mass differences
between one another.

9.4.4 Electron-Phonon Scattering

If electrons scatter from phonons, the reverse process also occurs. When phonons
impart momentum to electrons, the electron distribution is affected. Thus, the elec-
trons will also carry energy as they are dragged also by the stream of phonons. This
phenomenon is called phonon drag. In the case of phonon drag, we must simultane-
ously solve the Boltzmann equations for the electron and phonon distributions which
are coupled by the phonon drag interaction term.

9.5 Temperature Dependence of the Electrical
and Thermal Conductivity

For the electrical conductivity, at very low temperatures, impurity, defect, and bound-
ary scattering dominate. In this regime σ is independent of temperature. At some-
what higher temperatures but still far belowΘD the electrical conductivity for metals
exhibits a strong temperature dependence (see (9.48))

σ ∝ (ΘD/T )5 T � ΘD. (9.57)

At higher temperatures where T � ΘD , scattering by phonons with any q vector
is possible and the formula

σ ∼ (ΘD/T ) T � ΘD (9.58)
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applies. We now summarize the corresponding temperature ranges for the thermal
conductivity.

Although the thermal conductivity was formally discussed in Chap. 8, a mean-
ingful discussion of the temperature dependence of κ involves scattering processes
because of the different temperature dependence of the various scattering processes.
The total thermal conductivity κ in general depends on the lattice and electronic
contributions, κL and κe, respectively. The temperature dependence of the lattice
contribution is discussed in Sect. 8.2.4 with regard to the various phonon scattering
processes and their temperature dependence. For the electronic contribution, wemust
consider the temperature dependence of the electron scattering processes discussed
in Sect. 9.2.

At very low temperatures, in the impurity/defect/boundary scattering range, σ is
independent of T , and the same scattering processes apply for both the electronic
thermal conductivity and the electrical conductivity, thus κe ∝ T in the impurity
scattering regime where σ ∼ constant and the Wiedemann–Franz law is applicable.
From Fig. 8.1 we see that for copper, defect and boundary scattering are dominant
below ∼20K, while phonon scattering becomes important at higher T .

At low temperatures T � ΘD , butwith T in a regimewhere phonon scattering has
already become the dominant scattering mechanism, the thermal transport depends
on the electron-phonon collision rate which in turn is proportional to the phonon
density. At low temperatures the phonon density is proportional to T 3. This follows
from the proportionality of the phonon density of states arising from the integration
of

∫

q2dq. From the dispersion relation for the acoustic phonons ω = qvq we obtain

ω/vq = xkT/�vq (9.59)

where x = �ω/kBT . Thus in the low temperature range of phonon scattering where
T � ΘD and the Wiedemann–Franz law is no longer satisfied, the temperature
dependence of τ is found from the product T (T−3) so that now κe ∝ T−2. One
reason why the Wiedemann–Franz law is not satisfied in this temperature regime
is that κe depends on the collision rate τc, while σ depends on the time to reach
thermal equilibrium, τD . At low temperatures where only low q phonons participate
in scattering events, the times τc and τD are not the same, and τD can be very long.

At high T where T � ΘD and the Wiedemann–Franz law applies, κe approaches
a constant value corresponding to the regime where σ is proportional to 1/T . This
occurs at temperatures much higher than those shown in Fig. 8.1. The decrease in κ

above the peak value at ∼17K follows a 1/T 2 dependence quite well.
In addition to the electronic thermal conductivity, heat can be carried by the

lattice vibrations or phonons. The phonon thermal conductivity mechanism is in
fact the principal mechanism operative in semiconductors and insulators, since the
electronic contribution in this case is negligibly small. Since κL contributes also
to metals, the total measured thermal conductivity for metals should exceed the
electronic contribution (π2k2BTσ)/(3e2). In good metallic conductors of high purity,
the electronic thermal conductivity dominates and the phonon contribution tends
to be small. On the other hand, in conductors where the thermal conductivity due

http://dx.doi.org/10.1007/978-3-662-55922-2_8
http://dx.doi.org/10.1007/978-3-662-55922-2_8
http://dx.doi.org/10.1007/978-3-662-55922-2_8
http://dx.doi.org/10.1007/978-3-662-55922-2_8
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to phonons makes a significant contribution to the total thermal conductivity, it is
necessary to separate the electronic and lattice contributions before applying the
Wiedemann–Franz law to the total κ .

With regard to the lattice contribution, κL at very low temperatures is dominated
by defect and boundary scattering processes. From the relation

κL = 1

3
CpvqΛph (9.60)

we can determine the temperature dependence of κL , since Cp ∼ T 3 at low T , while
the sound velocity vq and phonon mean free path Λph at very low T are independent
of T . In this regime the number of scatterers is also independent of T .

In the regime where only low q phonons contribute to transport and to scattering,
only normal scattering processes contribute. In this regime Cp is still increasing
as T 3, vq is independent of T , but 1/Λph increases in proportion to the phonon
density of states. With increasing T , the temperature dependence ofCp becomes less
pronounced and that forΛph becomes more pronounced as more scatters participate,
leading eventually to a decrease in κL . We note that it is only the inelastic collisions
that contribute to the decrease in Λph and the inelastic collisions are of course due
to anharmonic forces.

With increasing temperature, eventually phonons with wavevectors large enough
to support umklapp processes are thermally activated. Umklapp processes give rise
to thermal resistance and in this regime κL decreases as exp(−ΘD/T ). In the high
temperature limit T � ΘD , the heat capacity and phonon velocity are both indepen-
dent of T . Thus, the κL ∼ 1/T dependence arises from the 1/T dependence of the
mean free path, since in this limit the scattering rate becomes proportional to kBT .

Problems

9.1 By using simple physical arguments, demonstrate the relation given by (9.7).

τD = τc

1 − cos θ
(9.61)

9.2 The optical phonon energies of GaAs and AlAs are 36 and 50meV, respectively,
at the Brillouin zone center.

(a) What is the occupation probability of these optical phonons at 77 and 300K?
(b) Estimate the relative importance of optical phonon absorption and phonon emis-

sion for scattering electrons in GaAs and AlAs at 100K.
(c) Calculate the Debye temperature for GaAs where the sound velocity is 5.6× 105

cm/s. Assume that the volume of the unit cell is 4.39× 10−23 cm−3.

9.3 In limiting the electrical transport in Si, the intervalley scattering is very impor-
tant. In particular, two kinds of intervalley scatterings are important: in a g-scattering
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Fig. 9.12 Electron pockets
in Si over the Brillouin zone.
The schematic drawing
highlights the g and f
scattering processes listed in
Sect. 9.2.3

event an electron goes from one valley (say a (0,0,Δ) valley) to an opposite valley
(0,0,−Δ), while in an f -scattering event, the electron goes to a perpendicular valley
((00Δ) to (0Δ0), for example). The extra momentum for the transitions is provided
by a phonon and may include a reciprocal lattice vector. Remember that Si val-
leys are not precisely at the X-point (Δ = 0.85). The speed of sound in silicon is
8433m/s.(See Fig. 9.12)

(a) Calculate the phonon wavevectors which allow these two scatteringmechanisms
to occur.

(b) Estimate the temperatures at which inter-valley scattering becomes important
for electron conduction in Si, for both the g- and f -scattering mechanisms.

9.4 The phonon mean free path in bulk silicon is approximately λm f p = 30nm
at room temperature. This results in a lattice thermal conductivity of 1.38W/cm·K,
based on a heat capacity ofCv=1.66 J/K·cm3 and a speed of sound vg=8.3× 105 cm/s.
In silicon nanowires with diameters smaller than the bulk phonon mean free path,
surface scattering can modify the phonon mean free path significantly. What is the
lattice thermal conductivity of nanostructured silicon with a phonon mean free path
of 10nm?

9.5 Bi2Te3 has a lattice thermal conductivity of 1.5W/m·K, heat capacity of
1.2× 106 J/K·m3, and speed of sound vg = 3 × 103m/s. Based on these values,
what is the approximate size of a Bi2Te3 nanostructure (i.e., nanowire) below which
a substantial reduction in the thermal conductivity can be achieved through surface
phonon scattering?

9.6 Isotopic doping can be used to increase the scattering of phonons in crystalline
materials. Consider three graphite samples prepared with 1.1% 13C (natural abun-
dance), 50% 13C, and 99% 13C. Of these samples, which material has the lowest
thermal conductivity? Explain why.
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9.7 What is the minimum electron energy that is needed to create a 50meV phonon
of maximum wave vector (from the zone center to the zone boundary) in a semicon-
ductor with the diamond structure where the nearest neighbor distance is 2Å?

9.8 (a) Assuming a 1D carrier concentration of 106 electrons/cm, how many con-
duction electrons are contained per cm3 in a quantum wire if a = 25 Å?

(b) Suppose that you have a Si sample and you would like to know the temperature
below which defect scattering dominates over the intrinsic phonon scattering,
how would you proceed?

(c) How would you distinguish between the relative importance between phonon
absorption andphonon emission processes for scattering electrons in an electrical
conductivity measurement in the 70–80K temperature range in a high quality
Si sample with few defects, other than the dopants used to generate the electron
carrier concentration in making the sample n–type?

9.9 Why is optical phonon scattering not important for electron transport in copper?

9.10 Estimate the relative importance of phonon absorption to phonon emission for
scattering electrons in an intrinsic GaAs sample at 100K.
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Chapter 10
Magneto-Transport Phenomena

10.1 Introduction

Since the electrical conductivity is sensitive to the product of the carrier density and
the carrier mobility rather than to each of these quantities independently, as shown in
(7.91), it is necessary to look for different transport techniques to provide information
on the carrier density n, and the carrier mobility μ, separately. Magneto-transport
provides us with such techniques, at least for simple cases, since the magnetoresis-
tance is mostly sensitive to the carrier mobility, and the Hall effect is mostly sensitive
to the carrier density. In this chapter, we consider magneto-transport in bulk solids.
We return to the discussion of magneto-transport for lower dimensional systems later
in this book, particularly with regard to the quantum Hall effect and giant magne-
toresistance effects.

10.2 Magneto-Transport in the Classical Regime (ωcτ < 1)

Themagnetoresistance and Hall effect measurements, which are used to characterize
semiconductors, are carried out in the weak magnetic field limit ωcτ � 1 where the
cyclotron frequency ωc is given by

ωc = eB/m∗. (10.1)

The cyclotron frequency ωc is the angular frequency of rotation of a charged particle
as it makes an orbit in a plane perpendicular to the magnetic field. In this chapter we
explain the origin of magneto-transport effects and provide some insight into their
measurement.

In the low field limit (defined by ωcτ � 1) the carriers are scattered long before
completing a single cyclotron orbit in real space, so that quantum effects are unimpor-
tant. In higher magnetic fields where ωcτ > 1, quantum effects become important.
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In this limit (discussed in Chap.13), the electrons complete cyclotron orbits and the
resonance achieved by tuning the microwave frequency of a resonant cavity to coin-
cide with ωc allows measurements of the effective mass of electrons in semiconduc-
tors.

A simplified version of the magnetoresistance phenomenon can be obtained in
terms of the classical F = ma approach and is presented in Sect. 10.2.1. The virtue of
the simplified approach is to introduce the concept of the Hall magnetic field and the
general form of the magneto-conductivity tensor. A more general version of these
results will then be given using the Boltzmann equation formulation (Sect. 10.4).
The advantage of the more general derivation is to put the derivation on a firmer
quantitative foundation and to distinguish between the various effectivemasseswhich
enter the transport equations: the cyclotron effective mass of (10.1), the longitudinal
effective mass along the magnetic field direction, and the dynamical effective mass
which describes transport in an electric field (see Sect. 10.6).

10.2.1 Classical Magneto-Transport Equations

For the simplified F = ma treatment, let the magnetic field B be directed along the z
direction. Then writing F = ma for the electronic motion in the plane perpendicular
to B we obtain

F = e(E + v × B) = m∗v̇ + m∗v/τ (10.2)

where m∗v/τ is introduced to account for damping or electron scattering. For static
electric and magnetic fields, there is no time variation in the problem so that v̇ = 0
and thus the equation of motion (10.2) is reduced to

m∗vx/τ = e(Ex + vy B)

m∗vy/τ = e(Ey − vx B)
(10.3)

which can be written as

m∗

τ
(vx + ivy) = e(Ex + i Ey) − ieB(vx + ivy), (10.4)

where i is the unit imaginary, so that jx + i jy = ne(vx + ivy) becomes

( jx + i jy) =
(
ne2τ

m∗

)
(Ex + i Ey)

1 + iωcτ
(10.5)

where the cyclotron frequency ωc is defined by (10.1). The unit imaginary i is intro-
duced into (10.4) and (10.5) because of the circular motion of the electron orbit in a
magnetic field, suggesting the use of circular polarization for fields and velocities.

http://dx.doi.org/10.1007/978-3-662-55922-2_13
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Equating the real and imaginary parts of (10.5) yields

jx =
(

ne2τ
m∗

)[
Ex

1+(ωcτ)2
+ ωcτ Ey

1+(ωcτ)2

]

jy =
(

ne2τ
m∗

)[
Ey

1+(ωcτ)2
− ωcτ Ex

1+(ωcτ)2

]
.

(10.6)

Since v = vz ẑ is parallel to B or (v × B) = 0, the motion of an electron along the
magnetic field experiences no force due to the magnetic field, so that

jz = ne2τ

m∗ Ez . (10.7)

Equations (10.6) and (10.7) yield the magnetoconductivity tensor defined by
j =↔

σ B ·E in the presence of a magnetic field in the low field limit where ωcτ � 1
and the classical approach given here is applicable. In this limit, an electron in a
magnetic field is accelerated by an electric field and follows Ohm’s law (as in the
case of zero magnetic field):

j = ↔
σ B ·E (10.8)

except that the magnetoconductivity tensor
↔
σ B depends explicitly on magnetic field

and in accordance with (10.6) and (10.7) assumes the form

↔
σ B = ne2τ/m∗

1 + (ωcτ)2

⎛
⎝ 1 ωcτ 0

−ωcτ 1 0
0 0 1 + (ωcτ)2

⎞
⎠ . (10.9)

The magnetoresistivity tensor (which is more closely related to laboratory measure-
ments) is defined as the inverse of the magnetoconductivity tensor

↔
ρ B = [↔

σ B]−1 = m∗

ne2τ

⎛
⎝ 1 −ωcτ 0

ωcτ 1 0
0 0 1

⎞
⎠ . (10.10)

10.2.2 Magnetoresistance

The magnetoresistance is defined in terms of the diagonal components of the mag-
netoresistivity tensor given by (10.10)

Δρ/ρ ≡
(

ρ(B) − ρ(0)

)
/ρ(0) (10.11)
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and, in general, depends on (ωcτ)2 or on B2. Since ωcτ = (eτ/m∗)B = μB, the
magnetoresistance provides information on the carrier mobility μsτ .

The longitudinal magnetoresistivity Δρzz/ρzz is measured with the electric field
parallel to the magnetic field. On the basis of a spherical Fermi surface one carrier
model, we have Ez = jz/σ0 from (10.10), so that there is no longitudinal magne-
toresistivity in this case; that is, the resistivity is the same whether or not a magnetic
field is present, since σ0 = ne2τ/m∗. On the other hand, many semiconductors do
exhibit longitudinal magnetoresistivity experimentally, and this effect arises from
the non-spherical shape of their constant energy surfaces.

The transverse magnetoresistivityΔρxx/ρxx is measured with the current flowing
in somedirection (x) perpendicular to themagnetic field.With the direction of current
flow along the x direction and jy = 0, we can write from (10.8) and (10.9) that

Ey = (ωcτ)Ex (10.12)

and

jx = σ0

[
Ex

1 + (ωcτ)2
+ (ωcτ)2Ex

1 + (ωcτ)2

]
= σ0Ex . (10.13)

Again, there is no transverse magnetoresistance for a material with a single carrier
type having a spherical Fermi surface. Introduction of either a more complicated
Fermi surface or more than one type of carrier results in a transverse magnetore-
sistance. When the velocity distribution of carriers at a finite temperature is taken
into account, a finite transverse magnetoresistance is also obtained. In a similar way,
multi-valley semiconductors (having several electron or hole constant energy sur-
faces, some of which are equivalent by symmetry) can also display a transverse
magnetoresistance. In all of these cases the magnetoresistance exhibits a B2 depen-
dence.The effect of twocarrier types on the transversemagnetoresistance is discussed
in Sect. 10.5 in some detail.

We note that the σxy and σyx terms arise from the presence of a magnetic field.
The significance of these terms is further addressed in our discussion of the Hall
effect (Sect. 10.3). We note that for non-spherical constant energy surfaces, (10.6)
and (10.7) must be rewritten to reflect the fact that m∗ is a tensor so that the vectors
v and E need not be parallel, even in the absence of a magnetic field. This point is
clarified to some degree in the derivation of the magneto-transport effects given in
Sect. 10.4 using the Boltzmann Equation.

10.3 The Hall Effect

If an electric current is flowing in a semiconductor transverse to an applied magnetic
field, an electric field is generated perpendicular to the plane containing j and B.
This is known as the Hall effect. Because the magnetic field acts to deflect the charge
carriers transverse to their current flow, the Hall field is required to ensure that the
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transverse current vanishes. Let x be the direction of current flow and z the direction
of the magnetic field. Then the boundary condition for the Hall effect is jy = 0.
From the magnetoconductivity tensor (10.9), we have

jy = ne2τ

m∗

(
1

1 + (ωcτ)2

)
(Ey − ωcτ Ex ) (10.14)

so that a non-vanishing Hall field

Ey = ωcτ Ex (10.15)

must be present to ensure the vanishing of jy (see Fig. 10.1). It is convenient to define
the Hall coefficient RHall as

RHall ≡ Ey

jx Bz
= τ Ex (eBz/m∗)

jx Bz
. (10.16)

Substitution of the Hall field into the expression for jx in (10.17) then yields

jx = ne2τ

m∗[1 + (ωcτ)2] [Ex + ωcτ Ey] = ne2τ [1 + (ωcτ)2]Ex

m∗[1 + (ωcτ)2] (10.17)

or

jx = ne2τ

m∗ Ex = σdcEx . (10.18)

Substitution of this expression into the Hall coefficient in (10.16) yields

RHall = eτ

m∗(ne2τ/m∗)
= 1

ne
. (10.19)

The Hall coefficient is important because:

1. RHall depends only on the carrier density n and universal constants.
2. The sign of RHall determines whether conduction is by electrons (RHall < 0) or

by holes (RHall > 0).

If the carriers are of one type, we can relate the Hall mobility μHall to RHall:

μ = eτ

m∗ =
(
ne2τ

m∗

) (
1

ne

)
= σ RHall. (10.20)

We define the Hall mobility as

μHall ≡ σ RHall (10.21)
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Fig. 10.1 The standard geometry for the Hall effect: a specimen of rectangular cross-section is
placed in a magnetic field Bz as illustrated in (a). An electric field Ex applied across the end
electrodes causes an electric current density jx to flow down the sample shown in (a). The drift
velocity of the electrons, immediately after the electric field is applied, is shown in (b). The charge
carrier deflection in the y direction is caused by the magnetic field. Electrons accumulate on one
face of the sample and a positive ion excess is established on the opposite face until, as in (c),
the transverse electric field (Hall field) totally cancels the force due to the external magnetic field
(Reprinted from C. Kittel)

and μHall carries the same sign as RHall. The resistivity component ρxy = neμHall is
called the Hall resistivity. A variety of new effects can occur in RHall when there is
more than one type of carrier, as is commonly the case in semiconductors, and this
is discussed in Sect. 10.5.

10.4 Derivation of the Magneto-Transport Equations
from the Boltzmann Equation

The corresponding results relating j and E will now be found using the Boltzmann
equation (7.4) in the absence of temperature gradients. We first use the linearized
Boltzmann equation given by (7.18) to obtain the distribution function f1. Then we
will use f1 to obtain the current density j in the presence of an electric field E and a
magnetic field B = Bẑ in the z-direction.

http://dx.doi.org/10.1007/978-3-662-55922-2_7
http://dx.doi.org/10.1007/978-3-662-55922-2_7
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In the presence of a magnetic field, the equation of motion becomes

�k̇ = e

(
E + v × B

)
. (10.22)

We use, as in (7.17), f = f0 + f1 with

∂ f0
∂k

= ∂ f0
∂E

∂E(k)

∂k
= �v

∂ f0
∂E

. (10.23)

Substituting into the linearized form of the Boltzmann equation (7.18) gives an
equation for f1:

e

�
(E + v × B)·

(
�v

∂ f0
∂E

+ ∂ f1
∂k

)
= − f1

τ
. (10.24)

In analogy with the case of zero magnetic field, we assume a solution for f1 of the
form

f1 = −eτv · V∂ f0
∂E

(10.25)

(see (7.21)) whereV is a vector to be determined in analogywith the solution for B =
0.The formof (10.25) ismotivated by the form suggested by themagnetoconductivity
tensor in (10.9).

For a simple parabolic band, v = �k/m∗, and substitution of (7.21) into (10.24)
gives

e

�
(v × B) · ∂ f1

∂k
= −e2τ

m∗ (v × B) · V∂ f0
∂E

. (10.26)

The following equation for V is then obtained from (10.24)

v · E − eτ

m∗ (v × B) · V = v · V (10.27)

where we have neglected a term E · V which is small (of order |E|2 if |E| is small).
Equation (10.27) is equivalent to

vx Ex + ωcτvxVy = vxVx

vy Ey − ωcτvyVx = vyVy
(10.28)

which can be rewritten more compactly as:

V⊥ =
(
E⊥ − (eτ/m∗)[B × E⊥]

)(
1 + (eτ B/m∗)2

)−1

Vz = Ez

(10.29)

http://dx.doi.org/10.1007/978-3-662-55922-2_7
http://dx.doi.org/10.1007/978-3-662-55922-2_7
http://dx.doi.org/10.1007/978-3-662-55922-2_7
http://dx.doi.org/10.1007/978-3-662-55922-2_7
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where the subscript notation “⊥” in (10.29) denotes the component in the x − y
plane, perpendicular to B. This solves the problem of finding f1.

Now we can carry out the calculation of j in (7.23), using the new expression for
f1 given by (10.25), (7.13), and (10.29). With the more detailed calculation using
the Boltzmann equation, it is clear that the cyclotron mass governs the cyclotron
frequency, while the dynamic effective mass controls the coefficients (ne2τ/m∗) in
(10.6) and (10.7). In Sect. 10.6, we discuss how to calculate the cyclotron effective
mass.

10.5 Two Carrier Model

In this section, we calculate both theHall effect and the transversemagnetoresistance
for a two-carrier model. Referring to Fig. 10.1, the geometry under which transport
measurements are made (j ‖ x̂) imposes the condition jy = 0. From the magneto-
conductivity tensor of (10.9)

jy = −σ01β1Ex

1 + β2
1

+ σ01Ey

1 + β2
1

− σ02β2Ex

1 + β2
2

+ σ02Ey

1 + β2
2

= 0 (10.30)

where
β = ωcτ (10.31)

and the subscripts on σ0i and βi refer to the carrier index, i = 1, 2, so that σ0i =
nie2τi/m∗

i and βi = ω0cτi . Solving (10.30) yields a relation between Ey and Ex

which defines the Hall field

Ey = Ex

⎡
⎣

σ01β1

1+β2
1

+ σ02β2

1+β2
2

σ01

1+β2
1

+ σ02

1+β2
2

⎤
⎦ (10.32)

for a two carrier system. This basic equation for the Hall fields Ey is applicable to
two kinds of electrons, two kinds of holes, or a combination of electrons and holes.
The generalization of (10.30) to more than two types of carriers is immediate. The
magnetoconductivity tensor is found by substitution of (10.32) into

jx = σ01Ex

1 + β2
1

+ σ01β1Ey

1 + β2
1

+ σ02Ex

1 + β2
2

+ σ02β2Ey

1 + β2
2

. (10.33)

In general (10.33) is a complicated relation, but simplifications can be made in the
low field limit β � 1, where we can neglect terms in β2 relative to terms in β.
Retaining the lowest power in terms in β then yields

http://dx.doi.org/10.1007/978-3-662-55922-2_7
http://dx.doi.org/10.1007/978-3-662-55922-2_7
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Ey = Ex

[
σ01β1 + σ02β2

σ01 + σ02

]
(10.34)

and
jx = (σ01 + σ02)Ex . (10.35)

We thus obtain the following important relation for the Hall coefficient which is
independent of magnetic field in this low field limit

RHall ≡ Ey

jx Bz
= β1σ01 + β2σ02

(σ01 + σ02)2B
= μ1σ01 + μ2σ02

c(σ01 + σ02)2
(10.36)

where we have made use of the relation between β and the mobility μ

β = μB = eτ B/m∗
c = ωcτ. (10.37)

This allows us to write RHall in terms of the Hall coefficients Ri for each of the two
types of carriers

RHall = R1σ
2
01 + R2σ

2
02

(σ01 + σ02)2
(10.38)

since
β

B
= RHallσ, (10.39)

where for each carrier type we have

σ0i = nie2τi
m∗

i

(10.40)

and

Ri = 1

niei
(10.41)

where i = 1, 2. We note in (10.41) that ei = ±|e| where |e| is the magnitude of
the charge on the electron. Thus electrons and holes contribute with opposite sign
to RHall in (10.38). When more than one carrier type is present, it is not always the
case that the sign of the Hall coefficient is the same as the sign of the majority carrier
type. A minority carrier type may have a higher mobility, and the carriers with high
mobility make a larger contribution per carrier to RHall than do the larger number of
low mobility carriers.

The magnetoconductivity for two carrier types is obtained from (10.33) upon
substitution of (10.34) into (10.33) and retaining terms in β2. For the transverse
magneto-conductance, we obtain
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σB(B) − σB(0)

σB(0)
= 2σ 2

01β
2
1 + 2σ 2

02β
2
2 + σ01σ02(β1 + β2)

2

(σ01 + σ02)2
(10.42)

which is an average of β1 and β2 appropriately weighted by conductivity components
σ01 and σ02. But since Δρ/ρ = −Δσ/σ we obtain the following result for the
transverse magnetoresistance

Δρ

ρ
= −2σ 2

01β
2
1 + 2σ 2

02β
2
2 + σ01σ02(β1 + β2)

2

(σ01 + σ02)2
. (10.43)

We note that the magnetoconductivity tensor (10.9) no longitudinal yields magne-
toresistance for a spherical two-carrier model.

10.6 Cyclotron Effective Mass

To calculate the magnetoresistance and Hall effect explicitly for non-spherical Fermi
surfaces, we need to derive a formula for the cyclotron frequencyωc = eB/m∗

c which
is generally applicable for non-spherical Fermi surfaces. The cyclotron effectivemass
can be determined in either of two ways. The first method is the tube integralmethod
(see Fig. 10.2 for a schematic of the constant energy surfaces at energy E and E+ΔE)
which defines the cyclotron effective mass as

m∗
c = 1

2π

∮
�dκ

|v| = �
2

2π

∮
dκ

|∂E/∂k| (10.44)

where dκ is an infinitesimal element of length along the contour and we can obtain
m∗

c by direct integration. For the second method, we convert the line integral over an
enclosed area, making use of ΔE = Δk(∂E/∂k) so that

m∗
c = �

2

2π

1

ΔE

∮
(Δk)dκ = �

2

2π

ΔA

ΔE
(10.45)

where ΔA is the area of the strip indicated in Fig. 10.2 by the separation ΔE . There-
fore we obtain the relation

m∗
c = �

2

2π

∂A

∂E
(10.46)

which gives the second method for finding the cyclotron effective mass.
For a spherical constant energy surface, we have A = πk2 and E(k) =

(�2k2)/2m∗ so that m∗
c = m∗. For an electron orbit described by an ellipse in recip-

rocal space (which is appropriate for the general orbit in the presence of a magnetic
field on an ellipsoidal constant energy surface at wave vector kB along the magnetic
field) we write
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Fig. 10.2 Contour of the
constant energy surface in k
space used to calculate the
path integral in the
evaluation of the cyclotron
effective mass

E(k⊥) = �
2k21
2m1

+ �
2k22
2m2

= �
2k20
2m0

(10.47)

which defines the area A enclosed by the constant energy surface as

A = πk1k2 = πk20
√
m1m2/m0 (10.48)

where (k2i /mi ) = (k20/m0). Then substitution in (10.46) gives

m∗
c = √

m1m2. (10.49)

This expression for m∗
c gives a clear physical picture of the relation between m∗

c
and the electron orbit on a constant ellipsoidal energy surface in the presence of a
magnetic field. Since finding the electron orbit requires geometrical calculation for
a general magnetic field orientation, it is more convenient to use the relation

m∗
c =

⎛
⎝ det

↔
m∗

b̂· ↔
m∗ ·b̂

⎞
⎠

1/2

(10.50)

for calculatingm∗
c for ellipsoidal constant energy surfaceswhere b̂·

↔
m∗ ·b̂ is the effec-

tive mass component along the magnetic field, while det
↔
m∗ denotes the determinant

of the effective mass tensor
↔
m∗, and where b̂ is a unit vector along the magnetic field.

One can then show that for this case the Hall mobility is given by

μHall = eτ

m∗
c

(10.51)
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and
μHallB ≡ ωcτ = β (10.52)

so that μHall involves the cyclotron effective mass.

10.7 Effective Masses for Ellipsoidal Fermi Surfaces

The effective mass of carriers in a magnetic field is complicated by the fact that
several effective mass quantities are of importance. These include the cyclotron
effective mass m∗

c for electron motion transverse to the magnetic field (Sect. 10.6)
and the longitudinaleffective mass m∗

B for electron motion along the magnetic field

m∗
B = b̂·

↔
m∗ · b̂ (10.53)

obtained by projecting the effective mass tensor along the magnetic field. These
motions are considered in finding f1, the change in the electron distribution function
due to forces and fields. And corresponding results are found for later.

Returning to (7.9) and (7.10) in the initial exposition for the current density cal-
culated by the Boltzmann equation, we obtained the Drude formula

↔
σ= ne2τ

↔(
1

m∗

)
, (10.54)

thereby defining the drift mass tensor in an electric field. Referring to the magnetore-
sistance and magnetoconductance tensors ((10.8) and (10.9)), we can see the drift
term (ne2τ/m∗) which utilizes the drift mass tensor and the terms in (ωcτ) which
utilize the effective cyclotron mass m∗

c (see Sect. 10.6). Here we see that when the
Fermi surface for a semiconductor consists of ellipsoidal carrier pockets, then the
drift effective mass components are found in accordance with the procedure outlined
in Sect. 7.5.1 for ellipsoidal carrier pockets. We can then conveniently use (10.50) to
determine the cyclotron effective mass for ellipsoidal carrier pockets.

10.8 Dynamics of Electrons in a Magnetic Field

In this sectionwe relate the electronmotion on a constant energy surface in amagnetic
field to real space orbits. Consider first the case of B = 0 shown in Fig. 10.3. At a
given k value, E(k) and v(k) are specified and each of the quantities is a constant
of the motion, where v(k) = (1/�)[∂E(k)/∂k]. If there are no forces acting on
the system, then E(k) and v(k) are unchanged with time and are constants of the
motion. Thus, at any instant of time there is an equal probability that an electron will

http://dx.doi.org/10.1007/978-3-662-55922-2_7
http://dx.doi.org/10.1007/978-3-662-55922-2_7
http://dx.doi.org/10.1007/978-3-662-55922-2_7
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Fig. 10.3 Schematic
diagram of E(k) and of the
velocity v(k) which is
proportional to the derivative
∂E(k)/∂k for an electron in
a nearly free electron model

Fig. 10.4 Schematic
diagram of the motion of an
electron along a constant
energy (and constant kz)
trajectory in the presence of
a magnetic field B in the
z-direction

be found anywhere on a constant energy surface. The role of an external electric field
E is to change the k vector on this constant energy surface according to the equation
of motion

�k̇ = eE (10.55)

so that under a force eE, the energy of the system is changed.
In a constant magnetic field (but no electric field), the electron will move on a

constant energy surface in k space in an orbit perpendicular to the magnetic field
(see Fig. 10.4), and following an equation of motion

�k̇ = e(v × B) (10.56)

where we note that |v⊥| remains unchanged along the electron orbit. The electrons
will execute the indicated orbit at a cyclotron frequency ωc given by ωc = eB/m∗

c
where m∗

c is the cyclotron effective mass (see Sect. 10.6).
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For highmagnetic fields,whenωcτ 	 1, an electron circulatesmany times around
its semiclassical orbit before undergoing a collision. In this limit, there is interest in
describing the orbits of carriers in r space. The solution to the semiclassical equations

ṙ = v = (1/�)∂E/∂k (10.57)

�k̇ = e[E + v × B] (10.58)

is

r⊥ = r − B
B2

(B · r) (10.59)

in which the vector relation r = r‖ + r⊥ is valid. We also note that

B × �k̇ = e

[
{B × E} + {B × (v × B)}

]

= e

[
B × E + (B2v − (B · v)B)

]
.

(10.60)

Making use of (10.59) and (10.60), we may write

ṙ⊥ =
[

�

eB2
B × k̇

]
+

[
1

B2
(E × B)

]
(10.61)

which upon integration yields

r⊥(t) − r⊥(0) = �

ωc Bm∗
c

B × [k(t) − k(0)] + w t (10.62)

where

w = 1

B2
(E × B). (10.63)

From (10.62) we see that the orbit in real space is π/2 out of phase with the orbit
in reciprocal space. For the case of closed orbits, after a long time t ≈ τ . Then the
second term w t of (10.62) will dominate, giving a transverse or Hall current

j⊥ → ne

B2
(E × B) (10.64)

where n is the electron density. Similarly the longitudinal current j ‖ Ewill approach
a constant value or the current will saturate since E ⊥ j and E ⊥ B.
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Fig. 10.5 This diagram for the electron orbits in metallic copper indicates only a few of the many
types of orbits an electron can pursue in k-space when a uniformmagnetic field is applied to a noble
metal. (Recall that the orbits are given by slicing the Fermi surface with planes perpendicular to the
magnetic field.) The figure here displays a a closed electron orbit; b a closed hole orbit; c an open
hole orbit, which continues in the same general direction indefinitely in the repeated-zone scheme

The situation is very different for themagnetic and electric fields applied in special
directions relative to the crystal axes. For these special directions called open electron
orbits can occur, as illustrated in Fig. 10.5 for copper. In this case k(t) − k(0) has a
component proportional to Et which is not negligible. When the term [k(t) − k(0)]
must be considered, it can be shown that the magnetoresistance does not saturate but
instead increases as B2.

Figure10.6 shows the angular dependence of the magnetoresistance in copper,
which exhibits both closed and open orbits, depending on the direction of the mag-
netic field (see Fig. 10.6). The strong angular dependence is associated with the large
difference in the magnitude of the magnetoresistance for closed and open orbits.
(Compare orbits(a) and (b) in Fig. 10.5.) Large values of ωcτ are needed to dis-
tinguish clearly between the open and closed orbits, thereby requiring the use of
samples of very high purity and measured at low temperature (e.g., 4.2K) operation
to observe open orbits.
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Fig. 10.6 The spectacular directional dependence of the high-field magnetoresistance in copper
arises because of the special characteristics of the Fermi surface which supports open orbits. The
[001] and [010] directions of the copper crystal are as indicated in the figure, and the current flows
in the [100] direction perpendicular to the graph. The magnetic field is in the plane of the graph. Its
magnitude is fixed at 18 kilogauss, and its direction is varied continuously from [001] to [010]. The
graph is a polar plot of the transverse magnetoresistance [ρ(H)−ρ(0)]/ρ(0) versus the orientation
of the magnetic field

Problems

10.1 Consider n-type Si (n = 1017 cm−3) in a weak magnetic field, rotated between
the (100) and (110) crystallographic directions.

(a) Calculate the cyclotron effective masses for all carrier pockets for the applied
magnetic field along an arbitrary angle between (100) and (110). Use values for
the effective mass components m�

le = 0.92m0 and m∗
te = 0.19m0.

(b) Write an expression for the Hall Coefficient (RH ) for B along (100) and j along
(001), including all the carrier pockets for Si.

(c) Find RH for B along (110) and j along (001), including all carrier pockets.
(d) Should the results of (b) and (c) be the same?

10.2 (a) By using the result obtained in Problem10.8(a), find an expression for the
transverse magnetoresistance forB ‖ (100) and j ‖ (001) assuming a total carrier
density n and a constant relaxation time τ .

(b) What is the longitudinalmagnetoresistance for this n-type samplewith j ‖ (001)?
10.3 (a) Show that the equations of motion of a damped electron in an electric field

E ⊥ magnetic field B = Bẑ are given by:

m(
dvx
dt

+ vx
τ

) = −e(Ex + Bvy)
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m(
dvy
dt

+ vy
τ

) = −e(Ey − Bvx )

m(
dvz
dt

+ vz
τ

) = −eEz

(c) Consider a metal with a free electron concentration of n and with an electric
charge e placed in a uniform magnetic field B = Bẑ. Show that the electric
current density in the xy plane is related to the electric field by the relations:

jx = σxx Ex + σxy Ey

jx = σyx Ex + σyy Ey

Consider that the electric field frequency ω 	 ωc and ω 	 1/τ , where ωc is the
cyclotron resonance given by ωc = eB/m and τ is the time between electron
collisions.

(d) Explain physically what happens when ωτ 	 1 and when ωτ � 1 in terms
of sample preparation. Which regime is more strongly dependent on sample
preparation?

10.4 By solving the equations developed in Problem10.3, show that the components
of the magnetoconductivity tensor are given by:

σxx = σyy = iω2
p/4πω

σyx = −σxy = ωcω
2
p/4πω2

where ωp = √
4πne2/m is the plasmon resonance. (The screened plasma frequency

has been derived, which contains the core dielectric constant εcore. In this problem,
consider εcore = 1).

10.5 (a) Show that the cyclotron mass m∗
c of carriers in graphene is given by m

∗
c =√

πn/vF , where vF is the Fermi velocity of graphene and n is the electronic
density of carriers.

(b) Discuss how the cyclotron massm∗
c in 3D graphite will deviate from the effective

mass for a planar 2D system, as calculated above.

10.6 A sample of an extrinsic p-type semiconductor is placed in a uniform and
steady magnetic field B0. Assume that the effective mass tensor is isotropic, and that
the mean free path is independent of velocity.

(a) First, show that at a finite temperature, the time-averaged drift velocity of elec-
trons in the small-field limit (ωrτ � 1) can be written as

vx = e

m�

(
τ Ex − ωcτ 3Ex − ωcτ 2Ey

)



228 10 Magneto-Transport Phenomena

and
vy = e

m�

(
τ Ey − ωcτ 2Ex

)

where τ̄ n is averaged over a kinetic energy-weighted Maxwellian (Boltzmann)
distribution.

(b) Show that the proper averaging over such a direction leads to an average of
relaxation times over k space of the form

τ n = 〈v2rn〉
〈v2〉

where 〈x〉 is given in terms of the Boltzmann distribution, f0, as

〈x〉 =
∫

x f0(v)d
3v

(c) Evaluate the integral of part (b) using the fact that τ = λ/v where λ is the
carrier mean free path and show that the magnetoconductivity obeys a quadratic
dependence on the steadymagnetic field B0 (the so-called Lorentz term), despite
the fact that the system under consideration is a one carrier, spherical Fermi
surface system. Why should carriers be scattered by a magnetic field under
steady-state conditions if the Hall field (set up by the accumulated charge of the
deflected carriers) acts to ‘cancel’ the effect of the magnetic field?

(d) Show that the conductivity of the sample decreases with increasing magnetic
field and in particular

σ(B0) = σ0

[
1 − e2B2

0

m�
e

λ2

kBT

(
4 − π

8

)]
,

where σ0 is the conductivity in the absence of a magnetic field and λ is the carrier
mean free path. Assume (ωrτ � 1) where ωc = eB0

m�
e
.

10.7 Cyclotron resonance is observed when an electromagnetic wave is incident on
a sample at ω = ωc where ωc = eB/m.

(a) What happens to an electromagneticwave that is incident on a sample atω = ωc?
(b) The cyclotron resonance experiment is normally carried out by varying the mag-

nitude of B. Why does this cyclotron resonance in 3D germanium occur at
different values of B for electrons and holes (me = 0.55m0 and mh = 0.37m0)?

(c) How can the differing resonance magnetic fields be utilized to distinguish elec-
tron doping fromhole doping of germaniumand for the amount of doping present
in a given sample?

10.8 (a) Contrast the values for holes and electrons regarding the Hall coefficient
and the transverse magnetoresistance for the holes in silicon for degenerate p-
type material with 1017 hole carriers/cm3 in the valence bands and for another
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material where the carrier in a degenerate n-type material with 1017 electron
carriers/cm3 in the conduction bands.

(b) Model the valence bands in (a) as a doubly degenerate heavy hole band and a
non-degenerate light hole band with spherical Fermi surfaces and effective mass
components mh = 0.50m0 and m� = 0.16m0.

(c) Model the electrons to occupy conduction band states associated with the 6
electron carrier pockets of Si using the mass components mt = 0.19m0 and
m� = 0.98m0 and take B ‖ (001) and j ‖ (100).

10.9 Assume that you have an intrinsic direct gap III-V semiconductor sample
heated to a temperature T , with spherical carrier pockets for the electrons and holes
(an idealized version of GaAs). Suppose that the sample has an electron carrier con-
centration n in the conduction band. Denote the masses for the electrons, light holes
and heavy holes by me, mlh and mhh , respectively.

(a) Find an expression for the Fermi level.
(b) Derive an expression for the electrical conductivity.
(c) Derive an expression for the transversemagnetoresistance. (Assume current flow

along (100) and the magnetic field along (001).)

10.10 Both the Hall effect and thermoelectric power (Seebeck coefficient) are sen-
sitive to the carrier density. Suppose that we have a simple semiconductor with
spherical carrier pockets with a single parabolic non-degenerate band for the valence
and conduction bands. Assume that the ratio of the effective masses for the electrons
and holes is m∗

e/m
∗
h = 1/2.

(a) For a total carrier density of n, find the ratio of the Hall coefficients for the
case where the semiconductor is n-type by doping (no holes), and where the
semiconductor is intrinsic (n = ne + nh).

(b) Is theHall coefficientmore sensitive or less sensitive than the Seebeck coefficient
to the carrier scattering mechanism and why?

(c) Under what conditions would you expect an increase in the donor binding energy
for a shallow donor level in a quantum well made from this material.

10.11 (a) Suppose that a sample with three electron carrier pockets in the kx , ky
plane (and a three fold symmetry axis) is put in a weak magnetic field, find
an expression for the cyclotron effective mass for each of the 3 electron carrier
pockets as the field is rotated by an angle θ in the x – y plane from a (100)
direction θ = 0◦ through an angle of 60◦ (2π/6).

(b) Using the result in (a), find the transverse magnetoresistance for current flow
along an (001) direction asH is rotated in the x – y plane from a (100) direction
through an angle of 60◦. Assume a total carrier density n and a relaxation time
τ . Also assume that the applied electric field is along the (001) direction.

(c) Repeat (b) for j ‖ (100) and the applied E field ‖ (100). As in (a), the H field is
allowed to rotate in the x – y plane from θ = 0 to θ = 2π/6.
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Chapter 11
Transport in Low Dimensional Systems

11.1 Introduction

Transport phenomena in low dimensional systems such as in quantum wells (2D),
quantum wires (1D), and quantum dots (0D) are dominated by quantum effects not
included in the classical treatments based on the Boltzmann equation and discussed
in Chaps. 7–10. With the availability of experimental techniques to fabricate and
synthesize materials with nanometer sizes and nanometer dimensions (0D, 1D, and
2D), transport studies in low dimensional systems have become an active research
area. In this chapter, we consider some highlights on the subject of transport in low
dimensional systems.

11.2 Observation of Quantum Effects in Reduced
Dimensions

Quantum effects dominate the transport in quantumwells and other low dimensional
systems, such as quantum wires and quantum dots, when the de Broglie wavelength
of the electron

λdB = �

(2m∗E)1/2
(11.1)

exceeds the size of a quantum structure of characteristic length Lz (λdB > Lz). In
this limit (λdB > Lz), a new quantum effect becomes dominant, namely tunneling
through a potential barrier of length Lz . To get some order of magnitude estimates
of the electron kinetic energies E below which quantum effects become important,
we show a log-log plot of λdB vs E for GaAs and InAs in Fig. 11.1. From this
plot we see that an electron energy of E ∼ 0.1 eV for GaAs corresponds to a de
Broglie wavelength of λdB= 100Å or 10nm. Thus wave properties for electrons can
be expected to become important for structures with Lz smaller than λdB. To observe
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Fig. 11.1 Log-Log plot of the electron de Broglie wavelength λdB vs the electron kinetic energy
E for GaAs (�) and InAs (•)

quantum tunneling effects, the thermal energy must also be less than the energy level
separationΔE between quantum levels within the quantumwell, kBT < ΔE , where
we note that room temperature (20 ◦C) corresponds to 25meV. Since quantum effects
depend on the phase coherence of electrons, scattering processeswhich destroy phase
coherence can also destroy their quantum effects. The observation of quantum effects
thus requires that the carrier mean free path be much larger than the dimensions of
the quantum structures (quantum wells, wires, or dots).

The limit where quantum effects become important has been given the name
of mesoscopic physics. Carrier transport in this limit simultaneously exhibits both
particle and wave characteristics. In this ballistic transport limit, carriers can in
some cases also transmit charge or energy without scattering. The small dimensions
required for the observation of quantum effects can be achieved by the direct fab-
rication of semiconductor elements of small dimensions (quantum wells, quantum
wires and quantum dots) and in this regime electrons can reach the boundaries of
small objects before being scattered. Another approach is the use of gates on a field
effect transistor to define an electron gas of reduced dimensionality. In this context,
negatively charged metal gates can be used to control the source to drain current of
a 2D electron gas formed near the GaAs/AlGaAs interface, as shown in Fig. 11.2.
Between the dual gates shown on this figure, a thin conducting wire is formed out of
the 2D electron gas. Controlling the gate voltage controls the amount of charge in the
depletion region under the gates, as well as the charge flowing in the quantum wire.
Thus, lower dimensional channels can bemade in a 2D electron gas by usingmetallic
gates. In the following sections of this chapter, a number of important applications
are made that make use of this concept.
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Fig. 11.2 a Schematic
diagram of a lateral resonant
tunneling field-effect
transistor which has two
closely spaced fine finger
metal gates; b schematic of
an energy band diagram for
the device. A 1D quantum
wire is formed in the 2D
electron gas between the
gates, which generally are
metals

11.3 Density of States in Low Dimensional Systems

We showed in (8.40) that the density of states for a 2D electron gas that might form
under the gate in Fig. 11.2a is a constant for each 2D subband

g2D = m∗

π�2
, (11.2)

and the 2Ddensity of states g2D for an electron gas is shown in Fig. 11.3a as a series of
steps, where the inset to Fig. 11.3a shows the quantumwell formed near amodulation
doped GaAsAlGaAs interface. In the diagram of Fig. 11.3a, only the lowest bound
state of the inset is partially occupied, with the upper levels being unoccupied for
(E2 − E1) � kT . However, in Fig. 11.3b, four levels lie below the 4th peak in g(E).

Using the same arguments that are given above for g2D, we now derive a simple
formula for the density of states for a 1D electron gas. The total number of electronic
states up to wavevector k in Fig. 11.3b is given by

N1D = 2

2π
(k) = 1

π
(k) (11.3)

which for a parabolic band E = En + �
2k2/(2m∗) becomes

N1D = 2

2π
(k) = 1

π

(
2m∗(E − En)

�2

)1/2

(11.4)

yielding an expression for the density of states g1D(E) = ∂N1D/∂E

http://dx.doi.org/10.1007/978-3-662-55922-2_8
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Fig. 11.3 Density of states g(E) plotted as a function of energy. a Quasi-2D density of states,
with only the lowest subband occupied up to the Fermi level EF . Inset: Confinement potential
perpendicular to the plane of the 2DEG. The discrete energy levels shown in the inset correspond
to the bottoms of the first and second 2D subbands. b Quasi-1D density of states versus energy,
with the first four 1D subbands occupied in a quantum well of width W. Inset: Square-well lateral
confinement potential with discrete energy levels indicating the 1D subband extrema

g1D(E) = 1

2π

(
2m∗

�2

)1/2

(E − En)
−1/2. (11.5)

The interpretation of this expression is that, at each doubly confined bound state level
En , there is a singularity in the density of states, as shown in Fig. 11.3b where the
four lowest energy levels in the quantum well are occupied at a temperature T = 0
K, where no thermal excitation occurs.

11.3.1 Quantum Dots

A quantum dot consists of a small cluster of atoms such that the diameter of the
quantum dot is small compared to the length scale relevant to the phenomena under
investigation. In this limit, the cluster exhibits the properties of a zero dimensional
system. Since the levels of a quantum dot are all discrete, any averaging would
involve a sum over quantum levels and not an integral over energy. If, however, one
chooses to think about quantum dots in terms of their density of states, then the DOS
of a quantum dot would be a delta function singularity positioned at the energy of
the localized state, with the integral over the quantum dot performed at T = 0 K,
thereby giving the number of electrons in the quantum dot. At finite temperature,
some tunneling of carriers becomes possible if the thermal energy is large enough to
support the transport of electrical energy by a tunneling or collision process between
quantum dots.
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11.4 Ballistic Transport and the Landauer Formula

As the size of a conducting material is made small compared to the mean free path
of the electrons, the Boltzmann transport model (and the Drude model in particular)
breaks down and is not capable of describing the transport properties for this system
accurately. The measured resistance to electron transport in such a low-dimensional
system can, however, be described well by the Landauer transport model, which
calculates the electron conduction by treating the possible scattering sources in the
material as barriers to electron transport with a certain probability of electron trans-
mission through the barriers. This approach allows for the possibility of ballistic
transport, i.e., transport through a system without scattering.

As an illustration of a 1D system, the current I through a conductor with only one
quantum channel is considered (i.e., an electronic band whose wavevector is single-
valued in the transverse dimension but continuous in the longitudinal dimension).
Such a system is described by

I =
(
2gve

π

) ∫ ∞

−∞
[ f (E, eVs) − f (E, eVd)] · g(E)· | v | ·dE (11.6)

In this generalized equation, gv is the valley degeneracy which takes into account
the possibility of multiple carrier pockets or valleys in the Brillouin zone and also
take into account the spin degrees of freedom. Furthermore, g(E) under the integral
is the density of states for each carrier pocket, v is the carrier group velocity, and f
denotes the Fermi function appropriate to that carrier pocket. For one-dimensional
systems, g(E) =| dE(k)/dk |−1, and since v = (dE(k)/dk)/�, then the product of
g(E) · v = 1/�. To calculate the electrical conductance G in (11.7), we then simply
divide the current I in (11.6) by the bias voltage Vb = Vs − Vd in (11.7) between the
source and drain as shown in Fig. 11.2 to obtain as shown in (11.7)

G = I

Vb
= G0

∫ [ f (E, eVs) − f (E, eVd)]
eVb

dE . (11.7)

The value in front of the integral in (11.7), G0 = 4e2/h, is the quantum conductance
for a perfect resistance-piece 1D system, (R0 = 1/G0 = 6.5 k�) for which G =
G0 = 4e2/h in (11.7). If there are two parallel degenerate quantum channels in
the Brillouin zone, then ν = 2. Some common examples of ν = 2, would arise
from 2 carrier pockets (e.g., at the K and K′ points in the Brillouin zone for carbon
nanotubes) contributing equally to the measured current. Other examples of ν = 2
could be due to spin degeneracy. For most materials, other than sp2 carbon, with just
one quantum conducting channel,G0 = 2e2/h.We can approximate the integrand of
(11.7) as d f/dE , which is valid for bias voltages not larger than the thermal energy,
or for larger bias voltages under diffusive transport conditions (i.e., not ballistic
conditions). Since the density of states is zero in the band gap, the integral in (11.7)
is only taken over the bands containing carriers, and over these bands, we thus obtain
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Fig. 11.4 Illustration of
multiple scattering sources in
a 1D system

G = G0

∫
carrier bands

d f

dE
dE . (11.8)

Equation11.8 assumes that the position of the Fermi level with respect to the bands
is known. One method for calculating the Fermi level is discussed in Sect. 11.4.4.
To incorporate the effects of scattering in the system, such as by a lattice defect or
by atomic vibrations, we simply add the effects of the scattering sources together in
(11.9) so that the transmission coefficient T , simply determines the conductance G

G = G0

∫
carrier bands

T
d f

dE
dE . (11.9)

Once scattering is taken into consideration, we can then describe transport equiva-
lently in terms of a resistance R to carrier transmission as

R = R0 · 1∫
bands T (E)(d f/dE)dE

. (11.10)

To start our illustration, we will consider a metallic 1D system (i.e., without a
band gap). In this case (assuming a constant, energy independent, value for T (E)),
the resistance of a system that allows scattering satisfies

R = R0
1

T
= R0

(
1 + 1 − T

T

)
(11.11)

where we have separated the quantum resistance R0 from the effects of the carrier
scattering sources. To calculate the transmission through multiple barriers, we have
to consider multiple reflections, as illustrated in Fig. 11.4. The total transmission
coefficient in this case is given by

Ttot = T1T2 + T1T2R1R2 + T1T2R
2
1R

2
2 + ... = T1T2

1 − R1R2
. (11.12)

From (11.12), the resistances of an arbitrary number of scattering sources add accord-
ing to
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1 − Ttot

Ttot
= 1 − T1

T1
+ 1 − T2

T2
+ ... (11.13)

Using (11.11), we can calculate the resistance of a system with multiple scattering
sources, such as: (1) a carbon nanotube with contact barriers, (2) diffusive scattering,
and local defects.

11.4.1 Relationship Between the Mean Free Path
and the Transmission Coefficient

In order to calculate the relationship between themean free path � f and the transmis-
sion coefficientT , we will use a weak scatterer approximation so that the scattering
process acts like a weak perturbation to the physical system, where Ts ∼ 1. In this
approximation,

Ls

� f
≈ 1 − Ts ≈ 1 − Ts

Ts
(11.14)

where the average distance between scatterers Ls is much smaller than the mean free
path of � f . This can be seen in Fig. 11.5, which shows in the transmission probability
with no scattering (probability of ballistic transmission without a single scattering
event) for a particle as a function of distance traveled (solid curve showing an expo-
nential decay). The initial slope of the decay is −(1−Ts)/Ls , which determines the
decay constant or mean free path � f between scattering events.

The total scattering coefficient for all the scatterers (vs) in the system (green dashed
curve in Fig. 11.5), including multiple reflections, can then be calculated using the
following equation:

1 − Ttotal

Ttotal
= Ns

1 − Ts

Ts
= Ns

Ls

� f
= L

� f
⇒ Ttotal = � f

� f + L
. (11.15)

Using the result of (11.15), the resistance with perfect contacts is

R = R0
� f + L

� f
. (11.16)

Now we consider a system like a semiconductor with a band gap. The integrals
over energy in (11.9) and (11.10) both have a maximum value of unity, sinceT ≤ 1
and the integral over d f is unity. So, in the presence of the band gap, the integral
is less than unity, which physically means that charge carriers are being depleted.
Therefore, it is useful to separate out the effects of carrier depletion due to the band
gap from those of the reduced mobility due to carrier scattering sources. We can
separate these two effects by modifying (11.10) as
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Fig. 11.5 Particle transmission probability to a distance L for a systemofweak scatterers, consider-
ing the case of no scattering (ballistic) transmission (red solid curve) and total (multiple reflection)
transmission (green dashed curve); Ts is the transmission probability to Ls after one scattering
evernt, and � f is the mean free path

R = R0 · 1∫
bands T (E)

d f
dE dE

=
(

R0∫
bands

d f
dE dE

)
·
( ∫

bands
d f
dE dE∫

bands T (E)
d f
dE dE

)
= R∗

0
1

T ∗

= R∗
0

(
1 + 1 − T ∗

1

T ∗
1

+ 1 − T ∗
2

T ∗
2

+ ...

)
(11.17)

Here, R∗
0 denotes the depleted quantum channel resistance, or the resistance of the

gapped system in the absence of other scattering sources, and T ∗ is the effective
or weighted average transmission coefficient in the quantum channel. If T (E) is
constant, then T ∗ = T .

We show here a simple example to demonstrate the importance of the separation
of the calculations of the two terms in (11.17). Consider a resonant scattering source
in the channel, which only scatters electrons within a narrow energy range. If that
energy range happens to lie inside the band gap, then the scatterer should not affect
the conductance of the system, because none of the conduction electrons are of the
proper energy to scatter. This result is found with the separation above. However,
if we neglect this carrier separation, then an additional resistance due to the carrier
depletion needs to be added for each such scattering source that we add to the system,
which is a non-physical result. The total resistance in a single walled nanotube,
including contacts and diffusive electron-phonon scattering, can be then written as
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R = R∗
0

(
1 + 1 − T ∗

ph

T ∗
ph

+ 2
1 − T ∗

c

T ∗
c

)
(11.18)

where T ∗
ph and T ∗

c are the transmission coefficients for phonon scattering and for
the two contacts, respectively.

11.4.2 Relationship to the Boltzmann Transport

As another instructive example, we can also calculate the electrical resistance of a
one dimensional system using Boltzmann transport theory, which gives a current of
j1D , when

j1D = 2

π

∫
e ·vg(k)· f1dk = 2

π

∫
e ·vg · f1 dk

dE
dE = 2

π

∫
e · vg · f1
�(dω/dk)

dE (11.19)

Since the carrier group velocity vg is just vg = dω
dk , we can substitute for vg to get

the conductance
j1D
E

= σ =
(
4e2

h

)
(

∫
τvg)

(
d f0
dE

dE

)
. (11.20)

Considering the carrier mean free path � f = vgτ and the length of the conducting
channel L , we can calculate the conductivity of the conducting channel as

G = σ

L
= G0

∫
� f

L

d f0
dE

dE (11.21)

whereG0 is the quantumconductance. The only difference between this result and the
result of the Landauermodel above is that, in the Landauermodel, � f

L → � f

� f +L , which
explicitly accounts for ballistic conduction through the entire conducting channel in
the case when � f � L .

11.4.3 Relationship to Mobility Calculations

Traditionally, the electrical conductivity in semiconductors is calculated using the
carrier mobility μ, by the equation

σ = enμ (11.22)

where

n =
∫
conduction−band

f (E)g(E)dE (11.23)
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is the n-type charge carrier density of the material, ignoring p-type conduction. This
formula breaks down for degenerately doped semiconductors and metals, because
not all charge carriers contribute to the conductivity equally, since carriers near the
Fermi energymake the dominant contribution to conduction. Electrons with energies
far below the Fermi energy do not contribute because of the Pauli exclusion principle.
This issue does not arise for most semiconductor calculations; however, because only
the tail of the Fermi distribution (light doping regime) extends into the conduction
band.

The Landauer model can then be shown to be equivalent to the mobility equation
G = enμ/L in the light doping approximation. First, using the Einstein mobility
relation,

μ = eD

kBT
(11.24)

where kBT is the thermal energy of the system and D is the carrier diffusion coef-
ficient, given by D = � f · v/π . So assuming two quantum channels for the system,
we have

G = enμ

L
= 2e2

πL

∫
conduction−band

f (E)g(E)
� f · v
kBT

dE (11.25)

As in (11.6), the contribution from the density of states factor cancels the contribution
from the group velocity in 1D, and we get

G = 4e2

h

∫
� f

L
· f (E)

kBT
dE . (11.26)

In the limit (E − EF )/kBT = Δ � 1, then

d f

dE
= eΔ

(1 + eΔ)2

1

kBT
≈ eΔ

(1 + eΔ)eΔ

1

kBT
= f (E)

kBT
. (11.27)

Thus, we obtain

G = G0

∫
� f

L
· d f

dE
dE (11.28)

which is the same as (11.21), because the mobility equation is also based on a
diffusive transport model. Under ballistic conditions (� f > L), the mobility equation
and Boltzmann transport model both break down because the electrical conductance
must not exceed G0.
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11.4.4 Dependence of the Fermi Energy on Gate Voltage

The electron transport properties of nanostructures are oftenmeasured in a field effect
transistor (FET) configuration, in which an electrostatic gate can be used to dope the
material to vary the Fermi energy of the material without adding impurities. The
application of a gate voltage changes the electrochemical potential (ζ ) according to
the relation

ζ = eVgate (11.29)

where e is the elementary charge and Vgate is the applied gate voltage. The electro-
chemical potential is the sum of the electrostatic potential (ζelect ) and of the chemical
potential (ζchem). Thus, the electrochemical potential is given by

ζ = ζelect + ζchem = eφ + EF (11.30)

where φ = Q/Cgeom is the electrostatic potential, which can be obtained by dividing
the electric charge Q by the geometric capacitanceCgeom . The EF term in (11.30) can
typically be neglected for bulk materials, which have a large number of electronic
states. Replacing the electrochemical potential ζ in (11.29) and (11.30) by eφ =
eQ/Cgeom yields

eVgate = eQ(EF )/Cgeom + EF (11.31)

Here, Q(EF ) is the charge on the nanostructure, which can be found by integrating
the density of states (remembering to include both p- and n-type charging terms)

Q(EF ) =
∫

g(E) f (E)dE . (11.32)

11.4.5 Ballistic Phonon Transport

We can also use the Landauer transport model to calculate the thermal power con-
ducted by all ballistic phonons. This thermal power flow is given by

Q̇ =
∑
m

∫ ∞

0

dk

2π
�ωm(k)vm(k)η(ωm, Thot )T (ωm) (11.33)

Here, �ωm(k) is the phonon energy, which is integrated over all wave vectors k and
bands m, while η is the temperature-dependent Bose–Einstein distribution function,
vm is the group velocity of the mth phonon mode, Thot is the temperature variable in
the Bose–Einstein distribution, andT is the transmission coefficient, typically set to
1 in order to calculate the upper bound for heat transport. The thermal conductance
is then calculated as Gth = Q̇ ph/(AΔT ), where A is the cross-sectional area of the
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Fig. 11.6 Conductance-gate voltage data taken from a GaAs quantum point contact showing quan-
tized behavior (Physical Review Letters, 60, 848 (1988))

sample or device. Phonon scattering can also be included in this formalism by adding
individual scattering events into the transmission coefficient T , as described above
for electrons.

11.5 Quantum Point Contacts (QPC) Effects

A quantum point contact serves as perhaps the simplest device that demonstrates bal-
listic conduction of electrons and their wave-like nature.The existense of QPCs were
demonstrated in a top-gated GaAs/AlGaAs two-dimensional electron gas (2DEG)
more than 25years ago (see van Wees, et al., Physical Review Letters, 60, 848
(1988)). The characteristic signature of a QPC is conductance quantized in units of
e2/(π�) or (2e2/h), as shown in Fig. 11.6. As the channel width W becomes wider
with increasing gate voltage, the number of conducting channels (transverse modes
in the channel) increases by integer values. The early point contact experiments were
done using ballistic point contacts on a gate structure placed over a two-dimensional
electron gas as shown schematically in the inset of Fig. 11.6. The width W of the
gate (in this case 2500 Å) defines the effective width W ′ of the conducting electron
channel, and the applied gate voltage is varied in order to control the effective width
W ′. Superimposed on the raw data for the resistance vs gate voltage is a collection of
periodic steps as shown in Fig. 11.6, after subtracting off the background resistance
of 400�.
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Fig. 11.7 Observation of the Coulomb Blockade: a Schematic diagram, b SEM image, and
c conductance-gate voltage characteristics of a single electron transistor showing quantized behavior
(Physical Review Letters, 65, 771 (1990))

11.6 Coulomb Blockade and Single Electron Transistors
(SETs)

A single electron transistor is another device that can be fabricated using this general
fabrication scheme. LikeQPCs, single electron transistors (SETs)were demonstrated
in GaAs 2DEGs more than 25years ago (see Meirav et al. 1990). In a SET, a quan-
tum dot is formed by the top gated geometry shown in Fig. 11.7. Current tunneling
between the source and drain through the quantum dot can be modulated by many
orders of magnitude with the addition of each additional electron on the quantum
dot. This produces periodic conductance resonances known as the Coulomb block-
ade (CB), as shown in Fig. 11.7c. Here, the peak width is determined by temperature
(kBT ) rather than tunneling. In order to observe theCBeffect, the tunneling resistance
must be larger than h/e2 in order to make the quantum dot an effectively isolated
capacitor. Two experimental observations of these phenomena were simultaneously
published (see Wharam et al. 1988 and van Wees et al. 1988).

There are several conditions necessary to observe perfect (2e2/h) quantization of
the 1D conductance. One requirement is that the electron mean free path � f be much
greater than the length of the channel L . This limits the values of channel lengths to
L < 5,00nm even though the mean free path values in this work are much larger,
� f = 8.5µm. It is important to note, however, that � f = 8.5µm is the mean free
path for the 2D electron gas. When the electron channel is formed, the screening
effect of the 2D electron gas is no longer present and the effective mean free path
becomes much shorter. A second condition is that there are adiabatic transitions at
the inputs and outputs of the channel. These transitions minimize reflections at these
two points, an important condition for the validity of the Landauer formula. A third
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condition requires the Fermi wavelength λF = 2π/kF (or kF L > 2π ) to satisfy
the relation λF < L by introducing a sufficient carrier density (3.6 ×1011cm−2)
into the channel. Finally, as discussed earlier, it is necessary that the thermal energy
kBT � [E j − E j−1] where [E j − E j−1] is the subband separation between the j
and [ j − 1] one dimensional energy levels. Therefore, these early measurements of
quantum conductance were done at low temperatures (T < 1 K).

The point contacts in Fig. 11.6 were made on high-mobility molecular-beam-
epitaxy-grown GaAs heterostructures using electron beam lithography. The electron
density of the material was 3.6×1011/cm2 and the mobility was 8.5×105cm2/V s (at
0.6 K). These values were obtained directly frommeasurements of the devices them-
selves. For the transport measurements, a standard Hall bar geometry was defined by
wet etching. At a gate voltage of Vg = −0.6 V the electron gas underneath the gate
was depleted, so that conduction takes place through the point contact only. At this
voltage, the point contacts have their maximum effective widthW ′

max, which is about
equal to the opening W between the gates. By a further decrease (more negative) of
the gate voltage, the width W of the point contacts in Fig. 11.6 can be reduced, until
they are fully pinched off at Vg = −2.2 V.

Early measurements of QPC and SET behavior were performed at low temper-
atures (0.6K) on relatively large structures (W ∼ 250nm). More recently, room
temperature-operating SETs and single electron memories have been demonstrated
in Si MOSFET structures fabricated using nanoimprint lithography (see Zhuang et
al. 1998 andWu et al. 2003). The single electron memory had a nanoimprint defined
sub-10nmquantum dot as the floating gate on top of a 20nmwide channel. The infor-
mation was then stored by charging/discharging each electron to/from the quantum
dot. The very steep transconductance values in SET devices have attracted a lot of
attention for logic and memory applications; however, their extreme sensitivity to
any changes in the background charge has rendered large scale use of these new
scientific advances unfeasible for the present. SETs, however, have found a niche
for themselves in charge-sensing applications. For example, Chiu et al. have utilized
this aspect of SETs to increase the sensitivity of micromechanical mass sensors to
achieve a sensitivity of 0.066 zeptograms (i.e., 0.066×10−21 g)(see Chiu et al. 2008),
and these SET devices have had a significant impact on nanotechnology.

Problems

11.1 Calculate the first five quantized energy levels and plot the density of states of
an n-type silicon quantum well with the following parameters:

(a) (001) orientation, well width (dw) = 10Å
(b) (001) orientation, well width (dw) = 50Å
(c) (111) orientation, well width (dw) = 10Å
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(d) (111) orientation, well width (dw) = 50Å

Assume an infinite potential. How do these energies compare with the thermal energy
at room temperature (kBT=25meV)? n-type silicon has ml = 0.98 and mt = 0.19.
Hint: You first have to calculate the x , y, and z components of the effective mass for
each carrier pocket. Because there are multiple carrier pockets, you will have to sort
these energies in ascending order. You should give your answers in eV.

11.2 Calculate the first 10 quantized energy levels and plot the density of states of
a p-type GaAs quantum wire with the following parameters:

(a) (001) orientation, wire diameter (dw) = 10Å
(a) (001) orientation, wire diameter (dw) = 50Å
(c) (111) orientation, wire diameter (dw) = 10Å
(d) (111) orientation, wire diameter (dw) = 50Å

Assume an infinite potential and a square wire cross-section. How do these energies
compare with the thermal energy at room temperature (kBT=25meV)? Because
there are two quantum numbers for each energy level, you will have to sort these in
ascending order.

11.3 Ametallic sphere with a radius of r is embedded in an infinitely large insulating
medium with a relative permittivity of εr .

(a) What is the capacitance of the sphere?
(b) What is the difference of the energy needed to add the Nth electron and the

(N + 1)th electron into the sphere?
(c) If the insulatingmedium is SiO2 and youwant to observe the Coulomb blockade

effect at room temperature with this system, which means the above energy
difference needs to be larger than 3kBT , what then is the required size of the
sphere?

11.4 Suppose you are building a single electron device based on the Coulomb block-
ade effect of a quantum dot. In order to make the device work practically, the dot
cannot be an isolated dot, and it has to be located near some conducting electrodes.
Will the capacitance of the dot be larger or smaller than the isolated dot mentioned
in Problem11.3? What then is the implication of the dot size needed to make the
device work properly at room temperature?

11.5 The electrostatic capacitance of a carbon nanotube on a SiO2/Si substrate is
given by the relation:

C = 2πεL

ln( 4hd )
(11.34)

where d and L are the nanotube diameter and length, h is the oxide thickness respec-
tively and the dielectric permittivity ε = 3.9ε0 for SiO2.

(a) Calculate the gate capacitance of a carbon nanotube 1nm in diameter and 1µm
in length, and a SiO2 thickness of 300nm.
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(b) Assuming a constant density of states of 0.15 states/graphene unit cell/eV, what
gate voltage would be required to shift the Fermi energy by 10meV? Assume
T = 0K (i.e., f (E) = 0 or 1).

(c) Plot the relation between the Fermi energy and the gate voltage.
(d) Now assume that the nanotube has a small band gap of 50meV (quasi-metallic).

Plot the relation between the Fermi energy and the gate voltage. How is this
physically different from relation in (c)?

(e) Now plot the relation between the Fermi energy and the gate voltage for a
semiconductor nanotube with a band gap of 1eV. In which range does the Fermi
energy change most significantly with gate voltage?

11.6 (a) If the scattering length in a carbon nanotube is 1µm, what is the effective
mobility of a 100µm long nanotube? (Assume a Fermi velocity of 108 cm/s.)

(b) What value of resistance does this nanotube have?
(c) As the length of the nanotube is made much shorter than 1µm, what value

of resistance do you expect the nanotube to have, assuming perfect contacts.
Explain your answer.

11.7 For monolayer graphene on a SiO2/Si substrate, the gate capacitance can be
calculated using the parallel plate capacitor equation. Derive an equation relating the
Fermi energy to the applied gate voltage for graphene on a SiO2/Si substrate. The
following relations for graphene many be helpful: DOS = k2

2π and E = vF�k.
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Chapter 12
Two Dimensional Electron Gas, Quantum
Wells and Semiconductor Superlattices

12.1 Two-Dimensional Electronic Systems

One of the most important recent developments in semiconductors, both from the
point of view of physics and for the purpose of device developments, has been
the achievement of structures in which the electronic behavior is essentially two-
dimensional (2D). This means that, at least for some phases of operation of the
device, the carriers are confined in a potential well such that electron motion in
one direction is restricted and thus is quantized, leaving plane wave motion for the
electronwith a two-dimensionalwave vector k, which characterizesmotion in a plane
normal to the confining potential. The major systems where such 2D behavior has
been studied are MOS (metal-oxide-semiconductor) structures, quantum wells and
superlattices. More recently, quantization has been achieved in 2D layered materials,
such as graphene and the transition metal dichalcogenide MoS2.

12.2 MOSFETS

One of the most useful and versatile of these structures is the metal-insulator-
semiconductor (MIS) layered structures, themost important of these being themetal-
oxide-semiconductor (MOS) structures. As shown in Fig. 12.1, the MOS device is
fabricated from a substrate of usually moderately-doped p-type or n-type silicon
which together with its grounded electrode is called the base and labeled B in the
figure. On the top of the base, an insulating layer of silicon dioxide is grown, fol-
lowed by a metal layer; this structure is the gate (labeled G in the figure) and is used
to apply an electric field through the oxide to the silicon. For the MOS device shown
in the figure, the base region is p-type and the source (S) and drain (D) regions are
n-type. Measurements of the changes in the properties of the carriers in the sili-
con layer immediately below the gate are made (by measuring the conductance in
the source-drain channel), in response to changes in the applied electric field at the
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Fig. 12.1 Cross-sectional view of the basic MOSFET structure showing the terminal designations
and standard biasing conditions
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Fig. 12.2 Energy band and block charge diagrams for a p–type device operating under flat band,
accumulation, depletion, and inversion conditions. VG is the gate voltage, and VT is the threshold
voltage

gate electrode, and such measurements are called field-effect measurements. As we
show below, the electric field dramatically changes the conducting properties of the
carriers beneath the gate. Use is made of this effect in the so-called metal-oxide-
semiconductor field-effect transistor (MOSFET).

To understand the operation of this device, we first consider the schematic energy
band diagram of the MOS structure as shown in Fig. 12.2, for four different values of
VG , the gate potential relative to that of the substrate. For each VG value, the diagram
shows from left to right the metal (M) - oxide (O) - semiconductor (S) regions. In
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the semiconductor regions each of the diagrams show from top to bottom: the Si
conduction band edge Ec, the “intrinsic” Fermi level for undoped Si as the dashed
line, the Fermi level EF in the p-type Si, and the valence band edge Ev . In each of the
four diagrams, the central oxide region shows the valence band edge for the oxide.
On the left hand side of each diagram, the Fermi level for the metal is shown as a
solid horizontal line, and the dashed line gives the extension of the Si Fermi level.
In the lower part of the figure, the applied DC voltage conditions are indicated, and
the corresponding diagrams for the charge layers of the interfaces for each case are
illustrated.

We now explain the diagrams in Fig. 12.2 as a function of the gate voltage VG . For
VG = 0 (the flat-band case), there are (ideally) no charge layers, and the energy levels
of the metal (M) and semiconducting (S) regions line up to yield the same Fermi
level (chemical potential). The base region is doped p-type (p-Si). For a negative
gate voltage (VG < 0, the accumulation case), an electric field is set up in the oxide.
The negative gate voltage causes the Si bands to bend up at the oxide interface
(see Fig. 12.2) so that the Fermi level is closer to the valence-band edge. Thus extra
holes accumulate at the semiconductor-oxide interface and electrons accumulate at
the metal-oxide interface (see lower part of Fig. 12.2). In the third (depletion) case,
the gate voltage is positive but less than some threshold value VT . The voltage VT

is defined as the gate voltage where the intrinsic Fermi level and the actual Fermi
level are coincident at the interface (see lower part of Fig. 12.2). For the “depletion”
regime, the Si bands bend down at the interface resulting in a depletion of holes,
and a negatively charged layer of localized states is formed at the semiconductor-
oxide interface. The size of this “depletion region” (area of the rectangle labeled
−Q) increases as VG increases. The corresponding positively charged region at the
metal-oxide interface is also shown. Finally, for VG > VT , the intrinsic Fermi level
at the interface drops below the actual Fermi level, forming the “inversion layer”,
where mobile electrons (shown in orange color) reside. It is the electrons in this
inversion layer which are of interest, both because they can be confined so as to
exhibit two-dimensional transport behavior, and because they can be controlled by
the gate voltage in the MOSFET (see Fig. 12.3)

The operation of a metal-oxide semiconductor field-effect transistor (MOSFET)
is illustrated in Fig. 12.3, which shows the electron inversion layer under the gate
for VG > VT (for a p-type substrate), with the source region grounded, for various
values of the drain voltage VD . The inversion layer forms a conducting “channel”
between the source and the drain (as long as the gate voltage is above threshold
VG > VT ). The dashed line in Fig. 12.3 shows the boundaries of the depletion region
which forms in the p-type substrate adjoining the n+ and p regions.

For VD = 0 there is obviously no current between the source and the drain since
both are at the same potential (Fig. 12.3a). For VD > 0, the inversion layer or channel
acts like a resistor, inducing the flow of electric current ID between the source and
drain. As shown in Fig. 12.3b, increasing VD imposes a reverse bias on the n+-p
drain-substrate junction, thereby increasing the width of the depletion region and
both decreasing the number of carriers and narrowing the channel in the inversion
layer, as shown in Fig. 12.3. Finally as VD increases further, the channel reaches
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Fig. 12.3 Visualization of
various phases of VG > VT
MOSFET operation. a Drain
voltage VD = 0, b channel
(inversion layer) narrowing
under moderate VD positive
voltage biasing, c pinch–off
denoted by VDsat , and d
post-pinch-off (VD > VDsat )
operation. (Note that the
inversion layer widths,
depletion widths, etc. are not
drawn to scale.)
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Fig. 12.4 General form of
the ID − VD characteristics
expected from a long channel
(ΔL � L) MOSFET, where
VDsat is the saturation
voltage, L is the channel
length, and ΔL is the change
in the channel length due to
the pinch off phenomenon

the “pinched-off” condition VDsat shown in Fig. 12.3c. Further increase in VD does
not increase ID but rather causes “saturation” at VDsat . We note that at saturation,
VDsat = VG − VT . Saturation is caused by a decrease in the carrier density in the
channel due to the pinch-off phenomena. When the gate voltage VG exceeds the
threshold voltage VT , a new regime is entered as is discussed next.

In Fig. 12.4, ID versus VD curves are plotted for fixed values of VG > VT . We note
that VDsat increases with increasing VG . These characteristic curves are qualitatively
similar to the curves for the bipolar junction transistor. The advantage of MOSFET
devices lie in the speed of their operation and in the ease with which they can be
fabricated into ultra-small devices.

The MOSFET device, or an array of a large number of MOSFET devices, is fab-
ricated starting with a large Si substrate or “wafer”. At each stage of fabrication,
areas of the wafer which are to be protected are masked off using a light-sensitive
substance called photoresist, which is applied as a thin film, exposed to light (or
an electron or x-ray beam) through a mask of the desired pattern, then chemically



12.2 MOSFETS 251

developed to remove the photoresist from only the exposed (or, sometimes only the
un–exposed) area. On the formerly protected areas, first the source and drain regions
are formed by either diffusing or implanting (bombarding) donor ions into the p-type
substrate. Then a layer of SiO2 (which is an excellent and stable insulator) is grown
by exposing the desired areas to an atmosphere containing oxygen; usually only a thin
oxide layer is grown over the gate regions and, in a separate step, thicker oxide layers
are grown between neighboring devices to provide electrical isolation. Finally, the
metal gate electrode, the source and drain contacts are formed by sputtering or evap-
orating a metal, such as aluminum, onto the desired regions of the substrate, where
metallic contacts are made from the MOSFET device input and output connections
to appropriate connections of the external system.

12.3 Two-Dimensional Behavior

Other systems where two-dimensional behavior has been observed include hetero-
junctions of III-V compounds such as GaAs/Ga1−xAlxAs, layer compounds such as
GaSe, GaSe2 and related III-VI compounds, graphite and intercalated graphite, and
electrons on the surface of liquid helium. The GaAs/Ga1−xAlxAs heterojunctions
are important for device applications because the lattice constants and the coefficient
of expansion of GaAs and Ga1−xAlxAs are very similar. This lattice matching per-
mits the growth of high mobility thin films of Ga1−xAlxAs on a GaAs substrate (For
further reading, see Weisbuch and Vinter 2014).

The interesting physical properties of the MOSFET device are connected to
the two-dimensional behavior of the electrons in the channel inversion layer at
low temperatures. Studies of these electrons have provided important tests of mod-
ern theories of localization, electron-electron interactions and many-body effects.
In addition, the MOSFETs have exhibited a highly unexpected property that, in the
presence of a magnetic field normal to the inversion layer, the transverse or Hall
resistance ρxy is quantized in integer values of e2/h. This quantization is accurate to
parts in 107 or 108 and provides the best measure to date of the fine structure constant
α = e2/hc, when combined with the precisely-known velocity of light c. We will
further discuss the quantized Hall effect in Chap. 14.

We now discuss the two-dimensional behavior ofMOSFET devices in the absence
of a magnetic field. The two-dimensional behavior is associated with the nearly
plane wave electron states in the inversion layer. The potential V (z) is associated
with the electric field V (z) = eEz (where z is the direction perpendicular to the
plane) and because of the negative charge on the electron, a potential well is formed
containing bound states described by quantized levels. A similar situation occurs in
the two–dimensional behavior for the case of electrons in quantum wells produced
by molecular beam epitaxy. Explicit solutions for the bound states in quantum wells
are given in Sect. 12.4. In the present section, we discuss the form of the differential
equation and of the resulting eigenvalues and eigenfunctions associated with such
quantum states.

http://dx.doi.org/10.1007/978-3-662-55922-2_14
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A single electron in a one-dimensional potential well V (z) will, from elemen-
tary quantum mechanics, have discrete allowed energy levels En corresponding to
bound states and usually a continuum of levels at higher energies corresponding
to states which are not bound. An electron in a bulk semiconductor is in a three-
dimensional periodic potential. In addition, the potential causing the inversion layer
of a MOSFET or a quantum well in GaAs/Ga1−xAlxAs can both be described by a
one-dimensional confining potential V (z) and can be written as a first approximation
using the effective-mass theorem

[E(−i∇) + H ′]Ψ = i�

(
∂Ψ

∂t

)
(12.1)

where H ′ = V (z). The energy eigenvalues E(k) near the band edge, denoted by
the wavevector k0, can be most simply approximated by

E(k) = E(k0) + 1

2

∑
i, j

(
∂2E

∂ki∂k j

)
ki k j (12.2)

so that the operator E(−i∇) in (12.1) can be written as

E(−i∇) =
∑
i, j

pi p j

2mi, j
(12.3)

where the pi and p j are the operators

p j = �

i

∂

∂x j
(12.4)

which are substituted into Schrödinger’s equation. The effect of the periodic potential
is contained in the reciprocal of the effective mass tensor

1

mi j
= 1

�2

∂2E(k)

∂ki∂k j

∣∣∣∣
k=k0

(12.5)

where the components of 1/mi j are evaluated at the band edge denoted by k0.
If 1/mi j is a diagonal matrix, the effective-mass equation H Ψ = EΨ is solved

by a function of the form
Ψn,kx ,ky = eikx x eiky y fn(z) (12.6)

where fn(z) is a solution of the equation

− �
2

2mzz

d2 fn
dz2

+ V (z) fn = En,z fn (12.7)
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and the total energy is

En(kx , ky) = En,z + �
2

2mxx
k2x + �

2

2myy
k2y . (12.8)

Since the En,z energies (n = 0, 1, 2, . . .) are discrete, the energies states En(kx , ky)
for each n value form a “sub-band”. We give below (in Sect. 12.3.1) a simple deriva-
tion for the discrete energy levels by considering a particle in various potential wells
(i.e., quantum wells). The electrons in these “sub–bands” form a 2D electron gas.

12.3.1 Quantum Wells and Superlattices

Many of the quantum wells and superlattices that are commonly studied at present
do not occur in nature, but rather are deliberately structured materials (see Fig. 12.5),
and are helpful for fundamental understanding. In the case of superlattices formed
by molecular beam epitaxy, the quantum wells result from the different bandgaps
of the two constituent materials. The additional periodicity is in one–dimension
(1–D) which we take along the z–direction, and the electronic behavior is usually
localized on the basal planes (x–y planes) normal to the z–direction, giving rise to
two–dimensional behavior.

A schematic representation of a semiconductor heterostructure superlattice is
shown in Fig. 12.5a, where d is the superlattice periodicity composed of a distance
d1, of semiconductor S1, and d2 of semiconductor S2, as shown in Fig. 12.5b. Because
of the different band gaps in the two semiconductors, potential wells and barriers are
formed. For example in Fig. 12.5b, the barrier heights in the conduction and valence
bands are ΔEc and ΔEv , respectively. In Fig. 12.5 we see that the difference in
bandgaps between the two semiconductors gives rise to band offsets ΔEc and ΔEv

for the conduction and valence bands, as shown in Fig. 12.5b. In principle, these band

Fig. 12.5 a A heterojunction superlattice of periodicity d. b Each superlattice unit cell consists of
a thickness d1 of material #1 and d2 of material #2. Because of the different band gaps, a periodic
array of potential wells and potential barriers is formed. When the band offsets are both positive as
shown in this figure, the structure is called a type I superlattice
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Table 12.1 Material parameters of GaAs, GaP, InAs, and InPa

Property Parameter (units) GaAs GaP InAs InP

Lattice constant a(Å) 5.6533 5.4512 6.0584 5.8688

Density g(g/cm3) 5.307 4.130 5.667 4.787

Thermal expansion αth(×10−6/◦C) 6.63 5.91 5.16 4.56

Γ point band gap plus spin
orbit

E0(eV) 1.42 2.74 0.36 1.35

E0 + Δ0(eV) 1.76 2.84 0.79 1.45

L point band gap plus spin
orbit

E1(eV) 2.925 3.75 2.50 3.155

E1 + Δ1(eV) 3.155 . . . 2.78 3.305

Γ point band gap E0
′(eV) 4.44 4.78 4.44 4.72

Δ axis band gap plus spin
orbit

E2(eV) 4.99 5.27 4.70 5.04

E2 + δ(eV) 5.33 5.74 5.18 5.60

Gap pressure coefficient ∂E0/∂P(×10−6eV/bar) 11.5 11.0 10.0 8.5

Gap temperature coefficient ∂E0/∂T (×10−4eV/◦C) −3.95 −4.6 −3.5 −2.9

Electron mass light hole
heavy hole spin orbit hole

m∗/m0 0.067 0.17 0.023 0.08

m	h
∗/m0 0.074 0.14 0.027 0.089

mhh
∗/m0 0.62 0.79 0.60 0.85

mso
∗/m0 0.15 0.24 0.089 0.17

Dielectric constant: static εs 13.1 11.1 14.6 12.4

Dielectric constant: optic ε∞ 11.1 8.46 12.25 9.55

Ionicity f1 0.310 0.327 0.357 0.421

Polaron coupling αF 0.07 0.20 0.05 0.08

Elastic constants c11(×1011dyn/cm2) 11.88 14.120 8.329 10.22

c12(×1011dyn/cm2) 5.38 6.253 4.526 5.76

c44(×1011dyn/cm2) 5.94 7.047 3.959 4.60

Young’s modulus Y (×1011dyn/cm2) 8.53 10.28 5.14 6.07

P 0.312 0.307 0.352 0.360

Bulk modulus B(×1011 dyn/cm2) 7.55 8.88 5.79 7.25

A 0.547 0.558 0.480 0.485

Piezo–electric coupling e14(C/m2) −0.16 −0.10 −0.045 −0.035

K[110] 0.0617 0.0384 0.0201 0.0158

Deformation potential a(eV) 2.7 3.0 2.5 2.9

b(eV) −1.7 −1.5 −1.8 −2.0

d(eV) −4.55 −4.6 −3.6 −5.0

Deformation potential Ξe f f (eV) 6.74 6.10 6.76 7.95

Donor binding G(meV) 4.4 10.0 1.2 5.5

Donor radius aB (Å) 136 48 406 106

Thermal conductivity κ(watt/deg-cm) 0.46 0.77 0.273 0.68

Electron mobility µn (cm2/V-sec) 8000 120 30000 4500

Hole mobility µp(cm2/V-sec) 300 – 450 100
a Table from Blakemore (1982) and Strauch et al. (2001)
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offsets are determined by matching the Fermi levels for the two semiconductors. In
actualmaterials, the Fermi levels are highly sensitive to impurities, defects and charge
transfer at the heterojunction interface.

The two semiconductors of a heterojunction superlattice could be different semi-
conductors such as InAs with GaP (see Table12.1 for parameters related to these
compounds) or a binary semiconductor with a ternary alloy semiconductor, such as
GaAs with AlxGa1−xAs (sometimes referred to by their slang names “Gaas” and
“Algaas”). In the typical semiconductor superlattices, the periodicity d = d1 + d2 is
repeatedmany times (e.g., 100 times). The period thicknesses typically vary between
a few layers and many layers (10–500Å).

The electronic states corresponding to the heterojunction superlattices are of two
fundamental types–bound states in quantum wells and nearly free electron states
in zone–folded energy bands. We here limit our discussion to the bound states in
a single infinite quantum well. For generalizations to multiple quantum wells, see
Davies (1997).

One important issue that comes upwhen two semiconductors are brought together
to form an abrupt interface is how the conduction (and valence) band edges line up in
the two materials. Several possible scenarios are illustrated in Fig. 12.7, where semi-

Fig. 12.6 The eigenfunctions and bound state energies of an infinitely deep potential well used here
as an approximation to the states in two finite wells. The upper quantum well applies to electrons
and the lower one to holes. This diagram is a schematic representation of a quantum well in the
GaAs region formed by the adjacent wider gap semiconductor AlxGa1−xAs

Fig. 12.7 Various band
alignments of semiconductor
heterostructures
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conductor A with band gap E A
g and edges E A

v and E A
c is grown on semiconductor B

with band gap EB
g and edges EB

v and EB
c . In principle, it is possible to calculate these

offsets from the electron affinities (or work functions) of the twomaterials. However,
in practice, these band offsets must be determined empirically. In type I heterostruc-
tures, the conduction and valence bands of the smaller band gap material lie withing
the band gap of the larger band gap material. In this case, the lowest conduction band
and highest valence band exist in the same physical location (i.e., in the narrow gap
material). These are the most widely used type of heterostructures, which include
GaAs/AlGaAs, InGaAs/InP, and GaN/AlGaN. In type II heterostructures, the low-
est conduction band and the highest valence band are in two different materials. In
this case, the effective band gap of the heterostructure, that is the energy difference
between the lowest conduction band and the highest valence band, can be rather
small. Thus, type II heterostructures are useful for long wavelength optoelectronics.
InAs/GaSb heterostructures show type II behavior.

12.4 Bound Electronic States

From the diagram in Fig. 12.5 we see that the heterojunction superlattice consists
of an array of potential wells. The interesting limit to consider is the case where the
width of the potential well contains only a small number of crystallographic unit
cells (Lz < 10nm), in which case the number of bound states in the well is a small
number.

From a mathematical standpoint, the simplest case to consider is an infinitely
deep rectangular potential well. The discussions of simple cases and simple approx-
imations are useful to understand the fundamental concepts involved. In the present
case, a particle of mass m∗ in a deep rectangular potential well of width Lz in the z
direction satisfies the free particle Schrödinger’s equation

− �
2

2m∗
d2ψ

dz2
= Eψ (12.9)

with eigenvalues

En = �
2

2m∗

(
nπ

Lz

)2

=
(

�
2π2

2m∗L2
z

)
n2 (12.10)

and the eigenfunctions
ψn = A sin(nπ z/Lz) (12.11)

wheren = 1, 2, 3 . . . are the planewave solutions that satisfy the boundary conditions
that the wave functions in (12.11) must vanish at the walls of the quantum wells (z =
0 and z = Lz).
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E

V0

#1 #2 #3

L
V = 0

0

Fig. 12.8 Schematic of a potential barrier in region #2

We note that the energy levels are not equally spaced, but have energies En ∼ n2,
though the spacings En+1 − En are proportional to n. We also note that En ∼ Lz

−2,
so that as Lz becomes large, the levels become very closely spaced as expected for a
3D semiconductor. However when Lz decreases, the number of states in the quantum
well decreases, so that for a well depth Ed it would seem that there is a critical width
Lz

c below which there would be no bound states

Lz
c = �π

(2m∗Ed)
1
2

. (12.12)

An estimate for Lz
c is obtained by taking m∗ = 0.1m0 and Ed = 0.1eV to yield

Lz
c = 61Å. There is actually a theorem in quantum mechanics that says that there

will be at least one bound state for an arbitrarily small potential well (Shankar 2011).
More exact calculations considering quantum wells of finite thickness have been
carried out, and show that the infinite well approximation gives qualitatively correct
results for many cases of practical interest.

The closer level spacing of the valence band bound states in Fig. 12.6 reflects
the heavier masses in the valence band of the GaAs system. Since the states in the
potential well are quantized, the structures in Figs. 12.5 and 12.6 are called quantum
well structures.

If the potential energy of the well V0 is not infinite but finite, the wave functions
are similar to those given in (12.11), but will have decaying exponentials on either
side of the potential well walls. The effect of the finite size of the well on the energy
levels and wave functions is most pronounced near the top of the well. When the
particle has an energy greater than V0, its eigenfunction corresponds to a continuum
state approximated by exp(ikzz).

In the case of MOSFETs, the quantum well is not of rectangular shape, as shown
in Fig. 12.8, but rather is approximated as a triangular well. The solution for the
bound states in a triangular well cannot be solved exactly, but can only be calculated
approximately, as for example using theWKBapproximation described in Sect. 12.6.

12.5 Review of Tunneling Through a Potential Barrier

When the potential well is finite, the wave functions do not completely vanish at the
walls of the well, so that tunneling through the potential well becomes possible. We
now briefly review the quantum mechanics of tunneling through a potential barrier.



258 12 Two Dimensional Electron Gas, Quantum Wells …

Wewill return to tunneling in semiconductor heterostructures after some introductory
material.

Suppose that the potential V shown in Fig. 12.8 is zero (V = 0) in regions #1
and #3, while V = V0 in region #2. Then in regions #1 and #3 a free electron
approximation can be used:

E = �
2k2

2m∗ (12.13)

ψ = eikz (12.14)

while in region #2 the wave function is exponentially decaying

ψ = ψ0e
−βz (12.15)

so that substitution into Schrödinger’s equation gives

−�
2

2m∗ β2ψ + (V0 − E)ψ = 0 (12.16)

where

β2 = 2m∗

�2
(V0 − E). (12.17)

The probabilityP that the electron tunnels through the rectangular potential barrier
is then given by

P = exp

{
−2

∫ Lz

0
β(z)dz

}
= exp

{
−2

(
2m∗

�2

) 1
2

(V0 − E)
1
2 Lz

}
. (12.18)

As the width of the potential well Lz increases (see Fig. 12.8), the probability of
tunneling decreases exponentially. Electron tunneling phenomena frequently occur
in solid state physics (see Brown 1991; Lake 1997), and there is presently a large
body of literature on this topic.

12.6 QuantumWells of Different Shape
and the WKB Approximation

With the sophisticated computer control availablewith state of the artmolecular beam
epitaxy and other computer-controlled deposition systems, it is now also possible
to produce quantum wells with specified potential profiles V (z) for semiconductor
heterojunction superlattices. Potential wells with non–rectangular profiles also occur
in the fabrication of other types of superlattices (e.g., by modulation doping). We
therefore briefly discuss bound states in general potential wells, and then consider
some examples.
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In the general case where the potential well has an arbitrary shape, solution by the
WKB (Wentzel–Kramers–Brillouin) approximation is very useful (see for example,
Shankar 2011. According to this approximation, the energy levels satisfy the Bohr–
Sommerfeld quantization condition

∫ z2

z1

pzdz = �π(r + c1 + c2) (12.19)

where pz = (2m∗[E − V ]) 1
2 and the quantum number r is an integer r = 0, 1, 2, . . .

while c1 and c2 are the phases which depend on the form of V (z) at the turning points
z1 and z2 where V (zi ) = E . If the potential has a sharp discontinuity at a turning
point, then c = 1/2, but if V depends linearly on z at the turning point then c = 1/4.

For example, we consider the infinite rectangular well (see Fig. 12.9 for the finite
potential well)

V (z) = 0 for | z |< a (inside the well) (12.20)

V (z) = ∞ for | z |> a (outside the well) (12.21)

By the WKB rules, the turning points occur at the edges of the rectangular well
and therefore c1 = c2 = 1/2. In this case pz is a constant, independent of z so that
pz = (2m∗E)

1
2 and (12.19) yields

(2m∗E)
1
2 Lz = �π(r + 1) = �πn (12.22)

where n = r + 1 and

En = �
2π2

2m∗Lz
2 n

2 (12.23)

in agreement with the exact solution given by (12.10). The finite rectangular well
shown in Fig. 12.9, when approximated as an infinite well, yields results consistent
with solutions given by (12.10).

As a second example consider a harmonic oscillator potential well shown in
Fig. 12.10, where V (z) = m∗ω2z2/2. The harmonic oscillator potential well is typ-
ical of quantum wells in periodically doped (i.e., nipi, which is short for n-type
semiconductor; insulator; p-type semiconductor; insulator) superlattices. In this case

−V0

E

#1 #2 #3

a−a

Fig. 12.9 Schematic of a rectangular quantum well plotted as V (z)
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Fig. 12.10 Schematic plot of V (z) of a harmonic oscillator potential well V (z) = m∗ω2z2/2

E

−V0

#1 #2 #3

a−a

Fig. 12.11 Schematic plot of V (z) of a triangular well

pz = (2m∗)1/2
(
E − m∗ω2

2
z2

) 1
2

. (12.24)

The turning points for the harmonic oscillator quantum well occur when V (z) = E

so that the turning points are given by z = ±(2E/m∗ω2)
1
2 . Near the turning points

V (z) is approximately linear in z, so the phase factors become c1 = c2 = 1
4 . The

Bohr–Sommerfeld quantization for this case thus yields

∫ z2

z1

pzdz =
∫ z2

z1

(2m∗)
1
2

(
E − m∗ω2

2
z2

) 1
2

dz = �π

(
r + 1

2

)
. (12.25)

Making use of the integral relation

∫ √
a2 − u2 du = u

2

√
a2 − u2 + a2

2
sin−1 u

a
(12.26)

we obtain upon substitution of (12.26) into (12.25):

(2m∗)
1
2

(
m∗ω2

2

) 1
2
(

Er

m∗ω2

)
π = Erπ

ω
= �π

(
r + 1

2

)
(12.27)

which can be simplified to the familiar relation for the harmonic oscillator energy
levels:

Er = �ω

(
r + 1

2

)
where r = 0, 1, 2 . . . (12.28)

thus yielding another example of an exact solution. The WKB method can also
be used to find the energy levels for an asymmetric triangular well. Such quantum
wells are typically used to model the semiconductor interface in metal–insulator–
semiconductor (MOSFET) device structures (see Fig. 12.11).
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12.7 The Kronig–Penney Model

We next review the Kronig–Penney model (see Kittel 1996), which gives an explicit
solution for a one–dimensional array of finite potential wells as shown in Fig. 12.12.
Starting with the one dimensional Hamiltonian with a periodic potential (see (3.40))

− �
2

2m∗
d2ψ

dz2
+ V (z)ψ = Eψ (12.29)

we obtain solutions in the region 0 < z < a where V (z) = 0

ψ(z) = AeiK z + Be−i K z (12.30)

E = �
2K 2

2m∗ (12.31)

and in the region −b < z < 0 where V (z) = V0 (the barrier region)

ψ(z) = Ceβz + De−βz (12.32)

where

β2 = 2m∗

�2
[V0 − E]. (12.33)

Continuity ofψ(z) and dψ(z)/dz at z = 0 and z = a determines the four coefficients
A, B,C, D. At z = 0 we have:

A + B=C + D
iK (A − B)=β(C − D)

(12.34)

At z = a in Fig. 12.12, we apply Bloch’s theorem by introducing a phase factor
exp[ik(a + b)] to obtain ψ(a) = ψ(−b) exp[ik(a + b)]

V = 0
0-(a + b) (a + b)-b a

V(z)

V0

z

Fig. 12.12 Kronig–Penney square well periodic potential (V (z))

http://dx.doi.org/10.1007/978-3-662-55922-2_3
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AeiKa + Be−i Ka=(Ce−βb + Deβb)eik(a+b)

i K (AeiKa − Be−i Ka)=β(Ce−βb − Deβb)eik(a+b).
(12.35)

These 4 equations (12.34) and (12.35) all involve 4 unknowns, and determine the
parameters A, B,C, D when solved simultaneously. The vanishing of the coefficient
determinant restricts the conditions under which solutions to the Kronig–Penney
model are possible, leading to the algebraic equation

β2 − K 2

2βK
sinh βb sin Ka + cosh βb cos Ka = cos k(a + b) (12.36)

which has solutions as given above for a limited range of β values, E < V0. For the
case E > V0, continuous solutions exist.

Normally the Kronig–Penney model in textbooks (see Kittel 1996) is solved in
the limit b → 0 and V0 → ∞ in such a way that [β2ba/2] = P remains finite. The
restricted solutions in this limit lead to the energy band structure shown in Fig. 12.13.

For the superlattice problem, we are interested in solutions both within the quan-
tumwells and in the continuum. This is one reason for discussing the Kronig–Penney
model. Another reason for discussing this model is because it provides a review of

E
 (8

m
a2

/h
2 )

ka
Fig. 12.13 Plot of energy E (in units of 8ma2/h2) versus k for the Kronig–Penney model with
P = 3π/2. (After Sommerfeld and Bethe 1933)
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boundary conditions and the application of Bloch’s theorem. In the quantum wells,
the permitted solutions can give rise to narrow bands with large band gaps (cor-
responding to the wide gap semiconductors), while in the continuum regions, the
solutions to the four linear equations in A, B, C, D correspond to wide bands and
small band gaps.

12.8 3D Motion Within a 1-D Rectangular Well

The thin films used for the fabrication of quantum well structures (see Sect. 12.4) are
very thin in the z–direction but havemacroscopic size in the perpendicular x–y plane.
An example of a quantum well structure would be a thin layer of GaAs sandwiched
between two thicker AlxGa1−xAs layers, as shown in the Fig. 12.5. For the thin film,
the motion in the x and y directions is similar to that of the corresponding bulk solid
which can be treated qualitatively by the conventional 1–electron approximation
and the Effective Mass Theorem. Thus the potential can be written as a sum of a
periodic term V (x, y) and the quantum well term V (z). The electron energies thus
are superimposed on the quantum well energies, and the periodic solutions obtained
from solution of the 2–D periodic potential V (x, y) are given by

En(kx , ky) = En,z + �
2(k2x + k2y)

2m∗ = En,z + E⊥ (12.37)

in which the quantized bound state energies En,z are given by (12.10). A plot of the
energy levels of the bound state subbands for a 2D electron gas is given in Fig. 12.14.
The band of energies associated with each quantum state n is called a subband. At
(kx , ky) = (0,0) the energy is precisely the quantum well energy En for all n.

Of particular interest is the density of states for the quantumwell structures. Asso-
ciated with each two–dimensional subband is a constant density of states, as derived
below. From elementary considerations, the number of electrons per unit area in a
2–dimensional circle is given by

Fig. 12.14 Energy of the
subbands labeled by integers
n, associated with bound
states for the
2D electron gas, are plotted
versus wave vector k
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N2D = 2

(2π)2
πk2⊥ (12.38)

where k2⊥ = k2x + k2y and

E⊥ = �
2k2⊥
2m∗ (12.39)

so that for each subband the density of states g2D(E) contribution becomes

∂N2D

∂E
= g2D(E) = m∗

π�2
. (12.40)

This 2D density of states g2D(E) concept discussed in this Chapter could be
extended to few layer materials, which have been intensively studied since 2005.
If we now plot the density of states corresponding to the 3D motion in a 1–D rec-
tangular well, we have g2D(E) = 0 until the lowest energy bound state energy E1

is reached, when a step function contribution of (m∗/π�
2) is made. The density of

states g2D(E)will then remain constant until the minimum of subband E2 is reached
when an additional step function contribution of (m∗/π�

2) is made, hence yielding
the staircase density of states shown in Fig. 12.15. Two generalizations of (12.40)
for the density of states for actual quantum wells are needed, as we discuss below.
The first generalization takes into account the finite size Lz of the quantum well,
so that the system is not completely two dimensional and some kz dispersion must
occur. Secondly, the valence bands of typical semiconductors are degenerate so that
coupling between the valence band levels occurs, giving rise to departures from the
simple parabolic bands as discussed below.

Fig. 12.15 Two dimensional density of states g2D(E) for a rectangular quantum well structure
(solid line) plotted together with the three dimensional density of states g3D(E) (dashed line),
which goes to zero at E = 0
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Fig. 12.16 Schematic diagrams of the a energy dispersion E(kz) and the b density of states
g2D(E). Indicated are the two–dimensional (dotted), three–dimensional (dashed), and the inter-
mediate (solid) cases

A comparison between the energy dispersion relation E(k) and the density of
states g(E) in two dimensions and three dimensions is shown in Fig. 12.16 together
with a quasi two–dimensional case, typical of actual quantum well samples. In the
quasi–two dimensional case, the E(k) relations exhibit a small degree of dispersion
along kz , leading to a correspondingwidth in the steps of the density of states function
shown in Fig. 12.16b.

A generalization of the simple 2D density of states in Fig. 12.15 is also necessary
to treat the complex valence bands of a typical III-V compound semiconductor. The
E(k) diagram (where k⊥ is normal to kz) for the heavy hole and light hole levels can
be calculated to some level of approximation using k · p perturbation theory to be
discussed later.

The most direct evidence for bound states in quantum wells comes from opti-
cal absorption measurements (to be discussed in Chap. 18) and resonant tunneling
effects, which we discuss in Sect. 12.9.

12.9 Resonant Tunneling in QuantumWells

Resonant tunneling (see Fig. 12.19) provides direct evidence for the existence of
bound states in quantumwells.We review first the backgroundmaterial for tunneling
across potential barriers in semiconductors and then apply these concepts to the
resonant tunneling phenomenon. Such resonant phenomena are very important and
of great practical interest in low dimensional systems. The large density of states
of low dimensional resonant processes allows individual nanotubes and single layer
graphene to be studied in great detail.

http://dx.doi.org/10.1007/978-3-662-55922-2_18
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The carriers in the quantum well structures can, to a lowest order approximation,
be described in terms of the effective mass theorem where the wave functions for
the carriers are given by the one electron approximation, thereby promoting the
understanding of the physical process under discussion. The effective mass equation
iswritten in terms of slowly varyingwavefunctions corresponding to a slowly varying
perturbation potential which satisfies Poisson’s equation when an electric field is
applied to a quantum well (e.g., when a voltage is imposed across the quantum well
structure).

To illustrate the resonant tunneling phenomenon in the simplest possible way,
further simplifications are made:

1. The wavefunctions for the tunneling particle are expanded in terms of a single
band on either side of the junction.

2. Schrödinger’s equation is separated into two components, parallel and perpen-
dicular to the junction plane, leading to a 1–dimensional tunneling problem.

3. The eigenstates of interest have energies sufficiently near those of critical points
in the energy band structure on both sides of the interface so that the simplified
form of the effective mass theorem can be used as a meaningful approximation.

4. The total energy, E , and the momentum parallel to the interface or perpendicular
to the layering direction, k⊥, are conserved in the tunneling process. Since the
potential acts only in the z–direction, the 1–dimensional Schrödinger equation
becomes a one dimensional problem:

[
− �

2

2m

d2

dz2
+ V (z) − E

]
ψe = 0 (12.41)

where V (z) is the electrostatic potential, and ψe is an envelope function. The wave
function ψe is subject, at an interface z = z1 (see Fig. 12.17), to the following
boundary conditions that guarantee current conservation. Continuity of the energy
and momentum across the boundary leads to

ψe(z
−
1 ) = ψe(z

+
1 ) (12.42)

1

m1

d

dz
ψe

∣∣∣∣
z−
1

= 1

m2

d

dz
ψe

∣∣∣∣
z+
1

. (12.43)

The current density for tunneling through a potential barrier becomes

Jz = e

4π3�

∫
dkzd

2k⊥ f (E)T (Ez)
dE

dkz
(12.44)

where f (E) is the Fermi–Dirac distribution for the current carriers, and T (Ez) is
the probability of tunneling through the potential barrier. Here T (Ez) is expressed
as the ratio between the transmitted and incident probability currents.
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Fig. 12.17 Rectangular–potential model a used to describe the effect of an insulator, 2, between
two metals, 1 and 3. When a negative bias is applied to 1, electrons, with energies up to the Fermi
energy EF , can tunnel through the barrier. For small voltages, b, the barrier becomes trapezoidal,
but at high bias c, the barrier becomes effectively triangular

If an external bias V is applied to the barrier (see Fig. 12.17), the net current
flowing through the barrier is the difference between the current from left to right
and that from right to left. Thus, we obtain:

Jz = e

4π3�

∫
dEzd

2k⊥[ f (E) − f (E + eV )]T (Ez) (12.45)

where Ez represents the energy from the kz component of crystal momentum, i.e.,
Ez = �

2k2z /(2m). Since the integrand is not a function of k⊥ in a plane normal to kz ,
we can integrate over d2k⊥ by writing

dkxdky = d2k⊥ = 2m

�2
dE⊥ (12.46)

where E⊥ = �
2k2⊥/(2m) and after some algebra, the tunneling current can be writ-

ten as,

Jz = em

2π2�3

[
eV

∫ EF−eV

0
dEzT (Ez) +

∫ EF

EF−eV
dEz(EF − Ez)T (Ez)

]
if eV ≤ EF

Jz = em

2π2�3

∫ EF

0
dEz(EF − Ez)T (Ez) if eV ≥ EF (12.47)
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(see Fig. 12.17 for the geometry pertinent to the model) which can be evaluated as
long as the tunneling probability through the barrier is known. We now discuss how
to find the tunneling probability.

An enhanced tunneling probability occurs for certain voltages as a consequence
of the constructive interference between the incident and the reflected waves in
the barrier region between regions 1 and 3. To produce an interference effect, the
wavevector k in the plane wave solution eikz must have a real component so that
an oscillating (rather than a decaying exponential) solution is possible. To accom-
plish this, it is necessary for a sufficiently high electric field to be applied (as in
Fig. 12.17c) so that a virtual bound state is formed. As can be seen in Fig. 12.18a,
the oscillations are most pronounced when the difference between the electronic
mass at the barrier and at the electrodes is the largest. This interference phenomenon
is frequently called resonant Fowler–Nordheim tunneling and this tunneling effect
has been observed in metal–oxide–semiconductor (MOS) heterostructures and in
GaAs/Ga1−xAlxAs/GaAs capacitors. Since the WKB method is semiclassical, it
does not give rise to the resonant tunneling phenomenon, which is a quantum inter-
ference effect.

Fig. 12.18 a Tunneling current through a rectangular barrier (like the one of Fig. 12.17a) calculated
as a function of bias for different values of m1, in the quantum well. b Comparison of an “exact”
calculation of the tunneling probability through a potential barrier under an external bias with an
approximate result obtained using the WKB method. The barrier parameters are the same as in (a),
and the energy of an incident electron, of mass 0.2m0, is 0.05eV. (From the book of E.E. Mendez
and K. von Klitzing, “Physics and Applications of Quantum Wells and Superlattices”, NATO ASI
Series, Vol. 170, p.159 (1987))
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For the calculation of the resonant tunneling phenomenon, we must therefore use
the quantum mechanical solution. In this case, it is convenient to use the transfer–
matrix method to find the tunneling probability. In region (#1) of Fig. 12.17, the
potential V (z) is constant and solutions to (12.41) have the form

ψe(z) = A exp(ikz) + B exp(−ikz) (12.48)

with
�
2k2

2m
= E − V . (12.49)

When E − V > 0, then k is real and the wave functions are plane waves. When
E − V < 0, then k is imaginary and the wave functions are growing or decaying
waves. The boundary conditions (12.42) and (12.43) determine the coefficients A
and B which can be described by a (2 × 2) matrix R such that

(
A1

B1

)
= R

(
A2

B2

)
(12.50)

where the subscripts on A and B refer to the region index and R can be written as

R = 1

2k1m2

(
(k1m2 + k2m1) exp[i(k2 − k1)z1] (k1m2 − k2m1) exp[−i(k2 + k1)z1]
(k1m2 − k2m1) exp[i(k2 + k1)z1] (k1m2 + k2m1) exp[−i(k2 − k1)z1]

)
(12.51)

and the terms in R of (12.51) are obtained bymatching boundary conditions, as given
in (12.42) and (12.43).

In general, if the potential profile consists of n regions, characterized by the
potential values Vi and the masses mi (i = 1, 2, . . . n), separated by n− 1 interfaces
at positions zi (i = 1, 2, . . . (n − 1)), then

(
A1

B1

)
= (R1R2 . . . Rn−1)

(
An

Bn

)
. (12.52)

To illustrate the phenomena discussed above for more than one quantum well struc-
ture, let us consider tunneling through two potential barriers. The matrix elements
of Ri are then written as

(Ri )1,1=
(
1
2 + ki+1mi

2kimi+1

)
exp[i(ki+1 − ki )zi ]

(Ri )1,2=
(
1
2 − ki+1mi

2kimi+1

)
exp[−i(ki+1 + ki )zi ]

(Ri )2,1=
(
1
2 − ki+1mi

2kimi+1

)
exp[i(ki+1 + ki )zi ]

(Ri )2,2=
(
1
2 + ki+1mi

2kimi+1

)
exp[−i(ki+1 − ki )zi ]

(12.53)
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where the ki wave vectors are defined by (12.49). If an electron is incident from
the left (region #1) only a transmitted wave will appear in the last region #n, and
therefore Bn = 0. The transmission probability is then given by

T =
(
k1mn

knm1

) |An|2
|A1|2 . (12.54)

This is a general solution to the problem of transmission through multiple barriers.
Under certain conditions, a particle incident on the left can appear on the right essen-
tially without attenuation. This situation, called resonant tunneling, corresponds to
a constructive interference between the two plane waves coexisting in the region
between the barriers (quantum well).

The tunneling probability through a double rectangular barrier is illustrated in
Fig. 12.19. In this figure, the mass of the particle is taken to be 0.067m0, the height of
the barriers is 0.3 eV, their widths are 50Åand their separations are 60Å. As observed
in the figures, for certain energies below the barrier height, the particle can tunnel
without attenuation. These energies correspond precisely to the eigenvalues of the
quantum well; this is understandable, since the solutions of Schrödinger’s equation
for an isolated well are standing waves. When the widths of the two barriers are
different (see Fig. 12.19b), the tunneling probability does not reach unity, although
the tunneling probability shows maxima for incident energies corresponding to the
bound and virtual states.

Fig. 12.19 a Probability of tunneling through a double rectangular barrier as a function of energy.
The carrier mass is taken to be 0.1m0 in the barrier and 0.067m0 outside the barrier, and the width
of the quantum well between the barriers is 60Å. Note that the tunneling probability is plotted on a
logarithmic scale. b Tunneling probability through a double–barrier structure, subject to an electric
field of 1 × 105 V/cm. The width of the left barrier (1) is 50Å, while that of the right barrier (2) is
varied between 50 and 100Å. The peak at ∼0.16eV corresponds to resonant tunneling through the
first excited state (E1) of the quantum well. The optimum transmission is obtained when the width
of the right barrier (2) is ∼75Å
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Problems

12.1 Calculate the bound state energies of a narrow width conductor, as illustrated
in the Fig. 12.20 as a function of width (W ) assuming an infinite square well potential
for

(a) a material with an effective mass m∗ = mo.
(b) a material with an effective mass m∗ = 0.07mo.
(c) Discuss physically why the results are different depending on the value of m∗.

Discuss special values of length L and width W , and discuss the characteristics
that are different.

12.2 The confining potential in the z direction (perpendicular to the interfaces) for
the 2D electron gas in a MOSFET (see Fig. 12.11) under inversion conditions) is
modeled by a triangular well:

V (z) =
{∞ z ≤ 0
eEz z > 0

where the constant electric field is approximated by

E � 4πNse

2ε

in which Ns = 1012/cm2 is the 2D carrier concentration in the inversion layer and
the dielectric constant has a value of ε = 11.8 for silicon. Use m∗

lh = 0.16m0 and
m∗

hh = 0.50m0 for the light and heavy hole masses in Si, and m∗
le = 0.92m0 and

m∗
te = 0.19m0 for the longitudinal and transverse effective mass components for the

electron ellipsoids and an indirect band gap of ∼1eV.

Fig. 12.20 Narrow conductor etched out of a wide conductor. In the wide regions, the transverse
modes are essentially continuous. However, in the narrow region, the modes are well-separated in
energy in the E(k) diagram
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(a) Assume that a (001) crystal orientation is used in preparing the MOSFET (see
Fig. 12.1). Using the WKB approximation, find the energies for the three lowest
bound states for the 2D electrons in an infinite triangular quantum well for V (z)
as given above.

(b) What is the 2D density of electron states in (a) for energies up through the
occupation of the third subband, and compare your results with that of a 3D
electron gas for the same energy range.

(c) For a carrier concentration of 1012/cm2 for the 2D electron gas, howmany levels
in (b) are occupied at T � 0K?

(d) Suppose that a split gate electrode (see Fig. 12.2) is used to create a strip where a
1-dimensional electron gas is confined. Assume in this case an infinite two-
dimensional square well potential V (x, y) = 0 for −a ≤ x, y < a and
V (x, y) = ∞ elsewhere, and assume that periodicity is maintained along the
z-direction. What are the energies for the lowest 3 bound states in this case?
What is the 1D density of electron states?

12.3 Write a computer program in MatLab, Mathematica, or other similar software
that uses the propagation matrix method to find the transmission resonance of a
particle of mass m∗ = 0.07mo in the following one-dimensional potentials:

(a) A double barrier potential with the barrier energies and widths indicated in
Fig. 12.21.

(b) A parabolic energy barrier with V (z) = (z2/L2) eV for | z |≤ L = 5nm and
V (z) = 0eV for | z |> L . Your results should include a plot of the particle
transmission probability as a function of incident energy for a particle incident
from the left and list the energy level values and resonant line widths. You may
find it useful to plot your results on a log-linear scale.

(c) What happens to the energy levels in problems (a) and (b) if m∗ = 0.14mo?

12.4 (a) Using your computer program from Problem12.3, find the transmission
as a function of energy for a particle of mass m∗ = 0.07mo through 12 identical
one-dimensional potential barriers each of energy 10eV, width 0.1nm, sequen-
tially spaced every 0.5nm (0.4nm well width). What are the allowed (band) and
disallowed (band gap) ranges of energy transmission through this structure?

(b) How do these bands compare with the situation in which there are only three bar-
riers, each with 10eV barrier height, 0.1nm barrier width, and 0.4nm quantum
well width?

12.5 Suppose that we make a superlattice out of two III-V compound semicon-
ductors (similar in concept to the superlattices fabricated from GaAs/Ga1−xAlxAs).
Assume that the narrow gap semiconductor (A) is a direct gap semiconductor at
k = 0 (Eg = 1.5eV) with m∗

e = 0.05m0 for the electrons and m∗
hh = 1.0m0 and

m∗
lh = 0.3m0 for the heavy and light holes. Assume that the light and heavy hole

masses for the valence band are the same for the wide band gap semiconductor (B),
which is an indirect band gap semiconductor (Eg = 2.4eV) with the conduction
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Fig. 12.21 Energy band diagram for a one-dimensional double barrier potential

band extrema at the X point, π/a(100), with m∗
t = 0.3m0 and m∗

l = 1.0m0 for the
transverse and longitudinal effective mass components. Assume that the width of the
quantum wells and quantum barriers of the superlattice are each 50Å, and that the
parameters for the X -point are the same for semiconductors A and B.

(a) Assume an infinite barrier potential for calculation of the subband edge ener-
gies. At what photon energy (energies) would you expect the peak (peaks) for
the optical absorption edge to occur? Are phonons necessary for these optical
transitions? Why?

(b) Now assume that the X point conduction band energy in the bulk 3D narrow
band gap andwide band gap semiconductors (A and B) is the same (2.5eV above
the valence band extremum), and that the band offset in the superlattice is twice
as large in the conduction band as in the valence band. In which semiconductor
(A or B) is the lowest X -point subband minimum located? Find the energies for
the lowest X -point longitudinal and transverse subband minima relative to the
band edge energy of the 3D conduction band.

(c) Find the energies of the optical transitions in this case. Are phonons necessary
for these optical transitions?

12.6 Suppose that you have an fcc semimetal with 2 atoms per unit cell. Suppose
that the electrons are at the L points, π/a(1, 1, 1), (m∗

l = 0.3m0 andm∗
t = 0.1m0) in

the Brillouin zone and the holes are in a single carrier pocket at the Γ point (k = 0)
with m∗

h = 0.3m0, and assume that the energy overlap for this semimetal is 10meV.
Suppose that the semimetal is now prepared as a thin layer (quantum well) between
alkali halide insulating barriers with the (001) crystalline direction normal to the thin
layer of the semimetal (layer thickness = d).
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(a) Find an expression for the energy of the two lowest subbands of the L point
[π/a(111)] electrons as a function of the semimetal layer thickness.

(b) What is the position of the Fermi level EF for a 5nm quantum well relative to
EF for a semimetal thin film 1µm in thickness (essentially a bulk semimetal
sample) with the same crystal orientation. Hint: use the bulk semimetal edge
energies for reference energies in locating the Fermi level.

(c) What is the position of the Fermi level for the layer thickness where the film is
thin enough to experience a semimetal-semiconductor transition?

(d) Suppose now that the semimetal thin film of 5nm thickness is grown along a
(111) direction and is placed between the same alkali halide insulating barriers.
Find the position of the Fermi level for this case.

(e) Consider a film thickness of 1nm, which for the thin film is in the semiconductor
regime for both the (100) and (111) orientations. Contrast the optical spectra
observed for the two crystal orientations with regard to the photon energy where
optical absorption occurs and the intensity of the absorption for the various
optical transitions.

Suggested Readings

T. Ando, A. Fowler, F. Stern, Rev. Mod. Phys. 54, 437 (1982)
R.F. Pierret, Field Effect Devices, vol. 4, Modular Series on Solid State Devices (Addison-Wesley,
Reading, 1983)

B.G. Streetman, Solid State Electronic Devices, Series in Solid State Physical Electronics (Prentice-
Hall, Englewood Cliffs, 1980)

C. Kittel, Introduction to Solid State Physics, 7th edn. (Wiley, New York, 1996)
E.R. Brown et al., Appl. Phys. Lett. 58, 2291 (1991)
R. Lake et al., J. Appl. Phys. 81, 7845 (1997)
A. Sommerfeld, H. Bethe, Electronentheorie der Metalle, 2nd edn., Handbuch Physik (Springer,
Berlin, 1933)

S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge,
1995)

A.F.J. Levi,AppliedQuantumMechanics, 2nd edn. (CambridgeUniversity Press, Cambridge, 2012)
J.H. Davies, The Physics of Low-Dimensional Semiconductors (Cambridge University Press, Cam-
bridge, 1997)

R. Shankar, Principles of Quantum Mechanics (Plenum Press, New York, 2011). Chapter 6
J.S. Blakemore, J. Appl. Phys. 53, 8777 (1982)
D. Strauch, H. Landolt, R. Börnstein, Semiconductors: Group IV Elements, IV-IV and III-V Com-
pounds. Lattice Properties. Subvol. A (Springer, Berlin, 2001)

C.Weisbuch, B. Vinter,Quantum Semiconductor Structures: Fundamentals and Applications (Aca-
demic Press, San Diego, 2014)



Chapter 13
Magneto-Oscillatory and Other Effects
Associated with Landau Levels

13.1 Introduction to Landau Levels

In Chap.10, we discussed magneto-transport phenomena for nearly free electrons in
a weak magnetic field (i.e., ωcτ � 1). In this weak field limit, the carriers scatter
many times before completing one cyclotron orbit, and the equations for motion can
be derived from classical mechanics. In the high field limit (i.e., ωcτ � 1), we are
particularly interested in the case where the carriers complete their cyclotron orbit
without scattering, and we have to treat this case quantum mechanically. Here, the
orbital motion of electrons in strong magnetic fields gives rise to discrete magnetic
energy levels called Landau levels, named after the famous Russian physicist Lev
Davidovich Landau, who first studied this phenomenon theoretically back in the
1930s. In this chapter, we discuss the fundamental properties of Landau levels. Later
in the chapter, we discuss magneto-oscillatory phenomena that are associated with
Landau levels.

13.2 Quantized Magnetic Energy Levels in 3D

The Hamiltonian for a free electron in a magnetic field uses the basic Schrödinger’s
equation [

(p − eA)2

2m

]
ψ = Eψ (13.1)

in which the square brackets on the first term denotes the scalar product of each of
the factors [p − eA]. To represent a magnetic field along the z axis, we choose the
asymmetric gauge (Landau gauge) for the vector potential A:
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Ax=−By

Ay=0

Az=0.

(13.2)

Since the only spatial direction in (13.1) and (13.2) is y, the form of the wave
function ψ(x, y, z) in (13.1) is chosen to make the differential equation separable
into plane wave motion in the x and z directions. The wave function ψ(x, y, z) is
thus written as

ψ(x, y, z) = eikx x eikz zφ(y). (13.3)

Substitution of (13.3) in (13.1) results in the expression

[
(�kx + eBy)2

2m
+ p2y

2m
+ �

2k2z
2m

]
φ(y) = Eφ(y) (13.4)

We see immediately that the orbital portion of (13.4) is of the form of the harmonic
oscillator (H.O.) equation

[
p2x
2m

+ 1

2
mx2ω2

c

]
ψ

(�)
H.O. = E�ψ

(�)
H.O. (13.5)

whereψ
(�)
H.O. is a harmonic oscillator function and E� = �ωc(�+1/2) are the harmonic

oscillator eigenvalues in which � is an integer quantum number, � = 0, 1, . . .. A
comparison of (13.4) with the harmonic oscillator equation (13.5) shows that the
characteristic frequency for the harmonic oscillator is the cyclotron frequency ωc =
eB/m and the harmonic oscillator is centered about the spatial coordinate y0

y0 = − �kx
mωc

. (13.6)

These identifications yield the harmonic oscillator equation

[
p2y
2m

+ ω2
c

2m

(
y − y0

)2

+ �
2k2z
2m

]
φ(y) = Eφ(y). (13.7)

Thus, the energy eigenvalues of (13.7) for a free electron moving in an orbit in the
presence of a magnetic field in the z direction can be written down immediately as

E�(kz) = �
2k2z
2m

+ �ωc

(
� + 1

2

)
(13.8)
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recognizing that in the direction parallel toBwe have plane wave motion, since there
is no force acting along B, and in the plane perpendicular to Bwe have the harmonic
oscillator motion described above.

For a band electron in a solid, the energy eigenvalues in a magnetic field are
given in the “effective mass approximation” by an expression which is very similar
to (13.8) except that the free electron mass is replaced by an effective mass tensor.
Thus, Landau levels for carriers in a simple parabolic band in a semiconductor are
given by

E�(kz) = �
2k2z
2m∗

‖
+ �ω∗

c

(
� + 1

2

)
(13.9)

where the various band parameters in (13.9) are defined as follows:m∗
‖ is the effective

mass tensor component along the magnetic field, ω∗
c = eB/m∗

c is the cyclotron
frequency, and m∗

c is the cyclotron effective mass for motion of the electron in the
plane normal to the magnetic field.

The quantum numbers describing the energy eigenvalues E�(kz) are as follows:

1. � is the Landau level index (or the harmonic oscillator level index), � =
0, 1, 2, 3, . . ..

2. kz assumes values between −∞ and +∞ in free space and is a quasi-continuous
variable in the first Brillouin zone of reciprocal space for a real solid.

3. kx is the wave vector in the plane ⊥ to B and does not enter into (13.9) for the
energy levels.

Since the magnetic energy levels E�(kz) are independent of kx , the quantum number
kx contributes directly to the density of states in a magnetic field. This degeneracy
factor is discussed in Sect. 13.2.1. The form of E�(kz) is then discussed in Sect. 13.2.2
and finally the effective mass parameters m∗

‖ and m∗
c are discussed in Sect. 13.2.3.

13.2.1 Degeneracy of the Magnetic Energy Levels in kx

The degeneracy of the magnetic energy levels E�(kz) in kx is found by considering
the spatial center in coordinate space of the harmonic oscillator function, which from
(13.6) is located at y0 = −�kx/(mωc). Since y0 lies in the interval

− Ly/2 < y0 < Ly/2, (13.10)

and since the center of the harmonic oscillator is located inside the sample, we have
the requirement

− mωcL y

2�
< kx <

mωcL y

2�
. (13.11)

Thus, the limits on the range of the quantum number kx are between kmin
x and kmax

x
which are given by
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kmin
x =−mωcL y/2�

kmax
x =mωcL y/2�.

(13.12)

With the limits on kz imposed by (13.12), the sum over states (using Fermi statistics)
becomes

Z =
∞∑

�=0

∞∑
kz=−∞

kmax
x∑

kx=kmin
x

ln

(
1 + e[EF−E�(kz)]/kBT

)
. (13.13)

Since the energy levels are independent of kx , we can sum (13.13) over kx to obtain
a degeneracy factor which is important in all magnetic energy level phenomena

∑
kx

→
∫ kmax

x

kmin
x

dkx
Lx

2π
= Lx L ymωc

2π�
(13.14)

utilizing the uncertainty principle which requires that there is one kx state per 2π/Lx

since Nxa = Lx , in which a is the lattice constant. It is important to emphasize that
the sum over kx in (13.14) is proportional to the magnetic field since ωc ∝ B.

Referring to Fig. 13.1d, we see how upon application of a magnetic field in the
z direction the wave vector quantum numbers kx and ky in the plane normal to the
magnetic field are transformed into the Landau level index � and the quantum number
kx which has a high degeneracy factor per unit area of (mωc/h). It is convenient to
introduce the characteristic magnetic length λ defined by

λ2 ≡ �

eB
(13.15)

so that from (13.14) the degeneracy factor per unit area becomes 1/(2πλ2).
From Fig. 13.1d we see a qualitative difference between the states in a magnetic

field and the states in zero field. For fields too small to confine the carriers into a
cyclotron orbit with a characteristic length less thanλ, the electrons are best described
in the zero field limit, or we can say that the Landau level description applies for
magnetic fields large enough to define a cyclotron orbit within the sample dimensions
and for electron relaxation times long enough for an electron not to be scattered before
completing an electron orbit, ωcτ > 1.

13.2.2 Dispersion of the Magnetic Energy Levels Along
the Magnetic Field

The dispersion of the magnetic energy levels is given by (13.9) and is displayed in
Fig. 13.1a. In this figure it is seen that the dispersion relations E�(kz) are parabolic
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Fig. 13.1 Various aspects of Landau levels. a E vs kz for the first few(lowest energy) Landau
levels � = 0, 1, . . . , 4. The B = 0 parabola (dashed curve) refers to the ordinary free electron case
with zero magnetic field. b k–space showing Landau levels in 3D. The allowed k-values lie on the
concentric cylinders, and the spherical Fermi surface cuts these cylinders. c The solid line is the
density of states for all the Landau levels while the dashed-solid curves give the density of states in
a magnetic field for each of the Landau levels. Singularities in the density of states occur whenever
a Landau level pops through the Fermi level. The dashed curve labeled B = 0 refers to the density
of states in zero field, and shows the expected

√
E dependence. d A schematic diagram showing

how the states in zero field go into Landau levels when the B field is applied. The diagram also
shows the effect of electron-spin s = 1/2 splitting of the Landau levels

in kz for each Landau level, each level � being displaced from levels � + 1 and � − 1
by the Landau level separation �ωc. The lowest Landau level (� = 0) is at an energy
(�ωc/2) above the energy of electrons in zero magnetic field. The occupation of
each Landau level is found by integration up to the Fermi level EF . Figure13.1b
shows special kz values where either a Landau level crosses the Fermi level or a
Landau level pops through the Fermi level EF . As the magnetic field increases the
Landau level separation increases until a Landau level pops through EF , requiring a
redistribution of electrons through the remaining Landau levels.

In this section we focus on the kz dependence of the magnetic energy levels. First
we obtain the sum of the number density over kz which involves conversion of the
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sum on states to an integral

∑
kz

→ 2
∫ ∞

0
dkz

Lz

2π
. (13.16)

Using Fermi statistics we then obtain for the number density:

n(Lx , Ly, Lz) = ∑
states

1
1+e(E�(kz )−EF )/kB T

= Lx L ymωc

2π�

2Lz

2π

∑
�

∫ ∞
0 dkz

1
1+e(E�(kz )−EF )/kB T ,

(13.17)

so that the degeneracy factor per unit volume is (1/2π2λ2).
Keeping the Fermi level constant, the electron density is found by summing the

Fermi distribution over all states in the magnetic field, where the Fermi function

f (E�(kz)) = 1

1 + e(E�(kz)−EF )/kBT
(13.18)

gives the probability that the state (�) is occupied. In amagnetic field, the 3D electron
density n of a nearly free electron solid is

n = 2eB

(2π)2�

�max∑
�=0

∫ π/a

−π/a
dkz f (E�(kz)) (13.19)

in which a factor of 2 for the electron spin degeneracy has been inserted.
For simplicity, we further consider the magnetic energy levels for a simple 3D

parabolic band

E�(kz) = �
2k2z
2m∗ + �ω∗

c (� + 1/2) (13.20)

so that

kz =
(
2eB

�

)1/2[ E

�ω∗
c

− (� + 1/2)

]1/2

(13.21)

where we have written E to denote E�(kz). Differentiating (13.21) gives

dkz =
(
2eB

�

)1/2 dE

2�ω∗
c

[
E

�ω∗
c

− (� + 1/2)

]−1/2

. (13.22)

For the case of a 2D electron gas, the electrons are confined in the z direction and
exhibit bound states. Thus, no integration over kz (see (13.19)) is needed for a 2D
electron gas. However, for the 3D electron gas, integration of (13.19) thus yields a
carrier density at T = 0 of
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n = 1

π2λ2

�F∑
�=0

∫ EF

E(kz=0)

(
2eB

�

)1/2 dE

2�ω∗
c

[
E

�ω∗
c

− (� + 1/2)

]−1/2

(13.23)

where the characteristic magnetic length λ is given by (13.15). Carrying out the
integration in (13.23), we obtain the result

n = 1

π2λ2

�F∑
�=0

(
2eB

�

)1/2[ EF

�ω∗
c

− (� + 1/2)

]1/2

(13.24)

where �F is the highest occupied Landau level. The oscillatory effects associated
with (13.24) are discussed in Sect. 13.3.

From differentiation of (13.24) with respect to energy, we obtain the density of
states in a magnetic field ρB(E) = (∂n/∂E)

ρB(E) =
√
2eB/�

2π2�ω∗
c (�/eB)

∑
�

[
E

�ω∗
c

− (� + 1/2)

]−1/2

(13.25)

which is plotted in Fig. 13.1c, showing singularities at each magnetic subband
extrema. Because of the singular behavior of physical quantities associated with
these extrema, the subband extrema contribute resonantly to the magneto-optical
spectra, as discussed in Sect. 13.4.

To illustrate the oscillatory behavior of (13.24) in 1/B, we write (13.24) as the
3D electron number density sum over Landau levels and can be written whree n is

n =
√
2

π2λ3

�F∑
�=0

(
�′
F − �

)1/2

(13.26)

and the resonance condition is

�′
F = EF

�ω∗
c

− 1

2
(13.27)

which gives a measure of the occupation level as is illustrated in Fig. 13.1a. The
oscillatory behavior of n and other related physical observables is the subject of
Sects. 13.3 and13.4.

13.2.3 Band Parameters Describing the Magnetic Energy
Levels

The magnetic energy levels given by (13.9) depend on several band parameters m∗
‖

and m∗
c . In this section we summarize the properties of these band parameters. To
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observe the effects associated with the Landau levels we require thatωcτ � 1, which
implies that an electron can execute at least one cyclotron orbit before being scattered.
Because of the small effectivemasses of carriers inmany interesting semiconductors,
the cyclotron frequency is high, and the spacing between magnetic energy levels also
becomes large in comparison to the corresponding spacing for free electrons.

The effectivemass parametersm∗
‖ andm∗

c which enter (13.9) can be simplywritten
for semiconductors because of the simplicity of their Fermi surfaces. For arbitrary
magnetic field directions, it is often convenient to use the formula

m∗
c =

(
det[↔m∗]
b̂ · ↔

m
∗ · b̂

)1/2

(13.28)

to find the cyclotron effective mass m∗
c for an ellipsoidal constant energy surface,

where det [↔m∗] is the determinant of the effective mass tensor
↔
m

∗
and b̂ is a unit

vector in the direction of the magnetic field so that

m∗
‖ = b̂ · ↔

m
∗ · b̂. (13.29)

Equations (13.28) and (13.29) are particularly useful when the constant energy ellip-
soidal surface does not have itsmajor axes along the crystalline axes and themagnetic
field is arbitrarily directed with respect to the major axes of the ellipsoidal constant
energy surface. For ellipsoidal constant energy surfaces, neither m∗

‖ nor m∗
c depend

on kz . For more general Fermi surfaces, m∗
c is found by integration of k/(∂E/∂k)

around a constant energy surface normal to the magnetic field andm∗
c will depend on

kz in general. The effectivemass component along themagnetic fieldm∗
‖ is unaffected

by the applied field in the z direction.

13.3 Overview of Landau Level Effects

Studies of the density of states in amagnetic field and intraband (cyclotron resonance)
and interband transitions between magnetic energy levels provide three of the most
informative techniques listed in this subsection for study of the constant energy
surfaces, Fermi surfaces, and effective mass parameters in solid state physics:

1. The de Haas–van Alphen effect and the other related magneto-oscillatory effects
provide the main method for studying the shape of the constant energy surfaces
of semiconductors and metals. This is the main focus of this chapter.

2. Cyclotron resonance (see Fig. 13.2) gives specific values for the effective mass
tensor components by measurement of the transition between adjacent magnetic
energy levels in a single energy band (intraband transitions)

�ω∗
c = E� − E�−1 (13.30)
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where the cyclotron frequency for a carrier orbit normal to the magnetic field is
given by ω∗

c = eB/m∗
c and E� denotes a Landau level with Landau level index

�. The magnetic energy level structure for two simple parabolic bands shown in
Fig. 13.3 can be interpreted as the Landau level subbands for the valence and
conduction bands for a model semiconductor. The dispersion of the energy levels
along kz that is discussed in this Chapter

E�(kz) = �
2k2z
2m

+ �ωc

(
� + 1

2

)
(13.31)

is shown in Fig. 13.3 for each magnetic subband � for a given spin state. As shown
in Fig. 13.3, cyclotron resonance experiments can be carried out on both the elec-
tron and hole carrier pockets of semiconductors. Electrons and holes correspond
to the two different circularly polarizations of the microwave excitation radiation.
Because of the different band curvatures and effective masses associated with the
various carrier types in metals and semiconductors, �ω∗

c will be in resonance
with �ω of the resonant microwave cavity at different magnetic field values for
electrons as compared to holes. As seen in Fig. 13.3, the optical selection rule
for these intraband (cyclotron resonance) transitions is Δ� = ±1. By varying the
magnetic field direction relative to the crystal axes, the corresponding cyclotron
effective masses can be determined, in this way the effective mass tensors for
electrons and/or holes as a function of kx , ky , and kz for electrons and holes are
found. By varying the direction of the magnetic field, the shape of each carrier
pocket for electrons and holes can, in principle, be determined.

3. Interband Landau level transitions (see Fig. 13.3) occur when the optical fre-
quency is equal to the separation between the extrema (kz = 0) of the Landau
levels � and �′

�ω = E�,c − E�′,v = Eg + �ω∗
c,c(� + 1/2) + �ω∗

c,v(�
′ + 1/2). (13.32)

These interband transitions provide information on the effective masses for the
valence and conduction bands and the bandgaps between them. The optical selec-
tion rule for these interband transitions is Δ� = 0. In (13.32) the subscripts v and
c refer to the valence and conduction bands, respectively. Table13.1 gives values
for the effective masses not only for the conduction band me, the valence bands
are more complicated being derived from p-orbitals with angular momentum �.
This means that the state has m�h and mhh components. The upper state is the
heavy hole (hh) state with a relatively heavy components and a lower lying light
hole state with a lighter mass component, as seen in Table13.1. And light holes
mlh and for the split-off bands for several direct gap semiconductors, and data are
included for the split-off band shown in Table13.1.

In semiconductors it is relatively easy to observe quantum effects in a magnetic field
because of the light mass, high mobility and long relaxation times of the carriers
which make it easy to satisfy ωcτ � 1, the requirement for observing quantum
effects.
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Fig. 13.2 Historic cyclotron resonance signals in the semiconductors a germanium and b silicon.
The magnetic field lies in a (110) plane and makes an angle with the [001] axis of 60◦ for the
spectrum shown for Ge, and 30◦ for the spectrum shown for Si. (From G. Dresselhaus, et al., Phys.
Rev. 98, 368 (1955).)

Fig. 13.3 Magnetic energy
levels for simple parabolic
valence and conduction
bands. Intraband cyclotron
resonance and interband
Landau level transitions
occur between these
magnetic energy levels. The
dashed curves represent the
energy dispersion relation in
zero magnetic field. In this
diagram the spin on the
electron is neglected

Table 13.1 Effective masses of electrons and holes in direct gap semiconductors

Crystal Electron Heavy hole Light hole Split-off hole Spin-orbit Gap

me/m0 mhh/m0 mlh/m0 msoh/m0 Δ (eV) Eg (eV)

InSb 0.015 0.39 0.021 (0.11) 0.82 0.23

InAs 0.026 0.41 0.025 (0.08) 0.43 0.43

InP 0.073 0.40 (0.078) (0.15) 0.11 1.42

GaSb 0.047 0.30 0.06 (0.14) 0.80 0.81

GaAs 0.070 0.68 0.12 (0.20) 0.34 1.52



13.4 Quantum Oscillatory Magnetic Phenomena 285

13.4 Quantum Oscillatory Magnetic Phenomena

Consider the magnetic energy levels such as those shown in Fig. 13.3 for a band
electron in a solid. Assume, for example, that we have carriers in the conduction band
and hence a Fermi level EF as indicated in Fig. 13.4wherewe plot the parabolic E(k)

relation in zero magnetic field and indicate the energy of each magnetic sub-band
extremum by its Landau level index. For eachmagnetic subband, the density of states
is singular at its subband extremum and the resonances in the magneto-oscillatory
experiments occur when an energy extremum is at the Fermi energy. Now imagine
that we increase the magnetic field. The Landau level spacing is �ω∗

c = �eBm∗
c and

is proportional to B. Thus as we increase B, we eventually reach a value B� for
which the highest occupied Landau level � crosses the Fermi level and the electrons
that formerly were in this level must redistribute themselves among the lower levels
below the Fermi level.

Assume for the moment that the Fermi level is independent of magnetic field,
which is a good approximation when many Landau levels are occupied. We will
now show that the passage of Landau levels through the Fermi level produces an
oscillatory dependence of the electron density upon the reciprocal of the magnetic
field.

Since many physical quantities depend on the density of states, these physical
quantities will also exhibit an oscillatory dependence on 1/B. Thus, this oscilla-
tory dependence on (1/B) is observed in a large class of observables, such as the
electrical resistivity (Shubnikov–de Haas effect), Hall effect, Seebeck coefficient
(important for thermoelectric effects), ultrasonic attenuation, velocity of sound, opti-
cal dielectric constant, relaxation time, temperature dependence (magneto-thermal
effect), magnetic susceptibility (the de Haas–van Alphen effect). We discuss below
the oscillatory dependence of the carrier density on 1/B as representative of this
whole class of magneto-oscillatory effects, some of which are explicitly discussed
in this chapter.

Fig. 13.4 Schematic diagram of the extrema of the energy of the Landau levels for the quantum
limit � = 0, 1, 2, . . . showing occupation of the two lowest magnetic sub-bands for kz = 0. The
parabola indicates the parabolic energy(momentum) kx (or ky) dependence at B = 0
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In order for the de Haas–van Alphen effect to be observable, we require that an
electron complete an orbit before scattering. The time to complete an orbit is 2π/ω∗

c
and this time must be small compared with τ , the average time between electron
scattering events (also called electron collisions). Thus the condition for observing
the de Haas–van Alphen effect is usually written as ω∗

cτ � 1. For this reason the
observation of magneto-oscillatory phenomena usually requires high magnetic fields
(largeωc) and low temperatures (long τ ). Low temperatures are also necessary so that
the Landau level separations can be large compared with thermal energies. Landau
level separations generally are quite small in magnitude. For example, for B = 10
tesla or 100 kilogauss, and m equal to the free electron mass, the Landau level
separation is ∼ 10−3 eV (or ∼ 12K), which is to be compared with kBT at room
temperature with a thermal energy of 0.025eV or 25meV (milli electron volts).
Therefore it is desirable to carry out de Haas–van Alphen experiments in the vicinity
of 1K. For simplicity, we will take T = 0K in our simple discussion of magneto-
oscillatory effects so that the Fermi function is 1 for E < EF (occupied states) and
is 0 for E > EF (unoccupied states).

The oscillatory behavior of the electron density in a magnetic field can there be
simply understood physically from the following considerations. As we increase the
magnetic field, two things happen:

1. The density of states degeneracy associated with kx increases because this degen-
eracy is proportional to B (see (13.14)).

2. With increasing field B, the number of electrons in a magnetic energy level �

decreases as its magnetic energy level extremum approaches the Fermi level.
This emptying of electrons from higher lying magnetic sub-bands is not a linear
function of B. In particular, when a level crosses the Fermi level, the emptying
of electron states is very rapid due to the high density of states at kz = 0 (see
Fig. 13.1c).

Consider, for example the emptying of the � = 1 Landau level as it passes through
EF , with increasing magnetic field. All electrons in this level must be emptied when
the Landau level crosses EF (see Fig. 13.4). We show below that the extrema in the
Landau levels correspond to singularities in the density of states (see Fig. 13.1c). The
3D density of states in a magnetic field has a monotonic magnetic field-dependent
background due to the degeneracy factor of (13.14), as well as a resonance at

EF = �ω∗
c (� + 1/2) = �eB�

m∗
c

(
� + 1/2

)
(13.33)

denoting the energy where the lth Landau level passes through the Fermi level. As
B increases further, the magnetic energy levels tend to empty their states slowly
just after the Landau level has passed through the Fermi level, and the monotonic
linearly increasing degeneracy term (13.14) dominates. The interplay of these two
factors leads to oscillations in the density of states and consequently in all physical
observables depending on the density of states. The resonance condition in the density
of states in a magnetic field is given by (13.33) which defines the resonant magnetic



13.4 Quantum Oscillatory Magnetic Phenomena 287

field B� as the field where the E� Landau level passes through EF . Making use of
(13.33), we see that the resonances in the density of states (13.25) are periodic in
1/B with a period defined by

P ≡ 1

B�

− 1

B�−1
= e�

m∗
c EF

[
(� + 1/2) − (� − 1/2)

]
= e�

m∗
c EF

. (13.34)

Equation (13.34) shows that the period P is independent of the quantum number
(Landau level index) �, but depends on the product m∗

c EF . It turns out that the
temperature dependence of the amplitude of the de Haas–van Alphen resonances
depends on the cyclotron effective massm∗

c so that one can thus measure bothm∗
c and

the product m∗
c EF through study of these magneto-oscillatory phenomena, thereby

yielding EF and m∗
c independently, on the basis of this simple model.

It is often convenient to discuss the de Haas–van Alphen effect in terms of cross–
sectional areas A of the Fermi surface. Since EF = �

2k2F/2m∗ and A = πk2F ,
we have EF = �

2A /2πm∗ and from (13.34) the de Haas–van Alphen period P
becomes

P = 1

B�

− 1

B�−1
= 2πe

�A
. (13.35)

Equation (13.35) shows that the de Haas–van Alphen period P depends only on
the Fermi surface cross sectional area A Fig. 13.5 except for universal constants. A
more rigorous derivation of the de Haas–van Alphen period P shows that (13.35)
is valid for an arbitrarily shaped Fermi surface and the area A that is associated
with the resonance is the extremal cross-sectional area – either the maximum or
the minimum, as illustrated in Fig. 13.5. A physical explanation for the dominance
of the extremal cross section of the Fermi surface is that all cross sectional areas
normal to the magnetic field contribute to the magneto-oscillatory effect, but upon
integration over kz , the cross-sections which do not vary as much with kz (or varies
very little with kz) will contribute to the same de Haas–van Alphen periodP , while
the non-extremal cross sections will each contribute to different values of P and
therefore will not give a resonant oscillatory period. By varying the magnetic field
orientation, different cross-sections will become extremal, and in this way the shape
of the Fermi surface can be monitored. Ellipsoidal constant energy surfaces have
only one extremal (maximum) cross-section and here the cyclotron effective mass
m∗

c is independent of kz .
As an example of the de Haas–van Alphen effect in a real material, we see in

Fig. 13.6a oscillations observed in silver with B ‖ (111) direction. In this figure
we see oscillations with a long period as well as fast or short period oscillations.
From the Fermi surface diagram in the extended Brillouin zone shown for silver in
Fig. 13.6b, we identify the fast periods with the large Fermi surface cross sections
associatedwith the belly orbits and the slowoscillationswith the small cross sectional
necks. From Fig. 13.6b, it is clear that the necks can be clearly observed only for the
B ‖ (111) directions. However, the anisotropy of the belly orbit can be monitored
by varying the orientation of the applied magnetic field B.
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Fig. 13.5 Fermi surface showing extremal cross–sectional areas. The indicated maximum and
minimum areas would each show distinct de Haas–van Alphen periods. The larger cross section
would have a shorter period. Here k0 denotes the center of the maximum cross sectional area A
denoted by (1), and k2 denotes the wave vector axis along the direction H2, while k3 denotes the
wave vector on the same cross sectional area as k2 but normal to k2

Fig. 13.6 aDe Haas–van Alphen effect for silver withB ‖ (111), allowing observation of the belly
(fast oscillation) orbit and neck (slow oscillation) orbit shown in b. The Fermi surface for silver
is inferred from measurement of the de Haas–van Alphen effect as a function of magnetic field
orientation. The period for the neck orbits [see (b)] is given by the distance between the vertical
arrows in a. The long period comes from the maximum belly orbits
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Not only do electrons execute orbits in reciprocal space. They also can execute
orbits in real space in the presence of a magnetic field. Because the length scales
in real space and reciprocal space are inversely proportional to one another, large
orbits in k-space correspond to small orbits in real space. Furthermore for ellipsoidal
orbits (which commonly occur in semiconductor physics), a large ky/kx ratio in the
k-space orbit would correspond to a small y/x ratio in the real space orbit but a large
value for x/y, so that the semi-major axis in the real space orbit is rotated by 90◦,
relative to the semi-major axis of the reciprocal space orbit.

Although we have neglected the electron spin in the above discussion, it is nev-
ertheless important. De Haas–van Alphen oscillations occur whenever a spin-up or
a spin-down level crosses EF . In fact, magneto-oscillatory observations provide an
excellent tool for studying both the Landau level spacing as well as the effective
g–factor geff , as can be seen from Fig. 13.1d. Values for m∗

c and geff can be obtained
independently since the period between every second resonance yields the Landau
level separation, while sequential resonances overall are separated by geffμB B.

13.5 Selection Rules for Landau Level Transitions

Since themagnetic energy states are described in simple terms by harmonic oscillator
wave functions, the matrix elements coupling different Landau levels are described
by the selection rules for harmonic oscillators. Utilizing the matrix element of the
coordinate taken between harmonic oscillator states, we write

〈�|x |�′〉 =
√

�

2m∗
cω

∗
c

[√
� + 1 δ�′,�+1 + √

� δ�′,�−1

]
. (13.36)

The corresponding matrix element for px is

〈�|px |�′〉 =
√

�m∗
cω

∗
c

2

[√
� + 1 δ�′,�+1 + √

� δ�′,�−1

]
. (13.37)

The matrix elements for x and px determine the matrix elements for intraband tran-
sitions, referred to in Sect. 13.3. It is also of interest to discuss the expectation value
of 〈�|x2|�′〉 and 〈�|p2x |�′〉 which are

〈�|x2|�〉 =
(

�

2m∗
cω

∗
c

) (
2� + 1

)
= �

m∗
cω

∗
c

(
� + 1/2

)
(13.38)

〈�|p2x |�〉 =
(

�m∗
cω

∗
c

2

) (
2� + 1

)
= �m∗

cω
∗
c

(
� + 1/2

)
(13.39)
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to yield the partition theorem that the kinetic and potential energies of the harmonic
oscillator are each (�ω∗

c/2)(� + 1/2). The “classical mean radius” for a harmonic
oscillator state is defined by

√
〈�|x2|�〉 = λ

√
(� + 1/2) (13.40)

using (13.38), thus giving physical meaning to the characteristic length λ in a mag-
netic field which is λ = (�/m∗

cω
∗
c )

1/2 = (�/eB)1/2 as given in (13.15). We see here
that λ is independent of m∗

c and, except for universal constants, depends only on B.
The classical mean radius thus has a value at 10 tesla (or 100kG) of∼10−6 cm which
is about 30 lattice constants in extent. Thus to get a classical orbit within a unit cell
we would require fields of ∼3,000 tesla or 30 megagauss. With present technology
it is not yet possible to generate an external magnetic field with magnetic effects
comparable in magnitude to crystal fields, though the highest available fields (300
tesla in the form of pulsed fields) permit entry into this important and interesting
regime.

13.6 Landau Level Quantization for Large Quantum
Numbers

Themost general quantization condition for electrons in conduction bands was given
by Onsager many years ago. Suppose that a magnetic field is applied parallel to the
z–axis. Then the wave vector components kx , ky which are perpendicular to the
magnetic field B should satisfy the commutation relation

[kx , ky] = s

i
, (13.41)

where s = 1/λ2 is proportional to the magnetic field B and is defined as s = eB/�

and where

kx → 1

i

∂

∂x
− eB

�
y (13.42)

and

ky → 1

i

∂

∂y
. (13.43)

The reasonwhy kx and ky in amagnetic field do not commute, of course, relates to the
fact that y and py do not commute for quantum mechanical systems (the uncertainty
principle). We define the raising and lowering operators k+ and k− in terms of kx
and ky

k± = 1√
2

(
kx ± iky

)
, (13.44)
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and the operation of k± on the harmonic oscillator wavefunction φ� is given by

k+φ�=[(� + 1)s] 1
2 φ�+1

k−φ�=(�s)
1
2 φ�−1.

, � = 0, 1, 2, . . . . (13.45)

The general quantization condition gives k2 = k+k− + k−k+ so that

(2� + 1)s −→ k2 (13.46)

and corresponds to the Bohr–Sommerfeld–Onsager relation:

∮
E(k)=const

|k|dk = 2πs

(
� + 1

2

)
, (� � 1) (13.47)

where the line integral is over an orbit on the constant energy surface. This semi-
classical quantization gives the classical limit for large quantum numbers and can
be applied to calculate orbits of carriers in a magnetic field on any constant energy
surface.

Problems

13.1 Consider the six ellipsoidal conduction band carrier pockets in silicon with
longitudinal and transverse effective masses of ml/m0 = 1.0 and mt/m0 = 0.2,
respectively. Suppose that a magnetic field is applied in the (100) direction. The
magnetic energy levels for an electron associated with one of these ellipsoidal con-
stant energy surfaces is given by

En(kB) = �
2k2B/2m∗

‖ + �ω∗
c (n + 1/2)

where kB andm∗
‖ are, respectively, the wavevector and the effective mass component

along the magnetic field, and ω∗
c is the cyclotron frequency corresponding to motion

in the plane perpendicular to the magnetic field.

(a) Suppose that there are a total of 1017 electrons/cm3 in the conduction band
of a silicon specimen. For a magnetic field along the (100) direction, find the
magnetic field value B0 for which all of the carriers have been emptied out of
the light cyclotron mass carrier pockets.

(b) For the magnetic field B0 in part (a), how many Landau levels are occupied in
the heavy cyclotron mass pockets, and what is the occupation for each carrier
pocket? A useful formula is:
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n =
√
2

π2λ3

lF∑
l=0

(
l ′F − l

)1/2

where l ′F = EF/(�ω∗
c ) − 1/2 and λ = (�/eB)1/2.

(c) What is the shift in Fermi level for part (a) relative to the Fermi level at zero
magnetic field?

(d) Estimate the temperature range at which you would have to conduct your exper-
iments to probe the effects calculated in parts (a), (b), and (c).

(e) Explain physically the dependence of the low temperature resistivity normal
to the magnetic field for B in the range 0.9B0 ≤ B ≤ 1.1B0. (No detailed
calculation is expected.)

(f) If we prepare n-type Si (carrier concentration 1017/cm3) in a quantum well of
5nm thickness with quantum confinement along the (100) direction. At what
magnetic field B2 along (100) does the n = 2 Landau level pass through the
Fermi level for this 2D electron gas? Explain physically the dependence of the
low temperature resistivity normal to the magnetic field B, for B in the range
0.9B2 ≤ B ≤ 1.1B2.

13.2 If a thin Si wire of 50nm diameter with its axis oriented along (100) is pre-
pared, estimate the magnetic field value above which boundary scattering by the wire
boundary would be greatly reduced.

13.3 In graphene, what is the minimum magnetic field needed to observe magneto-
oscillatory phenomena (i.e.ωcτ > 1)? For graphene, we use the ficticious relativistic
effective mass given by m∗ = EF/v2F . Assume vF for graphene is 108cm/s and
EF=50meV. Estimate the scattering time, τ , using the Fermi velocity given here and
an electron mean free path for the following two types of samples:

(a) Standard graphene–on–SiO2 substrates, which typically have mean free paths
of 100nm.

(b) BN–encapsulated graphene samples, which typically have mean free paths
longer than 1μm.

13.4 Use the gauge A = −r × B/2 = (−yB/2, x B/2), which is cylindrically
symmetric. Show that the ground eigenstates of

Ĥ0 = 1

2

[
1

ı

∂

∂x
− y

2

]2

+ 1

2

[
1

ı

∂

∂y
+ x

2

]2

(13.48)

(i.e. the lowest Laudau level status) can be written as

ψ(x, y) ∝ zm exp[−|z|2/4] (13.49)

where z = x − ı y and m is the negative angular momentum about the B direction.
[We shall later use the more customary z = x + ı y, which is equivalent to taking B
in the negative z direction and making some other sign changes].



Problems 293

13.5 A particle in a spherically symmetrical potential is known to be in an eigenstate
of L2 and Lz with eigenvalues �

2�(� + 1) and m�, respectively.

(a) Prove that the expectation values between |�m〉 states satisfy

〈Lx 〉 = 〈Ly〉 = 0,

〈L2
x 〉 = 〈L2

y〉 = [�(� + 1)�2 − m2
�
2]

2
.

Interpret this result semiclassically.
(b) Write explicit matrices for L+, L−, and Lx for � = 2.

13.6 Thewave function of a particle subjected to a spherically symmetrical potential
V (r) is given by

ψ(r) = (x + y + 3z) f (r)

(a) Is ψ an eigenfunction of L2? If so, what is the �-value? If not, what are the
possible values of � that we may obtain when L2 is measured?

(b) What are the probabilities for the particle to be found in the various m� states?

13.7 Starting from the matrix elements for the position and momentum of the har-
monic oscillator states,

〈�|x |�′〉 =
√

�

2m∗
cω

∗
c

[√
� + 1 δ�′,�+1 + √

� δ�′,�−1

]

and

〈�|px |�′〉 =
√

�m∗
cω

∗
c

2

[√
� + 1 δ�′,�+1 + √

� δ�′,�−1

]

(a) Find the corresponding matrix elements for 〈� | x2 | �′〉 and 〈� | p2 | �′〉.
(b) Show that the equipartition theorem applies to harmonic oscillator states: half

the total energy goes into kinetic energy, and half into potential energy.
(c) Using the matrix elements in part (a), explain the degeneracy of the Landau

levels in the limit B → 0, as (�, kx ) goes into (kx , ky).

13.8 Suppose that a magnetic field of 10T is applied along a (100) direction to a
silicon crystal doped n-type with 1018/cm3 arsenic impurity atoms.

(a) What is the electron concentration for each of the 6 conduction band carrier
pockets in zero magnetic field and in a field of 10T? Note that carriers empty
out of the carrier pockets that have large Landau level separations.

(b) At what magnetic field will the carrier pockets with the light cyclotron masses
be completely emptied out?

(c) Is there a magnetic field direction for which there is no transfer of carriers
between carrier pockets?



294 13 Magneto-Oscillatory and Other Effects Associated with Landau Levels

13.9 The effective mass of both electrons and holes in semiconducting materials can
bemeasured using the cyclotron resonance technique.Discuss how these experiments
are performed.

13.10 Is it physically reasonable to treat a bulk semiconductor in a strong magnetic
field as a one dimensional system? Explain under which conditions this approxima-
tion is expected to be valid.

Suggested Readings

1. Ashcroft, Mermin, Solid State Physics. Chapter 14
2. C. Kittel, Introduction to Solid State Physics, 6th edn., pp. 239–249



Chapter 14
The Quantum Hall Effect (QHE)

14.1 Introduction to the Quantum Hall Effect

Theobservations of the quantumHall effect (QHE), andTheFractionalQuantumHall
Effect (FQHE), which is mentioned in Sect. 14.6, were made possible by advances
in the preparation of high mobility materials with electrons and/or holes serving as
physical realizations of a 2D electron gas. TheMOSFET devices (see Sect. 12.2) and
the modulation-doped heterostructures (see Sect. 12.3) that give rise to the formation
of a 2D electron gas in a narrow interface region of typical samples. In this Chapter
we present a simple view of the physics of the quantum Hall effect and the two-
dimensional electron gas used to study the physics of the quantum Hall Effect.

The “Quantum Hall Effect” (QHE) is the step–like increase in the Hall resistance
ρxy in units of h/e2 as themagnetic field is increased (see Fig. 14.1). Each step in (ρxy)

is accompanied by a vanishing of the magnetoresistance (i.e., ρxx = 0), as shown
in Fig. 14.1. For an ordinary 3D electron gas, ρxy increases linearly with magnetic
field B and the magnetoresistance ρxx increases as B2. The quantum Hall effect is
a strictly 2D phenomenon which can be observed in semiconductors containing a
2D electron gas region (e.g., in a modulation–doped superlattice as in Sect. 12.3). A
second requirement for observation of the Quantum Hall Effect is a very high carrier
mobility, so that no carrier scattering occurs until the carrier has completed many
cyclotron orbits (ωcτ � 1). A third prerequisite for the observation of the quantum
Hall effect is that the Landau level separation of themagnetic levels is large compared
with kBT . Thus the QHE is normally observed at very high magnetic fields, very
low temperatures and in very high mobility samples. Typical results for the Hall
conductance and electrical conductivity as magnetic field magnitude are shown in
Fig. 14.1 as model results for the magnetic field dependence of the Hall resistance
and electrical resistance of carriers in Quantum Hall regime.
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Fig. 14.1 The quantumHall effect. As shown in the upper panel, theHall resistance shows plateaux,
with each plateau coinciding with the disappearance of the sample’s electrical resistance. On the
plateaux, the Hall resistance remains constant, while the magnetic field strength is varied. At each
of these plateaux, the value of the Hall resistance is precisely equal to h/(�e2), where � is an integer,
while the magnetoresistance component vanishes ρxx = 0. (Note: plateaux is the preferred plural
of plateau.)
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Fig. 14.2 Typical geometry
of a sample used for Hall
effect measurements. The
formation of a 2D electron
gas (2DEG) in a GaAs
heterostructure is shown as
on inset below in the
enlargement of the cross
section. The Hall voltage VH
and the voltage drop Vx are
measured under the constant
current condition Ix =
constant as a function of the
magnetic field Bz
perpendicular to the 2D
electron gas

14.2 Basic Relations for 2D Hall Resistance

The conventional 3D Hall effect is usually measured in a long sample in which a
fixed current Ix is flowing in the x–direction and a magnetic field B is applied in the
z–direction. The Lorentz force on the electrons ev × B is compensated by the Hall
electric field EH in the y–direction to prevent the flow of current in the y–direction.
The geometry for the Hall measurements is shown in Fig. 14.2. The two voltages
Vx (driving voltage) in the x–direction and VH (Hall voltage) in the y–direction are
measured. The longitudinal (Rx ) and Hall (RH ) resistances are defined in terms of
the current flow Ix as:

Rx=Vx/Ix
RH=VH/Ix .

(14.1)

In general, the conductivity tensor (
↔
σ ) and the resistivity (

↔
ρ) tensor relate the

current density (j) and the electric field (E) vectors, and the vector relations in 2D
are written as:

j =
(
jx
jy

)
= ↔

σ ·E =
(

σxx σxy

σyx σyy

)(
Ex

Ey

)
(14.2)

and in terms of the resistivity as

E =
(
Ex

Ey

)
= ↔

ρ ·J =
(

ρxx ρxy

ρyx ρyy

) (
jx
jy

)
(14.3)

with the required relation between
↔
σ and

↔
ρ written in tensorial form:
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↔
σ · ↔

ρ=↔
1 (14.4)

where
↔
1 is the unit matrix with components (δi j ). Since the off–diagonal xy compo-

nents of the tensor
↔
ρ result from the magnetic field, they are odd under reversal of

the magnetic field direction (time reversal symmetry), yielding the relation between
components of the electrical conductivity and resistivity

σxx=σyy,

σyx=−σxy,

ρxx=ρyy,

ρyx=−ρxy .

(14.5)

Equations14.4 and 14.5 imply that for the 2D electron gas:

ρxx = σxx/(σ
2
xx + σ 2

xy), ρxy = −σxy/(σ
2
xx + σ 2

xy)

σxx = ρxx/(ρ
2
xx + ρ2

xy), σxy = −ρxy/(ρ
2
xx + ρ2

xy).
(14.6)

An especially interesting implication of these formulae is that in a 2D system, when
σxx = 0 but σxy �= 0, then ρxx is also zero (and vice versa). This means that (as
long as σxy is finite), the vanishing of the longitudinal conductivity implies that the
longitudinal resistivity also vanishes. This is precisely the situation that occurs in the
quantum Hall effect, and is fundamental to this phenomenon.

We now relate the resistance parameters that are measured (Rx and RH ) to the
current density j and the electric fields E. For a long device (as shown in Fig. 14.2),
jy = 0, so that RH is related to the resistivity components ρxx and ρxy via:

Rx =Vx/Ix = (L/W ) · (Ex/jx )| jy=0 = (L/W )ρxx

RH=VH/Ix = (Ey/jx )
∣∣
jy=0 = ρxy

(14.7)

Note that the units of the resistivity in 2D is �/�, that is Ohms per square, and that
RH in 2D has the same units as ρxy .

In the presence of a DC magnetic field B = Bẑ, and in the relaxation–time
approximation, the classical equation of motion for the carriers is written as:

dv
dt

= e

m∗ (E + v × B) − v/τ (14.8)

where v denotes the drift velocity of the carriers, and the charge on the electron is
taken as a negative number. Using the relation j = nev, we can write

σ0Ex= jx − ωcτ jy
σ0Ey=ωcτ jx + jy

(14.9)
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where σ0 = ne2τ/m∗ and ωc = eB/m∗. Finally, combining equations14.7 and 14.9
with the condition jy = 0, we can write:

Ey = ωcτ

σ0
jx (14.10)

and the Hall resistance RH becomes

RH ≡ Ey

jx
= ωcτ

σ0
= (eB/m∗)τ

(ne2τ/m∗)
= B

ne
= RB (14.11)

where R = (1/ne) is called the Hall coefficient. We note here that RH is propor-
tional to the magnetic field. The result derived in (14.11) is valid for a classical
system that ignores the quantization of the magnetic energy levels. This quanti-
zation effect becomes important in the limit ωcτ � 1. The classical result for a
2D system is the same result as was previously obtained for the 3D system (see
Sect. 10.2). Yet the experimental results for the 2D electron gas in a modulation–
dopedGaAs/Ga1−xAlxAs interface (Fig. 14.1) exhibit the quantumHall effect,where
VH (or ρxy) shows a series of flat plateaux as a function of magnetic field rather than
a simple linear dependence in B (14.11). The reason for the steps in ρxy (or RH ) as
a function of B is due to the density of states of the 2D electron gas in a magnetic
field, as discussed below.

14.3 The 2D Electron Gas and the Quantum Hall Effect

We refer to the phenomenon shown in Fig. 14.1 as the quantum Hall effect because
the values of RH exhibit a plateau whenever

RH = h

�e2
� = 1, 2, 3, . . . (14.12)

where � is an integer. Figure14.1 shows the results of Hall measurements on a
modulation–doped GaAs/AlxGa1−xAs heterostructure. Here ρxx and ρxy are shown
as a function of magnetic field for a heterostructure with a fixed density of carriers.
These experiments (Fig. 14.3) are done at a low temperature (4.2 K), and the plateaux
for ρxy can be observed very clearly, especially in the limit of small �. (The plural
of “plateau” is “plateaux”.) The results shown in Fig. 14.1 indicate that RH for the
2D electron gas is quantized. Detailed measurements show that RH is given by
(14.12) to an accuracy of better than 0.1 ppm (parts per million). This quantization
is reported to be independent of the sample geometry, the temperature, the scattering
mechanisms, or other parameters, including the physical system giving rise to the
2D electron gas. The accuracy of these results and their apparent independence of
experimental parameters are very intriguing and, as we discuss below, are ultimately

http://dx.doi.org/10.1007/978-3-662-55922-2_10
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Fig. 14.3 Qualitative
behavior for σxx , ρxx and
ρxy of a two–dimensional
electron gas with a fixed
carrier density as a function
of magnetic field B. The
dotted lines represent the
classical curves for a 3D
electron gas. The effect of
spin degeneracy is not
included in these curves

due to a fundamental physical principle and therefore are very interesting to the field
of metrology and NIST (National Institute of Science and technology) in the USA.
A schematic diagram summarizing the general behavior of the 2D electron gas is
given in Fig. 14.3 for ρxy, ρxx and σxx versus B, and also included in this diagram is
the comparison with the behavior of a 3D electron gas.

Referring to the 2D conductivity
↔
σ and resistivity

↔
ρ tensors defined in equa-

tions14.2 and 14.3, we can write
↔
ρ and

↔
σ in the region of the plateaux as

↔
ρ=

(
0 −RQ/ i

RQ/ i 0

)
(14.13)

and
↔
σ=

(
0 i/RQ

−i/RQ 0

)
(14.14)

where RQ = h/e2, and where ρxx = ρyy = 0 and σxx = σyy = 0. At these plateaux
the power dissipation Pdiss vanishes because
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Pdiss = j·E = j· ↔
ρ ·j = 1

i

(
jx jy

)(
0 −RQ
RQ 0

) (
jx
jy

)
= 1

i

[
−RQ jx jy+RQ jy jx

]
= 0.

(14.15)
Thus at the plateaux we have no power dissipation and ρxy = RQ/e is independent
of material, impurity level, sample geometry, while ρxy is just dependent on the
fundamental constants h and e.

To explain the quantized Hall effect, let us first consider the carriers of the two
dimensional electron gas to be free electrons at T = 0, but subjected to an applied
magnetic field B normal to the plane of the 2D electron gas. The Landau quantization
for B normal to the film surface gives completely quantized sub–band energies (for
a simple band)

En,� = En + (� + 1/2)�ωc ± g∗μB B = En + E� (14.16)

where ωc ≡ eB/m∗ is the cyclotron frequency and g∗ is the effective g–factor as
also for the 3D case, but now En pertains to the z–dependent bound state energy
levels of the 2D electron gas. For the simplest case, the carrier density is arranged
experimentally to be low so that only the lowest bound state (n = 1) is occupied.
The number of states per unit area is found by noting that the energy is independent
of the harmonic oscillator center.

Since the energy levels do not depend on the central position of the harmonic
oscillator y0, we can sum on all the kx states to obtain the kx degeneracy per unit area

g2D = eB

h
. (14.17)

This degeneracy factor is here assumed to have the same value for each Landau
level and is proportional to the magnetic field B and depends only on fundamental
physical constants (i.e., e, h). In addition there is a degeneracy factor of 2 for the
electron spin if the electron spin is not considered explicitly in writing the energy
level equation, as is done here implicity.

Since there is no kz dispersion for the 2D electron gas, the density of states in a
magnetic field in two–dimensions consists of a series of singularities (δ-functions)
as shown in Fig. 14.4b in contrast to the continuum of states in 3D, also shown in the
figure. Multiplying (eB/h) by �ωc gives the number of 2D states in zero magnetic
field that coalesce to form each Landau level. This number increases proportionally
to the magnetic field as does also the Landau level separation.

If at a given magnetic field there are �′ filled Landau levels, the carrier concen-
tration (neglecting spin) is given by n2D = �′(eB/2π�), where n2D is the carrier
density associated with a given bound state n = 1. Thus the Hall resistance RH in
2D becomes

RH = B

n2De
= h

�′e2
= RQ

�′ (14.18)
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Fig. 14.4 Schematic density
of states in a magnetic field
and we also consider the case
where the relaxation time for
carriers → ∞ for: a
three–dimensions, where the
energy is referred to the
bottom of the band (E = 0)
and b two–dimensions,
where the energy is referred
to the lowest bound state
energy E1. The energy is
plotted in units of the
cyclotron energy �ωc.
Dashed curves represent the
density of states without a
magnetic field. We note that
in the 2D case the density of
states in zero field is m/π�

2,
indicated by the dashed line.
The filling per Landau level
� in a magnetic field is the
degeneracy factor
g2D = eB/2π� or eB/h

for the �′ filled magnetic energy levels. We can then see that the unique property of
the density of statess of a 2D electron gas in a magnetic field (see Fig. 14.4) leads to
a Hall conductance at T = 0 that is quantized in multiples of e2/h, (see Fig. 14.4).

Carrier filling in 2D is fundamentally different from that in 3D. As the Fermi
level rises in 3D, because of the kz degeneracy, all the Landau levels with subband
extrema below EF will become filled up. To the extent that the electron density is
low enough so that only one bound state is occupied, each magnetic subband fills to
the same number of carriers or carrier density at a given B field. In the region of the
plateaux all Landau levels for � ≤ �′ are filled and all Landau levels for � > �′ are
empty so that for kBT � �ωc, very little carrier scattering can occur.

The electrons in the semiconductor heterostructure, however, are not free carriers:
their behavior is influenced by the presence of the periodic ionic potential, impurities,
and scattering phenomena (see Fig. 14.5). Therefore the simple explanation given
above for a perfect crystal needs to be extended to account for these complicating
effects. In Fig. 14.5 the two–dimensional density of states in amagnetic field is shown
schematically both in the absence of disorder (Fig. 14.5a) and in the presence of
disorder (Fig. 14.5b). Here we see that the δ–functions of Fig. 14.5a are now replaced
by a continuous function D(E) as shown in Fig. 14.5b. This figure also indicates
schematically the magnetic field range over which electrical conduction occurs is
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Fig. 14.5 Schematic representation of the 2D density of states in amagnetic field awithout disorder
and b with disorder. The shaded regions in (b) correspond to localized states

broadened. The figure further shows that in the tails of each Landau sub–band there
exist regions of localized states (the shaded areas). The electrons associated with
the mobility gap are in localized states that do not contribute to conduction. Much
research has been done to show that the simple model described above accurately
describes ρxy and ρxx for the 2D electron gas within the region of the plateaux in
actual semiconductor devices.

Let us consider the diagram for the 2D density of states D(E) in a magnetic field
shown in Fig. 14.5 for individual Landau levels. Suppose the magnetic field is just
large enough so that the indicated 2D Landau level shown in the figure is completely
filled and EF lies at ν = 1, where ν represents the fractional filling of the 2D
Landau level for this magnetic energy level. Then as the magnetic field is further
increased, the Fermi level falls. So long as the Fermi level remains within the region
of the localized states, then σxx = 0. Thus when EF lies in the shaded region, EF is
effectively in an energy gap where σxx ≡ 0 and the Hall conductance σxy remains on
a plateau determined by �′e2/h. As B increases further, EF eventually reaches the
unshaded region where σxx no longer vanishes and EF passes through the mobile
states (see Figs. 14.5 and 14.6), causing σxy to jump from �′e2/h to (�′ − 1)e2/h as
EF passes through the mobile states. When the magnetic field is large enough for
EF to reach the localized states near ν = 0, then σxx again vanishes and σxy now
remains at the plateau (�′ − 1)e2/h as the magnetic field continues to increase.

From these arguments we can conclude that the steps in ρxy and the zeros in ρxx

are caused by the passage of a 2D Landau level through the Fermi level. When the
effect of the electron spin is included, spin splitting of the Landau levels is expected to
affect the quantumHall effect measurements (Fig. 14.6). To see spin splittings effects
the measurements must be made at sufficiently low temperatures (e.g., T = 0.35 K).
Spin splitting effects of the � = 1 Landau level (1 ↓ and 1 ↑) have been clearly seen
experimentally. The observation of spin splitting in the Quantum Hall Effect thus
requires high fields, low m∗

c , high mobility samples to achieve ωcτ � 1 and low
temperatures kBT � �ωc to prevent thermal excitation between Landau levels.
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Fig. 14.6 The density of
states [D(E)], d.c.
conductivity (σxx ), and the
Hall conductivity (σxy) are
schematically shown as a
function of the fractional
filling factor ν for a Landau
subband. Shaded regions in
the density of states denote
the regions of localized
carriers, corresponding to an
effective energy gap between
magnetic subbands

14.4 Effect of Edge Channels and the Quantum Field Effect

In the simple explanation of the Quantum Hall effect, it is necessary to assume both
localized states (σxx = 0) and extended states (σxx �= 0). In taking into account the
so-called edge channels, it is possible to explain more clearly why the quantization
is so precise in the Quantum Hall Effect for real systems.

Referring to the derivation of theLandau levels formotion in a plane perpendicular
to the magnetic field, we assume that only the lowest band state n = 1 is occupied
and we neglect the interaction of the electron spin with the magnetic field. The wave
function for an electron in the 2D electron gas can then be written as

Ψ2D(x, y) = eikx xφ(y) (14.19)

where φ(y) satisfies the harmonic oscillator equation

[
p2y
2m∗

c

+ 1

2
m∗

cω
∗
c (y − y0)

2

]
φ(y) =

[
p2y
2m∗

c

+ V (y)

]
φ(y) = E�φ(y) (14.20)

in which the harmonic oscillator center y0 is given by

y0 = �kx
m∗

cω
∗
c

= λ2
Bkx (14.21)

and the harmonic oscillator energies are

E� = (� + 1/2)�ω∗
c . (14.22)

The characteristic magnetic length in (14.21)
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Fig. 14.7 Edge states and the orbits of carriers. a The edge regions shown here are defined by the
characteristic length λB = (�/eB)1/2. Along each edge, b shows that all complete orbits give rise
to a current jx in the same direction, but the current direction is opposite for the two edges in (b).
The bulk orbits, however, do not give rise to a current jx

λB =
√

�

eB
= 250Å√

B(tesla)
(14.23)

relates to the real space orbit of the electron in a harmonic oscillator state (13.40)
and λB depends only on the magnetic field, except for universal constants. Since the
energy in (14.22) is independent of kx , the electron velocity component xx vanishes

vx = 1

�

∂E

∂kx
= 0 (14.24)

and there is no net carrier current along x̂ .
The argument that the energy is independent of kx , however, only applies to those

harmonic oscillator centers y0 that are interior to the sample. But if y0 takes on a
value close to the sample edge, i.e., y0 � 0 or y0 � Ly , then the electron is more
influenced by the infinite potential barrier at the edge than the harmonic oscillator
potential V (y) associated with the magnetic field. Electrons in these edge orbits will
be reflected at the edge potential barriers, and V (y) is no longer strictly a harmonic
oscillator potential. Since the potential V (y) is perturbed, the energy will also be
perturbed and the energy will then become dependent on kx . Since the harmonic
oscillator orbit size is λB

√
� + 1, the energy of the 2D electron gas depends on kx

only for a distance of approximately λB
√

� + 1 from the sample edge.
The effect of the sample edges can be understood in terms of the edge orbits

illustrated in Fig. 14.7.
All the harmonic oscillator orbits with y0 values within λB of the edge will con-

tribute to the current density jx by the argument given in Fig. 14.7. The current I�
contributed by the �th edge channel is

I� = ev�,x

(
dn

dE�

)
Δμ (14.25)

http://dx.doi.org/10.1007/978-3-662-55922-2_13
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Fig. 14.8 Schematic
diagram of current flow for
edge channels. The dark
circles denote the contacts
between the edge channels
and the electron reservoirs at
electrochemical potentials
μ2 and μ1

where (dn/dE�) is the 1D density of states and Δμ is the drop in chemical potential
along the edge channel. We can then write

dn

dE�

= dn

dkx

dkx
dE�

=
(

1

2π

)(
1

�v�,x

)
= 1

hv�,x
(14.26)

where v�,x is the velocity of the electrons in the x direction due to the carriers
in channel �. Substitution of (14.26) into (14.25) yields I� = (e/h)Δμ, which is
independent of �, so that the total current is obtained by summing over each of the
edge channels to yield

Ix = �c
e

h
Δμ (14.27)

where �c is the number of edge channels. If the conditions λB � �φ and λB � �e are
satisfied, where �φ and �e are, respectively, the inelastic and elastic scattering lengths,
electrons are not likely to scatter across the sample (backscattering) because of the
electron localization in the variable y (ψ ∼ exp[−y2/λ2

B]). The opposing directions
of jx along the two edges guarantees that the continuity equation is satisfied.

Let us now consider the electrochemical potential μ, which has a constant value
along each edge channel, because of the absence of back scattering, as noted above.
Two edge channels are shown in Fig. 14.7. From (14.27), we obtain the total current
Ix in the upper and lower edges. The quantity Δμ in (14.25) and (14.27) denotes
the potential drop between two points where the transmission coefficient T is unity
(T ≡ 1). Thus for the upper edge channel in Fig. 14.8,

IA = �cA(e/h)(μ2 − μA), (14.28)

indicating that there is a reflection between the edge channel and the μ reservoir so
that T �= 1. For the lower channel

IB = �cB(e/h)(μB − μ2). (14.29)
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where the number of edge channels for the two edges is the same, so that �cA =
�cB = �c. We thus obtain (Fig. 14.8):

Ix = IA + IB = �c(e/h)(μB − μA). (14.30)

Since the Hall voltage Vy is given by the difference in electrochemical potential
in the y direction of the sample, we obtain

eVy = μB − μA (14.31)

so that
Ix = �c(e

2/h)Vy . (14.32)

The Hall resistance RH then becomes

RH = Vy

Ix
= h

e2�c
= RQ

�c
(14.33)

where RQ = h/e2 is the fundamental unit of resistance and �c is a quantum num-
ber denoting the number of edge channels. The edge channel picture thus provides
another way to understand why the quantum Hall effect is associated with a funda-
mental constant of nature, h/e2 = RQ .

14.5 Precision of the Quantized Hall Effect
and Applications

Because of the high precision with which the Hall resistance is quantized at integer
fractions of h/e2, we obtain

�′RH = h

e2
= RQ = 25, 812.200 Ω �′ = 1, 2, 3, . . . . (14.34)

This quantity RQ called the Klitzing (after the man Klaus von Klitzing, who dis-
covered the Quantum Hall Effect experimentally) has since 1990 become the new
IEEE resistance standard, and is known to an accuracy of ∼3 × 10−8. When
combined with the high precision with which the velocity of light is known,
c = 299, 792, 458 ± 1.2m/s, the quantum Hall effect has become the primary tech-
nique for measuring the fine structure constant:

α ≡ e2

�
. (14.35)
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The fine structure constant must be known to high accuracy in tests of quantum
electrodynamics (QED). The results for α from the QHE are not only of comparable
accuracy to those obtained by other methods, but this determination of α is also inde-
pendent of the QED theory. The QHEmeasurement thus acts as another independent
verification of QED. It is interesting to note that the major source of uncertainty in
the QHE result is the uncertainty in the calibration of the standard resistor used as a
reference.

14.6 Fractional Quantum Hall Effect (FQHE)

When a two–dimensional electron gas is subjected to a sufficiently low temperature
and an intense magnetic field (B‖z–axis), of magnitude greater than necessary to
achieve the lowest quantum state in the quantum Hall effect, all electrons could
be expected to remain in their lowest Landau level and spin state. In this limit,
however, the possibility also exists, that the electrons will further order under the
influence of their mutual interactions. Such ordering phenomena have been seen in
GaAs/Ga1−xAlxAs and other quantumwell structures, where an apparent succession
of correlated electron states has been found to have fractional occupations, ν, of their
lowest Landau level. This ordering effect is called The Fractional Quantum Hall
Effect (FQHE).

Just as for the quantum Hall effect discussed in Sect. 14.3, the fractional quantum
Hall effect is characterized by minima in the electrical resistance and plateaux in
the Hall resistance for current flow in the two–dimensional layers (x–direction).
Whereas the integral quantum Hall effect occurs because of gaps in the density of
mobile electron states at energies between the 2D Landau levels (see Fig. 14.4),
the fractional quantization is interpreted in terms of new gaps in the spectrum of
electron energy levels. These new energy levels appear predominantly at magnetic
fields higher than the plateau for the � = 0 integral quantum Hall effect and are
associated with electron-electron interactions.

The Fractional Quantum Hall Effect (FQHE) was first observed in the extreme
quantum limit, for fractional filling factors ν

ν = n2Dh

eB
< 1, (14.36)

where the 2D carrier density n2D is given by

n2D = ν

(
eB

h

)
. (14.37)

This regime for the fractional quantum Hall Effect (FQHE) can be achieved experi-
mentally at low carrier densities n2D , high magnetic fields B, and very low temper-
atures T . The observations of the FQHE thus requires the Landau level spacing �ωc
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to exceed the zero field Fermi level

�ωc = �eB

m∗
c

> EF (14.38)

where the Fermi level EF for a single spin orientation is given by

EF = 2πn2D�
2

m∗ . (14.39)

This condition is equivalent to requiring the magnetic length or the cyclotron radius
to be less than the inter–particle spacing n−1/2

2D , where n2D is the 2D electron density.
To observe electron ordering, it is desirable that electron–electron interactions be

large and that electron–impurity interactions be small. This requires theminimization
of both the uncertainty broadening of the electron levels and inhomogeneous broad-
ening caused by potential fluctuations and electron scattering. Thus the observation
of the fractional quantumHall effect is linked to the availability of very highmobility
samples containing a 2D electron gas in the lowest bound state level. The best sam-
ples for observing the FQHE have been the modulation–doped GaAs/AlxGa1−xAs
interfaces, as shown in Fig. 14.9. In the fabrication of each device the n–doped
regions have been confined to a single atomic layer (i.e., using δ–doping), far from
the quantum well to achieve high carrier mobility.

The highest mobility materials that have been reported for modulation–doped
MBE samples have been used for the observation of the FQHE. Measurements are
made on photolithographically–defined Hall bridges using micro–ampere currents
and Ohmic current and potential contacts. Experimental results for the resistivity
ρxx and Hall resistance ρxy versus magnetic field in the fractional quantum Hall
effect regime are shown in Fig. 14.10. Minima develop in the diagonal (in–plane)
resistivity ρxx at magnetic fields corresponding both to integral Landau level filling
and to certain fractional fillings of the Landau levels. TheHall resistivityρxy develops
plateaux at the same integral and fractional filling factors. The classical value of the
Hall resistance ρxy for n carriers per unit area is ρxy = B/ne and B/n is interpreted
as the magnetic flux per carrier which is the flux quantum φ0 = h/e divided by the
Landau level filling ν, so that B/n = h/eν is satisfied at filling factor ν.

The value of ρxy is h/νe2 at filling factor ν. Plateaux were first measured at
ν = 1/3 (see Fig. 14.10) with ρxy equal to h/νe2 to within one part in 104 in this
early work.

In addition to quantization at quantumnumber 1/3, quantization has been observed
at a number of other fractions ν = 2/3, 4/3, 5/3, 2/5, 3/5, 4/5, 2/7 and others (see
Fig. 14.11), suggesting that fractional quantization exists inmultiple series, with each
series based on the inverse of an odd integer. With the highest mobility materials,
a fractional quantum Hall effect has recently been observed for an even integer
denominator.

Only a certain specified set of fractions exhibit the fractional quantum Hall effect,
corresponding to the relation



310 14 The Quantum Hall Effect (QHE)

Fig. 14.9 a Schematic diagram of a modulation–doped n–type semiconductor GaAs/AlxGa1−xAs
heterostructure and of its energy band structure. bCB andVBhere refer to the conduction band (CB)
and valence band (VB) edges; Eg1 and Eg2 are, respectively, the energy gaps of the AlxGa1−xAs
and GaAs regions, while ΔE in (a) is the energy corresponding to the zero–magnetic–field filling
of the lowest quantum subband of the two–dimensional electron gas, and EF is the Fermi energy.
W is the step height (band offset energy) between the GaAs conduction band and the AlxGa1−xAs
conduction band at the interface. The two-dimensional electron gas in (a) lies in the GaAs region
close to the undopedAlxGa1−xAs (see c showing the lowest diagram). The dopants used to introduce
the n-type carriers are located in the region labelled n-doped AlGaAs

ν = 1

p + α1

p1+ α2
p2+...

(14.40)

where the integers p is odd, pi is even, and αi = 0,±1. For example, p = 3, pi = 0
and αi = 0 for all i yields a fractional filling factor of 1/3, where the most intense
fractional quantum Hall effect is observed. For p = 3, p1 = 1 and α1 = 1 and all
other coefficients taken to be zero gives ν = 2/3. Equation14.40 accounts for all
the observed examples of the fractional quantum Hall effect except for the case of
ν = 5/2 mentioned above.

To explain the characteristics of the fractional quantum Hall effect, Laughlin pro-
posed a many-electron wavefunction to account for the electron correlations respon-
sible for the fractional quantum Hall effect:

ψm(z1, z2, z3, . . . zN ) = C
N∏
i< j

(zi − z j )
m exp

(
− 1

4

N∏
k

|zk |2
)

(14.41)
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Fig. 14.10 a First observation of the FQHE in a GaAs/AlxGa1−xAs modulation–doped hetero-
structure with an areal carrier density of n = 1.23 × 1011 electrons/cm2 and an electron mobility
of μ = 90,000cm2/Vs. b The Hall resistance ρxy assumes a plateau at fractional filling ν = 1/3
indicating a fractional quantum number � = 1/3 (see top scale) shown at four low temperatures for
both (a) and (b). The inset in (b) shows the geometry of the contacts with a center stage width of
0.38mm and a separation of 1 mm between contacts. [D.C. Tsui, H.L. Störmer and A.C. Gossard,
Phys. Rev. Lett. 48, 1559 (1982)]

where m = 1/ν and ν is the filling factor. Research at the fundamental level is still
on–going to gain further understanding of the fractional quantum Hall effect and
related phenomena.
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Fig. 14.11 Detailed high-field, low-temperature (T ∼ 0.1 K) data on the FQHE (fractional quan-
tum Hall effect) taken from a high mobility (μ ∼ 1.3 × 106 cm2/V s) quantum well sample of
GaAs/Ga1−xAlxAs. The familiar IQHE (integer quantum Hall effect) characteristics appear at fill-
ing factors of ν = 1, 2, 3, . . .. All fractional numbers are a result of the FQHE. Fractions as high as
7/13 were observed. [R. Willett, J.P. Eisenstein, H.L. Störmer, D.C. Tsui, A.C. Gossard, and J.H.
English Phys. Rev. Lett. 59, 1776 (1987)]

Problems

14.1 (a) Assume that the conductivity tensor
↔
σ is an off–diagonal matrix,

↔
σ=

[
0 −ie2/h

ie2/h 0

]

Show that the measured Hall resistances RH and longitudinal resistances Rx are
independent of sample geometry.

(b) In order to observe the Quantum Hall Effect, why is it necessary for the electron
gas be two dimensional?

14.2 In the integral quantum Hall effect, the electron density n of a 2D free electron
gas is given by
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n = i
eB

hc
(14.42)

where i is an integer denoting the number of occupied magnetic energy levels, and
the electron density n depends only on the magnetic field B.

(a) How do you reconcile this quantization of n with the 2D electron density mea-
sured in zero magnetic field?

(b) Suppose now that we have a 2D semiconductor with 4-fold symmetry hav-
ing elliptical constant energy surfaces centered at the Brillouin zone boundary,
where the E(k) relation for pocket #1 is written as

E(k) = �
2k2x

2mxx
+ �

2k2y
2myy

, (14.43)

in which mxx = m0 and myy = 0.1m0. Starting with n0 electrons/cm2 at zero
magnetic field, find themagnetic fieldBc (forB ‖ z-axis) at which all the carriers
in pocket #1 are transferred to carrier pocket #2.

(c) What is ρxx and ρxy for this value of magnetic field Bc?
(d) How do you reconcile the results in part (b) with the results in part (a)?

14.3 Suppose that you have a modulation doped (n–type) quantum well structure
composed of layers of GaAs/Ga1−xAlxAs such that the bulk carrier density in the
GaAs is 1016/cm3 and the width of the quantum well is 80Å. (Use m∗

e = 0.07m0,
Eg1 = 1.42eV for GaAs, and Eg2 = 1.70 eV for Ga1−xAlxAs and ΔEc = 3ΔEv

for the band offsets). For simplicity in calculating the energy levels, use the energy
eigenvalues of the infinite well.

(a) What is the quantumwell widths range so that two bound states are contained in
the quantum well at zero magnetic field. How many Landau levels are occupied
at a field of 10 Tesla applied normal to the two dimensional electron gas? What
is the fractional occupation of the last Landau level? The fractional occupation
refers to the number of occupied states in the Landau level compared to the total
number of states in the Landau level obtained from the degeneracy factor.

(b) Give design parameters for a quantum well that has only 1 bound state level,
and this level has a filling factor or fractional occupation of 1/3.

Suggested Reading

R.E. Prange, S.M. Girvin, The Quantum Hall Effect (Springer, Berlin, 1987)
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Chapter 15
Review of Fundamental Relations
for Optical Phenomena

15.1 Introductory Remarks on Optical Probes

The optical properties of solids provide an important tool for studying energy band
structure, impurity levels, excitons, localized defects, lattice vibrations, and certain
magnetic excitations. In such experiments, we measure some observable, such as
reflectivity, transmission, absorption, ellipsometry or light scattering, and from these
measurements we deduce the dielectric function ε(ω), the optical conductivity σ(ω),
or the fundamental excitation frequencies. It is the frequency-dependent complex
dielectric function ε(ω) or the complex conductivity σ(ω), which is directly related
to the electronic energy band structure of solids.

The central question is the relationship between experimental observations and
the electronic energy levels (energy bands) of the solid. In the infrared photon energy
region, information on the phonon branches and on the electron-phonon interaction
is obtained. These issues are the major concern of Part III of this book.

15.2 The Complex Dielectric Function and the Complex
Optical Conductivity

Assuming no charge density in the absence of incident light, the complex dielec-
tric function and complex optical conductivity are introduced through Maxwell’s
equations (in standard international (SI) units)

∇ × H − ∂D
∂t

= j (15.1)

∇ × E + ∂B
∂t

= 0 (15.2)
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∇ · D = 0 (15.3)

∇ · B = 0 (15.4)

in whichH, E and j are the magnetic field, electric field and current density, whileD
and B are the electric and magnetic field in a medium. Modifying the magnitudes of
the variables E andH thereby provides a probe of the properties of specific materials
and their dependance on external variables, like temperature and pressure.

The constitutive equations relating D, B and j to E and H field are written as:

D = εE (15.5)

B = μH (15.6)

j = σE (15.7)

Equations (15.5), (15.6) and (15.7) respectively, define the quantities ε, μ and σ

from which the concepts of the complex dielectric function ε, the complex magnetic
permeability μ, and the complex electrical conductivity σ , are defined and will be
developed further in this chapter. When we discuss non–linear optics, these linear
constitutive equations (15.5)–(15.7) must be generalized to include higher order
terms in EE and EEE.

FromMaxwell’s equations and the constitutive equations, we obtain a wave equa-
tion for the variables E and H for electric and magnetic fields, respectively:

∇2E = εμ
∂2E
∂t2

+ σμ
∂E
∂t

(15.8)

and

∇2H = εμ
∂2H
∂t2

+ σμ
∂H
∂t

. (15.9)

For optical fields, we must look for a sinusoidal solution to (15.8) and (15.9)

E = E0e
i(K·r−ωt) (15.10)

where K is a complex propagation constant, ω is the frequency of the light, and i is
the imaginary unit. A solution similar to (15.10) is obtained for theH field. The real
part of K can be identified as a wave vector, while the imaginary part of K accounts
for the attenuation of the wave inside the solid material and corresponds to energy
dissipation, thereby increasing the local temperature. Substitution of the plane wave
solution (15.10) into the wave equation (15.8) yields the following relation for K :

K 2 = εμω2 + iσμω. (15.11)
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If there were no losses in energy propagation, K would be equal to

K0 = ω
√

εμ (15.12)

and would be a real number which has units of reciprocal length and K is thus
identified as a wave vector. However, since there are losses in a conducting medium,
we write

K = ω
√

εcomplexμ (15.13)

where we have defined the complex dielectric function as

εcomplex = ε + iσ

ω
= ε1 + iε2. (15.14)

As shown in (15.14) it is customary to write ε1 and ε2 for the real and imaginary
parts of εcomplex. From the definition in (15.14), it also follows that

εcomplex = i

ω

[
σ + εω

i

]
= i

ω
σcomplex, (15.15)

where we define the complex conductivity σcomplex as:

σcomplex = σ + εω

i
= σ − iεω (15.16)

showing the phase relation between εcomplex and σcomplex.
Now that we have defined the complex dielectric function εcomplex and the complex

conductivity σcomplex, these quantities are related to measurable materials properties,
that are important for optical device applications:

1. observables such as the photon reflectivity and absorption which are mea-
sured in the laboratory;

2. properties of the solid material such as the carrier density, relaxation time,
effective masses, energy band gaps, etc., which link materials properties to
application opportunities.

15.2.1 Propagating Waves

Let us consider a wave propagating along the z direction. After substituting K in
(15.10), the solution (15.11) to the wave equation (15.8) yields a plane wave
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E(z, t) = E0e
−iωt e

(
iωz

√
εμ

√
1+ iσ

εω

)
. (15.17)

For the wave propagating in vacuum (ε = ε0, μ = μ0, σ = 0), (15.17) is reduced to
a simple plane wave solution

E(z, t) = E0e
i(Kz−ωt) (15.18)

where K = K0 = ω
√

ε0μ0 and c = 1/
√

ε0μ0 is the speed of the eletromagnetic
wave and the wave propagates in vacuum with light velocity c.

If the wave is propagating in amedium of finite electrical conductivity, the (15.17)
can be written as

E(z, t) = E0e
− ω

c k̃zei(
ω
c ñz−ωt) (15.19)

where ñ and k̃ are, respectively, the real and imaginary parts of the complex index
of refraction defined as

Ñcomplex(ω) = √
μεcomplex =

√
εμ

(
1 + iσ

εω

)
= ñ(ω) + i k̃(ω), (15.20)

where k̃ is also called the extinction coefficient and has units of time/length. The
intensity of the electric field, |E |2 = E2

0e
−2ωk̃z , decays as the wave propagates

through the material. When the electric field intensity falls off to 1/e (where e =
2.718) of its value at the surface (let us set z = 0 at the surface), the wave will have
traveled over a characteristic distance δ called the electromagnetic skin depth whose
value is obtained from the condition

|E(0)|2
|E(δ)|2 = e = E2

0

E2
0e

−2 ω
c k̃δ

, (15.21)

so that

δ = c

2ωk̃
= 1

αabs
(15.22)

where αabs(ω) is the absorption coefficient for the solid at frequency ω, thereby
defining both the electromagnetic skin depth δ and the absorption coefficient αabs.

Since light is described by a transverse wave, there are two possible orthogonal
directions for the E vector in a plane normal to the propagation direction and these
directions determine the polarization of the light. For cubic materials, the index of
refraction is the same along the two transverse directions. However, for anisotropic
media, the index of refraction will be different for the two polarization directions.
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15.3 Relation of the Complex Dielectric Function
to Observables

In the previous Sect. 15.2.1, we introduced the complex index of refraction Ñcomplex,
which can be expressed in terms of the complex dielectric function εcomplex

Ñcomplex = c
√

μεcomplex (15.23)

where
K = ω

c
Ñcomplex (15.24)

Here, the wave vector K has the units of reciprocal length, and Ñcomplex is usually
written in terms of its real and imaginary parts (see (15.20))

Ñcomplex = ñ + i k̃ = Ñ1 + i Ñ2. (15.25)

The quantities ñ and k̃ are collectively called the optical constants of the solid, where
ñ denotes the index of refraction and k̃ is the extinction coefficient. (We use the tilde
over the optical constants ñ and k̃ to distinguish them from the carrier density and
wave vector which are denoted by n and k). The extinction coefficient k̃ vanishes
for lossless materials. For non-magnetic materials, we can take μ = μ0, and the
approximation of a non-magnetic material will be made in writing the equations
(15.26), (15.27) and (15.28) below. A generalization of μ > μ0 yields a class of
materials with interesting magnetic properties, and the special materials which allow
μ and ε to have negative values are called metamaterials.

With this definition for Ñcomplex in (15.25), we can relate

εcomplex = ε1 + iε2 = εo(ñ + i k̃)2 (15.26)

yielding the important relations

ε1 = εo(ñ
2 − k̃2) (15.27)

ε2 = εo(2ñk̃) (15.28)

where we note that ε1, ε2, ñ and k̃ are all frequency dependent, as well as being
temperature and pressure dependent, etc.

Many important measurements of the optical properties of solids involve the
simplest case of normal incidence reflectivity, which is illustrated in Fig. 15.1. Inside
the solid, the electromagnetic wave will be attenuated relative to the incident value
of E0. We assume for the present discussion that the sample under consideration is
thick enough so that reflections from the back surface can be neglected. We can then
write the wave inside the solid for this one-dimensional propagation problem as
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Fig. 15.1 Schematic diagram of normal incidence reflectivity

Ex = E0e
i(Kz−ωt) (15.29)

where x is the polarization direction and z is the direction of light propagation. Then
the complex propagation constant for the light is given by K = (ω/c) Ñcomplex.

On the other hand, we know that in free space we have both an incident wave E1

and a reflected wave E2:

Ex = E1e
i( ω

c z−ωt) + E2e
i(− ω

c z−ωt) (15.30)

in which c is the speed of light, z is the direction of the incident wave, −z is that for
the reflected wave, and x is a direction in the plane, parallel to the scattering surface.
From (15.25) and (15.30), the continuity of Ex across the surface of the solid requires
that

E0 = E1 + E2. (15.31)

where E0 is the sum of the amplitude of the incident and reflected waves, which is
the first relation between the field amplitudes. (For this discussion, anisotropy of the
material in plane is neglected.) The second relation between E0, E1, and E2 follows
from the continuity condition for the tangential Hy field across the boundary of the
solid, where the y direction is the in-plane direction perpendicular to the x direction,
following the right hand rule. From Maxwell’s equation (15.2) we have

∇ × E = −μ
∂H
∂t

= iμωH (15.32)

which results in
∂Ex

∂z
= iμωHy . (15.33)
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The continuity condition on Hy thus yields a continuity relation for ∂Ex/∂z so that
from (15.33)

E0K = E1
ω

c
− E2

ω

c
= E0

ω

c
Ñcomplex (15.34)

or
E1 − E2 = E0 Ñcomplex, (15.35)

which is the second equation between E , E1 and E2.
The normal incidence reflectivity R is then written as

R =
∣∣∣∣ E2

E1

∣∣∣∣
2

(15.36)

which is most conveniently related to the reflection coefficient r̃ given by

r̃ = E2

E1
. (15.37)

From (15.31) and (15.35), we have the results

E2 = 1

2
E0(1 − Ñcomplex) (15.38)

E1 = 1

2
E0(1 + Ñcomplex) (15.39)

so that the normal incidence reflectivity becomes

R =
∣∣∣∣∣
1 − Ñcomplex

1 + Ñcomplex

∣∣∣∣∣
2

= (1 − ñ)2 + k̃2

(1 + ñ)2 + k̃2
(15.40)

and the reflection coefficient for the wave itself is given by

r̃ = 1 − ñ − i k̃

1 + ñ + i k̃
(15.41)

where the reflectivity R is a number less than unity and r̃ has an amplitude of less
than unity. We have now related one of the physical observables r̃ to the optical
constants ñ and k̃.

To relate these results to the power absorbed and the power transmitted at normal
incidence, we utilize the following relation which expresses the idea that all the
incident power is either reflected, absorbed, or transmitted

1 = R + A + T (15.42)
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where R, A , and T are, respectively, the fraction of the power that is reflected,
absorbed, and transmitted as illustrated in Fig. 15.1. At high temperatures, the most
common observable is the emissivity, which is equal to the absorbed power for a
black body or is equal to 1 − R assuming T =0. As an exercise, it is instructive to
derive expressions forR andT when we have relaxed the restriction of no reflection
from the back surface. Multiple reflections are encountered in optically thin films.

The discussion thus far has been directed toward relating the complex dielectric
function or the complex conductivity to physical observables. If we know the optical
constants, then we can find the reflectivity.We nowwant to ask the opposite question.
Suppose we know the reflectivity, can we find the optical constants? Since there are
two optical constants, ñ and k̃, we need to make two independent measurements,
such as the reflectivity at two different angles of incidence.

Nevertheless, even if we limit ourselves to normal incidence reflectivity measure-
ments, we can still obtain both ñ and k̃ provided that we make these reflectivity
measurements for all frequencies. This is possible because, from a mathematical
standpoint, the real and imaginary parts of a complex physical function are not inde-
pendent. Because of causality, ñ(ω) and k̃(ω) are related to each other through the
Kramers–Kronig relation, whichwewill discuss in Chap.19. Since normal incidence
measurements are easier to carry out in practice, it is quite possible to study the opti-
cal properties of solids with just normal incidence measurements, and then to do a
Kramers–Kronig analysis of the reflectivity data to obtain the frequency–dependent
dielectric functions ε1(ω) and ε2(ω) or the frequency–dependent optical constants
ñ(ω) and k̃(ω).

In treating a solid, we will need to consider contributions to the optical proper-
ties from various electronic energy band processes, which can occur over a large
frequency range. To begin with, there are intraband processes which correspond to
the electronic conductionby free carriers, andhence aremore important in electrically
conducting materials, such as metals, semimetals, and degenerate semiconductors.
These intraband processes can be understood in their simplest terms by the classical
Drude theory (see Chap.16), or in more detail by solving the classical Boltzmann
equation or by using the quantummechanical densitymatrix technique. In addition to
the intraband (free carrier) processes, there are interband processes (see Chap.17)
which correspond to the absorption of electromagnetic radiation by an electron in an
occupied state below the Fermi level, thereby inducing a transition to an unoccupied
state in a higher band. This interband process is intrinsically a quantum mechanical
process and must be discussed in terms of quantum mechanical concepts.

In practice, we consider in detail the contribution of only a few energy bands,
namely the most important or dominant energy bands, to optical properties. In many
cases we also restrict ourselves to the detailed consideration of only a portion of
the Brillouin zone such as the band edges where the density of states is high and
where strong interband transitions occur, especially in an energy range of particular
interest to a given experiment. The intraband and interband contributions that are
neglected in the present discussion are considered in Chap.17 in an approximate
way by introducing a core dielectric εcore constant, which is taken in the simplest

http://dx.doi.org/10.1007/978-3-662-55922-2_19
http://dx.doi.org/10.1007/978-3-662-55922-2_16
http://dx.doi.org/10.1007/978-3-662-55922-2_17
http://dx.doi.org/10.1007/978-3-662-55922-2_17
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approximation to be independent of frequency and external parameters, such as
temperature, pressure, strain, etc.

15.4 Units for Frequency Measurements

The frequency of light is measured in several different units in the literature and here
we list some of them which are particularly useful. The relation between the various
units are: 1eV= 8065.5cm−1 = 2.418×1014 Hz= 11,600K. Also 1eV corresponds
to a wavelength of 1.2398µm, and 1cm−1 = 0.12398meV = 3 × 1010 Hz.

Problems

15.1 Optical constants and attenuated field amplitudes.

(a) Starting from (15.11) show that the optical constants ñ and k̃ (real (Re(Ñcomplex))
and imaginary (Im(Ñcomplex)) part of the complex propagation constant) are given

by ñ = c
√

εμ

2

[
1 +

√
1 + (

σ
εω

)2]1/2

and k̃ = c
√

εμ

2

[
−1 +

√
1 + (

σ
εω

)2]1/2

.

(b) Consider a plane wave whose electric field E is polarized along x and propa-
gating along z is given by E(z, t) = E0e− ω

c k̃zei(
ω
c ñz−ωt) î. Use Maxwell’s equa-

tions to demonstrate that the respective magnetic field is given by H(z, t) =
1
c
Ñ
μ
E0e− ω

c k̃zei(
ω
c ñz−ωt) ĵ.

(c) Show that the ratio between the amplitudes of the fields is given by H0
E0

=√
ε/μ

√
1 + (

σ
εω

)2
.

(d) Plot the fields E(z, t) and H(z, t) inside the solid material.

15.2 (a) Show that for a very good conductor the phase difference between the
magnetic field H and the electric field E is π/4. (Hint: Use the result obtained
in the previous problem and write the complex quantity Ñ = |Ñ |eiφ .)

(b) Verify the result obtained in (a) for a metal with a conductivity σ ≈ 107 
m−1.

15.3 (a) Show that the time averaged electromagnetic energy density of a plane
wave in a conducting medium is given by (K 2/2μω2)E2

0e
−2 ω

c k̃z .
(b) Show that the magnetic contribution to the electromagnetic energy density is

given by (ñ2/c2μ)E2
0e

−2 ω
c k̃z .

(c) Plot the result derived in (a) and (b) as a function of z and ω thereby showing
that the magnetic contribution always dominates the energy in this situation.

15.4 (a) Show that for insulating materials, i.e., σ � ωε, the skin depth is inde-

pendent of frequency and given by δ = c
2ωk̃

= 1
σ

√
ε
μ
.



326 15 Review of Fundamental Relations for Optical Phenomena

(b) Estimate the skin depth in diamond and water, and give a numerical value in
each case.

(c) What is the difference in absorption at a depth of 1000m in the ocean and in an
inland lake.

15.5 When a sample consists ofmore than onematerial and is non-homogeneous, the
optical properties are modified in a non-trivial manner. One approach to approximate
the optical response of a heterogeneous material in terms of its microstructure is by
using an effective medium theory (EMT). EMT relates the dielectric function of a
composite material with the dielectric function of the constituents materials, where
the complex dielectric function, ε1 + iε2, is that used in Maxwell’s equations and is
defined as

D = εE = E + 4π P.

The dielectric function of a composite material can be easily solved for two situations
given by (a) and (b) below.

(a) Show that if the internal boundaries are parallel to the applied electric field,
the situation is analogous to capacitors in parallel, and the effective dielectric
function is related to the dielectric function of the composites by the following
equation:

εcomposite =
∑
j

f jε j

where ε j and f j are the complex dielectric function and volume fraction of each
constituent material, j .

(b) Show that in the opposite limit, i.e., the boundaries are perpendicular to the
applied electric field, the situation is analogous to capacitors in series and the
composite’s dielectric function is given by:

ε−1
composite =

∑
j

f jε
−1
j

These two cases define the absolute bounds to ε. The dielectric function of all com-
posite materials lie on or within the region defined in the complex plane of ε.

15.6 (a) Derive a formula for the normal incidence reflectivity for a thin film of
thickness t and the optical constants ñ and k̃. Assume that ñ � k̃ and t is within
a factor of 2 of the wavelength of light λ.

(b) Consider explicitly the case of light from a CO2 laser (λ = 10.6µm) and a
sample thickness t = 5µm and t = 20µm.

(c) Suppose that you have a superlattice of alternating thin films of dielectric con-
stants ε1 and ε2, and thickness t1 and t2 respectively. Find the normal inci-
dence reflectivity, neglecting optical losses (i.e., take the optical constants
k1 = k2 = 0).
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Chapter 16
Drude Theory–Free Carrier Contribution
to the Optical Properties

16.1 The Free Carrier Contribution

In this chapter, we relate the optical constants to the electronic properties of the
solid material, by considering the real and imaginary parts of the dielectric function
ε = ε1 + iε2, the frequency dependence of ε1 and ε2, and considering both classical
behavior, collective behavior, while providing background for studying the overall
optical properties of solid state materials. One major contribution to the dielectric
function that was introduced in Chap.15 is through the “free carriers”. Such free
carrier contributions are very important in semiconductors and metals, and the main
effect of free carriers can be understood in terms of a simple classical conductivity
model, called the Drude model. This model is based on the classical equations of
motion of an electron in an optical electric field, and gives the simplest theory for
the so called optical constants. The classical equation of motion for the drift velocity
v of the free carrier is given by

m
dv

dt
+ mv

τ
= eE0e

−iωt (16.1)

where the relaxation time τ is introduced to provide a damping or dissipative term,
(mv/τ ), and a sinusoidally time-dependent electric field E0e−iωt provides the driving
force. To respond to a sinusoidal applied field, the electrons undergo a sinusoidal
motion which can be described as

v = v0e
−iωt (16.2)

so that (16.1) becomes

(−miω + m

τ
)v0 = eE0 (16.3)

and the amplitudes v0 and E0 are thereby related. The current density j is related to
the drift velocity v0 and to the carrier density n by
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j = nev0 = σ E0, (16.4)

thereby introducing the electrical conductivity σ . Substitution for the drift velocity
v0 into (16.4) yields

v0 = eE0

(m/τ) − imω
(16.5)

as well as the complex electrical conductivity

σ = ne2τ

m(1 − iωτ)
. (16.6)

In writing σ in the Drude expression (16.6) for the free carrier conduction, we have
suppressed the subscript in σcomplex, as is conventionally done in the literature. In
what follows we will always write σ and ε to denote the complex conductivity and
complex dielectric constant and suppress subscripts “complex” in order to simplify
the notation. Amore elegant derivation of theDrude expression can bemade from the
Boltzmann formulation, as is done in Part II under the heading of transport properties
of solids.

In a real solid material, the same result as given above follows when the effec-
tive mass approximation can be used. Following the results for the dc conductivity
obtained in Part II, an electric field applied in one direction can produce a force in
another direction because of the anisotropy of the constant energy surfaces in actual
solid materials. Because of the anisotropy of the effective mass tensor in solids, j
and E are related by the tensorial relation,

jα = σαβEβ (16.7)

thereby defining the conductivity tensor σαβ as a second rank tensor. For perfectly
free electrons in an isotropic (or in a cubic)medium, the conductivity tensor is written
as:

↔
σ=

⎛
⎝

σ 0 0
0 σ 0
0 0 σ

⎞
⎠ (16.8)

andwehave our usual simple scalar expression j = σ E. However, in a solidmaterial,
σαβ can have off-diagonal terms, because the effective mass tensors are related to the
curvature of the energy bands E(k) by the relation

(
1

m

)

αβ

= 1

�2

∂2E(k)
∂kα∂kβ

. (16.9)

The tensorial properties of the conductivity follow directly from the dependence of
the conductivity on the reciprocal effective mass tensor.
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As an example, semiconductors such as CdS and ZnO exhibit the wurtzite struc-
ture, which is a non-cubic structure. These semiconductors are uniaxial and contain
an optic axis (which for the wurtzite structure is usually taken to be along the c-axis),
along which the velocity of propagation of light is independent of the polarization
direction. Along other directions of propagation, the velocity of light is different for
the two polarization directions, giving rise to a phenomenon called birefringence,
which is studied conveniently by optical techniques. Crystals with tetragonal or
hexagonal symmetry are uniaxial. Crystals with lower symmetry can have two axes
along which the light propagates at the same velocity for the two polarizations of
light (but the actual velocities will be different from each other), and these crystals
are therefore called biaxial crystals.

The constant energy surfaces for a large number of the common semiconductors
have a small carrier concentration, so that these carrier pockets in reciprocal space
can be described by ellipsoids as constant energy surfaces and the effective masses
of the carriers in these simple ellipsoidal carrier pockets are given by an effective
mass tensor mαβ which can be obtained from (16.9). It is a general result that for
cubic materials (in the absence of externally applied stresses and magnetic fields),
the conductivity for all electrons and all the holes is described by a single scalar
quantity σ . To describe conduction processes in hexagonal materials, we need to
introduce two constants: σ‖ for conduction along the high symmetry axis and σ⊥ for
conduction in the basal plane perpendicular to the high symmetry axis. These results
can be directly demonstrated by summing the contributions to the conductivity from
all carrier pockets.

In narrow gap semiconductors the effective mass tensor, mαβ , is itself a function
of energy. If this is the case, the Drude formula is valid when mαβ is evaluated at the
Fermi level and n is the total carrier density. Suppose now that the only conduction
mechanism that we are treating in detail is the free carrier mechanism. Then we
would consider all other contributions to σ in terms of the core dielectric constant
εcore to obtain for the total complex dielectric function

ε(ω) = εcore(ω) + iσ/ω (16.10)

where

σ(ω) =
(
ne2τ/m∗

)
(1 − iωτ)−1 (16.11)

in which σ/ω denotes the imaginary part of the free carrier contribution to the com-
plex dielectric function of (16.10). If there were no free carrier absorption, σ = 0 and
ε = εcore, and, m∗ �= m so that in empty space ε = εcore = εo. Substituting (16.11)
into 16.10 gives

ε = εcore + i

ω

ne2τ

m(1 − iωτ)
= (ε1 + iε2) = εo(ñ + i k̃)2. (16.12)
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It is of interest to consider the expression in (16.12) in two limiting cases: low and
high frequencies, as described in Sects. 16.2 and 16.3.

16.2 Low Frequency Response: ωτ � 1

In the low frequency regime (ωτ � 1), we obtain from (16.12)

ε � εcore + ine2τ

mω
. (16.13)

Since the free carrier term in (16.13) shows a 1/ω dependence, as ω → 0, this term
dominates in the low frequency limit. The core dielectric constant εcore in (16.13) is
typically 16 for geranium, 12 for silicon and perhaps 100 or more, for narrow gap
semiconductors like PbTe. It is also of interest to note that the core contribution εcore
and free carrier contribution ine2τ/mω are 90◦ out of phase in the complex plane.

To find the optical constants ñ and k̃, we need to take the square root of ε in
(16.12). Since we will see below that ñ and k̃ are both large in the low frequency
regime, we can for the moment ignore the core contribution εcore in (16.13) and we
then obtain:

√
ε �

√
ne2τ

mω

√
i = √

εo(ñ + i k̃) (16.14)

and using the identity √
i = e

π i
4 = 1 + i√

2
(16.15)

we obtain

ñ = k̃ =
√

ne2τ

2εomω
. (16.16)

We see that in the low frequency limit ñ ≈ k̃, and that ñ and k̃ are both large. Therefore
the normal incidence reflectivity can be simply written as

R = (ñ − 1)2) + k̃2

(ñ + 1)2) + k̃2
� ñ2 + k̃2 − 2ñ

ñ2 + k̃2 + 2ñ
= 1 − 4ñ

ñ2 + k̃2
� 1 − 2

ñ
. (16.17)

Thus, the Drude theory shows that at low frequencies a material with a large con-
centration of free carriers (e.g., a metal) is almost a perfect reflector.
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16.3 High Frequency Response: ωτ � 1

In the ωτ 
 1 limit, (16.12) can be approximated by:

ε � εcore − ne2

mω2
. (16.18)

As the frequency becomes large, the 1/ω2 dependence of the free carrier contribution
guarantees that free carrier effects will become less important, and other processes
will dominate. In practice, these other processes are the interband processes which in
(16.18) were previously dealt with in a very simplified form through the core dielec-
tric constant εcore, but now become the dominant process. Using this new approx-
imation in the high frequency limit, we can neglect the free carrier contribution in
(16.18) to obtain √

ε ∼= √
εcore ≡ real number. (16.19)

Equation16.19 implies that ñ > 0 and k̃ = 0 in the limit of ωτ 
 1, with

R → (ñ − 1)2

(ñ + 1)2
(16.20)

where ñ = √
εcore/εo. Thus, in the limit of very high frequencies, the Drude contribu-

tion is unimportant and the behavior of all materials is similar to that of a dielectric.

16.4 The Plasma Frequency

The plasma medium is defined as a neutral system in which some of the carriers
are free to move under the action of eletromagentic fields. Metals or degenerate
semiconductors are very good examples of a plasma medium because both have
free carriers. Thus, at very low frequencies the optical properties of semiconductors
exhibit a metal-like behavior, while at very high frequencies their optical properties
are like those of insulators. A characteristic frequency at which the material changes
from metallic behavior to a dielectric response is called the plasma frequency ω̂p,
which is defined as that frequency at which the real part of the dielectric function
vanishes ε1(ω̂p) = 0. Thus, the plasma frequency defines the boundary region below
which the transverse electromagnetic wave propagates in a given medium containing
free carriers that attenuate the wave propagation, and a wave at higher frequency
(above ω̂p) that propagates without attenuation because the phase change of the
wave is too fast to be affected by the pressure of free carriers. In summary, if ω > ω̂p

thewave propagates (insulating-likemedium) and ifω < ω̂p thewaves are attenuated
(conducting-like medium). According to the Drude theory (16.12), we have
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Fig. 16.1 The frequency
dependence of ε1(ω),
showing the definition of the
plasma frequency ω̂p by the
relation ε1(ω̂p) = 0

ε = ε1 + iε2 = εcore + i

ω

ne2τ

m(1 − iωτ)
·
(
1 + iωτ

1 + iωτ

)
(16.21)

where we have written ε in a form which exhibits its real and imaginary parts explic-
itly. We can then write the real and imaginary parts ε1(ω) and ε2(ω) as:

ε1(ω) = εcore − ne2τ 2

m(1 + ω2τ 2)
ε2(ω) = 1

ω

ne2τ

m(1 + ω2τ 2)
. (16.22)

The free carrier term makes a negative contribution to ε1 which tends to cancel the
core contribution, shown schematically in Fig. 16.1.

We see in Fig. 16.1 that ε1(ω) vanishes at some frequency (ω̂p) so that we can
write

ε1(ω̂p) = 0 = εcore − ne2τ 2

m(1 + ω̂2
pτ

2)
(16.23)

which yields

ω̂2
p = ne2

mεcore
− 1

τ 2
= ω2

p − 1

τ 2
. (16.24)

Since the term (−1/τ 2) in (16.24) is usually small compared withω2
p, it is customary

to neglect this term and to identify the plasma frequency with ωp defined by

ω2
p = ne2

mεcore
(16.25)

in which the screening of free carriers occurs through the core dielectric constant
εcore of the medium. If εcore is too large, then ε1(ω) never goes negative and there is
no plasma frequency. The condition for the existence of a plasma frequency is

εcore <
ne2τ 2

m
. (16.26)
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Fig. 16.2 Reflectivity R
dependence on photon
frequency for a metal or a
degenerate semiconductor.
The R goes to zero at the
plasma frequency ω̂p
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The quantity ωp in (16.25) is called the screened plasma frequency in the literature.
Another quantity called the unscreened plasma frequency, which is obtained from
(16.22) by setting εcore = εo, is also used in the literature.

The dependence of the reflectivity spectra (versus wavelength) for various donor
concentrations for heavily doped n-type InSb is shown in Fig. 16.3. The dependence
of the plasma frequency on the carrier concentration is readily visible from the data
in Fig. 16.3. This profile is also observed in metals.

At low frequencies, free carrier conduction dominates, and the reflectivity R is
100%. In the high frequency limit, we have

R ∼ (ñ − 1)2

(ñ + 1)2
(16.27)

Here,R is large if ñ 
1. In the vicinity of the plasma frequency, ε1(ω̂p) is small by
definition; furthermore, ε2(ωp) is also small, since from (16.22).

ε2(ωp) = ne2τ

mωp(1 + ω2
pτ

2)
(16.28)

and if ωpτ 
 1

ε2(ωp) ∼= εcore

ωpτ
(16.29)

so that ε2(ωp) is also small. With ε1(ωp) = 0, we have from (16.27) ñ ∼= k̃ and
ε2(ωp) = 2εoñk̃ � 2εoñ2. We thus see that ñ tends to be small near ωp and con-
sequently R is also small (see Fig. 16.2). The steepness of the dip at the plasma
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Fig. 16.3 Room temperature
reflectivity spectra of n-type
InSb with a carrier
concentration (labeled N in
the figure) varying between
3.5 × 1017 cm−3 and
4.0 × 1018 cm−3 (see inset
upper left). Here we see two
phenomena: The reflectivity
R goes to zero at the plasma
frequency, ωp . The plasma
frequency ωp moves to
shorter wavelengths λ as the
carrier concentration N
increases. The solid curves
are theoretical fits to the
experimental data points,
including consideration of
the energy dependence of m∗
due to the strong interband
coupling (called
non-parabolic effects)
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frequency in Fig. 16.2 is governed by the relaxation time τ ; the longer the relaxation
time τ , the sharper is the plasma structure near ω̂p.

In metals, free carrier effects are almost always studied by optical reflectivity
techniques because of the high optical absorption of metals at low frequency. For
metals, the free carrier conductivity appears to be quite well described by the simple
Drude theory. In studying free carrier effects in semiconductors, it is usually more
accurate to use absorption techniques, which are discussed in Chap.18. Because of
the connection between the optical and the electrical properties of a solid through the
conductivity tensor, transparent materials are expected to be poor electrical conduc-
tors, while highly reflecting materials are expected to be reasonably good electrical
conductors. It is, however, possible for a material to have its plasma frequency just
below visible frequencies, so that thematerial will be a good electrical conductor, and
yet be transparent at visible frequencies. Because of the close connection between
the optical and electrical properties, free carrier effects are sometimes exploited in
the determination of the carrier density in instances where Hall effect measurements
are difficult to make.

The contribution of holes to the optical conduction is of the same sign as for the
electrons, since the conductivity depends on an even power of the charge (σ ∝ e2). In
terms of the complex dielectric constant, we canwrite the contribution from electrons
and holes as

http://dx.doi.org/10.1007/978-3-662-55922-2_18
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ε = εcore + i

ω

[
nee2τe

me(1 − iωτe)
+ nhe2τh

mh(1 − iωτh)

]
(16.30)

where the parameters ne, τe, andme pertain to the electron carriers and nh , τh , andmh

are for the holes. The plasma frequency is again found by setting ε1(ω) = 0. If there
are multiple electron or hole carrier pockets, as is common for semiconductors, the
contributions from each carrier type to the complex dielectric function ε is additive,
using a formula similar to (16.30).

16.5 Plasmon Resonant Nanoparticles

The plasma frequency of most bulk metals lies in the ultraviolet wavelength range.
When metal nanoparticles are made much smaller than the wavelength of light, this
plasmon resonance (which occurs approximately when the real part of the dielec-
tric function ε1 goes to zero) is shifted into the visible region of the electromag-
netic spectrum. Figure16.4 shows an atomic force microscope (AFM) image and
a UV-Vis absorption spectrum of 25nm gold nanoparticles. The spectrum shows
plasmon resonant absorption near λ = 532nm. When irradiated at this plasmon res-
onant wavelength, immense plasmonic charge and intense electric fields occur at the
surface of the nanoparticle, which can exceed the incident electric field intensity by
more than three orders of magnitude. These immense plasmonic fields have been
utilized for surface enhanced Raman spectroscopy (SERS), plasmon enhanced pho-
tocatalysis and dye sensitized solar cells. (See, for example, Kneipp, et al., Physical
Review Letters, 78, 1667 (1997) and Hou, et al. Advanced Functional Materials, 23,
1612–1619 (2013)).

The plasmon resonance ofmetal nanostructures depends very strongly on the size,
shape, and separation of metal nanostructures. Figure16.5a shows an SEM image of
a 5nm gold film deposited by electron beam evaporation, which is not thick enough
to form a continuous film, but instead forms an island-like structure. The plasmon
absorption of this film, plotted in Fig. 16.5c, is broadened and redshifted because

Fig. 16.4 a Atomic force microscope image of 25nm diameter gold nanoparticles. b Absorption
spectra of 25nm gold nanoparticles showing plasmon resonant absorption near λ = 532nm. Inset
shows a photograph of 25nm gold nanoparticles in solution
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Fig. 16.5 a, b SEM images and c, d absorption spectra of a 5nm Au thin film before (left) and
after (right) thermal annealing in air at 600◦C for half one hour. The insets show photographs of
the Au nanoparticle film c before and d after annealing

of the large inhomogeneity in size, shape, and separation of these islands. After
annealing, these islands form well separated spheres that are more uniform in size,
shape, and separation, and the well-defined plasmon resonance near λ=532nm is
recovered.

16.6 Surface Plasmon Polaritons in Graphene

Due to its high carriermobility and tunable carrier Fermi level, graphene has emerged
as a promising materials for tunable terahertz to mid-infrared plasmonics. In con-
trast to conventional plasmonic materials, plasmons in graphene exhibit a rich array
of unique features: (i) The Fermi level of carriers in graphene can be readily tuned
by chemical doping or electrostatic gating, which can significantly modify the plas-
monic responses of the material, as shown in Fig. 16.6. (ii) Graphene plasmons (GP)
demonstrate strong field confinement. The plasmonwavelengths in graphene are typ-
ically 1 to 3 orders of magnitude smaller than the light wavelength. (iii) The charge
carriers in graphene have long mean free paths, resulting in a relatively long optical
relaxation time (∼100 fs), compared to∼10 fs in gold. This results in lower plasmon
dissipation and longer plasmon lifetimes in graphene. (iv) The crystalline graphene
lattice structures can be defect-free over several plasmon wavelengths.

By patterning graphene, for example, into ribbons or disks, localized plasmon
modes can be excited by incident light. For incident light polarized perpendicular
to the ribbon, distinctive absorption peaks originating from plasmon oscillations
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Fig. 16.6 Extinction spectrum of CVD graphene sample subject to electrical biasing by the back-
gate applied through 285nm SiO2 dielectric. As the back-gate voltage (VBG) varies from −50V to
50V, the extinction ratio is modulated by up to 30% at low frequency

dominate the optical response. The dependence of the graphene plasmon frequency
on ribbonwidth and carrier density exhibits a characteristic power-law relation for the
two-dimensional massless Dirac fermions. The plasmon frequency scales withW 1/2

and n1/4, where W is the ribbon width and n is the carrier density, as predicted by
the random phase approximation (RPA). In addition to the tunable surface plasmons
in graphene ribbons, plasmon hybridization in coupled graphene ribbons has been
observed and the splitting of GPs into bulk and edge modes under high magnetic
fields has also been demonstrated.

The strong field confinement inGPs also facilitates the studyof strong light-matter
coupling or Vacuum Rabi Splitting (VRS). In graphene, the very small mode con-
finement compensates for the low quality factors (Q∼10) for graphene plasmons in
mid-infrared regime. Large vacuum Rabi splitting and Purcell factors are predicted
due to strong light matter interaction assisted by graphene plasmons. More interest-
ingly, the tunable EF of graphene provides an elegant approach to manipulate the
coupling strength.

The plasmons in graphene can also couple strongly to polar phonons from the
substrate, such as SiO2 and atomically thin hexagonal boron nitride (h-BN). As
shown in Fig. 16.7, the graphene plasmon resonance couples to the IR-active E1U

phonon mode at 1373 cm−1 in monolayer h-BN. The clear anti-crossing char-
acteristics in the spectrum near 1373cm−1 correspond to hybridized plasmon-
phonon modes near the surface polar phonon frequency of monolayer h-BN.
This phenomena, named the phonon induced transparency (PIT), is analogous to
electromagnetically induced transparency (EIT), typically resulting from thedestruc-
tive interference between a direct transition and an indirect transition pathway.
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Fig. 16.7 The scaling of the Plasmon resonance and coupling with the E1u phonon in single-layer
h-BN. Extinction spectra are shown for graphene ribbon width varying from 80nm to 300nm

Fig. 16.8 Brillouin zone for graphite showing the high symmetry points and the location of both
the electron and hole pockets

Furthermore, in Bernal-stacked bilayer graphene, the plasmons can also couple to
the intrinsic IR-active phonons of bilayer graphene in a similar way. This EIT-like
phenomenon in graphene plasmonic material with tunable resonance characteristics
may open the door to a range of novel applications in room temperature nonlinear
quantum optics, quantum information processing, and slow light.

In the following Chapter, we will treat another absorption process which is due
to electron and/or hole interband transitions. In the above discussion, interband tran-
sitions were included in an extremely approximate way. That is, interband transi-
tions were treated through a frequency independent core dielectric constant εcore
(see (16.12)). In Chap.17 we consider the frequency dependence of this important
contribution to the optical properties.

http://dx.doi.org/10.1007/978-3-662-55922-2_17
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Problems

16.1 Find the plasma frequency ωp for a semimetal for light incident in an in-plane
direction (such as the x-direction) for the two light polarization directions E ⊥ z
and E ‖ z. The 6 electron pockets are located about the K point at the center of
the Brillouin zone edge HKH. Assume mass components for the electron carriers
mt = 0.06m0 and m� = m0, where m0 is the free electron mass, and EF = 50meV
above the conduction band minima. As an intermediate step you will need to find
Eh
F for holes.

16.2 (a) Assuming one free electron per Cu atom, calculate the plasma frequency
for metallic Cu. Why then does Cu have a characteristic reddish color?

(b) ReO3 is a reddish semi-transparent material to visible radiation, yet a good
electrical conductor. How can this be explained?

(c) Sapphire is a good thermal conductor, yet a material that is optically transparent
to visible light. How can this be explained?

(d) Doped SiO2 is used as a transparent electrode. Explain how it is possible that
this material can be used to make good electrical contacts and yet is transparent
to visible light.

16.3 This problem involves the plasma frequency at room temperature for heavily
doped p-type GaAs. Assume an acceptor impurity concentration NA = 1018/cm3

(assume all acceptor levels are occupied by electrons), and usemlh = 0.07m0,mhh =
0.6m0 ,me = 0.07m0, Egap = 1.4eV, εcore = 15 for the band parameters and for the
core dielectric constant.

(a) Find the position of the Fermi level for this 3 dimensional sample.
(b) What is the approximate concentration of electrons? of holes?
(c) Find the plasma frequency for this semiconductor at T = 300K.
(d) Calculate the change in band gap between the bulk and the 5nm quantum well.
(e) If the GaAs (with the same materials parameters) is made into a quantum well

of 5nm thickness, what is the expected change in the plasma frequency?
(f) What is the change in functional form of the onset of the absorption edge for the

quantum well relative to the bulk?
(g) What is the effect of making a 5nm quantumwell on the exciton binding energy?

16.4 Suppose that you have an fcc semimetal with 2 atoms per unit cell. Suppose
that the electrons are at the L points, π/a(1, 1, 1), (m∗

l = 0.3m0 andm∗
t = 0.1m0) in

the Brillouin zone and the holes are in a single carrier pocket at the � point (k = 0)
with m∗

h = 0.3m0, and assume that the energy band overlap for this semimetal is
10 meV.

(a) Find the position of the Fermi level for the 3 dimensional semimetal at T = 0 K.
(b) Find the plasma frequency for this semimetal at T = 0 K (assume εcore = 1.0

and ω2
pτ

2 
 1).
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(c) Suppose that the semimetal is now prepared as a thin layer (quantum well)
between alkali halide insulating barriers with the (001) crystalline direction nor-
mal to the thin layer of the semimetal (layer thickness= 50 nm). Does the plasma
frequency increase or decrease relative to part (b) and why?

(d) What is the change in the frequency dependence of the absorption coefficient
for light as the thickness of the semimetal layer decreases and a semimetal-
semiconductor transition occurs?

(e) Howdoes the semimetal-semiconductor transition affect the optical reflectivity?,
the transmission?, the photoconductivity? What photon energy would you use
for these experiments?

16.5 (a) Find the plasma frequency for intrinsic Si at room temperature, assuming
εcore = 12, and only thermally excited carriers are involved in the plasma.

(b) Using the results in (a), write an expression for the free carrier contribution to
ε(ω).

(c) Now suppose that we apply a magnetic field normal to the surface of the sample.
Find the effect of this magnetic field on the plasma frequency using right and
left incident circularly polarized light.

16.6 The frequency of the uniform plasmon mode of a sphere is determined by the
depolarization field E = –4πP/3 of the sphere, where the polarization P = –ner,
with r as the average displacement of the electrons of concentration n.

(a) Show that the resonance frequency of the electron gas is given by

ω2
0 = 4πne2/3m.

Since all electrons participate in the oscillation, such an excitation is called a
collective excitation or collective mode of the electron gas.

(b) Use similar methods to find the frequency of the uniform plasmon mode of a
sphere placed in a constant uniform magnetic field B. Let B be along the z axis.
The solution should go to the cyclotron frequency ωc = eB/mc in one limit
and to ω0 = (4πne2/3m)1/2 in another limit. Consider the motion in the x − y
plane.

16.7 (a) Suppose that a hexagonal material has n electrons/cm3 in the conduction
band which consists of ellipsoidal carrier pockets along each of the edges of the
Brillouin zone. Find an expression for the plasma frequency for the polarization
E ‖ x̂, ŷ and E ‖ ẑ. Take ml and mt as the effective mass components for the
conduction band pockets.

(b) If a magnetic field is applied along the (001) direction, find the change in the
plasma frequency as a function of magnetic field with the E field in the xy-plane.
To determine ωp, first find the magnetoconductivity. What is the effect of the
magnetic field where E ‖ (001)?

16.8 This problem considers the complex dielectric function for free carriers in a
magnetic field.
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(a) Find the complex dielectric constant due to free carriers in a magnetic field
assuming the zero field dispersion relation E(k) = �

2k2/2m∗. Consider the
Poynting vector for the light along the external magnetic field B (neglect inter-
band effects), and consider right and left circular polarization.

(b) Find the dependence of the plasma frequency on magnetic field B.
(c) Sketch the optical reflectivity in a magnetic field relative to the zero field reflec-

tivity for right and left circularly polarized radiation.

16.9 Consider a metal with a free electron concentration n and placed in a uniform
magnetic field B = Bk̂ in the z direction. The electric current density in the xy plane
is related to the electric field by the relations:

jx = σxx Ex + σxy Ey

jy = σyx Ex + σyy Ey

Consider frequencies in which ω 
 ωc, and ω 
 1/τ , where ωc is the cyclotron
resonance frequency given by ωc = eB/m and τ is the time between electron colli-
sions.

(a) By solving the equations above, show that the components of the magnetocon-
ductivity tensor are given by:

σxx = σyy = iω2
p/ω

σyx = −σxy = ωcω
2
p/ω

2

where ωp = √
ne2/m is the plasmon resonance frequency (in Sect. 16.4, we

have derived the screened plasma frequency, which contains εcore. In the present
problem consider εcore = εo).

(b) By using the tensorial equation ε = 1 + i/ωσ and considering an electromag-
netic wave propagating with wavevector k = kk̂, show that the dispersion rela-
tion for this wave in the medium is given by

c2k2 = ω2 − ω2
p ± ωcω

2
p/ω.

16.10 You may wish to use MATLAB to obtain numerical answers to this problem.
Determine the absorption coefficient due to free-carrier absorption at a temperature
of 300K and a free-space wavelength of 0.9μm for a partially compensated GaAs
sample with Nd = 2 × 1018 cm−3 and Na = 1 × 1018 cm−3 for the donor and accep-
tor dopant concentrations. Where does the Fermi level lie? For this sample, assume
that ionized impurity scattering is the dominant scattering mechanism at room tem-
perature.
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Chapter 17
Interband Transitions

17.1 The Interband Transition Process

In a semiconductor at low frequencies, the principal electronic conduction mecha-
nism is associated with free carriers. As the photon energy increases and becomes
comparable to the energy gap, a new conduction process can occur due to optically
excited carriers. A photon can excite an electron from an occupied state in the valence
band to an unoccupied state in the conduction bands. This is called an interband
transition and is represented schematically by the picture in Fig. 17.1. In this process
the photon is absorbed, an excited electronic state is formed and a hole is left behind
in the valence bands. This process is quantum mechanical in nature and we now
discuss the main factors which rule these interband transitions.

1. We expect interband transitions to have a threshold energy at the energy gap.
That is, we expect the frequency dependence of the real part of the conductivity
σ1(ω) due to an interband transition to exhibit a threshold as schematically shown
in Fig. 17.1 for an allowed electronic transition.

2. The transitions are eitherdirect (conserve crystalmomentumk: Ev(k) → Ec(k))
or indirect (a phonon is involved because thek vectors for the valence and conduc-
tion bands differ by the phonon wave vector q). Conservation of crystal momen-
tum yields kvalence = kconduction ± qphonon. In discussing the direct transitions, one
might wonder about conservation of crystal momentumwith regard to the photon.
The reasonwe need not be concernedwith themomentumof the photon is that it is
very small in comparison toBrillouin zone dimensions. For a typical opticalwave-
length of 6000 Å, the wave vector for the photon kphoton = 2π/λ ∼ 105 cm−1,
while a typical dimension across the Brillouin zone (zone boundary ZB vector) is
kZB = 2π/a ∼ 108 cm−1. Here a is the lattice parameter which has order of 1 Å.
Thus, typical direct optical interband processes excite an electron from a valence
to a conduction band without a significant change in the wave vector.

3. The transitions depend on the coupling between the valence and conduction
bands and this is measured by the magnitude of the momentum matrix elements
|〈v|p|c〉|2 which couple the valence band state v and the conduction band state c.
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Fig. 17.1 a Schematic
diagram of an allowed direct
interband transition. b Real
part of the conductivity for
an allowed optical transition

This dependence results from Fermi’s “Golden Rule” (see Appendix B) and from
the discussion of the perturbation interaction Hamiltonian H ′ for the electro-
magnetic field with electrons in the solid (discussed in Sect. 17.2). Selection rules
due to state symmetry can cause certain transitions to be forbidden.

4. Because of the Pauli Exclusion Principle, an interband transition occurs from an
occupied state below the Fermi level to an unoccupied state above the Fermi level.

5. Since the optical properties are found by an integration over k space, the joint den-
sity of states (discussed in Sect. 17.4) is important. Photons of a particular energy
are more effective in producing an interband transition if the energy separation
between the 2 bands is nearly constant over many k values. In that case, there are
many initial and final states which can be coupled by the same photon energy.
This is perhaps easier to see if we allow a photon to have a small band width. That
band width will be effective over many k values if Ec(k) − Ev(k) does not vary
rapidly with k. Thus, we expect the interband transitions to be most important
for k values near band extrema. That is, in Fig. 17.1a we see that states around
k = 0 make the largest contribution per unit bandwidth of the optical source. It
is also for this reason that optical measurements are so important in studying
energy band structure; the optical structure emphasizes band extrema and there-
fore provides special information about the energy bands at specific points in the
Brillouin zone. Because of the dependence of the density of states and the joint
density of states on the dimensionality of the system, the optical properties will
be very sensitive to the dimensionality of a sample.

Although we will not derive the expression for the interband contribution to the
conductivity, we will write it down here to show how all the physical ideas that were
discussed above enter into the conductivity equation. We now write the conductivity
tensor relating the interband current density jα in the direction α which flows upon
application of an electric field Eβ in direction β

jα = σαβEβ (17.1)

as

σαβ = − e2

m2

∑

i, j

[ f (Ei ) − f (E j )]
Ei − E j

〈i |pα| j〉〈 j |pβ |i〉
[−iω + 1/τ + (i/�)(Ei − E j )] (17.2)
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in which the sum in (17.2) is over all valence and conduction band states labeled by i
and j , respectively. Structure in the optical conductivity arises through a singularity in
the resonant denominator of (17.2) [−iω + 1/τ + (i/�)(Ei − E j )] discussed above
under properties (1) and (5). The appearance of the Fermi functions f (Ei ) − f (E j )

follows from the Pauli principle in property (4). The dependence of the conductiv-
ity on the momentum matrix elements accounts for the tensorial properties of σαβ

(interband) and relates to properties (2) and (3).
In semiconductors, interband transitions usually occur at frequencies abovewhich

free carrier contributions are important. If we nowwant to consider the total complex
dielectric constant, we would write

ε = εcore + i

ω
[σDrude + σinterband] . (17.3)

The term εcore contains the contributions from all processes that are not considered
explicitly in (17.3); this would include both intraband and interband transitions that
are not treated explicitly. We have now dealt with the two most important processes
(intraband and interband transitions) involved in studies of the electronic properties
of solid state materials. If we think about the optical properties for various classes
of materials according to their conducting behavior, it is clear that major differences
will be found from one class of materials to another as we briefly highlight below.

1. Insulators: In these materials the band gap is sufficiently large so that at
room temperature, essentially no carriers are thermally excited across the
band gap. This means that there is no free carrier absorption and that inter-
band transitions only become important at relatively high photon energies
(above the visible). Thus, insulators frequently are optically transparent in
the visible frequency range.

2. Semiconductors: In these materials the band gap is small enough so that
appreciable thermal excitation of carriers occurs at room temperature. Thus
there is often appreciable free carrier absorption at room temperature either
through thermal excitation or doping and the interband transitions occur in
the infrared and visible energy ranges.

3. Metals: In these materials free carrier absorption is extremely important.
Typical plasma frequencies are �ωp

∼= 10 eV which occur far out in the
ultraviolet energy range. In the case ofmetals, interband transitions typically
occur at frequencies where free carrier effects are still important.

4. Semimetals: Similar to metals, the optical properties of these materials
exhibit only a weak temperature dependence with carrier densities almost
independent of temperature. Although the carrier densities are low, the
high carrier mobilities nevertheless guarantee a large contribution of the
free carriers to the optical conductivity.
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17.2 Hamiltonian for a Charge in an Electromagnetic Field

In this section we discuss how the optical field is inserted into the Hamiltonian in
the form p → p − eA. Let us consider the classical equation of motion for a charge
in an electromagnetic field:

d

dt
(mv) = e [E + (v × H)] = e

[
−∇φ − ∂A

∂t
+ v × (∇ × A)

]
(17.4)

where φ and A are, respectively, the scalar and vector potentials, and E and B are
the electric and magnetic fields given by

E = −∇φ − ∂A/∂t (17.5)

B = ∇ × A.

Using standard vector identities, the equation of motion (17.4) becomes

d

dt
(mv + eA) = ∇(−eφ) + e∇(A · v) (17.6)

where [∇(A · v)] j denotes vi∂Ai/∂x j . We have used the Einstein summation con-
vention that repeated indices are summed. We have also used the vector relation
a × (b × c) = b(a · c) − c(a · b) in (17.4)

d A

dt
= ∂A

∂t
+ (v · ∇)A (17.7)

and

[v × (∇ × A)]i = v j
∂A j

∂xi
− v j

∂Ai

∂x j
. (17.8)

If we write the Hamiltonian as

H = 1

2m
(p − eA)2 + eφ (17.9)

and then use Hamilton’s equations

v = ∂H

∂p
= 1

m
(p − eA) (17.10)

ṗ = −∇H = −e∇φ + ev · ∇A (17.11)

we can show that (17.4) and (17.6) are satisfied, thereby verifying that (17.9) is
the proper form of the Hamiltonian in the presence of an electromagnetic field,
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which has the same form as the Hamiltonian without an optical field except that
p → p − eA. The same transcription is used when light is applied to a solid and
it is then called the Luttinger transcription. The Luttinger transcription is used in
the effective mass approximation where the periodic potential is replaced by the
introduction of k → −(1/ i)∇ and m → m∗.

The reason why interband transitions depend on the momentum matrix element
can be understood from perturbation theory. At any instance of time, the Hamiltonian
for an electron in a solid in the presence of an optical field is

H = (p − eA)2

2m
+ V (r) = p2

2m
+ V (r) − e

m
A · p + e2A2

2m
(17.12)

in which A is the vector potential due to the optical fields and V (r) is the periodic
potential. We also used the fact that A · p = p · A. This is valid because we adopt a
Coulomb gauge (∇ · A = 0) which implies that operators p and A commute. Thus,
the one-electron Hamiltonian without optical fields is

H0 = p2

2m
+ V (r) (17.13)

and the optical perturbation terms are

H ′ = − e

m
A · p + e2A2

2m
. (17.14)

Optical fields are generally very weak (unless generated by powerful lasers) and we
usually consider only the term linear inAwhich is called the linear response regime.
The form of the Hamiltonian in the presence of an electromagnetic field is derived in
this section. The momentum matrix elements 〈v|p|c〉 which determine the strength
of optical transitions also govern the magnitudes of the effective mass components

The coupling of the valence and conduction bands through the optical fields
(17.9), depends on the matrix element for the coupling to the electromagnetic field
perturbation

H ′ ∼= − e

m
p · A. (17.15)

With regard to the spatial dependence of the vector potential we can write

A = A0 exp[i(K · r − ωt)] (17.16)

where for a loss-less medium the propagation wavevector K = ñω = 2πcñ/λ is a
slowly varying function of r since K is much smaller than typical wave vectors in
solids. Here ñ, ω, and λ are, respectively, the real part of the index of refraction, the
optical frequency, and the wavelength of light.
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17.3 Relation Between Momentum Matrix Elements
and the Effective Mass

Because of the relation between the momentum matrix element 〈v|p|c〉, which gov-
erns the electromagnetic interaction with electrons and solids, and the band curva-
ture (∂2E/∂kα∂kβ), the energy band diagrams provide important information on the
strength of optical transitions. Correspondingly, knowledge of the optical properties
can be used to infer experimental information about E(k).

We now derive the relation between the momentum matrix element coupling the
valence and conduction bands 〈v|p|c〉 and the band curvature (∂2E/∂kα∂kβ).We start
with Schrödinger’s equation in a periodic potential V (r) having the Bloch solutions

ψnk(r) = eik·runk(r), (17.17)

H ψnk(r) = En(k)ψnk(r) =
[
p2

2m
+ V (r)

]
eik·runk(r) = En(k)eik·runk(r).

(17.18)
Since p is an operator (�/ i)∇, we can write

peik·runk(r) = eik·r(p + �k)unk(r). (17.19)

Therefore the differential equation for unk(r) becomes

[
p2

2m
+ V (r) + �k · p

m
+ �

2k2

2m

]
unk(r) = En(k)unk(r) (17.20)

giving the following differential equation for the periodic function unk(r) = unk(r +
Rm) [

p2

2m
+ V (r) + �k · p

m

]
unk(r) =

[
En(k) − �

2k2

2m

]
unk(r) (17.21)

which we write as follows to put (17.21) in the canonical form for application of the
perturbation theory formulae

H0 = p2

2m
+ V (r) (17.22)

H ′ = �k · p
m

(17.23)

En(k) = En(k) − �
2k2

2m
(17.24)
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to yield

[H0 + H ′]unk(r) = En(k)unk(r). (17.25)

Assume that we know the solution to (17.25) about a special point k0 in the Brillouin
zone which could be a band extremum, such as k0 = 0. Then the perturbation for-
mulae (17.22)–(17.25) allow us to find the energy and wave function for states near
k0. For simplicity, we carry out the expansion about the center of the Brillouin zone
k = 0, which is the most important case in practice; the extension of this argument
to an energy extremum at arbitrary k0 is immediate. Perturbation theory to second
order then gives:

En(k) = En(0) + (un,0|H ′|un,0) +
∑

n′ 	=n

(un,0|H ′|un′,0)(un′,0|H ′|un,0)

En(0) − En′(0)
.

(17.26)

The first order term (un,0|H ′|un,0) in (17.26) normally vanishes about an extremum
because of inversion symmetry, with H ′ being odd under inversion and the two
wavefunctions unk(r) both being even or both being odd. Since

H ′ = �k · p
m

(17.27)

the matrix element is then written as

(un,0|H ′|un′,0) = �

m
k · (un,0|p|un′,0). (17.28)

We now apply (17.26) to optical transitions, for the simplest case of a two band
model. Here we assume that:

1. bands n and n′ (valence (v) and conduction (c) bands) are close to each other and
far from other bands

2. interband transitions occur between these two bands are separated by an energy
gap Eg .

We note that the perturbation theory is written in terms of the energy En(k)

En(k) = En(k) − �
2k2

2m
. (17.29)

Assuming that the first order term in perturbation theory (17.26) can be neglected by
parity (even and oddness) arguments, we obtain for En(k) about k= 0

En(k) = En(0) + �
2

m2
kαkβ

|(v|pα|c)(c|pβ |v)|
Eg

(17.30)
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or in terms of the energy eigenvalues of Schrödinger’s equation (17.18)

En(k) = En(0) + �
2k2

2m
+ �

2

m2
kαkβ

|(v|pα|c)(c|pβ |v)|
Eg

. (17.31)

We define the effective mass tensor by the relation

En(k) = En(0) + �
2

2

∑

α,β

kαkβ

(
1

m∗

)

αβ

(17.32)

so that
(

1

m∗

)

αβ

= δαβ

m
+ 2

m2

|(v|pα|c)(c|pβ |v)|
Eg

(17.33)

where δαβ is the unitmatrix. This discussion shows that the non-vanishingmomentum
matrix element is responsible for the inequality between the free electron m and the
effective mass m∗ in the solid. With regard to the optical properties of solids we note
that the same momentum matrix element that governs the effective mass formula
(17.33) also governs the electromagnetic interaction given by (17.15). Thus small
effective masses tend to give rise to strong coupling between valence and conduction
bands and large values for |(v|p|c)|2. On the other hand, small effective masses lead
to a small density of states because of the m∗3/2 dependence of the density of states
as will be discussed in details in the following sections.

17.4 The Joint Density of States

The detailed calculation of the contribution to the frequency dependent complex
dielectric function ε(ω) = ε1(ω) + iε2(ω) due to interband transitions is rather dif-
ficult. It is therefore instructive to obtain, by use of the Fermi Golden Rule (17.34),
an approximate solution for the contribution of interband transitions to the complex
dielectric function ε(ω) and what is called the joint density of states ρcv(�ω), which
couples the valence band to the conduction band by a photon of energy �ω. By this
calculation, we obtain the probability per unit time Wk that a photon of energy �ω

makes a transition at a given k point in the Brillouin zone:

Wk
∼= 2π

�
|〈v|H ′|c〉|2δ[Ec(k) − Ev(k) − �ω] (17.34)

in which the matrix element for the electromagnetic perturbation H ′ is taken
between the valence and conduction band Bloch states at wave vector k, and the
δ-function δ[Ec − Ev − �ω], which expresses energy conservation, and is also eval-
uated at the same wave vector k. In writing (17.34), we exploit the fact that the wave
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vector for the light is small compared to the Brillouin zone dimensions. Because
the electronic states in the Brillouin zone are quasi–continuous functions of k, to
obtain the lineshape for an interband transition, we must integrate ωk over all wave
vectors k in the Brillouin zone. By recognizing that both the perturbation matrix
elements 〈v|H ′|c〉 and the joint density of states ρcv are k-dependent, we obtain
upon integration of (17.34) over k space the total transition probability per unit time

W = 2π

�

∫
|〈v|H ′|c〉|2 2

8π3
δ(Ec(k) − Ev(k) − �ω) d3k (17.35)

for a 3D system. For 2D and 1D systems, we replace [d3k/(2π)3] by [d2k/(2π)2]
and [dk/(2π)], respectively. The perturbation Hamiltonian for the electromagnetic
interaction in (17.34) is simply

H ′ = −eA · p
m

(17.36)

where the time dependence of the vector potential A has already been taken into
account in formulating time dependent perturbation theory and in the use of the
Fermi Golden Rule (see Appendix B), so that the vector potential A in (17.36) is
a vector with only a spatial dependence. In taking matrix elements of the perturba-
tion Hamiltonian H ′ in (17.36), we need then only consider matrix elements of
the momentum operator ρcv(�ω) that connect the valence and conduction bands. In
practical cases, it is often not necessary to evaluate these matrix elements explicitly
because it is precisely these momentum matrix elements that determine the exper-
imentally measured effective masses (see Sect. 17.3). If we assume for simplicity
that |〈v|H ′|c〉|2 is independent of k, then the remaining term to be considered in
calculating the integral in (17.35) is the joint density of states between the valence
and conduction bands ρcv(�ω). For a 3D system, we thus define ρcv(�ω) as

ρcv(�ω) ≡ 2

8π3

∫
δ[Ec(k) − Ev(k) − �ω] d3k (17.37)

and ρcv(�ω) is the number of states per unit volume per unit energy range which
occurs with an energy difference between the conduction and valence bands equal
to the incident photon energy. As explained above, ρcv(�ω) can be evaluated in a
corresponding manner for 2D and 1D systems.

17.5 Connecting Optical Properties and the Joint Density
of States

We would now like to look at this joint density of states (17.37) in more detail to
see why the optical properties of solids give unique information about the electronic
energy band structure. The main point is that optical measurements preferentially
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Fig. 17.2 Adjacent constant
energy difference surfaces in
reciprocal space, S and
S + dS, where the energy
difference is between the
valence and conduction
bands d(Ec − Ev), and dkn
is the normal to the surface
in k-space between the
constant energy difference

dkn

S S + dS

provide information about the electronic energy bands at particular k points in the
Brillouin zone, usually points of high symmetry and near energy band extrema. This
can be understood by casting ρcv(�ω) from (17.37) into a more transparent form.We
start with the definition of the joint density of states given in (17.37). It is convenient
to convert this integral over k-space to an integral over energy. This is done by
introducing a constant energy surface S in k-space such that the energy difference
Ec − Ev = �ω is the incident photon energy. Then we can introduce the constant
energy surfaces S and S + dS in reciprocal space (see Fig. 17.2) as corresponding
to a constant energy difference between the conduction and valence bands at each k
point in the Brillouin zone so that

d3k = dS dkn (17.38)

where dkn is an element of a wave vector normal to S, as shown in Fig. 17.2, and
follows each segment of the energy contour of Fig. 17.2.

By definition of the gradient, we have |∇k E |dkn = dE so that for constant energy
surfaces with an energy difference Ec − Ev we write:

|∇k(Ec − Ev)|dkn = d(Ec − Ev). (17.39)

Therefore

d3k = dkndS = dS

[
d(Ec − Ev)

|∇k(Ec − Ev)|
]

(17.40)

so that the joint density of states becomes:

ρcv(�ω) = 2

8π3

∫ ∫ ∫
dS d(Ec − Ev)δ(Ec − Ev − �ω)

|∇k(Ec − Ev)| . (17.41)



17.5 Connecting Optical Properties and the Joint Density of States 355

We now carry out the above integral over d(Ec − Ev) to obtain an integral over the
surface indicated in Fig. 17.2

ρcv(�ω) = 2

8π3

∫ ∫
dS

|∇k(Ec − Ev)|Ec−Ev=�ω

. (17.42)

Of special interest are those points in the Brillouin zone where (Ec − Ev) is station-
ary so that ∇k(Ec − Ev) becomes very small. At such points, called joint critical
points, the denominator of the integrand in (17.42) vanishes and especially large
contributions can be made to ρcv(�ω). This interpretation of (17.42) can also be
understood on the basis of physical considerations. Around critical points, the pho-
ton energy �ω = (Ec − Ev) is highly effective in inducing electronic transitions over
a relatively larger region of the Brillouin zone than would be the case for transitions
occurring around non-critical points. The relatively large contributions to the transi-
tion probability for critical points gives rise to “structure” observed in the frequency
dependence of the optical properties of solids. Critical points generally occur at high
symmetry points in the Brillouin zone, though this is not necessarily the case, and
it is important to look for large contributions to ρcv(�ω) coming from each of these
situations, both in the case of bulk materials and in nanostructures.

As an illustration, let us consider the energy bands of the semiconductor ger-
manium (see Fig. 17.3). Here we see that both the valence and conduction bands
have extrema at the Γ point, k = 0, although the lowest conduction band min-
imum is located at the L point. For the band extrema at k = 0, the condition
[Ec(k = 0) − Ev(k = 0)] = �ω gives rise to critical points in the joint density of
states. Notice also that around the L points, extrema occur in both the valence
and conduction bands, and a critical point therefore results at the L point in
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Fig. 17.3 a E(k) for a few high symmetry directions in germanium, neglecting the spin-orbit
interaction. The frequency dependence of the real b (ε1) and c imaginary (ε2) parts of the dielectric
function for germanium ε = ε1 + iε2. The solid curves are obtained from an analysis of experimen-
tal normal-incidence reflectivity data, while the dots are calculated from an energy band model. In
particular ε2(ω) for germanium provides an excellent example for illustrating the 4 kinds of critical
points: M0, M1, M2 and M3 (see Sect. 17.6)
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germanium. Since the energy difference [Ec − Ev] has a relatively small gradient as
we move away from the L point, this critical point participates more effectively in
the interband transitions that are observed in the actual optical spectra. In fact, for
germanium, Fig. 17.3 shows that there are large regions along the (100) and (111)
axes where the energy separation between valence and conduction bands (Ec − Ev)

is roughly constant. These large regions in k-space make very large contributions to
the complex dielectric function ε(ω). We can see these features directly by looking
at the frequency dependence of the real (ε1) and imaginary (ε2) parts of the dielectric
function for germanium (see Fig. 17.3b, c). Here we see that at low photon energies
(below ∼2 eV), where the interband transitions from the Γ25′ valence band to the
Γ2′ conduction band dominate, the contributions to the real and imaginary parts of
the dielectric function are small. On the other hand, the contributions from the large
regions of the Brillouin zone along the (100) and (111) axes between 2 and 5 eV are
very much more important, as is seen in Fig. 17.3 for both ε1(ω) and ε2(ω).

In describing these strong contributions to the dielectric function of germanium,
we say that the valence and conduction bands track each other, and in this way they
produce a large contribution to the joint density of states over large regions of the
Brillouin zone for certain energy differences between the conduction and valence
bands. A similar situation occurs in silicon and in common III-V semiconductors.
The diagram in Fig. 17.3 shows that beyond ∼5 eV there is no longer any signif-
icant tracking of the valence and conduction bands of germanium. Consequently,
the magnitudes of ε1(ω) and ε2(ω) fall sharply for �ω beyond ∼5 eV. The absolute
magnitudes of ε1 and ε2 for germanium and other semiconductors crystallizing in
the diamond or zincblende structure are relatively large. We will see shortly, when
we discuss the Kramers–Kronig relations in Chap.19, that these large magnitudes
of ε1 and ε2 are responsible for the large value of ε1(ω → 0) in these materials. For
germanium ε1(0) is 16 from Fig. 17.3b.

17.6 Critical Points

For a 3D system, critical points (often called Van Hove singularities) are classified
into four categories depending on whether the band separations are increasing or
decreasing as we move away from the critical point. This information is found by
expanding [Ec(k) − Ev(k)] in a Taylor series around the critical point k0 which is
at an energy difference extremum, where we can write as a first approximation:

Ec(k) − Ev(k) = Eg(k0) +
3∑

i=1

ai (ki − k0i )
2 (17.43)

in which the energy gap at the expansion point k0 is written as Eg(k0) and as we
move away from k0 in three dimensions, the sum is taken over the three directions
x, y, and z. The coefficients ai in (17.43) are related to the second derivative of the

http://dx.doi.org/10.1007/978-3-662-55922-2_19
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Type of Singularity Number of Negative ai ’s Joint Density of States

M0
Minimum 0

M1
Saddle Point 1
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Fig. 17.4 Summary of the joint density of states for a 3D system near each of the distinct types of
critical points: M0, M1, M2 and M3

interband energy difference by 2ai = (∂2/∂k2i )[Ec(k) − Ev(k)]. The classification
of the critical points in a 3D system shown in Fig. 17.4 is made according to how
many ai coefficients in (17.43) are negative. The shapes given for the joint density
of states curves of Fig. 17.4 are obtained, as is here illustrated, for the case of an M0

singularity for a 3D system. In the case of 2D and 1D systems, there are 3 and 2
types of critical points, respectively, using the same definition of the coefficients ai
to define the type of critical point.

As an example, we will calculate ρcv(�ω) for an M0 singularity in a 3D system,
assuming simple parabolic bands for simplicity (see Fig. 17.5). Here,

Ec(k) = Eg

2
+ �

2k2

2mc
(17.44)

and

Ev(k) = −Eg

2
− �

2k2

2mv

(17.45)
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Fig. 17.5 Electronic energy
bands associated with an M0
critical point for a 3D
system, where the energy
gap Eg of the semiconductor
is indicated

Conduction Band

Valence Band

Eg

E(K)

K

where Eg is the energy gap, and mc and mv are effective masses for the conduction
and valence bands, respectively, andmv is taken as a positive number. We thus obtain

Ec(k) − Ev(k) = Eg + �
2k2

2

(
1

mc
+ 1

mv

)
= Eg + �

2k2

2mr
(17.46)

where we define the reduced effective mass mr through the relation

1

mr
= 1

mc
+ 1

mv

. (17.47)

Taking the gradient of the energy difference Ec − Ev as a function of k yields

∇k(Ec − Ev) = �
2k
mr

(17.48)

so that the joint density of states becomes

ρcv(�ω) = 2

8π3

∫
dS

|∇k(Ec − Ev)| Ec−Ev=�ω

(17.49)

or

ρcv(�ω) = 2

8π3

[
4π

�2

(
k2mr

k

)]

Ec−Ev=�ω

=
[

mr

π2�2
k

]

Ec−Ev=�ω

. (17.50)

We evaluate k in (17.50) from the condition

Ec − Ev = �ω = Eg + �
2k2

2mr
(17.51)
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or

k =
[
2mr

�2
(�ω − Eg)

]1/2

(17.52)

so that

ρcv(�ω) = 1
2π2

[
2mr
�2

]3/2√
�ω − Eg �ω > Eg

= 0 �ω < Eg

(17.53)

as shown in Fig. 17.4 for an M0 critical point. The expression for ρcv(�ω) in (17.53)
is not singular for a 3D system but rather represents a discontinuity in the slope at
�ω = Eg , which corresponds to a threshold for the absorption process, as discussed
in Sect. 17.1

On the other hand, the situation is quite different for the joint density of states
corresponding to an M0 critical point for a 3D system in amagnetic field. At a critical
point in k-space, the joint density of states in a magnetic field does show singularities
and the density of states in a magnetic field can approach infinity. These singularities
in the magnetic field dependence of the joint density of states make it possible to
carry out resonance experiments in solids, despite the quasi–continuum of the energy
levels in the electronic dispersion relations E(k) in zero magnetic field.

We note that we can also have M0-type critical points for electronic energy bands
that look likeFig. 17.6a or likeFig. 17.6b. It is clear that the energydifference Ec − Ev

in Fig. 17.6b varies more slowly, as a function of k around the critical point than it
does in Fig. 17.6a. Thus, bands that tend to “track” each other in k-space, as in
Fig. 17.6b have an exceptionally high joint density of states and contribute strongly
to the optical properties. Above we gave examples of electronic energy bands with
very high values for ε1(ω) and ε2(ω) due to bands that track each other as are

Fig. 17.6 Two cases of band
extrema which are associated
with M0 critical points.
a Conduction band minimum
and a valence band
maximum and b Both
conduction and valence
bands showing an M0 type
minimum. The dispersion
relation shown in (b) for the
valence band is sometimes
called a “camel-back”
structure

Conduction Band

Valence Band

（a） （b）
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Table 17.1 Functional forms
for the joint density of states
ρvc(�ω) for various types of
critical points M0, M1, M2
and M3 below and above the
energy gap Eg for 3D, 2D,
and 1D systems, where C
denotes a constant, not
dependent on energy

Type �ω < Eg �ω > Eg

3D M0 0 (�ω − Eg)
1/2

M1 C − (Eg − �ω)1/2 C

M2 C C − (�ω − Eg)
1/2

M3 (Eg − �ω)1/2 0

2D M0 0 C

M1 − ln(Eg − �ω) − ln(�ω − Eg)

M2 C 0

1D M0 0 (�ω − Eg)
−1/2

M0 (Eg − �ω)−1/2 0

found in common semiconductors like germanium along the � (111) direction (see
Figs. 17.3b, c).

In addition to the M0 critical points, we have M1, M2, and M3 critical points in
3D systems. The functional forms for the joint density of states for �ω < Eg and
�ω > Eg are given in Table17.1. This table also gives the corresponding expressions
for the electronic density of states for 2Dand1Dsystems. FromTable17.1,we see that
in 2D, the M0 and M2 critical points correspond to discontinuities in the joint density
of states at Eg , while the M1 singularity corresponds to a saddle point logarithmic
divergence. In the case of the 1D system, both the M0 and M1 critical points are
singular, as discussed below.

17.7 Critical Points in Low Dimensional Materials

Because of the presence of critical points, large enhancement effects in 1D and
2D materials enable the observation of spectra from a very small amount of matter
in the condensed state. Figure17.7 shows the density of states of a semiconducting
carbon nanotube calculated using a simple tight bindingmodel. In this 1D system, the
critical points give rise to singularities in the joint density of states, of the form E−1/2,
as given in Table17.1. When an incident laser is resonant with a transition between
critical points in the density of states, a resonance occurs in the Raman scattering and
optical absorption cross section, which enables the Raman and photoluminescence
spectra of an isolated individual carbon nanotube to bemeasured (see Jorio et al. 2001
and Lefebvre et al. 2004). Similarly, Raman spectra of individual graphene layers
can also be readily observed, providing detailed information about layer thickness,
doping, strain, and material quality (Ferrari et al. 2006).
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Fig. 17.7 Calculated energy
dependence of the density of
states of a semiconducting
carbon nanotube. These
calculations use a tight
binding model

Elaser

Problems

17.1 This problem is intended to make you familiar with time-dependent perturba-
tion theory. Suppose we have a two level system and that initially the system is in the
ground state E1. Suppose that we apply a perturbation H ′ arising from an electric
field with time variation eiωt which is switched on at t = 0 and switched off at t = t1.

(a) Find an expression for the probability that the system in state E1 at time t1 and
at time 2t1. Consider the case when the system is far from resonance and also
when near resonance (ω � ω2 − ω1).

(b) Suppose that H ′ is associated with a very high power laser. What happens in
part (a) if H ′ is very large? What is the temperature of the system under these
condition?

17.2 This problem considers the joint density of states for a 1D electron gas.

(a) Find an expression for the joint density of states for a 1D electron gas (e.g., a
quantum wire of 10nm diameter) for each of the pertinent types of singularities
(M0, ....).

(b) How many types of such singularities are there in 1D?
(c) What is the selection rule for allowed interband transitions in (a)?

17.3 Verify the form of the critical points given in Table17.1.

17.4 Label the critical points in the real (ε1) and imaginary (ε2) parts of the dielectric
function for silicon in Fig. 17.8.

17.5 Label the critical points in the real (ε1) and imaginary (ε2) parts of the dielectric
function for GaAs in Fig. 17.9.
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Fig. 17.8 Electronic band structure and the real and imaginary parts of the complex dielectric func-
tion (ε1(ω) and ε2(ω)) for silicon, taken from Yu and Cardona, Fundamentals of Semiconductors,
pp. 251–258, Springer, Berlin, 1999
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Fig. 17.9 Electronic band structure and real and imaginary parts of the complex dielectric function
(ε1(ω) and ε2(ω)) for GaAs, taken from Yu and Cardona, Fundamentals of Semiconductors, pp.
251–258, Springer, Berlin, 1999

17.6 Show that (17.34) can be derived from time-dependent perturbation theory, as
outlined in Appendix B.

17.7 Consider anM0 critical point for direct interband transitions in a semiconductor
and assume that a parabolic expansion of the energy bands about their band extrema
is valid to very large energy values (E → ∞).

(a) Using the imaginary part of the dielectric function ε2(ω) for an M0

ε2(ω) = A(x − 1)1/2 for x > 1

ε2(ω) = 0 for x < 1
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where x = �ω/Eg and

A = 2e2(2μ)3/2

m2ω2�3
|pcv|2E1/2

g

obtain the corresponding ε1(ω) assuming a constant momentum matrix element
|pcv|2, independent of frequency.

(b) Using the analytic expressions in part (a), use MATLAB to plot both the imagi-
nary and real parts of the dielectric function ε(ω) = ε1(ω) + iε2(ω).

17.8 CdSe is a direct gap semiconductor with Eg = 1.6 eV. The matrix element for
direct transitions between the valence and conduction bands is 6.1 × 10−20 g cm s−1

and the effective mass for electrons is 0.08 m0 and for holes 0.45m0 where m0 is
the free electron mass. The refractive index in the vicinity of the energy gap Eg is
approximately 3.

(a) Calculate the derivative of the normal-incidence reflectivity with respect to pho-
ton energy dR/dE near the energy gap Eg , assuming a one electron band-to-band
transition and light propagation along the c-axis (Hint: Prove that near the lowest
energy gap, the derivative dR/dE is proportional to dε1/dE , and then use the
results of Problem19.6).

(b) Plot the derivative function and sketch by free hand how this curve would be
modified by Coulomb interactions between the electron and the hole (i.e. exci-
tonic effects).

17.9 The joint density of states for two simple parabolic bands with 3D dispersion
relations E(k) = ± Eg/2 ± �

2k2/(2m∗) about an M0 singularity is

ρvc = 1

2π2

[
2mr

�2

]3/2 √
�ω − Eg (17.54)

(a) Find the corresponding joint density of states for two 2D parabolic bands, for
which the above dispersion relation E(k) holds in the xy-plane, but there is no
dispersion along the z-direction.

(b) From the result in (a) does the effect of the confinement of the carriers in a
quantum well increase or decrease the optical absorption intensity per unit area?
Why is your answer physically reasonable?

17.10 (a) Calculate and sketch the joint density of states ρvc(�ω) as a function of
�ω for an M3 singularity in a 3D, 2D, and 1D crystal.

(b) Consider explicitly the spatial dependence of the vector potential

A = A0 exp[i(k · r − ωt)],

calculate the matrix element for the electromagnetic interaction between Bloch
states including the effect of the spaticial dependence of the vector potential

http://dx.doi.org/10.1007/978-3-662-55922-2_19
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〈n′k′|(e/mc)(p · A)|nk〉.

On the basis of your result in (a) show that the conservation of crystal momentum
k is a good approximation for optical transitions.
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W. Jones, N.H. March, Theoretical Solid State Physics (Wiley, New York, 1973), pp. 806–814
A. Jorio, M.S. Dresselhaus, R. Saito, G. Dresselhaus, Raman Spectroscopy in Graphene Related
Systems (Wiley, New York, 2011)

O. Madelung, Introduction to Solid State Theory (Springer, Berlin, 2012), pp. 262–271
Y. Yu, M. Cardona, Fundamentals of Semiconductors (Springer, Berlin, 2013), pp. 251–258
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Chapter 18
Absorption of Light in Solids

18.1 The Absorption Coefficient

Measurement of the absorption of light is one of the most important techniques for
opticalmeasurements in solid statematerials. In theoptical absorptionmeasurements,
we are concerned with the light intensity I (z) after the light beam traverses of a
thickness z of material as compared with the incident light intensity I0, thereby
defining the absorption coefficient αabs(ω) as:

I (z) = I0e
−αabs(ω)z (18.1)

where the frequency dependence of the absorption coefficient is shown schematically
in Fig. 18.1.

Since the intensity I (z) depends on the square of the field variables, it immediately
follows that

αabs(ω) = 2ωk̃(ω) (18.2)

where the factor of 2 results from the definition of αabs(ω) in terms of the light
intensity, which is proportional to the square of the optical fields. This expression
tells us that the absorption coefficient is proportional to k̃(ω), the imaginary part of the
complex index of refraction (i.e., extinction coefficient), which is usually associated
with power loss from the incident optical beam. We note that (18.2) applies to free
carrier absorption in semiconductors in the limit ωτ � 1, and ω � ωp, where ωp is
the plasma frequency for the free carriers.

We will now show that the frequency dependence of the absorption coefficient for
a bulk system (3D) is quite different for the various physical processes that occur in
the optical properties of solids as follow:

© Springer-Verlag GmbH Germany, DE 2018
M. Dresselhaus et al., Solid State Properties, Graduate Texts in Physics,
https://doi.org/10.1007/978-3-662-55922-2_18
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Fig. 18.1 Frequency
dependence of the absorption
coefficient near a threshold
for probing the interband
transitions in solid state
materials such a band gap
energy for direct optical
transition or an indirect
optical transition

α(ω)

ωEg

1. Free carrier absorption

a. Typical semiconductor αabs(ω) ∼ ω−2

b. Metals at low frequencies αabs(ω) ∼ ω
1
2

2. Direct interband transitions

a. Form of absorption coefficient αabs(ω) ∼ (�ω−Eg)
1
2

�ω

b. Conservation of crystal momentum
c. Relation between m∗ and the momentum matrix element

d. Formofαabs(ω) for direct symmetry forbidden transitions∼ (�ω−Eg)
3
2

�ω

3. Indirect interband transitions

a. Form of absorption coefficient αabs(ω) ∼ (�ω − Eg ± �ωq)
2

b. Phonon absorption and emission processes

The summary given above is for 3D systems. In the case of 2D and 1D systems,
the functional dependence is sensitive to the dimensionality of the system for each
process.

18.2 Free Carrier Absorption in Semiconductors

For free carrier absorption we use the relation for the complex dielectric function
ε(ω) = ε1(ω) + iε2(ω) given by

ε(ω) = ε0 + iσ(ω)

ω
(18.3)
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where ε0 is the core dielectric constant in the optical frequency range above the lattice
mode frequencies and ε0 is assumed to be independent of ω, and this approximation
can be made for many semiconductors. For example, for chemical elements with
low atomic numbers like silicon, the introduction of suitable common dopants can
be handled within this simple model. The electronic polarizability is related to the
frequency-dependent electrical conductivityσ(ω)by the frequency-dependentDrude
term

σ(ω) = ne2τ

m∗(1 − iωτ)
. (18.4)

The plasma frequency ωp is then given by the vanishing of ε1(ω), that is ε1(ωp) = 0
or

ω2
p = ne2

m∗ε0
. (18.5)

For semiconductors, the core dielectric constant ε0 is typically a large number
(ε0 � 1) and the contribution due to the free carriers is small at infrared and visible
frequencies. For metals, the free carrier absorption is dominant over the entire optical
frequency range.

For semiconductors, the typical frequency range of interest is that above the optical
phonon frequencies, and for these frequencies it is generally true that ωτ � 1. The
generic expression for ε(ω) follows from expanding (18.3):

ε(ω) = ε0 + ine2τ(1 + iωτ)

m∗ω[1 + ω2τ 2] = ε0 + iε0ω2
pτ(1 + iωτ)

ω[1 + ω2τ 2] (18.6)

which for ωτ � 1 becomes

ε(ω) � ε0 + iε0ω2
p

ω3τ
− ε0ω

2
p

ω2
. (18.7)

In the range of interest for optical measurements in typical semiconductors, the
relation ω � ωp is generally satisfied. It is then convenient to express the complex
dielectric function ε(ω) in terms of the optical constants ñ(ω) and k̃(ω) according to
the definition ε(ω) = [ñ(ω) + i k̃(ω)]2, where ñ(ω) is the optical index of refraction
and k̃(ω) is the optical extinction coefficient. We can then write for the real part of
the dielectric function as:

ε1(ω) ≡ ñ2(ω) − k̃2(ω) ≈ ε0 (18.8)

where the index of refraction ñ(ω) is large and the extinction coefficient k̃(ω) is
small, and light penetrates through a thin film (few nm thick) without significant
absorption. For the imaginary part of the dielectric function, we have
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Fig. 18.2 Free carrier
absorption (plotted as log(α)
versus. log(λ)) in n-type
InAs at room temperature for
six different carrier
concentrations (in units of
1017 cm−3) A: 0.28; B: 0.85;
C: 1.4; D: 2.5; E: 7.8; and F:
39.0. Reproduced with
permission from
Springer-Verlag, Yu and
Cardona, Fundamentals of
Semiconductors: Physics and
Materials Properties, 1996

ε2(ω) ≡ 2ñ(ω)k̃(ω) ≈ 2
√

ε0 k̃(ω) = ε0ω
2
p

ω3τ
(18.9)

which is small, since ωp 	 ω. Thus, the absorption coefficient can be written as:

αabs(ω) = 2ωk̃(ω) � 2ω
ε0ω

2
p

2
√

ε0ω3τ
=

√
ε0ω

2
p

ω2τ
(18.10)

and thus αabs(ω) is proportional to 1/ω2 or to λ2 for free carrier absorption in semi-
conductors for the case where ωτ � 1 and ω � ωp. Figure18.2 shows a plot of the
optical absorption coefficient for InAs versus wavelength on a log-log plot for vari-
ous carrier densities, showing that αabs(ω) ∼ λp, where the exponent, p, is between
2 and 3 for a wide range of donor concentrations.
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18.3 Free Carrier Absorption in Metals

The typical limits of validity for metals are somewhat different than for semiconduc-
tors. In particular we consider here the case where ωτ 	 1, ω 	 ωp, |ε0| 	 σ/ω,
so that ñ � k̃ is obtained from (18.11). Thus we obtain

ε(ω) � iσ

ω
� ine2τ

ωm∗ � iε2(ω) ≡ 2i ñk̃ � 2i k̃2. (18.11)

It is worth mentioning that n is used as the carrier density, while ñ is the real part
of the index of refraction. This gives us the extinction coefficient k̃(ω) as

k̃(ω) =
√

ne2τ

2m∗ω
(18.12)

and the absorption coefficient becomes:

αabs(ω) = 2ωk̃(ω) =
√
2πωne2τ

m∗ (18.13)

For this limit αabs(ω) is proportional to
√

ω. Usually, the convenient observable for
metals is the reflectivity. In the limit appropriate for metals, ñ = k̃, and both ñ and k̃
are large. We thus have

R = (ñ − 1)2 + k̃2

(ñ + 1)2 + k̃2
= ñ2 − 2ñ + 1 + k̃2

ñ2 + 2ñ + 1 + k̃2
= 1 − 4ñ

ñ2 + k̃2 + 2ñ + 1
(18.14)

R ≈ 1 − 4ñ

ñ2 + k̃2
≈ 1 − 2

ñ
. (18.15)

However, from (18.12) and the condition ñ ≈ k̃ � 1, we obtain

ñ(ω) �
√

me2τ

2m∗ω
(18.16)

so that the reflectivity shows a frequency dependence

R(ω) � 1 − 2

√
2m∗ω
ne2τ

. (18.17)

Equation (18.17) is known as the Hagen–Rubens relation which holds well for most
metals in the infrared region of the spectrum and also applies to degenerately doped
semiconductors below the plasma frequency where interband transitions are not so
important.
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18.4 Direct Interband Transitions

To calculate the absorption due to direct interband transitions we again start with
the definition for the absorption coefficient αabs(ω), which is defined as the power
removed from the incident beam per unit volume per unit incident flux of electro-
magnetic energy:

αabs(ω) = (�ω) × number of transitions/unit volume/unit time

incident electromagnetic flux
. (18.18)

The incident electromagnetic flux appearing in the denominator of (18.18) is calcu-
lated from the Poynting vector

S = 1

2
Re(E∗ × H). (18.19)

By adopting the Coulomb Gauge ∇ · A = 0, it is convenient to relate the field vari-
ables (E,H,B) to A, the vector potential:

E = −∂A
∂t

= iωA (18.20)

μH = B = ∇ × A. (18.21)

In non-magnetic materials, we can take the permeability μ to be μ0. In taking the
cross product ∇ × A, we assume a plane wave of the form

A = A0e
i(K·r−ωt) (18.22)

where the propagation constant for the light is denoted by the wave vector K. We
thus obtain the Poynting vector in terms of the vector potential, A

S = 1

2
Re

[
− iωA∗ × (iK × A)

]
(18.23)

or

S = ω

2
Re

[
(A∗ · A)K − (A∗ · K)A

]
. (18.24)

Utilizing the fact that for a transverse plane waveA∗ · K = 0, we obtain from (18.24)

S = ωñω

2
|A|2 K̂ (18.25)

where ñ denotes the real part of the complex index of refraction and K̂ is a unit vector
along the Poynting vector. This quantity |S | in (18.25) becomes the denominator in
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(18.18), which is the expression defining the absorption coefficient. The transition
probability/unit time/unit volume is calculated from the “Fermi Golden Rule”

W = 2π

�
| H ′

vc |2 ρcv(�ω). (18.26)

If we wish to consider the absorption process at finite temperature, we also need
to include the Fermi functions to represent the occupation of the states at finite
temperature

f (Ev)[1 − f (Ec)] − f (Ec)[1 − f (Ev)] (18.27)

in which the first group of terms represents the absorption process, which further
depends on the valence band (v) being nearly full and the conduction band (c) being
nearly empty. The second group of terms represents the emission process which
proceeds if there are occupied conduction states and unoccupied valence states.
Clearly, theFermi functions in (18.27) simply reduce to [ f (Ev) − f (Ec)]. Thematrix
elements |H ′

vc|2 in (18.26) can be written in terms of the electromagnetic interaction
Hamiltonian

H ′
vc = 〈v|H ′

em |c〉 = −
(
e

m

)
〈v|A(r, t) · p|c〉. (18.28)

We show in Sect. 18.5 that the matrix element 〈v|A(r, t) · p|c〉 coupling the valence
and conduction bands for the electromagnetic interaction is diagonal in wave vector
k since the wave vector for light K is small relative to Brillouin zone dimensions.
As a result, the spatial dependence of the vector potential can be ignored. Thus the
square of the matrix elements coupling the valence and conduction bands becomes

|H ′
vc|2 =

(
e

m

)2

|A|2|〈v|p|c〉|2, (18.29)

where |〈v|p|c〉|2 couples states with the same electron wave vector k in the valence
and conduction bands. Since |〈v|p|c〉|2 is slowly varying with k in comparison to
ρcv(�ω), it is convenient to neglect the k dependence of |〈v|p|c〉|2. Thus for direct
interband transitions, we obtain the following expression for the absorption coeffi-
cient

αabs(ω) = (�ω)[ 2π
�

( e
m )2|A|2|〈v|p|c〉|2ρcv(�ω)][ f (Ev) − f (Ec)]

|A|2ωñω/2
(18.30)

or

αabs(ω) = 4π2e2

m2ñω
|〈v|p|c〉|2ρcv(�ω)[ f (Ev) − f (Ec)] (18.31)

where ñ in (18.30) and (18.31) denotes the index of refraction.
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To get a physical idea about the functional forms of the quantities in (18.31),
we will consider a rather simplified picture of two simple parabolic bands with an
electronmaking an allowed optical transition from the valence band to the conduction
band via a non-vanishingmomentummatrix element coupling them.Writing the joint
density of states from (17.37) for the case of anM0 critical point (as occurs near k = 0
for many semiconductors)

ρcv(�ω) = 1

2π2

(
2mr

�2

)3/2√
�ω − Eg (18.32)

wheremr is the reduced mass for the valence and conduction bands, we can estimate
the absorption coefficient αabs(ω). At very low temperature, a semiconductor has an
essentially filled valence band and an empty conduction band; that is f (Ev) = 1 and
f (Ec) = 0. We can estimate |〈v|p|c〉|2 from the effective mass sum-rule (17.33)

|〈v|p|c〉|2 � m0Eg

2

m0

m∗ (18.33)

where m0 is the free electron mass. After substitution of (18.32) and (18.33) into
(18.31), we obtain the following frequency dependence of the absorption coefficient
fordirect allowed interband transitions:

αabs(ω) ∝ 1

ω

√
�ω − Eg (18.34)

so that the direct optically–allowed interband transitions are characterizedbya thresh-
old at the energy gap Eg , as shown in Fig. 18.1.We thus see a very different frequency
dependence of αabs(ω) for the various physical processes.

It is sometimes convenient to relate the optical absorption coefficient to the imag-
inary part of the dielectric function

ε2(ω) = ñ

ω
αabs(ω) (18.35)

which from (18.31) becomes

ε2(ω) =
(

e

mω

)2

|〈v|p|c〉|2ρcv(�ω)[ f (Ev) − f (Ec)]. (18.36)

If we introduce the dimensionless quantity fvc, which is usually called the oscillator
strength and is defined by

fvc = 2|〈v|p|c〉|2
m[Ec(k) − Ev(k)] = 2|〈v|p|c〉|2

m�ω
, (18.37)

http://dx.doi.org/10.1007/978-3-662-55922-2_17
http://dx.doi.org/10.1007/978-3-662-55922-2_17
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Fig. 18.3 Plot of the square
of the absorption coefficient
of PbS as a function of
photon energy showing the
linear dependence of
[αabs(ω)]2 on �ω. The
intercept with the x-axis
defines the direct energy gap.
Reproduced from
Springer-Verlag, Yu and
Cardona, Fundamentals of
Semiconductors: Physics and
Materials Properties, 1996

we obtain the following result for ε2(ω) at T = 0 in terms of the oscillator strength
fvc and the density of states

ε2(ω) =
(
2e2�

mω

)
fvcρcv(�ω). (18.38)

We further discuss how ε1(ω) for interband transitions is obtained from ε2(ω) in
Sect. 19.2 using the Kramers–Kronig relation.

To illustrate the fit between these simplemodels and the behavior of the absorption
coefficient near the fundamental absorption edge, we show in Fig. 18.3, a plot of
[αabs]2 versus. �ω for PbS, with the intercept of [αabs]2 on the photon energy axis
giving the direct energy band gap. By plotting αabs(ω) on a log scale versus. �ω, a
more accurate value for the energy gap can also be obtained, as shown in Fig. 18.4
for InSb.

The derivation of the functional form for the absorption coefficient for direct
forbidden transitions proceeds as in the derivation of (18.31), except that |〈v|p|c〉|2
is now dependent on k2 so that αabs(ω) shows a (�ω − Eg)

3/2 threshold dependence
for direct forbidden interband transitions, where “forbidden” means forbidden by
symmetry to the lowest order of approximation.

http://dx.doi.org/10.1007/978-3-662-55922-2_19
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Fig. 18.4 Semilogarithmic plot of the absorption coefficient of InSb at 5K as a function of photon
energy. The filled circles represent experimental results. The curves have been calculated using
various models. Best results are obtained when the dependence of the matrix elements on k are
included. The intercept with the x-axis gives the direct bandgap of InSb, which can be found more
accurately using a semilogarithmic plot than using a linear plot as in Fig. 18.3. The logarithmic
plot also shows the large increases in αabs at the absorption edge of a direct gap semiconductor
and indicate the photon energy range where the approximations used here are valid. Reproduced
from Springer-Verlag, Yu and Cardona, Fundamentals of Semiconductors: Physics and Materials
Properties, 1996

18.4.1 Temperature Dependence of Eg

Because of the expansion and contraction of the lattice with temperature, the various
band parameters, particularly the energy gap is expected to be temperature dependent.
Although calculations are available to predict and account for the T dependence of
the band gap at the fundamental absorption edge (threshold), Eg(T ) is best found by
empirical fits to experimental data. Below, we give expressions for such fits which
are useful for research purposes for several common semiconductors.

For group IVand III–Vcompound semiconductors, Eg(T ) decreaseswith increas-
ing T , as shown above, but for IV–VI compounds, Eg(T ) increaseswith increasing T .

18.4.2 Dependence of the Absorption Edge on Fermi Energy

For lightly doped semiconductors, EF lies in the bandgap and the absorption edge
occurs at Eg , neglecting excitonic effects which are discussed in Chap.20. However,
for heavily doped semiconductors, EF lies within the valence or conduction bands
and the threshold for optical absorption is shifted. This shift in the absorption edge
is often referred to as the Burstein shift, and is illustrated in Fig. 18.5, where it is
shown that the threshold for absorption occurs when

http://dx.doi.org/10.1007/978-3-662-55922-2_20


18.4 Direct Interband Transitions 375

Table 18.1 Temperature dependence of gap energy Eg

Eg(T ) = 1.165 − 2.84 × 10−4T (eV) Si

Eg(T ) = 0.742 − 3.90 × 10−4T (eV) Ge

Eg(T ) = 1.522 − 5.8×10−4T 2

T+300 (eV) GaAs

Eg(T ) = 2.338 − 6.2×10−4T 2

T+460 (eV) GaP

Eg(T ) = 263 + √
400 + (0.506T )2 (meV) PbS

Eg(T ) = 125 + √
400 + (0.506T )2 (meV) PbSe

Eg(T ) = 171.5 + √
164 + [0.44(T + 20)]2 (meV) PbTe

Fig. 18.5 Diagram showing how the fundamental absorption edge of an n-type semiconductor is
shifted to higher energy by heavy doping. The wave vector for the Burstein shift kBS is defined in
(18.39) and involves the reduced mass of both the electrons and holes

�ω = Eg + �
2k2BS
2

(
1

m∗
e

+ 1

m∗
h

)
= Eg + �

2k2BS
2m∗

r

(18.39)

in which m∗
r is the reduced mass, (1/m∗

r ) = (1/m∗
e) + (1/m∗

h), and kBS is the wave
vector at the Fermi level corresponding to the Burstein shift defined in (18.39).

Referring to (18.27) where we introduce the probability that the initial state is
occupied and the final state is unoccupied, we find that since doping affects the
position of the Fermi level, the Fermi functions will depend on carrier concentration
for heavily doped semiconductors. In particular the quantity (1 − f0) denoting the
availability of final states will be sensitively affected by the Burstein shift. If we then
write
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�
2k2BS
2m∗

e

= E − Ec (18.40)

where Ec is the energy at the bottom of the conduction band, then the probability
that the final state is empty is

1 − f0 = 1

1 + exp[(EF − E)/kBT ] = 1

1 + exp

[
EF−E
kBT

− (�ω−Eg)m∗
h

(m∗
e+m∗

h)kBT

] (18.41)

and (18.41) should be used for finding the probability of final states in evaluating
f (Ec) in (18.31). Referring to Fig. 18.5, we see that transitions to the conduction
band can start at EF − 4kBT given by (18.39). The Fermi level is at EF and some
states above EF are also occupied with electrons at finite temperature, which can be
calculated from (18.31).

18.4.3 Dependence of the Absorption Edge on Applied
Electric Field

The electron wave functions in the valence and conduction bands have an exponen-
tially decaying amplitude in the energy gap. In the presence of an electric field E, a
valence band electron must tunnel through a triangular barrier to reach the conduc-
tion band. In the absence of photon absorption, the height of the barrier is Eg and
its thickness is Eg/e|E| where |E| is the magnitude of the electric field, as shown in
Fig. 18.6a.

ω

t ( ω)
t

Fig. 18.6 Energy band diagram in an electric field showing the wavefunction overlap a without
and b with the absorption of a photon of energy �ω
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Fig. 18.7 Electric field and
photon energy dependence of
the band-to-band absorption
for GaAs, which is a direct
band gap semiconductor

The effect of the photon, as shown in Fig. 18.6b, is to lower the energy barrier
thickness to

t (�ω) = Eg − �ω

e|E| (18.42)

so that the tunneling probability is enhanced by photon absorption. Figure18.7 shows
the absorption edge being effectively lowered by the presence of the electric field,
and the effect of the electric field on αabs is particularly pronounced just below the
zero field band gap. The effect of an electric field on the fundamental absorption
edge is called the Franz–Keldysh effect.

18.4.4 Dependence of the Absorption Edge on Applied
Magnetic Field

When a strong magnetic field is applied to a solid, the electrons will move in orbits
with a characteristic frequency called the cyclotron frequency ωc, and these energy
levels are quantized with a harmonic oscillator–like energy spectrum given by

En =
(
n + 1

2

)
�ωc (18.43)

where ωc = eB/m∗, m∗ is the effective mass, and n = 0, 1, 2, 3, . . . giving rise to
quantized subbands called “Landau levels”. If we consider a typical semiconductor
submitted to a strong magnetic field applied along the z direction, the motion of
electrons (holes) in the conduction (valence) bands is confined into quantized orbits
in the x − y plane while the motion along the z-axis does not depend on magnetic
field. The electron wavector is continuous along the z direction, but kx and ky are
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quantized by the magnetic field. The energy levels for electron motion will be a sum
of energy in the sub-bands associated with the orbits plus the free energy along the
magnetic field direction, that is

En(kz) =
(
n + 1

2

)
e�B

m∗ + �
2k2z
2m∗ . (18.44)

By considering a parabolic band model, we can write the energy for electrons and
holes as

Ee,h
n (kz) = ± Eg

2
±

(
n + 1

2

)
e�B

m∗
e,h

± �
2k2z

2m∗
e,h

(18.45)

where Eg is the gap energy,+ represents electrons (e) and− represents holes (h), and
the last term in this equation is the kinetic energy of an electron along the direction
of the magnetic field. The optical direct transition energy �ω between the valence
and conduction bands can be written as

�ω = E+
n (Kz) − E−

n (Kz) = Eg + (n + 1

2
)
e�B

μ
+ �

2k2z
2μ

(18.46)

where μ is the reduced mass defined as 1
μ

= 1
me

+ 1
mh
. From this equation it is clear

that the effect of a magnetic field is to blueshift the absorption energy threshold
(n = 0) by the amount 1

2
e�B
μ

. This phenomena is illustrated in Fig. 18.8, which shows
the room temperature optical absorption spectrum of germanium as a function of
magnetic field. The oscillations in the spectrum, which are due to transitions between
Landau levels, and the separation between the peaks can be used to determine the
effective masses of electrons and holes.

Fig. 18.8 Optical
transmission spectrum of Ge
as a function of magnetic
field intensity, measured in
kiloGauss
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18.5 Conservation of Crystal Momentum in Direct Optical
Transitions

For clarity we now show why the momentum matrix elements coupling two Bloch
states for a perfect crystal are diagonal in k and conserve crystal momentum. It is this
property of the momentum matrix elements that is responsible for direct interband
transitions in the presence of a magnetic field.

We write the momentum matrix elements coupling two bands (for example, the
valence and conduction bands) as

〈n′k′|p|n,k〉 =
∫

d3r

[
e−ik′ ·ru∗

n′k ′(r)
(

�

i
∇

)
eik·runk(r)

]
. (18.47)

Operating with ∇ for the p vector on the product function of the Bloch state yields

〈n′k′|p|n,k〉 =
∫

d3re−ik′ ·ru∗
n′k ′(r)eik·r

(
�k + �

i
∇

)
unk(r). (18.48)

Now the term in �k can be integrated immediately to give �kδnn′δ(k − k′) and is
thus diagonal in both the band index and crystal momentum. This term therefore does
not give rise to interband transitions. The remaining term in (18.48) is the function
u∗
n′k ′(r)∇unk(r) which is periodic under the translation r → r + Rn, where Rn is

any lattice vector. But any spatially periodic function can be Fourier expanded

∑
m

Fme
iGm·r = �

i
u∗
n′k ′(r)∇unk(r) (18.49)

in terms of the reciprocal lattice vectorsGm.We thus obtain for the integral in (18.48)
factors of the form ∫

d3rei(k−k′)·rFme
iGm·r (18.50)

which vanish unless
k − k′ + Gm = 0. (18.51)

Since k − k′ must be within the first Brillouin zone, k and k′ can only differ by
the reciprocal lattice vector Gm ≡ 0. Thus, (18.50) vanishes unless k = k′ and we
have demonstrated that because of the periodicity of the crystal lattice, the momen-
tum matrix elements coupling two bands can only do so at the same value of crystal
momentum k. Since the probability for optical transitions involves the samemomen-
tum matrix elements as occur in the determination of the effective mass in the trans-
port properties, study of the optical properties of a solid also bears an important
relation to the transport properties of that material. If the finite wave vector of the
light is included, then the spatial dependence of the vector potential must also be
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included, as a correction. In some cases the interband transition is not allowed at the
high symmetry point for symmetry reasons. As we then move away from the high
symmetry point, transitions can occur as the wave function is expanded in a Taylor
expansion about the high symmetry point.

18.6 Indirect Interband Transitions

In making indirect transitions, the semiconductor can either emit or absorb a phonon
of energy �ωq

�ω = E f − Ei ± �ωq (18.52)

in which E f and Ei are, respectively, the energies of the final and initial electron
states and the ± signs refer to phonon emission (+ sign) or absorption (– sign).

To review indirect interband transitions in a semiconductor, we derive below an
expression for the absorption coefficient for the situation where a phonon is absorbed
in the indirect process, as shown schematically in Fig. 18.9. Similar arguments can
then be applied to the case where a phonon is emitted. The conservation of energy
principle is applied to the total process, consisting of the direct optical transition and
the absorption of a phonon �ωq , yielding

�ω = Eg − �ωq + �
2(kn − kc)

2

2mn
+ �

2k2p
2mp

(18.53)

E

ω
ω

2
1

0

ω ω

E

k k

2

0

1

Fig. 18.9 Indirect optically induced transitions of electrons a from the initial state 0 in the valence
band to final states 1 and 2 in the conduction band, and b from initial states 1 and 2 in the valence
band to the final state 0 in the conduction band. In both (a) and (b) a phonon labeled by (�ωs , qs )
is absorbed in the indirect transition process
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Fig. 18.10 Schematic diagram of an indirect transition showing the notation used in the text. Ec
is the energy of the L-point conduction band at wave vector kc, while Ec is the thermal energy
gap. The valence band maximum Ev is taken as the zero of energy. En and (kn − kc), respectively,
denote the energy and momentum of an excited electron, while Ep and kp , respectively, denote the
corresponding parameters for the holes near k = 0. It is customary to place the zero of energy at
the valence band maximum

in which the notation in (18.53) is defined in Fig. 18.10, and Eg is the thermal gap or
energy difference between the conduction band minimum (e.g., at the L-point) and
the valence band maximum at the Γ -point of the Brillouin zone. The negative sign
in front of the phonon energy �ωq in (18.53) corresponds to the phonon absorption
process. In (18.53), the term �(kn − kc) denotes the difference between the crystal
momentum �kn of an excited electron in the L–point conduction band and the crystal
momentum �kc at the L–point conduction band minimum. Thus, the kinetic energy
of the excited electron with crystal momentum �kn is

En − Ec = �
2(kn − kc)

2

2mn
(18.54)

where En is the energy above the conduction band minimum Ec, and mn in (18.54)
is the effective mass of an electron near the conduction band minimum.

Since the valence band extremum is at k = 0, then �kp is the crystal momentum
for the hole that is created when the electron is excited, corresponding to the kinetic
energy of the p-type hole

Ep = �
2k2p
2mp

. (18.55)

The sign convention that is used in this discussion is to take Ep as a positive number
and the zero of energy is taken at the valence band maximum (see Fig. 18.10). In
terms of these sign conventions, conservation of energy yields

�ω = Eg − �ωq + (En − Ec) + Ep (18.56)
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and conservation of momentum requires

q = kn − kp (18.57)

where q is the wave vector for the absorbed phonon. In Fig. 18.9, the phonon energy
and the wave vector are denoted by �ωsi and qsi .

We now find the frequency dependence of the absorption edge for the indirect
transitions in order to make a distinction between direct and indirect transitions just
from looking at the frequency dependence of the optical absorption data. Let us then
consider the transition from some specific initial state Ep to a specific final state En .
The density of states ρc(En) (number of states/unit volume/unit energy range) for
the final state conduction band has an energy dependence given by

ρc(En) ∝ (En − Ec)
1/2. (18.58)

Using the conservation of energy relation in (18.56), the dependence of ρc(En) on
Ep can be expressed through the relation

ρc(En) ∝ (�ω − Eg − Ep + �ωq)
1/2. (18.59)

Thus we see that transitions to a state En take place from a range of initial states,
since Ep, can vary between Ep = 0, where all of the kinetic energy is given to the
electron, and in the opposite limit where En − Ec = 0 and all of the kinetic energy is
given to the hole. Let the energy δ denote the range of possible valence band energies
between these limits

δ = �ω − Eg + �ωq . (18.60)

The density of initial states for the valence band has an energy dependence given by

ρv(Ep) ∝ E1/2
p (18.61)

where we are using the convention Ev ≡ 0 for defining the zero of energy, so that Ep

vanishes at the top of the valence band. Thus the effective density of states for the
phonon absorption process is found by summing over all Ep values which conserve
energy,

ρ(�ω) ∝
∫ δ

0
ρc(En)ρv(Ep)dEp ∝

∫ δ

0

√
δ − Ep

√
Ep dEp. (18.62)

The integral in (18.62) can be carried out through integration by parts, utilizing the
notation u = Ep, and v = δ − Ep, and writing the limits of the integration in terms
of the variable Ep

∫ δ

0

√
uv du = δ − 2v

4

√
uv

∣∣∣∣
δ

0

+ δ2

4
tan−1

√
u

δ − u

∣∣∣∣
δ

0

= δ2π

8
. (18.63)
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Substitution in (18.60) for δ in (18.62) and (18.63) results in

ρ(�ω) ∝ π

8
(�ω − Eg + �ωq)

2 (18.64)

which gives the frequency dependence for the indirect interband transitions involving
phonon absorption. Also, the probability for the absorption of a phonon is propor-
tional to the Bose–Einstein factor

n(�ωq) = 1

exp(�ωq/kBT ) − 1
(18.65)

so that the absorption coefficient for indirect transitions inwhich a phonon is absorbed
becomes

αabs(ω) = Ca
(�ω − Eg + �ωq)

2

exp(�ωq/kBT ) − 1
(18.66)

where Ca is a constant for the phonon absorption process.
To find the absorption coefficient for the indirect absorption process that involves

the emission of a phonon, we must find the effective density of states for the
emission process. The derivation in this case is very similar to that given above
for phonon absorption, except that the energy conservation condition now involves
the phonon energy with the opposite sign. Furthermore, the probability of emission
of a phonon is proportional to [n(�ωq) + 1], which is given by

[n(�ωq) + 1] = 1 + [e�ωq/kBT − 1]−1 = 1

1 − e−�ωq/kBT
(18.67)

so that the absorption constant for phonon emission becomes

αems(ω) = Ce
(�ω − Eg − �ωq)

2

1 − exp(−�ωq/kBT )
(18.68)

where Ce is a constant for the phonon emission process.
At low temperatures, the phonon emission process dominates because there are

so few phonons available for the absorption process. Furthermore, as a function of
the photon energy, different thresholds are obtained for the absorption and emis-
sion processes. In the absorption process, absorption starts when �ω = Eg − �ωq

(see Fig. 18.11), while for the emission process, the optical absorption starts when
�ω = Eg + �ωq . So if we plot

√
αabs(ω) versus. �ω, as is shown in Fig. 18.11, then√

αabs(ω) in the low photon energy range will go as
√

αabs(ω) ∝ (�ω − Eg + �ωq),
while

√
αems(ω) will be proportional to (�ω − Eg − �ωq) for the emission process.

Experimentally, a superposition of the absorption and emission processes will be
observed and the two terms will have a different temperature dependence.
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Fig. 18.11 Schematic diagram showing the frequency dependence of the square root of the absorp-
tion coefficient for indirect interband transitions near the thresholds for the phonon emission and
absorption processes. The curves are for four different temperatures. At the lowest temperature
(T4) the phonon emission process dominates, while at the highest temperature (T1) the phonon
absorption process is most important at low photon energies. The magnitude of twice the phonon
energy is indicated on the x axis (see Yu and Cardona, Fundamentals of Semiconductors: Physics
and Materials Properties)

α1
/2

[c
m

-1
/2
]

Si

Photon Energy [eV]

Fig. 18.12 Plots of the square root of the absorption coefficients of Si versus photon energy at
several temperatures. The two segments of a straight line drawn through the experimental points
represent the two contributions associatedwith phonon absorption and emission. (FromMacfarlane,
et al., Phys. Rev. 111, 1249 (1958))

Some experimental data illustrating indirect interband transitions are given in
Fig. 18.12. The shift of the curves in Fig. 18.12 as a function of photon energy is due
to the temperature dependence of the indirect gap in silicon. In Fig. 18.12 it is easy
to separate out the lower energy absorption contribution which is associated with
the phonon absorption process (compare Figs. 18.11 and 18.12). At higher energies
it is also easy to separate out the phonon emission contribution. By carrying out
measurements at several different temperatures it is therefore possible to obtain a
more accurate value for �ωq . Figure18.12 shows that the phonon absorption process
becomes more favorable as the temperature is raised, while the emission process is
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less sensitive to temperature. The physical reason behind this is that for the absorption
process to occur in the first place, phonons of the appropriate wave vector q must
be available. In Ge, the phonon assisted process requires phonons of wave vector
q extending from Γ to L , while for Si we need a phonon q–vector extending from
Γ to Δmin (where Δmin corresponds to the Δ point conduction band minimum).
Since lattice vibrations are thermally excited, there are few available phonons at low
temperatures, but more are available at high temperatures. On the other hand, phonon
emission does not depend upon the availability of phonons since the emission process
itself generates phonons; for this reason the phonon emission process is relatively
insensitive to temperature. Since silicon is a relatively hard material (with a Debye
temperature of θD = 658K), there will only be a few large wavevector phonons
excited at room temperature. Therefore the phonon emission process will dominate
in the optical absorption for photon energies where such emission is energetically
possible. These arguments account for the different slopes observed for the phonon
absorption and emission contributions to the absorption coefficient of Fig. 18.12.

Another complication that arises in real materials is that there are several types
of phonons present for a given q-vector, i.e., there are acoustic and optical branches,
and for each branch there are longitudinal and transverse modes. An example of the
analysis of optical absorption data to obtain the frequencies of the various phonons
at q = 0 is given in Fig. 18.13, where α

1/2
abs versus �ω is plotted for the indirect gap

semiconductor GaP, from which it is possible to measure �ωq for various LO, LA,
TO and TA phonons. Today such optical data are seldom taken, because it is now
customary to use inelastic neutron diffraction data to plot out the entire phonon
dispersion curve for each of the phonon branches. When the phonon frequencies

2.30 2.34 2.38 2.42
Photon Energy (eV)

cm
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LO+TA2

LO+TA1
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TO

TA2 LA

Fig. 18.13 Plots of the square root of the absorption coefficients of GaP versus photon energy at
two different temperatures. The labels denote the various absorption thresholds associated with the
emission of various phonon modes. The observation of these phonon modes is made possible by
the enhanced absorption associated with excitons at the absorption threshold. The apparent shift
in the phonon frequencies is mostly due to the variation of the bandgap energy with temperature
(see Figs. 18.11 and 18.12). Reproduced from Springer-Verlag, Yu and Cardona, Fundamentals of
Semiconductors: Physics and Materials Properties with permission
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are high, electron energy loss spectroscopy can be helpful in obtaining ωq(q) for
the various phonon branches as is discussed in Chap.6. In the case of graphite, it
has been shown how resonance Raman spectroscopy can be used to obtain important
information about the phonondispersion relations for amaterialwith lower symmetry
(see Saito et al., Phys. Rev. Lett., 88, 027401 (2002).).

Problems

18.1 Consider the Burstein shift phenomena for heavily doped semiconductors.
Determine the energy at which appreciable interband (band-to-band) absorption
begins at 300K for a p-type GaAs sample Eg = 1.42eV with a hole concentration
of 1 × 1020 cm−3. Take into account both the light- and heavy-hole bands, which are
degenerate at the Γ point in the Brillouin zone (mlh = 0.074m0, mhh = 0.62m0).

18.2 Suppose that you prepare a quantum well structure by molecular beam epitaxy
(MBE) fromGaAs (Eg = 1.42eV) andAlxGa1−xAs (Eg = 1.80 eV), where x = 0.3
so that AlxGa1−xAs is a direct gap semiconductor. Assume that the band off–set of
the conduction band is three times greater than in the valence band (me = 0.067m0).

(a) Assuming a width of the quantum well of Lz = 15nm, find the photon energies
at which optical absorption can take place due to optical transitions between the
highest heavy hole and light hole bound states to the lowest conduction band
bound state? Use the approximation of an infinite rectangular well in obtaining
the energy levels in the bound state.

(b) Are there selection rules that suppress the transitions between selected valence
and conduction band bound states?

(c) What is the dependence of the threshold photon energy for optical transitions on
Lz for a lightly n-doped system? Use the notation n = n0 and τ = τ0.

(d) What is the free carrier contribution to the dielectric function at room tempera-
ture?

(e) What is the free carrier contribution to the optical absorption coefficient?
(f) What is the difference in the optical spectrum between the superlattice where

AlxGa1−xAs (x = 0.3) is used as the wide bandgap semiconductor [part (a)]
and the case of AlAs (x = 1.0), where we note that AlAs is an indirect bandgap
semiconductor (Eg = 2.2eV), for which the X point conduction band minimum
is 0.23eV below the lowest Γ point (k = 0) conduction band.

18.3 In many physical cases, the momentum matrix element coupling the highest
lying valence band and the lowest lying conduction band vanishes by symmetry at
the extremal point k0. Thus, optical transitions at k0 are “forbidden”. However, in
these cases the momentum matrix element is non–zero as we move away from k0

by an arbitrary amount. This gives rise to “forbidden direct interband transitions”
which have a different frequency dependence for the optical absorption coefficient
than their “allowed counterparts”.

http://dx.doi.org/10.1007/978-3-662-55922-2_6
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(a) By making a Taylor expansion of the wave function ψnk(r) about the band
extremum k0, where k = k0 + κ , find the dependence of the matrix element
〈v|p|c〉 on the magnitude of κ , assuming that the matrix element vanishes by
symmetry at k0.

(b) Using the result from part (a), find the frequency dependence of the optical
absorption coefficient for the case of a forbidden direct interband transition
around an M0 type critical point.

(c) Compare the frequency dependence of the optical absorption coefficient in (b) to
that for direct allowed interband transitions and for indirect optical transitions.

(d) What is the frequency dependence of the optical absorption coefficient for a
two-dimensional electron gas for allowed and forbidden interband transitions?

18.4 Temperature dependence and isotopic shift of the bandgaps:

(a) Show that the temperature (T ) dependence of an interband gap energy Eg can
be written as

Eg(T ) − Eg(0) = A

(
2

exp[�Ω/(kBT )] − 1
+ 1

)
,

where A is a temperature-independent constant, kB is the Boltzmann constant,
and �Ω represents an average phonon energy. Hint: the term inside the parenthe-
sis in the above equation represents the ensemble-averaged square of the phonon
displacement.

(b) Show thatΔEg(T ) = Eg(T ) − Eg(0) becomes linear in T in the limit of kBT �
�Ω .

(c) For small T , ΔEg(T ) can also be written as

ΔEg(T ) =
(

∂Eg

∂V

)
T

(
dV

dT

)
P

ΔT +
(

∂Eg

∂T

)
V

ΔT

where the first term describes the change in Eg caused by thermal expansion. Its
sign can be positive or negative. The second term is the result of electron-phonon
interaction. Its sign is usually negative. Estimate the contribution of these effects
to Eg(0) by extrapolating Eg(T ) to T = 0 using its linear dependence at large T .
The resultant energy is known as the renormalization of the bandgap at T = 0
by electron-phonon interaction. Determine this energy for the E0 gap of Ge from
Fig. 18.14.

(d) The result in part (c) can be used to estimate the dependence of the bandgap on
isotopic mass. Since the bonding between atoms is not affected by the isotopic
mass, the average phonon energy �Ω in solids with two identical atoms per unit
cell, like Ge, can be assumed to depend on atomic mass M as M−1/2. Calculate
the difference in the E0 bandgap energies between the following isotopes: 70Ge,
74Ge, and 76Ge.
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Fig. 18.14 Ge energy
bandgap versus temperature

18.5 For a two level system with energy levels E1 and E2 (where E1 < E2), assume
that before time t = 0 when a light wave of frequency ω and intensity I0 is applied,
the system is in the ground state E1.

(a) Find the transition probability for transitions to the state E2 as a function of
time t . Consider the response of the system as a signal of frequency ω is tuned
over the resonant frequencyωR allowingmeasurement of the linewidth in energy
at �ωR = E2 − E1.

(b) Suppose that the system is in state E2 at time t0 when the light wave is switched
off, find an expression for the probability that state E2 is still occupied after a
time (t f − t0).

(c) Sketch the occupation of states E1 and E2 over the time interval 0 ≤ t ≤ t f and
indicate the change in behavior occurring at time t0.

18.6 For GaAs nanowires, it is very difficult to determine the free carrier concentra-
tion using traditionalHall effectmeasurements.As an alternative, photoluminescence
measurements can be used to estimate the carrier density based on the Burstein shift.

(a) For an n-typeGaAsnanowire, a blueshift of 20meV is observed in the photolumi-
nescence emission relative to an undoped nanowire. Based on this information,
estimate the Fermi level and carrier density of these nanowires.

(b) How would your answer change if this shift was observed in p-doped GaAs
nanowires? Explain your answer.
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Chapter 19
Optical Properties of Solids over
a Wide Frequency Range

19.1 Kramers–Kronig Relations

Measurement of the absorption coefficient (Chap.18) gives the imaginary part of the
complex index of refraction, while the reflectivity is sensitive to a more complicated
combination of ε1(ω) and ε2(ω). Thus, from measurements such as the frequency
dependent absorption αabs(ω), we often have insufficient information to determine
ε1(ω) and ε2(ω) independently. However, if we know either ε1(ω) or ε2(ω) over a
wide frequency range, then ε2(ω) or ε1(ω) can be determined from the Kramers–
Kronig relations given by

ε1(ω) − 1 = 2

π
P

∫ ∞

0

ω′ε2(ω′)
ω′2 − ω2

dω′ (19.1)

and

ε2(ω) = − 2

π
P

∫ ∞

0

ω′ε1(ω′)
ω′2 − ω2

dω′ (19.2)

in which P denotes the principal value of the integrals. The Kramers–Kronig
relations are very general mathematical relations and are based on causality, lin-
ear response theory and the boundedness of physical observables.

Since the Kramers–Kronig relations relate ε1(ω) and ε2(ω) to each other, if either
of these functions is known as a function of ω, the other is completely determined.
Because of the form of these relations (19.1) and (19.2), it is clear that the main
contribution to ε1(ω) comes from the behavior of ε2(ω

′) near ω′ ≈ ω due to the
resonant denominator in these two equations. What this means physically is that to
obtain ε1(ω), we really should know ε2(ω

′) for allω′, but it is more important to know
ε2(ω

′) in the frequency range in the vicinity of ω than elsewhere. This property is
greatly exploited in the analysis of optical reflectivity data, where measurements are
generally available over a finite range ofω′ values. Some kind of extrapolation proce-
dure must then be used for those frequencies ω′ that are experimentally unavailable.
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We now give a derivation of the Kramers–Kronig relations, after some introductory
material.

This theorem is generally familiar to electrical engineers in the context of causality.
If a system is linear and obeys causality (i.e., there is no output before the input is
applied), then the real and imaginary parts of the system function are related by a
Hilbert transform.Let us nowapply this causality concept to the polarization in a solid
resulting from the application of an optical electric field. We have the constitutive
equation which defines the polarization of a solid material:

εE = D = E + 4πP (19.3)

so that

P = ε − 1

4π
E ≡ α(ω)E (19.4)

where α(ω) defines the polarizability, and P is the polarization/unit volume or the
response of the solid to an applied field E. The polarizability α(ω) is the system
function

α(ω) = αr (ω) + iαi (ω) (19.5)

in which we have explicitly written the real and imaginary parts αr (ω) and αi (ω),
respectively. Let E(t) = E0δ(t) be an impulse optical field at t = 0. Then from the
definition of a δ-function, we have:

E(t) = E0δ(t) = E0

π

∫ ∞

0−
cosωtdω. (19.6)

The response to this impulse field yields an in-phase term proportional to αr (ω) and
an out-of-phase term proportional to αi (ω), where the polarization vector is given
by

P(t) = E0

π

∫ ∞

0−

[
αr (ω) cosωt + αi (ω) sinωt

]
dω, (19.7)

in which α(ω) is written for the complex polarizability (see (19.5)). Since P(t) obeys
causality and is bounded, we find that the integral of α(ω)e−iωt is well behaved along
the contour C ′ in Fig. 19.1a as R → ∞ and no contribution to the integral is made
along the contour C ′ in the upper half plane. Furthermore, the causality condition
that P(t) vanishes for t < 0 requires that α(ω) have no poles in the upper half plane
shown in Fig. 19.1a.

To find an explicit expression for α(ω) we must generate a pole on the real axis.
Then we can isolate the behavior of α(ω) at some point ω0 by taking the principal
value of the integral. We do this with the help of Cauchy’s theorem. Since α(ω) has
no poles in the upper half-plane, the function [α(ω)/(ω − ω0)] will have a single
pole along the axis at ω = ω0 (see Fig. 19.1b). If we run our contour just above the
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Fig. 19.1 a Contours used in evaluating the complex polarizability integral of (19.7). b Contour
used to evaluate (19.9)

real axis, there are no poles in the upper-half plane and the integral around the closed
contour vanishes:

∮
α(ω)

ω − ω0
dω = 0. (19.8)

Let us now consider the integral taken over the various portions of this closed
contour:

∫
C ′

α(ω)

ω − ω0
dω +

∫ ω0−ε

−R

α(ω)

ω − ω0
dω +

∫
C

α(ω)

ω − ω0
dω +

∫ R

ω0+ε

α(ω)

ω − ω0
dω = 0.

(19.9)

The contribution over the contour C ′ vanishes since α(ω) remains bounded, while
[1/(ω−ω0)] → 0 as R → ∞ (see Fig. 19.1b). Along the contourC , we useCauchy’s
theorem to obtain

lim
ε→0

∫
C

α(ω)

ω − ω0
dω = −π iα(ω0) (19.10)

in which α(ω0) is the residue of α(ω) at ω = ω0 and the minus sign is written
because the contour C is taken clockwise. We further define the principal partP of
the integral in the limit R → ∞ and ε → 0 as

lim
R→∞
ε→0

∫ ω0−ε

−R

α(ω)

ω − ω0
dω +

∫ R

ω0+ε

α(ω)

ω − ω0
dω → P

∫ ∞

−∞
α(ω)

ω − ω0
dω. (19.11)
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The vanishing of the integral in (19.8) thus results in the relation

αr (ω0) + iαi (ω0) = 1

π i
P

∫ ∞

−∞
αr (ω) + iαi (ω)

ω − ω0
dω. (19.12)

Equating real and imaginary parts of (19.12), we get the following relations which
hold for −∞ < ω < ∞ :

αr (ω0) = 1

π
P

∫ ∞

−∞
αi (ω)

ω − ω0
dω (19.13)

where αr (ω) is an even function and

αi (ω0) = −1

π
P

∫ ∞

−∞
αr (ω)

ω − ω0
dω (19.14)

where αi (ω) is an odd function of ω.
We would like to write these relations in terms of integrals over positive

frequencies. We can do this by utilizing the even- and oddness of αr (ω) and αi (ω).
If we now multiply the integrand by (ω + ω0)/(ω + ω0) and make use of the even-
and oddness of the integrands, we get:

αr (ω0) = 1

π
P

∫ ∞

−∞
αi (ω)(ω + ω0)

ω2 − ω2
0

dω = 2

π
P

∫ ∞

0

ωαi (ω)dω

ω2 − ω2
0

(19.15)

αi (ω0) = −1

π
P

∫ ∞

−∞
αr (ω)(ω + ω0)

ω2 − ω2
0

dω = − 2

π
P

∫ ∞

0

ω0αr (ω)dω

ω2 − ω2
0

. (19.16)

We have now obtained the Kramers–Kronig relations. To avoid explicit use of the
principal value of a function, we can subtract out the singularity at ω0, by writing

αr (ω0) + iαi (ω0) = 1

π i

∫ ∞

−∞

(
α(ω) − α(ω0)

ω − ω0

)(
ω + ω0

ω + ω0

)
dω. (19.17)

Using the evenness and oddness of αr (ω) and αi (ω) we then obtain

αr (ω0) = 2

π

∫ ∞

0

ωαi (ω) − ω0αi (ω0)

ω2 − ω2
0

dω (19.18)

and

αi (ω0) = − 2

π

∫ ∞

0

ω0αr (ω) − ω0αr (ω0)

ω2 − ω2
0

dω. (19.19)



19.1 Kramers–Kronig Relations 395

To obtain the Kramers–Kronig relations for the dielectric function itself, we just
substitute

ε(ω) = 1 + 4πα(ω) = ε1(ω) + iε2(ω) (19.20)

into (19.18) and (19.19) to obtain

ε1(ω0) − 1 = 2

π

∫ ∞

0

ω′ε2(ω′) − ω0ε2(ω0)

ω′2 − ω2
0

dω′ (19.21)

and

ε2(ω0) = −2

π

∫ ∞

0

ω0ε1(ω
′) − ω0ε1(ω0)

ω′2 − ω2
0

dω′. (19.22)

The Kramers–Kronig relations (19.21) and (19.22) are very general and depend,
as we have seen, on the assumptions of causality, linearity and boundedness. From
this point of view, the real and imaginary parts of a “physical” quantity Q can be
related by making the identification

Qreal → αr (19.23)

Qimaginary → αi . (19.24)

Thus, we can identify ε1(ω) − 1 with αr (ω), and ε2(ω) with αi (ω). The reason, of
course, why the identification αr (ω) is made with [ε1(ω)− 1] rather than with ε1(ω)

is that if ε2(ω) ≡ 0 for all ω, we want ε1(ω) ≡ 1 for all ω (the dielectric constant
for free space).

Thus, if we are interested in constructing a Kramers–Kronig relation for the
optical constants, then we again want to make the following identification for the
optical constants (ñ + i k̃)

[ñ(ω) − 1] → αr (ω) (19.25)

k̃(ω) → αi (ω). (19.26)

From (19.21) and (19.22), we can obtain the Kramers–Kronig relations for the
optical constants ñ(ω) and k̃(ω)

ñ(ω) − 1 = 2

π

∫ ∞

0

ω′k̃(ω′) − ωk̃(ω)

ω′2 − ω2
dω′ (19.27)

and

k̃(ω) = − 2

π

∫ ∞

0

ωñ(ω′) − ωñ(ω)

ω′2 − ω2
dω′ (19.28)

where we utilize the definition relating the complex dielectric function ε(ω) to the
optical constants ñ(ω) and k̃(ω), where ε(ω) = [ñ(ω) + i k̃(ω)]2.
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It is useful to relate the optical constants to the reflection coefficient r(ω) exp
[iθ(ω)] defined by

r(ω) exp[iθ(ω)] = ñ(ω) − 1 + i k̃(ω)

ñ(ω) + 1 + i k̃(ω)
(19.29)

in which the conjugate variables are ln r(ω) and θ(ω), while the reflectivity is given
byR(ω) = r2(ω). From (19.29), we can then write

ñ(ω) = 1 − r2(ω)

1 + r2(ω) − 2r(ω) cos θ(ω)
(19.30)

k̃(ω) = 2r(ω) sin θ(ω)

1 + r2(ω) − 2r(ω) cos θ(ω)
(19.31)

so that once r(ω) and θ(ω) are found, the frequency dependent optical constants ñ(ω)

and k̃(ω) are determined. In practice, r(ω) and θ(ω) are found from the reflectivity
R(ω), which is measured over a wide frequency range and is modeled outside the
measured range byuse of the following relations.Using theKramers–Kronig relation,
we can also consider the conjugate variables ln r(ω) and θ(ω), from which θ(ω) is
found:

ln r(ω) = 2

π

∫ ∞

0

ω′θ(ω′) − ωθ(ω)

ω′2 − ω2
dω′ (19.32)

θ(ω) = −2ω

π

∫ ∞

0

ln r(ω′) − ln r(ω)

ω′2 − ω2
dω′. (19.33)

where lnR(ω) = 2 ln r(ω).
From a knowledge of the frequency-dependent reflectivity R(ω), for example,

the reflection coefficient r(ω) and the phase of the reflectivity coefficient θ(ω) can
be found. We can then find the frequency dependence of the optical constants ñ(ω)

and k̃(ω), which in turn yield the frequency dependent dielectric functions ε1(ω) and
ε2(ω). Starting with the experimental data for the reflectivity R(ω) for germanium
in Fig. 19.2a, the Kramers–Kronig relations are used to obtain results for ε1(ω) and
ε2(ω) for germanium, as shown in Fig. 19.2b.

The Kramers–Kronig relations for the conjugate variables ε1(ω) and ε2(ω); ñ(ω)

and k̃(ω); and ln r(ω) and θ(ω) are all widely used in quantitative studies of the
optical properties of specific materials, as for example germanium, as shown in
Fig. 19.2. For pedagogic purposes, germanium is simpler because germanium is a
direct bandgap semiconductor for which the bandgap occurs at k = 0, the Γ point
is in the Brillouin zone.
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Fig. 19.2 a Frequency dependence of the reflectivity of Ge over a wide frequency range. b Plot
of the real [ε1(ω)] and imaginary [ε2(ω)] parts of the dielectric functions for Ge obtained by a
Kramers–Kronig analysis of the reflectivity data in part (a)

19.2 Optical Properties and Band Structure

If we are interested in studying the optical properties near the band edge, such as
the onset of indirect transitions or of the lowest direct interband transitions, then we
should carry out absorption measurements (Chap. 18) to determine the absorption
coefficient αabs(ω) and thus identify the type of process that is dominant (indirect,
direct, allowed, forbidden, etc.) at the band edge. However, if we are interested in the
optical properties of a semiconductor over a wide frequency range, then we want to
treat all energy bands and interband transitions within a few eV from the Fermi level
on an equal footing. Away from the band edge, the optical absorption coefficients
become too high in energy for conventional absorption techniques to be useful, and
reflectivity measurements are made instead. Experimentally, it is most convenient to
carry out reflectivity measurements at normal incidence. From these measurements,

http://dx.doi.org/10.1007/978-3-662-55922-2_18
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the Kramers–Kronig analysis (see Sect. 19.1) is used to get the phase angle θ(ω) for
some frequency ω0, if the reflection coefficient r(ω) is known throughout the entire
range of photon energies

θ(ω0) = −2ω0

π

∫ ∞

0

ln r(ω) − ln r(ω0)

ω2 − ω2
0

dω. (19.34)

From a knowledge of r(ω) and θ(ω), we can then find the frequency dependence of
the optical constants ñ(ω) and k̃(ω) using (19.30) and (19.31) and the frequency-
dependent dielectric functions

ε1(ω) = ñ2 − k̃2 (19.35)

ε2(ω) = 2ñk̃. (19.36)

As an example of such an analysis, let us consider the case of the semiconductor
germanium. The normal incidence reflectivity is shown in Fig. 19.2a, and the results
of the Kramers–Kronig analysis described above are given for ε1(ω) and ε2(ω) in
Fig. 19.2b.

Corresponding to the structure in the reflectivity, there will be structure observed
in the real and imaginary parts of the dielectric function. These structures in the
reflectivity data are then identified with special features in the electronic energy
band structure. It is interesting to note that the indirect transition (0.66eV) from
the Γ25′ valence band to the L1 conduction band has almost no impact on the mea-
sured reflectivity data. Nor does the direct band gap, which is responsible for the
fundamental absorption edge in germanium, have a significant effect on the reflec-
tivity data shown in Fig. 19.2a. These effects are small on the scale of the reflectivity
structures shown in Fig. 19.2a and must be looked for with great care in a narrow
frequency range where structure in the absorption data is found for these particu-
lar structures. The big contribution to the dielectric constant comes from interband
transitions L3′ → L1 for which the joint density of states is large over large vol-
umes of the Brillouin zone. The sharp rise in ε2(ω) at 2.1 eV is associated with the
L3′ → L1 transition. For higher photon energies, large volumes of the Brillouin zone
contribute until a photon energy of about 5eV is reached. Above this photon energy,
we cannot find bands that track each other closely enough to give interband transi-
tions with intensities of large enough magnitude to make a significant contribution
to observables in the visible optical frequency range.

19.3 Modulated Reflectivity Experiments

If we wish to study the critical point contributions to the optical reflectivity in more
detail, it is useful to carry out modulated reflectivity measurements. If, for example,
a small periodic perturbation is applied to a sample then there will be a change in
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Fig. 19.3 Reflectance and
frequency modulated
reflectance spectra for GaAs.
a Room temperature
reflectance spectrum and b
the wavelength modulated
spectrum (1/R)(dR/dE) at
4K (the solid curve is
experimental and the broken
curve is calculated using a
pseudopotential band
structure model. (Adapted
from Yu and Cardona)

the reflectivity at the frequency of that perturbation. The frequency dependence of
this change in reflectivity is small (parts in 103 or 104) but it is measurable. As an
example,we show in Fig. 19.3, results for the reflectivity R(ω) and for thewavelength
modulated reflectivity (1/R)(dR/dE) of GaAs, where the energy variable E is
related to the probing photon frequency ω by E = �ω. Structure at E0 would be
identified with the direct band gap, while the structure at E0 + Δ0 corresponds to a
transition from the split-off valence band at k = 0which arises through the spin-orbit
interaction. It is interesting to note that the modulated reflectivity (1/R)(dR/dE)

in Fig. 19.3b provides a more sensitive probe of the value of E0 and Δ0 than the
reflectivity itself in Fig. 19.3a.

In the vicinity of a critical point, the denominator in the joint density of states is
small, so that a small change in photon energy can produce a significant change in the
joint density of states. Hence,modulation spectroscopy techniques emphasize critical
points. There are a number of parameters that can be varied in these modulation
spectroscopy experiments, including the following Table19.1:

Table 19.1 List of
parameters and corresponding
modulated reflectivity
measurements

Electric field – electro-reflectance

Wavelength – wavelength modulation

Stress – piezo-reflectance

Light intensity – photo-reflectance

Temperature – thermo-reflectance

Fermi level – gate modulation
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The various modulated reflectivity experiments are complementary rather than
yielding identical information. For example, certain structures in the reflectance are
more sensitive to one type of modulation technique than to another. If we wish to
look at structure associated with the L point (111 direction) transitions, then a stress
along the (100) direction will not produce as important a symmetry change as the
application of stress along a (111) direction; with a stress along a (111) direction,
the ellipsoid having its longitudinal axis along (111) will be affected one way while
the other three ellipsoids will be affected in another way. However, stress along the
(100) direction treats all ellipsoids in the same way.

The reason why modulation spectroscopy emphasizes critical points can be seen
by the following physical argument. For a direct interband transition, the optical
absorption coefficient has a frequency dependence

αabs(ω) = C

√
(�ω − Eg)

�ω
. (19.37)

Therefore, a plot of αabs(ω) vs. �ω exhibits a threshold [Fig. 19.4a], but shows no
singularity in the frequency plot. However, when we take the frequency derivative
of (19.37)

∂αabs(ω)

∂ω
= C

2ω

(
�ω − Eg

)−1/2

− C

�ω2

(
�ω − Eg

)1/2

(19.38)

a sharp structure is obtained in the modulated reflectivity due to the singularity in
the first term of (19.37) at �ω = Eg [see Figs. 19.4a and 19.4b].

If we modulate the incident light with any arbitrary parameter x , then

∂αabs

∂x
= ∂αabs

∂ω

∂ω

∂x
. (19.39)
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Fig. 19.4 Physical picture of (a) the frequency dependence of the optical absorption coefficient
showing a threshold for interband transitions at the band gap. (b) The derivative of (a) with respect
to frequency, which is the quantity measured in the modulated reflectivity experiments, shows a
sharp singularity associated with the threshold energy
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Additional structure in the reflectivity is expected as x is varied, and this behavior is
shown schematically in Fig. 19.4b.

Thus all modulation parameters can be expected to produce singularities in the
optical absorption. For some variables such as stress, themodulated signal is sensitive
to both the magnitude and the direction of the stress relative to the crystal axes. For
thermomodulation, the spectrum is sensitive to the magnitude of the thermal pulses,
but the response is independent of crystalline direction in a highly symmetric crystal
structure. Thermomodulation is, however, especially sensitive to transitions from and
to the Fermi level.

Thus, the various modulation techniques can be used in optical studies to obtain
additional information about symmetry, which can then be used for more reliable
identification of the physical mechanismmost important in causing a particular struc-
ture to appear in the optical properties. Themodulation technique specifically empha-
sizes interband transitions associated with particular points in the Brillouin zone. The
identification of where in the Brillouin zone a particular transition is occurring is one
of the most important and difficult problems in optical studies of solids. It is often
not the case that we have reliable band models available to us when we start to do
optical studies. For this reason, studying the symmetry of actual samples provides a
very powerful tool for studying their optical properties.

The high sensitivity of modulation spectroscopy provides valuable information
about the band structure that would be difficult to obtain otherwise, and some exam-
ples of actual materials are cited below. One example of the use of modulation
spectroscopy is to determine the temperature dependence of the bandgap of a semi-
conductor through the temperature modulation technique, as shown in Fig. 19.5 for
the directΓ point gap inGe. Thismeasurement takes advantage of the high resolution
of modulation spectroscopy and is especially useful for measurements at elevated
temperatures.

Fig. 19.5 Temperature
dependence of the
direct band gap (E0) of Ge
using the thermal modulation
measurement technique
many years ago. (J.S. Kline,
F.H. Pollak and M.Cardona,
Helv. Phys. Acta., 41, 968
(1968))
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Fig. 19.6 Dependence of the
energies of the E0, E0 + Δ0,
E1, E1 + Δ1, E ′

0, and E2
electro-reflectance peaks on
x in the amount Si added to
Ge in the Ge1−xSix alloy
system at room temperature
(C. Parks, Phys. Rev.B, 49,
14244 (1994))
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Fig. 19.7 Photo-modulated
reflectivity spectra of Ge
showing the E0 direct gap at
k = 0 for single crystals of
nearly isotopically pure
70Ge, 74Ge, and 76Ge, at
T = 6K. Note the
remarkable dependence of
the direct bandgap E0 on the
isotopic composition
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Another example is the dependence of the various band separations identified
in Fig. 19.6 as a function of alloy concentration x in Ge1−xSix alloys. Here again
the high resolution of the modulation spectroscopy is utilized, but now using the
electro-reflectance technique to get much more detailed information.

A third example of the use of a related experimental technique is the isotope effect
to probe the dependence of the direct absorption edge of Ge, as shown in Fig. 19.7.
Using this technique the effect of the electron-phonon interaction contribution to the
shift in the absorption edge can be separated from the purely electronic contribution.

Modulation spectroscopy has also been applied to studying interband transitions
in metals. For example, Fig. 19.8 shows modulated spectroscopy results from a gold
surface taken with both the thermal modulation and piezoreflectance techniques.
The results show that transitions involving states at the Fermi level (either initial
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Fig. 19.8 Thermo-reflectance and normal incidence reflectivity spectra of gold near liquid nitro-
gen temperature (from W.J. Scouler, Phys. Rev. Letters 18, 445 (1967)) together with the room
temperature piezoreflectance spectrum (M. Garfunkel, J.J. Tiemann, and W.E. Engeler, Phys. Rev.
148, 698 (1966))

or final states) are more sensitively seen using thermal modulation because small
temperature variations affect the Fermi tail of the distribution function strongly.
Thus, thermo-reflectance measurements on the noble metals give a great deal of
well–resolved structure, as illustrated in Fig. 19.8, where the electro-reflectance and
piezoreflectance measurements are compared. In this figure, we see that in gold the
piezoreflectance is much more sensitive than are the ordinary reflectivity measure-
ments near 4eV, but the thermoreflectance technique is most powerful for transitions
made to states near the Fermi level.

19.4 Ellipsometry and Measurement of the Optical
Constants

Ellipsometry has become a standard method for measuring the complex dielectric
function or the complex optical constants Ñ = ñ+ i k̃ of a material. Since two quan-
tities are measured in an ellipsometry measurement, ñ and k̃ can both be determined
at a single frequency. The ellipsometry measurements are usually made over a range
of frequencies, especially for frequencies well above the fundamental absorption
edge where semiconductors become highly absorbing. At these higher frequencies
very thin samples would be needed if the method of interference fringes were used
to determine ñ, which is a very simple method for measuring the wavelength in a
non-absorbing medium. One drawback of the ellipsometry technique is the high sen-
sitivity of the technique to the quality and cleanliness of the surface. Ellipsometry
is limited by precision considerations to measurements on samples with absorption
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Fig. 19.9 Electric field vectors resolved into p and s components, for light that is incident (i),
reflected (r), and transmitted (t) at an interface between these twomedia each with complex indices
of refraction (in the medium) Ña and Ñs at the surfaces. The propagation vectors are labeled by
wave vectors for the incident, reflected and transmitted light components ki , kr , and kt

coefficients αabs > 1 − 10 cm−1. Ellipsometers can be made to operate in the near
infrared, visible and near ultraviolet frequency regimes, and data acquisition can be
made fast enough to do real time monitoring of ε(ω).

In the ellipsometry method, the reflected light with polarizations “p” (parallel)
and “s” (perpendicular) to the plane of incidence [see Fig. 19.9] is measured as a
function of the angle of incidence φ and the light frequency ω. The corresponding
reflectances Rs = |rs |2 and Rp = |rp|2 are related to the complex dielectric function
ε(ω) = ε1(ω) + iε2(ω) = (ñ + i k̃)2 by the Fresnel equations which can be derived
from the boundary conditions on the fields at the interface between two surfaces with
complex dielectric functions εa and εs as shown in Fig. 19.9. From the figure, we see
that the complex reflection coefficients for polarizations s and p are

rs = Esr

Esi
= Ña cosφ − Ñs cosφt

Ña cosφ + Ñs cosφt

(19.40)

and

rp = Epr

Epi
= εs Ña cosφ − εa Ñs cosφt

εs Ña cosφ + εa Ñs cosφt

(19.41)

in which

Ñs cosφt = (εs − εa sin
2 φ)1/2 (19.42)

and rs and rp are the respective reflection coefficients, εs and Ñs , respectively,
denote the complex dielectric function and the complex index of refraction within
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the medium, while εa and Ña are the corresponding quantities outside the medium
(which is usually vacuum or air). When linearly polarized light, that is neither s- nor
p-polarized, is incident on a medium at an oblique angle of incidence φ, the reflected
light will be elliptically polarized. The ratio (σr ) of the complex reflectivity coeffi-
cients rp/rs ≡ σr is then a complex variable which is measured experimentally in
terms of its phase (or the phase shift relative to the linearly polarized incident light)
and its magnitude, which is the ratio of the axes of the polarization ellipse of the
reflected light [see Fig. 19.9]. These are the two measurements that are made in ellip-
sometry. The complex dielectric function of the medium εs(ω) = ε1(ω) + iε2(ω)

can then be determined from the angle φ, the complex reflectivity coefficient ratio
σr , and the dielectric function εa of the ambient environment using the relation

εs = εa sin
2 φ + εa sin

2 φ tan2 φ

(
1 − σr

1 + σr

)2

, (19.43)

and in a vacuum environment εa = 1.
The experimental set-up for ellipsometry measurements is shown in Fig. 19.10.

Light from a tunable light source is passed through a monochromator to select a
frequency ω and the light is then polarized linearly along the direction of the applied
electric field E to yield the Is and Ip incident light intensities. After reflection, the
light is elliptically polarized alongE(t) as a result of the phase shifts that Epr and Esr

have each experienced. The compensator introduces a phase shift −θ which cancels
the +θ phase shift induced by the reflection at the sample surface, so that the light
becomes linearly polarized again as it enters the analyzer. If the light is polarized at
an angle ofπ/2with respect to the analyzer setting, then no light reaches the detector.
Thus at every angle of incidence and every frequency, the dielectric function ε(ω, φ)

is determined by (19.43) from measurement of the magnitude and phase of the
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Fig. 19.10 Schematic diagram of an ellipsometer, where P and S denote polarizations parallel and
perpendicular to the plane of incidence, respectively
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reflection coefficient σr . The determination of the optical constants can be made
by using the normal incidence reflectivity data taken over a wide frequency range
and using the Kramers–Kronig analysis, as discussed in Sect. 19.2, to determine the
optical constants ñ(ω) and k̃(ω).

19.5 Kramers–Kronig Relations in 2D Materials

In Fig. 19.11, the measurements by Li et al. are shown for the complex dielectric
functions ε(E) obtained from four different transition metal dichalcogenide mono-
layers. The experimental reflectance spectra are shown together with the ε1(ω) and
ε2(ω) results obtained by a Kramers–Kronig analysis. Here, the photo-reflectance
spectra are measured over a wide frequency range (from 1.5–3 eV). Results for the
photo-reflectance of some different transition metal dichalcogenides MoS2, MoSe2,
WS2, and WSe2 are also shown (see Li et al. (2014)).

Fig. 19.11 Optical response of monolayers of MoSe2, WSe2, MoS2, and WS2 exfoliated on a
fused silica substrate: (a–d) Measured reflectance spectra. (e-h) Real part of the dielectric function,
ε1. (i-l) Imaginary part of the dielectric function, ε2. The peaks labeled A and B in (a)(d) correspond
to excitons from the two spin-orbit split transitions at the K point of the Brillouin zone. (Taken
from Li et al. (2014))



19.6 Summary 407

19.6 Summary

The Kramers–Kronig relations are bidirectional mathematical relations, connecting
the real and imaginary parts of the dielectric function. These relations are often used to
calculate the real part from the imaginary part (or vice versa) of the dielectric function
ε(ω). Both the real and imaginary parts of the dielectric function can be obtained
from a single experimentally measured spectrum (e.g., absorption or reflection) by
use of the Kramers–Kronig relations. These are general relations, applicable to many
other complex functions in physical and mathematical systems, and are also known
under the names of the Sokhotski-Plemelj theorem and the Hilbert transform.

Problems

19.1 Suppose that we model the interband transitions in Ge as a step function
ε2(ω) = εl for Emin < �ω < Emax (see diagram) and ε2(ω) = 0 otherwise, as
shown in Fig. 19.12.

(a) Use the Kramers–Kronig relation to find an expression for ε1(ω) for all ω. Take
ε1 = 1 in the limit ω = ∞ and express your answer in terms of Emax , Emin , and
εl .

(b) For which photon energies does ε1(ω) exhibit structure? Is your answer physi-
cally reasonable and why?

(c) Obtain an explicit expression for ε1(0) at zero frequency, and use this result to
explain why narrow gap semiconductors tend to have large dielectric constants
at ω = 0.

Fig. 19.12 The sample step
function model used in
problem 19.1 for the
interband transitions in Ge



408 19 Optical Properties of Solids over a Wide Frequency Range

(d) Use the Kramers–Kronig relations to show the sum rule

ne2

m
= 1

2π2

∫ ∞

0
ε2(ω)ωdω

where n is the total carrier density of the semiconductor at a temperature T .

19.2 Using the Kramers–Kronig relation

ε1(ω0) − 1 = 2

π

∫ ∞

0

ω′ε2(ω′) − ω0ε2(ω0)

ω′2 − ω2
0

dω′

explain why ε1(0) at ω0 = 0 is so large for Si [ε0(Si) = 12] relative to glass for
which ε0 < 3.

19.3 According to Johnson and Christy’s paper on the Optical Constants of Noble
Metals (see Johnson et al. (1972): 4370), the equation for the dielectric permittivity
in the Drude free electron theory is given by

ε(ω) = 1 − ω2
p

ω(ω + ı
τ
)

where ε(ω) is the dielectric function at frequency (ω). Here, ωp is the plasma fre-
quency, and γ = ı

τ
is the collision frequency. Use values for gold m∗ = 0.99m0,

and τ = 9.3 × 10−15s.

(a) Plot the real and imaginary parts of the dielectric function (ε1 and ε2) for Au
over the wavelength range from 400-1000 nm.

(b) Using the Kramers–Kronig relation, calculate ε1 from ε2 and then calculate ε2
from ε1. Plot these together with the original functions from (a) over the 400–
1000 nm wavelength range.

19.4 Use the Kramers–Kronig relation to calculate the real part of ε(ω), given the
imaginary part of ε(ω) for positive (ω) for the two cases:

(a)
ε2(ω)

ε0
= λ[θ(ω − ω1) − θ(ω − ω2)], ω2 > ω1 > 0

(b)
ε2(ω)

ε0
= λγω

(ω2
0 − ω2)2 + γ 2ω2

19.5 Show that if a linear response function, such as the linear electric susceptibility
χ(ω) or the dielectric function (ε(ω) − 1), satisfies the following two conditions:
(1) it is analytic in the upper half of the complex ω-plane and (2) it approaches zero
sufficiently fast as ω approaches infinity, it satisfies the Kramers–Kronig relation.
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19.6 An electromagnetic wave travels inside a dielectric material with a complex
index of refraction Ñ = ñ + i k̃ = c/c1, and is reflected at the plane bound-
ary (xy-plane). If the E vector of the incident wave is in the x-direction, the
reflection coefficient for the E field is

r = ñ cos θ1 − cos θ2

ñ cos θ1 + cos θ2

and if the H vector is in the x-direction, the reflection coefficient is

r ′ = cos θ1 − ñ cos θ2

cos θ1 + ñ cos θ2

(a) Use boundary conditions at the interface to derive the above equation for r .
(b) Suppose that θ1 is made large enough so that total internal reflection occurs.With

the aid of the above equations, find the phase angles φ and φ′ of the reflected
waves Er and E′

r in each of the two cases, defining the phase angle of the incident
wave to be zero at the boundary. (Note that cos θ is imaginary under conditions
of total internal reflection.) Show that

tan

(
φ′ − φ

2

)
= cos θ1

√
sin2 θ1 − (1/ñ2)

sin2 θ1
.

(c) For a linearly polarized incident wave, it is possible for the reflected wave to be
circularly polarized. If this is possible, what must be the polarization direction
of the incident wave? Write an equation that determines the required angle of
incidence?

(d) Determine the smallest value of the index of refraction for which (b) is possible,
and find the corresponding angle of incidence.

19.7 (a) Suppose that we apply a magnetic field along the (001) direction normal to
the surface of a sample. Find the dependence of ε1 and ε2 on the magnetic field.
(Hint: Use of right and left circularly polarized fields will be helpful with this
problem.)

(b) Find the dependence of the plasma frequency on magnetic field using right and
left incident circularly polarized light. Sketch the result of the magnetic field on
the optical reflectivity for right and left circular polarized light.

Suggested Readings

Yu, Cardona, Fundamentals of Semiconductors (Springer, Berlin, 1996). Sects. 6.1.3 and 6.6
Jones, March, Theoretical Solid State Physics (1973), pp. 787–793
Jackson, Classical Electrodynamics (1999), pp. 306–312
Peter B. Johnson, R.-W. Christy, Optical constants of the noble metals. Phys. Rev. B 6(12), 4370
(1972)
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Chapter 20
Impurities and Excitons

20.1 Impurity Level Spectroscopy

Selected impurities are frequently introduced into semiconductors to make them
n–type or p–type. The introduction of impurities into a crystal lattice not only shifts
the Fermi level, but also results in a perturbation to the periodic potential, giving rise
to bound impurity levels which often occur in the band gap of the semiconductor.

Impurities and defects in semiconductors can be classified according to whether
they result in a minor or major perturbation to the periodic potential. Any disturbance
to the periodic potential results in energy levels differing from the energy levels of
the perfect crystal. However, when these levels occur within the energy band gap of
a semiconductor or of an insulator, they are most readily identified, and these are the
levels which give rise to well-defined optical spectra. Impurity levels are classified
into two categories:

1. Shallow levels
2. Deep levels

Shallow (deep) levels cause a minor (major) perturbation to the periodic potential
of the crystal lattice.Whereas shallow levels can be treated in pertubation theory, deep
levels require more in-depth calculations. Impurities are also classified according to
whether they give rise to electron carriers (donors) or hole carriers (acceptors). We
will now discuss the main aspects of optical spectra for impurities in crystals.
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20.2 Shallow Impurity Levels

An example of a shallow impurity level in a semiconductor is a hydrogenic donor
level in a semiconductor like Si, Ge or a III–V compound. Let us briefly review
the origin of shallow donor levels in n–type semiconductors, where the electronic
conduction is predominantly made by electron carriers.

Suppose that we add donor impurities such as arsenic, which has 5 valence elec-
trons, to germanium which has 4 valence electrons. Each germanium atom in the
perfect crystal makes 4 bonds to its tetrahedrally placed neighbors. For the arsenic
impurity in the germanium lattice, four of the valence electrons will participate in
the tetrahedral bonding to the germanium neighbors, but the fifth electron will be
attracted back to the arsenic impurity site because the arsenic ion on the site has a
positive charge.Within the effectivemass approximation, this interaction is described
by the Coulomb perturbation Hamiltonian,

H ′(r) = − e2

εr
(20.1)

where ε is the static dielectric constant, which is 16ε0 for germanium and 12ε0 for
silicon. This Coulomb interaction is screened by the static dielectric constant of
the semiconductor. The approximation of taking ε to be independent of distance is,
however, not valid for values of r comparable to lattice dimensions, as discussed
below.

In simple terms,H ′ given by (20.1) is the same as for the hydrogen atom except
that the charge is now e/

√
ε and the mass, which enters the kinetic energy term, is

the effective mass m∗ of the charge carriers. Since the levels in the hydrogen atom
are given by the Bohr energy levels Ehydrogen

n

Ehydrogen
n = − m0e4

2�2ε20n
2

(20.2)

then the energy levels in the hydrogenic impurity problem are, to a first approxima-
tion, given by hydrogenic levels E impurity

n

E impurity
n = − m∗e4

2�2ε2n2
. (20.3)

The impurity levels are shown schematically in Fig. 20.1, where the donor levels are
seen to lie in the gap below the conduction band minimum.

For the hydrogen atom, the ground state energy Ehydrogen
1 = −13.6eV, but for

germanium E impurity
1 ∼ 6 × 10−3 eV for the lowest impurity level, where we have

used a value of m∗ = 0.12m0 representing an average of the effective mass over the
entire conduction band pocket. From measurements such as the optical absorption
spectra, we find that the thermal energy gap (which is the energy difference between
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Fig. 20.1 Hydrogenic impurity donor levels in a typical semiconductor

the L point lowest conduction band and the Γ point highest valence band) is 0.66eV
at room temperature. But the donor level manifold is only 6 × 10−3 eVwide (ranging
from the E1 = Ed level to the ionization limit Ec at the conduction band edge) so
that these impurity levels are very close to the bottom of the conduction band, as
shown in Fig. 20.1.

Another quantity of interest in this connection is the “orbital radius” of the impu-
rity. Unless the orbital radius is greater than a few crystal lattice dimensions, it is not
meaningful to use a dielectric constant independent of r in constructing the pertur-
bation Hamiltonian, since the dielectric constant used for H ′

impurity is conceptually
meaningful only for a continuum medium. It is, however, of interest to calculate the
hydrogenic Bohr radius using the usual recipe for the hydrogenic atom

rhydrogenn = n2�2ε0

m0e2
(20.4)

where � = 1.054 × 10−34 J·s, the mass of the free electron is m0 = 9.109 × 10−31

kg, and the charge on the electron is e = 1.602 × 10−19 C. The value for the Bohr
radius in the hydrogen atom is rhydrogen1 = 0.5Å. For the screened hydrogenic states
corresponding to the impurity in a crystaline semiconductor or insulator, we have

r impurity
n = n2�2ε

m∗e2
(20.5)

which is larger than the hydrogen Bohr radius by a factor ε0m0/εm∗. Using typical
values of these quantities for germanium,weget a ground state radius r impurity

1 ∼ 70Å.
Thus, the electron travels overmany lattice sites in germaniumbefore being scattered,
and for this reason the dielectric constant approximation used in (20.1) is valid.
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From this discussion, we see that only a very small energy is needed to ionize a
bound donor electron into the conduction band of a semiconductor like germanium,
and because this binding energy is small, these hydrogenic donor levels are called
shallow impurity levels. Since r impurity

n � a, where a is the lattice constant in a semi-
conductor like germanium, these electrons are well localized in momentum space
according to the uncertainty principle. Shallow donor levels are associated with the
k–point where the conduction band minimum occurs. Thus, the simple hydrogenic
view of impurity levels in a semiconductor predicts that the impurity spectrum should
only depend on the host material and on the charge difference between the host and
impurity.

This hydrogenic model also works well for silicon (where the Bohr radius is only
≈20Å) except for the ground state, where the dielectric constant approximation is
not as valid as for germanium. For small r , we have ε(r) → ε0 and for large r , we
have ε(r) → ε, where ε is the static dielectric constant of the bulk semiconductor.
Thus, a spatial dependence for ε(r) needs to be assumed and this spatial dependence
can be incorporated into a variational calculation. The inclusion of screening effects
by the introduction of a spatial dependence to the dielectric function ε(r), is called
the “central cell correction” and this correction has to be used for calculating the
ground state of shallow impurities in Si.

The impurity spectra are studied most directly by infrared absorption spectra
and optical transmission measurements. As an example of such spectra, Fig. 20.2
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Fig. 20.2 Absorption spectrumof phosphorus donors inSi for a sample at liquid helium temperature
containing∼1.2 × 1014 cm−3 phosphorus impurities. The inset shows the 2p0 line on an expanded
horizontal scale. (Taken from Yu and Cardona, Fundamentals of Semiconductors, Springer Verlag
(1996).)
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Fig. 20.3 Photo-thermal ionization spectrum of phosphorus-doped Si measured by modulation
spectroscopy, which is a particularly useful technique for resolving the higher lying impurity levels.
The inset shows schematically the photo-thermal ionization process for a donor impurity. (Taken
from Yu and Cardona, Fundamentals of Semiconductors, Springer Verlag (1996).)

shows the absorption spectrum of phosphorus impurities in Si. Note that the photon
energies used in these measurements are small so that far infrared frequencies must
be employed. The ground state donor level is a 1s state and allowed transitions are
made to a variety of p–states. Since the constant energy surface is ellipsoidal, the 2p
levels break up into a 2p(ml = 0) level and a 2p(ml = ±1) level which is doubly
degenerate (see Fig. 20.2). Transitions from the 1s level to both kinds of p levels
occur, and account for the sharp features in the spectrum shown in Fig. 20.2. The
sensitivity of the spectra is somewhat improved using modulated spectroscopy tech-
niques as shown in Fig. 20.3, where transitions to higher quantum states (n = 6) and
to higher angular momentum states ( f levels where � = 3) can be resolved, noting
that electric dipole transitions always occur between states of opposite parity. For
both Figs. 20.2 and 20.3, the initial state is the 1s impurity ground state. Analysis of
such spectra gives the location in energy of the donor impurity levels, including the
location of the ground state donor level, which is more difficult to calculate because
of the central cell correction, but can be nicely measured experimentally.

In absorption measurements, the impurity level transitions are observed as peaks.
On the other hand, impurity spectra can also be taken using transmission techniques,
where the impurity level transitions appear as minima in the transmission spectra.
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20.3 Departures from the Hydrogenic Model

While the simple hydrogenic model works well for the donor states in silicon and
germanium, it would be naive to assume that the simple hydrogenic model works
for all kinds of impurity centers. If the effective Bohr radius is comparable with
atomic separations, then clearly the Coulomb potential of the impurity center is not
a small perturbation to the periodic potential seen by an electron. Specific cases
where the impurity effective Bohr radius becomes small are materials with either
(1) a large m∗ or (2) a small ε, which imply a small interband coupling. When these
conditions are put into (20.3) and (20.5), we see that a small Bohr radius corresponds
to a large En value. Thus “deep” impurity levels are not well described by simple
effective mass theory and the energy band structure throughout the Brillouin zone
must be considered.When an electron is localized in real space, a suitable description
in momentum space must include a large range of k values. However, calculations
with modern calculational techniques (such as density function theory) using more
accurate computational models for the acceptor impurity levels are now yielding
good agreement between theory and experiment.

When the impurity concentration becomes so large that the Bohr orbits for neigh-
boring impurity sites start to overlap, the impurity levels start to broaden, and even-
tually impurity bands are formed. These impurity bands tend to be only half filled
because of the Coulomb repulsion which inhibits placement of both a spin up and a
spin down carrier in the same impurity level.When these impurity bands lie close to a
conduction or valence band extremum, the coalescence of these impurity levels with
band states produces in a smearing out of the threshold of the fundamental absorption
edge as observed in absorption measurements. When the impurity band broadening
becomes sufficiently large that the electron wavefunction extends to adjacent sites,
metallic conduction can occur. The onset of metallic conduction is called the Mott
metal–insulator transition.

20.4 Vacancies, Color Centers and Interstitials

Closely related to the impurity problem is the vacancy problem. When a compound
semiconductor crystallizes, the melt usually is slightly off stoichiometry with respect
to the concentration of anions and cations. As an example, suppose that we prepare
PbTe with Pb and Te concentrations in the melt that are stoichiometric to 0.01% and
that some of themore volatile Te at growth temperature is lost in vapor phase evapora-
tion. This means that there will be a slight excess of one of the atomic species relative
to the other. This deficiency of one of the atomic species shows up in the crystal lat-
tice as an atomic vacancy. Such a vacancy represents a strong local perturbation of
the crystal potential which again cannot be modeled in terms of hydrogenic impurity
models. Such vacancy centers further tend to attract impurity atoms to form vacancy-
impurity complexes. Furthermore, an excess of one stoichiometric type could also
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Fig. 20.4 Schematic representation of various possible arrangements of both vacancies and
interstitials: a a perfect ionic crystal, b an ionic crystal with positive and negative ion vacancies,
and c an ionic crystal with positive and negative ion vacancies and interstitials

form interstitials. Both of these defects are difficult to model theoretically because
their spatial localization requires participation of energy states throughout the Bril-
louin zone. Defect centers generally give rise to energy states within the band gap
of semiconductors and insulators. Such defect centers are often studied by optical
techniques because their presence strongly modifies the optical properties.

In Fig. 20.4 various types of point defects are shown. Figure20.4a illustrates a
perfect ionic crystal while Fig. 20.4b shows an ionic crystal with vacancies. This
particular collection of vacancies is of the Schottky type (equal numbers of positive
and negative ion vacancies). Schottky point defects also include neutral vacancies.
Finally, Fig. 20.4c shows both vacancies and interstitials. When a + (–) ion vacancy
is near a + (–) ion interstitial, this defect configuration is called a Frenkel-type point
defect.

One important defect in ionic insulating crystals is the F-center (“Farbe” or color
center). We see in Fig. 20.4b that the negative ion vacancy acts like a +ve charge
(absence of a −ve charge). This effective +ve charge tends to bind to an elec-
tron. The binding of an electron to a −ve ion vacancy is called an F-center. These
F-centers give rise to absorption bands in the visible spectrum. Without F-centers,
these crystals are usually clear and transparent. The F-center absorption band causes
crystals with defects to appear colored, having the color of the transmitted light.
When the crystals are heated to high enough temperatures, these defects can be
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Fig. 20.5 Examples of F–center absorption lines in various alkali halide ionic crystals

made to anneal and the colored absorption bands disappear. This photophysical phe-
nomena is called bleaching. Many different color centers are found in ionic crystals.
For example, we can have a hole bound to a +ve ion vacancy (see dashed circle
in Fig. 20.4b). We can also have a defect formed by a vacancy that is bound to any
impurity atom, forming a vacancy-impurity complex, which can bind a charged car-
rier. Or we can have two adjacent vacancies (one +ve and the other −ve) binding
an electron to a hole. Further generalizations are also found. These defect centers
are collectively called color centers and each color center has its own characteristic
absorption band. In Fig. 20.5, we see an example of absorption bands due to F-centers
in several insulating alkali halides. In all cases the absorption bands are very broad, in
contrast with the sharp impurity lines which are observed in the far infrared for shal-
low impurity level transitions in semiconductors (see Figs. 20.2 and 20.3). In the case
of the vacancy defect there is a considerable lattice distortion around each vacancy
site as the neighboring atoms rearrange their electronic bonding arrangements.

20.4.1 Schottky Defects

We will now use simple statistical mechanical arguments to estimate the concentra-
tion of Schottky defects. Let Es be the energy required to take an atom from a lattice
site inside the crystal to the surface. If n is the number of vacancies, the change in
internal energy resulting from vacancy generation is U = nEs . Now the number of
ways that n vacancy sites can be picked from N lattice sites is N !/[(N − n)!n!], so
that the formation of vacancies results in an increase in entropy of

S = kB ln
N !

(N − n)!n! (20.6)
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and a change in free energy of

F = U − T S = nEs − kBT ln
N !

(N − n)!n! . (20.7)

Using Stirling’s approximation for ln x ! when x is large, we write

ln x ! ∼= x ln x − x . (20.8)

Equilibrium is achieved when (∂F/∂n) = 0, so that at equilibrium we have

Es = kBT

[
∂

∂n
ln

N !
(N − n)!n!

]
= kBT ln

N − n

n
(20.9)

from which we write
n

N − n
= exp

[
− Es

kBT

]
(20.10)

or
n

N
∼ exp

[
− Es

kBT

]
(20.11)

since n 	 N . The vacancy density is small because for Es ∼ 1eV and T ∼ 300K,
we get (n/N ) ∼ e−40 ∼ 10−17.

In the case of vacancy pair formation in an ionic crystal (a Schottky defect), the
number of ways to make n separated pairs is [N !/(N − n)!n!]2, so that for Schottky
vacancy pair formation, we have

np

N
∼ exp

[
− Ep

2kBT

]
(20.12)

where np is the pair vacancy density and Ep is the energy required for pair formation.
These arguments can readily be extended to the formation of Frenkel defects (see

Problem section) and it can be shown that if N ′ is the density of possible interstitial
sites, then the density of occupied interstitial sites is

ni 
 (NN ′)
1
2 exp

[
− Ei

2kBT

]
(20.13)

where Ei is the energy to remove an atom from a lattice site to form an interstitial
defect site.
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20.5 The Concept and Spectroscopy of Excitons

An exciton denotes a system of an electron and a hole bound together by their
Coulomb interaction. When a photon excites an electron into the conduction band,
a hole is left behind in the valence band, the electron, having a negative charge will
be attracted to this hole and may (provided the energy is large enough) bind to the
positively charged hole forming a neutral quasi-particle called an exciton. Depending
on the binding energy, the radius of the excitons in real space can extend from several
unit cells (free excitons) to the same order as the size of the unit cell (bound exci-
tons) as shown in Fig. 20.6. The free excitons are present in semiconductors while
bound excitons are typical of insulators and molecular crystals. Using the simplest
possible approximation, the exciton levels have been treated as a hydrogenic system
where a charge −e is bonded to a positive charge. Thus, because of the attractive
Coulomb potential, the exciton binding energy is attractive and represents a lower
energy state than the band states. Excitons are important in the optical spectra of bulk
semiconductors especially at low temperatures, and their exciton levels are impor-
tant for device applications since light emitting diodes and semiconductor lasers
operation often involve excitons. However, because of the confinement of carriers in
low dimensional systems, exciton effects become much more important in the case
of quantum wells, superlattices, carbon nanotubes, transition metal dichalcogenides,
and devices based on deliberately nanostructured materials. The topic of excitons in
low dimensional semiconductor systems (quantum wells and carbon nanotubes) is
discussed in Sect. 20.5.4.

We will now use the effective mass approximation to find the Wannier–Mott
exciton spectrum near an interband threshold. Let us here assume that the exciton
was created by a photon with energy slightly less than the direct energy gap Eg . The
Schrödinger equation for the two-body exciton packet wave function Φ is written in
the effective mass approximation as:

[
p2e
2m∗

e

+ p2h
2m∗

h

− e2

ε|re − rh |
]
Φ = EΦ (20.14)

thereby including the Coulomb binding energy ε(|re − rh |) of the electron–hole pair.
For simplicity, we assume that the dielectric constant ε is independent of re and rh
and corresponds to a large spatial extension of the exciton in a semiconductor. We
introduce new coordinates for the spatial separation r between the electron and hole

r = re − rh (20.15)

and for the center of mass coordinate ρ given by

ρ = m∗
ere + m∗

hrh
m∗

e + m∗
h

. (20.16)
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Fig. 20.6 Schematic
diagrams for free
(Wannier–Mott) and bound
(Frenkel) excitons. e and h
stand for an electron and a
hole, respectively

We now separate the Schrödinger equation (20.14) into an equation for the relative
motion of the electron and hole in the exciton wave packet F(r) and an equation of
motion for the center of mass G(ρ)

Φ(re, rh) = F(r)G(ρ). (20.17)

Thus (20.14) becomes

[
p2ρ

2(m∗
e + m∗

h)
+ p2r

2m∗
r

− e2

ε0r

]
F(r)G(ρ) = EF(r)G(ρ) (20.18)

where the reduced effective mass is given by

1

m∗
r

= 1

m∗
e

+ 1

m∗
h

(20.19)

to obtain an eigenvalue equation for G(ρ)

[
p2ρ

2(m∗
e + m∗

h)

]
G(ρ) = ΛG(ρ) (20.20)

which is of the free particle form and has eigenvalues

Λ(K ) = �
2K 2

2(m∗
e + m∗

h)
(20.21)
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where K is the wavevector of the exciton. This single particle picture of carriers
is very useful for discussing exciton dispersion. In a semiconducting material, an
electron can be excited from the valence to the conduction energy band, by gaining
more than the bandgap energy of thematerial. The energy difference Eii for an optical
transition between the i-th valence and i-th conduction bands in a one-electron picture
is directly related to the excitation energy. An excitonic picture, however, can not
be represented by a single particle model, and we can not generally use the energy
dispersion relations directly to obtain the excitation energy for the exciton. If the
electron and holewavefunctions are localized in the same spatial region, the attractive
Coulomb interaction between the electron and hole increases the binding energy,
while the kinetic energy and the Coulomb repulsion between the electrons becomes
large, too. Thus, the optimum localized distance determines the exciton binding
energy. The screening of the attractive Coulomb interaction by other conduction
electrons is the reasonwhy excitons usually are not important inmetals. The repulsive
Coulomb interaction between two electrons causes the wavevector k for an excited
electron to no longer be a good quantum number.

Since the excitonwavefunction is localized in real space, the excitonwavefunction
in k space is a linear combination of Bloch wavefunctions with different k states.
Thus the definition of kc and kv for the electron and the hole might not be so clear.
However, since the exciton wavefunction is localized in k space too (the Fourier
transform of a Gaussian in real space is a Gaussian in k space), we can define kc or
kv as the central position of the corresponding wavefunctions in k space.

Whenwe consider an optical transition in a crystal, we expect a vertical transition,
kc = kv, [Fig. 20.7a] where kc and kv are, respectively, thewavevectors of the electron
and hole. The wavevector of the center of mass for the exciton is defined by K =
(kc − kv)/2, while the relative coordinate is defined by k = kc + kv, in which we
note that the hole (created by exciting an electron) has the opposite sign for its
wavevector and effectivemass as compared to the electron. The exciton has an energy
dispersion as a function of K which represents the translational motion of an exciton.

h

S=0

ν

S=1

(a) (b) (c)

K=0K=0

k

kv

kc

k

c

v

Fig. 20.7 aA singlet exciton formed at exciton wavevector K = 0 in a crystal where kc = kv (left),
at either the band extremum or away from the band extremum. If kc �= kv, K �= 0, giving rise to a
dark exciton (right) (see text). b When a photon is absorbed by an electron with spin ↑ (left), we
get a singlet exciton (S = 0, right). If the spin of the electron is ↑, we define the spin of the hole
that is left behind as ↓. c A triplet exciton (S = 1), which is a dark exciton (Jorio, 2011)
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Thus only the K = 0 exciton can recombine by emitting a photon. Correspondingly,
a K �= 0 exciton cannot recombine directly to emit a photon and therefore is a
dark exciton. Recombination emission for K �= 0 is, however, possible by a phonon
assisted process which we call an indirect transition.

The Exciton Spin

When we discuss the interaction between an electron and a hole, the definition of
the total spin for an exciton is a bit different from the conventional idea of two
electrons in a molecule or crystal. A hole is a different “particle” from an electron,
but, nevertheless, an exchange interaction between the electron and the hole exists,
just like for two electrons in a hydrogen molecule.

When an electron absorbs a photon, an electron, for example with spin↑ is excited
to an excited state as shown in Fig. 20.7b, leaving behind a hole at the energy level that
the electron with up-spin had previously been. This hole has not only a wavevector
of −k and an effective mass of −m∗, but also is defined to be in a spin down hole
state. The exciton thus obtained [Fig. 20.7b] is called a spin singlet, with S = 0, since
the definition of S for the two-level model shown here is in terms of the two actual
electrons that are present, and in this sense the definition for the two actual electrons
and for the S = 0 exciton are identical. This is valid because the mediated electric
dipole transition does not change the total spin of the ground state, which is S = 0. It
should also be mentioned that Fig. 20.7b does not represent an S = 0 eigenstate. To
make an eigenstate, we must take the antisymmetric combination of the state shown
in Fig. 20.7b with an electron ↓ and hole ↑. In contrast, a triplet exciton (S = 1) can
be represented by two electrons, one in the ground state and the other in an excited
state to give a total spin of S = 1 [Fig. 20.7c]. For the triplet state in Fig. 20.7c, we
define the hole to have a spin ↑ and the resulting state shown here is an eigenstate
(ms = 1) for S = 1. We further note that a triplet exciton can not be recombined by
emitting a photon because of the Pauli principle. We call such an exciton “a dark
exciton”. The spin conversion by a magnetic field could flip a spin and lead to the
recombination of the triplet exciton. An exchange interaction between a hole and an
electron works only for S = 0 [see Fig. 20.7b] and thus the S = 1 state in Fig. 20.7c
has a lower energy than the S = 0 state and the exchange interaction for the S = 0
exciton can be understood as the difference in the interaction energy between two
electrons [one at the position of the excited electron and the other at the position of
the hole left behind as in Fig. 20.7b] and the energy of the S = 1 exciton which has
no exchange energy [Fig. 20.7c]. It should be noted that for the more familiar case of
just two electrons, the exchange interaction works for the S = 1 case and therefore
the S = 1 state lies lower in energy than the S = 0 state.

The free particle solutions for the center of mass problem of (20.21) show that
the exciton can move freely as a unit through the crystal. The momentum of the
center of mass for a direct band gap exciton is small because of the small amount of
momentum imparted to the excitation by the light.

The Schrödinger equation in the coordinate system of relative motion can be
written as
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[
p2r
2m∗

r

− e2

ε0r

]
F(r) = EnF(r), (20.22)

where (20.22) has the functional form of the Schrödinger equation for a hydrogen
atom with eigenvalues En for quantum numbers n (where n = 1, 2, . . .) given by

En = − m∗
r e

4

2�2ε2n2
, (20.23)

and the total energy for the exciton levels is then

E = Λ(K ) + En. (20.24)

The energy levels of (20.23) look like the donor impurity spectrum, but instead of the
effectivemass of the conduction bandm∗

e we now have the reduced effectivemassm∗
r

given by (20.19). Since m∗
r has a smaller magnitude than m∗

e as seen in (20.19), we
conclude that the exciton binding energy is less than the impurity ionization energy
for a particular solid.

20.5.1 Exciton Effects in Bulk Materials

Anexample of a spectrumshowing exciton effects is presented inFig. 20.8.Thepoints
are experimental and the solid curves are a fit of the data points to the imaginary part
of dielectric function ε2(ω) for excitons given by
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Fig. 20.8 Excitonic absorption spectra in GaAs near its bandgap for several sample temperatures.
The lines drawn through the 21, 90 and 294K data points represent fits with theory. (Taken from
Yu and Cardona, Fundamentals of Semiconductors, Springer Verlag (1996).)
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Table 20.1 Exciton binding energy (E1) and Bohr radius (r1) in some direct bandgap semiconduc-
tors with the zinc-blende structure (taken from Yu and Cardona, Fundamentals of Semiconductors,
Springer Verlag (1996))

Semiconductor E1 (meV) E1 (theory) (meV) r1 (Å)

GaAs 4.9 4.4 112

InP 5.1 5.14 113

CdTe 11 10.71 12.2

ZnTe 13 11.21 11.5

ZnSe 19.9 22.87 10.7

ZnS 29 38.02 10.22

Fig. 20.9 Low temperature
absorption spectrum of
Cu2O (plotted as the log of
the optical transmission)
showing the excitonic p
series associated with its
“dipole-forbidden” band
edge in Cu2O, with the
photon energy given in both
eV and cm−1. (Taken from
Yu and Cardona,
Fundamentals of
Semiconductors, Springer
Verlag (1996).)
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∞∑
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1

n3
δ(ω − ωn), (20.25)

where the sum is over all the exciton bound states. From Table20.1, we see that
the binding energy for excitons for GaAs is 4.9meV and the effective Bohr radius is
112Å,which is verymuch larger than the lattice spacing inGaAs.The various exciton
lines contributing to the exciton absorption profiles in Fig. 20.8 are unresolved even
for the data shown for the lowest temperature of 21K. Amaterial for which the higher
exciton energy levels (n = 2, 3, . . .) of the Rydberg series are resolved is Cu2O as
can be seen in Fig. 20.9. The observation of these higher states is attributed to the
forbidden nature of the coupling of the valence and conduction bands, giving rise to
a strict selection rule that only allows coupling to exciton states with p symmetry.
Since the observation of transitions for n ≥ 2 requires p exciton states, the n = 1
exciton is forbidden in the Cu2O spectrum, and the exciton lines start at n = 2. The
transitions are sharp, and well resolved exciton lines up to n = 5 can be identified in
Fig. 20.9.
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The exciton spectrum appears to be quite similar to the impurity spectrum of
shallow impurity states. These two types of spectra are distinguished through their
respective dependences on impurity concentration. Suppose that we start with a
very pure sample (1014 impurities/cm3) and then dope the sample lightly (to 1016

impurities/cm3). If the spectrum is due to donor impurity levels, the intensity of
the spectral lines would tend to increase and perhaps the spectral linewidth would
broaden somewhat. If, on the other hand, the spectrum is associated with an exciton,
the spectrum would be attenuated because of screening effects associated with the
charged impurities. Exciton states in 3D semiconductors are generally observed in
very pure samples and at very low temperatures. The criterion is that the averageBohr
orbit of the exciton is less than the distance between impurities. For the sake of this
argument, consider an excitonic radius of∼100Å. If an impurity ion is locatedwithin
this effective Bohr radius, then the electron–hole Coulomb interaction is screened by
the impurity ion and the sharp spectrum associated with the excitons will disappear.
A carrier concentration of 1016/cm3 corresponds to finding an impurity ion within
every 100Åfrom some lattice point. Thus the electron–hole coupling can be screened
out by a charged impurity concentration as low as 1016/cm3. Low temperatures are
needed generally to yield an energy separation of the exciton levels that is larger than
kBT . Increasing the temperature shifts the absorption edge and broadens the exciton
line in GaAs. At a temperature of 20K we have kBT 
 1.7meV which is nearly as
large as the exciton binding energy of 4.9 meV found in Table20.1, explaining why
nowell resolved exciton spectrum for higher quantum states is observed. For the case
of Cu2O, the exciton binding energy of the ground state (1s), were it to exist, would
be 97meV, neglecting central cell corrections. The large exciton binding energy in
Cu2O also helps resolve the higher quantum exciton states.

20.5.2 Classification of Excitons

The exciton model discussed above is appropriate for a free exciton and a direct
exciton (see Fig. 20.6a). For the direct exciton, the initial excitation is accomplished
in a k-conserving process without the intervention of phonons. The condition for
forming the exciton without involving phonons is that the group velocity of both the
electron and hole is the same, which implies that absolute values of the ∂E(k)/∂k
slopes are equal. Therefore, the excitonic effects are expected to be very strong close
to the band gap transition. In materials like silicon and germanium, the thermal band
gap corresponds to an indirect energy gap. For these materials, the exciton is formed
by an indirect phonon-assisted process and the exciton is consequently called an
indirect exciton.

Indirect excitons can be formed eitherwith the emission or absorption of a phonon.
Since excitons are more important at low temperatures, the emission process is much
more likely than the absorption process. Because of the large difference in crystal
momentum �k between the valence band extremum and the lowest conduction band
minimum in these indirect gap semiconductors, the excitonmay acquire a large center
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Fig. 20.10 Plot of the square root of the absorption coefficient vs. �ω for Ge (because Ge is an
indirect band gap semiconductor) for various temperatures, showing the effect of excitons. Features
associated with both indirect and direct excitons are found. The upper left panel shows the detailed
behavior at the onset of the indirect bandgap absorption, where the absorption is low and the upper
right panel shows direct exciton phenomena where the absorption is high

of mass momentum corresponding to the momentum of the absorbed or emitted
phonon �q. For the indirect exciton, a large range of crystal momentum �k values
are possible and hence the exciton levels spread out into bands as shown in the lower
dashed rectangle of Fig. 20.10. This portion of the figure also appears in more detail
in the upper left-hand corner. In Fig. 20.10 we also show in the upper right-hand
corner the direct exciton associated with the Γ point conduction band for various
temperatures. The shift in the absorption edge is associated with the decrease in band
gap with increasing temperature. In Fig. 20.10, the individual exciton lines are not
resolved, since a lower temperature would be needed for that.

Addition of impurities to suppress the exciton formation does not help with the
identification of bandgaps in semiconductors since the presence of impurities broad-
ens the band edges. It is for this reason that energy gaps are best found from optical
data in the presence of a magnetic field.

For small distances from the impurity site or for small electron-hole separations,
the effectivemass approximationmust bemodified to consider central cell corrections
explicitly. For example, central cell corrections are very important in Cu2O so that
the binding energy attributed to the 1s state is 133meV, whereas the binding energy
deduced from the Rydberg series shown in Fig. 20.9 indicates a binding energy of
97meV.
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The kinds of excitons we have been considering above are called free excitons.
In contrast to these, are excitations called bound excitons. It is often the case that an
electron and hole may achieve a lower energy state by locating themselves near some
impurity site, in which case the exciton is called a bound exciton and has a larger
binding energy. Bound excitons are observed in typical semiconducting materials,
along with free excitons.

Another category of excitons that occurs in semiconductors is the molecular exci-
ton. Just as the energy of two hydrogen atoms decreases in forming molecular hydro-
gen H2, the energy of two free (or bound) excitons may decrease on binding to form
a molecular state. More complicated exciton complexes can be contemplated and
some of these have been observed experimentally.

As the exciton density increases, further interactions occur and eventually a quan-
tum fluid called the electron-hole drop is formed. Unlike other fluids, both the neg-
atively and positively charged particles in the electron-hole fluid have light masses.
A high electron-hole density can be achieved in indirect band gap semiconductors
such as silicon and germanium because of the long lifetimes of the electron-hole
excitations in these materials. In treating the electron-hole drops theoretically, the
electrons and holes are regarded as free particles moving in an effective potential
due to the other electrons and holes. Because of the Pauli exclusion principle, no
two electrons (or holes) can have the same set of quantum numbers. For this reason,
like particles tend to repel each other spatially, but unlike particles do not experience
this repulsion. In this discussion, two electrons are like particles, but one electron
and one hole are unlike particles. Thus electron-hole pairs are formed and these
pairs can be bound to each other to form an electron-hole drop. These electron-hole
drops have been studied in the emission or luminescence spectra. Results for the
luminescence spectra of Ge and Si at very low temperatures (T ≤ 2K) are shown in
Fig. 20.11. Luminescence spectra for germanium provide experimental evidence for
electron-hole drops for electron-hole concentrations exceeding 1017/cm3.

In insulators (as for example alkali halides), excitons are particularly important,
but here they tend to be well localized in space because the effective masses of any
carriers that are well localized tend to be large (see Fig. 20.6b). These localized exci-
tons, called Frenkel excitons, are much more strongly bound and must be considered
on the basis of a much more complicated exciton theory. It is only for the excitons
which extend over many lattice sites, theWannier excitons, that effectivemass theory
can be used. And even here many-body effects must be considered to solve the prob-
lem with any degree of accuracy – already an electron bound to a hole is a two-body
problem so that one-electron effective mass theory is generally not completely valid.

In studying the optical absorption of the direct gap, the presence of excitons
complicates the determination of the direct energy gap, particularly in alkali halides
where the exciton binding energy is large. Referring to Fig. 20.12a, both Γ -point
and L-point excitons are identified in the alkali halide ionic crystal KBr. The corre-
spondence of the optical structure with the E(k) diagram is shown by comparison of
Fig. 20.12a and b. Here it is seen that the Frenkel exciton lines dominate the spectrum
at the absorption edge, and we also see huge shifts in energy between the exciton



20.5 The Concept and Spectroscopy of Excitons 429

Energy [meV]
704 706 708 710 712 714 716

In
te

ns
ity

EHD
FE

Theory

εF φs

Fig. 20.11 Recombination radiation (or photoluminescence spectrum) of free electrons (FE) and
of electron-hole drops (EHD) in Ge at low temperature 3.04K. The Fermi energy in the electron-
hole drop is εF and the cohesive energy of the electron-hole drop with respect to a free exciton is
φs = 1.8meV. The critical concentration and temperature for forming an electron-hole drop in Ge
are, respectively, 2.6 × 1017/cm3 and 6.7K, and for this reason electron-hole drop experiments are
done at low temperature
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Fig. 20.12 aAspectrumof the optical density ofKBr showingFrenkel excitons. The optical density
is defined as log(1/T ), whereT is the optical transmission. b The energy bands of KBr, as inferred
from tight-binding calculations of the valence bands and from the assignments of interband edges in
optical experiments. The valence band in KBr is a Br 5p derived band. The conduction band would
be dominated by the K 4s band with a higher lying band possibly a K 4p band. We note that the
optical spectrum on the left is dominated by exciton effects and that direct band edge contributions
are much less important. We further note that the exciton binding energy is on the order of an
electron volt

lines and the direct absorption edge. These figures show the dominance of strongly
bound, localized Frenkel excitons in the spectra of alkali halides.
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Excitons involve the presence of an electron-hole pair. If instead, an electron
is introduced into the conduction band of an ionic crystal, a charge rearrangement
occurs. This charge rearrangement partially screens the electron, thereby reducing
its effective charge. When an electric field is now applied and the charge starts to
move through the crystal, it moves together with its lattice polarization. The electron
together with its lattice polarization is called a polaron. While excitons are important
in describing the optical properties of ionic or partly ionic materials, polarons are
important in describing the transport properties of such materials. The presence of
polarons leads to thermally activatedmobilities, which implies that a potential barrier
must be overcome to move an electron together with its lattice polarization through
the crystal. The presence of polaron effects also results in an enhancement in the
effective mass of the electron. Just as one categorizes excitons as weakly bound
(Wannier) or strongly bound (Frenkel), a polaron may behave as a free particle with
a relatively weak enhancement of the effective mass (a large polaron) or may be in a
bound statewith afinite excitation energy (a smallpolaron), dependingon the strength
of the electron-phonon coupling. Large polarons are typically seen in weakly ionic
semiconductors, and small polarons in strongly ionic, large-gap materials. Direct
evidence for large polarons in semiconductors has come from optical experiments in
a magnetic field in the region where the cyclotron frequency ωc is close to the optical
phonon frequency ωLO .

20.5.3 Optical Transitions in 2D Systems: Quantum Well
Structures

Optical studies are extremely important in the study of quantum wells and super-
lattices. For example, the most direct evidence for bound states in quantum wells
comes from optical absorption measurements. To illustrate such optical experiments
consider a GaAs quantum well bounded on either side by the wider gap semicon-
ductor AlxGa1−xAs. Because of the excellent lattice matching between GaAs and
AlxGa1−xAs, these materials have provided a prototype semiconductor superlattice
for study of the 2D electron gas. The threshold for absorption is now no longer the
band gap of bulk GaAs but rather the energy separation between the highest lying
bound state of the valence band and the lowest bound state of the conduction band.
Since the valence band ofGaAs is degenerate at k = 0 and consists of light and heavy
holes, there will be two n = 1 levels in the valence band for this 2D system. Since
En ∝ 1/m∗ for the quantum well n = 1 bound state level, the heavy hole subband
extremumwill be closer in energy to the band edge than that of the light hole as shown
on the left side of Fig. 20.13. Also the density of states for the heavy hole subband
will be greater than that of the light hole subband by a factor of 2mhh

∗/mlh
∗. The

optical absorptionwill thus show two peaks near the optical threshold as illustrated in
the diagram in Fig. 20.13, with the lower energy peak associated with the heavy hole
transition and the higher energy peak is for the light hole transition. These data are for
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Fig. 20.13 Optical excitations in a quantum well (50Å quantum well width) where the valence
band has light holes (lh) and heavy holes (hh) (as in GaAs). The optical density, defined as log(1/T )

where T is the transmission, shows peaks associated with each of these optical transitions

Fig. 20.14 Frequency
dependence of the absorption
for GaAs/Al0.2Ga0.8As
heterostructure superlattices
of different thicknesses at
optical frequencies. The
exciton edge can be seen
most clearly for interband
transitions to the lowest
conduction subband (n = 1),
and a thick film (4000Å),
while the higher order
transitions are best seen for
thinner films
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a sample with a quantum well width of 50Å, which is small enough to contain a sin-
gle bound state (n = 1), making use of the relation En = �

2π2n2/(2m∗Lz), where Lz

is the quantum well width. Since the optical absorption from a single quantum well
is very weak, the experiment is usually performed in superlattice structures contain-
ing a periodic array of many equivalent quantum wells. In forming the superlattice
structure, it is important that the barrier between the quantum wells is not too small
in extent, because for small spatial separations between quantum wells and low band
offsets at the interfaces, the eigenfunctions in adjacent wells become coupled and
we no longer have a simple 2D electron gas in the quantum well.

For wider quantum wells containing several bound states (see Figs. 20.14 and
20.15), a series of absorption peaks are found for the various bound states, and the
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Fig. 20.15 Transmission spectrum of a GaAs/AlGaAs multi-quantum well (well width = 316 Å)
measured as a function of photon energy at low temperature (right panel). The peaks labeled (n, n)

have been identifiedwith optical transitions from the nth heavy hole (hh) and light hole (lh) subbands
to the nth conduction subband as shown by arrows in the band diagram in the left panel, where
we see the valence band levels confined to a 30meV range and those for the conduction band to a
225meV range. Conduction (valence) band levels at higher (lower) energies are considered to be
in continuum states. The values of the band offsets used in the analysis are given in the diagram,
but these are not the most recent values

interband transitions follow the selection rule �n = 0. This selection rule follows
because of the orthogonality of the wave functions for different states n and n′. Thus
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to get a large n matrix element for coupling the valence and conduction band states,
n′ and n must be equal. As the width of the quantum well increases, the spectral
features associated with transitions to the bound states become smaller in intensity
and more closely spaced and eventually cannot be resolved. For the thickest films,
the quantum levels are too close to each other to be resolved and only the bulk exciton
peak is seen. For the 210Å quantum well shown in Fig. 20.14, transitions for all 4
bound states within the quantumwell are observed. In addition, excitonic behavior is
observed on the n = 1 peak. For the 140Å quantum well, the transitions are broader,
and effects due to the light and heavy hole levels can be seen through the distorted
lineshape (see Fig. 20.14). To observe transitions to higher bound states, the spectra
in Fig. 20.15 are taken for a quantum well width of 316 Å, for which transitions up to
(6, 6) are resolved. For such wide quantum wells, the contributions from the light
holes are only seen clearly when a transition for a light hole state is not close to a
heavy hole transition because of the lower density of states for the light holes (see
Fig. 20.15).

Exciton effects are significantlymore pronounced in quantumwell structures than
in bulk semiconductors, as can be understood from the following considerations.
When the width d1 of the quantum well is less than the diameter of the exciton Bohr
orbit, the electron–hole separation will be limited by the quantum well width rather
than by the larger Bohr radius, thereby significantly increasing the Coulomb binding
energy and the intensity of the exciton peaks. Thus, small quantum well widths
enhance exciton effects. Normally sharp exciton peaks in bulk GaAs are observed
only at low temperature (T 	 77K); but in quantum well structures, excitons can
be observed at room temperature, as shown in Fig. 20.14, which should be compared
with Fig. 20.8 for 3D bulk GaAs.

The reason why the exciton line intensities are so much stronger in the quan-
tum well structures is due to the reduction in the radius of the effective real space
Bohr orbits, thereby allowing more k band–states to contribute to the optical tran-
sition. This argument is analogous to arguments made to explain why the exciton
intensities for the alkali halides are huge [see Fig. 20.12a]. In the alkali halides the
excitons have very small real space Bohr orbits so that large regions of k space can
contribute to the exciton excitation intensity.

In the case of the quantum well structures, two exciton peaks are observed because
the bound states for heavy and light holes have different energies, in contrast to the
case of bulk GaAs where the j = 3/2 valence band states are degenerate at k = 0.
This property was already noted in connection with Fig. 20.13 for the bound state
energies. Because of the large phonon density available at room temperature, the
ionization time for excitons is only 3 × 10−13 s. Also the presence of the electron–
hole plasma strongly modifies the optical constants, so that the optical constants are
strongly dependent on the light intensity, thereby giving rise to non–linear effects
that are not easily observed in 3D semiconductors.

Because of the small binding energy of these exciton states in a semiconductor
like GaAs, modest electric fields have a relatively large effect on the photon energy
of the exciton peaks and on the optical constants. Application of an electric field
perpendicular to the layers of the superlattice confines the electron and hole wave
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Fig. 20.16 Excitonic wave functions in a GaAs quantum well without (left) and with (right) an
applied electric field. Because of the triangular potentials that are created by the electric field in the
z–direction, the quantum well retains the electron and hole in a bound state at electric fields much
higher than would be possible in a bulk classical ionization field

functions at opposite ends of the quantum well, as shown in Fig. 20.16. Because of
this spatial separation, the excitons become relatively long lived and now recombine
on a time scale of 10−9 s. Also because of the quantum confinement, it is possible to
apply much higher (50 times) electric fields than is possible for an ionization field
in a bulk semiconductor, thereby producing very large Stark red shifts of the exciton
peaks, as shown in Fig. 20.17. This perturbation by the electric field on the exciton
levels in a quantum confined structure is called the quantum confined Stark effect.
This effect is not observed in bulk semiconductors. The large electric field–induced
change in the optical absorption that is seen in Fig. 20.17 has been exploited for
device applications.

The followingmechanism is proposed to explain thequantumconfinedStark effect
when the electric field is applied perpendicular to the layers. This electric field pulls
the electrons and holes toward opposite sides of the layers as shown in Fig. 20.16
resulting in an overall net reduction in the attractive energy of the electron–hole
pair and a corresponding Stark (electric field induced) shift in the exciton absorption
features. Two separate reasons explain the strong exciton peaks in quantum well
structures. Firstly the walls of the quantum wells impede the electron and hole from
tunneling out of the wells. Secondly, because the quantum wells are narrow (e.g.,
∼ 100Å) compared to the three–dimensional (3D) exciton size (e.g., ∼ 200Å), the
electron–hole interaction, although slightly weakened by the separation of electron
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Fig. 20.17 The absorption
spectra in
GaAs/Ga1−xAlxAs
heterostructures for various
values of applied electric
field illustrating the large
changes in optical properties
produced by the quantum
confined Stark effect. The
electric fields normal to the
layer planes are: a 104 V/cm,
b 5 × 104 V/cm, and c
7.5 × 104 V/cm
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and hole, is still strong, and well defined excitonic states can still exist. Thus, exciton
resonances can remain to much higher fields than would be possible in the absence
of this confinement, and large absorption shifts can be seen experimentally without
excessive broadening.

20.5.4 Excitons in 0D and 1D Systems: Fullerene C60 and
Carbon Nanotubes

The exciton binding energy commonly observed in semiconductors is of the order of
∼10meV presenting discrete levels below the single particle excitation spectra as we
discussed above. Due to this, optical absorption of exciton levels is usually observed
only at low temperatures. However, in one-dimensional system such as a single wall
carbon nanotube, the exciton binding energy can be as large as 1eV so that exciton
effects can be observed at room temperature. Therefore, excitons are key ingredients
for explaining optical processes in carbon nanotubes and fullerenes, such as optical
absorption, photoluminescence, and resonance Raman spectroscopy.

Both C60 and carbon nanotube are π conjugated sp2 carbon systems and their
exciton properties show many similarities. These systems have about the same
diameter and their electronic density of states exhibit very narrow singularities. In
C60, thewavefunction for the lowest exciton energy level is not homogeneous because
the electron and hole have their ownmolecular orbitals with different symmetries. On
the other hand, the wavefunction for the lowest exciton energy in carbon nanotubes
is homogeneous around the circumferential direction and is localized only along
the tube axis direction. The range of the Coulomb interaction, U , is larger than the
tube diameter and smaller than the length of a SWNT whereas for C60 the effective
range of U is different. The energy band width of the highest occupied molecular
orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) band in C60
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is much smaller than the Coulomb interaction, while in the case of the nanotube,
the energy band width is larger than U . Therefore, in a SWNT the motion of the
exciton along the nanotube axis gives an energy dispersion for the exciton, while
in C60 the excitons are localized. The exciton binding energy in fullerenes is about
0.5eV as measured by comparing the optical absorption energy (1.55eV) with the
energy difference observed by photo electron emission and inverse photo emission
spectroscopy (2.3eV).

Experimental Observation of Bright Excitons in Carbon Nanotubes

The experimental evidence for excitons in the optical transitions in carbon nanotubes
initially came from non-linear two-photon absorption experiments by using very
high-power laser pulses (see Dukovic et al. 2005). In such experiments, SWNTs are
excited in a two-photon absorption process at energies (Elaser), somewhat above half
of the first optical transition energy for semiconducting SWNTs (Elaser ≥ ES

11/2),

Fig. 20.18 a A schematic representation of the SWNT electronic density of states, showing the
absorption of two photons and the emission of one photon with (left) and without excitons (right) is
shown in the upper panel. bA 2D contour plot of the two-photon excitation spectra of SWNTs. The
black circles label the higher two-photon absorption energy ETPA and the lower-lying one-photon
emission energy Eem for different (n,m)nanotubes. Emission always occurs at Eem = ES

11 < ETPA.
c Photoluminescence excitation spectrum taken at 1.30eV showing the bright exciton close to the
band edge, and the phonon side band approximately 200meV higher in energy is identified with an
(8, 3) SWNT
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and subsequent light emission is observed around ES
11. If the optically induced tran-

sitions ES
11 were related to free electron-hole pairs making band-to-band transitions,

then the absorption of the two photons would occur at exactly [Elaser = ES
11/2], as

schematically shown in the upper panel in Fig. 20.18a. However, if the ES
11 optical

level were related to the creation of an exciton, then the energy for the absorption
of two photons would be observed at an excited exciton state with an energy higher
than ES

11. Such a difference in energy between the absorption and emission pro-
cesses was observed experimentally [see Fig. 20.18a], thus giving strong support for
the presence of excitons in optical transitions of carbon nanotubes.

Further evidences for the excitonic nature of optical transitions in carbon nan-
otubes was provided by the experimental observation of exciton-phonon sidebands
(see Plentz et al. 2005). Figure20.18b shows the photoluminescence spectrum profile
for the (8, 3) SWNT excited with 1.30eV radiation where well defined resonances
are found about 200meV above each E11(A2 symmetry) feature. Asymmetric line
shapes of the photoluminescence profile in Fig. 20.18b and the small upshift of
the frequency of the phonon side peak relative to the G-band frequency �ωG are
observed. The observed phonon side-band is assigned to a resonance identified with
the absorption of light to a bound exciton-phonon state and the main contribution to
this exciton-phonon bound state, shown in Fig. 20.18c, is attributed to the optical LO
phonon at the K and Γ points of the graphene Brillouin zone. In such a situation, a
significant fraction of the spectral weight should be transferred from the exciton peak
to the exciton-phonon complex, and this transferred spectral weight is predicted to
have a diameter dependence which was observed experimentally by Plentz et. al.

20.5.5 Excitons and Trions in Transition Metal
Dichalcogenides

In 2010,Mak et al. 2010 showed that, bymechanically exfoliating the transitionmetal
dichalcogenideMoS2, an atomically thin layer of this material undergoes an indirect-
to-direct bandgap transition. Similar observations were made in WSe2 and MoSe2.
The tight confinement of the charge carriers in these two-dimensional materials
results in extremely high exciton binding energies 400meV, which are stable at room
temperature. As a result, the photophysics of these materials is quite different from
most known bulkmaterials. For electrostatically gatedMoS2, charged excitons called
tr ions are formed. Figure20.19 shows the electrostatic gating/doping dependence of
the photoluminescence of monolayer MoSe2. Near zero doping, we observe mostly
neutral (Xo) and impurity-trapped (X I ) excitons. With large electron (hole) doping,
negatively (positively) charged excitons (X+, X−) dominate the spectrum. These
charged and uncharged excitons are illustrated schematically in Fig. 20.19b.



438 20 Impurities and Excitons

20.5.6 Excitons in Transition Metal Dichalcogenide
Heterojuctions

Another interesting aspect of exciton photophysics of layered transition metal
dichalcogenides (TMDCs) occurs at the interface between two different TMDCs.
Rivera et al. showed that interlayer excitons in monolayer MoSe2 − WSe2 het-
erostructures have strongly redshifted emission and substantially longer exciton life-
times than either of the two constituent materials alone. Figure20.20a illustrates the
basic heterostructure configuration, in which monolayer WSe2 is deposited on top of
monolayerMoSe2. Figure20.20c shows the PL spectra taken from theWSe2,MoSe2,
and heterostructure regions. For WSe2 and MoSe2, the exciton peaks all lie above
1.6eV. In the heterostructure region, however, a large peak emerges below 1.4eV
due to an interlayer exciton. Figure20.20b shows an energy band diagram of this
interlayer exciton, in which the hole resides primarily in theWSe2 while the electron
resides in the MoSe2 layer.

Fig. 20.19 Electrostatic control of exciton charge. aMoSe2 PL (colour scale in counts) is plotted as
a function of back-gate voltage. Near zero doping, we observe mostly neutral and impurity-trapped
excitons. With large electron (hole) doping, negatively (positively) charged excitons dominate the
spectrum. b Illustration of the gate-dependent trion and exciton quasi-particles and transitions.
(Taken from Ross et al. 2013)
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Fig. 20.20 Intralayer and interlayer excitons of a monolayer MoSe2 − WSe2 vertical heterostruc-
ture. a Schematic and b energy band diagram of MoSe2 − WSe2 heterostructure. c Photolumines-
cence spectra of individual monolayers and the heterostructure at 20K under 20 mW excitation at
1.88 eV (plotted on the same scale). (Taken from Rivera et al. 2015)

Problems

20.1 This problem considers the density of Frenkel defects. By considering N ′ as
the density of possible interstitial sites, show that the density of occupied interstitial
sites is

ni 
 (NN ′)
1
2 exp

[
− Ei

2kBT

]
(20.26)

where Ei is the energy needed for removing an atom from a lattice site to form an
interstitial defect site.

20.2 The band gaps ofWSe2 andMoSe2 are 1.64 and 1.61eV, respectively, and their
conduction band offset is 228meV with WSe2 higher in energy than for MoSe2.

(a) Estimate the maximum energy that an interlayer exciton could have (assuming
zero binding energy)?

(b) The observed value of the interlayer exciton emission is 1.350eV. Based on this,
what is the exciton binding energy of this interlayer exciton?
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Fig. 20.21 Ball and stick
model of MoS2. (Taken
from Liang et al. 2008)

(c) Based on this binding energy, do you expect these interlayer excitons to be stable
at room temperature?

(d) Explain why the interlayer exciton binding energy is different from the binding
energy of intralayer excitons 400meV.

20.3 The exciton binding energy of an exciton in monolayer MoS2 is 400meV.
Assuming that this binding energy is dominated by the ground particle-in-a-box
energy corresponding to the 3.0Å layer thickness of this material, with an effective
mass of m∗ = 0.6mo, estimate the binding energy of bilayer MoS2 (thickness =
9.16Å). (See Fig. 20.21)

20.4 Calculate the bound state energies of excitons in GaAs (with both heavy and
light holes) for

(a) bulk GaAs, assuming a hydrogenic model.
(b) a 50Å quantum well, assuming the binding energy is dominated by the particle-

in-a-box energy corresponding to the finite quantum well thickness.
(c) a 5Å quantum well, assuming the binding energy is dominated by the particle-

in-a-box energy corresponding to the finite quantum well thickness.

20.5 Repeat Problem 20.4 for germanium.

20.6 (a) By what factor (approximately) does a quantum well with a width
of 50 Å increase the binding energy of an exciton for a quantum well of GaAs?
The lattice constant for GaAs is 5.65 Å and the exciton radius of bulk GaAs is
about 150 Å.
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(b) The spin-orbit interaction for GaAs results in a splitting of the valence band,
with the split-off band extremum at an energy 0.34 eV below the valence band
extremum. Using 0.34 eV as a measure of the size of the spin-orbit interaction in
GaAs, estimate the effect of the spin-orbit interaction on the binding energy of
the exciton. [Hint: Consider the effect of the large Bohr radius on the magnitude
of the spin-orbit interaction.] The donor impurity radius for GaAs is 136 Å.
Use values of mhh = 0.62 and m�h = 0.074 for the hole masses and a dielectric
constant of 15.

(c) If an exciton has no net charge, why is an exciton attracted to a charged impurity
center to form a bound exciton?

20.7 Is the binding energy for an exciton in a semiconductingwire of 100Ådiameter
increased or decreased relative to bulk values if the Bohr radius of the exciton for this
material in the bulk is 30Å?Under which conditions would the effect of confining the
exciton within a small diameter wire be large? What is the reason for your answer?
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Yu and Cardona, Fundamentals of Semiconductors (Springer, Berlin, 1996). Sects. 6.3 and 6.6
Bassani and Pastori–Parravicini, Electronic States and Optical Transitions in Solids: Chaps. 6 and
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Chapter 21
Luminescence and Photoconductivity

21.1 Classification of Luminescence Processes

Luminescence denotes the emission of radiation by a solid in excess of the amount
emitted in thermal equilibrium and can be considered as a process inverse to the
absorption of radiation. Since luminescence is basically a non-equilibrium phenom-
ena, it requires excitation by light, electron beams, current injection, etc., which
generally act to create excess electrons, holes, or both. For example, the effects of
electron–hole recombination give rise to recombination radiation or luminescence.

One classification of luminescent processes is based on the source of the excitation
energy. The most important excitation sources are

1. photoluminescence by optical radiation,
2. electroluminescence by electric fields or currents,
3. cathodoluminescence by electron beams (or cathode rays),
4. radioluminescence by other energetic particles or high energy radiation sources.

A second classification of luminescent processes pertains to the time that the light is
emitted relative to the initial excitation. If the emission is fast (≤ 10−8 s is a typical
lifetime for an atomic excited state), then the process is fluorescent. The emission
from most photoconductors is of the fluorescent variety. For some materials, the
emission process is slow and can last for minutes or hours. These materials are
phosphorescent and are called phosphors, and is governed by the time it takes for
the carriers in the excited state to reach equilibrium. In some cases there is an excited
state that is well defined, so that the occupation of the excited state has a lifetime.
While the electron remains in the excited state we call the excited state an excitonic
state subject to the Pauli exclusion principle. If two excitons are then excited for
the same atom, a biexciton is formed where the two electrons have spin up and spin
down, filling that state.

Let us now consider luminescent processes of the fluorescent type with fast emis-
sion times. The electronic transitions which follow the excitation and which result
in luminescent emission are generally the same for the four types of excitations
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Fig. 21.1 Basic transitions
in a semiconductor for
stimulating the luminescent
process. After H.F. Ivey,
IEEE J.Q.E. 2, 713 (1966).
• = electrons: ◦ = holes

mentioned above. Figure21.1 shows a schematic diagram of the basic transitions in
a semiconductor that are effective in exciting a luminescent process. These excita-
tions may be classified as follows:

1. Transitions involving chemical impurities or physical defects (such as lattice
vacancies):

a. conduction band to acceptor state recombination.
b. available electron in a donor level site makes resonant transition to a vacant

conduction band state.
c. donor to acceptor transition resulting in pair emission.

2. Interband transitions:

a. intrinsic or edge emission, corresponding very closely in energy to the band
gap, though phonons and/or excitons may also be involved.

b. higher energy emission involving energetic or “hot” carriers, sometimes
related to avalanche emission, where “hot” carriers refers to highly ener-
getic carriers well above the thermal equilibrium levels.

3. Intraband transitions involving “hot” carriers, sometimes called deceleration
emission.

It should be pointed out that the various transitions mentioned above do not all
occur in the same material or under the same conditions. Nor are all electronic
transitions radiative. Phonon emission provides a non-radiative mechanism for the
relaxation of an excited state in a solid to the lowest equilibrium ground state. An
efficient luminescent material is one in which radiative transitions predominate over
non-radiative transitions.

When electron-hole pairs are generated by external excitations, radiative tran-
sitions resulting from the hole-electron recombination may occur. The radiative
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transitions in which the sum of electron and photon wavevectors is conserved are
called direct transitions as opposed to indirect transitions which involve additional
available scattering agents, such as phonons.

21.2 Emission and Absorption

For a given material the emission probability will depend on the photon energy and
on the temperature. The emission rate Rvc(ω) for the transition from the conduction
band (c) to the valence band (v) is related to the absorption rate Pvc(ω) by the relation

Rcv(ω) = Pvc(ω)ρ(ω) (21.1)

where ρ(ω) is the Planck distribution function at temperature T

ρ(ω) = 2

π

ω2n3r
c3[exp(�ω/kBT ) − 1] , (21.2)

and the absorption rate is given by

Pvc(ω) = α(ω)c

nr
, (21.3)

where α(ω) is the frequency-dependent absorption coefficient and nr is the index of
refraction. The frequency and temperature dependence of the emission rate is then
given by

Rcv(ω) = 2

π

ω2n2rα(ω)

c2[exp(�ω/kBT ) − 1] . (21.4)

Basically, Rcv(ω) shows high emission at frequencies where the absorption is large,
so that emission spectroscopy can be used as a technique to study various aspects of
the electronic band structure.

The luminescence process involves 3 separate steps:

1. Excitation: the electron-hole (e–h) pairs are excited by an external energy source
to an excited state.

2. Thermalization: the excited electron-hole pairs relax to their quasi-thermal equi-
librium distributions.

3. Recombination: the thermalized electron-hole pairs recombine radiatively to pro-
duce light emission.

We now give some examples of luminescence spectra. The big picture is shown in
Fig. 21.2, where luminescence spectra for InSb are presented showing several typical
features. The highest energy feature in this figure is connected with luminescence
from the conduction band to the valence band (the band-to-band process) at 0.234eV,
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Fig. 21.2 Luminescence emission spectrum in an n-type InSb crystalwith an electron concentration
of 5 × 1013 cm−3. The peak at 0.234eV is due to interband recombinative emission, and the peak
at 0.228eV is due to an impurity state below the band edge. The peak at 0.212eV (multiplied by
200) is due to phonon-assisted band-to-band transitions. (A. Mooradian and H.Y. Fan, Phys. Rev.,
148, 873 (1966).)

Fig. 21.3 Direct and
indirect intrinsic radiation
recombination in Ge. The
70K spectrum is
experimental and is in the
energy range appropriate for
indirect transitions assisted
by longitudinal acoustic
(LA) phonons. The open
circles are calculated from
experimental absorption data
for both types of transitions.
The free carrier densities at
the direct and indirect
conduction band minima and
at the valence band
maximum are denoted by n0,
n, and p, respectively

from the conduction band to an acceptor impurity level at 0.228eV, and luminescence
that is phonon assisted at 0.212eV involving phonon absorption, so that the emitted
photon has a lower energy than the excitation energy.

For intrinsic or band-to-band transitions, the peak intensity occurs near the energy
gap and the width of the spectral line (at the half value of the peak intensity) is
proportional to the thermal broadening energy kBT . For extrinsic transitions, the peak
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Fig. 21.4 Electroluminescence
intensity of p-type
(Zn-doped) GaAs at 4.2K is
shown for four different
dopant concentrations,
varying over 3 orders of
magnitude in units of cm−3.
Note the increasing
broadening and downshift of
the emission peak with
increasing dopant
concentration

Fig. 21.5 Energy level
diagram for a Cd-doped GaP
p − n junction where Cd-O
denotes a cadmium-oxygen
complex. Transitions
between the exciton level of
the Cd-O complex to the
acceptor level of Cd give rise
to red light emission.
Transitions between the
donor level (S) and acceptor
level (Cd) give rise to the
green light emission. b
Measured emission spectrum
from a GaP diode in which
the color associated with the
various luminescent peaks
are shown ranging from
infrared to red and green in
the visible range. (After M.
Gershenzon, Bell, Sys. Tech.
J., 45, 1599, (1966).)

emission intensity occurs near the transition energy, but the broadening is greater than
for the intrinsic band-to-band emission shown in Fig. 21.3 for both indirect and direct
bandgap emission.

An example of a luminescence spectrum from a free to a bound state is presented
in Fig. 21.4 where the electroluminescence is shown for p-type GaAs for various
Zn dopant concentrations, given in units of cm−3. As the impurity concentration
increases, the luminescence emission becomes increasingly broad because of the
perturbation to the crystal lattice introduced by the site-to-site potential variation in
the basic periodicity of the lattice. Notice both the line broadening and increasing
lineshape asymmetry at high dopant levels.

An example of donor-acceptor pair transitions is shown in Fig. 21.5 for GaP
showing the exciton emission peak and structure associated with donor-acceptor
pair emission. For donor-acceptor pair emission the energy of the emitted photon
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Fig. 21.6 Donor-acceptor pair (DAP) recombination spectra in GaP containing S-Si and Te-Si
donor-acceptor pairs measured at low temperature (1.6K). The integers above the discrete peaks are
the shell numbers of the pairswhich have been identified by comparisonwith theoretical predictions,
for the case where each impurity is on the same sublattice (i.e., both are on the Ga or on the P
sublattices).When the impurities are on different sublattices, the donor-acceptor pair recombination
spectra become even more complex than what is shown in this figure

is �ω = Eg − EA − ED + e2/(εR), where ε is the static dielectric constant and R
is the spatial distance between the donor and acceptor impurities that constitute
the electron-hole pair emission involved in the electron-hole recombination process.
Because of the large number of possible sites for the donor and acceptor impurities,
a very rich spectrum can be observed in the donor-acceptor pair emission, as shown
in Fig. 21.6 for low temperature measurements on the wide gap semiconductor GaP.

The general problem of luminescence is not only to determine the luminescent
mechanisms and the emission spectra, as discussed above, but also to determine the
luminescent efficiency. For a given input excitation energy, the radiative recombina-
tion process is in direct competition with the non-radiative processes. Luminescent
efficiency is defined as the ratio of the energy associated with the radiative process
to the total input energy.

Among the fastest emission luminescent processes, electroluminescence, or exci-
tation by an electric field or electric current, has been one of the most widely utilized
for device applications. Electroluminescence is excited in a variety of ways including
intrinsic, injection, avalanche, and tunneling processes, as summarized below.

1. Intrinsic process. When a powder of a semiconductor (e.g., ZnS) is embedded
in a dielectric (plastic or glass) material, and exposed to an alternating electric
field (usually chosen to be at audio frequencies), electroluminescence may occur.
Generally the efficiency is low (∼1%) and such materials are used primarily in
display devices. Themechanism ismainly due to impact ionization by accelerated
electrons and/or field emission of electrons from trapping centers.

2. Injection process. Under forward-bias conditions, the injection of minority car-
riers in a p − n junction can give rise to radiative recombination. The energy
level band diagram for a Cd-doped GaP p − n junction is shown in Fig. 21.5.
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Several different transitions for electron-hole recombination are indicated. The
relative intensity of the red and the green bands can be varied by varying the
impurity concentrations in the sample preparation. The red-light emission from
GaP p − n junctions (i.e. GaP light-emitting-diodes (LEDs)) was one of the first
systemswith sufficiently high efficiency to be utilized in practical applications. At
a later time, high brightness, high efficiency LEDs became available throughout
the IR, visible, and UV wavelength ranges, and LED technology has become a
very common electronic commercial product.

3. Avalanche process. When a p − n junction or a metal semiconductor contact is
reverse-biased into an avalanche breakdown for anLEDprocess, the electron-hole
pairs generated by impact ionization may result in emission of either interband
(avalanche emission) or intraband (deceleration emission) transitions, respec-
tively.

4. Tunneling process. Electroluminescence can also result from tunneling into
forward-biased and reverse-biased junctions. In addition, light emission can occur
in reverse-biasedmetal-semiconductor contacts. (seeM.H.P. Pfeiffer, et al.Optics
Express, 19, A1184–A1189, (2011).)

Fast emission luminescence also is of importance to semiconducting lasers. Lumi-
nescence is generally observed as an incoherence emission process in contrast with
laser action, which involves the coherent emission of radiation in executing a radia-
tive transition. The coherence is usually enhanced by polishing the sample faces to
form an optical cavity. Examples of solid state lasers are the ruby laser and the com-
mon direct gap semiconductor lasers. Optical and electrical pumping are the most
common methods of exciting laser action in solid state lasers. (see X.F. Huang et al.
2003)

Finally, we conclude the discussion of electroluminescence in semiconductors
with a short discussion of slow emission luminescence, i.e. phosphorescence. Phos-
phorescent materials exhibit afterglow effects and are consequently important in
various optical display devices. These phosphors often do not exhibit large photo-
conductivities. That is to say, although the electrons that were produced survive for a
long time, they are bound to particular defect centers and do not readily carry charge
through the crystal.

In Fig. 21.7 we show an example of how a phosphor works in an alkali halide, such
as KCl with a small amount of Tl (thallium) impurities. The thallium defects act as
recombination centers. If these recombination centers are very efficient at producing
recombination radiation they are called activators; Tl doping of KCl acts as an
activator. In this system, the excitation occurs at a higher energy than the emission,
and therefore the excitation process is considered as an up-conversion process.

The Franck–Condon principle states that the atoms in the solid do not change
their internuclear separations during an actual electronic transition. We now explain
how emitted light is downshifted in frequency relative to the frequency of the exciting
light. The Tl+ ion in the ground or unexcited state occupies some configuration close
to the symmetric center of a K+ ion which the Tl+ ion might be replacing. When
excited, the Tl+ ion finds a lower energy state in a lower symmetry position near one
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Fig. 21.7 Schematic
diagram of the
phosphorescence process of
the thallium+ activation
process in KCl. The
emission is downshifted
from the absorption. This is
an illustration of the
Franck–Condon principle

of theCl− ions as shown schematically on the top of Fig. 21.7. The absorption ismade
from the ground state energy (point A in Fig. 21.7) to an excited state (point B) with
the same configuration in a direct transition. Phonon interactions then will bring the
electron to the equilibrium position C . Achievement of equilibrium (B → C) will
take a longer time than the electronic transitions (A → B). Emission from C → D
again occurs in accordance with the Franck–Condon principle and the readjustment
to the equilibrium configuration A proceeds by phonon processes.

Photon emission is one of the main techniques for studying impurity and defect
levels in semiconductors. It is an important technique also for studying newmaterials
such as organic systems. (see Adachi et al. 2001)

One luminescent technique that has become very popular is luminescence exci-
tation spectroscopy because of the wide variety of information that can be obtained.
According to this technique the emission at a particular energy is monitored as the
excitation energy is varied. This technique has become very popular for low dimen-
sional materials systems or for very thin epitaxial layers on an opaque substrate,
thereby providing much more sensitivity than absorption spectra or photolumines-
cence spectra offer.
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Fig. 21.8 Schematic
diagram of the experimental
arrangement for measuring
the photoconductivity,
showing a light beam
incident on a sample.
(see Li et al. 2014)

21.3 Photoconductivity

Photoconductivity is observed when light is incident on a poorly conducting mater-
ial, (e.g., an insulator or semiconductor), and the photon energy is sufficiently high to
excite an electron from an occupied valence band state to an unoccupied conduction
band state. In such interband transitions, both the electron and hole will contribute
to the electrical conductivity if a voltage is applied across the sample, as shown in
the schematic experimental arrangement in Fig. 21.8. Since the threshold for photo-
conduction occurs at �ω = Eg , measurement of the photoconductivity can be used
to determine the band gap for non-conducting materials. Photoconductivity is often
the concept used for the design of practical optical detectors.

Ψ2D(x, y) = eikx xφ(y) (21.5)

The photoconduction process increases the electrical conductivity Δσ due to
the increase in the density of electrons (Δn) and holes (Δp) resulting from photo-
excitation:

Δσ

σ
= Δnμn + Δpμp

nμn + pμp
(21.6)

in which μn + μp are respectively, the electron and hole mobilities. Since the car-
riers are generated in pairs in the photo-excitation process Δn = Δp. In preparing
materials for applications as photoconductors, it is desirable to have a high mobility
material with a low intrinsic carrier concentration, and long electron–hole recombi-
nation times to maximize the photo-excited carrier density concentration. Cadmium
sulfide is an example of a good photoconductive material. In CdS, it is possible to
change the conductivity by ∼10 orders of magnitude through carrier generation
by light. These large changes in electrical conductivity can be utilized in a variety
of device applications, such as light meters, photo-detectors, “electric eye” control
applications, optically activated switches, and for information storage.
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To measure the photo-currents, photo-excited carriers are collected at the exter-
nal electrodes. In the steady state, free carriers are continually created by the inci-
dent light. At the same time, the excited free carriers annihilate each other through
electron-hole recombination. To produce a large photocurrent, it is desirable to have
a long free carrier lifetime τ ′ or a slow recombination time. If G is the rate of gen-
eration of electrons per unit volume due to photo-excitation, then the photo-excited
electron density in the steady state will be given by

Δn = Gτ ′. (21.7)

The generation rate G will in turn be proportional to the photon flux incident on the
photoconductor. Whereas slow recombination rates are essential to the operation of
photoconductors, rapid recombination rates are necessary for luminescent materials.

In the recombination process, an electron and hole annihilate each other, emitting a
photon in a radiative process. In real materials, the recombination process tends to be
accelerated by certain defect sites. When such defects tend to be present in relatively
greater concentrations at the surface, the process is called surface recombination.
In bulk crystals, the density of recombination centers can bemade low for a very pure
and “good” crystal. A typical recombination center concentration in a high quality
Si crystal would be ∼ 1012 cm−3.

Photo-excited carriers can also be eliminated from the conduction process by
electron and hole traps. These traps differ from recombination centers insofar as
traps preferentially eliminate a single type of carrier. In practice, hole traps seem to
be more common than electron traps. For example, in the silver halides which are
important in the photographic process, the hole is trapped almost as soon as it is
produced and photoconduction occurs through the electrons.

Electron and neutron irradiation of materials produce both recombination centers
and traps in photoconducting materials. Thus, special precautions must be exercised
in using photo-detectors in high radiation environments, such as on satellites in outer
space.

Trapped electrons can be released by thermal or optical excitation. For example,
consider a p-type sample of Ge which has been doped withMn, Ni, Co, or Fe. At low
temperatures EF will be near the top of the valence band and the acceptor impurity
states will have very few electrons in them. Photons that are energetic enough to take
an electron from the valence band to these impurity levels will result in hole carriers
in the valence bands. The deep acceptor levels for these impurities are above the top
of the valence band by 0.16eV forMn, 0.22eV for Ni, 0.25eV for Co and 0.35eV for
Fe. The threshold values observed for photoconductivity in these p-type Ge samples
are shown in Fig. 21.9 and the experimental results are in good agreement with this
interpretation. The large increase in photoconductivity at 0.7eV corresponds to the
onset of an interband transition and the threshold for this process is independent of
the impurity species.

The excess carrier lifetime can bemeasured by using light pulses and by observing
the decay in the photocurrent through measurement of the voltage across a calibrated
load resistor R in the external circuit, as shown in Fig. 21.10.
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Fig. 21.9 Photoconductance
spectrum occurring in the
infra-red range in bulk Ge
with various dopants as
indicated

Fig. 21.10 Schematic of a
circuit used to measure the
excess carrier lifetime
through decay in the
photocurrent

Fig. 21.11 Schematic
experimental time
dependence of incident light
pulses and of the
corresponding
photoconductivity signal

For each light pulse, the carrier density will build up and then decay exponentially
with a characteristic time equal to the lifetime τ ′ of the excess carriers generated by
the light intensity coming from the photodetector signal.Using a light chopper, light
pulses can be generated as indicated in Fig. 21.11.

In the interpretation of these experiments corrections must be made for surface
recombination. To study a givenmaterial, the pulse repetition rate is adjusted tomatch
approximately the excess carriers decay lifetime. For long lifetimes (∼ 10−3 s), a
mechanical chopper arrangement is appropriate.On the other hand, for short lifetimes
a spark source can be used to give a light pulse of ∼ 10−8 s duration. For extremely
short lifetimes, lasers with pulses well below ∼ 10−12 s are available.
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Fig. 21.12 Experimental dependence of the photocurrent on incident light irradiation for a CdS
and b WSe2. A linear response is observed for low light intensity levels. (see B.W.H. Baugher,
et al. Nature Nanotechnology, 9, 292, (2014).)

To get an idea of themagnitude involved in the photoconduction process, we show
in Fig. 21.12 some data for CdS, a common photoconductingmaterial used for optical
devices. This plot of the photoconductive response versus illumination level shows
that the photocurrent is almost a linear function of the illumination intensity for low
intensities but is non-linear at high illumination levels on this log - log plot. The
dark current refers to the background current that flows in the absence of incident
light. Thus, the Fig. 21.12a shows that an incident power as small as 5× 10−8 watts
results in a photocurrent 50 times greater than the dark current. Figure21.12b shows
the photo-current of a WSe2 p − n junction, which exhibits a linear dependence on
the incident optical power.

21.4 Photoluminescence in 2D Materials

Photoluminescence spectroscopy has become a very important tool for studying 2D
layered materials including the monolayer transition metal dichalcogenides MoS2
andWSe2. Unlike the bulkmaterial, monolayerMoS2 emits light strongly, exhibiting
an increase in luminescence quantum efficiency by more than a factor of 104 com-
paredwith the bulkmaterial (seeMak et al. 2010). This is due to the effect of quantum
confinement on thematerial’s electronic structure,which induces an indirect-to-direct
bandgap phase transition. This new family of atomically thin direct bandgap semicon-
ductors have attracted much research interest, since direct bandgap semiconductors
are more applicable to optoelectronic devices, such as LEDs, solar cells, and pho-
todiodes. Because of the strong dependence on thickness, photoluminescence spec-
troscopy, together with Raman spectroscopy, is routinely used to determine the layer
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Fig. 21.13 aOptical microscope image and b photoluminescence spectra of monolayer, few-layer,
and bulk MoS2. (see Li et al. 2014)

thickness of mono- and few-layer transition metal dichalcogenides. Figure21.13a
shows an optical microscope image of MoS2 exfoliated onto a Si/SiO2 substrate
using the conventional scotch tape method (Novoselov et al. 2004). The PL spectra
of monolayer, few-layer, and bulk regions, indicated in Fig. 21.13a, are shown in
Fig. 21.13b. Here, the monolayer region exhibits bright photoluminescence indicat-
ing its direct bandgap nature. The PL spectra of few layer MoS2 shows significantly
suppressed PL, and bulk MoS2 shows almost no detectible photoluminescence.
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Chapter 22
Optical Study of Lattice Vibrations

22.1 Lattice Vibrations in Semiconductors

22.1.1 General Considerations

The lattice vibrations in semiconductors are described in terms of 3N branches for
the phonon dispersion relations where N is the number of atoms per primitive unit
cell. Three of these branches are the acoustic branches, and the remaining 3N − 3
are the optical branches. The optical lattice modes at q = 0 are sensitively studied
by infrared spectroscopy (optical reflectivity or transmission) for odd parity modes,
including those for which the normal mode vibrations involve a dipole moment.
Raman spectroscopy provides a complementary tool to infrared spectroscopy, insofar
as Raman spectroscopy is sensitive to even parity modes. Since the common group
IV semiconductors like silicon and germanium each have inversion symmetry, the
optical phonon branch is Raman-active but is not seen in infrared spectroscopy. The
III–V compound semiconductors, however, do not have inversion symmetry, so that
the optical modes for semiconductors such as GaAs are both infrared-active and
Raman-active. A schematic optical absorption curve of a general semiconductor is
shown in Fig. 22.1.

Since the wavevector for light is verymuch smaller than the Brillouin zone dimen-
sions, conservation of momentum requires the wave vector for the phonon qphonon

that is created or absorbed to be much smaller than Brillouin zone dimensions, so
that the wave vectors for phonons that are observed in first order infrared or Raman
processes are close to q = 0. Since thermal neutrons can have a wide range of
momentum values, neutron spectroscopy using thermal neutrons as a probe allows
exploration of the phonon branches over a wide range of qphonon. Since heat in a
semiconductor is dominantly carried by the acoustic phonons, information about the
acoustic phonons is also provided by thermal conductivity studies.

We now review the interaction of the electromagnetic field with an oscillating
dipole due to a lattice vibration. Crystals composed of two different atomic species
(like NaCl) can have vibrating ions at finite temperatures. When these ions are
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Fig. 22.1 Hypothetical absorption spectrum for a typical III–V semiconductor as a function of
photon energy, over a wide range. The phenomena of dominant sensitivity are indicated for the
various optical energy (or wavelength) ranges

vibrating in an optic mode ← ⊕ →← � →, a vibrating dipole is created and
this dipole can interact with the electromagnetic field. In discussing this interaction,
we wish to focus attention on the following points which are discussed more fully
in the text below:

1. The existence of two characteristic frequencies for the lattice vibrations in a solid
in the presence of light:

• ωt = transverse optical phonon frequency (TO)
• ωl = longitudinal optical phonon frequency (LO)

The description of the LO and TO phonons, distinguished from one another by the
subscripts l and t , repectively, is provided by the polariton model which accounts
for the interaction between light and phonon excitations. Because of the very small
wavevector of the incident photons, the phonons which are optically excited will
also have very small wavevectors. Therefore, ωt and ωl are taken as the phonon
frequencies at q = 0 for the TO and LO phonon dispersion curves.

2. The two frequencies ωt and ω� are observable experimentally either through an
infrared absorption, transmission, or reflection experiment (infrared activity) or
through a light scattering experiment (Raman activity). A transparent dielectric
becomes lossy as ω increases above ωt . The transverse optical phonon frequency
ωt corresponds to a resonance in the dielectric function



22.1 Lattice Vibrations in Semiconductors 459

ε(ω) = ε∞ + const

ω2
t − ω2

(22.1)

where ε∞ is the high frequency dielectric function (appropriate to electronic
excitation processes) and a resonance in ε(ω) occurs at the TO phonon frequency
ω = ωt . The strong frequency dependence of the dielectric function (large disper-
sion) nearωt is exploited in designing prisms formonochromators. The frequency
ωt is also called the reststrahl frequency.

3. The frequency ω� is the frequency at which the real part of the dielectric function
vanishes ε1(ω�) = 0. It will be shown below that ω� is the longitudinal optical
phonon frequency corresponding to q = 0 (zero wave vector). By group theory,
which is used to exploit the crystalline symmetry of crystaline solid materials,
it can be shown that the lattice modes at q = 0 for a cubic crystal are three-
fold degenerate. This degeneracy is lifted by the electromagnetic interaction in
polar materials to give a splitting between the LO and TO modes. An example
of the reflectivity of a normally transparent material in the region where phonon
excitation processes dominate is shown in Fig. 22.2 for three different temper-
atures. From the diagram, we see that for ωt < ω < ω�, the dielectric is both
highly reflective and lossy. This range between ωt and ω� is also observed as an
absorption band in infrared absorption studies.

4. The dielectric function ε(ω) approaches the static dielectric constant ε0 as
ω → 0 (large photon wavelength indicates low frequency phonons). Also, ε(ω)

Fig. 22.2 Reflectivity of a thick crystal of NaCl versus wave length at several temperatures. The
nominal values of ω� and ωt for NaCl at room temperature correspond to wavelengths of 38 and 61
microns, respectively. The additional structure seen in the reflectivity spectrum nearω� is associated
with defects
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approaches the high frequency dielectric function ε∞ as ω approaches frequen-
cies that are large compared with ωt and ω�. Even when we consider ω to be
large, we are still thinking of ω as being very much smaller than typical interband
electronic frequencies. Lattice modes typically are important in the wavelength
range 10 ≤ λ ≤ 100µm or the energy range 0.01 ≤ �ω ≤ 0.1eV or the angular
frequency range 50 ≤ ω ≤ 1000cm−1.

5. The quantities ε0, ε∞, ωt and ω� are not independent, but are related by a very
general relation called the Lyddane–Sachs–Teller relation:

ω2
�

ω2
t

= ε0

ε∞
(22.2)

which is written here for a crystal with two atoms/unit cell, and the phononmodes
have 3 accoustic and 3 optical branches.

22.2 Dielectric Constant and Polarizability

The polarizability p of an atom is defined in terms of the local electric field Elocal at
the atom site,

p = αElocal. (22.3)

The atomic polarizability α is an atomic property of the atom in the crystal, and the
dielectric constant will depend on the manner in which the atoms are assembled to
form a crystal. For a non-spherical atom, α will be a tensor. The polarization of a
crystal may be approximated as the product of the polarizabilities of the atoms times
the local electric fields,

P =
∑

j

N j p j =
∑

j

N jα j Elocal( j), (22.4)

where N j is the concentration of atoms, and α j is the polarizability of atoms or ions
labeled by j , and Elocal( j) is the local field at atomic sites j . If the local field is given
by the Lorentz relation, then

P =
⎛

⎝
∑

j

N jα j

⎞

⎠
(
E + 4π

3
P

)
. (22.5)

Solving (22.5) for the electronic susceptibility χ we obtain

χ = P

E
=

∑
j N jα j

1 − 4π
3

∑
j N jα j

. (22.6)
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Using the definition ε = 1 + 4πχ , one obtains the Clausius–Mossotti relation

ε − 1

ε + 2
= 4π

3

∑

j

N jα j . (22.7)

This relation connects the dielectric constant ε to the electronic polarizability α, but
only for crystal structures for which the Lorentz local field relation applies.

22.3 Polariton Dispersion Relations

The statements 1–5 in Sect. 22.1 provide an overview on optical studies of lattice
modes. In this section, we discuss the polariton dispersion relations which describe
the interaction of light with the electric dipole moment associated with infrared
absorption, and the LO–TO splitting of the normal mode vibration of the atoms in
the solid arising from these dispersion relations, where the atoms are perturbed by
the strong electric fields generated by the neighboring species, as would occur in an
ionic crystalline material. In Sect. 22.2, we discussed the limit of small local electric
field whereas, here, we discuss the case of strong local electric field. We start by
considering the polarizability of the ions.

Consider the equation of motion of an ion in a solid using the normal mode
coordinate r, so that harmonic motion yields

mr̈ = −κr + eE = −mω2r (22.8)

where
E = E0e

−iωt (22.9)

and −κr represents a lattice restoring force while eE is the force due to the actual
electric field E at an ion site. Maxwell’s equations give us

∇ × H = 1

c
Ḋ = 1

c
(Ė + 4π Ṗ) = − iω

c
(E + 4πP) (22.10)

∇ × E = −1

c
Ḣ = iω

c
H. (22.11)

We also have a constitutive equation which tells us that the total polarization arises
from an ionic contribution N ′erwhere N ′ is the number of opticalmodes per unit vol-
ume and from an electronic contribution nαE, where n is the electron concentration
and α is the electronic polarizability:

P = N ′er + nαE. (22.12)
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Equations (22.8), (22.10), (22.11) and (22.12) represent 4 equations in the 4 variables
r,H,E, and P.

In writing (22.12) for the polarization vector P, we have considered two degrees
of freedom: namely that of the ion system and of the electron system. We further
assume that these polarizations are accomplished independently. In formulating this
calculation, the electric field in all equations is the applied electric field, since it is
assumed that the lattice polarization effects are weak. In more sophisticated treat-
ments, we must consider the effect of local field corrections when the dielectric
function is large, as occurs for example in the case of ferroelectrics materials.

We now seek plane wave solutions for transverse wave propagation: (E,H) in the
xy plane and perpendicular to the Poynting vector,S = [c/(8π)]Re(E∗ × H), and
the Poynting vector is taken along the z direction

Ex = E0
x e

−i(ωt−Kz) (22.13)

Hy = H 0
y e

−i(ωt−Kz) (22.14)

Px = P0
x e

−i(ωt−Kz) (22.15)

rx = r0x e
−i(ωt−Kz). (22.16)

Here, K is the wave vector for the light, K = 2π/λ, and l is the wavelength. Using
values for λ typical for the wavelength for latticemodes in NaCl, we have λ ∼ 60µm
and K ∼ 103cm−1. Substitution of the harmonic solutions in (22.13)–(22.16) into
the 4 equations given above (22.8), (22.10), (22.11) and (22.12) for the four variables
r,H,E, and P yields:

i K Hy − iω

c
Ex − 4π iω

c
Px = 0 (22.17)

− i K Ex + iω

c
Hy = 0 (22.18)

− ω2rx + κ

m
rx − e

m
Ex = 0 (22.19)

Px − N ′erx − nαEx = 0. (22.20)

Equations (22.17)–(22.20) form 4 equations in 4 unknowns. To have a non-trivial
solution to (22.17)–(22.20), the coefficient determinant given in (22.21) must vanish.
We arrange the four coefficient determinant following the order of the four variables
in (22.13)–(22.16): (Ex Hy Px rx ):
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ω/c −K 4πω/c 0

K −ω/c 0 0

e/m 0 0 ω2 − κ/m

−nα 0 1 −N ′e

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0. (22.21)

Multiplying out the determinant in (22.21), we get a quadratic equation in ω2

ω4[1+ 4πnα] − ω2

[
c2K 2 + κ

m
+ 4πN ′e2

m
+ 4πnακ

m

]
+ K 2c2

κ

m
= 0. (22.22)

Equation (22.22) is more conveniently written in terms of the parameters ε∞, ε0, and
ωT where these parameters are defined in (22.23), (22.25) and (22.27) given below:

1. The high frequency dielectric constant ε∞ is written as ε∞ = 1+ 4π P∞/E , and
is the parameter normally used to express the optical core dielectric constant when
discussing electronic processes studied by optical techniques. From the equation
of motion (22.8), we conclude that at high frequencies (ω � ωT and we show
below that ωT is identified with the transverse optical frequency), and the ionic
displacement is small, for otherwise the accelerationwould tend to∞. Thus as the
frequency increases, the ions contribute less and less to the polarization vector.We
thus have the result P∞ = nαE , so that the electronic contribution dominates and

ε∞ = 1 + 4πnα. (22.23)

2. The low frequency (ω 
 ωT ) dielectric constant is denoted by ε0. At ω = 0 the
equation of motion (22.8) yields r = eE/κ so that the polarization vector at zero
frequency is

P0 =
[
N ′e2

κ
+ nα

]
E; (22.24)

and

ε0 = 1 + 4π

[
N ′e2

κ
+ nα

]
. (22.25)

At a general frequency ω, we must from (22.8) and (22.12) write ε(ω) as

ε(ω) = 1 + 4π

[
N ′e2

κ − mω2
+ nα

]
. (22.26)
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3. Finally, we introduce a frequency ωT defined as

ω2
T ≡ κ

m
(22.27)

which depends only on the restoring forces and not on the externally applied field.
Of course, these restoring forces will depend on internal fields, since electromag-
netic interactions are responsible for producing these lattice vibrations in the first
place. We will later identify ωT with ωt , the transverse optical phonon frequency.
Substitution of ε∞, ε0, and ωT into (22.22) yields the polariton dispersion rela-
tion, which is a quadratic equation in the variable ω2 that can be written in closed
form as

ω4ε∞ − ω2[c2K 2 + ω2
T ε0] + ω2

T c
2K 2 = 0. (22.28)

Equation (22.28) has two solutions

ω2 = 1

2ε∞
(ω2

T ε0 + c2K 2)±
(

1

4ε2∞
(ω2

T ε0 + c2K 2)2 − ω2
T K

2 c
2

ε∞

)1/2

(22.29)

which are shown graphically in Fig. 22.3. Each solution in (22.29) is twofold
degenerate, since E can be chosen in any arbitrary direction perpendicular to the
propagation vector. The coupled excitation of the transverse optical phonon to
the electromagnetic radiation is called the polariton and the picture in Fig. 22.3
is identified with the polariton dispersion relation. There is also a longitudinal
direction for both the light and the lattice vibrations; for this case there is no
coupling between the light and the phonons and the frequency is the same as in
the absence of light. We therefore obtain a total of 6 modes for the 3 coupled
optical lattice modes and the three electromagnetic modes (two transverse modes
representing photons and one longitudinal mode). It is of interest to examine the
solutions of (22.29) for small and large K vectors, where we must remember
that the scale of the K -vectors for light is a scale of 103 − 104 cm−1 rather than
108cm−1 which corresponds to the Brillouin zone dimensions. Thus the whole
picture shown in Fig. 22.3 occurs essentially at q = 0 when plotting phonon
dispersion relations ωq(q) for wave vectors q in the Brillouin zone.

At small K vectors (|K | 
 104 cm−1), we have two solutions to (22.29) for the
polariton. The positive solution is given by

ω2 = 1

ε∞
(ω2

T ε0 + c2K 2) (22.30)

defining the frequency dispersion for the polaritonwhich is denoted byωT in (22.30).
From Fig. 22.3 and K = 0, we also have the second solution

ω2
T ε0/ε∞ ≡ ω2

L , (22.31)
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Fig. 22.3 Polariton dispersion relations showing the coupling between the transverse lattice vibra-
tions and the electromagnetic radiation. In this figure, we clearly see the splitting of the LO and TO
modes (ωL − ωT ) induced by the ionicity of the solid which couples the two branch modes

thus defining the frequency ωL which is identified with the phonon-like mode at
large wavevector K . In writing this solution we neglected the term c2K 2 as K → 0.
This solution corresponds to the phonon branch with finite frequency at K = 0 and
hence is an optical phonon mode. We will call this frequency ωL and later we will
identify ωL with the longitudinal optical phonon mode frequency, ω�. We shall see
that the above definition is equivalent to taking the frequency ω� as the frequency
where the real part of the dielectric function vanishes ε1(ω�) ≡ 0.We also remember,
that the longitudinal optical (LO) phonon does not interact with the electromagnetic
field. For a phonon-electromagnetic interaction, we require that the electric field be
transverse to the direction of propagation.

With regard to the negative solution of (22.29), we expand the square root term
in (22.29) to obtain:

ω2 = ω2
T K

2c2

ω2
T ε0 + c2K 2

(22.32)

or

ω2 � c2K 2

ε0
(22.33)

yielding the photon-like mode with a linear K dependence

ω = cK√
ε0

for ω 
 ωT . (22.34)
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At large K values (|K | ∼ 105cm−1), we solve the quadratic equation given
by (22.29) in the large K limit and obtain positive and negative solutions. Using
a binomial expansion for (22.29), we obtain the following positive and negative
solutions. For the positive solution, i.e., K is large, we obtain

ω2 � 1

ε∞
(ω2

T ε0 + c2K 2) = c2K 2

ε∞
. (22.35)

This is clearly the photon-like mode, since

ω = cK√
ε∞

for ω � ωT . (22.36)

This result is almost identical to (22.34) obtained in the low K limit, except that now
wehave ε∞ instead of ε0 for the dielectric constant. Correspondingly, the phonon-like
mode for large K arises from the negative solution:

ω2 � ω2
T K

2c2

ω2
T ε0 + c2K 2

� ω2
T . (22.37)

We have thus introduced two frequencies: ωT and ωL and from the definition of ωL

we obtain the Lyddane–Sachs–Teller relation:

ω2
�

ω2
T

= ε0

ε∞
. (22.38)

Now,ωT andωL havewell-definedmeanings with regard to the dielectric function
as can be seen in Fig. 22.3. From (22.12), we have for the polarization due to ions
and electrons:

P = N ′er + nαE (22.39)

while the equation of motion, (22.8), (F = ma) gives

− mω2r = −κr + eE (22.40)

yielding

r = eE
κ − mω2

= eE/m

ω2
T − ω2

(22.41)

so that
P

E
= ε(ω) − 1

4π
= N ′e2/m

ω2
T − ω2

+ ε∞ − 1

4π
, (22.42)

since the electronic polarizability term is nα = (ε∞ − 1)/4π . We therefore obtain:
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ε(ω) = ε∞ + 4πN ′e2/m
ω2
T − ω2

(22.43)

where ε∞ represents the contribution from the electronic polarizability and the reso-
nant term represents the lattice contribution. Neglecting damping, we have the result
|ε(ω)| → ∞ as ω → ωT , where the transverse optical phonon frequency ω = ωT

is interpreted as the frequency at which the dielectric function ε(ω) is resonant.
The name reststrahl frequency denotes that frequency ωT where light is maximally
absorbed by the medium.

We would now like to get a more physical idea about ω�. So far ω� has been
introduced as the phonon mode of the polariton curve in Fig. 22.3 near k = 0. From
(22.43) we have the relation

ε0 = ε∞ + 4πN ′e2

mω2
T

(22.44)

where ε0 is defined by ε0 ≡ ε(ω = 0), so that

4πN ′e2

m
= ω2

T (ε0 − ε∞) (22.45)

and ωt = ωT is the frequency where ε(ω) is resonant. Thus from (22.1) and (22.43),
we can write

ε(ω) = ε∞ + (ε0 − ε∞)

(1 − ω2/ω2
t )

= ε∞ + (ε0 − ε∞)

(1 − ω2/ω2
T )

(22.46)

so that ωT = ωt . We define ω� as the frequency at which the dielectric function
vanishes ε(ω�) ≡ 0 so that setting ε(ω) = 0 in (22.46) yields

ε∞ = (ε∞ − ε0)

(1 − ω2
�/ω

2
t )

(22.47)

or
ω2

�

ω2
t

= ε0

ε∞
. (22.48)

Thus, the frequency ω�, which yields a zero in the dielectric function, also satisfies
the Lyddane–Sachs–Teller relation (22.48).

We illustrate the properties of ω� and ωt in Fig. 22.4 where we see that the fre-
quency dependence of the dielectric function ε(ω) has two special features:

• a zero of ε(ω) occurring at ω�

• an infinity or pole of ε(ω) occurring at ωt .

For ωt < ω < ω�, the dielectric function ε(ω) is negative, so that losses must
occur and transmission is consequently poor. The frequency difference between the
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Fig. 22.4 The dielectric
function ε(ω) plotted as a
function of normalized
frequency ω/ωT . When
damping is included, the real
part of the dielectric function
remains finite at ωT

two characteristic frequencies ω� and ωt depends on the ionicity of the crystal. Thus,
predominantly covalent materials like InSb which have weak ionicity have a smaller
ω� − ωt splitting than alkali halide crystals which are highly ionic. For weakly polar
materials like InSb, the treatment of the electric field given here is adequate. For
highly polar materials, one must also consider the local fields, as distinct from the
applied field. These local fields tend to increase the separation between ωt and ω�,
pulling ωt to low frequencies. Since mechanically hard materials tend to have high
Debye temperatures and high phonon frequencies, the passage of ωt toward zero for
ferroelectricmaterials (extremely high dielectric function and capable of spontaneous
polarization) is referred to as the appearance of a “soft mode”.

The Lyddane–Sachs–Teller relation is more general than the derivation given here
would imply. This relation can be extended to cover anisotropic materials with any
number of optical modes. In this context we can write the frequency dependence of
the symmetrized dielectric tensor function associated with symmetry μ as

εμ(ω) = εμ(∞) +
p∑

j=1

fμ, jω
2
T, j

ω2
T, j − ω2 − iγ jω

(22.49)

where fμ, j is the oscillator strength, γ j is the damping ofmode j , and p is the number
of modes with symmetryμ. An example where this would apply is the case of tetrag-
onal symmetry where μ could refer to the in-plane modes (Eu symmetry) or to the
out-of-plane modes (A2u symmetry). Figure22.5 shows the measured reflectivity for
the lattice modes of TeO2 which has 4 formula units per unit cell (12 atoms/unit cell)
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Fig. 22.5 Reflectivity in the
material paratelluride, TeO2,
for (a) E parallel and (b, c)
perpendicular to the
tetragonal axis at 295K (b).
The corresponding data in c
at approximately liquid
nitrogen temperature (T =
77K) show sharper singular
behavior at a special
frequency ω. The
polarization E ‖ the
tetragonal axis has only the
A2u optically allowed modes
whereas for E ⊥ the
tetragonal axis has only the
E2u optically allowed
modes. The points are
experimental and the solid
line is a model based on
(22.49) (After Korn, et al.,
Phys. Rev. B, 8, 768 (1973).)

can be described by a model based on (22.49) for polarization of the electromagnetic
field parallel and perpendicular to the tetragonal axis.

Setting the damping terms in (22.49) to zero, γ j = 0, we obtain the result

ε(ω)

ε(∞)
=

p∏

j=1

(
ω2
l, j − ω2

ω2
t, j − ω2

)
(22.50)

which leads to the generalized Lyddane–Sachs–Teller relation
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ε0

ε∞
= ε(0)

ε(∞)
=

p∏

j=1

(
ω2
l, j

ω2
t, j

)
. (22.51)

Equation (22.51) can be generalized for anisotropic crystals by writing (22.50) for
each component, keeping in mind that the optical selection rules differ for each
component. The dependence of the reflectivity on polarization and on temperature
is illustrated for the tetragonal crystal TeO2 in Fig. 22.5. For this material system we
see that crystal orientation is dominant over temperature dependent effects.

To find the LO and TO modes associated with (22.49), we would look for zeros
and poles of the dielectric function for a general direction of light propagation. For
example, in a tetragonal crystal we can write

ε(θ, ω) = ε‖(ω)ε⊥(ω)

ε‖(ω) cos2 θ + ε⊥(ω) sin2 θ
(22.52)

where θ is the angle. The observation of LO and TO phonon frequencies by optical
measurements is made using two basically different techniques. In one approach,
optical absorption, reflection or transmission measurements are made, while in the
other approach, light scattering measurements are made. These are often comple-
mentary methods for the following reason. Many important crystals have inversion
symmetry (e.g., the NaCl structure). In this case, the phonon modes are purely odd or
purely even. If the odd parity modes have dipole moments and couple directly to the
electromagnetic fields, then these materials are infrared-active. On the other hand,
the even parity modes are not infrared-active but instead may be Raman-active and
can then be observed in a light scattering experiment. Thus, by doing both infrared
absorption and Raman scattering measurements, we can study both even and odd
parity optical phonon modes, except for the silent modes which because of other
symmetry requirements are neither infrared nor Raman active. These concepts are
discussed in detail in the group theory course. Spectroscopy measurements tend to
be highly sensitive to crystalline symmetry

In modeling the phonon and free carrier contributions to the dielectric function, it
can happen that these phenomena occur over a common frequency range. In this case,
we write the complex dielectric function for an isotropic semiconductor as follows
in analyzing optical data

εμ(ω)

εμ(∞)
=

(
1 − ω2

p

ω(ω + iγp)

)
+

p∑

j=1

ω2
L , j − ω2

T, j

ω2
T, j − ω2 − iωγ j

(22.53)

where the first and second terms are, respectively, the free carrier and the infrared-
active phonon contributions to the dielectric function. In (22.53), ωp is the screened
electronic plasma frequency (ω2

p = 4πne2/m∗ε(∞), and ε(∞) is the core dielec-
tric constant used to approximate the higher frequency electronic polarizability).
The phonon contribution to (22.53) depends on ωL , j and ωT, j which are the j-th
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longitudinal and transverse optic mode frequencies, while γ j and γp are the phonon
and plasma damping factors, respectively.

The model given by (22.53) can, for example, be used to model the optical prop-
erties of an anisotropic compound, such as La2CuO4 which becomes a high Tc super-
conductor upon addition of a small concentration of Sr. In this case it is important to
obtain polarized reflectivity measurements on oriented single crystals, and to carry
out the Kramers–Kronig analysis of the reflectivity data for each of the polarization
components separately.

22.4 Light Scattering

Light scattering techniques provide an exceedingly useful tool to study fundamental
excitations in solids, such as phonons, because light can be scattered from solids
inelastically, whereby the incident and scattered photons have different frequencies.
Inelastic light scattering became an important tool for the studyof excitations in solids
in the mid-1960’s with the advent of laser light sources, because the inelastically
scattered light is typically only ∼ 10−7 of the intensity of the incident light.

In the light scattering experiments shown schematically in Fig. 22.6, conservation
of energy gives:

ω = ω0 ± ωq (22.54)

and conservation of momentum gives:

K = K0 ± q (22.55)

Fig. 22.6 Raman scattering of a photon showing both phonon emission (Stokes) and absorp-
tion (anti-Stokes) processes. The scattering process is called Brillouin scattering when an acoustic
phonon is involved and polariton (Raman) scattering when an optical phonon is involved. Similar
processes occur with magnons, plasmons or any other excitation of the solid depending on the
crystal symmetry and also the dimensionality of the material under investigation
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where the “0” subscript refers to the incident light,K refers to the wave vector of the
light and “q” refers to the wave vector for the excitation in the solid (see Fig. 22.6).
Since K0 = 2π/λ is very small compared with the Brillouin zone dimensions, mea-
surement of the angular dependence of ωq(q) can then be used to provide dispersion
relations for the excitations near q = 0. If ωq 
 ω0, then |K| � |K0|, and we have
|q| � 2|K0| sin(θ/2) so that |qmax | = 2K0.

If the excitation is an acoustic phonon, the inelastic light scattering process is
called Brillouin scattering, while light scattering by optical phonons is called
Raman scattering. Raman and Brillouin scattering also denote light scattering
processes due to other elementary excitations in solids, occuring in the respective
frequency ranges.

The light scattering process can be understood physically on the basis of classical
electromagnetic theory. When an electric field E is applied to a solid, a polarization
P results

P =↔
α ·E (22.56)

where
↔
α is the polarizability tensor of the atom in the solid, indicating that the positive

charge moves in one direction and the negative charge in the opposite direction under
the influence of the applied field. In the light scattering experiments, the electric field
is oscillating at an optical frequency ω0

E = E0 sinω0t. (22.57)

The lattice vibrations in the solid modulate the polarizability of the atoms themselves

α = α0 + α1 sinωq t. (22.58)

so that the polarization, which is induced by the applied electric field, is:

P=E0(α0 + α1 sinωq t) sinω0t

=E0

[
α0 sin(ω0t) + 1

2α1 cos(ω0 − ωq)t − 1
2α1 cos(ω0 + ωq)t

]
.

(22.59)

Thus we see in Fig. 22.7 that light will be scattered elastically at frequency ω0

(Raleigh scattering) and also inelastically, being modulated downward by the nat-
ural vibration frequency ωq of the atom (Stokes process) or upward by the same
frequency ωq (anti-Stokes process). The Stokes process is always possible, since a
phonon can always be emitted. For the anti-Stokes process, however, enough photon
energy needs to be available to provide a phonon to be absorbed.

The light scattering process can also be viewed from a quantum mechanical per-
spective. If the “system” is initially in a state E ′′, then light scattering can excite
the “system” to a higher energy state E ′ shown in Fig. 22.8a by the absorption of an
excitation energy (E ′ − E ′′). Similarly, the “system” can initially be in a state E ′
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Fig. 22.7 Schematic
diagram of light scattering
spectrum showing the central
unshifted Rayleigh line, the
upshifted anti-Stokes line
(emission process), and the
downshifted Stokes line
(absorption process). The
ratio of the Stokes to
anti-Stokes intensities can be
used to estimate the
temperature of the phonons
in the material

Fig. 22.8 Schematic energy
level diagram for the a
Stokes and b anti-Stokes
processes. In this figure the
solid lines denote real
processes and the dashed
lines denote virtual processes
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and light scattering can serve to bring the system to a final state of lower energy E ′′
by emission of an excitation of energy (E ′ − E ′′) as shown in Fig. 22.8b. The matrix
element of the polarization vector between the initial and final states is written (when
expressed in terms of quantum mechanics) as

Pnm =
∫

Ψ ∗
n PΨmd

3r = E ·
∫

Ψ ∗
n

↔
α Ψmd

3r (22.60)

where the polarizability
↔
α is a second rank symmetrical tensor and P is the polar-

ization vector. The Stokes and anti-Stokes processes arise from consideration of the
phase factors in this matrix element: Ψm has a phase factor e−i Em t/� while Ψ ∗

n has a
phase factor e+ i En t/�. The polarizability tensor has a phase factor e±iωq t so that the
integration implied by (22.60) yields

Em − En ± �ωq = 0. (22.61)

We should remember that the optical absorption process is governed by the
momentum matrix element which is a radial vector. Of particular significance is
the case of a crystal with inversion symmetry whereby the momentum operator is
an odd function, but the polarizability tensor is an even function. This characteristic
feature has an important consequence; namely electronic absorption processes are
sensitive to transitions between states of opposite parity (parity meaning even or
odd), while light scattering is sensitive to transitions between states of similar parity.
For this reason, light scattering and optical absorption are considered to be comple-
mentary spectroscopies, and together form basic tools for the study of the optical
properties of elementary excitations in solids.

It is important to draw a clear distinction between Raman scattering and fluores-
cence. InRaman scattering, the intermediate states shown inFig. 22.8a, b are “virtual”
states and don’t have to correspond to eigenstates of the physical “system”— any
optical excitation frequency will in principle suffice. In fluorescence, on the other
hand, the optical excitation state must be a real state of the system, and in this case a
real absorption of light occurs, followed by a real emission at a different frequency.

The major reason why these two processes are sometimes confused is that Raman
scattering in solids often has a much higher intensity when �ω0 is equal to an energy
band gap and this effect is called resonant Raman scattering. In such cases, the
fluorescent emission differs from the Raman process because fluorescent phenomena
take a finite time to occur.

Typical Raman traces are shown in Fig. 22.9 for several III-V compound semicon-
ductors. The laser wavelength is 1.06µm (Nd:YAG laser) which is a photon energy
below the band gap for each material. The scattered light is collected at 90◦ with
respect to the incident light and both the LO and TO phonon modes at q = 0 are
observed. For the case of the group IV semiconductors there is no LO–TO splitting
and only a single optical Raman-allowedmode is observed (at 519cm−1 for Si).What
is measured in Fig. 22.9 is the frequency shift between the incident and scattered light
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Fig. 22.9 Raman spectra of three zinc-blende-type semiconductors showing the TO and LO
phonons in both Stokes and anti-Stokes scattering

beams. For the range of phonon wave vectors where Raman scattering can be carried
out, this technique is the most accurate method available for the measurement of the
dispersion relations near the Brillouin zone center.

By doing the Raman scattering experiment with polarized light, it is possible to
get information on the symmetry of the lattice vibrations by monitoring the polar-
ization of both the incident and scattered radiation. This approach is important in
the identification of phonon frequencies with specific lattice normal modes of the
material.

The inelastic neutron scattering technique, though less accurate than Raman scat-
tering, has the advantage of providing information about phonons throughout the
Brillouin zone. By using neutrons of low energy (thermal neutrons), it is possible to
make the neutron wavelengths comparable to the lattice dimensions, in which case
the inelastic scattering by a lattice vibration can cause a large momentum transfer to
the neutron.

22.5 Feynman Diagrams for Light Scattering

Feynman diagrams are useful for keeping track of various processes that may occur
in an inelastic scattering process that absorbs or creates an excitation. The basic nota-
tion used in drawing Feynman diagrams consists of propagators, such as electrons,
phonons, or photons and vertices where interactions occur, as shown in Fig. 22.10g.
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Fig. 22.10 Feynman diagrams for the six scattering processes that contribute to one-phonon
(Stokes) Raman scattering. (Taken from Peter and Cardona 2010. Fundamentals of semiconductors:
physics and materials properties. Springer Science & Business Media.) g Symbols used in drawing
Feynman diagrams to represent Raman scattering

The rules in drawing Feynman diagrams are:

• Excitations such as photon, phonons and electron-hole pairs in Raman scattering
are represented by lines (or propagators) as shown in Fig. 22.10g. These propaga-
tors can be labeled with properties of the excitations, such as their wavevectors,
frequencies and polarizations.

• The interaction between two excitations is represented by an intersection of their
propagators. This intersection is known as a vertex and is sometimes highlighted
by a symbol such as a filled circle or empty rectangle.

• Propagators are drawn with an arrow to indicate whether they are created or anni-
hilated in an interaction. Arrows pointing towards a vertex represent excitations
which are annihilated. Those pointing away from the vertex are created.

• When several interactions are involved they are always assumed to proceed sequen-
tially from the left to the right as a function of time.

• Once a diagram has been drawn for a certain process, other possible processes are
derived by permuting the time order in which the vertices occur in this diagram.

The basic diagram for the Raman process is given in Fig. 22.10a taken from the Yu
and Cardona book on “Fundamentals of Semiconductors.” The other permutations
of (a) obtained by different orders of the vertices are given in Fig. 22.10b–f. We then
use the Fermi Golden rule for each diagram, multiplying the contributions from each
vertex. For example, the first vertex in Fig. 22.10a contributes a term to the scattering
probability per unit time of the form
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〈n|HeR(ωi )|i〉
[�ωi − (En − Ei )]

where the sign (+) corresponds to absorption and (−) to emission and HeR(ωi )

denotes the interaction between the electron (e) and the electromagnetic radiation
field (R). The interaction for the second vertex He−ion(ωi ) between the electron
and the lattice vibrations of the ion (or the electron-phonon interaction) and the
corresponding energy denominator is

�ωi − (En − Ei ) − �ωq − (En′ − En) = [�ωi − �ωq − (En′ − Ei )]

and for the third vertex the denominator becomes [�ωi −�ωq −�ωs −(En′ −Ei )] but
since the initial and final electron energies are the same, energy conservation requires
δ(�ωi − �ωq − �ωs) to yield the probability per unit time for Raman scattering for
diagram (a):

Pph(ωs) =
(

2π
�

)∣∣∣∣
∑

n,n′
〈i |HeR(ωs )|n′〉〈n′|He−ion|n〉〈n|HeR(ωi )|i〉

[�ωi−(En−Ei )][�ωi−�ωq−(En′−Ei )]

∣∣∣∣
2

× δ(�ωi − �ωq − �ωs).

(22.62)

Then summing over the other 5 diagrams yields the result

Pph(ωs) =
(

2π
�

)∣∣∣∣
∑

n,n′
〈i |HeR(ωi )|n〉〈n|He−ion|n′〉〈n′ |HeR(ωs )|i〉

[�ωi−(En−Ei )][�ωi−�ωq−(En′−Ei )]

+ 〈i |HeR(ωi )|n〉〈n|HeR(ωs )|n′〉〈n′ |He−ion|i〉
[�ωi−(En−Ei )][�ωi−�ωs−(En′−Ei )]

+ 〈i |HeR(ωs )|n〉〈n|He−ion|n′〉〈n′|HeR(ωi )|i〉
[−�ωs−(En−Ei )][−�ωs−�ωq−(En′−Ei )]

+ 〈i |HeR(ωs )|n〉〈n|HeR(ωi )|n′〉〈n|He−ion|n′〉
[−�ωs−(En−Ei )][−�ωs+�ωi−(En′−Ei )]

+ 〈i |He−ion|n〉〈n|HeR(ωi )|n′〉〈n′ |HeR(ωs )|i〉
[−�ωq−(En−Ei )][−�ωq+�ωi−(En′−Ei )]

+ 〈i |He−ion|n〉〈n|HeR(ωs )|n′〉〈n′ |HeR(ωi )|i〉
[−�ωq−(En−Ei )][−�ωq−�ωs−(En′−Ei )]

∣∣∣∣
2

× δ(�ωi − �ωs − �ωq).

(22.63)

Although (22.63) is not generally used to calculate scattering intensities directly,
Feynman diagrams similar to those in Fig. 22.10 are widely used in physics.
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22.6 Raman Spectra in QuantumWells and Superlattices

Raman spectroscopy has also been used to study quantum well and superlattice phe-
nomena. One important example is the use of Raman spectroscopy to elucidate zone
folding phenomena in the phonon branches of a superlattice of quantum wells. Since
the Raman effect is highly sensitive to phonon frequencies, this technique can be
used to characterize quantum wells and superlattices with regard to the composition
of an alloy constituent (e.g., the composition x of an alloy such as SixGe1−x ). The
Raman effect can then be used to determine the amount of strain in each constituent
from measurement of the phonon frequencies.

Zone folding effects in the phonon dispersion relations are demonstrated in a
superlattice of [GaAs (13.6Å)/AlAs (11.4Å)] ×1720 periods. The observed Raman
spectra are shown in Fig. 22.11a, b, demonstrating the zone folding of the LA branch.
The difference in the force constants between the GaAs andAlAs constituents causes
splittings of the zone-folded phonon branch, as shown in Fig. 22.11c. The peaks in
the Raman spectrum at∼64−1 and∼66cm−1 are identified and labeled with the zone
folded modes of the LA branch with symmetries A(1)

1 and B(1)
2 , consistent with the

polarization of the incident and scattered photons. At higher frequencies the Raman
spectrum of Fig. 22.11a shows additional structure related to the zone folded LO
phonon branch. Here we note that the normally three-fold levels of T symmetry of
the cubic crystal are split into E and B2 symmetries in the superlattice because of its
lower tetragonal symmetry. The two-fold level of E symmetry can be further split
by the LO–TO splitting which occurs in ionic solids.

As another example, Raman spectroscopy can be used as a compositional charac-
terization technique to confirm the chemical composition of a semiconductor alloy.
This characterization is based on the identification of the Raman-active modes and
the measurement of their frequency shifts and their relative intensities. The strain
induced by the lattice mismatch at the interface between Si0.5Ge0.5 and a GaAs (110)
surface is responsible for the dependence of the frequency shifts of the Ge-Ge, Si-Si
and Si-Ge phonon lines on the thickness of the quantum wells in the spectra shown
in Fig. 22.12 for Si0.5Ge0.5 layers of various thicknesses on a GaAs (110) surface.
Since phonon frequencies depend on (K/M)1/2 (where K represents the force con-
stant and M is the ion mass) the mode frequencies of the Ge–Ge, Ge–Si and Si–Si
opticalmode vibrations are very different, as seen in Fig. 22.12. Therefore the amount
of interface strain can be sensitively monitored by Raman scattering. Note the dis-
appearance of the GaAs Raman lines (associated with the substrate) as the thickness
of the Si0.5Ge0.5 overlayer increases.
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Fig. 22.11 a Raman spectra of a superlattice consisting of 1720 periods of a 13.6 Å GaAs quantum
well and a 11.4 Å AlAs barrier. The polarizations for the incident and scattered light are arranged
so that only longitudinal phonons are observed. bDispersion of the LA phonons in the superlattice.
c An expanded view of the 65cm−1 region of the zone folded LA branch near k ≈ 0 (C. Colvard,
T.A. Grant, M.V. Klein, R. Merlin, R. Fischer, H. Morkoc and A.C. Gossard, Phys. Rev. B, 31, 2080
(1985).)
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Fig. 22.12 Raman spectra
for various thicknesses of
Si0.5Ge0.5 on an GaAs (110)
substrate. Here the
dependence of the Si–Si,
Ge–Ge, and Si–Ge bond
lengths on the thickness of
the Si0.5Ge0.5 layer can
readily be seen. The samples
were grown at 720K and the
measurements were made at
80K using a laser with a
wavelength of 457.9nm (G.
Abstreiter, H. Brugger, T.
Wolf, H. Jorke and H.J.
Herzog, Phys. Rev. Lett. 54,
2441 (1985)

Energy shi  (cm-1)

22.7 Raman Spectroscopy of Nanoscale Materials

Raman spectra has proven to be tremendously useful for characterizing nanoscale
materials, such as carbon nanotubes, graphene, and transitionmetal dichalcogenides.
Jorio et al. first demonstrated that the Raman spectra of individual carbon nanotubes
could be measured when the incident laser energy is resonant with an optical tran-
sition in the nanotubes (Jorio et al. 2001). Figure22.13 below shows typical Raman
spectra of metallic and semiconducting carbon nanotubes. Both spectra exhibit a
radial breathing mode (RBM) between 100–200cm−1, corresponding to the radial
motion of atoms in the nanotube. The frequency of thismode is inversely proportional
to the diameter (by the relationωRBM = 248cm−1/dt ), yielding a sensitivemeasure of
the nanotube diameter. TheG-bandRamanmode corresponds to the optical phonons,
which split into two peaks (G+ and G−) due to the curvature of the nanotube. The
G-band of semiconducting nanotubes exhibits a very narrow linewidth, while the
G-band of metallic nanotubes is broadened and downshifted due to the coupling of
the phonon with the continuum of electronic states at the Fermi energy. The D-band
corresponds to a phonon with finite momentum and is only observed in nanotubes
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Fig. 22.13 Diagrams illustrating the radial breathing mode (RBM) and G-band optical phonon
mode. Typical Raman spectra of metallic and semiconducting nanotubes (Taken from Jorio et al.
(2001))

with a large amount disorder and defects, which relax the momentum conservation
requirements. Lastly, the 2D-band, observed around 2600cm−1, is a two phonon
process that does conserve momentum and is observed in all nanotubes.

Raman spectroscopy provides one of the easiest ways to determine the layer thick-
ness of graphene. Figure22.14 shows the 2D-band Raman spectra of various layer
thicknesses of graphene togetherwith highly oriented pyrolytic graphite (HOPG) and
turbostratic graphite. Monolayer graphene exhibits a symmetric Lorent-zian peak,
centered around 2700cm−1 that can be fit with a single Lorentzian peak. Bilayer and
trilayer graphene, however, require four and five Lorentzian peaks in order to fit this
Raman feature. The complexity of these Raman modes arises from the electronic
band structure in 2-layer and 3-layer graphene, which departs from the simple linear
bands in monolayer graphene, and forms several sets of sub-bands.
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Fig. 22.14 The measured
2D-band Raman mode
obtained with a 2.41 eV laser
energy for (a) 1-, (b) 2-, (c)
3-, and (d) 4-layer graphene,
plotted together with (e)
HOPG and (f) turbostratic
graphite. The splitting of the
2D Raman band in going
from mono- to three-layer
graphene and then closes in
going from 4-LG to HOPG
(Taken from Malard et al.
(2009))

The Raman spectra of MoS2 flakes exhibit two peaks corresponding to the E1
2g

(in-plane) and A1g (out-of-plane) vibrational modes. The separation between these
two peaks provides a good measure of the layer thickness of the material, varying
from 19cm−1 for monolayer to 25 cm−1 for N-layer (N > 6) MoS2. Figure22.15
shows the Raman spectra of 1-, 2-, 3-, and 4-layer MoS2 plotted together with bulk
MoS2.Here, a clear blueshift can be seen in theE1

2g mode and a corresponding redshift
in the A1g mode for N<4. Other transition metal dichalcogenide materials exhibit
similar features in their Raman spectra that can be related to the layer thickness.
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Fig. 22.15 Raman spectra of MoS2 of various thicknesses. The left and right dashed lines indicate
the positions of the E1

2g and A1g peaks in bulk MoS2, respectively (Taken from Li et al. (2012))

Problems

22.1 How can the ratio of the Stokes to anti-Stokes intensities in the Raman scat-
tering spectra of optical phonons be used to determine the lattice temperature of a
3D solid?

22.2 The ratio of the Stokes Raman intensity (phonon emission) to the anti-Stokes
Raman intensity (phonon absorption) is given by the Maxwell-Boltzmann thermal
factor:

IAS
IS

= exp(
−Eph

kBT
) (22.64)

(a) Calculate the temperature of a carbon nanotube with a radial breathing mode
frequency of 150cm−1 exhibiting an anti-Stokes/Stokes ratio of 0.25.

(b) Calculate the temperature of the same nanotube exhibiting an anti-Stokes/Stokes
ratio of 0.75.

22.3 The resonant Raman scattering process for a one-dimensional system, like a
carbon nanotube, is given by the following equation:
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I (Elaser ) ∝
∣∣∣∣

1

(Elaser − Eii − iΓ )(Elaser ± Eph − Eii − iΓ )

∣∣∣∣
2

(22.65)

where Elaser is the laser energy, Eii is the resonant electronic transition energy in the
nanotube, Eph is the phonon energy, and Γ is the linewidth of the resonance. The +
and − signs correspond to anti-Stokes and Stokes processes, respectively.

(a) Plot both the Stokes and anti-Stokes Raman intensity profiles (I vs. Elaser ) for
the radial breathing phonon mode (180cm−1) and for the G-band phonon mode
(1590cm−1) of a nanotube that has a resonant transition energy E33 = 2.41eV.
Assume a linewidth Γ = 5meV.

(b) Perform another set of calculations assuming Γ = 17meV and compare the
results in (a) and (b).

22.4 At room temperature the Stokes and anti-Stokes Raman intensities of a phonon
mode at 150cm−1 are equal when taken with a 633nm HeNe laser. This means that
the nanotube is slightly off-resonance for this laser excitation energy. Using the
equations from problems 24.1 and 24.2 calculate the true resonant transition energy
(Eii ) of the nanotube assuming Γ =8meV.

22.5 Ferroelectrics (as opposed todielectrics) arematerials that have their atoms/mo-
lecules all polarized in the same direction even when no external electric field is
applied. That is, a ferroelectric material has a built-in non-zero fixed polarization
vector P that is independent of any external field. Some important semiconductors
like gallium nitride are ferroelectric. In this problem you will explore the conse-
quences of such a built-in polarization. Consider a circular disc of a ferroelectric
material of thickness d that is much smaller than the radius R, as shown in the figure.
The built-in polarization vector is given by P = P0Z (Fig. 22.16).

(a) Find the surface charge density due to the paired charges on the upper flat surface
of the disc.

(b) Find the surface charge density due to the paired charges on the lower flat surface
of the disc.

(c) Find the electric field (magnitude and direction) inside the ferroelectric disc.
Hint: Use your answers from parts (a) and (b).

(d) Find the D-field (magnitude and direction) inside the disc.

Fig. 22.16 A circular disc of
a ferroelectric material of
thickness d that is much
smaller than the radius R
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Fig. 22.17 Room
temperature polarized
reflectance spectra of single
crystal La2CuO4 (Taken
from Eklund et al., Journal of
the Optical Society of
America B, vol. 6, pp. 389
(1989).)

22.6 Derive the polariton dispersion relations for two-dimensional graphene, which
has an optical phonon frequency of 1590cm−1. Sketch these dispersion relations for
graphene with carrier densities of (a) 1012 cm−2 and (b) 1013 cm−2.

22.7 Based on the reflectance spectra of La2CuO4, shown in Fig. 22.17, estimate the
phonon energieswhich dominate the dielectric function in the Lyddane–Sachs–Teller
relation.

22.8 Draw the Feynman diagrams for two Raman processes in which a photon is
absorbed before a phonon is emitted, and write the corresponding matrix elements
for the three vertices.

22.9 The optical phonon of graphene composed of 12C atoms is observed at
1590cm−1. Estimate the phonon frequency for graphene composed of 13C, based
on the ratio of their atomic masses assuming that the force constants are the same in
these two materials.

22.10 In addition to having a largeYoungsmodulus, carbonnanotubes canwithstand
a large amount of strain before breaking. The phonon modes of carbon nanotubes
downshift with strain at a rate of 6.2cm−1/% strain, due to the weakening of the C-C
bond. Under uniaxial strain, downshifts of up to 85cm−1 (from 1575 to 1490 cm−1)
have been observed. Estimate the amount of strain this corresponds to.
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22.11 Suppose that you have a 2D superlattice sample of Si1−xGex /Si with a width
of 10Å for both the Si1−xGex quantum wells and the Si barriers on a Si1−xGex
substrate. Would you expect the Si–Si Raman frequency to be upshifted or down
shifted relative to bulk Si? Why?

22.12 A crystal of a certain alkali halide has a static dielectric constant ε(0) = 5.9.
Its non-dispersive dielectric constant in the near infrared is ε = 2.25. The reflectivity
of the crystal becomes zero at a wavelength of 30.6µm.

(a) Calculate the longitudinal and transverse phonon frequencies at k=0. Express
the results in eV, Kelvin, and s−1 (angular frequency).

(b) Using the results in (a) estimate the force constant κ for the TO phonon mode
assuming only nearest neighbor interactions.

(c) From the splitting of the LO and TO phonon frequencies (ω� − ωt ), find the
magnitude of the lattice polarization contribution to the dielectric constant.

(d) Plot the reflectivity as a function of wavelength.
(e) Using standard tables in the literature (e.g., Kittel), identify the alkali halide.

22.13 (a) If 2 ∼ eV light is incident on a semiconductor and is scattered by an
angle of 60◦, what is the wave vector of the phonon that is generated?

(b) What is the longest phonon wave vector that can be generated in this semicon-
ductor by 2∼ eV light in a Raman process?

(c) Write an expression for the ratio between the Stokes (emission) and anti-Stokes
(absorption) intensities for phonon (ωq ) emission and absorption by the Raman
process at room temperature T = 300 K.

(d) Why is the Stokes process in part (c) more intense at room temperature for a 50
meV phonon?

(e) In an inelastic electron scattering process (electron energy loss spectroscopy), is
the ratio of the Stokes to the anti-Stokes intensity the same or different for a 50
∼ meV phonon with the same wave vector as in part (c)? Why?

(f) Would electron scattering or light scattering be more sensitive to probing surface
oxide formation (of a few monolayers) on a semiconductor surface?

22.14 The Raman spectra of Graphite exhibits three main features: (i) the G-band
feature (ωG = 1580cm−1) that comes from the Γ point degenerate longitudinal
optical (LO) and the in plane transverse optical (iTO)modes, (ii) the disorder-induced
D-band (ωD = 1200−1400cm−1) that comes from the LO phonon branch close to
the K point, and (iii) its overtone, the G ′-band (ωG ′ ∼ 2ωD = 2400 − 2800cm−1),
which is a Raman process that involves two D-band phonons. The phonon diagram
is shown in Fig. 22.18a.

(a) Explain why the G-band and G ′-band appear in the Raman spectra of a perfect
graphite crystal (HOPG - highly oriented pyrolytic graphite) while the D-band
is observed only in defective graphitic materials.
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Fig. 22.18 a Phonon dispersion diagram of graphite. b Band structure of graphite. c Double reso-
nance Raman effect of graphite

(b) The G-band scattering is a first-order Raman process, while the D-band and G ′-
band scattering are second-order Raman processes. For the D-band, one of the
scattering processes is elastic due to interaction of the electron/hole with a lattice
defect. Draw one Feynman diagram for the G, D and G ′ scattering processes (3
diagrams in all).

(c) (Optional) Graphite is a semi-metal since the valence and conduction band meet
at the K point [see Fig. 22.18b]. Therefore, a resonance Raman effect is observed
for electrons and phonons close to the K point. The reason why the second-order
D and G ′ bands have enough Raman cross section to be visible in the Raman
spectra with an intensity comparable to the first-order G-band is the resonance
nature of their scattering processes, that involve two resonance processes, where
not only the incident or scattered photons are associated with real electronic tran-
sitions, but also one of the intermediate scattering states, mediated by phonons
(or by the defect in the case of the D-band), induces also an electronic tran-
sition between two real electronic states. One of these effects is illustrated in
Fig. 22.18c. This process is called a double resonance process. Based on the var-
ious possible double resonance processes and on the phonon dispersion shown
in Fig. 22.18a, explain why the D-band for defective graphite materials is com-
posed of three peaks, where the intermediate frequency peak has twice the inten-
sity of the lowest and highest frequency peaks (consider only Stokes scattering
processes). Draw the Feynman diagrams for the possible Stokes processes of the
D-band spectra.
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Appendix A
Time–Independent Perturbation Theory

A.1 Introduction

Another review topic that we discuss here is time–independent perturbation theory
because of its importance in experimental solid state physics in general and transport
properties in particular.

There are many mathematical problems that occur in nature that cannot be solved
exactly. It also happens frequently that a related problemcanbe solved exactly. Pertur-
bation theory gives us a method for relating the problem that can be solved exactly to
the one that cannot. This occurrence is more general than quantummechanics –many
problems in electromagnetic theory are handled by the techniques of perturbation
theory. In this book, we will however consider mostly about quantum mechanical
systems.

Suppose that the Hamiltonian for our system can be written as

H = H0 + H ′ (A.1)

where H0 is the part that we can solve exactly and H ′ is the part that we cannot
solve exactly. Provided that H ′ � H0 we can use perturbation theory; that is we first
consider the solution of Schrödinger’s equation for H0 and then we calculate the
effect of H ′. For example, we can solve the hydrogen atom energy levels exactly, but
when we apply an electric or a magnetic field we can no longer solve the problem
exactly. For this reason, we treat the effect of the external fields as a perturbation,
provided that the energy associated with the perturbing fields is small compared to
the energy for the unperturbed case H0:

H = p2

2m
− e2

r
− er · E = H0 + H ′ (A.2)

where

H0 = p2

2m
− e2

r
(A.3)
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and
H ′ = −er · E. (A.4)

As another illustration of an application of perturbation theory, consider a weak
periodic potential in a solid. We can calculate the free electron energy levels (empty
lattice) exactly. We would like to relate the weak potential situation to the empty
lattice problem, and this can be done by considering the weak periodic potential
itself as a perturbation.

A.2 Non-degenerate Perturbation Theory

In non-degenerate perturbation theory we want to solve Schrödinger’s equation

Hψn = Enψn (A.5)

where
H = H0 + H ′ (A.6)

and
H ′ � H0. (A.7)

It is then assumed that the solutions to the unperturbed problem

H0ψ
0
n = E0

nψ
0
n (A.8)

are known, in which we have labeled the unperturbed energy by E0
n and the unper-

turbed wave function by ψ0
n . By non-degenerate we mean that there is only one

eigenfunction ψ0
n associated with the eigenvalue E0

n . We also assume that the wave
functions ψ0

n form a complete orthonormal set

∫
ψ∗0

n ψ0
mdr = 〈ψ0

n |ψ0
m〉 = δnm . (A.9)

in which the delta function δnm is defined to have the value 0 if n �= m and 1 if n = m.
Since H ′ is small, the wave functions for the total problem ψn do not differ greatly
from the wave functions ψ0

n for the unperturbed problem. So we can then expand
ψn′ in terms of the complete set of ψ0

n functions

ψn′ =
∑
n

anψ
0
n . (A.10)

Such an expansion can always be made - no approximation but the set of�0
n could

be a very large number of functions. We then substitute this expansion of (A.10) into
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Schrödinger’s equation (A.5) to obtain

Hψn′ =
∑
n

an(H0 + H ′)ψ0
n =

∑
n

an(E
0
n + H ′)ψ0

n = En′
∑
n

anψ
0
n (A.11)

therefore yielding ∑
n

an(En′ − E0
n)ψ

0
n =

∑
n

anH
′ψ0

n (A.12)

If we are looking for the perturbation to the level m, then we multiply on the left
hand side of (A.12) by ψ0∗

m and integrate over all space. On the left hand side we
get 〈ψ0

m |ψ0
n 〉 = δmn while on the right hand side we have the matrix element of the

perturbation Hamiltonian taken between the n unperturbed states:

am(En′ − E0
m) =

∑
n

an〈ψ0
m |H ′|ψ0

n 〉 ≡
∑
n

anH
′
mn =

∑
n �=m

anH
′
mn + amH

′
mm

(A.13)
where we have written the indicated matrix element as H ′

mn . EquationA.13 is an
iterative equation on the an coefficients where each am coefficient is related to a
complete set of an coefficients by the relation

am = 1

En′ − E0
m

∑
n

an〈ψ0
m |H ′|ψ0

n 〉 = 1

En′ − E0
m

∑
n

anH
′
mn (A.14)

in which the summation includes the n = n′ terms, where n includes m. We can also
rewrite this expression to involve terms explicitly in the sum n �= m

am(En′ − E0
m) = amH

′
mm +

∑
n �=m

anH
′
mn (A.15)

so that the coefficient am is related to all the other an coefficients by:

am = 1

En′ − E0
m − H ′

mm

∑
n �=m

anH
′
mn (A.16)

where n′ is equal to the index denoting the energy of state we are seeking. This
equation

am(En′ − E0
m − H ′

mm) =
∑
n �=m

anH
′
mn (A.17)

is an identity in the an coefficients. If the perturbation is small then En′ → E0
m and

the first order corrections are found by setting the [coefficient of am]= 0 and n′ = m.
The next order of approximation is found by retaining the sum on the right hand side
of the above equation and substituting for an the expression
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an = 1

En′ − E0
n − H ′

nn

∑
n′′ �=n

an′′ H ′
nn′′ (A.18)

which is obtained from (A.16) the above by the transcription m → n and n → n′′.
In the above the energy level En′ = Em is the level for which we are calculating the
perturbation. We now look for the am term explicitly in the sum

∑
n′′ �=n an′′ H ′

nn′′ of
(A.18) and bring it to the left hand side. If we are satisfied with our solutions we end
the procedure at this point. If we are not satisfied, we substitute for the an′′ coefficients
in (A.18) using the same basic equation to obtain a triple sum. We select out the am
term, bring it to the left hand side of (A.17) the equation, etc. This procedure gives
us an easy recipe to find the energy in (A.11) to any order of perturbation theory.

To illustrate the procedures, we write these iterations down more explicitly for
1st and 2nd order perturbation theory.

A.2.1 1st Order Perturbation Theory

In this case no iterations of (A.17) are needed and the sum
∑

n �=m anH ′
mn on the

right hand side of (A.17) is neglected, for the reason that if the perturbation is small
ψn′ ∼ ψ0

n′ . Hence only am in (A.10) contributes significantly. We merely write En′

= Em to obtain:
am(Em − E0

m − H ′
mm) = 0. (A.19)

Since the am coefficients are arbitrary coefficients, this relation must hold for all
am so that

(Em − E0
m − H ′

mm) = 0 (A.20)

or
Em = E0

m + H ′
mm . (A.21)

We write (A.21) this out even more explicitly so that the energy for state m for
the perturbed problem Em is related to the unperturbed energy E0

m by

Em = E0
m + 〈ψ0

m |H ′|ψ0
m〉 (A.22)

where the indicated diagonal matrix element of H ′ can be interpreted as the average
of the perturbation in the stateψ0

m . At this level of approximation, the wave functions
to lowest order are not changed

ψm = ψ0
m . (A.23)
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A.2.2 2nd Order Perturbation Theory

Ifwe carry out the perturbation theory to the next order of approximation one iteration
of (A.17) is required:

am(Em − E0
m − H ′

mm) =
∑
n �=m

1

Em − E0
n − H ′

nn

∑
n′′ �=n

an′′ H ′
nn′′ H ′

mn (A.24)

in which we have substituted for the an coefficient in (A.17) using the iteration
relation given by (A.18). We now pick out the one term on the right hand side of
(A.24) for which n′ = m and bring that term to the left hand side of (A.24). If no
further iteration is to be done, we throw away what is left on the right hand side of
(A.24) and get an expression for the arbitrary am coefficients

am

⎡
⎣(Em − E0

m − H ′
mm) −

∑
n �=m

H ′
nmH

′
mn

Em − E0
n − H ′

nn

⎤
⎦ = 0 (A.25)

Since am is arbitrary, the term in square brackets in (A.25) vanishes and the second
order correction to the energy results:

Em = E0
m + H ′

mm +
∑
n �=m

|H ′
mn|2

Em − E0
n − Hnn ′ (A.26)

in which the sum on states n �= m represents the 2nd order correction. To this order
in perturbation theory we must also consider corrections to the wave function

ψm =
∑
n

anψ
0
n = ψ0

m +
∑
n �=m

anψ
0
n (A.27)

in which ψ0
m is the large term and the correction terms appear as a sum over all the

other states n �= m. In handling the correction term, we look for the an coefficients,
which from (A.18) are given by

an = 1

E ′
n − E0

n − H ′
nn′′

∑
n′′ �=n

an′′ H ′
nn′′ . (A.28)

If we only wish to go to the lowest order correction terms, we will take only
the most important term, i.e., n′′ = m. We will also use the relation am = 1 in this
approximation. Again using the identification n′ = m, we obtain

an = H ′
nm

Em − E0
n − H ′

nn

(A.29)
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and

ψm = ψ0
m +

∑
n �=m

H ′
nmψ0

n

Em − E0
n − H ′

nn

(A.30)

For better understanding, you should do the next iteration to include 3rd order
perturbation theory, in order to see if you really have mastered the technique. This
exercise will be useful to readers seeing this derivation for the first time.

Now look at the results for the energy Em (A.26) and the wave functionψm (A.30)
for the 2nd order perturbation theory and observe that these solutions are implicit
solutions. That is, the correction terms are themselves dependent on Em . To obtain
an explicit solution, we can do one of two things here: (1) We can ignore the fact that
the energies differ from their unperturbed values in calculating the correction terms.
This approximation is known as Raleigh-Schrödinger perturbation theory. This is
the usual perturbation theory given in Quantum Mechanics texts and for homework
you may review the proof as given in such textbooks. (2) We can take account of
the fact that Em differs from E0

m by calculating the correction terms by an iteration
procedure; the first time around, you put for Em the value that comes out of 1st order
perturbation theory. We then calculate the second order correction to get Em . We
next take this Em value to compute the new second order correction term etc. until
a convergent value for Em is reached. This iterative procedure is what is used in
Brillouin-Wigner perturbation theory and is a better approximation than Raleigh–
Schrödinger perturbation theory to the wave function and energy eigenvalue for the
same order in perturbation theory. This method is often used for practical problems
in condensed matter physics. For example if you have a 2-level system, the Brillouin-
Wigner perturbation theory must be carried to infinite order.

Let us summarize these ideas. If you have to compute only a small correction
by perturbation theory, then Rayleigh–Schrödinger perturbation theory is usually
needed because it is easier to use. If you want to do a more convergent perturbation
theory (i.e., a better answer to the same order in perturbation theory), then you should
useBrillouin-Wigner perturbation theory.There are other types of perturbation theory
that are even more convergent and harder to use than Brillouin-Wigner perturbation
theory (see Morse and Feshbach vol. 2). But these 2 types are the approaches that
the reader is likely to encounter at this time.

For your convenience we summarize here the results of the Rayleigh–Schrödinger
perturbation theory:

Em = E0
m + H ′

mm +
′∑
n

|H ′
nm |2

E0
m − E0

n

+ · · · (A.31)

ψm = ψ0
m +

′∑
n

H ′
nmψ0

n

E0
m − E0

n

+ (A.32)



Appendix A: Time–Independent Perturbation Theory 495

where the sums in (A.31) and (A.32) donated by primes exclude the m = n term.
Thus, Brillouin-Wigner perturbation theory (A.26) and (A.30) contains terms in
second order which occur in higher order in the Rayleigh–Schrödinger form. In
practice, Brillouin-Wigner perturbation theory is useful when the perturbation term
is too large to handle conveniently by Rayleigh–Schrödinger perturbation theory
but still small enough for perturbation theory to work insofar as the perturbation
expansion forms a reasonably convergent series.

A.3 Degenerate Perturbation Theory

It often happens that a number of quantum mechanical energy levels have the same
or nearly the same energy. If they have exactly the same energy, we know that we can
make any linear combination of these states that we like and get a new eigenstate also
with the same energy. In the case of degenerate states, we have to do perturbation
theory a little differently, as assumed below.

Suppose that we have an f –fold degeneracy (or near-degeneracy) such that the
energy levels

ψ0
1 , ψ

0
2 , . . . ψ

0
f︸ ︷︷ ︸

states with same or nearly the same energy

ψ0
f +1, ψ

0
f +2, . . .︸ ︷︷ ︸

states with quite different energies

Wewill here call the set of stateswith the same (or approximately the same) energy
a “nearly degenerate set” (NDS) and this would include the f states here described.
In the case of degenerate sets, the iterative equation (A.17) still holds. The only
difference is that we solve for the perturbed energies by a different technique.

Starting with (A.17), we now bring to the left-hand side of the iterative equation
all terms involving the f energy levels that are within the NDS. If we wish to
calculate an energy within the NDS in the presence of a perturbation, we consider
the an’s within the NDS as large, and those outside the set as small. To first order
in perturbation theory, we ignore the coupling to terms outside the NDS and we get
f linear homogeneous equations in the a′

ns where n = 1,2,... f . We thus obtain the
following equations from (A.17).

a1(E0
1 + H ′

11 − E) + a2H ′
12 + a3H ′

13 + · · · + a f H ′
1 f = 0

a1H ′
21 + a2(E0

2 + H ′
22 − E) + a3H ′

23 + · · · + a f H ′
2 f = 0

...
...

...
. . .

...

a1H ′
f 1 + a2H ′

f 2 + · · · · · · + a f (E0
f + H ′

f f − E) = 0
(A.33)

In order to have a solution of these f linear equations, we demand that the coef-
ficient determinant vanish:
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∣∣∣∣∣∣∣∣∣

(E0
1 + H ′

11 − E) H ′
12 H ′

13 . . . H ′
1 f

H ′
21 (E0

2 + H ′
22 − E) H ′

23 . . . H ′
2 f

...
...

...
. . .

...

H ′
f 1 . . . . . . . . . (E0

f + H ′
f f − E)

∣∣∣∣∣∣∣∣∣
= 0 (A.34)

The f eigenvalues that we are looking for are the eigenvalues of the matrix in
(A.34) and the set of orthogonal states are the corresponding eigenvectors. Remember
that the matrix elements H ′

i j that occur in the above determinant are taken between
the unperturbed states in the NDS.

The generalization to second order degenerate perturbation theory is immediate.
In this case, (A.33) and (A.34) have additional terms. For example the 1st equation
in (A.33) would then become

a1(E
0
1 + H ′

11 − E) + a2H
′
12 + a3H

′
13 + · · · + a f H

′
1 f = −

∑
n �=NDS

anH
′
1n (A.35)

and for the an in (A.35), which are now small (because they are outside the NDS)
we would use our iterative form

an = 1

E − E0
n − H ′

nn

∑
m �=n

amH
′
nm . (A.36)

As a correction term we must only consider the terms in the above sum which
are large; these terms are all in the NDS. This argument shows that every term on
the left side of (A.35) above will have a correction term. For example the correction
term to ai will look as follows:

ai H
′
1i + ai

∑
n �=NDS

H ′
1nH

′
ni

E − E0
n − H ′

nn

(A.37)

where the first term is the original term from 1st order degenerate perturbation theory
and the terms from states outside the NDS gives the 2nd order correction terms. So, if
we are doing higher order degenerate perturbation theory we write for each entry in
the secular equation the appropriate correction terms (A.37) that are obtained from
these iterations. For example, in 2nd order degenerate perturbation theory, the (1, 1)
entry to the matrix in (A.34) would be

E0
1 + H ′

11 +
∑

n �=NDS

|H ′
1n|2

E − E0
n − H ′

nn

− E . (A.38)
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As a further illustration let us write down the (1, 2) entry into (A.35)

H ′
12 +

∑
n �=NDS

H ′
1nH

′
n2

E − E0
n − H ′

nn

. (A.39)

Again we have an implicit dependence of the 2nd order term in (A.38) and (A.39) on
the energy eigenvalue thatwe are looking for. To do 2ndorder degenerate perturbation
theory, we again have two options. If we take the energy E in (A.38) and (A.39) as the
unperturbed energy in computing the correction terms, we have 2nd order degenerate
Rayleigh–Schrödinger perturbation theory. On the other hand, if we iterate to get the
best correction term, then we call it Brillouin-Wigner perturbation theory.

How do we know in an actual problem when to use degenerate 1st or degenerate
2nd order perturbation theory? If the matrix elements H ′

i j coupling members of the
NDS vanish then we must go to 2nd order degenerate perturbation theory. Generally
speaking the first order terms will be much larger than the 2nd order terms, provided
that there is no symmetry reason for the first order terms to vanish.

Let us explain this a bit further. By the matrix element H ′
12 we mean (ψ0

1 |H ′|ψ0
2 ).

Suppose the perturbation we are talking about is due to an electric field E

H ′ = −er · E (A.40)

where er is the dipole moment of our system. Suppose that we now we consider the
effect of inversion on H ′. For the n = 2 levels, we would treat them in degenerate
perturbation theory because the 2s and 2p states are degenerate as would occur in
the simple treatment of the hydrogen atom. Here first order terms only appear in
entries coupling s and p states. To get corrections which split the p levels among
themselves we must go to 2nd order degenerate perturbation theory. In other words,
our choice of which type of perturbation theory to use depends on what it takes to
life the degeneracy found remaining after applying first order perturbation theory.

Suggested Readings

Davidov - Quantum Mechanics, Chap.7.

Morse and Feshbach, Methods of Theoretical Physics, Chap.9.

http://dx.doi.org/10.1007/978-3-662-55922-2_7
http://dx.doi.org/10.1007/978-3-662-55922-2_9


Appendix B
Time–Dependent Perturbation Theory

B.1 General Formulation

To proceed further with the formal development of the optical properties of solids,
we need to consider how to handle the effect of time-dependent electromagnetic
fields quantum mechanically. The most important case of interest is the one where
the external field is a sinusoidal function of time. For most practical applications, the
external fields are sufficiently weak, so that their effect can be handled within the
framework of perturbation theory. If the perturbation has an explicit time dependence,
it must be handled by time- dependent perturbation theory. Practical problems which
are handled by time-dependent perturbation theory include such subjects asmagnetic
resonance (nuclear and electronic spin), cyclotron resonance and optical properties
of solids. We give here a brief review of the subject.

In doing time-dependent perturbation theory we write the total Hamiltonian H
as:

H = H0 + H ′(t) (B.1)

where H0 is the unperturbed steady stateHamiltonian and H ′(t) is the time dependent
external perturbation. We assume here that we know how to solve the unperturbed
time-independent problem for its eigenvalues En and the corresponding eigenfunc-
tions un

H0un = Enun (B.2)

Since H ′(t) has an explicit time dependence, then the “energy” is no longer a “con-
stant of the motion”. Since we no longer have a stationary energy time-independent
solutions, we must use time-dependent form of Schrödinger’s equation, which is:

i�
∂ψ

∂t
= Hψ = (H0 + H ′)ψ. (B.3)

Now, if we didn’t have the perturbation term H ′(t) to contend with, we would set

© Springer-Verlag GmbH Germany, DE 2018
M. Dresselhaus et al., Solid State Properties, Graduate Texts in Physics,
https://doi.org/10.1007/978-3-662-55922-2
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ψ(r, t) = un(r)e−i En t/� (B.4)

where un(r) is independent of time and satisfies (B.2). Thus all the time dependence
of ψ(r, t) is contained in the phase factor e−i En t/�. For H ′(t) = 0, it immediately
follows that

i�
∂ψ

∂t
= Enψ (B.5)

which yields the time-independent Schrödinger’s equation. With the perturbation
present, we expand the time dependent functions ψ(r, t) in terms of the complete
set un(r)e−i En t/�

ψ(r, t) =
∑
n

an(t)un(r)e−i En t/� (B.6)

where the an(t) are the time-dependent expansion coefficients. Substituting (B.6) in
the time-dependent Schrödinger’s equation (B.3) we obtain:

i�
∑
n

ȧn(t)une
−i En t/� +

∑
n

an(t)unEne
−i En t/� =

∑
n

an(t)[H0 + H ′(t)]une−i En t/�

=
∑
n

an(t)[En + H ′(t)]une−i En t/�

(B.7)
as assumed below where ˙an(t) denotes the time derivative dan(t)/dt . We note that
because of (B.2) the second term on the left hand side of (B.7) is canceled by the
first term on the right hand side.

We now multiply on the left hand side of (B.7) by u∗
k(r) and integrate over all

space. If we make use of the orthogonality of the eigenfunctions

∫
u∗
k(r)un(r)d

3r = δn,k (B.8)

we obtain from (B.7)

i�
∑
n

ȧn(t)une
−i En t/� =

∑
n

an(t)H
′(t)une−i En t/� (B.9)

the result:
i�ȧke

−i Ek t/� =
∑
n

an〈k|H ′(t)|n〉e−i En t/� (B.10)

where we have written the matrix element

〈k|H ′(t)|n〉 =
∫

u∗
k(r)H

′(t)un(r)d3r (B.11)
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Since H ′(t) is time-dependent, so is the matrix element time-dependent, even though
the matrix element is taken between stationary states. We thus obtain the result

i�ȧk(t) =
∑
n

an(t)〈k|H ′(t)|n〉ei(Ek−En)t/�. (B.12)

If we set
�ωkn = Ek − En (B.13)

where ωkn is the Bohr frequency between states k and n, we have

ȧk(t) = 1

i�

∑
n

an(t)e
iωkn t 〈k|H ′(t)|n〉 (B.14)

inwhich the indicatedmatrix element is taken between eigenstates of the unperturbed
Hamiltonian H0. So far, no perturbation theory has been used and the result given
in (B.14) is exact. We notice that the unperturbed Hamiltonian is completely absent
from (B.14).Nevertheless, its energy eigenvalues appear inωkn and its eigenfunctions
in the matrix element 〈k|H ′(t)|n〉.

In applying perturbation theory, we consider the matrix element 〈k|H(t)|n〉 to be
small, and we write each time-dependent amplitude as an expansion in perturbation
theory

an = a(0)
n + a(1)

n + a(2)
n + · · · =

∞∑
i=0

a(i)
n (B.15)

where the superscript gives the order of the term.Thusa(0)
n is the zeroth order termand

a(i)
n is the i th order correction to an . From (B.14), we see that ak(t) changes its value
with time only because of the time dependent perturbation. Thus, the unperturbed
situation (0th order perturbation theory) must give no time dependence in zeroth
order

ȧ(0)
m = 0 (B.16)

and the first order correction yields:

ȧ(1)
m = 1

i�

∑
n

a(0)
n 〈m|H ′(t)|n〉eiωmnt . (B.17)

In the application of perturbation theory we assume, for example, that if we start in
an eigenstate n = l, only the coefficient a(0)

l will be appreciably large. Then all other
terms in the sum can be neglected. This gives us in 1st order perturbation theory:

ȧ(1)
m = 1

i�
a(0)
l 〈m|H ′(t)|l〉eiωml t (B.18)
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where a(0)
l is approximately unity.

Formany cases of interest, this integration over the time variable can be performed
and a(1)

m rather than its time derivative is obtained. The two simple cases that can be
integrated easily are:

1. The perturbation H ′ is constant but is turned on at some time (t = 0) and we look
at the amplitudes of the wave function in the various states after the perturbation
has been acting for some time t > 0.

2. The perturbation H ′ has a sinusoidal time dependence with frequency ω. This is
the situation for all resonant phenomena.

Let us first consider case (1). Then

a(1)
m (t) = 1

i�

∫ t

0
〈m|H ′|l〉eiωml t ′dt ′ = 〈m|H ′|l〉

i�

[
eiωml t − 1

]
iωml

(B.19)

Similarly for case (2), we can write

H ′(t) = H ′(0)e±iωt (B.20)

to show the explicit time dependence, so that upon integration we obtain for the
amplitudes a(1)

m (t)

a(1)
m (t) = 1

i�
〈m|H ′(0)|l〉

∫ t

0
ei(ωml±ω)t ′dt ′ = 1

i�
〈m|H ′(0)|l〉e

i(ωml±ω)t − 1

i(ωml ± ω)
. (B.21)

We interpret the time dependent amplitudes |a(1)
m (t)| as the probability of finding the

system in a state m after a time t has elapsed since the perturbation was applied; the
system was initially in a state l �= m.

We thus obtain for case (1) given by (B.19)

|a(1)
m (t)|2 =

( |〈m|H ′|l〉|2
�2

)( |eiωml t − 1|2
ω2
ml

)
(B.22)

|a(1)
m (t)|2 =

( |〈m|H ′|l〉|2
�2

) (
4sin2(ωml t/2)

ω2
ml

)
(B.23)

Clearly for case (2), the same result follows except that ωml is replaced by (ωml ±
ω) where ω is the applied frequency and a resonant denominator results for the
transition probability amplitude. It is clear from the above arguments that for both
cases (1) and (2), the explicit time dependence is contained in an oscillatory term of
the form [sin2(ω′/2)/ω′2]whereω′ = ωml for the case (1) andω′ = ωml ± ω for case
(2). This function was previously encountered in diffraction theory and looks like
that shown in Fig. B.1. Of special interest here is the fact that the main contribution
to this function comes for ω′ ∼= 0, with the height of the main peak proportional to
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t2/4 and the width proportional to 1/t . This means that the area under the central
peak goes as t. If we think of |am(t)|2 as the probability of finding the system in a
statem, then for case (2), where we have a perturbation with frequencyω, the system
attempts to make a transition from a state l to a state m with a transition probability
proportional to the time the perturbation acts. If we then wait long enough, a system
in an energy state l will make a transition to a state m, if photons of the resonant
frequency ωlm are present.

B.2 Fermi Golden Rule

Since the transition probability is proportional to the time the perturbation acts, it is
therefore useful to deal with a quantity called the transition probability per unit time
and the relation giving this quantity is called the Golden Rule (named by Fermi as
the golden rule and is in fact often called Fermi’s Golden Rule).

In deriving the Golden Rule from (B.19), we must consider the system exposed
to the perturbation for a time sufficiently long so that we can make a meaningful
measurement within the framework of the Heisenberg uncertainty principle:

ΔEΔt ∼ h (B.24)

ΔE ∼ h/t (B.25)

so that the uncertainty in energy (or frequency) during the time that the perturbation
acts is or

Δωlm ∼ 2π/t (B.26)

But this is precisely the period of the oscillatory function shown in Fig.B.1. In
this context, we must think of the concept of transition probability/unit time as
encompassing a range of energies and times consistent with the uncertainty principle.
In the case of solids, it is quite natural to do this anyhow, because the wave vector
k is a quasi-continuous variable. That is, there are a large number of k states which
have energies close to a given energy. The quantum states labeled by wave vector k
are close together in a solid having about 1022 atoms/cm3. Since the photon source
itself has a bandwidth, we would automatically want to consider a range of energies
difference δ�ω′. From this point of view, we introduce the transition probability/unit
time Wm for making a transition to a state m

Wm = 1

t

∑
m ′≈m

|a(1)
m ′ (t)|2 (B.27)

where the summation is carried out over a range of energy states consistent with the
uncertainty principle; Δωmm ′ ∼ 2π/t .
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Fig. B.1 Plot of sin2(ω′t/2)/ω′2 versus ω′, a function which enters the calculation of time depen-
dent perturbation problems

Substituting for |a)
(1)
m ′ (t)|2 from (B.23) we have

|a(1)
m (t)|2 =

(
4|〈m|H ′|l〉|2

�2

)(
sin2(ω′t/2)

ω′2

)
(B.28)

and the summation is replaced by an integration over a narrow energy rangeweighted
by the density of states ρ(Em)which gives the number of states per unit energy range.
We thus obtain

Wm = 1

�2t

∫
|4H ′

m ′l |2
(
sin2(ωm ′l t/2)

ω2
m ′l

)
ρ(Em ′)dEm ′ (B.29)

where we have written H ′
m ′l for the matrix element 〈m ′|H |l〉. But, by hypothesis,

we are only considering energies within a small energy range E ′
m around Em and

over this range the matrix elements and density of final states will not be varying.
However, the function [sin2(ω′t/2)/ω′2]will be varying rapidly, as can be seen from
Fig. A.1. Therefore, it is adequate to integrate (B.29) only over the rapidly varying
function [sin2(ωt/2)/ω2] Writing dE = �dω′, we obtain;

Wm 

(
4|H ′

m ′l |2ρ(Em)

t�2

)∫ (
sin2(ω′t/2)

ω′2

)
dω′ (B.30)

The most important contribution to the integral in (B.30) comes from values of ω

close to ω′. On the other hand, we know how to do this integral between −∞ and
∞, since
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∫ ∞

−∞
(sin2x/x2)dx = π (B.31)

Therefore we can write an approximate relation from (B.30) by setting x = ω′t/2

Wm
∼= (2π/�)|H ′

ml |2ρ(Em) (B.32)

which is often called Fermi’s Golden Rule. In the subsequent sections, we will apply
the Fermi Golden Rule to calculate the optical properties of solids.

If the initial state is a discrete level (such as donor impurity level) and the final
state is a continuum (such as conduction band), then the Fermi Golden Rule (B.32)
as written yields the transition probability per unit time and ρ(Em) is interpreted as
the density of final states. Likewise if the final state is discrete and the initial state is
a continuum, Wm also gives the transition probability per unit time, only in this case
ρ(Em) is interpreted as the density of initial states.

For many important applications in solid state physics, the transitions of interest
are between a continuum of initial states and a continuum of final states. In this
case the Fermi Golden Rule must be interpreted in terms of a joint density of states,
whereby the initial and final states are separated by the photon energy �ω inducing
the transition. These issues are discussed in Chap.17.

B.3 Time Dependent 2nd Order Perturbation Theory

This second order treatment is needed for indirect optical transitions, where

H = H0 + λH ′ (B.33)

and λ � 1. Here H0ψo = i� ∂ψ0

∂t . Expand ψ , the solution to (B.33) in terms of the
complete set of functions denoted by ψ0 ≡ |n, veck〉

ψ =
∑
n,k

an(k, t)e− i
�
En(k)t |n,k〉 (B.34)

where |n,k〉 is aBloch function describing the eigenstates of the unperturbedproblem

Hψ = i�ψ̇ (B.35)

∑
n,k

an(k, t)En(k)e− i
�
En(k)t |n,k〉 +

∑
n,k

an(k, t)e− i
�
En(k)tλH ′|n,k〉

= i�
∑
n,k

ȧn(k, t)e− i
�
En(k)t |n,k〉 +

∑
n,k

an(k, t)e− i
�
En(k)t |n,k〉

(B.36)

http://dx.doi.org/10.1007/978-3-662-55922-2_17


506 Appendix B: Time–Dependent Perturbation Theory

which gives

ȧm(k, t) = 1

i�

∑
n,k

an(k, t)e
i
�

(Em (k′)t−En(k)t)〈m,k′|λH ′|n,k〉 (B.37)

We expand
am(k′, t) = a(0)

m + λa(1)
m + λ2a(2)

m + · · · (B.38)

and let a j (k, 0) = 1 and all others an(k, 0) = 0 where n �= j To first order, as before,
we can write,

λ2ȧ(1)
m (k′, t) = 1

i�
λa(0)

n (k, t)exp

[
i

�
[Em(k′) − En(k)]t

]
〈m,k′|λH ′|n,k〉 (B.39)

or

a(1)
m (k′, t) = 1

i�

∫ t

0
dt ′exp

[
i

�
[Em(k′) − En(k)]t

]
〈m,k′|λH ′|n,k〉 (B.40)

To second order

λ2ȧ(2)
m (k′, t) = 1

i�

∑
n,k

λa(1)
n (k, t)exp

[
i

�
[Em(k′) − En(k)]t

]
〈m,k′|λH ′|n,k〉

(B.41)
or,

ȧ(2)
m (k′, t) = − 1

�2

∑
n,k

a(1)
n (k, t)exp

{
i

�
[Em(k′) − En(k)]t

}
〈m,k′|λH ′|n,k〉

×
∫ t

0
dt ′exp

{
i

�
[En(k′) − Ei (k)]t ′

}
〈n,k′|λH ′|i,k〉

(B.42)
We write the time dependence of the perturbation Hamiltonian explicitly

H ′ =
∑

α

He−iωα t (B.43)

and then (B.42) can be written after integrating twice.

|a(2)
f (kf , t)|2 = 2π�t

∑
m,k,α,α′

|〈 f |H ′
α′ |m,k〉|2〈m,k|H ′

α|i〉|2
(Em(k) − Ei − �ωα)2

δ(E f − Ei − �ωα − �ωα′)

(B.44)
This second-order time-dependent perturbation theory expression is used to derive
the probability of an indirect interband transition and we note that this term is pro-
portional to time.
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382, 385, 397, 412, 430, 435, 470
Optical absorption coefficient, 368, 400
Optical absorption processes, 65
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Optical constants, 321, 324, 325, 329, 367,
395, 396, 398, 403, 433

Optical density, 429
Optical direct transition, 378
Optical excitations, 136
Optical interband transitions, 58
Optical phonon branch, 207, 430, 458, 464
Optical phonon frequencies, 367
Optical phonons, 190, 207, 483
Optical probes, 317
Optical properties, 68, 77, 321, 329, 347,

352, 353, 379, 396, 397, 401, 471
Optical reflectivity, 342, 398, 457
Optical response, 406
Optical selection rule, 283
Optical transition, 58, 65, 66, 349, 350, 366,

380, 386, 422, 432, 433
Optical transmission, 425
Optical transmission measurements, 414
Optical phonon scattering, 209
Orbital radius, 413
Orthonormalization, 42
Orthorhombic, 12

P
Partition theorem, 290
Partly compensated, 140
Pauli exclusion principle, 15, 428
Peierls instability, 49
Peltier coefficient, 168, 175, 177
Peltier effect, 166, 175
Periodicity of the lattice, 3
Periodic lattice, 3, 25
Periodic potential, 24, 30, 35, 38, 43, 59, 61,

89, 263, 349, 411, 416
Periodic table, 182
Perturbation, 30, 32, 33, 38, 43, 92, 117, 126,

186, 192, 266, 353, 398, 411, 416,
447

Perturbation Hamiltonian, 43, 92, 353, 413
Perturbation potential, 190
Perturbation theory, 32, 33, 38, 54, 265, 351,

353, 362
Phase, 396
Phase velocity, 91
Phonon, 65, 145, 160, 161, 163, 179, 180,

185, 188, 189, 191, 192, 194, 198–
201, 203–206, 208, 209, 241, 317,
380–385, 387, 426, 433, 446, 450,
457, 458, 464, 465, 470, 472, 475,
478, 480, 485, 486

Phonon absorption, 189, 192, 198, 209, 383,
384, 483

Phonon absorption process, 384
Phonon-boundary Scattering, 202, 204
Phonon branch, 191, 457, 465, 478
Phonon contribution, 470
Phonon dispersion, 385, 457, 478
Phonon dispersion curves, 458
Phonon dispersion relation, 105, 386, 457,

487
Phonon drag effect, 179
Phonon emission, 117, 189, 192, 198, 207,

383, 384, 471
Phonon induced transparency, 339
Phonon-phonon scattering, 163, 202, 204
Phonon scattering, 163, 170, 192, 202, 204,

206, 238
Phosphor, 449
Phosphorescence, 449
Phosphorus donors, 414
Photoconductance spectrum, 452
Photoconductivity, 451
Photocurrent, 452, 454
Photon absorption, 376
Photon energy, 384
Photon propagation, 52
π -Electron, 47
Piezoelectric coupling, 189–191
Plane wave, 20, 30, 33, 35, 251, 268, 276,

325, 462
Plasma frequency, 333, 334, 336, 337, 341,

343, 470
Plasmon frequency, 339
Plasmon resonance, 227, 337, 340
Plasmon resonance frequency, 343
Plasmon resonant absorption, 337
Plasmon Resonant Nanoparticles, 337
Point defects, 417
Poisson distribution, 127
Polariton, 458, 464
Polarizability, 393, 460, 461, 466, 472, 474
Polarization, 320, 392, 460, 468, 474
Polarization direction, 331, 409
Polarizations, 331, 404, 479
Polaron, 430
Pole, 392, 467
Polyacetylene, 47, 49, 53
Polyvalent metals, 62
Positive frequencies, 394
Potential barrier, 231, 257, 266, 269, 430
Poynting vector, 343, 370, 462
Primitive basis vectors, 4, 5
Propagating waves, 319
Propagators, 476
P-type, 381, 447, 452
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Q
Quantization, 243, 247, 290, 291, 299, 301,

309
Quantized Hall effect, 251, 301
Quantum, 231
Quantum confinement, 73, 454
Quantum dot, 194, 231, 232, 234, 243, 244
Quantum Hall Effect, 295, 296, 303, 307–

312
Quantum number, 41, 90, 277, 287, 311, 422
Quantum Point Contacts (QPC), 242
Quantum resistance, 236
Quantumwell, 247, 253, 255, 257, 260, 263–

265, 268, 270, 273, 309, 313, 341,
420, 430, 433, 434, 478

Quantum well structures, 433
Quasi-classical electron dynamics, 98
Quasi-periodicity, 3

R
Radial Breathing Mode (RBM), 480
Radiative transitions, 444
Raising and lowering operators, 290
Raman, 115, 360, 457, 471, 475, 486
Raman scattering, 470, 474–476, 483
Raman spectra, 475, 479, 480, 482, 486, 487
Raman spectroscopy, 435, 454, 457, 478
Random phase approximation, 339
Rare gas, 77
Rayleigh, 473
Reciprocal lattice vector, 9, 12, 32, 42, 54,

201, 203, 208, 379
Reciprocal scattering time, 188
Recombination radiation, 449
Rectangular barrier, 270
Rectangular lattice, 11
Rectangular–potential model, 267
Rectangular potential well, 256
Rectangular quantum well, 264
Reduced Brillouin zone, 12, 36
Reduced effective mass, 358
Reflectance spectra, 485
Reflection coefficient, 323, 398, 406, 409
Reflectivity, 61, 119, 317, 324, 332, 336,

343, 363, 369, 391, 396–400, 405,
468, 486

Reflectivity spectra, 335
Refractive index, 363
Relativistic effective mass, 292
Relaxation time, 101, 127, 132, 162, 181,

187, 285, 302, 319
Relaxation time approximation, 131, 160,

165, 298

Renormalization, 387
Resistance, 235–238, 246, 251, 295, 296,

307, 308
Resistivity of metals, 201
Resonance frequency, 343
Resonant Raman scattering, 474
Resonant tunneling, 268, 270
Reststrahl, 459, 467
Rhombus, 50
Rotation, 5

S
Saturation range, 142
Scattering, 102, 152, 185–188, 190, 193–

195, 197–202, 206–208, 229, 236–
238, 360, 470, 472, 474, 487

Schr̈odinger’s equation, 350, 420
Schottky defects, 418
Screened plasma frequency, 343
Screening effects in semiconductors, 194
Second order perturbation theory, 31
Seebeck and Thomson coefficients, 166
Seebeck coefficient, 166, 172, 178, 179, 229
Seebeck effect, 166, 174, 175
Selection rules, 346, 386, 470
Self-interaction, 15, 16
III-V semiconductor, 229
Semiconductor heterostructure, 302
Semiconductors, 29, 55, 64, 66, 67, 69, 71,

73, 75, 77, 79, 94, 97, 118, 125, 133,
136, 140, 143, 145, 155, 163, 168,
170, 172, 174, 187–189, 197, 206,
214, 253, 255, 273, 282, 283, 324,
331, 336, 365, 367, 369, 375, 403,
411, 418, 426, 428, 433, 450, 457

Semimetals, 29, 55, 75, 76, 324
SET, 243, 244
Shallow impurity, 412, 426
Shallow impurity levels, 414
Shallow levels, 411
Shubnikov–de Haas effect, 285
Si, 12, 69, 70, 85, 118, 143, 146, 149, 191,

209, 244, 249, 271, 292, 385, 412,
415, 428, 486

Sign of the carrier, 168
Silicon, 9, 46, 64, 69, 70, 95, 149, 191, 229,

247, 271, 291, 293, 356, 384, 412,
416, 428

Simple Cubic lattice (SC), 44
Single quantum well, 431
Singularities, 301, 359, 360, 435
Skin depth, 326
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Slater determinant, 16
Slow emission, 449
Sodium, 57, 59
Spherical carrier pocket, 103, 133
Spherical harmonics, 20, 26
Spherically symmetrical potential, 293
Spin, 16, 127, 143, 235, 300, 301, 303, 309,

416, 423, 443
Spin degeneracy, 300
Standing wave, 35, 270
Stark effect, 435
Stokes, 472, 486, 487
Strain, 485
Strong field confinement, 338
Structure, 9, 10, 13, 45, 62, 70, 81, 89, 151,

242, 313, 398–400, 416, 447
Substrate, 246, 247, 249, 251, 455
Superlattice, 247, 253, 255, 256, 258, 273,

326, 420, 430, 431, 478, 486
Surface EnhancedRamanSpectroscopy, 337
Surface Plasmon Polaritons, 338
Surface recombination, 452, 453
SWNT, 435, 437
Symmetry, 351, 401

T
Taylor series, 90, 356
Temperature dependence, 129, 133, 134,

142, 145, 146, 151, 160–162, 164,
166, 170, 197–199, 205–207, 287,
383, 384, 401, 445

Temperature dependence of EF , 103, 157,
160, 170

Temperature dependence of the electrical
and thermal conductivity, 160

Temperature dependence of the phonon scat-
tering, 197, 199

Tetragonal, 54, 331, 468, 469, 478
Tetrahedral bonds, 95
The joint density of states, 358–360
Thermal conductivity, 125, 155, 156, 158,

159, 161, 163, 173, 181, 203–206,
208, 457

Thermal conductivity for insulators, 163
Thermal conductivity for metals, 155, 206
Thermal conductivity for semiconductors,

161
Thermal energy gap, 381, 412
Thermal gradient, 156, 167, 175, 178, 179
Thermoelectric cooler, 177, 182
Thermoelectric effects, 166, 168, 285
Thermoelectric figure of merit, 178, 181

Thermo-electricity, 155
Thermoelectric Measurements, 174
Thermoelectric phenomena, 155, 164
Thermoelectric Phenomena in Metals, 168
Thermopower, 159, 166, 168, 172, 174, 179
Thermopower for Intrinsic Semiconductors,

170
Thermo-reflectance, 403
The Slater–Koster approach, 25
Thomson coefficient, 166, 178
Thomson effect, 176
III-V, 10, 66, 143, 251, 265, 412
Three-center, 22, 26
Threshold, 58, 70, 345, 366, 374, 385, 400,

420, 451, 452
Threshold energy, 66
Threshold photon energy, 386
Tight binding approximation, 37–39, 43, 45–

47, 78
Tight- Binding (TB) model, 360, 361
Time, 47, 100, 127, 180, 212, 286, 343, 349,

353, 361, 388, 433, 452
Time reversal symmetry, 298
Time-independent perturbation theory, 361
TMDCs, 438
Transfer integral matrices, 48
Transition metal dichalcogenides, 73, 406,

420, 438, 455
Transition probability, 185, 353, 355
Translation operator, 41
Transmission probability, 238, 272
Transmission resonance, 272
Transport properties, 37, 54, 64, 66, 125,

202, 241, 379
Transverse, 98, 113, 119, 148, 150, 214, 222,

229, 320, 465
Transverse lattice vibrations, 465
Transverse optical phonon, 464, 467
Trapped electrons, 452
Triangular well, 257, 260
Triclinic, 5
Trigonal, 52
Trigonal warping effect, 52
Tunneling, 233, 243, 257, 265–270
Tunneling probability, 268, 270, 377
Tunneling process, 266
Two carrier, 134, 218
Two-center 1, 22, 26
Two-center 2, 22, 26
Type of critical point, 357

U
Umklapp processes, 203
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Uncertainty principle, 91, 108, 278, 414
Units for frequency measurements, 325
Universal constants, 287, 305
Unscreened plasma frequency, 335

V
Vacancies, interstitials, dislocations, size-

dependent effects, 202
Vacancy, 187, 416–419
Valence band, 36, 55, 60, 64, 69, 72, 76, 79,

136–138, 142, 143, 149, 151, 168,
249, 256, 272, 310, 345, 356, 371,
380, 382, 413, 430, 441, 447, 452

Valence band maximum, 151, 381
Valence electrons, 30, 46, 62, 95, 412
Van Hove singularities, 356
Vector potential A, 349, 353
Vertex, 476
Vibrations, 105, 108, 191, 236, 458, 477
Vicinity of the band, 95
Virtual states, 270

W
Wannier–Mott exciton spectrum, 420
Wave function, 38, 97, 293, 351, 422
Wave-like solution, 242
Wave packet, 89–92, 98, 99, 103, 421
Wavevectors, 80, 207, 422, 445, 476
Weak Binding or the Nearly Free Electron

Approximation, 29, 53
Weak scatterers, 238
Wide bandgap semiconductors, 80
Wiedemann–Franz law, 160, 182, 206
Wigner–Seitz, 5, 8
WKB approximation, 257, 272

X
X point, 53

Z
Zero current flow, 166
Zinc blende lattices, 9
Zone folding effects, 478
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