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Preface

Most treatments of quantumn mechanics have begun from the historical basis of
the application to nuclear and atomic physics. This generally leaves the impor-
tant topics of quantum wells, tunnelling, and periodic potentials until late in the
course. This puts the person interested in solid-state electronics and solid-state
physics at a disadvantage, relative to their counterparts in more traditional fields
of physics and chemistry. While there are a few books that have departed from
this approach, it was felt that there is a need for one that concentrates primarily
upon examples taken from the new realm of artificially structured materials in
solid-state electronics. Quite frankly, we have found that students are often just
not prepared adequately with experience in those aspects of quantum mechanics
necessary to begin to work in small structures (what is now called mesoscopic
physics) and nanoelectronics, and that it requires several years to gain the ma-
terial in these traditional approaches. Students need to receive the material in
an order that concentrates on the important aspects of solid-state electronics,
and the modern aspects of quantum mechanics that are becoming more and
more used in everyday practice in this area. That has been the aim of this
text. The topics and the examples used to illustrate the topics have been chosen
from recent experimental studies using modern microelectronics, heteroepitaxial
growth, and quantum well and superlattice structures, which are important in
today’s rush to nanoelectronics.

At the same time, the material has been structured around a senior-level
course that we offer at Arizona State University. Certainly, some of the material
is beyond this (particularly chapter 9), but the book could as easily be suited
to a first-year graduate course with this additional material. On the other hand,
students taking a senior course will have already been introduced to the ideas of
wave mechanics with the Schrodinger equation, quantum wells, and the Kronig-
Penney model in a junior-level course in semiconductor materials. This earlier
treatment is quite simplified, but provides an introduction to the concepts that are
developed further here. The general level of expectation on students using this
material is this prior experience plus the linear vector spaces and electromagnetic
field theory to which electrical engineers have been exposed.

I would like to express thanks to my students who have gone through the
course, and to Professors Joe Spector and David Allee, who have read the
manuscript completely and suggested a great many improvements and changes.

David K Ferry
Tempe, AZ, 1992



Waves and particles

1.1 INTRODUCTION

Science has developed through a variety of investigations more or less over the
time scale of human existence. On this scale, quantum mechanics is a very
young field, existing essentially only since the beginning of this century. Even
our understanding of classical mechanics has existed for a comparatively long
period—roughly having been formalized with Newton’s equations published in
his Principia Mathematica, in April 1686. In fact, we have just celebrated more
than 400 years of classical mechanics.

In contrast with this, the ideas of quantum mechanics emerged in about 1913
when Bohr and Sommerfeld developed a model of atomic structure to explain the
discrete absorption and emission lines that were seen experimentally. However,
much of the physics entailed in this picture of ‘quantization’ of the energy
levels was quite ad hoc and could not be justified, although in the end the
ideas proved correct—it was only some of the mathematical details that needed
changing. However, quantum mechanics, as we currently know it, really entered
the physics scene in the period after the First World War. The basic work of
Schrodinger and Heisenberg led to different, but equivalent, formulations of the
quantum principles that were important in physical systems. Today, there is
a consensus (but not a complete agreement) as to the general understanding
of the quantum principles. In essence, quantum mechanics is the mathematical
description of physical systems with non-commuting operators; for example, the
ordering of the operators is very important. The engineer is familiar with such
an ordering dependence through the use of matrix algebra, where in general the
order of two matrices is important; that is AB # BA. In quantum mechanics,
the ordering of various operators is important, and it is these operators that do
not commute. There are two additional, and quite important, postulates. These
are complementarity and the correspondence principle.

Complementarity refers to the duality of waves and particles. That is, for
both electrons and light waves, there is a duality between a treatment in terms
of waves and a treatment in terms of particles. The wave treatment generally is~
described by a field theory with the corresponding operator effects introduced
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into the wave amplitudes. The particle is treated in a manner similar to the
classical particle dynamics treatment with the appropriate operators properly
introduced. In the next two sections, we will investigate two of the operator
effects.

On the other hand, the correspondence principle relates to the limiting
approach to the well known classical mechanics. It will be found that Planck’s
constant, i = 2xh, appears in all results that truly reflect quantum mechanical
behaviour. As we allow 4 — 0, the classical results must be obtained. That
is, the true quantum effects must vanish as we take this limit. Now, we really
don’t vary the value of such a fundamental constant, but the correspondence
principle asserts that if we were to do s, the classical results would be recovered.
What this means is that the quantum effects are modifications of the classical
properties. These effects may be small or large, depending upon a number of
factors such as time scales, size scales and energy scales. The value of Planck’s
constant is quite small, 6.6025 x 10-3¢ J s, but one should not assume that
the quantum effects are small. For example, quantization is found to affect the
operation of modern metal-oxide—semiconductor (MOS) transistors and to be the
fundamental property of devices such as a tunnel diode.

1.2 LIGHT AS PARTICLES—THE PHOTOELECTRIC EFFECT

One of the more interesting examples of the principle of complementarity is that
of the photoelectric effect. It was known that when light was shone upon the
surface of a metal, or some other conducting medium, electrons could be emitted
from the surface provided that the frequency of the incident light was sufficiently
high. The curious effect is that the velocity of the emitted electrons depends
only upon the wavelength of the incident light, and not upon the Intensity of
the radiation. In fact, the energy of the emitted particles varies inversely with
the wavelength of the light waves. On the other hand, the number of emitted
electrons does depend upon the intensity of the radiation, and not upon its
wavelength. Today, of course, we do not consider this surprising at all, but
this is after it has been explained in the Nobel-prize-winning work of Einstein.
What Einstein concluded was that the explanation of this phenomenon required
a treatment of light in terms of its ‘corpuscular’ nature; that is, we need to treat
the light wave as a beam of particles impinging upon the surface of the metal.
In fact, it is important to describe the energy of the individual light particles,
which we call photons, using the relation (Einstein 1905)

E=hv=rho. (1.1)
The photoelectric effect can be understood through consideration of figure 1.1.

However, it is essential to understand that we are talking about the flow of
‘particles’ as directly corresponding to the wave intensity of the light wave.
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Figure 1.1 The energy bands for the surface of a metal. An incident photon with an
energy greater than the work function, £y, can cause an electron to be raised from the
Fermi energy, &g, to above the vacuum level, whereby it can be photoemitted.

Where the intensity is ‘high’, there is a high density of photons. Conversely,
where the wave amplitude is weak, there is a low density of photons.

A metal is characterized by a work function &y, which is the energy required
to raise an electron from the Fermi energy to the vacuum level, from which it
can be emitted from the surface. Thus, in order to observe the photoelectric
effect, or photoemission as it is now called, it is necessary to have the energy
of the photons greater than the work function, or £ > &yw. The excess energy,
that 1s the energy difference between that of the photon and the work function,
becomes the kinetic energy of the emitted particle. Since the frequency of the
photon 1s inversely proportional to the wavelength, the kinetic energy of the
emitted particle varies inversely as the wavelength of the light. As the intensity
of the light wave in increased, the number of incident photons increases, and
therefore the number of emitted electrons increases. However, the momentum
of each emitted electron depends upon the properties of a single photon, and
therefore 1s independent of the intensity of the light wave.

A corollary of the acceptance of light as particles is that there is a momentum
associated with each of the particles. It is well known 1n field theory that there 1s
a momentum associated with the (massless) wave, which is given by p = hv/c,
which leads immediately to the relationship

hv h
—— = — 1.2
P c A (1.2)

Here, we have used the magnitude, rather than the vector description, of the
momentum. It then follows that
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h
p=< ="k (1.3)

a relationship that is familiar both to those accustomed to field theory and to
those familiar with solid-state theory.

It is finally clear from the interpretation of light waves as particles that there
exists a relationship between the ‘particle’ energy and the frequency of the wave,
and a connection between the momentum of the ‘particle’ and the wavelength
of the wave. The two equations (1.1) and (1.3) give these relationships. The
form of (1.2) has usually been associated with de Broglie, and the wavelength
corresponding to the particle momentum is usually described as the de Broglie
wavelength. However, it is worth noting that de Broglie (1939) referred to the set
of equations (1.1) and (1.3) as the Einstein relations! In fact, de Broglie’s great
contribution was the recognition that atoms localized in orbits about a nucleus
must possess these same wave-like properties. Hence, the electron orbit must
be able to incorporate an exact integer number of wavelengths, given by (1.3)
in terms of the momentum. This then leads to quantization of the energy levels.

1.3 ELECTRONS AS WAVES

In the previous section, we discussed how in many cases it is clearly more
appropriate, and indeed necessary, to treat electromagnetic waves as the flow
of particles, which in turn are termed photons. By the same token, there are
times when it is clearly advantageous to describe particles, such-as electrons,
as waves. In the correspondence between these two viewpoints, it is important
to note that the varying intensity of the wave reflects the presence of a varying
number of particles; the particle density at a point x, at time ¢, reflects the
varying intensity of the wave at this point and time. For this to be the case,
it is important that quantum mechanics describe both the wave and particle
pictures through the principle of superposition. That is, the amplitude of the
composite wave is related to the sum of the amplitudes of the individual waves
corresponding to each of the particles present. Note that it is the amplitudes,
and not the intensities, that are summed, so there arises the real possibility for
interference between the waves of individual particles. Thus, for the presence
of two (non-interacting) particles at a point x, at time f, we may write the
composite wave function as

W(x, 1) =Wi(x, 1)+ Wy(x, ). (1.4)

This composite wave may be described as a probability wave, in that the square
of the magnitude describes the probability of finding an electron at a point.

It may be noted from (1.3) that the momentum of the particles goes imme-
diately into the so-called wave vector k of the wave. A special form of (1.4) is
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Figure 1.2 Transmission electron micrograph of a large-diameter (820 nm) polycrystal-
line Au ring. The lines are about 40 nm wide and about 38 nm thick. (After Washburn
and Webb (1986), by permission.)

W(x, 1) = Ae'®rrmeD 4 peilkar—en (1.5)

where it has been assumed that the two components may have different momenta
(but we have taken the energies equal). For the moment, the time-independent
steady state will be considered, so the time-varying parts of (1.5) will be
suppressed as we will talk only about steady-state results of phase interference.
It is known, for example, that a time-varying magnetic field that is enclosed by
a conducting loop will induce an electric field (and voltage) in the loop through
Faraday’s law. Can this happen for a time-independent magnetic field? The
classical answer is, of course, no, and Maxwell’s equations give us this answer.
But do they in the quantum case where we can have the interference between
the two waves corresponding to two separate electrons?

For the experiment, we consider a loop of wire. Specifically, the loop is
made of Au wire deposited on a SizNj substrate. Such a loop is shown in
figure 1.2, where the loop is about 820 nm in diameter, and the Au lines are
40 nm wide (Webb er al 1985). The loop is connected to an external circuit
through Au leads (also shown), and a magnetic field is threaded through the
loop.

To understand the phase interference, we proceed by assuming that the
electron waves enter the ring at a point described by ¢ = —n. For the moment,
assume that the field induces an electric field in the ring (the time variation
“will in the end cancel out, and it is not the electric field per se that causes the
effect, but this approach allows us to describe the effect). Then, for one electron
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passing through the upper side of the ring, the electron is accelerated by the
field, as it moves with the field, while on the other side of the ring the electron
is decelerated by the field as it moves against the field. The field enters through
Newton’s law, and

k:ko—g-/Edt. (1.6)

If we assume that the initial wave vector is the same for both electrons, then
the phase difference at the output of the ring is given by taking the difference
of the integral over momentum in the top half of the ring (from an angle of
down to 0) and the integral over the bottom half of the ring (from —x up to 0):

e 0 0 e 2
A¢:——/dt /E-dl—}—/ E.dl =——-—/dt E.dl
7 4 -7 h 0

e e o
= —— | ds E -ndA=- ‘n dA = 2r— 1.7
h/ /Vx nd h/Bn A nq)o (1.7)

where ®y = h/e is the quantum unit of flux, and we have used Maxwell’s
equations to replace the electric field by the time derivative of the magnetic
flux density. Thus, a static magnetic field coupled through the loop creates a
phase difference between the waves that traverse the two paths. This effect is
the Aharonov-Bohm (1959) effect.

In figure 1.3(a), the conductance through the ring of figure 1.2 is shown.
There is a strong oscillatory behaviour as the magnetic field coupled by the ring
is varied. The curve of figure 1.3(b) is the Fourier transform (with respect
to magnetic field) of the conductance and shows a clear fundamental peak
corresponding to a ‘frequency’ given by the periodicity of ®g. There is also a
weak second harmonic evident in the Fourier transform, which may be due to
weak non-linearities in the ring (arising from variations in thickness, width etc)
or to other physical processes (some of which are understood).

The coherence of the electron waves is a clear requirement for the observation
of the Aharonov-Bohm effect, and this is why the measurements are done at
such low temperatures. It is important that the size of the ring be smaller than
some characteristic coherence length, which is termed the inelastic mean free
path (where it is assumed that it is inelastic collisions between the electrons
that destroy the phase coherence). Nevertheless, the understanding of this
phenomenon depends upon the ability to treat the electrons as waves, and,
moreover, the phenomenon is only found in a temperature regime where the
phase coherence is maintained. At higher temperatures, the interactions between
the electrons in the metal ring become so strong that the phase is randomized,
and any possibility of phase interference effects is lost. Thus the quantum
interference is only observable on size and energy scales (set by the coherence
length and the temperature, respectively) such that the quantum interference
is quite significant. As the temperature is raised, the phase is randomized by~
the collisions, and normal classical behaviour is recovered. This latter may be
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Figure 1.3 Conductance through the ring of figure 1.2. In (a), the conductance
oscillations are shown at a temperature of 0.04 K. The Fourier transform is shown
in (b) and gives clearly evidence of the dominant //e period of the oscillations. (After
Washburn and Webb (1986), by permission.)

described by requiring that the two waves used above add in intensity, and not
in amplitude as we have done. The addition of intensities ‘throws away’ the
phase variables and precludes the possibility of phase interference between the
two paths.

Which is the proper interpretation to use for a general problem: particle or
wave? The answer 1s not an easy one to give. Rather, the proper choice depends
largely upon the particular quantum effect being investigated. Thus one chooses
the approach that yields the answer with minimum effort. Nevertheless, the great
majority of work actually has tended to treat the quantum mechanics via the wave
mechanical picture, as embodied in the Schrodinger equation (discussed in the
next chapter). One reason for this is the great wealth of mathematical literature
dealing with boundary value problems, as the time-independent Schrodinger
equation 1s just a typical wave equation. Most such problems actually lie in
the formulation of the proper boundary conditions, and then the imposition of
non-commuting variables. Before proceeding to this, however, we diverge to
continue the discussion of position and momentum as variables and operators.

1.4 POSITION AND MOMENTUM

For the remainder of this chapter, we want to concentrate on just what properties
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we can expect from this wave that is supposed to represent the particle (or
particles). Do we represent the particle simply by the wave itself? No, because
the wave is a complex quantity, while the charge and position of the particle are
real quantities. Moreover, the wave is a distributed quantity, while we expect
the particle to be relatively localized in space. This suggests that we relate the
probability of finding the electron at a position x to the square of the magnitude
of the wave. That is, we say that

W (x, ) (1.8)

is the probability of finding an electron at point x at time ¢. Then, it is clear
that the wave function must be normalized through

foo [W(x,)]*dx = 1. (1.9)

o]

While (1.9) extends over all space, the appropriate volume is that of the system
under discussion. This leads to a slightly different normalization for the plane
waves utilized in section 1.3 above. Here, we use box normalization (the term
‘box’ refers to the three-dimensional case):

L/2
lim / W (x, ))?dx = 1. (1.10)
L—>OO —L/2

This normalization keeps constant total probability and recognizes that, for a
uniform probability, the amplitude must go to zero as the volume Increases
without limit.

1.4.1 Expectation of the position

With the normalizations that we have now introduced, it is clear that we are
equating the square of the magnitude of the wave function with a probability
density function. This allows us to compute immediately the expectation value,
or average value, of the position of the particle with the normal definitions
introduced in probability theory. That is, the average value of the position is
given by

(x) = /ooxl\ll(x, D> dx = /oo ¥ (x, t)x W(x, ¢) dx. (1.11)

o0 —00

In the last form, we have split the wave function product into its two components
and placed the position operator between the complex conjugate of the wave
function and the wave function itself. This is the standard notation, and
designates that we are using the concept of an inner product of two functions-
to describe the average. If we use (1.9) to define the inner product of the wave
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function and its complex conjugate, then this may be described in the short-hand
notation

(¥, &) = /Oo U (x, HW(x,t)dx =1 (1.12)
and
(x) = (W, x V). (1.13)

We say at this point that we have described the wave function corresponding
to the particle in the position representation. That is, the wave function is a
function of the position and the time, and the square of the magnitude of this
function describes the probability density function for the position. The position
operator itself, x, operates on the wave function to provide a new function, so the
inner product of this new function with the original function gives the average
value of the position. Now, if the position variable x is to be interpreted as
an operator, and the wave function in the position representation is the natural
function to use to describe the particle, then it may be said that the wave function
W(x, t) has an eigenvalue corresponding to the operator x. This means that we
can write the operation of x on W(x, r) as

xW(x,t) =xW¥(x,t) (1.14)

where x 1s the eigenvalue of x operating on W(x, r). It is clear that the use of
(1.14) in (1.13) means that the eigenvalue x = (x).

We will see later that one may decompose the overall wave function into
an expansion over a complete orthonormal set of basis functions, just like a
Fourler sertes expansion in sines and cosines. Each member of the set has
a well defined eigenvalue corresponding to an operator if the set is the proper
basis set with which to describe the effect of that operator. Thus, the present use
of the position representation means that our functions are the proper functions
with which to describe the action of the position operator, which does no more
than determine the expectation value of the position of our particle.

Consider the wave function shown in figure 1.4. Here, the real part of the
wave function is plotted, as the wave function itself is in general a complex
quantity. However, it is clear that the function is peaked about some point
Xpeak- While it is likely that the expectation value of the position is very near
this point, this cannot be discerned exactly without actually computing the action
of the position operator on this function and computing the expectation value, or
inner product, directly. This circumstance arises from the fact that we are now
dealing with probability functions, and the expectation value is simply the most
likely position in which to find the particle. On the other hand, another quantity
is evident in figure 1.4, and this is the width of the wave function, which relates
to the standard deviation of the wave function. Thus, we can define

(Ax)? = (I, (x — (x))2W). (1.15)
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Figure 1.4 The positional variation of a typical wave function.

The quantity Ax relates to the uncertainty in finding the particle at the position
(x). Itis clear that if we want to use a wave packet that describes the position of
the particle exactly, then Ax must be made to £0 to zero. Such a function is the
Dirac delta function familiar from circuit theory (the impulse function). Here,
though, we use a delta function in position rather than in time; for example, we
describe the wave function through

W(x,0) =8(x — Xpeak)- (1.16)

The time variable has been set to zero here for convenience, but it is easy
to extend (1.16) to the time-varying case. Clearly, equation (1.16) describes
the wave function under the condition that the position of the particle is known
absolutely! We will examine in the following paragraphs some of the limitations
this places upon our knowledge of the dynamics of the particle.

1.4.2 Momentum

The wave function shown in figure 1.4 contains variations in space, and is not
a uniform quantity. In fact, if it is to describe a localized particle, it must vary
quite rapidly in space. It is possible to Fourier transform this wave function
in order to get a representation that describes the spatial frequencies that are
involved. Then, the wave function in this figure can be written in terms of the
spatial frequencies as an inverse transform:

1 00 . _
W(x) = — k)el*x dk. 1.17
(x) ﬁ;f_oo¢( )e (1.17)
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The quantity ¢ (k) represents the Fourier transform of the wave function itself,
Here, k is the spatial frequency. However, this k is precisely the same k as
appears in (1.3). That is, the spatial frequency is described by the wave vector
itself, which in turn is related to the momentum through (1.3). For this reason,
¢ (k) is called the momentum wave function. A description of the particle in
momentum space 1s made using the Fourier-transformed wave functions, or
momentum wave functions. Consequently, the average value of the momentum
for our particle, the expectation value of the operator p, may be evaluated using
these functions. In essence, we are saying that the proper basis set of functions
with which to evaluate the momentum is that of the momentum wave functions.
Then, it follows that

(p) = hip, ko) =f $*pé dp. (1.18)

Suppose, however, that we are using the position representation wave
functions. How then are we to interpret the expectation value of the momentum?
The wave functions in this representation are functions only of x and z. To
evaluate the expectation value of the momentum operator, it is necessary
to develop the operator corresponding to the momentum in the position
representation. To do this, we use (1.18) and introduce the Fourier transforms
corresponding to the functions ¢. Then, we may write (1.18) as

h o0 o0 . , o .
(p) = — f dk ] dx’ W* (x")e'* k / dx W(x)e #*
27 J oo —00 -

B[ 0o ., o 3
- dk / dx’ W*(x"e** f dx e ™ — Y (x)
21 J_ o —00 —00 dx

[o.@] o0 a
= —ih/ dx’/ dx W*(x)8(x — x)— ¥(x)
e e 0x

= .-mfoo dx \P*(x)% W (x). (1.19)

—00

In arriving at the final form of (1.19), an integration by parts has been done
from the first line to the second (the evaluation at the limits is assumed to
vanish), after replacing k by the partial derivative. The third line is achieved
by recognizing the §-function:

1 [ : ,
8(x-~x’):2—7; f dk elFx—xD (1.20)

o0

Thus, in the position representation, the momentum operator is given by the

functional operator

3 |
p =i (1.21)
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1.4.3 Non-commuting operators

The description of the momentum operator in the position representation is that
of a differential operator. This means that the operators corresponding to the
position and to the momentum will not commute, by which we mean that

[x,pl=xp— px #£0. (1.22)

The left-hand side of (1.22) defines a quantity that is called the commutator
bracket. However, by itself it only has implied meaning. The terms contained
within the brackets are operators and must actually operate on some wave
function. Thus, the role of the commutator can be explained by considering
the inner product, or expectation value. This gives

— (¥, [x, p]¥) = —ih {(\D,xi lll) - <\I!, —?—x\ll)} = 1h. (1.23)
d dx

X

If variables, or operators, do not commute, there is an implication that these
quantities cannot be measured simultaneously. Here again, there is another
and deeper meaning. In the previous section, we noted that the operation of the
position operator x on the wave function in the position representation produced
an eigenvalue x, which is actually the expectation value of the position. The
momentum operator does not produce this simple result with the wave function
of the position representation. Rather, the differential operator produces a more
complex result. For example, if the differential operator were to produce a
simple eigenvalue, then the wave function would be constrained to be of the
form exp(ipx/h) (which can be shown by assuming a simple eigenvalue form
as in (1.14) with the differential operator and solving the resulting equation).
This form is not integrable (it does not fit our requirements on normalization),
and thus the same wave function cannot simultaneously yield eigenvalues for
both position and momentum. Since the eigenvalue relates to the expectation
value, which corresponds to the most likely result of an experiment, these two
quantities cannot be simultaneously measured.

There is a further level of information that can be obtained from the Fourier
transform pair of position and momentum wave functions. If the position is
known, for example if we choose the delta function of (1.16), then the Fourier
transform has unit amplitude everywhere; that is, the momentum has equal
probability of taking on any value. Another way of looking at this is to say that
since the position of the particle is completely determined, it is impossible to
say anything about the momentum, as any value of the momentum is equally
likely. Similarly, if a delta function is used to describe the momentum wave
function, which implies that we know the value of the momentum exactly, then
the position wave function has equal amplitude everywhere. This means that if
the momentum is known, then it is impossible to say anything about the position,
as all values of the latter are equally likely. As a consequence, if we want to
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describe both of these properties of the particle, the position wave function and
its Fourier transform must be selected carefully to allow this to occur. Then
there will be an uncertainty Ax in position, as indicated in figure 1.4, and there
will e a corresponding uncertainty Ap in momentum.

To investigate the relationship between the two uncertainties, in position
and momentum, let us choose a Gaussian wave function to describe the wave
function in the position representation. Therefore, we take

1 x2

Here, the wave packet has been centred at xpeax = 0, and

1 e x?
(x) ——--——/ exp Gy xdx =0 (1.25)

T 2m0 g

as expected. Similarly, the uncertainty in the position is found from (1.15) as

Ax)? = : ” x 2d
( x) m—(-m _OOCXp —--2—;3: X ax
02 o0 x2
[ exp [-——-—} dx = o? (1.26)

e )

and Ax =o0.
The appropriate momentum wave function can now be found by Fourier
transforming this position wave function. This gives

k) = % N W(x)e % dx

_ 1 e_azkz fw exp l:“ (x — 2i0’2k)2] do

o 402

2\'/* 22
=(—) Joe Tk, : (1.27)

We note that the momentum wave function is also centred about zero momentum.
Then the uncertainty in the momentum can be found as

[2 [ . n?
(Ap)? =h?%0, /= f e 20K 2k = —. (1.28)
T J_oo 4o

Hence, the uncertainty in the momentum is 7i/20. We now see that the non-
commuting operators x and p can be described by an uncertainty AxAp = h/2.
It turns out that our description in terms of the static Gaussian wave function is
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a minimal-uncertainty description, in that the product of the two uncertainties
is a minimum.

The uncertainty principle describes the connection between the uncertainties
in determination of the expectation values for two non-commuting operators. If
we have two operators A and B, which do not commute, then the uncertainty
relation states that

AAAB > 1A, B)) (1.29)

where the angular brackets denote the expectation value, as above. It is easily
confirmed that the position and momentum operators satisfy this relation. It
is important to note that the basic uncertainty relation is only really valid for
non-commuting operators. It has often been asserted for variables like energy
(frequency) and time, but in the non-relativistic quantum mechanics that we are
investigating here, time is not a dynamic variable and has no corresponding
operator. Thus, if there is any uncertainty for these latter two variables, it
arises from the problems of making measurements of the energy at different
times—and hence is a measurement uncertainty and not one expected from the
uncertainty relation (1.29).

1.4.4 Returning to temporal behaviour

While we have assumed that the momentum wave function is centred at zero
momentum, this is not the general case. Suppose, we now assume that the
momentum wave function is centred at a displaced value of k, given by k.
Then, the entire position representation wave function moves with this average
momentum, and shows an average velocity vy = fiky/m. We can expect that
the peak of the position wave function, Xpeak, Moves, but does it move with this
velocity? The position wave function is made up of a sum of a great many
Fourier components, each of which arises from a different momentum. Does
this affect the uncertainty in position that characterizes the half-width of the
position wave function? The answer to both of these questions is yes, but we
will try to demonstrate that these are the correct answers in this section.

Our approach is based upon the definition of the Fourier inverse transform
(1.17). This latter equation expresses the position wave function W(x) as a
summation of individual Fourier components, each of whose amplitudes is given
by the value of ¢ (k) at that particular k. From the earlier work, we can extend
each of the Fourier terms into a plane wave corresponding to that value of k,
by introducing the frequency term via

W(x) = 7;_-; / ” @ (k)e'*x—on dg. (1.30)

While the frequency term has not been shown with a variation with k, it must
be recalled that each of the Fourier components may actually possess a slightly
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different frequency. If the main frequency corresponds to the peak of the
momentum wave function, then the frequency can be expanded as

dw
w(k)=a)(k0)+(k-—k0)5—k— S (1.31)

=ko

The interpretation of the position wave function is now that it is composed of a
group of closely related waves, all propagating in the same direction (we assume
that ¢ (k) = 0 for k < 0, but this is merely for convenience and is not critical
to the overall discussion). Thus, W(x,t) is now defined as a wave packet.
Equation (1.31) defines the dispersion across this wave packet, as it gives the
gradual change in frequency for different components of the wave packet.

To understand how the dispersion affects the propagation of the wave
functions, we insert (1.31) into (1.30), and define the difference variable
u =k — ko. Then, (1.30) becomes

1. ® L
W(x, t) = ——=glkox—wo) f & (u + ko)e! ¥ =@ dy (1.32
A/ 27 —00 0 )

where wyp is the leading term in (1.31) and «' is the partial derivative in the
second term of (1.31). The higher-order terms of (1.31) are neglected, as the
first two terms are the most significant. If u is factored out of the argument of
the exponential within the integral, it is seen that the position variable varies as
x — w't. This is our guide as to how to proceed. We will reintroduce ko within
the exponential, but multiplied by this factor, so that

0
\p(x, t) — _____e—-iko(X—a)’l’)ei(kQX-—w()[) / ¢(u + ko)eiko(x*w't)eiu(xww’t) dk
-0

V2r

1 —~i(wy—w'k OO i ¢ —a'
= ——¢ o—w ko)t ¢(u + ko)e1(1t+ko)(x w't) dk
2T /_oo

— e—i(wu—w’ko)f\p(x _ w't, £). (1.33)

The leading exponential provides a phase shift in the position wave function.
This phase shift has no effect on the square of the magnitude, which represents
the expectation value calculations. On the other hand, the entire wave function
moves with a velocity given by «’. This is not surprising. The quantity ' is the
partial derivative of the frequency with respect to the momentum wave vector,
and hence describes the group velocity of the wave packet. Thus, the average
velocity of the wave packet in position space is given by the group velocity

dw

vg e (1)’ = - .
ok lk=kg

(1.34)

This answers the first question: the peak of the position wave function remains
the peak and moves with an average velocity defined as the group velocity of the
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wave packet. Note that this group velocity is defined by the frequency variation
with respect to the wave vector. Is this related to the average momentum given
by ko? The answer again is affirmative, as we cannot let ko take on any arbitrary
value. Rather, the peak in the momentum distribution must relate to the average
motion of the wave packet in position space. Thus, we must impose a value on
ko so that it satisfies the condition of actually being the average momentum of
the wave packet:
hky Odw
=
If we integrate the last two terms of (1.35) with respect to the wave vector,
we recover the other condition that ensures that our wave packet is actually
describing the dynamic motion of the particles:

vy = (1.35)

m

h2k2 p2
E=hw = v (1.36)
It is clear that it is the group velocity of the wave packet that describes the
average momentum of the momentum wave function and also relates the velocity
(and momentum) to the energy of the particle.
Let us now turn to the question of what the wave packet looks like with the
time variation included. We rewrite (1.30) to take account of the centred wave
packet for the momentum representation to obtain

o [2\V* . 2
Yx, 1) = 5 (;) e‘ko"/ g™ W g, (1.37)
—00

To proceed, we want to insert the above relationship between the frequency
(energy) and average velocity:

Bk R hk
w=c—=——(u+k) = — + uvy + —2. (1.38)
m m 2m

If (1.38) is inserted into (1.37), we recognize a new form for the ‘static’ effective
momentum wave function:

2\ M it
(k) = \/E (__) E:xko(x—vgt/2) exp [_uZ (0,2 + 1_______)] (139>
p 2m

which still leads to (p) = 0, and Ap =% /20. We can then evaluate the position
representation wave function by continuing the evaluation of (1.37) using the

short-hand notation
ht
o' = o2 +i— (1.40a)
2m

x'=x — v (1.40b)

and
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This gives

174 o)
Wx', 1) = /._g_ (2_) eiko(x—vgtﬁ)f e—a’2u2+iux’ du
2 \n#w —o0

7N\ 2
__“/;f___ eikor—vgt/2) oy {__ ( * ) } . (1.41)

- )4’ 20/

This has the exact form of the previous wave function in the position
representation with one important exception. The exception is that the time
variation has made this result unnormalized. If we compute the inner product
now, recalling that the terms in ¢’ are complex, the result is

1 1
o/l 1+ K262/ dm2a®) S

(¥, W) = (1.42)

With this normalization, it is now easy to show that the expectation value of the
position is that found above:

(W, x\¥)
Similarly, the standard deviation-in position is found to be
B2t
(ax)) =028 =02 |1+ . (1.44)
4m2o4

This means that the uncertainty in the two non-commuting operators x and p
increases with time according to

h h212
AXAPZ-Z- 1+m. (145)

The wave packet actually gets wider as it propagates with time, so the time
variation is a shift of the centroid plus this broadening effect. The broadening of
a Gaussian wave packet is familiar in the process of diffusion, and we recognize
that the position wave packet actually undergoes a diffusive broadening as it
propagates. This diffusive effect accounts for the increase in the uncertainty.
The minimum uncertainty arises only at the initial time when the packet was
formed. At later times, the various momentum components cause the wave
packet position to become less certain since different spatial variations propagate
at different effective frequencies. Thus, for any times after the initial one, it 1s
not possible for us to know as much about the wave packet and there is more
uncertainty in the actual position of the particle that is represented by the wave
packet.
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1.5 SUMMARY

Quantum mechanics furnishes a methodology for treating the wave—particle
duality. The main importance of this treatment is for structures and times, both
usually small, for which the interference of the waves can become important.
The effect can be either the interference between two wave packets, or the
interference of a wave packet with itself, such as in boundary value problems.
In quantum mechanics, the boundary value problems deal with the equation
that we will develop in the next chapter for the wave packet, the Schrodinger
equation.

The result of dealing with the wave nature of particles is that dynamical
variables have become operators which in turn operate upon the wave functions.
As operators, these variables often no longer commute, and there is a basic
uncertainty relation between non-commuting operators. The non-commuting
nature arises from it being no longer possible to generate a wave function that
yields eigenvalues for both of the operators, representing the fact that they
cannot be simultaneously measured. It is this that introduces the uncertainty
relationship.

Even if we generate a minimum-uncertainty wave packet in real space, it is
correlated to a momentum space representation, which is the Fourier transform
of the spatial variation. The time variation of this wave packet generates a
diffusive broadening of the wave packet, which increases the uncertainty in the
two operator relationships.

We can draw another set of conclusions from this behaviour that will be
important for the differential equation that can be used to find the actual wave
functions in different situations. The entire time variation has been found to
derive from a single initial condition, which implies that the differential equation
must be only first order in the time derivatives. Second, the motion has diffusive
components, which suggests that the differential equation should bear a strong
resemblance to a diffusion equation (which itself is only first order in the time
derivative). These points will be expanded upon in the next chapter.
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PROBLEMS

1. Calculate the energy density for the plane electromagnetic wave described
by the complex field strength

EC — Eoei(a)f—ikx)

and show that its average over a temporal period T is w = (¢/2)| E.|*.

2. What are the de Broglie frequencies and wavelengths of an electron and
a proton accelerated to 100 eV? What are the corresponding group and phase
velocities?

3. Show that the position operator x is represented by the differential operator

ihi
ap
in momentum space, when dealing with momentum wave functions.
Demonstrate that (1.22) is still satisfied when momentum wave functions are
used.

4. An electron represented by a Gaussian wave packet, with average energy
100 eV, 1s initially prepared with Ap = 0.1{p) and Ax = h/[2(Ap)]. How
much time elapses before the wave packet has spread to twice the original
spatial extent?

5. Express the expectation value of the kinetic energy of a Gaussian wave
packet in terms of the expectation value and the uncertainty of the momentum
wave function.

6. A particle is represented by a wave packet propagating in a dispersive
medium, described by

A 1+h2k2 1
W= — _
h mA

What is the group velocity as a function of k?
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The Schridinger equation

In the first chapter, it was explained that the introductory basics of quantum
mechanics arise from the changes from classical mechanics that are brought
to an observable level by the smallness of some parameter, such as the size
scale. The most important effect is the appearance of operators for dynamical
variables, and the non-commuting nature of these operators. We also found a
wave function, either in the position or momentum representation, whose squared
magnitude is related to the probability of finding the equivalent particle. The
properties of the wave could be expressed as basically arising from a linear
differential equation of a diffusive nature. In particular, because any subsequent
form for the wave function evolved from a single initial state, the equation can
only be of first order in the time derivative (and, hence, diffusive in nature).

In this chapter, we want now to specify such an equation—the Schrédinger
equation, from which one version of quantum mechanics—wave mechanics—
has evolved. In a later chapter, we shall turn to a second formulation of quantum
mechanics based upon time evolution of the operators rather than the wave
function, but here we want to gain insight into the quantization process, and
the effects it causes in normal systems. In the following section, we will give
a justification for the wave equation, but no formal derivation is really possible
(as in the case of Maxwell’s equations); rather, the equation is found to explain
experimental results in a correct fashion, and its validity lies in that fact. In
subsequent sections, we will then apply the Schrédinger equation to a variety
of problems to gain the desired insight.

2.1 WAVES AND THE DIFFERENTIAL EQUATION

At this point, we want to begin to formulate an equation that will provide us with
a methodology for determining the wave function in many different situations,
but always in the position representation. We impose two requirements on the
wave equation: (i) in the absence of any force, the wave packet must move
in a free-particle manner, and (ii) when a force is present, the solution must
reproduce Newton’s law F' = ma. As mentioned above, we cannot ‘derive’ this
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equation, because the equation itself is the basic postulate of wave mechanics,
as formulated by Schrodinger (1926). We begin with (1.30) in the form

W(x, 1) = % / ” ¢ (k)e!®x—wn qp 2.1

Because the wave function must evolve from a single initial condition, it must
also be only first order in the time derivative. Thus, we take the partial derivative
of (2.1) with respect to time, to yield

oW i oo ithkx—wt)
5 = _«/2?/ o (k)we dk (2.2)
-0

which can be rewritten as

A Y

1 e .
Al = — k)Eelkx—wt) qp. 2.3
in Jz‘ﬁf_m‘b”e (2.3)

In essence, the energy is the eigenvalue of the time derivative operator,
although this is not a true operator, as time is not a dynamic variable. Thus,
it may be thought that the energy represents a set of other operators that do
represent dynamic variables. It is common to express the energy as a sum of
kinetic and potential energy terms; for example

2
E=T+v=2L Lvun (2.4)
2m

The momentum does operate on the momentum representation functions, but by
using our position space operator form (1.21), the energy term can be pulled
out of the integral in (2.3), and we find

v

in
Y 2m 9x2

+ Vix, )W (x, 1). (2.5)

This is the Schrédinger equation. We have written it with only one spatial
dimension, that of the x-direction. However, the spatial second derivative is
properly the Laplacian operator in three dimensions, and the results can readily
be obtained for that case. For most of the work in this chapter, however, we
will continue to use only the single spatial dimension.

Before proceeding, it is worthwhile to detour and consider to some extent
how the classical limit is achieved from the Schrédinger equation. For this, let
us define the wave function in terms of an amplitude and a phase, according to
W(x,t) = aqe’/". The quantity S is known as the action in classical mechanics
(but familiarity with this will not be required). Let us put this form for the wave
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function into (2.5), which gives (the exponential factor is omitted as it cancels
equally from all terms)

g2 pqpd G () e gs 1B 9a R T4 v, 26
T =35 ) T Im 9 m ax ax  omaxz V4 (20)

8S .. da a (85)2 iha 8*S ik 8S da H? 3%
For this equation to be valid, it is necessary that the real parts and the imaginary
parts balance separately, which leads to

3s 1 /aSs\? n? 8%
(= Ve —— =0 2.7
at +2m (Bx) + @.7)

and

2
_a_£+_a_g__§+ié§.§£=0. (28)
9t  2m 3x?  m 0x dx
In (2.7), there is only one term that includes Planck’s constant, and this term
vanishes in the classical limit as i — 0. It is clear that the action relates to the
phase of the wave function, and consideration of the wave function as a single-
particle plane wave relates the gradient of the action to the momentum and the
time derivative to the energy. Indeed, insertion of the wave function of (2.1)
leads immediately to (2.4), which expresses the total energy. Obviously, here
the variation that is quantum mechanical provides a correction to the energy,
which comes in as the square of Planck’s constant. This extra term, the last term
on the left of (2.7), has been discussed by several authors, but today 1s usually
referred to as the Bohm potential. Its interpretation is still under discussion, but
this term clearly gives an additional effect in regions where the wave function
amplitude varies rapidly with position. One view is that this term plays the
role of a quantum pressure, but other views have been expressed. The second
equation, (2.8), can be rearranged by multiplying by a, for which (in vector
notation for simplicity of recognition)

da? a?
S +V-(=vs)=o. (2.9)

The factor a? is obviously related to |¥|?, the square of the magnitude of the
wave function. If the gradient of the action is the momentum, as stated, then
the second term is the divergence of the probability current, and the factor in
the parentheses is the product of the probability function and its velocity. We
explore this further in the next section.

2.2 DENSITY AND CURRENT

The Schrodinger equation is a complex diffusion equation. The wave function
¥ is a complex quantity. The potential energy V(x,¢), however, is usually a
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real quantity. Moreover, we discerned in chapter 1 that the probabilities were
real quantities, as they relate to the chance of finding the particle at a particular
position. Thus, the probability density is just

P(x,t) = W*(x, )W(x, 1) = |W(x, 1) (2.10)

This, of course, leads to the normalization of (1.9), which just expresses the fact
that the sum of the probabilities must be unity. If (2.10) were multiplied by the
electronic charge e, it would represent the charge density carried by the particle
(described by the wave function).

One check of the extension of the Schrodinger equation to the classical limit
lies in the continuity equation. That is, if we are to relate (2.10) to the local
charge density, then there must be a corresponding current density J, such that
(p= —eP)

e— =V .-J (2.11)
ot
although we use only the x-component here. Now, the complex conjugate of
(2.5) 1s just
A O h? 32w
—ih _-
ot 2m 0x2
We now use (2.10) in (2.11), with (2.5) and (2.12) inserted for the partial
derivatives with respect to time, as (we neglect the charge, and will find the
probability current)

+ Vix, )W (x, 1). (2.12)

dP h?
ih— = ——[W* V2 — (V20*)p] (2.13)
at 2m
where the terms involving the potential energy have cancelled. The terms in the
brackets can be rewritten as the divergence of a probability current, if the latter
is defined as

Jy = —{Z—T[W*(V\P) — (V¥HY. (2.14)
2mi

If the wave function is to be a representation of a single electron, then this
‘current” must be related to the velocity of that particle. On the other hand,
if the wave function represents a large ensemble of particles, then the actual
current (obtained by multiplying by e) represents some average velocity, with
an average taken over that ensemble.

The probability current should be related to the momentum of the wave
function, as discussed earlier. The gradient operator in (2.14) is, of course,
related to the momentum operator, and the factors of the mass and Planck’s
constant connect this to the velocity. In fact, we can rewrite (2.14) as

1
Jy = 5——<p+p*>1w12. | (2.15)
m



SOME SIMPLE CASES 25

In general, when the momentum is a ‘good’ operator, which means that it is
measurable, the eigenvalue is a real quantity. Then, the imaginary part vanishes,
and (2.15) is simply the product of the velocity and the probability, which yields
the probability current.

The result (2.15) differs from the earlier form that appears in (2.9). If the
expectation of the momentum is real; then the two forms agree, as the gradient
of the action just gives the momentum. On the other hand, if the expectation of
the momentum is not real, then the two results differ. For example, if the average
momentum were entirely imaginary, then (2.15) would yield zero identically,
while (2.9) would give a non-zero result. However, (2.9) was obtained by
separating the real and imaginary parts of (2.6), and the result in this latter
equation assumed that S was entirely real. An imaginary momentum would
require that S be other than purely real. Thus, (2.6) was obtained for a very
special form of the wave function. On the other hand, (2.15) results from a
quite general wave function, and while the specific result depended upon a plane
wave, the approach was not this limited. If (2.1) is used for the general wave
function, then (2.15) is evaluated using the expectation values of the momentum,
and suggests that in fact these eigenvalues should be real, if a real current is to
be measured.

By real eigenvalues, we simply recognize that if an operator A can be
measured by a particular wave function, then this operator produces the
eigenvalue a, which is a real quantity (we may assert without proof that one can
only measure real numbers in a measurement). This puts certain requirements
upon the operator A, as we note that

(A) = (W, AV) = (W, a¥) =a (2.16)
for a properly normalized wave function. Now,
a* = (¥, a'V) = @V, V) = (AV, ¥) = (¥, AY) 2.17)

where the symbol T indicates the adjoint operator. If the eigenvalues are real,
as required for a measurable quantity, the corresponding operator must be
self-adjoint; for example, a = a* = A = A*. Such operators are known
as Hermitian operators. The most common example is just the total-energy
operator, as the energy is most often measured in systems. Not all operators
are Hermitian, however, and the definition of the probability current allows for
consideration of those cases in which the momentum may not be a real quantity
and may not be measurable, as well as those more normal cases in which the
momentum is measurable.

2.3 SOME SIMPLE CASES

The Schrodinger equation is a partial differential equation both in position space
and in time. Often, such equations are solvable by separation of variables, and
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this is also the case here. We proceed by making the ansatz that the wave
function may be written in the general form W(x, t) = V(x)x(z). If we insert
this into the Schrodinger equation (2.12), and then divide by this same wave
function, we obtain

ihay  m* W

P e e AL (2.18)

We have acknowledged here that the potential energy term is almost always a
static interaction, which is only a function of position. Then, the left-hand side
is a function of time alone, while the right-hand side is a function of position
alone. This can be achieved solely if the two sides are equal to a constant. The
appropriate constant has earlier been identified as the energy £. These lead to
the general result for the energy function

x(t) = e i€/ (2.19)

and the time-independent Schrédinger equation
n* 82

“om ez T VW) = Ev (). (2.20)

This last equation describes the quantum wave mechanics of the static system,
where there is no time variation. Let us now turn to a few examples.

2.3.1 The free particle

We begin by first considering the situation in which the potential is zero. Then
the time-independent equation becomes

92w '
— + k(X)) =0 (2.21)
dx?
where
K2k 2méE
— = k = . 2.22
. ) (2.22)

The solution to (2.21) is clearly of the form of sines and cosines, but here we
will take the exponential terms, and

W (x) = Ae** 4 Be~ikr, (2.23)
These are just the plane-wave solutions with which we began our treatment of

quantum mechanics. The plane-wave form becomes more 6bvious wher thie time
variation (2.19) is re-inserted into the total wave function. Here, the amplitude is
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spatially homogeneous and requires the use of the box normalization conditions
discussed in the previous chapter.

If we are in a system in which the potential is not zero, then the solutions
become more complicated. We can redefine the wave vector k as

2mlE — V
kr_—\/ ! = Sl (2.24)

If the potential is slowly varying with distance, then the phase of the wave
function makes a great many oscillations in a distance over which the variation
in potential is small. Then, we can still use the result (2.23) for the wave function.
However, for this to be the case, we require that the spatial variation be small.
One might try to meet this requirement with the Bohm potential, the last term
on the left-hand side of (2.7), but this earlier result was obtained by assuming
a very special form for the wave function. In the present case, it is desired
that the variation of the momentum with position not lead to extra terms in the
Schrodinger equation, and this requirement can be simply stated by requiring

Al 1 2.25
V ax < (2.25)
which simply says that the variation over a wavelength should be small. For
most cases, this can be handled by treating rapid variation in the potential
through boundary conditions, but we shall return to a treatment of the spatially
varying potential through an approximation technique (the WKB approximation)
in chapter 3. This approximate treatment of the wave function in the spatially
varying potential case uses the solutions of (2.23), with the exponential factors

replaced by
* 2m[E -V X)] |,
exp | £ [ \/ e dx" |. (2.26)

However, it is important to note that solutions such as (2.26) do not satisfy the
Schrodinger equation, and rely upon a sufficiently slow variation in the potential
with position. The problem is that when the potential varies with position, (2.20)
changes from a simple second-order ordinary differential equation to one with
varying coefficients. These usually generate quite unusual special functions as
the solutions.

2.3.2 A potential step

To begin to understand the role that the potential plays, let us investigate a
simple potential step, in which the potential is defined as

V = Vo) with Vo >0 2.27)
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3
A

B x
0

Figure 2.1 Schematic view of the potential of (2.27) which is non-zero (and constant)
only in the positive half-space.

where ®(x) is the Heaviside step function in which ® = 1 for x > 0, and
® =0 for x < 0. This is shown in figure 2.1. Thus, the potential has a height
of Vy for positive x, and is zero for the negative-x region. This potential creates
a barrier to the wave function, and a wave incident from the left (the negative
region) will have part (or all) of its amplitude reflected from the barrier. The
results that are obtained depend upon the relative energy of the wave. If the
energy is less than Vg, the wave cannot propagate in the region of positive x.
This is clearly seen from (2.24), as the wave vector is imaginary for £ < V.
Only one exponent can be retained, as we require that the wave function remain
finite (but zero) as x — oo.

Casel £ <V

Let us first consider the low-energy case, where the wave is a non-propagating
wave for x > 0. In the negative half-space, we consider the wave function to be
of the form of (2.23), composed of an incident wave (the positive-exponent term)
and a reflected wave (the negative-exponent term). In the positive half-space,
the solution of the Schrédinger equation is simply

Y =_Ce™ ™ (2.28)
where
2m[Vy — &
y = \/ 2miVo — €] h"z I (2.29)

Here, we have defined a wave function in two separate regions, in which the
potential is constant in each region. These two wave functions must be smoothly
Jjoined where the two regions meet.

While three constants are defined (A, B, C), one of these is defined by the
resultant normalization of the wave function (we could e.g. let A = 1 without
loss of generality). Two boundary conditions are required to evaluate the other
two coefficients in terms of A.” The bouriddry conditions can vary with the’
problem, but one must describe the continuity of the probability across the
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interface between the two regions. Thus, one boundary condition is that the
wave function itself must be continuous at the interface, or

A+B=C. (2.30)

To obtain a second boundary condition, we shall require that the derivative of
the wave function is also continuous (that this is a proper boundary condition
can be found by integrating (2.20) over a small increment fromx —gtox +e¢,
which shows that the derivative of the wave function is continuous as long as
this range of integration does not include an infinitely large potential or energy).
In some situations, we cannot specify such a boundary condition, as there may
not be a sufficient number of constants to evaluate (this will be the case in the
next section). Equating the derivatives of the wave functions at the interface
leads to

ik(A— B) =—yC. (2.31)

This last equation can be rearranged by placing the momentum term in the
denominator on the right-hand side. Then adding (2.30) and (2.31) leads to

C 2ik
= (2.32)
A ik—vy

This result can now be used in (2.30) to find
B ik
S 4 (2.33)
A k—vy

The amplitude of the reflected wave is unity, so there is no probability amplitude
transmitted across the interface. In fact, the only effect of the interface is to phase
shift the reflected wave: that is, the wave function is (x < 0)

W(x) = A [ e &) (2.34)
where %
_ -1 {7

6 =2 tan (k) . (2.35)

The probability amplitude is given by
|W[? = 2A[1 + cos(2kx +0)]  x <O. (2.36)

As may have been expected, this is a standing-wave pattern, with the probability
oscillating from O to twice the value of A. The first peak occurs at a distance
x = —0/2k, that is, the distance to the first peak is dependent upon the phase
shift at the interface. If the potential amplitude is increased without limit,
Vo — oo, the damping coefficient y — o0, and the phase shift approaches
7. However, the first peak occurs at a value of kx = m/2, which also leads to
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the result that the wave function becomes zero at x = (. We cannot examine the
other limit (V, — 0), as we do not have the proper transmitted wave, but this
limit can be probed when the transmission mode is examined. It may also be
noted that a calculation of the probability current for x > 0 leads immediately
to zero as the wave function is real. Thus, no probability current flows into the
right half-plane. It is a simple calculation to show that the net probability current
in the left half-plane vanishes as well, as the reflected wave carries precisely
the same current away from the interface as the incident wave carries toward
the interface.

Case ll. £ >V,

We now turn to the case in which the wave Can propagate on both sides of
the interface. As above, the wave function in the left half-space is assumed to
be of the form of (2.23), which includes both an incident wave and a reflected
wave. Similarly, the transmitted wave will be assumed to be of the form

U(x > Q) = Celk* (2.37)

where k' is given by the right-hand side of (2.24). Again, we will match both
the wave function and its derivative at x = 0. This leads to

A+B=C

: iy (2.38)

k(A — B) = ik'C.
These equations can now be solved to obtain the constants C and B in terms
of A. One difference here from the previous treatment is that these will be real
numbers now, rather than complex numbers. Indeed, adding and subtracting the
two equations of (2.38) leads to

C 2k B k-

A k+k A k+k (2.39)
Here, we see that if V) — 0, k' — k and the amplitude of the reflected wave
vanishes, and the amplitude of the transmitted wave is equal to the incident
wave.

The probability current in the left-hand and ri ght-hand spaces is found through
the use of (2.14). For the incident and transmitted waves, these currents are

simply )
hk' 2k hk
Jo=— | —— Jp = —. 2.40
c=— (k—}—k’) A= (2.40)

The transmission coefﬁciept is defined as the ratio of the transmitted current to
the incident current, or
: Jc dkk’

7 = m (2.41)
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which becomes unity when the potential goes to zero. By the same token, the
reflection coefficient can be defined from the ratio of the reflected current to the

incident current, or
Jp k—k"\?
R=-—={——-] . 242
Ja (k + k’) : ( )

This leads to the result that
T+ R =1, (2.43)

A critical point arises when k" = 0, that is, the energy is resonant with the
top of the potential barrier. For this energy, the reflection coefficient from (2.42)
is 1, so the transmission coefficient must vanish. The forms that have been used
to solve for the wave function in the right-hand plane are not appropriate, as
they are of exponential form. Here, however, the second derivative vanishes as
the two terms with the potential energy and the energy cancel each other. This
leads to a solution of the form W = C + Dx, but D must vanish in order for the
wave function to remain finite at large x. For the derivative of the wave function
then to be continuous across the interface, (2.38) must become B = A. As a
result of the first of equations (2.38), we then must have C = 2A. However,
this constant wave function has no probability current associated with it, so the
incident wave is fully reflected, consistent with R = 1. It is also reassuring that
C = 2A 1s consistent with (2.32) in the limit of ¥y — 0, which also occurs at
this limiting value of the energy.

For energies above the potential barrier height, the behaviour of the wave
at the interface is quite similar in nature to what occurs with an optical wave
at a dielectric discontinuity. This is to be expected as we are using the wave
representation of the particle, and should expect to see optical analogues.

2.4 THE INFINITE POTENTIAL WELL

If we now put two barriers together, we have a choice of making a potential
in which there is a barrier between two points in space, or a well between two
points in space. The former will be treated in the next chapter. Here, we want to
consider the latter case, as shown in figure 2.2. In this case the two barriers are
located at [x| = a. In general, the wave function will penetrate into the barriers a
distance given roughly by the decay constant y. Before we consider this general
case (treated in the next section), let us first consider the simpler case in which
the amplitude of the potential increases without limit; that is, Vy — o0o0.

From the results obtained in the last chapter, it is clear that the wave function
decays infinitely rapidly under this infinite barrier. This leads to a boundary
condition that requires the wave function to vanish at the barrier interfaces, that
is ¥ = 0 at |x| = a. Within the central region, the potential vanishes, and
the Schrédinger equation becomes just (2.21), with the wave vector defined by
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B M

~-a 0 a
Figure 2.2 A potential well is formed by two barriers located at x| =a.

(2.22). The solution is now given, just as in the free-particle case, by (2.23). At
the right-hand boundary, this leads to the situation

Ae*  Be~ika — (2.44)
and at the left-hand boundary,
Ae k¢ | pelka _ (2.45)

Here, we have two equations with two unknowns, apparently. However, one
of the constants must be determined by normalization, so only A or B can be
treated as unknown constants. The apparent dilemma is resolved by recognizing
that the wave vector k cannot take just any value, and the allowed values of
k are recognized as the second unknown. Since the two equations cannot give
two solutions, they must be degenerate, and the determinant of coefficients must
vanish, that is

S | =0 (2.46)
This leads to the requirement that
sin(2ka) = 0 (2.47)
> nm n’n2p?
k:—z——a— "= n=1273,.... (2.48)

Thus, there are an infinity of allowed energy values, with the spacing increasing
quadratically with the index n.

In order to find the wave function corresponding to each of the energy levels,
we put the value for k back into one of the equations above for the boundary
conditions; we chose to use (2.44). This leads to

— = —" = (=", (2.49)
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Thus, as we move up the hierarchy of energy levels, the wave functions alternate
between cosines and sines. This can be summarized as

Wn(x) = { Acos (nx/(2a)) n odd (2.50)

Asin (nmx/(2a)) n even

These can be combined by offsetting the position, so that
. [nm
W, (x) = Asin [-2———(x n a)] . 2.51)
a

This last solution fits both boundary conditions, and yields the two solutions
of (2.50) when the multiple-angle expansion of the sine function is used. Of
course, each indexed wave function of (2.51) corresponds to one of the Fourier
expansion terms in the Fourier series that represents a square barrier. In fact,
(2.21) is just one form of a general boundary value problem in which the Fourier
series is a valid solution.

We still have to normalize the wave functions. To do this, we use (2.51), and
the general inner product with the range of integration now defined from —a to
a. This leads to

a

(W, W) = A? f

—a

. L [nm
sin [———(x + a)] dx = 1. (2.52)
2a
This readily leads to the normalization

A= NG (2.53)

If the particle resides exactly in a single energy level, we say that it is in
a pure state. The more usual case is that it moves around between the levels
and on the average many different levels contribute to the total wave function.
Then the total wave function is a sum over the Fourier series, with coefficients
related to the probability that each level is occupied. That is,

W(x) = Z ja sin [%(x + a)] (2.54)

and the probability that the individual state n is occupied is given by |ca|?. This
is subject to the limitation on total probability that

D e’ =1. (2.55)

n

This summation over the available states for a particular system is quite universal
and we will encounter it often in the coming sections and chapters.
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It may be seen that the solutions to the Schrodinger equation in this situation
were a set of odd wave functions and a set of even wave functions in (2.50),
where by even and odd we refer to the symmetry when x — —x. This is a
general result when the potential is an even function: that is, Vix) =V(—x). In
the Schrodinger equation, the equation itself is unchanged when the substitution
x — —x 1s made providing that the potential is an even function. Thus, for
a bounded wave function, W(—x) can differ from Y(x) by no more than a
constant, say «. Repeated application of this variable replacement shows that
«® = 1, so « can only take on the values +1, which means that the wave
function is either even or odd under the variable change. We note that this is
only the case when the potential is even; no such symmetry exists when the
potential is odd. Of course, if the wave function has an unbounded form, such
as a plane-wave, it is not required that the wave function have this symmetry,

although both symmetries are allowed for viable solutions.

2.5 THE FINITE POTENTIAL WELL

Now let us turn to the situation in which the potential is not infinite in amplitude
and hence the wave function penetrates into the regions under the barriers.
We continue to treat the potential as a symmetric potential centred about the
point x = 0. However, it is clear that we will want to divide our treatment
into two cases: one for energies that lie above the top of the barriers, and a
second for energies that confine the particle into the potential well. For this, it is
convenient (and we emphasize that it is only for convenience) to shift the energy
scale so that the barrier heights are at £ = 0, and the potential-free region is
shifted actually to fall inside a negative potential well of amplitude —Vy. This is
shown in figure 2.3. Thus, for energies greater than zero, the particles are free
to propagate, while for energies less than zero, the particle is confined in the
potential well in a series of energy levels known as bound states.

Casel. Vo <& <0
For energies below zero, the particle has freely propagating characteristics
only for the range |x| < a, for which the Schrodinger equation becomes
d>y 2m
— +EV =0 == (V+E). 2.56
FRCERS . (Vo +£) (2.56)
In (2.56), it must be remembered that V, is the magnitude of the negative
potential well, and is a positive quantity, while £ is a negative quantity.
Similarly, in the range |x| > a, the Schrédinger equation becomes
d?w ) 2m|E|
— —y*¥ =0 > = : 2.57
2 Y 3 (2.57)
We saw at the end of the last section that with the potential being a symmetric
quantity, the solutions for the Schrodinger equation would have either even or
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Figure 2.3 The finite potential well, in which the energy axis has been shifted for
convenience.

odd symmetry. The basic properties of the last section will carry over to the
present case, and we expect the solutions in the well region to be either sines or
cosines. Of course, these solutions have the desired symmetry properties, and
will allow us to solve for the allowed energy levels somewhat more simply.

Thus, we can treat the even and odd solutions separately. In either case, the
solutions of (2.57) for the damped region will be of the form Ce "™ |x| > a.
We can match this to the proper sine or cosine function. However, in the normal
case, both the wave function and its derivative are matched at each boundary. If
we attempt to do the same here, this will provide four equations. However, there
are only two unknowns—the amplitude of C relative to that of either the sine or
cosine wave and the allowed values of the wave vector k (and hence y, since
it is not independent of k) for the bound-state energy levels. We can get around
this problem in one fashion, and that is to make the ratio of the derivative to
the wave function itself continuous. That is, we make the logarithmic derivative
W’ /W& continuous. (This is obviously called the logarithmic derivative since it
is the derivative of the logarithm of W.) Of course, if we choose the solutions
to have even or odd symmetry, the boundary condition at —a is redundant, as
it is the same as that at a by these symmetry relations.

Let us consider the even-symmetry wave functions, for which the logarithmic
derivative 1s

—k sin(kx)

costkn) = —k tan(kx). (2.58)

Similarly, the logarithmic derivative of the damped function is merely
—y sgn(x), where sgn(x) is the sign of x and arises because of the magnitude
in the argument of the exponent. We note that we can match the boundary
condition at either a or —a, and the result is the same, a fact that gives rise to
the even function that we are using. Thus, the boundary condition is just

ktan(ka) = vy. (2.59)
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Figure 2.4 The graphical solutions of (2.6) are indicated by the circled crossings.

This transcendental equation ,now determines the allowed values of the energy
for the bound states. If we define the new, reduced variable & = ka, then this
equation becomes

2m Vya?

tan(£) = -]’Cf = /= 1 = . (2.60)

The right-hand side of the transcendental equation is a decreasing function, and
it is only those values for which the energy lies in the range (—Vp, 0) that
constitute bound states. In general, the solution must be found graphically. This
is shown in figure 2.4, in which we plot the left-hand side of (2.60) and the
right-hand side separately. The crossings (circled) are allowed energy levels.
As the potential amplitude is made smaller, or as the well width is made
smaller, the value of B is reduced, and there is a smaller range of £ that can
be accommodated before the argument of the square root becomes negative.
Variations in the width affect both parameters, so we should prefer to think of
variations in the amplitude, which affects only B. We note, however, that the
right-hand side varies from infinity (for & = 0) to zero (for & = B), regardless
of the value of the potential. A similar variation, in inverse range, occurs for the
tangent function (that is, the tangent function goes to zero for § =0ornm, and
the tangent diverges for £ taking on odd values of 7 /2). Thus, there is always
at least one crossing. However, there may only be the one. As the potential
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amplitude is reduced, the intercept g of the decreasing curve in figure 2.4
moves toward the origin. Thus, the solution point approaches & = 0, or k = 0.
By expanding the tangent function for small &, it is found that the solution is
approximately g ~ &. However, this requires £ =~ 0, which means that the
energy level is just at the top of the well. Thus, there is at least one crossing of
the curves for £ < /2. For larger values of the amplitude of the potential, the
zero point (8) moves to the right and more allowed energy levels appear for the
even functions. It is clear from the construction of figure 2.4 that at least one
solution must occur, even if the width is the parameter made smaller, as the §-
axis intersection cannot be reduced to a point where it does not cross the tan(§)
axis at least once. The various allowed energy levels may be identified with the
integers 1,3,5, ... just as is the case for the infinite well (it is a peculiarity that
the even-symmetry wave functions have the odd integers) although the levels
do not involve exact integers any more.

Let us now turn to the odd-symmetry wave functions in (2.50). Again, the
logarithmic derivative of the propagating waves for |x| < a may be found to be

k cos(kx)

Sn0n) = k cotan(kx). (2.61)

The logarithmic derivative for the decaying wave functions remains —y sgn(x),
and the equality will be the same regardless of which boundary is used for
matching. This leads to

 kcotan(kx) = —y (2.62)

cotan(¢) = -—/—?—j— ~ 1. (2.63)

Again, a graphical solution is required. This is shown in figure 2.5. The
difference between this case and that for the even wave functions is that the
left-hand side of (2.63) starts on the opposite side of the &-axis from the right-
hand side and we are not guaranteed to have even one solution point. On the
other hand, it may be seen by comparing figures 2.4 and 2.5 that the solution
points that do occur lie in between those that occur for the even-symmetry wave
functions. Thus, these may be identified with the integers 2,4, ... even though
the solutions do not involve exact integers.

We can summarize these results by saying that for small amplitudes of the
potential, or for small widths, there is at least one bound state lying just below
the top of the well. As the potential, or width, increases, additional bound
states become possible. The first (and, perhaps, only) bound state has an even-
symmetry wave function. The next level that becomes bound will have odd
symmetry. Then a second even-symmetry wave function will be allowed, then
an odd-symmetry one, and so on. In the limit of an infinite potential well, there
are an infinite number of bound states whose energies are given by (2.48).

or
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1.

Figure 2.5 The graphical solution to (2.63).

Once the energy levels are determined for the finite potential well, the wave
functions can be evaluated. We know the form of these functions, and the energy
levels ensure the continuity of the logarithmic derivative, so we can generally
easily match the partial wave functions in the well and in the barriers. One
point that is obvious from the preceding discussion is that the energy levels lie
below those of the infinite well. This is because the wave function penetrates
into the barriers, which allows for example a sine function to spread out more,
which means that the momentum wave vector k is slightly smaller, and hence
corresponds to a lower energy level. Thus, the sinusoidal function does not
vanish at the interface for the finite-barrier case, and in fact couples to the
decaying exponential within the barrier. The typical sinusoid then adopts long
exponential tails if the barrier is not infinite.

Some of the most interesting studies of these bound states have been directed
at quantum wells in GaAs—-AlGaAs heterojunctions. The alloy AlGaAs, in which
there is about 20% AlAs alloyed into GaAs, has a band gap that is 0.25 eV larger
than that of pure GaAs (about 1.75 eV versus 1.4 eV). A fraction of this band
gap difference lies in the conduction band and the remainder in the valence band.
Thus, if a GaAs layer is placed between two AlGaAs layers, a quantum well is
formed both in the conduction band and in the valence band. Transitions between
the hole bound states and the electron bound states can be probed optically, since
these transitions will lie below the absorption band for the AlGaAs. Such an
absorption spectrum is shown in figure 2.6. Transitions at the lowest heavy-
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Figure 2.6 Absorption observed between bound states of holes and electrons in 21 nm
and 14 nm quantum wells formed by placing a layer of GaAs between two layers of
AlGaAs. For a well thickness of 400 nm, the absorption is uniform. (After Dingle et al
(1974), by permission.)

hole to electron transition and the second heavy-hole to electron transition
are seen (the spectrum is complicated by the fact that there are both heavy
and light holes in the complicated valence band). The width of the absorption
lines arises from thermal broadening of these states and broadening due to
inhomogeneities in the width of the multiple wells used to see a sufficiently
large absorption. Transitions such as these have been used actually to try to
determine the band offset (the fraction of the band gap difference that lies in
the valence band) through measurements for a variety of well widths. Such data
are shown in figure 2.7, for this same system. While these data were used to try
to infer that only 15% of the band gap difference lay in the valence band, these
measurements are relatively insensitive to this parameter, and a series of more
recent measurements gives this number as being more like 30%.

Casell. £ >0

Let us now turn our attention to the completely propagating waves that exist
for energies above the potential well. It might be thought that these waves will
show no effect of the quantum well, but this is not the case. Each interface
is equivalent to a dielectric interface in electromagnetics, and the thin layer
is equivalent to a thin dielectric layer in which interference phenomena can
occur. The same is expected to occur here. We will make calculations for these
phenomena by calculating the transmission coefficient for waves propagating
from the left (negative x) to the right (positive x).

Throughout the entire space, the Schrodinger equation is given by the form
(2.56), with different values of k in the various regions. The value of k given
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Figure 2.7 Variation of the absorption bands for transitions from heavy-hole (solid
circles) and light-hole (open circles) levels to electron levels of the quantum wells as
a function of well width. The solid curves are calculated positions. (After Dingle et al
(1974), by permission.)

in (2.56) remains valid in the quantum well region, while for |x| > a,

2mé&
— s

k2 (2.64)

For x > a, we assume that the wave function propagates only in the outgoing
direction, and is given by _
Fe'tor, (2.65)

In the quantum well region, we need to have waves going in both directions, so
the wave function is assumed to be

Ce** 4 De kx| (2.66)

Similarly, in the incident region on the left, we need to have a reflected wave,
so the wave function is taken to be

eo* + Be~ikox (2.67)

where we have set A = 1 for convenience. We now develop four equations by
using the continuity of both the wave function and its derivative at each of the
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two interfaces. This leads to the determinantal equation

0 w w™! —wp B 0

0 w —w! —(ko/ k)wo c | _ 0
—wp ™! w 0 D| T o' (2.68)
wy  (k/k)w ™ —(k/ky)w 0 F w™!

Here o = el*, @y = e This can now be solved to find the coefficient of the
outgoing wave:

e——ziko[l

F = _ :
cos(2ka) — i[(k? + k3)/2kko] sin(2ka)

(2.69)

Since the momentum wave vector is the same in the incoming region as in the
outgoing region, the transmission coefficient can be found simply as the square
of the magnitude of F in (2.69). This leads to

T = : (2.70)

1+ [k — K2)/2kko] sin®(2ka)

There are resonances, which occur when 2ka is equal to odd multiples of 7 /2,
and for which the transmission is a minimum. The transmission rises to unity
when 2ka is equal to even multiples of /2, or just equal to nx. The reduction
in transmission depends upon the amplitude of the potential well, and hence
on the difference between k and ky. We note that the transmission has minima
that drop to small values only if the well is infinitely deep (and the energy of
the wave is not infinite; i.e., ko > k). A deeper potential well causes a greater
discontinuity in the wave vector, and this leads to a larger modulation of the
transmission coefficient.

Such transmission modulation has been observed in studies of the transport
of ballistic electrons across a GaAs quantum well base located between AlGaAs
regions which served as the emitter and collector. The transport is shown in
figure 2.8, and is a clear indication of the fact that quantum resonances, and
quantum effects, can be found in real semiconductor devices in a manner that
affects their characteristic behaviour. The device structure is shown in part (a) of
the figure; electrons are injected (tunnel) through the barrier to the left (emitter
side) of the internal GaAs quantum well at an energy determined by the Fermi
energy in the emitter region (on the left of the figure). The injection coefficient,
determined as the derivative of the injected current as a function of bias, reveals
oscillatory behaviour due to resonances that arise from both the bound states
and the so-called virtual states above the barrier. These are called virtual states
as they are not true bound states but appear as variations in the transmission
and reflection coefficients. Results are shown for devices with two different
thicknesses of the quantum well, 29 and 51.5 nm. The injection coefficient is
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Figure 2.8 Transport of ballistic electrons through a double-barrier, ballistic transistor,
whose potential profile is shown in (a). The quantum resonances of propagation over the
well are evident in the density of collected electrons (b) for two different sizes. (After
Heiblum et al (1987), by permission.)

shown rather than the transmission coefficient, as the former also illustrates the
bound states.

It seems strange that a wave function that lies above the quantum well should
not be perfectly transmitting. It is simple enough to explain this via the idea of
‘dielectric discontinuity’, but is this really telling the whole truth of the physics?
Yes and no. It explains the physics with the mathematics, but it does not convey
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the understanding of what is happening. In fact, it is perhaps easier to think
about the incident wave as a particle. When it impinges upon the region where
the potential well exists, it cannot be trapped there, as its energy lies above
the top of the well. However, the well potential can scatter the particle as it
arrives. In the present case, the particle is scattered back into the direction
from which it came with a probability given by the reflection coefficient. It
proceeds in an unscattered state with a probability given by the transmission
coefficient. In general, the scattering probability is non-zero, but at special
values of the incident energy, the scattering vanishes. In this case, the particle
is transmitted with unity probability. This type of potential scattering is quite
special, because only the direction of the momentum (this is a one-dimensional
problem) is changed, and the energy of the particle remains unchanged. This
type of scattering is termed elastic, as in elastic scattering of a billiard ball
from a ‘cushion’ in three dimensions. We will see other examples of this in the
following chapters.

2.6 THE TRIANGULAR WELL

Another type of potential well is quite common in everyday semiconductor
devices, such as the common metal-oxide—semiconductor (MOS) transistor
(figure 2.9(a)). The latter is the workhorse in nearly all microprocessors and
computers today, yet the presence of quantization has not really been highlighted
in the operation of these devices. These devices depend upon capacitive control
of the charge at the interface between the oxide and the semiconductor. If we
consider a parallel-plate capacitor made of a metal plate, with an insulator made
of silicon dioxide, and a second plate composed of the semiconductor silicon,
we essentially have the MOS transistor. Voltage applied across the capacitor
varies the amount of charge accumulated in the metal and in the semiconductor,
in both cases at the interface with the insulator. On the semiconductor side,
contacts (made of n-type regions embedded in a normally p-type material) allow
one to pass current through the channel in which the charge resides in the
semiconductor. Variation of the current, through variation of the charge via the
capacitor voltage, is the heart of the transistor operation.

Consider the case in which the semiconductor is p-type, and hence the surface
is in an ‘inverted’ condition (more electrons than holes) and mobile electrons
can be drawn to the interface by a positive voltage on the metal plate (the
channel region is isolated from the bulk of the semiconductor by the inversion
process). The surface charge in the semiconductor is composed of two parts:
(1) the surface electrons, and (ii) ionized acceptors from which the holes have
been pushed into the interior of the semiconductor. In both cases the charge that
results is negative and serves to balance the positive charge on the metal gate.
The electron charge is localized right at the interface with the insulator,” while™
the ionized acceptor charge is distributed over a large region. In fact, it is the
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localized electron charge that is mobile in the direction along the interface, and
that is quantized in the resulting potential well. The field in the oxide is then
given by the total surface charge through Gauss’s law (we use the approximation
of an infinite two-dimensional plane) as
e
Eg = — (Naw + ny) (2.71)
Eox

where w is the thickness of the layer of ionized acceptors N, (normal to the
surface), the surface electron density n, is assumed to be a two-dimensional
sheet charge, and the permittivity is that of the oxide. On the semiconductor side
of the interface, the normal component of D is continuous, which means that
E in (2.71) is discontinuous by the dielectric constant ratio. Thus, just inside
the interface, (2.71) represents the field if the oxide permittivity is replaced
by that of the semiconductor. However, just a short distance further into the
semiconductor, the field drops by the amount produced by the surface electron
density. Thus, the average field in the semiconductor, in the region where the
electrons are located, is approximately

e
=L (Naw + 5) . (2.72)
E 2

In this approximation, a constant electric field in this region gives rise to a linear
potential in the Schrédinger equation (figure 2.9(5)). We want to solve for just
the region inside the semiconductor, near to the oxide interface. Here, we can
write the Schrédinger equation in the form

R? 92y
———— e ExV = £V for x > 0. (2.73)
2m dx?

We assume that the potential barrier at the interface is infinitely high, so no
electrons can get into the oxide, which leads to the boundary condition that
W (0) = 0. The other boundary condition is merely that the wave function must
remain finite, which means that it also tends to zero at large values of x.

To simplify the solution, we will make a change of variables in (2.73), which
will put the equation into a standard form. For this, we redefine the position and
energy variables as

2mekE, 173 2mé& & 23
= " X 0 = 7 \ameE. . 2.74)
Then, using £ = z — zg, (2.73) becomes
3%y
—EW =0. (2.75)

387



THE TRIANGULAR WELL 45

This is the Airy equation.

Airy functions are combinations of Bessel functions and modified Bessel
functions. It is not important here to discuss their properties in excruciating
detail. The important facts for us are that: (i) the Airy function Ai(—§) decays
as an exponential for positive &, and (ii) Ai(§) behaves as a damped sinusoid
with a period that also varies as &. For our purposes, this is all we need. The
second solution of (2.75), the Airy functions Bi(¢), diverge in each direction and
must be discarded in order to keep the probability function finite. The problem
is in meeting the desired boundary conditions. The requirement that the wave
function decay for large x is easy. This converts readily into the requirement that
the wave function decay for large &, which is the case for Ai(—£&). However, the
requirement that the wave function vanish at x = 0 is not arbitrarily satisfied for
the Airy functions. On the other hand, the Airy functions are oscillatory. In the
simple quantum well of the last two sections, we noted that the lowest bound
state had a single peak in the wave function, while the second state had two,
and so on. This suggests that we associate the vanishing of the wave function
at x = O with the intrinsic zeros of the Airy function, which we will call a.
Thus, choosing a wave function that put the first zero a; at the point x = 0
would fit all the boundary conditions for the lowest energy level (figure 2.9).
Similarly, putting the second zero a, at x = 0 fits the boundary conditions for
the next level, corresponding to n = 2. By this technique, we build the set of
wave functions, and also the energy levels, for the bound states in the wells.

Here, we examine the lowest bound state as an example. For this, we require
the first zero of the Airy function. Because the numerical evaluation of the Airy
functions yields a complicated series, we cannot give exact values for the zeros.
However, they are given approximately by the relation (Abramowitz and Stegun

1964) .
ag ~ — (—35&‘;—”—1—)) : (2.76)

Thus, the first zero appears at approximately —(97/8)%/3. Now, this may be
related to the required boundary condition at x = z = O through

9 \ %> wmE [ B2\
T e— s —_— = - 2.77
s ( 8 ) <0 B (ZmeEs> @77
or , "
h OmrmekE;
b= ( 452 ) (2.78)

remembering, of course, that this is an approximate value since we have only
an approximate value for the zero of the Airy function. In figure 2.10(a), the
potential well, the first energy level and the wave function for this lowest bound
state are shown. It can be seen from this that the wave function dies away
exponentially in the region where the electron penetrates beneath “the linear
potential, just as for a normal step barrier.
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Figure 2.9 (a) A mosrer, (b) the triangular potential, and (c) the Airy function and the
use of the zeros to match the boundary conditions. '

The quantization has the effect of moving the charge away from the surface.
Classically, the free-electron charge density peaks right at the interface between
the semiconductor and the oxide insulator, and then decays away into the
semiconductor as
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kgT

This decays to 1/e of the peak in a distance given by kgT /e E,. Typical values
for the field may be of the order of 2 V across 20 nm of oxide, which leads
to a field in the oxide of 10° V c¢m™!, and this corresponds to a field in the
semiconductor at the interface of (the oxide dielectric constant is about 3.8
while that for silicon is about 12) 3 x 10° Vem™'. This leads to an effective
thickness of the surface charge density of only about 0.9 nm, an incredibly thin
layer. On the other hand, these values lead to a value for the lowest bound state
of 50 meV, and an effective well width (& /eE) of 1.7 nm. The wavelength
corresponding to these electrons at room temperature is about 6 nm, so it is
unlikely that these electrons can be confined in this small distance, and this is
what leads to the quantization of these electrons. The quantized charge density
in the lowest bound state is proportional to the square of the wave function, and
the peak in this density occurs at the peak of the wave function, which is at the
zero of the first derivative of the Airy function. These zeros are given by the
approximate relation (Abramowitz and Stegun 1964)

_ 2/3
= (22 250

S

eEx
n(x) = ngexp [—— :l . 2.79

which for the lowest subband leads to zpeux = 2.1(37)%3. This leads to the peak
occurring at a distance from the surface (e.g., from —xg) of

72 173 9y \ /3 )
~ el — /3
X o (ZmeES) [( g ) 2.1(37) (2.81)

which for the above field gives a distance of 1.3 nm. The effective width of the
quantum well, mentioned earlier, is larger than this, as this value is related to the
‘half-width’. This value is smaller than the actual thermal de Broglie wavelength
of the electron wave packet. The quantization arises from the confinement of
the electron in this small region. In figure 2.10(b), the classical charge density
and that resulting from the quantization is shown for comparison. It may be
seen here that the quantization actually will decrease the total gate capacitance
as 1t moves the surface charge away from the interface, producing an effective
interface quantum capacitance contribution to the overall gate capacitance (in
series with the normal gate capacitance to reduce the overall capacitance).
In small transistors, this effect can be a significant modification to the gate
capacitance, and hence to the transistor performance.

2.7 COUPLED POTENTIAL WELLS

What if there are two closely coupled potential wells? By closely coupled, it is
meant that these two wells are separated by a barrier, as indicated in fi gure 2.11.
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Figure 2.10 (a) The triangular potential well, the lowest energy level, and the
Airy function wave function. (b) A comparison of the classical and quantum charge
distributions.

However, the barrier is sufficiently thin that the decaying wave functions reach
completely through the barrier into the next well. This will be quite important in
the next chapter, but here we want to look at the interference that arises between
the wave functions in the two wells. To simplify the problem, we will assume
that the potential is infinite outside the two wells, zero in the wells, and a finite
value between the wells; for example

o0 x| > b/2+a
Vix)=4{0 a+b/2 > |x]>b/2 (2.82)
Vo x| <b/2.

(Note that the well width here is given by a, while it was 2a in the preceding
sections on quantum wells.) Within the wells, the wave function is’ given by a
sum of propagating waves, one moving to the right and one moving to the left,
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Figure 2.11 The double-well potential.

while within the barrier (where £ < Vj) the wave function is a set of decaying
waves representing these same two motions. This leads to six coefficients, two
of which are evaluated for |x| = a + b/2. The remaining four are evaluated
by invoking the continuity of the wave function and its derivative at the two
interfaces between the wells and the barrier, |x| = b/2.

We will treat only the case where the energy lies below the top of the barrier
in this section. The above boundary conditions lead to a 4 x 4 matrix for the
remaining coefficients. The determinant of this matrix gives the allowed energy
levels. This determinantal equation is found to give real and imaginary parts

tanh(yb)[1 — cos(2ka)] + f— sin(2ka) =0 (2.83a)

and
tanh(yb){1 + cos(2ka)] + % sin(2ka) =0 (2.83b)

respectively. For a large potential barrier, the solution is found from the real
equation (which also satisfies the imaginary one in the limit where y goes to
infinity) to be

sin(ka) =0 or ka=nm (2.84)

which is the same result as for the infinite potential well found earlier. For a
vanishing barrier, the result is the same with ¢ — 2a. Thus, the results from
(2.83) satisfy two limiting cases that can be found from the infinite potential
well. Our interest here is in finding the result for a weak interaction between
the two wells. To solve for the general case, we will assume that the barrier
is very large, and expand the hyperbolic tangent function around its value of
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unity for the very large limit. In addition, we expand cos(2ka) in (2.83a) about
its relevant zero, where the latter is given by (2.84). This then leads to the
approximate solutions

sin(ka) = +|ka — n|(1 — 2e2?). (2.85)

The pre-factor is very near zero, and the hyperbolic tangent function is very
nearly unity, so there is a small shift of the energy level both up and down
Jfrom the bound state of the single well. The lower level must be the symmetric
combination of the wave functions of the two individual wells, which is the
symmetric combination of wave functions that are each symmetric in their
own wells. This lower level must be the symmetric combination since we have
already ascertained that the lowest energy state is a symmetric wave function
for a symmetric potential. The upper level must then be the anti-symmetric
combination of the two symmetric wave functions. The actual levels from (2.85)
can be found also by expanding the sine function around the zero point to give
approximately

ka = nm +2/3e7Y?. (2.86)

While this result is for the approximation of a nearly infinite well, the general
behaviour for finite wells is the same. The two bound states, one in each well
that would normally lie at the same energy level, split due to the interaction
of the wave functions penetrating the barrier. This leads to one level (in both
wells) lying at a slightly lower energy due to the symmetric sum of the individual
wave functions, and a second level lying at a slightly higher energy due to the
anti-symmetric sum of the two wave functions. We will return to this in a later
chapter, where we will develop formal approximation schemes to find the energy
levels more exactly. In figure 2.12, experimental data on quantum wells in the
GaAs/AlGaAs heterojunction system are shown to illustrate this splitting of the
energy levels (Dingle er al 1975). Here, the coupling is quite strong, and the
resulting splitting is rather large.

2.8 THE TIME VARIATION AGAIN

In each of the cases treated above, the wave function has been determined to
be one of a number of possible eigenfunctions, each of which corresponds to
a single energy level, determined by the eigenvalue. The general solution of
the problem is composed of a sum over these eigenfunctions, with coefficients
determined by the probability of the occupancy of each of the discrete states.
This sum can be written as

V@ =) e, (2.87)
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Figure 2.12 Optical absorption spectrum of a series of (a) eighty isolated GaAs
quantum wells, of 5 nm thickness, separated by 18 nm of AlGaAs. In (b), the data
are for sixty pairs of similar wells separated by a 1.5 nm barrier. The two bound states
of the isolated wells each split into two combination levels in the double wells. (After
Dingle et al (1975), by permission.)

In every sense, this series is strongly related to the Fourier series, where the
expansion basis functions, our eigenfunctions, are determined by the geometry
of the potential structure where the solution is sought. This still needs to be
connected with the time-dependent solution. This is achieved by recalling that
the separation coefficient that arose when the time variation was separated out
from the total solution was the energy. Since the energy is different for each of
the eigenfunctions, the particular energy of that function must be used, which
means that the energy exponential goes inside the summation over the states.
This gives

Y(x,t) = Z CnWn(x) exp [— iint] . (2.88)

The exponential is, of course, just e '“~*, the frequency variation of the particular
‘mode’ that is described by the corresponding eigenfunction. In many cases, the
energy can be a continuous function, as in the transmission over the top of the
potential well. In this case, the use of a discrete n is not appropriate. For the
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continuous-energy-spectrum case, it is more usual to use the energy itself as the
‘index.” This is called the energy representation.

2.8.1 The Ehrenfest theorem

Let us now return to the concept of the expectation value. We recall that the
expectation value of the position is found from

o0
(x) = (¥, xV¥) = / W (x, HxW(x, ) dx. (2.89)
-0

What is the time variation of the position? Here, we do not refer specifically to
the momentum or velocity operator, but to the time derivative of the expectation
value of the position. These are two different things. In the first case, we are
interested in the expectation value of the momentum operator. In the second, we
are interested in whether the expectation value of the position may be changing.
As stated, the problem is to determine whether the time derivative of the position
is indeed the expectation value of the momentum.

Consider, for example, the situations discussed above for the various bound
states for the potential wells, say the infinite well or the triangular well, where
all states are bound. The time derivative of (2.86) is given by (it is assumed that
the position operator is one of a set of conjugate variables and does not have
an Intrinsic time variation)

d(x) d ap 0J
—_— T b — = — —-—-—d
” dt]xpdx /xatdx /xax X

3xJ 9
_ _de+fj_5£dx=/1dx. (2.90)
X

I

ox

The continuity equation has been used to get the last term on the first line from
the previous one. For the states in the wells considered, the first term in the
second line vanishes since the wave function itself vanishes exponentially at the
large-x limits. Since these states are not current-carrying states, the current J
also vanishes and the time derivative of the position expectation vanishes. By
not being a current-carrying state, we mean that the bound states are real, and
so the current (2.14) is identically zero. This is not the case for the propagating
wave solutions that exist above the potential barriers, for example in the finite
potential well.

If the current does not vanish, as in the propagating waves, then the last term
in (2.90) is identically the expectation value of the momentum. If (2.14) is used
in (2.90), we find (in vector notation and with volume integrations)

d(x)

; s .
E——:/ldm=%/[\!f (V) — (V") V¥]dx

= i/xy*(vqf)dm (2.91)
. mi
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where we have used (VUV*)¥ = V(V*W¥) — W*(VW). The last term expresses
the desired result that the time derivative of the expectation value of the
position is given by the expectation value of the momentum. The important
point here is that we are working with expectation values and not with the
operators themselves. The connection between position and momentum in
classical mechanics carries over to a connection between their expectation values
in quantum mechanics.

How does this carry over to Newton’s law on acceleration? In the beginning,
this was one of the points that we wanted to establish—that the classical
equations of motion carried over to equivalent ones in quantum mechanics.
To express this result, let us seek the time derivative of the expectation value
of the momentum:

d(p)

3
- —ih——fw*(vqf)dx
dt at

:/ —iha\p V\I/dx—]\ll*v iha\p dx
ot at

h2 h2
:/ NUA v\ v\ydx-/\p*v —— V2| dx
2m 2m

+ f[(V\If*)V\IJ — P*V(VW¥)]dx. (2.92)

The first two terms in the last line can be combined and converted to a surface
integral which vanishes. This follows since the momentum operator has real
eigenvalues and is a Hermitian operator, and thus is self-adjoint. These two
terms may be expressed as

(PP, p¥) — (¥, pW) = (¥, (pH)?p¥) — (¥, p* W)
= (¥, p’¥) — (¥, p*°¥) = 0. (2.93)

The last term just becomes the gradient of the potential, and

dp) = —(VV(x)). (2.94)

dt
Thus, the time derivative of the momentum is given by the expectation value
of the gradient of the potential. This is a very interesting result, since it says
that rapid variations in the potential will be smoothed out by the wave function
itself, and it 1s only those variations that are of longer range and survive the
averaging process that give rise to the acceleration evident in the expectation

value of the momentum. This result is known as Ehrenfest’s theorem.

2.8.2 Propagators and Green’s functions

Equation (2.88), which we developed earlier, clearly indicates that the wave
function can easily be obtained by an expansion in the basis functions appropriate
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to the problem at hand. It goes further, however, and even allows us to determine
fully the time variation of any given initial wave function. This follows from the
Schrodinger equation being a linear differential equation, with the time evolution
deriving from a single initial state. To see formally how this occurs, consider
a case where we know the wave function at ¢t = 0 to be ¥(x, 0). This can be
used with (2.88) to determine the coefficients in the generalized Fourier series,
which this latter equation represents as

Cn =f¢:(x)W(x,O) dx. (2.95)

This can be re-inserted into (2.88) to give the general solution

W(x, 1) = Zf\lf:(X’)llfn(x)\If(x’,O) exp [-—igh"t] dx’
:/K(x,x’;t,O)‘-If(x',O)dx' (2.96)

where the propagator kernel is

K (x, 31,00 = ) v (2 ¥n(x) exp [- igh”t] . 2.97)

The kernel (2.97) describes the general propagation of any initial wave
function to any time ¢ > 0. In fact, however, this is not required, and we
could set the problem up with any initial state at any time #,. For example, say
that we know that the wave function is given by W(x, fy) at time . Then, the
Fourier coefficients are found to be

i€t
Ch :/z/f:(x)\ll(x,to) exp {—-ﬁi’-} dx. (2.98)
Following the same procedure—that is, re-introducing this into (2.85)—the
general solution at arbitrary time for the wave function is then

W(x,t) = f K(x,x"st, t9)W(x, to) dx’ (2.99)
where
Koo't = S wie e -2 L oo

We note that the solution is a function of ¢t — fy, and not a function of these
two times separately. This is a general property of the linear solutions, and is
always expected (unless for some reason the basis set is changing with time).
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The interesting fact about (2.99) is that we can find the solutions either for
t > 1y, or for t < ty. This means that we can propagate forward in time to find
the future solution, or we can propagate backward in time to find the earlier
state that produced the wave function at fo.

In general, it is preferable to separate the propagation in forward and reverse
times to obtain different functions for retarded behaviour (forward in time) and
for advanced behaviour (backward in time). We can do this by introducing the
retarded Green’s function as

G, (x,x"s 1, 1)) = —i®(t — 1)K (x, x5 ¢, to) (2.101)

where ® is the Heaviside function. Hence, the retarded Green’s function
vanishes by construction for ¢ < fo. Similarly, the advanced Green’s function
can be defined as

Galx, x"1 1, 10) = i® (o — 1)K (x, x'; t, 1) (2.102)
which vanishes by construction for ¢ > 5. These can be put together to give
K(x,x'st, 1) = i[G(x, x'; 1, o) — Galx, X5 1, f0)]. (2.103)

We can compute the kernel from the general Schrédinger equation itself. To
see this, note that when t = fo, equation (2.100) becomes just a sum over a
complete set of basis states, and a property of these orthonormal functions is
that

K(x,x';ty, o) = 8(x —x') (2.104)

which is expected just by investigating (2.97). This suggests that we can develop
a differential equation for the kernel, which has the unique initial condition
(2.104). This is done by beginning with the time derivative, as (for a free wave
propagation, V = 0)

== Y ) [‘f—] ex [———————-—i‘g”(t — t“)]
AL EAL A I R 2
= WO H Y@ exp [—’—5—-—%—_-3’3]
1
=z HK (2.105)

or
9K Rt 92K
e = e (2.106)
ot 2m dx?

The easiest method for solving this equatidn is to Laplace transform in time,
and then solve the resulting second-order differential equation in space with the



56 THE SCHRODINGER EQUATION

initial boundary condition (2.104) and vanishing of K at large distances. This
leads to (we take 7o as zero for convenience)

;o | om m(x — x")? |
K(x,x', t) = % expl: T ] . (2.107)

It may readily be ascertained that this satisfies the condition (2.104) at ¢ = 0.

The definition of the kernel (2.100) is, in a sense, an inverse Fourier
transform from a frequency space, with the frequency defined by the discrete (or
continuous) energy levels. In this regard the product of the two basis functions,
at different positions, gives the amplitude of each Fourier component (in time
remember, as we are also dealing with generalized Fourier series in space).
Another way of thinking about this is that the kernel represents a summation
over the spectral components, and is often called the spectral density. In fact,
if we Fourier transform (2.97) in time, the kernel is just

K, x )=y ‘i(g‘iﬁ)(;) (2.108)

where w, = &, /h. It is clear that the numerical factors included in the definition
of the Green’s functions convert the denominator to energy and cancel the factor
1. The difference between the retarded and advanced Green’s functions lies in
the way in which the contour of the inverse transform is closed, and it is typical
to add a convergence factor 1 as in

¥, (X)) (x)
~ (w, — w £ in)

G(x,x', w) = (2.109)

where the upper sign is used for the retarded function and the lower sign is used
for the advanced function.
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PROBLEMS

1. For the wave packet defined by ¢ (k), shown below, find ¥(x). What are

- 9
Ax and Ak’ Sik)

A

2a

B K
-n/a 0 n/a
2. If a Gaussian wave packet approaches a potential step (V > 0 for x > 0,
ko > 0), it is found that it becomes broader for the region x > 0. Why?
3. Assume that ¥,(x) are the eigenfunctions in an infinite square well
(V — oo for |x| > d/2). Calculate the overlap integrals

d/?

Yn (X)W (x) dx.

—d/2

4. Suppose that electrons are confined in an infinite potential well of width
0.5 nm. What spectral frequencies will result from transitions between the lowest
four energy levels? Use the free-electron mass in your computations.

5. A particle confined to an infinite potential well has an uncertainty that is
of the order of the well width, Ax ~ a. The momentum can be estimated as its
uncertainty value as well. Using these simple assumptions, estimate the energy
of the lowest level. Compare with the actual value.

6. In terms of the momentum operator p = —1h'V, and
2 2
p mow® ,
H=—+ X
2m 2

and using the fact that (p) = {(x) = 0 in a bound state, with

(%) = (Ap)* + (p)? = (Ap)?
(x%) = (Ax)? + (x)? = (Ax)?

use the uncertainty principle to estimate the lowest bound-state energy. (Hint:
recall the classical relation between the average kinetic and potential energies.)

7. Consider a potential well with V = —0.3 eV for x| < a/2,and V = 0
for |x| > a/2, with @ = 7.5 nm. Write a computer program that computes the
energy levels for £ < 0 (use a mass appropriate for GaAs, m = 6.0 x 10732 kg).
How many levels are bound in the well, and what are their energy eigenvalues?
Using a simple wave-function-matching technique, plot the wave functions for
each bound state. Plot the transmission coefficient for £ > 0.
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8. For the situation in which a linear potential is imposed on a system,
compute the momentum wave functions. Show that these wave functions form
a normalized set.

9. Using the continuity of the wave function and its derivative at each interior
interface, verify (2.83).

10. Consider an infinite potential well that is 10 nm wide. At time zero, a
Gaussian wave packet, with half-width of 1 nm, is placed 2 nm from the centre
of the well. Plot the evolving wave functions for several times up to the stable
steady state. How does the steady state differ from the initial state, and why
does this occur?

I'1. Verify that (2.107) is the proper solution for the kernel function.
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Tunnelling

When we dealt in the last chapter (section 2.7) with the double potential well,
coupled through a thin barrier, it was observed that the wave function penetrated
through the barrier and interacted with the wave function in the opposite well.
This process does not occur in classical mechanics, since a particle will in
all cases bounce off the barrier. However, when we treat the particle as a
wave, then the wave nature of barrier penetration can occur. This is familiar in
electromagnetic waves, where the decaying wave (as opposed to a propagating
wave) 1s termed an evanescent wave. For energies below the top of the barrier,
the wave is attenuated, and it decays exponentially. Yet, it takes a significant
distance for this decay to eliminate the wave completely. If the barrier is thinner
than this critical distance, the evanescent wave can excite a propagating wave
in the region beyond the barrier. Thus, the wave can penetrate the barrier, and
continue to propagate, with an attenuated amplitude, in the trans-barrier region.
This process is termed tunnelling, with analogy to the miners who burrow
through a mountain in order to get to the other side! This process 1s quite
important in modern semiconductor devices, and Leo Esaki received the Nobel
prize for first recognizing that tunnelling was important in degenerately doped
p-n junction diodes. In this chapter, we will address this tunnelling process. First
we will treat those few cases in which the tunnelling probability can be obtained
exactly. Then we will discuss its use in solid-state electronics. Following this,
we will move to approximate treatments suitable for those cases in which the
solution is not readily obtainable in an exact manner. Finally, we turn to periodic
tunnelling structures, which give rise for example to the band structure discussed
in semiconductors.

3.1 THE TUNNEL BARRIER

The general problem is that posed in figure 3.1. Here, we have a barrier, whose
height is taken to be Vp, that exists in the region |x| < a. To the left and to
the right of this barrier, the particle can exist as a freely propagating wave;-
but, in the region |x| < a, and for energies £ < Vj, the wave is heavily

5Q
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Figure 3.1 The simple rectangular tunnelling barrier.

attenuated and is characterized by a decaying exponential ‘wave’. Our interest
is in determining just what the transmission probability through the barrier is
for an incident particle. We are also interested in the transmission behaviour for
energies above the top of the barrier. To solve for these factors, we proceed in
precisely the same fashion as we did for the examples of the last chapter. That
18, we assume waves with the appropriate propagation characteristics in each of
the regions of interest, but with unknown coefficients. We then apply boundary
conditions, in this case the continuity of the wave function and its derivative at
each interface, in order to evaluate the unknown coefficients. We consider first
a simple barrier, '

®

3.1.1 The simple rectangular barrier

The simple barrier is shown in figure 3.1. Here the potential is defined to exist
only between —a and a, and the zero of potential for the propagating waves on
either side is the same. We can therefore define the wave vector k in the region
|x| > a, and the decaying wave vector = in the region |x| < a, by the equations

(€ < V)

2m 2m
k = ZZ—S V:\/;ﬁ(vﬁ"g) (3.1

respectively. To the right and left of the barrier, the wave is described by
propagating waves, while in the barrier region, the wave is attenuated. Thus, we
can write the wave function quite generally as
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Aelk* + Be~ikx X < —a
W(x) =3 Ce’* + De™** x| <a (3.2)
Eelkx  Feikx X >a.

We now have six unknown coefficients to evaluate. However, we can get only
four equations from the two boundary conditions, and a fifth from normalizing
the incoming wave from one side or the other. If we keep the most general
set of six coefficients, we will have incoming waves from both sides, both of
which must be normalized in some fashion. For our purposes, however, we will
throw away the incoming wave from the right, and assume that our interest is in
determining the transmission of a wave incident from the left. In a later section,
though, we will need to keep both solutions, as we will have multiple barriers
with multiple reflections. Here, however, while we keep all the coefficients,
we will eventually set F = 0. We can count on eventually using the principle
of superposition, as the Schrodinger equation is linear; thus, our approach is
perfectly general.

The boundary conditions are applied by asserting continuity of the wave
function and its derivative at each interface. Thus, at the interface x = —a,
continuity of these two quantities gives rise to

Ae ke L peikt — Ce™V4 4 De’? (3.3a)
ik[Ae™* — Be*] = y [Ce™"" — De"]. (3.3b)

As in the last chapter, we can now solve for two of these coefficients in terms
of the other two coefficients. For the moment, we seek A and B in terms of C
and D. This leads to the matrix equation

ik + Y e(ik-—y)a ik — Y ‘e(ik-%-y)a
A } _ 2ik 2ik C
B 1k — 4 e—(ik+y)u ik + 4 e-—(ik-y)a D
21k 21k

Now, we turn to the other boundary interface. The continuity of the wave
function and its derivative at x = a leads to

(3.4)

Eelkt 4 Femikd = Ce¥ 4 De ™74 (3.5a)
ik[Eelkt — Fe k] = y[Ce¥" — De 7). (3.5b)

Again, we can solve for two of these coefficients in terms of the other two.
Here, we seek to find C and D in terms of E and F (we will eliminate the
former two through the use of (3.4)). This leads to the matrix equation

(ﬁﬁ) elik=y)a _ (ik _ y) e~ (ik+y)a
C} _ 2y 2y E] (3.6)

b (v gaerna (*EVN e |
2y 2y
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From the pair of equations (3.4) and (3.6), the two propagating coefficients
on the left of the barrier, A and B, can be related directly to those on the
right of the barrier, £ and F, with the two under the barrier dropping out of
consideration. This leads to the matrix equation

Al|Mn Myp| E
B:H:le Mzz]" F:’ 3-7)

Here, the elements are defined by the relations

My = ik + v\ [ik+y Q2ik=ya _ ik—y\ (i — V) 2ik+ya
21k 2y 2y 21k

i (K= 2ika
= | cosh(2ya) — — sinh(2ya) | e (3.8)
2 ky
My — ik +y iki—y o-2va _ ik—.t-y ik —y o2ra
2y 21k 21k 2y
: k2 2
-2 ( Z;/V )sinh(?.ya) (3.9)
My = MY, My, = M5,. (3.10)

It is a simple algebraic exercise to show that, for the present case, the determinant
of the matrix M is unity, so this matrix has quite Interesting properties. It is not
a unitary matrix, because the diagonal elements are complex. In the simple case,
where we will take F = 0, the transmission coefficient is simply given by the
reciprocal of |Mj;|?, since the momentum is the same on either side of the
barrier and hence the current does not involve any momentum adjustments on
the two sides.

3.1.2 The tunnelling probability

In the formulation that leads to (3.7), A and F are incoming waves, while B
and E are outgoing waves. Since we are interested in the tunnelling of a particle
from one side to the other, we treat an incoming wave from only one of the two
sides, so that we will set F' = 0 for this purpose. Then, we find that A = M, 1 E.
The transmission probability is the ratio of the currents on the two sides of the
barrier, directed in the same direction of course, so

1

— . (3.1D)
[M, ]2
Inserting the value for this from (3.8), we find
K2 2 2 -1
T = | cosh?2ya) + sinh?(2ya)
2ky
1
- . (3.12)

2 2\ 2
1+ ty sinh2(2ya)
2ky
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There are a number of limiting cases that are of interest. First, for a very weak
barrier, in which 2ya < 1, the transmission coefficient becomes

1

On the other hand, when the potential is very strong, where 2ya > 1, the
transmission coefficient falls off exponentially as

4k 2
T — (%2—_—&’;) e—e. (3.14)

It is important to note that the result (3.13) is valid only for a weak potential
for which the energy is actually below the top of the barrier. If we consider an
incident energy above the barrier, we expect the barrier region to act as a thin
dielectric and cause interference fringes. We can see this by making the simple
substitution suggested by (3.1) through y — —ik’. This changes (3.12) into

T(E > Vo) = : (3.15)

2\
L+ = sin®(2k’a)

which is precisely the result (2.70) obtained in the last chapter (with a suitable
change in the definition of the wave function in the barrier region). Thus,
above the barrier, the transmission has oscillatory behaviour as a function of
energy, with resonances that occur for 2k’a = nm. The overall behaviour of the
tunnelling coefficient is shown in figure 3.2.

3.2 A MORE COMPLEX BARRIER

In the previous section, the calculations were quite simple as the wave
momentum was the same on either side of the barrier. Now, we want to consider
a somewhat more realistic barrier in which the momentum differs on the two
sides of the barrier. Consider the barrier shown in figure 3.3. The interface at
x = —a is the same as treated previously, and the results of (3.4) are directly
used in the present problem. However, the propagating wave on the right-hand
side of the barrier (x > a) is characterized by a different wave vector through

ky = | 25+ W). (3.16)

Matching the wave function and its derivative at x = a leads to
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Figure 3.2 Tunnelling (transmission) probability for a simple barrier (for generic
values).

Eef¢ { Fe 4 = Ce¥4 4 peve (3.17a)
iky [Ee™¢ — Fe 4] = y [Cers — De 7], (3.17b)

This result is an obvious modification of (3.5). This will also occur for the
matrix equation (3.6), and the result is

ik + Y elki—y)a — ik — Y e~ (iki+y)a
CJ _ 2y 2y E

D (ki =y e liki+y)a ik1+“_y e—(ki=y) d
2y 2y

We can now eliminate the coefficients C and D by combining (3.6) and (3.18).
The result is again (3.7), but now the coefficients are defined by

My, = 1k + 4 ik) +y o (ik+iki ~2y )a
21k 2y

=y k= o ik+iki+2y)a
2y 21k

]. (3.18)
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Figure 3.3 A more complex tunnelling barrier.

1 k i (kk; — y? ;
_ [5 (1 ; ?‘) cosh(2ya) — 3 (mi,;;,i) sinh(zyaﬂ b (3.19)

My, = 1k1 + Y ik _ 4 e-—Z}’a—i(k—-kl)a
2y 21k

_ ik +y iky —y o2y a=itk—kna
21k 2y
i [ kk 2 1 [k .
= — l'-l- (——l—i—y—) sinh(2ya) + = (—/;]- — 1) cosh(2ya)} g ik=ka

2\ ky 2
(3.20)

and the complex conjugate symmetry still holds for the remaining terms.

The determinant of the matrix M is also no longer unity, but is given by
the ratio k,/k. This determinant also reminds us that we must be careful in
calculating the transmission coefficient as well, due to the differences in the
momenta, at a given energy, on the two sides of the barrier. We proceed as
in the previous section, and take F = O in order to compute the transmission
coefficient. The actual transmission coefficient relates the currents as in (2.39)—
(2.41), and we find that
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k 1 4kik/(k k)?
T=—"— = — /g‘+2) . (3.21)
ko |My| '+ +kD) .,
1+ 5 > sinh“(2ya)
vk + k)

In (3.21), there are two factors. The first factor is the one in the numerator, which
describes the discontinuity between the propagation constants in the two regions
to the left and to the right of the barrier. The second factor is the denominator,
which is the actual tunnelling coefficient describing the transparency of the
barrier. It is these two factors together that describe the total transmission of
waves from one side to the other. It should be noted that if we take the limiting
case of k; = k, we recover the previous result (3.12).

There is an important relationship that is apparent in (3.21). The result
represented by (3.21) is reciprocal in the two wave vectors. They appear
symmetrical in the transmission coefficient 7. This is a natural and important
result of the symmetry. Even though the barrier and energy structure of figure 3.3
does not appear symmetrical, the barrier is a linear structure that is passive (there
is no active gain in the system). Therefore, the electrical properties should satisfy
the principal of reciprocity, and the transmission should be the same regardless
of from which direction one approaches the barrier. This is evident in the form
of the transmission coefficient (3.20) that is obtained from these calculations.

3.3 THE DOUBLE BARRIER

We now want to put together two tunnel barriers separated by a quantum well.
The quantum well (that is, the region between the two barriers) will have discrete
energy levels because of the confinement quantization, just as in section 2.5.
We will find that, when the incident wave energy corresponds to one of these
resonant energy states of the quantum well, the transmission through the double
barrier will rise to a value that is unity (for equal barriers). This resonant
tunnelling, in which the transmission is unity, is quite useful as an energy filter.

There are two approaches to solving for the composite tunnelling transmission
coefficient. In one, we resolve the entire problem from first principles, matching
the wave function and its derivative at four different interfaces (two for each
of the two barriers). The second approach, which we will pursue here, uses the
results of the previous sections, and we merely seek knowledge as to how to put
together the transmission matrices that we already have found. The reason we
can pursue this latter approach effectively is that the actual transmission matrices
found in the previous sections depend only upon the wave vectors (the ks and
¥), and the thickness of the barrier, 2a. They do not depend upon the position
of the barrier, so the barrier may be placed at an arbitrary point in space without
modifying the transmission properties. Thus, we consider the generic problem of
figure 3.4, where we have indicated the coefficients in the same manner as that
in which they were defined in the earlier sections. To differentiate between the
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Figure 3.4 Two generic barriers are put together to form a double-barrier structure.

two barriers, we have used primes on the coefficients of the right-hand barrier.
Our task is to now relate the coefficients of the left-hand barrier to those of the
right-hand barrier.

We note that both E and A’ describe a wave propagating to the right. Denoting
the definition of the thickness of the well region as b, we can simply relate these
two coefficients via

Al = Ee*? (3.22)

where k is the propagation constant in the well region. Similarly, F' and B’
relate the same wave propagating in the opposite direction. These two can thus
be related by

B = Fe ¥, (3.23)

These definitions now allow us to write the connection as a matrix in the

following manner:
E ekt 0 | A
F] — I: O e_ikb} B/] . (3.24)

Equation (3.24) now defines a matrix My, where the subscript indicates the well
region. This means that we can now take the matrices defined in sections 3.1
and 3.2 for the left-hand and right-hand regions and write the overall tunnelling

matrix as
A

B} = (M (My] [My] g] (3.25)

From this, it is easy to now write the composite My, as

Mr1y = My Mpie ™ + Myip Mgy (3.26)
and it is apparent that the resonance behaviour arises from the inclusion of the
off-diagonal elements of each transmission matrix, weighted by the propagation

factors. At this point, we need to be more specific about the individual matrix
elements.



68 TUNNELLING

3.3.1 Simple, equal barriers

For the first case, we use the results of section 3.1, where a simple rectangular
barrier was considered. Here, we assume that the two barriers are exactly equal,
so the same propagation wave vector k exists in the well and in the regions to
the left and right of the composite structure. By the same token, each of the
two barriers has the same potential height and therefore the same y. We note
that this leads to a magnitude-squared factor in the second term of (3.26), but
not in the first term with one notable exception. The factor of ¢i2%¢ does cancel
since we are to the left of the right-hand barrier (—a-direction) but to the right
of the left-hand barrier (+a-direction). Thus, the right-hand barrier contributes
a factor of e, and the left-hand barrier contributes a factor of 2%, 5o the
two cancel each other. In order to simplify the mathematical details, we write
the remainder of (3.8) as

My = mype™ (3.27)
where
k2 — 32 2
myy = ,[cosh’(2ya) + sinh*(2ya) (3.28)
2ky
is the magnitude and
k2 a2
6 = tan™! 4 tanh(2ya) (3.29)
2ky

is the phase of M;;. We can then use this to write

| Mo |2 = [My [ 4 1Mo |* + 2\My, 2| Moy |2 cos[2(kb + 6)]
= (1M1 — 1Mx 1) + 4| M1 |2 My | cos®(kb +6).  (3.30)

The first term, the combination within the parentheses, is just the determinant

of the individual barrier matrix, and is unity for the simple rectangular barrier.
Thus, the overall transmission is now

|Mr111> = 1+ 4my, [P My ? cos® (kb + 6). (3.31)

In general, the cosine function is non-zero, and the composite term of (3.31)
is actually larger than that for the single barrier 1), with

T;

Tiotal ~ ff . 3.32
total Ao 2 off resonance ( )

However, for particular values of the wave vector, the cosine term vanishes, and

Tow =1  kb+60=(n+ 1)%. (3.33)
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Figure 3.5 The potential structure for a general double barrier. The definition of the
various constants is given for each region.

These values of the wave vector correspond to the resonant levels of a finite-
depth quantum well (the finite-well values are shifted in phase from the infinite-
well values by 6, which takes the value —=m/2 in the latter case). Hence, as
we supposed, the transmission rises to unity at values of the incident wave
vector that correspond to resonant levels of the quantum well. In essence,
the two barriers act like mirrors, and a resonant structure is created just as
in electromagnetics. The incoming wave excites the occupancy of the resonance
level until an equilibrium is reached in which the incoming wave is balanced
by an outgoing wave and the overall transmission is unity. This perfect match
is broken up if the two barriers differ, as we see below.

3.3.2 The unequal-barrier case

In the case where the two barriers differ, the results are more complicated, and
greater care is necessary in the mathematics. The case we consider is indicated
in figure 3.5. Here, we have individual wave vectors for the regions to the left
and right of the composite barrier, as well as in the well. In addition, the decay
constants of the two barriers differ, so the thicknesses and heights of the two
barriers may also be different. Nevertheless, the result (3.26) still holds and will
be our guide for obtaining the solution.

The definitions of the various functions are now taken from (3.19) and (3.20).
We define the important quantities as
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M; = mie (3.34)

where i = L11, L12, R11, R21. This leads to

1 ke \ 2 1 [kk; — y2\?
My = \/ - (1 + —‘) cosh® 2y a)+3 <——l--_-’i-) sinh?(2ya) (3.35)

4 k ky
1 [ kky +y2\* 1 [k 2
Mpjp =,/ — daty sinh?(2yay)+— =1 cosh®(2yar) (3.36)
4 ky 4\ k
1 k\* 1 (kika = y2\° .,
=, =14+ = h°(2 - — h“(2
MR11 \/4( + kl) cosh”( VIaR)+4( Py sinh®(2yar)
(3.37)
1 (kika + v\~ . 1 [k 2
MRy = \/Z (———]—kz;—;]—yl—) smh2(2ylaR)+Z (-If — 1) cosh?(2y1agr)
, (3.38)
-1 i kkl - }/2 ]
9L]1 = —tan m tanh(2yaL) + (k -+ kl)aL (339)
| 1 .
[ kki + 2 ]
OLpp = — tan~! "(72—1‘17})/; tanh(yaL) | + 7 + (k — ky)ar (3.40)
| \A DT N
4 [ kiky — o2 J
Or1; = —tan™! | —=— "1 (anh(2y,a — (k1 + ky)a 3.41
RI11 o o Cyiar) | — (k1 + ka)ar (3.41)
i [ kika + 92 |
Or21 = tan™! [#—E—%’; tanh(2V1aR)} + 7 + (ki — k)ag. (3.42)

These results for the phases and magnitudes of the individual terms of the
transmission matrices can now be used in (3.26) to yield the net transmission
matrix element, following the same procedure as above:

2 2
[MT111° = (mpiimgy — mpjameap)

0 Oro1 — OLy; — 6
+ dmy MR 1 ML12MRY | COS> (kb—{— L12 + Or2i . L1 Rn)_

(3.43)

Now, as opposed to what was the case in the last sub-section, the first term
(in the parentheses) does become unity. There is still a resonance, which occurs
when the argument of the cosine function is an odd multiple of /2. This is
not a simple resonance, as it is in the previous case. Rather, the resonance
involves phase shifts at each of the two interfaces. It is, however, convenient
that the products of the wave vectors and the barrier thicknesses (the last terms
in the four equations above for the phases) all reduce to a single term, that is
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ki(a. — ar)/2. This contribution to the phase shifts arises from the fact that
the resonant energy level sinks below the infinite-quantum-well value due to
the penetration of the wave function into the barrier region. This penetration
is affected by the fact that the barrier has a finite thickness, and this term is
a correction for the difference in thickness of the two sides. Obviously, if the
thicknesses of the two barriers were made equal this term would drop out, and
we would be left with the simple phase shifts at each boundary to consider.

At resonance, the overall transmission does not rise to unity because of the
mismatch between the two barriers, which causes the first term to differ from
unity. To find the actual value, we manipulate (3.43) somewhat to find the
appropriate value. For this, we will assume that the attenuation of the barriers is
rather high, so that the transmission of either would be < 1. Then, on resonance,
we can write (3.43) as

2 2
IM111]° = (myLiimRy) — MLi2MRr21)
2
mp12MR2]
= m{y May; (1 - —“‘—> - (3.44)
ML1IMR]

Now, let us use (3.35) and (3.36) to write

. r2 (ki — k)’
(muz)z P+ k)’ k) sinh’ 2yay)
y (ki +&)°

AR

1+ .
2 + k) (y? + k2) sinh?* 2y ay)

Akkyy?
(¥2 +k2)(y? + k3) sinh* 2y ay)

¢

~1-T. (3.45)

and

ML Iy
ML 2

(3.46)

where we have used (3.21) in the limit 2y a;, >> 1. We can do a similar evaluation
for the other factor in (3.44), and finally can write (incorporating the ratio k, /k
to get the currents)

TL TR 4 TL TR

T = 5 o >
[1— 1 —11/2) (1 - Tr/2)] (T + Tr)

(3.47)

Equation (3.47) is significant in that if the two transmissions are equal, a value
of unity is obtained for the net transmission. On the other hand, if the two are
not equal, and one is significantly different from the other, the result is that

Tmi n

T >~ 4 .
Tmax

(3.47a)
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This implies that the transmission on resonance is given by the ratio of the
minimum of the two individual barrier transmissions to the maximum of these
two.

The opposite extreme is reached when we are away from one of the
resonant levels. In this case, the maximum attenuation is achieved when the
cosine function has the value of unity, and the resulting minimum in overall
transmission is given by the value

T =T.Tx/2 (3.48)

in the limit of low transmission. It is clear from these discussions that if we
are to maximize the transmission on resonance in any device application, it is
important to have the transmission of the two barriers equal under any bias
conditions that cause the resonance to appear.

3.4 APPROXIMATION METHODS—THE WKB METHOD

So far, the barriers that we have been treating are simple barriers in the sense that
the potential V (x) has always been piecewise constant. The reason for this lies
in the fact that if the barrier height is a function of position, then the Schroédinger
equation is a complicated equation that has solutions that are special functions.
The example we treated in the last chapter merely had a linear variation of
the potential—a constant electric field—and the result was solutions that were
identified as Airy functions which already are quite complicated. What are we to
do with more complicated potential variations? In some cases, the solutions can
be achieved as well known special functions—we treat Hermite polynomials in
the next chapter—but in general these solutions are quite complicated. On the
other hand, nearly all of the solution techniques that we have used involve
propagating waves or decaying waves, and the rest of the problem lay in
matching boundary conditions. This latter, quite simple, observation suggests
an approximation technique to find solutions, the Wentzel-Kramers—Brillouin
approach (Wentzel 1926, Kramers 1926, Brillouin 1926).

Consider figure 3.6, in which we illustrate a general spatially varying
potential. At a particular energy level, there is a position (shown as a) at which
the wave changes from propagating to decaying. This position is known as a
turning point. The description arises from the simple fact that the wave (particle)
would be reflected from this point in a classical system. In fact, we can generally
extend the earlier arguments and definitions of this chapter to say that

k(x) = \/—?[E — V(x)] E>Vx) (3.49)

and

2m
y(x) = \/%T[V(x) — E] E < V(x). (3.50)
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Figure 3.6 A simple variation of potential and the corresponding energy surface,

These solutions suggest that, at least to zero order, the solutions can be taken as
simple exponentials that correspond either to propagating waves or to decaying
waves.

The above ideas suggest that we consider a wave function that is basically a
wave-type function, either decaying or propagating. We then adopt the results
(3.49) and (3.50) as the lowest approximation, but seek higher approximations.
To proceed, we assume that the wave function is generically definable as

W(x) ~ eit® (3.51)

and we now need to determine just what form u(x) takes. This, of course,
is closely related to the formulation adopted in section 2.1, and the differential
equation for u(x) is just (2.6) when the variation of the pre-factor of the exponent
is ignored. This gives

8%u au\>

i— — [ — k2 (x) =0 3.52

i (ax) + k2 (x) (3.52)

and equivalently for the decaying solution (we treat only the propagating one,

and the decaying one will follow easily via a sign change). If we had a true free

particle, the last two terms would cancel (# = kx) and we would be left with
d%u

i— =0. (3.53)

This suggests that we approximate u(x) by making this latter equality an initial
assumption for the lowest-order approximation to u(x). To carry this further,
we can then write the ith iteration of the solution as the solution of

aui 2 2 .azui—-l
(-5;) = K200 i (3.54)
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We will only concern ourselves here with the first-order correction and
approximation. The insertion of the zero-order approximation (which neglects
the last term in (3.54)) into the equation for the first-order approximation leads

to
duty ok 1 ok
ok LN — & 3.55
ox 2(x) +i5 D+ 3 (3-55)

In arriving at this last expression, we have assumed, in keeping with the
approximations discussed, that the second term on the right-hand side in (3.55)
is much smaller than the first term on the right. This implies that, in keeping
with the discussion of section 2.1, the potential is slowly varying on the scale
of the wavelength of the wave packet.

The result (3.55) can now be integrated over the position, with an arbitrary
initial position as the reference point. This gives

7y 2j:/ k(x’)dx’—}—«zl—lnk(x)—{—ln(]] (3.56)

which leads to - _
Cy .

W (x) ~ exp il/k(x') dx’ | . (3.57)
Vk(x) |
The equivalent solution for the decaying wave function is
B X ]

W(x) ~ —2 j:/ (x") dx’ (3.58)

xX) ~ exp y(x)dx']. .
vy)

8 i

It may be noted that these results automatically are equivalent to the requirement
of making the current continuous at the turning point, which is achieved via the
square-root pre-factors.

The remaining problem lies in connecting the waves of one type with those
of the other at the turning point. The way this is done is through a method called
the method of stationary phase. The details are beyond the present treatment,
but are actually quite intuitive. In general, the connection formulas are written
in terms of sines and cosines, rather than as propagating exponentials, and this
will insert a factor of two, but only in the even functions of the propagating
waves. In addition, the cosine waves always couple to the decaying solution, and
a factor of /4 is always subtracted from the phase of the propagating waves
(this 1s a result of the details of the stationary-phase relationship and arises from
the need to include a factor that is the square root of 1). In figure 3.6, the turning
point is to the right of the classical region (where £ > V). For this case, the
connection formulas are given by

2 a b1 1 o

— kdx — = —_— — dx’ 3.59
\/zc‘”(/x ; 4)*’ﬁexp( I x) o
wol[re i) e Foe([ve)  om
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Figure 3.7 An arbitrary potential well in which to apply the wks method.

The alternative case 1s for the mirror image of figure 3.6, in which the turning
point 1s to the left of the classical region (in which the potential would be a
decreasing function of x rather than an increasing function). For this case, the
P matching formulas are given as (the turning point is taken as x = b in this case)

——l——ex (—/b dx’)e——z—cos(/xkdx’—~£) (3.61)
»\/? P X Y \/E b 4 .

1 /b ) 1. (/x n)
— ——— eX dx’' | < —sin dx' — = }. (3.62)
\/7 p( x Y \/—IE b Y 4

To 1llustrate the application of these matching formulas, we consider some simple
examples.

3.4.1 Bound states of a general potential

As a first example of the WKB technique, and the matching formulas, let us
consider the general potential shown in figure 3.7. Our aim is to find the bound
states, or the energy levels to be more exact. It is assumed that the energy level
of interest is such that the turning points are as indicated; that is, the points
x = a and x = b correspond to the turning points. Now, in region 1, to the left
of x = b, we know that the solution has to be a decaying exponential as we
move away from b. This means that we require that

b
W (x) =~ % exp (-—/x y dx’) x < b. (3.63)

At x = b, this must match to the cosine wave if we use (3.61). Thus, we know
that in region 2, the wave function is given by

2 X
Wy (x) o ﬁ COS (/ kdx' — %r_) b<x <a. (3.64)
b
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We now want to work our way across to x = q, and this is done quite simply
with simple manipulations of (3.64), as

2 /x , n) 2 (/x , n)
Ws(x) o — cos kdx' 4+ — — — | = —sin kdx' 4+ —
o) = 2 (b 1 2)T & b 4
2 d a
=-———sin(/ kdx’——/ kdx'-{-z-r-)
\/E b x 4
2 a a
=————cos(f kdx’)sin(f kdx’—z)
‘\/—/g b X 4
2 . “ , “ , T
+ﬁsm(/b kdx)cos(fx kdx' — 4). (3.65)

We also know that the solution for the matching at the interface x = @ must
satisfy (3.59), as the wave function in region 3 must be a decaying wave function.
This means that at this interface, W,(a) must be given only by the second term
of (3.65). This can only be achieved by requiring that

cos (/a kdx’) =0 (3.66)
b

/ kdx’=(2n+1)g— n=0102 .. . (3.67)
b

or

This equation now determines the energy eigenvalues of the potential well, at
least within the WKB approximation.

If we compare (3.67) with the result for a sharp potential as the infinite
quantum well of (2.48), with b = —g, we see that there is an additional
phase shift of /2 on the left-hand side. While one might think that this is
an error inherent in the WKB approach, we note that the sharp potentials of
the last chapter violate the assumptions of the WKB approach (slowly varying
potentials). The extra factor of 7 /2 arises from the soft variation of the potentials.
Without exactly solving the true potential case, one cannot say whether or not
this extra factor is an error, but this factor is a general result of the WKB
approach.

3.4.2 Tunnelling

It is not necessary to work out the complete tunnelling problem here, since
we are interested only in the decay of the wave function from one side of
the barrier to the other (recall that the input wave was always normalized to
unity). It suffices to say that the spirit of the WKB approximation lies in the
propagation (or decaying) wave vector, and the computation of the argument of
the exponential decay function. The result (3.67) is that it is only the combination
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of forward and reverse waves that matter. For a barrier in which the attenuation 1s
relatively large, only the decaying forward wave is important, and the tunnelling
probability is approximately

T ~ exp (—2/a % dx) (3.68)
b

which implies that it is only the numerical coefficients (which involve the
propagating and decaying wave vectors) that are lost in the WKB method. This
tells us that we can use the limiting form of (3.14) (b = —a), or the equivalent
limit of (3.21), with the argument of the exponential replaced with that of (3.68).

3.5 TUNNELLING DEVICES

One of the attractions of tunnelling devices is that it is possible to apply textbook
quantum mechanics to gain an understanding of their operation, and still achieve
a reasonable degree of success in actually getting quantitative agreement with
experimental results. The concept of the tunnel ‘diode’ goes back several
decades, and is usually implemented in heavily doped p-n junctions. In this
case, the tunnelling is through the forbidden energy gap, as we will see below.
Here, the tunnelling electrons make a transition from the valence band, on one
side of the junction, to the conduction band on the other side. More recently,
effort has centred on resonant tunnelling devices which can occur in a material
with a single carrier type. Each of these will be discussed below, but first we
need to formulate a current representation for the general tunnelling device.

3.5.1 A current formulation

In the treatment of the tunnelling problem that we have encountered in the
preceding sections, the tunnelling process is that of a single plane-wave energy
state from one side of the barrier to the other. The tunnelling process, in this
view, iS an energy-conserving process, since the energy at the output side is
the same as that at the input side. In many real devices, the tunnelling process
can be more complex, but we will follow this simple approach and treat a
general tunnelling structure, such as that shown in figure 3.8. In the ‘real’
device, the tunnelling electrons are those within a narrow energy range near
the Fermi energy, where the range is defined by the applied voltage as indicated
in the figure. For this simple view, the device is treated in the linear-response
regime, even though the resulting current is a non-linear function of the applied
voltage. The general barrier can be a simple square barrier, or a multitude
of individual barriers, just so long as the total tunnelling probability through
the entire structure is coherent. By coherent here, we mean that the tunnelling
through the entire barrier is an energy- and momentum-conserving process, so
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Figure 3.8 Tunnelling occurs from filled states on one side of the barrier to the empty
states on the opposite side. The current is the net flow of particles from one side to the
other.

no further complications are necessary. Hence, the properties of the barrier are
completely described by the quantity T'(k).

In equilibrium, where there is no applied bias, the left-going and right-going
waves are equivalent and there is no net current. By requiring that the energy
be conserved during the process, we can write the z-component of energy as
(we take the z-direction as that of the tunnelling current)

5 S
2mz = 2le + constant (3.69)

E =

where the constant accounts for the bias and is negative for a positive potential
applied to the right of the barrier. The two wave vectors are easily related to
one another by this equation, and we note that the derivative allows us to relate
the velocities on the two sides. In particular, we note that

v (k) dk; = v, (ki) dky,. (3.70)
The current flow through the barrier is related to the tunnelling probability

and to the total number of electrons that are available for tunnelling. Thus, the
flow from the left to the right is given by

d3k
Jig = 2 / s kT () F(ED) 3.71)

where the factor of 2 is for spin degeneracy of the electron states, the (277)3 is
the normalization on the number of k states (related to the density of states in k
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space), and f(&L) is the electron distribution function at the barrier. Similarly,
the current flow from the right to the left is given by

d’k
JrL = 28/ z‘z_jr")lgvz(klz)T(klz)f(gR)- (3.72)

Now, we know that the tunnelling probability is equal at the same energy,
regardless of the direction of approach, and these two equations can be combined
as

d3k
1= [ S TEISE) ~ fE+e] BT
o

where we have related the energy on the left to that on the right through the
bias, as shown in figure 3.8, and expressed in (3.69). In the following, we will
drop the subscript ‘L’ on the energy, but care must be used to ensure that it is
evaluated on the left of the barrier.

Before proceeding, we want to simplify some of the relationships in (3.73).
First, we note that the energy is a scalar quantity and can therefore be
decomposed into its z-component and its transverse component, as

E=E+E (3.74)

and
d*k = &%k dk;,. (3.75)

We would like to change the last differential to one over the z-component of
energy, and
deN~! de
dk, = | — — d¢&,. 3.76
Z (dkz> dgz 4 ( )

The second term on the right-hand side is unity, so it drops out. The first term
may be evaluated from (3.69) as

d&  m%k
— = —= =hv,. (3.77)
dk, m

The velocity term here will cancel that in (3.73), and we can write the final
representation of the current as

7= 4 dzk_;_
wh ] Qn)?

/dgz TENf(E+ED — &+ EL+eW)].  (3.T8)

At this point in the theory, we really do not know the form of the
distributions themselves, other than some form of simplifying assumption
such as saying that they are Fermi-Dirac distributions. In fact, in metals,
the distribution functions are well approximated by Fermi-Dirac distributions.
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In semiconductors, however, the electric field and the current flow work to
perturb the distributions significantly from their equilibrium forms, and this will
introduce some additional complications. Additionally, the amount of charge in
semiconductors is much smaller and charge fluctuations near the barriers can
occur. This is shown in figure 3.9 as an example, where the density is plotted as
a function of position along one axis and as a function of z-momentum along the
other axis. There is a deviation of the distribution from its normal form as one
approaches the barrier. This is quite simply understood. Electrons see a barrier
in which the tunnelling is rather small. Thus, the wave function tries to have a
value near zero at the interface with the barrier. The wave function then peaks
at a distance of approximately A/2 from the barrier. But this leads to a charge
depletion right at the barrier, and the self-consistent potential will try to pull
more charge toward the barrier. Electrons with a higher momentum will have
their peaks closer to the barrier, so this charging effect leads to a distribution
function with more high-energy electrons close to the barrier. In essence, this is
a result of the Bohm potential of (2.7), as quantum mechanics does not really
like to have a strongly varying density. In metals, where the number of electrons
is quite high, this effect is easily screened out, but in semiconductors it can be
significant. Whether or not it affects the total current is questionable, depending
upon the size of the tunnelling coefficient. Nevertheless, we need to account for
the distribution function being somewhat different from the normal Fermi-Dirac
function.

We can avoid the approximations, at least in the linear-response regime,
by deriving a relationship between the distribution functions on the two sides
that will determine the deviations from equilibrium. For example, the electron
population at the level &, is obviously related to that on the right of the barrier
by (Landauer 1957, 1970)

Ju(=ke) = Rfi(k;) + T fr(—k1,) (3.79)

where R = 1 — T is the reflection coefficient. This means that electrons that
are in the state —k, must arise either by tunnelling from the right-hand side
or by reflection from the barrier. Using the relation between the reflection and
tunnelling coefficients, we can rewrite this as

Jolke) = fil=k;) = Tfilk,) — T fo(—ki,). (3.80)

Similarly, we can arrive at the equivalent expression for the distribution on the
right-hand side of the barrier:

Trtkie) = fr(=kip) = Tfi(k,) — T fa(—ky,). (3.81)

The first thing that is noted from (3.80) and (3.81) is that the two left-hand sides
must be equal, since the two right-hand sides are equal. Secondly, the terms on
the right are exactly the terms necessary for the current equation (3.78).
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Figure 3.9 A quantum charge distribution, with a single tunnelling barrier located in the
centre. The charge is plotted as a function of position along one axis and as a function of
the z-component of momentum along the other. The double-barrier structure is indicated
by the heavier lines parallel to the momentum axis that are drawn at the centre of the
density. '

To proceed further, we want to dissect the distribution functions in a manner
suggested by (3.80) and (3.81). Here, we break each of the two functions into
its symmetric and anti-symmetric parts, as

Jkz) = foky) + f2(k,) (3.82)

and where we assume that each is still multiplied by the appropriate term for
the transverse directions. Thus, we may write the two parts as

Filky) = 31f0) + f(—k)] (3.83a)
fik) = 50f (k) — f(=k)]. (3.83b)

Equations (3.80) and (3.81) now require that the two anti-symmetric parts of the
distribution functions must be equal (the two left-hand sides, which are equal,
are just the anti-symmetric parts), or

filkr) = frki) = fo(ky). (3.84)

This can now be used to find a value for the anti-symmetric term from the values
of the symmetric terms, as

27%k:) = TIf (k) — frla)] + 2T £ (k) (3.85)

and LT
fik,) = ‘im[ff(kz) — frlki)]. (3.86)
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It 1s this quantity, the anti-symmetric part of the distribution function, that is
responsible for the tunnelling current (or for any current). The normalization -
of the symmetric part is the same as the equilibrium distribution function.
That is, each of these normalizes to give the proper total density on either
side of the barrier. For this reason, many authors linearize the treatment by
replacing the symmetric part of the total distribution function with the Fermi—
Dirac distribution function, and this is perfectly acceptable in the linear-response
regime. The charge deviation that we saw in figure 3.9 is symmetric, but its
effect is reflected in the ratio of the transmission to the reflection coefficients
that appears in (3.86). Technically, the distortion shown in this latter value differs
from the calculation that has been carried out here to find the anti-symmetric part
of the overall distribution. However, both of these corrections are small (we are
in linear response), and the effect of the factor T/(1 — T) introduces corrections
that can account for both effects. When T is near unity, the latter factor can
be much larger than unity. In principle, such corrections must include the extra
high-energy carriers near the barrier, but this is an after-the-fact assertion. In
the next section, we will see how the corrections of figure 3.9 should properly
be included. The final equation for the current is then

[fs(gz + S.L) - fs(gz +& + eV,)].
(3.87)

e d%k /déf T(&,)

nh | (27)? “1—-T(&)

(The factor of 2 in (3.86) cancels when the two distributions in (3.78) are put
together, using the fact that the distribution on the right of the barrier is for a
negative momentum, which flips its sign in the latter equation.)

3.5.2 The p-n junction diode

The tunnel diode is essentially merely a very heavily doped p-n junction, so
the built-in potential of the junction is larger than the band gap. This is shown
in figure 3.10(a). When a small bias is applied, as shown in figure 3.10(b), the
filled states on one side of the junction overlap empty, allowed states on the
other side, which allows current to flow. So far, this is no different from a normal
junction diode, other than the fact that the carriers tunnel across the forbidden
gap at the junction rather than being injected. However, it may be noted from
figure 3.10(b) that continuing to increase the forward bias (the polarity shown)
causes the filled states to begin to overlap states in the band gap, which are
forbidden. Thus, the forward current returns to zero with increasing forward
bias, and a negative differential conductance is observed. When combined with
the normal p—n junction injection currents, an N -shaped conductance curve is
obtained, which leads to the possibility of the use of the device for many novel
electronic applications. In the reverse bias direction, the overlap of filled and
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Figure 3.10 The band line-up for degenerately doped p-n junctions (@), and the possible
tunnelling transitions for small forward bias (b).

empty (allowed) states continues to increase with all bias levels, so no negative
conductance is observed in this direction of the current.

When the electric field in the barrier region is sufficiently large, the
probability of tunnelling through the gap region is non-zero; for example,
tunnelling can occur when the depletion width W is sufficiently small. One
view of the tunnelling barrier-is that it is a triangular potential, whose height is
approximately equal to the band gap, and whose width at the tunnelling energy is
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the depletion width W. In section 2.6, we found that a triangular-potential region
gave rise to wave functions that were Airy functions. The complications of these
functions provide a strong argument for the use of the WKB approximation. Here,
we can take the decay coefficient as

2még X &L
y(x) =~ \/——————h2 (1—-———!—2—6—) O<x<W (3.88)

0 elsewhere

where we have factored the energy gap out of the potential term and evaluated
the electric field as £ /eW. The last term in the square root accounts for the
transverse energy, since the tunnelling coefficient depends upon only the z-
component of momentum (the z-component of energy must be reduced below the
total energy by the transverse energy). This expression must now be integrated
according to (3.68) over the tunnelling region, which produces

2
T =~ exp ——2/ \/ m&; _i+?") dx]
G

2m5G 35_L
o i 1 3.89
SRR T ( + 2&3) (3.89)

where we have expanded the radical to lowest order, and retained only the
leading term in the transverse energy since it is considerably smaller than the
band gap. It turns out that the result (3.89) is not sensitive to the actual details
of the potential, since it is actually measuring the area under the V-& curve.
Different shapes give the same result if the areas are equal. Recognizing this
assures us that the approximation (3.89) is probably as good as any other. We
can rewrite (3.88) as

E
T >~ Toexp [——l} (3.90)
&o
where
ek h?
Ey = — ) 3.91
"7 2V 2még (39D

This can now be used in (3.86) to find the current.

We first will tackle the transverse energy integral. To lowest order, we note
that the term involving the Fermi-Dirac functions is mainly a function of the
longitudinal z-component of the energy, which we will show below, so the
transverse terms are given by

Ep—eV, d?_k £
fo )7 (€L /E) = ;hf’z [1 — exp(—(Er — Vi) /E)].  (3.92)
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The limits on the previous integral are set by the fact that the transverse energy
can only increase up to the sum of the Fermi energies on the two sides of the
junction (measured from the band edges) reduced by the longitudinal energy.

The longitudinal contribution may be found by evaluating the energies in the
Fermi-Dirac integrals, through shifting the energy on one side by the applied
voltage eV,. This leads to the result, in the linear-response limit, that

. . V‘d s S
[FS(E, + EL) — f3(E +EL +eVi)] ,f TR
B
~ —eV, ~eV,6(&, — EF).

3E,
(3.93)

The last approximation 1s for strongly degenerate material (or equivalently, very
low temperature). Then the integration over &£, gives just eV, times the tunnelling
probability Tp. We can now put (3.92) and (3.93) in the general equation (3.86)
to obtain the total current density

Ty m& V.
J, = clom F; (1 _th “) ev,. (3.94)
wh 2h

As we discussed at the beginning of this section, the current rises linearly with
applied bias, but then decreases as the electron states on the right-hand side begin
to overlap the forbidden states in the energy gap, which cuts off the current. We
show the tunnelling current in figure 3.11, along with the normal p-n junction
current due to injection and diffusion.

3.5.3 The resonant tunnelling diode

The resonant tunnelling diode is one in which a double barrier is inserted
into, say, a conduction band, and the current through the structure is metered
via the resonant level. The latter corresponds to the energy at which the
transmission rises to a value near unity. The structure of such a system, in
the GaAs/AlGaAs/GaAs/AlGaAs/GaAs system with the AlGaAs forming the
barriers, 1s shown in figure 3.12. Typically, the barriers are 3-5 nm thick and
about 0.3 eV high, and the well is also 3-5 nm thick.

To proceed, we will use the same approximations as used for the p—n junction
diode, at least for the distribution function. The difference beween the Fermi—
Dirac distributions on the left-hand and right-hand sides, in the limit of very
low temperature (7 — 0 K) gives

[fs(gz +&1) — fs(gz + &L +eVy)] = eV, 8§£Z + &1 — &R). (3.95)

We retain the transverse energy in this treatment, since we must be slightly more
careful in the integrations in this model. The tunnelling probability can also be
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Figure 3.11 The contribution of the tunnelling current to the overall current of a tunnel
diode.

taken as approximately a delta function, but with a finite width describing the
nature of the actual lineshape (an alternative is to use something like a Lorentzian
line, but this does not change the physics). Thus, we write (we note that the
transmission will be less than unity and ignore the T-term in the denominator)

T(E) ~ Ew 8(E, + eVy/2 — &) (3.96)

where we have assumed that the width of the transmission is £&w, and that the
resonant level is shifted downward by an amount equal to half the bias voltage
(everything is with reference to the Fermi energy on the left-hand side of the
barrier, as indicated in the figure). Thus, the current can be written from (3.86)
as

2Va & Er
=L WJd&/ 8(E +EL— ER)S(E; +eVa/2 — En) dEL

nh 2nh 0
ezva mgw &

— S(&p — & +3Va 2—&)dE

 7h 27r712/(; =& / R
62Va mSw

=— -~ 2(E — &F) < eV, < 2&;. (3.97)

Outside of the indicated range of applied bias, the current is zero. At finite
temperature (or if a Lorentzian lineshape for T is used), the current rises more
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Figure 3.12 A typical double-barrier resonant tunnelling diode potential system, grown
by heteroepitaxy in the GaAs—-AlGaAs system. In (a), the basic structure is shown for
an n-type GaAs well and cladding. In (b), the shape under bias is shown.

smoothly and drops more smoothly. Essentially, the current begins to flow as
soon as the resonant level & is pulled down to the Fermi energy on the left-hand
side (positive bias is to the right), and current ceases to flow when the resonant
level passes the bottom of the conduction band. This is shown in figure 3.13,
while experimentally observed curves are shown in figure 3.14.

3.6 THE LANDAUER FORMULA

The general approach that was used to evaluate the current equation (3.87)
was to expand the difference between the distribution functions and use the
resulting ‘delta functions’ to define a range of energies over which the tunnelling
probability is summed. These energies correspond to those states that are full
on one side of the barrier and empty on the other side (and, of course, allowed).
Through the entire process, the current is ‘metered’ by the tunnelling probability.
By this, we mean that the current is limited by this process. One question that
has been raised is quite obvious: we have a current passing through a region
defined by the tunnelling barriers and their cladding layers; we have a voltage
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Figure 3.13 The theoretical curves for the simple model of (3.97) are shown for Zero
temperature and finite temperature.

Systems, referred to as mesoscopic systems. We can examine this contact effect
further.

Let us integrate (3.86) over the transverse dimensions, so that it can be
rewritten as

2
I = ;,;fl-A d k_j_ /dgz T((C:Z) [fS(gz +£_L) — fs(gz +£_]_ +€Va)]

(2m)? 1 —-T(&)

eV, mA T(E,)
=—222 (4, [ae L SE 4+ E, — &
o 27rh2/ ‘L/ To1E) G e —&)

e’V, mA [& T(E — &)
— de; z
wh 27n? J, 1 -TE ~¢£))
e*V, m&, A T(E,)
= _ 3.98
Th 2wh? 1 — T () (3.98)

Here, &, is an average transverse energy. The second fraction in (3.98) is an
interesting quantity, in that it is essentially just k2 A, where k. is the wave vector

i
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Figure 3.14 The experimental curves obtained for a GaAs—AlGaAs structure with 5 nm
barriers and a 5 nm well. The extra current above the drop-off is due to higher resonant
states and emission over the top of the barrier; both are forms of leakage. (After Sollner
et al (1983), by permission.)
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CURRENT (mA)

corresponding to this average energy. This fraction is just the number of allowed
transverse states that can contribute to the current. If we call this latter quantity
M, then we can write (3.98) as (we use 1 = GV, to write only the conductance
G)
2 N
G=2_5"_1% (3.99)
nh “—~1-T,

=1

where it is assumed that Cnergy conservation ensures that there is no change in
the number of transverse states. If we refer to the transverse states by the term
transverse modes, then (3.98) is termed the Landauer formula (the notation used
here is a simple version, assuming no mode coupling). It is normally seen only
in small mesoscopic Systems applications, but it is clear that its applications
are even to normal tunnelling structures so long as we recall just what the
summation means.

There is an interesting suggestion in (3.98). In large systems, where the
number of transverse states 1$ enormous, and where the conductance can vary
over a large range, the conductance is a smooth function of the energy. As
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Figure 3.15 Quantized resistance (a) and conductance (b) can be observed in small
conducting systems. Here, the number of transverse states in the small opening between
the metal gates is varied by changing the bias on the gates (shown in the inset to (a)).
(After van Wees et al (1988), by permission.)

the Fermi energy, or the bias voltage, is varied, the number of states affected
1s so large that the conductance is a smooth function of the bias voltage. In
small systems, however, the number of transverse modes is quite small, and the
conductance should increase in steps of e?/mhi—as the bias, or the number of
transverse modes, is varied. This variation has only been recognized in the past
few years, and we show one of the early experiments in figure 3.15. Here, the
structure is composed of a GaAs/GaAlAs heterostructure in which the electrons
at the interface (on the GaAs side of the interface) sit in a triangular potential,
as in section 2.6. Their motion normal to the interface is quantized; however,
they are free to move in the plane of the interface and form what is known as
a quasi-two-dimensional electron gas. On the surface, metal gates are so placed
that when biased they deplete the electrons under the gate. Thus the structure
shown in the inset will allow the electrons to move between the two large-area
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Figure 3.16 The two-terminal and four-terminal resistances are defined in terms of the
voltages V, and Vi, respectively. They differ by the contact resistances.

regions, but only a very few transverse states exist in the opening. This number
can be varied by adjusting the bias on the metal gates, and the conductance shows
steps as indicated in the figure. In this measurement, the tunnelling probability
is unity as there is no barrier; in fact, as the transverse states are populated and
carry current, their transmission coefficient changes from zero to one.

When the transmission is near unity, why do we not see the denominator term
playing a larger part? The answer is that the measurement is a ‘two-terminal’
measurement. Consider, for the moment, only a single transverse state, so that
(3.99) can be written as

E

G = (3.100)

o2

ah 1 —T;
We may assert that this is the resistance just across the ‘tunnelling’ region,

and must be modified by the contact resistance for a measurement in which the

potential drop is measured at the current leads (a ‘two-terminal’ measurement;

see figure 3.16). If we rewrite this equation in terms of resistances, then

wh [ 1
Ri=—1|——1 3.101
4= (Ti ) ( )

where the subscript refers to a measurement in which the potential is measured
at the barriers and at contacts that are independent of the current leads. The
difference lies in the fact that the contacts are areas where equilibration occurs.
If we recognize that the original form of the current density (3.77) implied a
two-terminal definition, we can say that

mh 1
Ry = — — 3.102
=7 (3.102)
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Figure 3.17 The potential profile for a resonant tunnelling diode, in which a
depletion region (to the left of the barriers) creates a contact resistance to balance the
current-carrying preferences of the barriers and the contacts.

and the difference is given by

Ry = Ry + R, R, = -jgl-. (3.103)
The last form defines the contact resistance R..

Contact resistances are a function of all basic dissipative structures, even
though the dissipation in the present problem is actually in the contact.
Nevertheless, when the contacts want to carry a current different from that of
the ‘barrier’ regions, for a given voltage drop, then additional resistance occurs
in the structure. This is shown in figure 3.17 for a model of a resonant tunnelling
diode, in which the potential throughout the device can be obtained self-
consistently from Poisson’s equation. The curvature to the left of the barriers is
due predominantly to carrier depletion here which leads to a ‘contact’ resistance
in the structure.

How are we to interpret the difference between the two-terminal and the
four-terminal conductances, and therefore how are we to interpret the Landauer
formula. If we are truly in the boundary regions, where the distribution function
is a Fermi-Dirac distribution, then we can use the two-terminal formula,
provided that we compute the total transmission over the entire region between
the boundaries, with the full variation of the self-consistent potential with
position in that region. On the other hand, if we separate the current contacts
and the potential contacts, a four-terminal formula may be used, as long as
it is interpreted carefully. Effects such as those in figure 3.9 must be carefully
included in the region over which the transmission coefficient is being calculated
(or measured). Even with a four-terminal measurement, it must be ascertained
that the actual contact resistance differences are Just those expected and no

unusual effects have been overlooked.
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Figure 3.18 A simple periodic potential.
3.7 PERIODIC POTENTIALS

At this point, we want to turn our attention to an array of quantum wells, which
are spaced by barriers sufficiently thin that the wave functions can tunnel through
in order to couple the wells together. In this sense, we create a periodic potential.
Due to the extreme complexity of the true periodic potential, for purposes of
calculation it is preferable to simplify the model considerably. For that purpose,
we will assume square barriers and wells, as shown in figure 3.18. Although the
potential model is only an approximation, it enables us to develop the essential
features, which in turn will not depend crucially upon the details of the model.
The importance of this model is in the energy band structure of crystalline
media, such as semiconductors in which the atoms are arranged in a periodic
array, and the atomic potentials create a periodic potential in three dimensions
in which the electrons must move. The important outcomes of the model are the
existence of ranges of allowed energies, called bands, and ranges of forbidden
energies, called gaps. We have already, in the previous sections, talked about
band gaps in p—n junctions. Here, we review just how periodic potentials give
rise to such bands and gaps in the energy spectrum.

The (atomic) potential is represented by the simple model shown in
figure 3.18, and such details as repulsive core potentials will be ignored. Our
interest is in the filtering effect such a periodic structure has on the energy
spectrum of electron waves. The periodic potential has a basic lattice constant
(periodicity) of d = a + b. We are interested in states in which £ <« V. The
Schrédinger equation now becomes

R 2y,
5 — E¥, =0 O<x<a (3.104a)
and
n? d*w,
- - E\yl = ——V()\Ifl -b<x <0, (3104b)

T 2m dx?
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Of course, shifts of the x-axis by the amount d bring in other regions in which
(3.104) is found to be the appropriate equation. Nevertheless, there will be a
point at which we will force the periodicity onto the solutions. We also expect
that the wave function will be periodic with the same periodicity as the potential,
or

W (x) = e u(x) (3.105)

where u(x) has the periodicity of the lattice. A wave of the form (3.105) is
termed a Bloch function. If we insert (3.104) into (3.103), the resulting equation
is

G d
U@ K0 =0 0<x<a (3.106)
X
and
T TGP+ KD =0 b <x <0, (3.106b)

Here, k and y haye their normal meanings as defined in (3.1). These can now
be solved by normal means to yield

uy = Ae” ' K=bx | pe-ilK+h)x O<x<a (3.107a)
Uy = Ce UK=1x | pe=(K+y)x —b<x <. (3.107b)

These solutions again represent waves, in each case (either propagating or
evanescent), one propagating in each direction.

There are now four unknowns, the coefficients that appear in (3.107).
However, there are only two boundaries in effect. Hence, we require that both
the wave function and its derivative be continuous at each boundary. However, it
is at this point that we will force the periodicity onto the problem via the choice
of matching points. This is achieved by choosing the boundary conditions to
satisfy

u1(0) = uy(0) (3.108)

uy(a) = uz(—b) | (3.109)

d10) _ dux(0) (3.110)
dx dx

duy(a) _ duz(—b). G111
dx dx

The choice of the matching points, specifically the choice of —b instead of a on
iy, causes the periodicity to be imposed upon the solutions. These four equations
lead to four equations for the coefficients, and these form a homogeneous set
of equations. There are no forcing terms in the equations. Thus, the coefficients
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can differ from zero only if the determinant of the coefficients vanishes. This
leads to the determinantal equation

1 1 -1 -1
e—1(K—K)a e~ i(K+k)a —e(K=y)b _e(K+y)b
—1(K — k) —1(K + k) iK—vy iK+vy
—i(K — k)em—i(K—k)a —i(K + k)e—i(K+k)u (iK — y)e(il(—y)b (K + y)e(iK—%-y)h
= 0. 3.112)

Evaluating this determinant leads to

2 2

4 Zk_yk sinh(yb) sin(ka) + cosh(y b) cos(ka) = cos[K (b + a)]. (3.113)

In one of the previous sections, it was pointed out that the true measure of
a tunnelling barrier was not its height, but the product yb. Here we will let
V, — o0, but keep the product Vob = Q finite, which also requires taking the
simultaneous limit » — 0. Since yb varies as the square root of the potential,
this quantity approaches zero, so (3.113) can be rewritten as

2
b
Zz_k“ sin(ka) + cos(ka) = cos(K a). (3.114)

The right-hand side of (3.114) is constrained to lie in the range [—1, 1], so the
left-hand side is restricted to values of k, a that yield a value in this range. Now,
these latter constants are not constrained to have these values, but it is only when
they do that the determinant vanishes. This means that the wave functions have
values differing from zero only for those values of k, a for which (3.114) is
satisfied. This range can be found graphically, as shown in figure 3.19 (in the
figure, only the positive values of Ka are shown, as the figure is completely
symmetrical about Ka = 0, as can be seen by examining the above equations).
The ranges of k, a for which (3.114) is satisfied are known as the allowed states.
Other values are known as forbidden states. The allowed states group together in
bands, given by the case for which the left-hand side traverses the range [—1, 1].
Each allowed band is separated from the next by a forbidden gap region, for
which the left-hand side has a magnitude greater than unity.

In this model, k is a function of the energy of the single electron, so the limits
on the range of this parameter are simply the limits on the range of allowed
energies. If this is the case, then the results should agree with the results for
free electrons and for bound electrons. In the former case, the pre-factor of the
first term in (3.114) vanishes, and we are left with k = K. Thus, the energy is
just given by the wave vector in the normal manner. On the other hand, when
the pre-factor goes to infinity, we are left with

ni

sin(ka) =0 k = (3.115)
a
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Limits of cos(Ka )

Allowed energy bands

Figure 3.19 The allowed and forbidden values of ka. The shaded areas represent the
allowed range of energy values.

which produces the bound-state energies of (2.48) (recall that the well width
was 2a in the previous chapter). Thus, the approach used here does reproduce
the limiting cases that we have already treated. The periodic potential breaks
up the free electrons (for weak potentials) by opening gaps in the spectrum of
allowed states. On the other hand, for strong potentials, the periodic tunnelling
couples the wells and broadens the bound states into bands of states. These are
the two limiting approaches, but the result is the same.

The ranges of values for & that lie within the limits projected by K are those
of the allowed energy bands (each region of allowed solutions in figure 3.19
corresponds to one allowed energy band). In figure 3.20, we show these
solutions, with all values of k restricted to the range —mw/a < K < w/a. In
solid-state physics, this range of K is termed the first Brillouin zone and the
energy bands as shown in figure 3.20 are termed the reduced zone scheme (as
opposed to taking K over an infinite range). We note that the momentum K (or
more properly #K) is the horizontal axis, and the energy is the vertical axis,
which provides a traditional dispersion relation of the frequency @ = £/h as a
function of the wave vector K.

3.8 SINGLE-ELECTRON TUNNELLING

As a last consideration in this chapter, we want to consider tunnelling through the
insulator of a capacitor (which we take to be an oxide such as SiO, found in MOS
structures). The tunnelling through the capacitor oxide is an example of a very
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Figure 3.20 The energy band structure that results from the solution diagram of
figure 3.19.

simple physical system (the single capacitor) that can exhibit quite complicated
behaviour when it is made small. The capacitor is formed by placing an insulator
between two metals or by the oxide in a metal-oxide-semiconductor structure,
as discussed in section 2.6. Consider, for example, the tunnelling coefficient
for such an insulator, in which the barrier height is approximately 3 eV, and
the thickness of the insulator (assumed to be SiO,) is about 3 nm. Although
the tunnelling coefficient is small (we may estimate it to be of the order of
1079), the actual current density that can flow due to tunnelling is of the order
of a few picoamperes per square centimetre. If the barriers are semiconductors,
rather than metals, then the current can be two orders of magnitude larger,
and, of course, the tunnelling coefficient will become much larger under a bias
field which distorts the shape of the potential barrier. Thus, in general, oxide
insulators of this thickness are notoriously leaky due to tunnelling currents,
even though the tunnelling probability is quite low for a single electron (there
are of course a great number of electrons attempting to tunnel, so even though
the probability of one electron tunnelling is quite low, the number making it
through is significant).

What if the area of the capacitor is made small, so that the capacitance is also
quite small? It turns out that this can affect the operation of tunnelling through
the oxide significantly as well. When an electron tunnels through the oxide, it
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Figure 3.21 Single-electron tunnelling currents in small capacitors. The voltage offset
is due to the Coulomb blockade. (After Fulton and Dolan (1987), by permission.)

lowers the energy stored in the capacitor by the amount

2

e
8 = —. 3.116
°C ( )
For example, the voltage across the capacitor changes by the amount
5V = = (3.117)
== .

What this means is that the tunnelling current cannot occur until a voltage
equivalent to (3.117) is actually applied across the capacitor. If the voltage on
the capacitor is less than this, no tunnelling current occurs because there is
not sufficient energy stored in the capacitor to provide the tunnelling transition.
When the capacitance is large, say > 107!2 F, this voltage is immeasurably
small in comparison with the thermally induced voltages (kgT/¢). On the other
hand, suppose that the capacitance is defined with a lateral dimension of only
50 nm. Then, the area is 2.5 x 107> m?, and our capacitor discussed above has a
capacitance of 2.8 x 10717 F, and the required voltage of (3.117) is 5.7 mV. These
capacitors are easily made, and the effects easily measured at low temperatures.
In figure 3.21, we show measurements by Fulton and Dolan (1987) on such
structures. The retardation of the tunnelling current until a voltage according
to (3.117) is reached is termed the Coulomb blockade. The name arises from
the need to have sufficient Coulomb energy before the tunnelling transition can
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occur. The Coulomb blockade causes the offset of the current in the small- (S)
capacitor case. This offset scales with area, as shown in the inset to the figure,
and hence with C as expected in (3.117).

3.8.1 Bloch oscillations

The results discussed above suggest an interesting experiment. If we pass a
constant current through the small capacitor, the charge stored on the capacitor
can increase linearly with time. Thus, the charge on the capacitor, due to the
current, is given by

Q(t):f [dt = It. (3.118)
0

When the voltage reaches the value given by (3.117), an electron tunnels across
the oxide barrier, and reduces the voltage by the amount given by this latter
equation; for example, the tunnelling electron reduces the voltage to zero. The
time required for this to occur is just the period 7', defined by

_2r (3.119)

€
T = ~
I wsg

o_
7=
which defines the Bloch frequency. As we will see, this relates to the time
required to cycle through a periodic band structure, such as those discussed in
the previous section. Many people have tried to measure this oscillation, but (to
date) only indirect inferences as to its existence have been found.

The voltage that arises from the effects described above can be stated as Q/C,
where Q is measured by (3.118) modulo e. Here, Q(¢) is the instantaneous
charge that arises due to the constant current bias, while e is the electronic
charge. The charge on the capacitor, and therefore the voltage across the
capacitor, rises linearly until the energy is sufficient to cover the tunnelling
transition. At this point the charge drops by e, and the voltage decreases
accordingly.

This behaviour is very reminiscent of that in periodic potentials, where a
Bloch band structure and Brillouin zones are encountered. Consider the band
structure in figure 3.20, for example. If we apply a constant electric field to the
solid represented by this band structure, then the momentum responds according

to

dk
h— = ¢eF (3.120)
dr

T {eFt]
k=—=+|— .
a h mod(2m/a)

The meaning of (3.121) is that the magnitude of the wave vector k increases
linearly with electric field, and when it reaches the zone boundary at w/a

and
(3.121)
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Figure 3.22 The variation in wave vector (or charge) in a periodic potential under the
action of a constant electric field. The phase is ¢ = wpt = (eFat)/h.

it is Bragg reflected back to —m/a, from where it is again continuously
accelerated across the Brillouin zone. (Of course, this is in the reduced zone
scheme for the momentum.) This behaviour is shown in figure 3.22, where
¢ = (eFat)/h = wgt is defined to be the phase, and wg is the Bloch frequency.
If we connect the phase with 17 /e, and offset the charge by the amount —e/2,
then this figure also describes the behaviour of the charge in the capacitor
as described in the previous paragraph. Can we say that the charge is Bragg
reflected at £e/27

3.8.2 Periodic potentials

The drop in charge, given by the tunnelling of the electron through the small
capacitor, does not occur with sudden sharpness, when we operate at a non-
zero temperature. Thus, it is possible to approximate the result of (3.118), and
figure 3.22, by the expression for the charge on the capacitor as

o) = %sin(wgt) (3.122)

which symmetrizes the charge about zero (for zero current bias), and the change
occurs now when the instantaneous charge reaches half-integer charge (dropping
to the negative of this value so that the net tunnelling charge is a single electron).
Now, we want to create a Hamiltonian system, which we can quantize, to
produce the effective periodic potential structures of the previous section. For
this, we define the phase of the charge to be

¢ = wst. (3.123)
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We take this phase to have the equivalent coordinate of position given in the
previous section (we will adjust it below by a constant), and this means that we
can extend the treatment to cases in which there is not a constant current bias
applied. Rather, we assert that the phase behaves in a manner that describes
some equivalent position. The position is not particularly important for periodic
potentials and does not appear at all in figure 3.20 for the band structure. We
now take the momentum coordinate to correspond to

2
g = 0. (3.124)

Now, this choice is not at all obvious, but it is suggested by the comparison above
between the time behaviour of the charge, under a constant current bias, and the
time behaviour of the crystal momentum, under a constant electric field bias.
The independent variable that describes the state of the capacitor is the charge
Q. From the charge, we determine the energy stored in the capacitor, which is
just Q?/2C. If we think of the capacitance C playing the role of the mass in
(3.1), we can think of the charge as being analogous to the momentum %k. Then
the energy on the capacitor is just like the kinetic energy in a parabolic band for
free electrons. The relationship (3.122) reflects a periodic potential which will
open gaps 1n the free-electron spectrum, and these gaps occur when Q = 4-¢/2
(a total charge periodicity of ), just as they occur at k = 7w /a for electrons in
a periodic potential. In fact, the zone edges occur for the free electrons when
ka = nm. Thus, the quantity kx plays the role of a phase with boundaries at
x = +a.

Since we now have a momentum, and a coordinate resembling a ‘position’,
we can develop the commutator relationship (1.22), but for the ‘correct” answer,
we need to scale the phase by the factor ii/e. Then,

(O, (h/e)p] = —ih. (3.125)

This suggests that the correct position variable, which 1s now conjugate to the
charge, 1s just (hi/e)¢.

The time derivative of the momentum is just Newton’s law, and this can lead
us to the proper potential energy term to add to the kinetic energy to obtain the
total energy. We use

dQ av
— =F=-—, 3.126
dt dx ( )
Thus, the potential energy is just
hwg hwsp X
vy~ =28 [cos@rdp ~ TR0 —sin@)  (120)

and the constant term has been artificially adjusted, as will be discussed below.
Now, we want to compare this with the periodic potential shown in figure 3.18.
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Figure 3.23 The energy band spectrum for the single tunnelling capacitor.

It is possible to expand the potential in figure 3.18 in a Fourier series, and it is
obvious that (3.127) is just the lowest-order term in that expansion. It is also
possible to expand the charge behaviour of figure 3.22 in a Fourier series and
(3.122) is the lowest term in that expansion. Thus, the potential of (3.127) and
the charge of (3.122) both correspond to the simplest periodic potential, which
is just the lowest Fourier term of any actual potential. The constant term in
(3.127) has been defined as just half of the height of the potential, so the sum of
the constant and the sine term corresponds to the peak of the potential, and the
difference corresponds to the zero-potential region of figure 3.18. For reference,
the value of phase ¢ = m/2 corresponds to x = 0 in figure 3.18. Now, in
periodic potentials, there is a symmetry in the results, which must be imposed
onto this problem, and this arises from the fact that we should have used +Q
in (3.126), which leads to the adjusted potential

V() = [1 + sin(¢)] (3.128)

which shifts the x = 0 point to ¢ = 7/2. The leading term in the potential
Just offsets the energy, and can be ignored. The Hamiltonian is then

QZ
H = 5C + -~:2-- sin(¢). (3.129)
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This Hamiltonian is in a mixed position and momentum representation. The
energy can be written out if we use just a momentum representation, and this is
achieved by using (3.122) to eliminate the phase, as

inﬁszQ
27 2 e

E =

(3.130)

This energy is shown in figure 3.23. The zone boundaries are at the values of
charge Q = £e/2. At these two points, gaps open in the ‘free-electron’ energy
(the first term in the above equation). These gaps are of ficwg. We note also that
the energy bands have all been offset upward by the constant potential term,
which we ignored in (3.130). This is also seen in the Kronig-Penney model
treated in the previous section.

The simple capacitor seems to exhibit the very complicated behaviour
expected from a periodic potential merely when it is made sufficiently small
that tunnelling through the oxide can occur (and the capacitance is sufficiently
small that the energy is large compared with the thermal energy). In reality, no
such periodic potential exists, but the very real behaviour of the charge, which is
represented in figure 3.22, gives rise to physical behaviour equivalent to that of a
periodic potential. Thus, we can use the equivalent band structure of figure 3.23
to investigate other physical effects, all of which have their origin in the strange
periodic behaviour of the charge on the capacitor.
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PROBLEMS

1. For a potential barrier with V(x) = 0 for x > la/2|, and V(x) = 0.3 eV
for x < |a/2|, plot the tunnelling probability for £ in the range 0-0.5 eV. Take
the value @ = 5 nm and use the effective mass of GaAs, m* = 6.0 x 10-32 kg.

2. For a potential barrier with V(x) = 0 for x > la/2|, and V(x) = 0.4 eV
for x < |a/2], plot the tunnelling probability for & in the range 0-0.5 eV. Take
the value @ = 5 nm and use the effective mass of GaAs, m* = 6.0 x 10-32 kg.

3. Consider the potential barrier discussed in problem 1. Suppose that there
are two of these barriers forming a double-barrier structure. If they are separated
by 4 nm, what are the resonant energy levels in the wel]? Compute the tunnelling
probability for transmission through the entire structure over the energy range
0-0.5 eV.

4. Suppose that we create a double-barrier resonant tunnelling structure by
combining the barriers of problems 1 and 2. Let the barrier with Vo =03 eV
be on the left, and the barrier with Vy = 0.4 eV be on the right, with the two
barriers separated by a well of 4 nm width. What are the resonant energies in
the well? Compute the tunnelling probability through the entire structure over
the energy range 0-0.5 eV. At an energy of 0.25 eV, compare the tunnelling
coefficient with the ratio of the tunnelling coefficients (at this energy) for the
barrier of problem 2 over that of problem 1 (i.e. the ratio Tmin/ Tmax)-

5. Let us consider a trapezoidal potential well, such as that shown in the
figure below. Using the WKB method, find the bound states within the well. If
Vi=03¢eV, V, =04 eV, and a = 5 nm, what are the bound-state energies?

Vix)

B X

6. A particle is contained within a potential well defined by V(x) -
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for x < 0 and V(x) = ax for x > 0. Using the WKB formula, compute the
bound-state energies. How does the lowest energy level compare to that found
in (2.78) (« = ekE)?

7. Consider the tunnelling barrier shown below. Using the WKB form for the
tunnelling probability 7(£), calculate the tunnelling coefficient for £ = V;/2.

Vx)

2V,

>y
—-a 0 2a

8. A particle moves in the potential well V(x) = ax*. Calculate the bound
states with the WKB approximation.

9. In the WKB approximation, show that the tunnelling probability for a
double barrier (well of width b, barriers of width 2a, as shown in figure 3.4,
and a height of each barrier of Vj) is given by

4
(462 + 1/(462)) cos® L + 4 sin” L

b+2a
6 = exp (/ v (x) dx)
b

b
sz k(x)dx.
6

What value must b have so that only a single resonant level exists in the well?

10. In (3.114), the values for which the right-hand side reach —1 must be
satisfied by the left-hand side having cos(ka) = —1, which leads to the energies
being those of an infinite potential well. Show that this is the case. Why? The
importance of this result is that the top of every energy band lies at an energy
defined by the infinite potential well, and the bands form by spreading downward
from these energies as the coupling between wells is increased.

where

and



