

Georges Seurat namaloval Nedělní odpoledne na ostrově La Grande Jatte nikoli obvyklými tahy štětcem, ale pouze velkým počtem malých barevných teček, což je malířský styl nazývaný pointilismus. Stojíte-li dost blízko malby, můžete ty tečky vidět, avšak když se od ní vzdálíte, splývají a nelze je rozlišit. Navíc se barva určitého místa obrazu mění, když se vzdalujete — proto také Seurat touto technikou maloval. Čím je tato změna barvy způsobena?

37.1 DIFRAKCE A VLNOVÁ TEORIE SVĚTLA

V kap. 36 jsme definovali difrakci poněkud volně — jako rozšíření světelného svazku vymezeného úzkou štěrbinou. Jde však o víc než o rozšíření, neboť světlo vytváří interferenční obrazec, který nazýváme **difrakčním obrazcem**. Například monochromatické světlo vycházející z nějakého vzdáleného zdroje (nebo laseru) a procházející úzkou štěrbinou vytváří na pozorovacím stínítku difrakční obrazec podobný obr. 37.1. Tento obrazec tvoří široké **centrální** maximum s několika užšími a méně intenzívními maximy (nazývanými **sekundární** neboli **vedlejší** maxima) po obou stranách. Mezi maximy jsou minima.

Obr. 37.1 Difrakční obrazec, který se objeví na pozorovacím stínítku, na něž dopadá světlo prošlé úzkou vodorovnou štěrbinou. Difrakce způsobuje, že se světlo rozšíří kolmo k dlouhým stranám štěrbiny. Vzniká tak interferenční obrazec tvořený širokým centrálním maximem a méně intenzívními a užšími sekundárními (neboli vedlejšími) maximy, která jsou oddělena minimy.

Podle geometrické optiky naprosto nelze takový obrazec očekávat. Kdyby se světlo šířilo přímočaře, tedy jako paprsky, propustila by štěrbina pouze některé z těchto paprsků a ty by vytvořily na pozorovacím stínítku ostrý a jasný obraz štěrbiny. Docházíme tedy — stejně jako v kap. 36 k závěru, že geometrická optika je pouze aproximací.

K difrakci dochází nejenom, když světlo prochází úzkým otvorem (např. štěrbinou nebo špendlíkovou dírkou). Nastává také, když světlo míjí nějaký okraj, např. okraje žiletky na obr. 37.2. Všimněte si maxim a minim, která jsou jak uvnitř, tak vně žiletky a jsou přibližně rovnoběžná s okraji. Míjí-li světlo např. levý svislý okraj, vychýlí se vpravo i vlevo, interferuje a vytvoří obrazec okolo levého okraje. Část obrazce vpravo leží ve skutečnosti v místech, jež by byla stínem žiletky, kdyby platila geometrická optika.

S častým příkladem difrakce se setkáte, pohlédnete-li na jasnou modrou oblohu a vidíte jemné skvrny a vláknité struktury vznášející se v zorném poli. Tyto vznášející se struktury vznikají tím, že světlo míjí okraje drobounkých kousků sklivcového moku (průhledný materiál vyplňující převážnou část oční bulvy). Tyto kousky se odlomily a vznášejí se ve vodní vrstvě těsně před sítnicí, která deteguje světlo. Difrakční obrazec na jednom z těchto vzná-

Obr. 37.2 Difrakce monochromatického světla na žiletce. Všimněte si maxim a minim intenzity.

šejících se kousků je onou vznášející se strukturou, kterou máte ve svém zorném poli. Díváte-li se špendlíkovou dírkou v neprůhledném stínítku, takže světlo vstupující do vašeho oka je přibližně rovinnou vlnou, je možné, že budete moci v difrakčním obrazci rozlišit jednotlivá maxima a minima.

Fresnelova světlá stopa

Difrakci lze vysvětlit vlnovou teorií světla. Tuto teorii vytvořil původně Christian Huygens; po 123 letech ji použil Young k výkladu interference na dvojštěrbině. Byla však přijímána velmi pomalu; byla totiž protikladem Newtonovy teorie, podle níž je světlo proudem částic.

Na počátku 19. století převažovalo Newtonovo hledisko také ve francouzských vědeckých kruzích. Augustin Fresnel, tehdy mladý vojenský inženýr, však věřil ve vlnovou teorii světla a předložil Francouzské akademii věd práci, v níž podal výklad svých experimentů založený na vlnové teorii.

Akademie, v níž převládali Newtonovi stoupenci, zamýšlela zpochybnit vlnové hledisko a vypsala v roce 1819 soutěž o cenu na pojednání o difrakci. Fresnel zvítězil. Newtonovi stoupenci však nezměnili své názory a nebyli ani umlčeni. Jeden z nich, S. D. Poisson, poukázal na tento "podivný výsledek": Kdyby byla Fresnelova teorie správná, musely by světelné vlny jdoucí kolem okraje kuličky proniknout do oblasti stínu kuličky a vytvořit světlou stopu přesně uprostřed stínu. Tuto předpověď proslulého matematika ověřovali Fresnel a Arago a ukázalo se (obr. 37.3), že předpovězená *Fresnelova světlá stopa* — jak ji dnes nazýváme — tam skutečně je. Nic neposílí důvěryhodnost teorie více než experiment potvrzující některou z jejích nečekaných a zdánlivě paradoxních předpovědí.

Obr. 37.3 Fresnelova difrakce na disku. Všimněte si soustředných difrakčních kružnic a Fresnelovy světlé stopy ve středu obrazce. Tento experiment je v podstatě týž jako experiment, jímž Fresnel přesvědčil soutěžní výbor o správnosti své teorie, neboť okrajem průřezu koule použité v tehdejším experimentu i disku použitého zde je kružnice.

V optice zpravidla studujeme difrakci na rovinných objektech jako jsou difrakční stínítko, štěrbina, kruhový otvor v neprůhledném plechu apod. Tradičně se optické difrakční jevy rozdělují na Fresnelovu a Fraunhoferovu difrakci. V případě Fresnelovy difrakce se zajímáme o intenzitu (resp. amplitudu a fázi) jako funkci polohy v nějaké rovině pozorování umístěné v konečné vzdálenosti za difrakčním stínítkem. V případě Fraunhoferovy difrakce vyšetřujeme rozložení intenzity jako funkci směru, tedy jako funkci polohy v rovině v nekonečnu. V tomto smyslu lze na Fraunhoferovu difrakci pohlížet jako na speciální případ Fresnelovy difrakce. Tento speciální případ je však velmi důležitý při studiu zobrazení optickými soustavami. Roviny s obrazem nevlastní roviny (např. ohnisková rovina čočky) bývají totiž významnými rovinami optického systému. Proto se také ve většině učebnic - včetně naší věnuje Fraunhoferovým difrakčním jevům více pozornosti. Jejich matematický popis je naštěstí také výrazně jednodušší než popis Fresnelových difrakčních jevů. V této kapitole se Fresnelovy difrakce týká pouze čl. 37.1; obr. 37.2 a 37.3 mohou posloužit jako příklady zajímavých Fresnelových difrakčních jevů. Naproti tomu čl. 37.2 až 37.8 se vztahují k Fraunhoferově difrakci a na obr. 37.9 a 37.15 jsou typické Fraunhoferovy difrakční jevy.

Významným mezníkem v praktickém využívání difrakce je rok 1912. Tehdy byla poprvé pozorována a interpretována difrakce rentgenového záření na krystalu a od té doby se využívá difrakce rentgenového záření (a též elektronů a neutronů — čl. 39.6) ke studiu struktur látek. Touto cestou difrakce velmi pozitivně ovlivnila rozvoj celé přírodovědy, neboť jejím prostřednictvím byla nalezena struktura obrovského počtu látek (řádově 10⁵) a teorie difrakce také umožnila zrod celých vědních disciplín (např. molekulární biologie). O difrakci rentgenového záření na krystalové mřížce pojednává čl. 37.9. Jde vlastně opět o difrakci Fraunhoferova typu, neboť se měří difraktovaná intenzita v závislosti na směru. Avšak objekt, na němž k difrakci dochází, je trojrozměrný krystal, a ne rovinné difrakční stínítko jako v případě optické difrakce.

37.2 DIFRAKCE NA ŠTĚRBINĚ. POLOHY MINIM

Uvažujme nyní o tom, jak rovinná světelná vlna o vlnové délce λ difraktuje na dlouhé a úzké štěrbině šířky *a* v jinak nepropustném stínítku M, jak je to v řezu naznačeno na obr. 37.4a. (V tomto obrázku je délka štěrbiny ve směru kolmém ke stránce.) Vlny vycházející z různých bodů štěrbiny dojdou do roviny pozorování C a tam interferují a vytvářejí difrakční obrazec ze světlých a tmavých proužků (interferenční maxima a minima). K určení polohy těchto proužků použijeme obdobné procedury jako v případě interferenčního obrazce od dvou štěrbin. Popis difrakce je však matematicky náročnější, a proto budeme v první fázi hledat podmínky pouze pro polohy tmavých proužků.

Než to však uděláme, zdůvodníme centrální jasný proužek patrný na obr. 37.1: Tento proužek je způsoben tím, že vlny vycházející ze všech bodů štěrbiny urazí přibližně stejnou dráhu do středu obrazce, takže jsou ve fázi. O ostatních světlých proužcích můžeme pouze říci, že jsou přibližně uprostřed mezi sousedními tmavými proužky.

K nalezení tmavých proužků užijeme chytré (a zjednodušující) strategie, která rozdělí všechny paprsky procházející štěrbinou do dvojic a pak hledá, za jakých podmínek se vlny odpovídající paprskům v každém páru vzájemně vyruší. Obr. 37.4a ukazuje, jak používáme této strategie ke stanovení polohy prvního tmavého proužku v bodě P_1 . Nejprve si představíme, že je štěrbina rozdělena do dvou *zón* téže šířky a/2. Potom vedeme do bodu P_1 světelný paprsek r_1 z horního bodu horní zóny a světelný paprsek r_2 z horního bodu spodní zóny. Centrální osa je vedena středem štěrbiny kolmo ke stínítku C a paprsek r_2 svírá úhel θ s touto osou.

Vlny příslušející dvojici paprsků r_1 a r_2 jsou v bodech

štěrbiny ve fázi, neboť vycházejí z téže vlnoplochy procházející štěrbinou. Aby však vytvořily první tmavý proužek v bodě P_1 , musejí se jejich fáze v bodě P_1 lišit o π . Tento fázový rozdíl vznikne jako důsledek dráhového rozdílu $\lambda/2$. Aby vlna r_2 dosáhla bodu P_1 , musí urazit delší dráhu než vlna r_1 . Abychom tento dráhový rozdíl vyjádřili, vyznačíme na paprsku r_2 takový bod B, že vzdálenost od B k P_1 je táž jako délka paprsku r_1 . Pak dráhový rozdíl obou paprsků je roven vzdálenosti mezi středem štěrbiny S a bodem B.

Obr. 37.4 (a) Vlny z horních bodů dvou zón šířky a/2 interferují v bodě P_1 roviny pozorování C destruktivně. (b) Poněvadž je zřejmě $l \gg a$, můžeme považovat paprsky r_1 a r_2 za přibližně rovnoběžné a svírající úhel θ s centrální osou.

Je-li pozorovací stínítko C blízko štěrbiny (jako je tomu na obr. 37.4a), je obtížné difrakční obrazec na stínítku C matematicky popsat. Matematika se však výrazně zjednoduší, je-li vzdálenost *l* mnohem větší než šířka štěrbiny *a*. Pak můžeme přibližně považovat paprsky r_1 a r_2 za rovnoběžné; označme θ úhel, který svírají s centrální osou (obr. 37.4b). Můžeme proto aproximovat trojúhelník určený bodem *B*, horním bodem štěrbiny *N* a středem štěrbiny *S* pravoúhlým trojúhelníkem, jehož jeden vnitřní úhel je θ . Dráhový rozdíl paprsků r_1 a r_2 (jenž je roven vzdálenosti bodu B od středu štěrbiny S) je pak roven $(a/2) \sin \theta$.

Tuto analýzu můžeme opakovat pro kteroukoli jinou dvojici paprsků vycházejících z odpovídajících si bodů v obou zónách (např. ze středů zón) a došlých do bodu P_1 . Každá taková dvojice paprsků má týž dráhový rozdíl $(a/2) \sin \theta$. Položíme-li tento společný dráhový rozdíl roven $\lambda/2$, dostaneme

 $\frac{a}{2}\sin\theta = \frac{\lambda}{2},$

tj.

$$a\sin\theta = \lambda$$
 (první minimum). (37.1)

Je-li dána šířka štěrbiny *a* a vlnová délka λ , dává rov. (37.1) úhel θ prvního tmavého proužku nad (a vzhledem k symetrii) i pod centrální osou.

Všimněme si, že začneme-li s $a > \lambda$, a potom štěrbinu zužujeme ponechávajíce vlnovou délku λ konstantní, úhel prvního tmavého proužku roste. To znamená, že difrakční obrazec od *užší* štěrbiny je *širší*. Pro $a = \lambda$ je úhel prvních tmavých proužků 90°. Poněvadž tyto tmavé proužky lemují centrální jasný proužek, musí tento jasný proužek pokrývat celé pozorovací stínítko.

Obdobným způsobem najdeme druhé tmavé proužky nad a pod centrální osou. Rozdíl je pouze v tom, že nyní rozdělíme štěrbinu do *čtyř* zón stejné šířky a/4, jak je to vyznačeno na obr. 37.5a. Pak vedeme paprsky r_1 , r_2 , r_3 a r_4 z horních bodů těchto zón do bodu P_2 , jímž prochází druhý tmavý proužek nad centrální osou. Aby tento tmavý proužek vznikl, musí být dráhový rozdíl paprsků r_1 a r_2 jakož i r_2 a r_3 a také r_3 a r_4 roven $\lambda/2$.

Při $l \gg a$ můžeme přibližně považovat tyto čtyři paprsky za rovnoběžné; úhel, který svírají s centrální osou, označíme θ . Abychom vyjádřili dráhové rozdíly, veďme horním bodem každé ze čtyř zón kolmice k paprskům, jak je to naznačeno v obr. 37.5b. Vzniknou tak pravoúhlé trojúhelníky, jejichž jedna strana je vždy hledaným dráhovým rozdílem. Z horního trojúhelníka je vidět, že dráhový rozdíl paprsků r_1 a r_2 je $(a/4) \sin \theta$. Podobně ze spodního trojúhelníka vyplývá, že dráhový rozdíl paprsků r_3 a r_4 je rovněž $(a/4) \sin \theta$. Dráhový rozdíl mezi každou dvojicí paprsků vycházejících z odpovídajících si bodů sousedních zón je vždy $(a/4) \sin \theta$. Poněvadž v každém takovém případě je dráhový rozdíl roven $\lambda/2$, dostáváme

$$\frac{a}{4}\sin\theta = \frac{\lambda}{2}$$

což dává

$$a\sin\theta = 2\lambda$$
 (druhé minimum). (37.2)

Obr. 37.5 (a) Vlny z horních bodů čtyř zón o šířce a/4 se v bodě P_2 interferencí vyruší. (b) Je-li $l \gg a$, můžeme považovat paprsky r_1 , r_2 , r_3 a r_4 za rovnoběžné a svírající s centrální osou úhel θ .

Tak bychom mohli pokračovat a hledat polohy tmavých proužků v difrakčním obrazci. Vždy bychom rozdělili štěrbinu na sudý počet stejně širokých zón, takže by bylo možné vytvořit dvojice zón a vlny z nich vycházející by se vyrušily. Shledali bychom, že tmavé proužky lze lokalizovat pomocí této obecné rovnice:

> $a \sin \theta = m\lambda$, kde m = 1, 2, 3, ...(minima — tmavé proužky). (37.3)

Tento výsledek si můžete zapamatovat takto: Nakreslete si trojúhelník podobně jako na obr. 37.4b, avšak pro celou štěrbinu šířky *a* a všimněte si, že dráhový rozdíl paprsků vycházejících z horního a dolního bodu štěrbiny je roven $a \sin \theta$. Rov. (37.3) tedy říká:

Tmavé proužky při difrakci na štěrbině vznikají tehdy, když dráhový rozdíl $a \sin \theta$ mezi horním a dolním paprskem je roven λ , 2λ , 3λ , ...

Může se zdát, že je to špatně, protože vlny odpovídající těmto dvěma konkrétním paprskům jsou navzájem přesně ve fázi. Každá z nich je však také jednou z dvojice vln, jejichž fáze jsou navzájem přesně opačné, takže se vyruší.

Rov. (37.1) až (37.3) jsou odvozeny za předpokladu $l \gg a$. Tyto rovnice však platí také, umístíme-li mezi štěrbinu a pozorovací stínítko spojnou čočku a posuneme-li pozorovací stínítko tak, aby splývalo s ohniskovou rovinou spojky. Paprsky, které nyní docházejí do kteréhokoli bodu stínítka, byly přesně rovnoběžné (a nikoli jen přibližně), když vycházely ze štěrbiny. Jsou jako ony původně rovnoběžné paprsky na obr. 35.13a, které jsou čočkou fokusovány do bodu.

KONTROLA 1: Osvětlíme dlouhou a úzkou štěrbinu modrým světlem a pozorujeme na stínítku difrakční obrazec. Co se stane, jestliže (a) osvětlíme štěrbinu žlutým světlem, nebo (b) zúžíme štěrbinu. Rozšíří se difrakční obrazec na obě strany od jasného centrálního maxima, nebo se zúží?

PŘÍKLAD 37.1

Štěrbina šířky *a* je osvětlena bílým světlem.

(a) Při které šířce *a* bude první minimum pro červené světlo o vlnové délce $\lambda = 650$ nm pod úhlem $\theta = 15^{\circ}$?

ŘEŠENÍ: Pro první minimum je v rov. (37.3) m = 1. Vypočteme-li z ní a, dostaneme

$$a = \frac{m\lambda}{\sin \theta} = \frac{(1)(650 \text{ nm})}{\sin 15^{\circ}}$$
$$= 2511 \text{ nm} \doteq 2.5 \text{ }\mu\text{m}. \qquad (\text{Odpověd})$$

Má-li tedy být centrální maximum při bílém dopadajícím světle vymezeno úhlem $\pm 15^{\circ}$, musí být štěrbina skutečně velmi úzká, zhruba čtyři vlnové délky. Uvědomte si, že jemný lidský vlas má průměr asi 100 µm.

(b) Jakou vlnovou délku λ' má světlo, jehož první vedlejší maximum je odchýleno o 15°, tj. koinciduje s prvním minimem červeného světla.

ŘEŠENÍ: Toto maximum je zhruba uprostřed mezi prvním a druhým minimem odpovídajícím vlnové délce λ' . Nedopustíme se velké chyby, když v rov. (37.3) položíme m = 1,5, takže $a \sin \theta = 1,5\lambda'$.

Vypočteme λ' , dosadíme známé hodnoty a dostaneme

$$\lambda' = \frac{a \sin \theta}{1,5} = \frac{(2511 \text{ nm}) \sin 15^{\circ}}{1,5} \doteq$$
$$\doteq 430 \text{ nm.}$$
(Odpověď)

Světlo o této vlnové délce je fialové. První vedlejší maximum světla o vlnové délce 430 nm bude vždy koincidovat s prvním minimem světla o vlnové délce 650 nm, a to nezávisle na tom, jaká je šířka štěrbiny. Je-li štěrbina relativně úzká, bude úhel θ , pod nímž dochází k tomuto překrytí, relativně velký a naopak.

37.3 INTENZITA PŘI DIFRAKCI NA ŠTĚRBINĚ (KVALITATIVNĚ)

V čl. 37.2 jsme poznali, jak se najdou polohy maxim a minim v difrakčním obrazci na štěrbině. Nyní se budeme věnovat obecnějšímu problému: budeme hledat výraz pro intenzitu I v difrakčním obrazci jako funkci úhlu θ , tj. jako funkci úhlové polohy bodu pozorovacího stínítka.

Za tím účelem rozdělíme štěrbinu na obr. 37.4a na Nzón o stejné šířce Δx tak malé, abychom mohli předpokládat, že každá zóna působí jako zdroj Huygensových vlnek. Vlnky došlé do obecného bodu P pozorovacího stínítka složíme, a tím určíme amplitudu E_{θ} výsledné vlny v bodě P. Úhel θ je opět úhel, který svírá spojnice středu stínítka a bodu P s normálou k rovině štěrbiny. Intenzita světla v bodě P je pak úměrná čtverci amplitudy E_{θ} . Pro stanovení E_{θ} potřebujeme znát fázové vztahy mezi vlnkami došlými do bodu P. Fázový rozdíl souvisí s dráhovým rozdílem vztahem

Dráhový rozdíl dvou vlnek došlých od dvou sousedních zón do bodu *P* o úhlové souřadnici θ je $\Delta x \sin \theta$. Fázový rozdíl $\Delta \varphi$ dvou vlnek ze sousedních zón je tedy

$$\Delta \varphi = \frac{2\pi}{\lambda} \Delta x \sin \theta. \tag{37.4}$$

Předpokládáme, že všechny vlnky došlé do bodu Pmají touž amplitudu ΔE . Abychom nalezli amplitudu E_{θ} výsledné vlny v bodě P, sečteme amplitudy ΔE jako fázory. Za tím účelem sestavíme diagram N fázorů. Vlnce vycházející z každé zóny štěrbiny přísluší vždy jeden fázor.

V bodě P_0 na ose (tj. $\theta = 0$, obr. 37.4a) je podle rov. (37.4) fázový rozdíl $\Delta \varphi$ nulový. To znamená, že vlnky jsou ve fázi: odpovídající diagram fázorů je na obr. 37.6a. Sousedící fázory představují vlnky od sousedních zón a těsně na sebe navazují. Fázový rozdíl mezi vlnkami je nulový, a proto je úhel mezi každou dvojicí sousedních fázorů nulový. Amplituda E_{θ} vlny v bodě P_0 je vektorovým součtem těchto fázorů. Toto uspořádání fázorů dává ovšem největší hodnotu amplitudy E_{θ} . Označíme tuto hodnotu E_{max} ; je to tedy hodnota amplitudy E_{θ} pro $\theta = 0$.

Dále uvažujeme bod P, který je odchýlen od centrální osy o malý úhel θ . Z rov. (37.4) nyní vyplývá, že fázový rozdíl $\Delta \varphi$ mezi vlnkami od sousedních zón už není nulový. Obr. 37.6b ukazuje příslušný fázový diagram. Fázory jsou opět uspořádány těsně za sebou, avšak sousední fázory nyní svírají úhel $\Delta \varphi$. Amplituda E_{θ} v tomto novém bodě je stále vektorovým součtem fázorů, avšak je menší než amplituda na obr. 37.6a. To znamená, že intenzita světla je v tomto novém bodě P menší než v bodě P_0 .

Zvětšujeme-li dále úhel θ , vzrůstá úhel $\Delta \varphi$ mezi sousedními fázory a vznikne situace, kdy se řetěz fázorů úplně uzavře, takže špička posledního fázoru dosáhne počátku prvního fázoru (obr. 37.6c). Amplituda E_{θ} je nyní nulová, což znamená, že je také nulová intenzita světla. Dosáhli jsme prvního minima — nebo tmavého proužku difrakčního obrazce. Fázový rozdíl mezi prvním a posledním fázorem je nyní 2π (v radiánech), což znamená, že

Obr. 37.6 Fázorové diagramy pro N = 18 fázorů odpovídajících 18 zónám štěrbiny. Výsledné amplitudy E_{θ} jsou vyznačeny pro (a) centrální maximum P_0 ve směru $\theta = 0$, (b) bod P stínítka v malé úhlové vzdálenosti θ od centrální osy, (c) první minimum a (d) první vedlejší maximum.

dráhový rozdíl mezi horním a dolním paprskem procházejícím štěrbinou je jedna vlnová délka. Vzpomeňme si, že to je podmínka, kterou jsme nalezli pro první difrakční minimum.

Při dalším růstu úhlu θ roste fázový rozdíl $\Delta \varphi$ mezi sousedními fázory, řetěz fázorů se začne zavíjet do sebe a výsledný závit se začne zmenšovat. Amplituda E_{θ} nyní vzrůstá, až dosáhne maximální hodnoty při uspořádání znázorněném na obr. 37.6d. Toto uspořádání odpovídá prvnímu vedlejšímu maximu difrakčního obrazce.

Zvětšíme-li θ o trochu víc, způsobí zmenšení závitu pokles amplitudy E_{θ} , což znamená, že se zmenší také intenzita. Když θ dostatečně vzroste, dosáhne opět špička posledního fázoru počátku prvního fázoru. To odpovídá druhému minimu.

Touto kvalitativní metodou bychom mohli pokračovat a určovat maxima a minima difrakčního obrazce. Budeme se však raději věnovat kvantitativní metodě.

ONTROLA 2: Obrázky představují fázorové diagramy pro body po obou stranách jistého difrakčního maxima. (Ve srovnání s obr. 37.6 jsou tyto diagramy hladší, jsou totiž vytvořeny větším počtem fázorů.) (a) O které maximum jde? (b) Jaká je přibližná hodnota *m* (v rov. (37.3), jež přísluší tomuto maximu?)

37.4 INTENZITA PŘI DIFRAKCI NA ŠTĚRBINĚ (KVANTITATIVNĚ)

Rov. (37.3) určuje polohu minim na stínítku C při difrakci na štěrbině jako funkci úhlu θ (obr. 37.4a). Nyní však chceme odvodit výraz pro intenzitu v difrakčním obrazci jako funkci θ . Konstatujeme a v dalším odvodíme, že tato intenzita je dána výrazem

$$I = I_{\max} \left(\frac{\sin\alpha}{\alpha}\right)^2, \qquad (37.5)$$

kde

$$\alpha = \frac{1}{2}\varphi = \frac{\pi a}{\lambda}\sin\theta. \tag{37.6}$$

Symbol α pouze zjednodušuje zápis vztahu mezi úhlem θ , který určuje polohu bodu na pozorovacím stínítku, a svě-

telnou intenzitou I_{θ} v tomto bodě. I_{max} je největší hodnota intenzity I_{θ} v difrakčním obrazci a je to intenzita centrálního maxima (pro něž je $\theta = 0$). Symbol φ je fázový rozdíl (v radiánech) mezi vlnkami vycházejícími z horního a dolního bodu štěrbiny.

Rozbor rov. (37.5) ukazuje, že minima intenzity se objevují, když

$$\alpha = m\pi$$
, kde $m = 1, 2, 3, \dots$ (37.7)

Dosadíme-li tento výsledek do rov. (37.6), shledáme, že

$$m\pi = \frac{\pi a}{\lambda} \sin \theta$$
, kde $m = 1, 2, 3, \dots$

nebo

$$a \sin \theta = m\lambda$$
, kde $m = 1, 2, 3, ...$
(minima — tmavé proužky), (37.8)

což je přesně rov. (37.3), tj. podmínka pro polohy minim, kterou jsme odvodili dříve.

Obr. 37.7 ukazuje grafy rozložení intenzity v difrakčním obrazci štěrbiny vypočtené z rov. (37.5) a (37.6) pro tři šířky štěrbiny: $a = \lambda$, $a = 5\lambda$ a $a = 10\lambda$. Všimněte si, že s rozšiřováním štěrbiny (v poměru k vlnové délce) se zužuje centrální difrakční maximum. To znamená, že světlo je štěrbinou méně úhlově vychylováno. Vedlejší maxima se rovněž zužují. V limitě, když šířka *a* štěrbiny je mnohem větší než vlnová délka λ , vedlejší maxima vymizí, neboť splynou s centrálním maximem. (Difrakce však nastává i v tomto případě, a to na okrajích široké štěrbiny; podobá se difrakci na hranách žiletky v obr. 37.2.)

Odvození rov. (37.5) a (37.6)

Oblouk fázorů na obr. 37.8 představuje vlnky, které došly do obecného bodu *P* pozorovacího stínítka (obr. 37.4), jemuž přísluší určitý malý úhel θ . Amplituda E_{θ} výsledné vlny v bodě *P* je vektorovým součtem těchto fázorů. Rozdělíme-li štěrbinu na obr. 37.4 do infinitezimálních zón šířky Δx , bude se oblouk fázorů na obr. 37.8 blížit oblouku kružnice o poloměru *R*, jak je vyznačeno v obrázku. Délka oblouku musí být E_{max} , což je amplituda ve středu difrakčního obrazce. Kdybychom totiž tento oblouk napřímili, dostali bychom uspořádání fázorů podle obr. 37.6a (srov. obr. 37.8).

Úhel φ v dolní části obr. 37.8 je fázový rozdíl mezi infinitezimálními vektory na levé a pravé straně oblouku E_{max} . Z geometrie vyplývá, že je to také úhel φ mezi oběma poloměry *R* zakreslenými v obr. 37.8. Čárkovaná čára v obrázku

Obr. 37.7 Relativní intenzita při difrakci na štěrbině pro tři různé poměry a/λ . Čím širší je štěrbina, tím užší je centrální difrakční maximum.

pak vytváří dva shodné pravoúhlé trojúhelníky s úhlem $\frac{1}{2}\varphi$. Z nich je zřejmé, že

$$\sin\frac{1}{2}\varphi = \frac{E_{\theta}}{2R}.$$
 (37.9)

Považujeme-li E_{max} za kruhový oblouk, platí v obloukové míře

$$\varphi = \frac{E_{\max}}{R}.$$

Vypočteme-li z této rovnice R a dosadíme do rov. (37.9), dostaneme po úpravě

$$E_{\theta} = \frac{E_{\text{max}}}{\frac{1}{2}\varphi} \sin \frac{1}{2}\varphi.$$
(37.10)

V kap. 34.4 jsme viděli, že intenzita elektromagnetické vlny je úměrná čtverci amplitudy jejího elektrického pole.

Obr. 37.8 Konstrukce použitá k výpočtu intenzity v difrakci na štěrbině. Nakreslená situace odpovídá obr. 37.6b.

Zde to znamená, že maximum intenzity I_{max} (ve středu difrakčního obrazce) je úměrné E_{max}^2 a intenzita I pod úhlem θ je úměrná E_{θ}^2 . Platí tedy

$$\frac{I}{I_{\text{max}}} = \frac{E_{\theta}^2}{E_{\text{max}}^2}.$$
(37.11)

Dosadíme-li za E_{θ} z rov. (37.10) a položíme-li $\alpha = \frac{1}{2}\varphi$, dospíváme k následujícímu výrazu pro intenzitu jako funkci θ :

$$I = I_{\max} \left(\frac{\sin\alpha}{\alpha}\right)^2.$$

Ale to je právě rov. (37.5), jedna ze dvou rovnic, které jsme chtěli odvodit.

Druhá rovnice, kterou chceme odvodit, určuje vztah mezi α a θ . Podle rov. (37.4) souvisí fázový rozdíl mezi vlnkami z nejvyššího a nejnižšího bodu štěrbiny s příslušným dráhovým rozdílem podle vztahu

$$\varphi = \frac{2\pi}{\lambda} a \sin \theta$$

kde *a* je součet šířek Δx infinitezimálních proužků. Protože však platí $\varphi = 2\alpha$, dostáváme rov. (37.6).

PŘÍKLAD 37.2

Vypočtěte intenzity prvních tří vedlejších maxim v difrakčním obrazci od štěrbiny na obr. 37.1 vyjádřené v poměru k hlavnímu centrálnímu maximu.

ŘEŠENÍ: Vedlejší maxima jsou přibližně uprostřed mezi minimy, jejichž polohy udává rov. (37.7) ($\alpha = m\pi$). Polohám vedlejších maxim tedy přibližně odpovídá

$$\alpha = (m + \frac{1}{2})\pi$$
, kde $m = 1, 2, 3, ...$

4.5

a α je vyjádřeno v radiánech. Dosadíme-li tento výsledek do rov. (37.5), dostaneme

$$\frac{I}{I_{\max}} = \left(\frac{\sin\alpha}{\alpha}\right)^2 = \left(\frac{\sin\left(m + \frac{1}{2}\right)\pi}{\left(m + \frac{1}{2}\right)\pi}\right)^2,$$

kde $m = 1, 2, 3, \dots$.

Prvnímu vedlejšímu maximu odpovídá m = 1a jeho relativní intenzita je

$$\frac{I_1}{I_{\text{max}}} = \left(\frac{\sin\left(1 + \frac{1}{2}\right)\pi}{\left(1 + \frac{1}{2}\right)\pi}\right)^2 = \left(\frac{\sin 1.5\pi}{1.5\pi}\right)^2 = 4,503 \cdot 10^{-2} \doteq 4,5\%.$$
 (Odpověď)

Pro m = 2 a m = 3 najdeme

$$\frac{I_2}{I_{\text{max}}} = 1.6\%$$
 a $\frac{I_3}{I_{\text{max}}} = 0.83\%$. (Odpověď)

Intenzita dalších vedlejších maxim rychle klesá. Aby byla viditelná vedlejší maxima na obr. 37.1, byl difrakční obrazec úmyslně přeexponován.

CONTROLA 3: Difrakce na štěrbině byla provedena dvakrát: poprvé vlnovou délkou 650 nm, podruhé 430 nm. Grafy intenzity *I* jako funkce úhlu θ jsou pro oba difrakční obrazce vyneseny na obrázku. Jakou barvu budeme pozorovat (a) pod úhlem α a (b) pod úhlem β , použijeme-li obou vlnových délek současně?

geometrické optice, ale kruhový disk obklopený několika sekundárními kroužky, jejichž intenzita postupně slábne. Porovnání s obr. 37.1 nás nenechává na pochybách, že máme co činit s difrakčním jevem. Zde je však otvorem kruh o průměru d, a ne pravoúhlá štěrbina.

Obr. 37.9 Difrakční obrazec na kruhovém otvoru. Všimněte si centrálního maxima a kruhových sekundárních maxim. Tato sekundární maxima jsou mnohem slabší než centrální maximum. Snímek musel být přeexponován, aby vedlejší maxima na obrázku byla patrná.

Analýza těchto obrazců je složitá. Ukazuje se však, že první minimum difrakčního obrazce na kruhovém otvoru o průměru *d* nastává, když

$$\sin \theta = 1,22 \frac{\lambda}{d}$$
 (1. minimum;
kruhový otvor). (37.12)

Porovnejme to s rov. (37.1)

$$\sin \theta = \frac{\lambda}{a} \qquad \begin{array}{c} \text{(1. minimum;} \\ \text{štěrbina),} \end{array} \qquad (37.13)$$

37.5 DIFRAKCE NA KRUHOVÉM OTVORU

Budeme se nyní zabývat difrakcí na kruhové *apertuře*, tj. na kruhovém otvoru, jaký tvoří např. okraj kruhové čočky, jíž prochází světlo. Obr. 37.9 ukazuje obraz vzdáleného bodového zdroje (např. hvězdy) vzniklý na fotografickém filmu umístěném v ohniskové rovině spojné čočky. Obrazem není bod, jak by naznačovaly úvahy založené na

která udává polohu prvního minima v difrakčním obrazci na dlouhé a úzké štěrbině šířky *a*. Hlavním rozdílem je faktor 1,22, který souvisí s kruhovým tvarem otvoru.

Rozlišení

Obrazy vytvořené čočkou jsou difrakčními obrazci. To je významné, chceme-li rozlišit dva vzdálené bodové objekty,

Obr. 37.10 Nahoře jsou obrazy dvou bodových zdrojů (hvězd) vytvořené spojkou. Dole jsou odpovídající rozložení intenzity. V (a) je úhlová vzdálenost zdrojů tak malá, že je nelze rozlišit, v (b) je lze rozlišit tak tak a v (c) jsou již rozlišeny zřetelně. Rayleighovo kritérium je splněno v případě (b), kdy centrální maximum jednoho difrakčního obrazce koinciduje s prvním minimem druhého.

jejichž úhlová vzdálenost je malá. Obr. 37.10 ukazuje fotografie a odpovídající rozložení intenzity v obrazech dvou vzdálených bodových objektů (např. hvězd), jejichž úhlová vzdálenost je malá. V obr. 37.10a nejsou objekty rozlišeny, neboť tomu brání difrakce. Difrakční obrazce obou objektů se totiž překrývají do té míry, že nelze rozeznat, jde-li o jeden objekt nebo o dva. V obr. 37.10b jsou objekty tak právě rozlišeny a v obr. 37.10c jsou zcela rozlišeny.

V obr. 37.10b je úhlová vzdálenost oněch dvou zdrojů taková, že centrální maximum difrakčního obrazce jednoho zdroje je v místě prvního minima difrakčního obrazce druhého zdroje. Této podmínce se říká **Rayleighovo kritérium** rozlišení. Z rov. (37.12) vyplývá, že dva objekty, které jsou podle tohoto kritéria právě rozlišeny, musejí mít úhlovou vzdálenost $\theta_{\rm R}$ danou výrazem

$$\theta_{\rm R} = \arcsin \frac{1,22\lambda}{d}.$$

Poněvadž jde o malé úhly, můžeme nahradit sin θ_R úhlem θ_R vyjádřeným v radiánech:

$$\theta_{\rm R} = \frac{1,22\lambda}{d}$$
 (Rayleighovo kritérium). (37.14)

Rayleighovo kritérium rozlišení je pouhou aproximací, neboť rozlišení závisí na mnoha faktorech, např. na poměru jasu zdrojů a jejich okolí, na turbulenci vzduchu mezi zdroji a pozorovatelem a na kvalitě pozorovatelova zraku. Při výpočtech, které budou následovat, však budeme pro jednoduchost považovat rov. (37.14) za přesné kritérium: Je-li úhlová vzdálenost θ zdrojů větší než $\theta_{\rm R}$, rozlišíme oba zdroje od sebe, je-li menší, nemůžeme je rozlišit. Chceme-li použít čočky k rozlišení objektů úhlově od sebe málo vzdálených, je žádoucí, aby difrakční obrazec byl co nejmenší. Podle rov. (37.14) toho lze dosáhnout jednak zvětšením průměru čočky, jednak použitím světla s menší vlnovou délkou.

Z tohoto důvodu se v mikroskopii často používá ultrafialového světla. Má kratší vlnovou délku, a proto umožňuje pozorovat jemnější detaily, než by bylo možné pozorovat týmž mikroskopem za použití viditelného světla. V kap. 40 pojednáme o tom, že svazky elektronů se za jistých okolností chovají jako vlny. V *elektronovém mikroskopu* mohou mít tyto svazky vlnovou délku o pět řádů kratší, než je vlnová délka viditelného světla. Elektronovým mikroskopem lze proto studovat detaily, které by byly zastřeny

Tento obrázek, získaný špionážní družicí a publikovaný v roce 1984, ukazuje konstrukci sovětské mateřské letadlové lodi. Obrázek byl "vyčištěn" počítačem, tj. byly odstraněny difrakční jevy a zlepšeno rozlišení. Na současných obrázcích ze špionážních družic lze rozlišit ještě mnohem menší detaily.

difrakčními efekty, kdybychom použili optického mikroskopu. Příklad je na obr. 37.11.

Obr. 37.11 Snímek roztoče na zádech blechy ježka získaný rastrovacím elektronovým mikroskopem. Barvy jsou umělé.

PŘÍKLAD 37.3

Kruhová spojná čočka o průměru d = 32 mm a s ohniskovou vzdáleností f = 24 cm vytváří ve své ohniskové rovině obrazy vzdálených bodových objektů. Používá se světla o vlnové délce $\lambda = 550 \text{ nm}$.

(a) Bereme v úvahu difrakci na apertuře čočky. Jakou úhlovou vzdálenost musejí mít dva bodové objekty, aby splňovaly Rayleighovo kritérium rozlišení?

ŘEŠENÍ: Na obr. 37.12 jsou dva vzdálené bodové zdroje P_1 a P_2 , čočka a pozorovací stínítko v ohniskové rovině čočky. Vpravo je vynesena intenzita *I* jako funkce polohy na stínítku. Úhlová vzdálenost θ_0 objektů je rovna úhlové vzdálenosti θ_i obrazů. Mají-li tedy obrazy splňovat Rayleighovo kritérium rozlišení, musejí být úhlové vzdálenosti po obou stranách čočky dány rov. (37.14) (za předpokladu malých úhlů). Dosadíme-li zadané hodnoty, dostaneme z rov. (37.14)

$$\theta_0 = \theta_i = \theta_{\rm R} = 1,22 \frac{\lambda}{d} = \frac{1,22(550 \cdot 10^{-9} \,{\rm m})}{(32 \cdot 10^{-3} \,{\rm m})} =$$

= 2,1 \cdot 10^{-5} rad. (Odpověď)

Při této úhlové vzdálenosti leží centrální maximum jedné z křivek intenzity na obr. 37.12 v prvním minimu druhé křiv-ky.

(b) Jaká je vzdálenost Δx středů obrazů v ohniskové rovině? (Jinými slovy, jaká je vzdálenost centrálních maxim obou křivek?)

ŘEŠENÍ: Z kteréhokoli z obou trojúhelníků mezi čočkou a stínítkem na obr. 37.12 je vidět, že tg $\theta_i/2 = \Delta x/(2f)$. Úpravou a aproximací tg $\theta \doteq \theta$ dostáváme

$$\Delta x = f \theta_i, \qquad (37.15)$$

kde θ_i je v radiánech. Dosazením konkrétních hodnot příslušných veličin dostaneme:

$$\Delta x = (0,24 \text{ m})(2,1 \cdot 10^{-5} \text{ rad}) = 5,0 \,\mu\text{m.}$$
 (Odpověď)

Obr. 37.12 Příklad 37.3. Světlo ze dvou vzdálených bodových objektů P₁ a P₂ prochází spojnou čočkou a vytváří na stínítku v ohniskové rovině čočky obrazy obou objektů. V obrázku je zakreslen pouze jeden reprezentativní paprsek z každého objektu. Obrazy nejsou body, ale difrakční obrazce a rozložení intenzity v nich je přibližně vyznačeno v pravé části obrázku. Úhlová vzdálenost objektů je θ_0 a úhlová vzdálenost obrazu je θ_i ; vzdálenost mezi centrálními maximy obrazů je Δx .

PŘÍKLAD 37.4

Považujme barevné tečky v Seuratově obrazu *Nedělní odpoledne na ostrově La Grande Jatte* za kolečka, která jsou těsně u sebe a jejichž středy mají vzdálenost l = 2,0 mm (obr. 37.13). Předpokládejme, že pupila oka má průměr d = 1,5 mm. Z jaké nejmenší pozorovací vzdálenosti už nelze rozlišit jednotlivé barevné tečky obrazu?

Obr. 37.13 Příklad 37.4. Model teček v Seuratově obrazu

ŘEŠENÍ: Vezměme v úvahu libovolné dvě sousedící tečky, které lze rozlišit, jsme-li blízko obrazu. Vzdalujeme-li se od obrazu, jsme schopni rozeznat tečky, dokud jejich úhlová vzdálenost θ neklesne pod hodnotu danou Rayleighovým kritériem (rov. (37.14)):

$$\theta_{\rm R} = 1,22\frac{\lambda}{d}.\tag{37.16}$$

Poněvadž úhlové vzdálenosti jsou malé, můžeme nahradit $\sin\theta$ úhlem θ a psát

$$\theta = \frac{l}{h},\tag{37.17}$$

kde *h* je vzdálenost našeho oka od teček.

Položíme θ v rov. (37.17) rovno θ_{R} v rov. (37.16) a vypočteme *h*. Dostaneme

$$h = \frac{ld}{1,22\lambda}.\tag{37.18}$$

Rov. (37.18) říká, že *h* je větší pro menší λ . Vzdalujeme-li se tedy od obrazu, jsou sousedící červené tečky (v důsledku delší vlnové délky) nerozeznatelné dříve než sousedící modré tečky. Chceme-li tedy stanovit nejmenší vzdálenost, ze které nevidíme rozlišeny *žádné* barevné tečky, dosadíme do rov. (37.18) $\lambda = 400$ nm (modré nebo fialové světlo) a zadané hodnoty. Vypočteme, že

$$h = \frac{(2,0.10^{-3} \text{ m})(1,5.10^{-3} \text{ m})}{1,22(400.10^{-9} \text{ m})} = 6,1 \text{ m}. \text{ (Odpověď)}$$

V této nebo větší vzdálenosti se barvy všech sousedících teček navzájem mísí. Barva, kterou vnímáme v místě kterékoli tečky na obrazu, je smíšená barva, která ve skutečnosti v tomto místě nemusí vůbec být. Jinými slovy, Seurat využívá očí pozorovatele k tomu, aby si dotvořily barvy jeho díla.

CONTROLA 4: Předpokládejme, že difrakce na pupile vašeho oka způsobuje, že jste jen tak tak schopen rozlišit dvě červené tečky. Zesílíte-li osvětlení ve svém okolí, průměr pupily se zmenší. Zlepší se pak rozlišitelnost teček, nebo se zhorší? Berte v úvahu pouze difrakci. (Svou odpověď můžete podložit experimentem.)

37.6 DIFRAKCE NA DVOJŠTĚRBINĚ

Při pokusech s dvojštěrbinou v kap. 36 jsme mlčky předpokládali, že štěrbiny jsou úzké ve srovnání s vlnovou délkou světla, které je osvětluje, tj. $a \ll \lambda$. Při tak úzkých štěrbinách zaujímá centrální maximum difrakčního obrazce každé z obou štěrbin celé pozorovací stínítko. Všechny světlé interferenční proužky, které při interferenci světla od takových dvou štěrbin vzniknou, pak mají přibližně stejnou intenzitu (obr. 36.9).

Při pokusech s viditelným světlem však nebývá podmínka $a \ll \lambda$ splněna. Jsou-li štěrbiny poměrně široké, vznikají při interferenci světla od dvou štěrbin světlé proužky, které nemají stejnou intenzitu. Intenzita proužků je ve skutečnosti modifikována difrakcí světla na každé ze štěrbin.

Na obr. 37.14a je jako příklad vyneseno rozložení intenzity, které by odpovídalo interferenčnímu obrazci od dvou štěrbin, kdyby byly obě štěrbiny nekonečně tenké (a tím $a \ll \lambda$); všechny světlé proužky by měly touž intenzitu. Rozložení intenzity na obr. 37.14b odpovídá difrakčnímu obrazci od jedné štěrbiny, která má konečnou šířku. Difrakční obrazec má široké centrální maximum a slabší vedlejší maxima v blízkosti ±17°. Graf na obr. 37.14c představuje výsledný interferenční obrazec od dvou štěrbin konečné šířky. Graf byl sestrojen tak, že křivka na obr. 37.14a. Polohy proužků zůstávají nezměněny, mění se pouze intenzita.

Obr. 37.15a ukazuje skutečný obrazec, v němž je zřejmá jak interference od dvou štěrbin, tak difrakce na štěrbině. Je-li jedna ze štěrbin zakryta, vznikne difrakční obrazec příslušející jedné štěrbině, jenž je reprodukován na obr. 37.15b. Všimněte si souvislosti mezi obr. 37.15a a 37.14c a mezi obr. 37.15b a 37.14b. Při porovnávání těchto obrázků nezapomeňte, že obr. 37.15 byl úmyslně přeexponován, aby byla zviditelněna slabá vedlejší maxima, a že na obrázku jsou zachycena dvě vedlejší maxima (nikoli jen jedno).

Vezmeme-li v úvahu difrakční jevy, je intenzita v interferenčním obrazci od dvojštěrbiny charakterizována výrazem

$$I = I_{\max}(\cos^2 \beta) \left(\frac{\sin \alpha}{\alpha}\right)^2 \quad (dvojštěrbina), \quad (37.19)$$

kde

a

$$\theta = \frac{\pi d}{\lambda} \sin \theta \tag{37.20}$$

$$\alpha = \frac{\pi a}{\lambda} \sin \theta. \tag{37.21}$$

Zde *d* je vzdálenost středů štěrbin a *a* je šířka štěrbin. Věnujte pozornost tomu, že pravá strana rov. (37.19) je součinem maximální intenzity I_{max} a dalších dvou faktorů: (1) *Interferenční faktor* $\cos^2 \beta$ pochází od interference světla na dvou štěrbinách, mezi nimiž je vzdálenost *d* (srov. rov. (36.21) a (36.22)). (2) *Difrakční faktor* $(\sin \alpha/\alpha)^2$ charakterizuje difrakci na jedné štěrbině šířky *a* (srov. rov. (37.5) a (37.6)).

relativní intenzita

0

 θ (stupně)

(a)

5

10

15

20

Obr. 37.14 (a) Rozložení intenzity ve dvojštěrbinovém interferenčním obrazci při velmi úzkých štěrbinách. (b) Rozložení intenzity při difrakci na štěrbině, jejíž šířka *a* není velmi malá. (c) Rozložení intenzity při difrakci na dvou štěrbinách šířky *a*. Křivka v obr. (b) působí jako obálka. Omezuje totiž intenzitu dvojštěrbinových proužků v obr. (a). Všimněte si, že první minima difrakčního obrazce v (b) potlačují dvojštěrbinové interferenční proužky, které by byly v obr. (c) v okolí 12°.

20

15

10

5

Analyzujme tyto faktory. Je-li např. v rov. (37.21) $a \rightarrow 0$, je $\alpha \rightarrow 0$ a $(\sin \alpha)/\alpha \rightarrow 1$. Rov. (37.19) se pak redukuje na rovnici charakterizující interferenční obrazec od dvou velmi úzkých štěrbin s roztečí *d*. Podobně položíme-li v rov. (37.20) d = 0, znamená to fyzikálně, že obě štěrbiny splynou v jednu štěrbinu šířky *a*. Z rov. (37.20) plyne, že $\beta = 0$ a tedy $\cos^2 \beta = 1$. V tomto případě se rov. (37.19) redukuje na rovnici charakterizující difrakční obrazec od jedné štěrbiny šířky *a*.

V difrakčním obrazci od dvojštěrbiny popsaném rovnicí (37.19) a ilustrovaném obr. 37.15a se prolíná interference a difrakce. Oběma těmito pojmy označujeme jevy, jejichž podstatou je superpozice: V určitém bodě skládáme vlny s různou fází. Skládáme-li vlny vycházející z konečného (a obvykle malého) počtu elementárních koherentních zdrojů — jako při pokusech s dvojštěrbinou s $a \ll \lambda$ — mluvíme o *interferenci*. Skládáme-li vlny vycházející z jedné vlnoplochy — jako při pokusech s jednou štěrbinou — mluvíme o *difrakci*. Toto rozlišování interference a difrakce (poněkud umělé a ne vždy dodržované) je docela vhodné, nesmíme však zapomínat, že oba superpoziční jevy bývají přítomny současně (jako např. na obr. 37.15a).

PŘÍKLAD 37.5

Při experimentování s dvojštěrbinou je rozteč štěrbin $d = 19,44 \,\mu\text{m}$, šířka štěrbin $a = 4,050 \,\mu\text{m}$ a světlo má vlnovou délku $\lambda = 405 \,\text{nm}$.

(a) Kolik světlých proužků je uvnitř centrálního proužku difrakční obálky?

ŘEŠENÍ: Centrální proužek je vymezen prvními difrakčními minimy, jejichž úhlovou polohu θ udává rov. (37.3) při m = 1:

$$a\sin\theta = \lambda. \tag{37.22}$$

Polohy světlých proužků v interferenčním obrazci od dvojštěrbiny udává rov. (36.14):

$$d\sin\theta = m\lambda$$
, kde $m = 0, 1, 2, ...$ (37.23)

Vydělením rov. (37.23) a (37.22) dostaneme hodnotu *m* interferenčního proužku, který koinciduje s prvním difrakčním minimem difrakčního obrazce od jedné štěrbiny. Dosadíme-li do tohoto podílu zadané hodnoty, dostaneme

$$m = \frac{d}{a} = \frac{(19,44\,\mu\text{m})}{(4,050\,\mu\text{m})} = 4,8.$$

První difrakční minimum je tedy těsně před interferenčním proužkem s m = 5. V rozmezí centrálního difrakčního proužku máme centrální světlý proužek (m = 0) a čtyři světlé proužky (až do m = 4) po obou jeho stranách. Celkem je tedy uvnitř centrálního difrakčního proužku devět interferenčních proužků interferenčního obrazce od dvojštěrbiny. Obr. 37.16 ukazuje světlé proužky po jedné straně centrálního světlého proužku.

Obr. 37.16 Příklad 37.5. Rozložení intenzity v pravé polovině dvojštěrbinového interferenčního experimentu. Difrakční obálka je vyznačena tečkami. Vložený graf ukazuje (svisle roztažené) rozložení intenzity v prvním a druhém vedlejším difrakčním proužku.

(b) Kolik světlých interferenčních proužků je v oblasti vymezené prvními vedlejšími proužky difrakční obálky?

ŘEŠENÍ: Vnější hranici prvních vedlejších difrakčních proužků tvoří druhá difrakční minima. Úhlovou polohu θ těchto minim dává rov. (37.3) pro m = 2:

$$u\sin\theta = 2\lambda. \tag{37.24}$$

Vydělením rov. (37.23) a (37.24) zjistíme, že

1

$$m = \frac{2d}{a} = \frac{2(19,44\,\mu\mathrm{m})}{(4,050\,\mu\mathrm{m})} = 9,6.$$

Z toho vyplývá, že druhé difrakční minimum se nalézá těsně před světlým interferenčním proužkem, jehož poloha je dána rov. (37.23) s m = 10. V prvním difrakčním proužku máme tedy interferenční proužky od m = 5 do m = 9, tj. celkem 5 světlých proužků interferenčního obrazce od dvojštěrbiny. (Jsou ukázány ve vloženém grafu na obr. 37.16.)

Světlý interferenční proužek s m = 5 je však téměř potlačen prvním difrakčním minimem a je příliš nezřetelný, takže jej nebudeme počítat. Uvnitř prvního vedlejšího difrakčního proužku jsou tedy jen čtyři světlé interferenční proužky.

ONTROLA 5: Co se stane, zvětšíme-li vlnovou délku světla v př. 37.5 na 550 nm: zvětší se, zmenší se, nebo se nezmění (a) šířka centrálního difrakčního proužku a (b) počet světlých interferenčních proužků uvnitř centrálního difrakčního proužku?

37.7 DIFRAKČNÍ MŘÍŽKY

Při studiu světla a objektů, které světlo emitují nebo pohlcují, je jedním z nejužitečnějších nástrojů **difrakční mřížka**. V porovnání s dvojštěrbinou na obr. 36.8 má toto zařízení mnohem větší počet *N* štěrbin, jimž se často říká vrypy; někdy je jich dokonce několik tisíc na milimetru. Idealizovaná mřížka tvořená pouze pěti štěrbinami je znázorněna na obr. 37.17. Prochází-li štěrbinami monochromatické světlo, vznikají úzké interferenční proužky, jichž lze využít ke stanovení vlnové délky světla. (Difrakční mřížky mohou být také tvořeny rovnoběžnými zářezy v nepropustném materiálu uspořádanými podobně jako štěrbiny na obr. 37.17. Světlo pak neprochází prázdnými štěrbinami, ale je rozptylováno zářezy zpět a interferenční proužky vytváří na straně dopadajícího světla.)

Obr. 37.17 Idealizovaná difrakční mřížka tvořená pouze pěti štěrbinami. Na vzdáleném stínítku C vzniká interferenční obrazec.

Představme si, že na mřížku dopadá monochromatické světlo a že postupně zvyšujeme počet štěrbin od dvou až po nějaké velké číslo *N*. Rozložení intenzity se přitom vyvíjí od typického obrazce odpovídajícího dvojštěrbině (obr. 37.14c) přes mnohem komplikovanější obrazec až

k jednoduchému obrazci nakreslenému na obr. 37.18a. Maxima jsou velmi úzká (proto se nazývají *čáry*) a jsou oddělena poměrně širokými tmavými oblastmi. Obr. 37.18b ukazuje, co bychom viděli na stínítku, kdybychom použili červeného světla helium-neonového laseru.

Obr. 37.18 (a) Rozložení intenzity vytvořené difrakční mřížkou s velkým počtem štěrbin má tvar úzkých píků. Na obrázku jsou označeny číslem *m*, které udává řád píku. (b) Odpovídající světlé proužky, které pozorujeme na stínítku, se nazývají čáry. Jsou rovněž označeny číslem *m*. Obrázek ukazuje nultý, první, druhý a třetí řád.

Použijeme nyní známé procedury, abychom nalezli úhlové polohy světlých čar na stínítku. Budeme předpokládat, že toto stínítko je tak daleko od mřížky, že paprsky přicházející do určitého bodu *P* stínítka byly přibližně rovnoběžné, když vycházely z mřížky (obr. 37.19). Na každou dvojici sousedních štěrbin použijeme touž úvahu, kterou jsme použili při interferencích od dvojštěrbiny. Vzdálenost *d* mezi štěrbinami se nazývá *mřížková konstanta*. (Zaujímá-li *N* štěrbin šířku *w*, je d = w/(N - 1).) Dráhový rozdíl sousedních paprsků je opět *d* sin θ (obr. 37.19), kde θ je úhel mezi centrální osou mřížky a směrem vedoucím k bodu *P*. V místě *P* je světlá čára tehdy, když dráhový rozdíl sousedních paprsků je celistvý násobek vlnové délky, tj. když

$$d \sin \theta = m\lambda, \text{ kde } m = 0, 1, 2, \dots$$
(maxima — čáry), (37.25)

kde λ je vlnová délka světla. Každé celé číslo *m* představuje určitou čáru a můžeme ho proto použít k jejímu označení jako na obr. 37.18. Tato celá čísla pak nazýváme *čísla řádu* a čáry se označují jako čára nultého řádu (centrální čára s *m* = 0), čára prvního řádu, čára druhého řádu atd.

Obr. 37.19 Paprsky jdoucí ze štěrbin difrakční mřížky ke vzdálenému bodu *P* jsou přibližně rovnoběžné. Dráhový rozdíl mezi každými dvěma sousedními paprsky je $d \sin \theta$, kde θ je úhel vyznačený na obrázku. (Štěrbiny leží ve směru kolmém ke stránce.)

Přepíšeme-li rov. (37.25) do tvaru $\theta = \arcsin(m\lambda/d)$, vidíme, že úhel mezi centrální osou a směrem k určité čáře (řekněme k čáře třetího řádu) závisí při dané mřížce na vlnové délce použitého světla. Prochází-li tedy mřížkou světlo, můžeme určit jeho vlnovou délku pomocí rov. (37.25), změříme-li úhly čar vyšších řádů. Tímto způsobem lze analyzovat a identifikovat i světlo obsahující několik neznámých vlnových délek. Pomocí dvojštěrbiny (čl. 36.4) takovou analýzu udělat nelze, i když platí táž rovnice a závislost na vlnové délce je tedy stejná. Při interferenci na dvojštěrbině se totiž světlé proužky příslušející různým vlnovým délkám příliš překrývají, takže je nelze rozlišit.

Šířka čar

Schopnost mřížky rozlišit (oddělit) čáry různých vlnových délek závisí na šířce těchto čar. Odvodíme zde výraz pro *pološířku* centrální čáry (tj. čáry, pro niž je m = 0) a potom uvedeme výraz pro pološířky čar vyšších řádů. Pološířku centrální čáry definujeme jako úhel $\Delta \theta_{1/2}$ mezi středem čáry $\theta = 0$ a místem, kde končí čára a začíná tmavá oblast s prvním minimem (obr. 37.20). V tomto minimu se *N* paprsků od *N* štěrbin mřížky vzájemně vyruší. (Skutečná šířka centrální čáry je ovšem $2\Delta \theta_{1/2}$, je však zvykem porovnávat šířky čar pomocí pološířek.)

V čl. 37.2 při difrakci na štěrbině jsme měli rovněž co činit s rušením velkého počtu paprsků. Odvodili jsme rov. (37.3), již můžeme — vzhledem k podobnosti obou případů — použít i zde a najít první minimum. Tato rovnice říká, že první minimum nastává, když dráhový rozdíl horního a dolního paprsku je roven λ . Při difrakci na štěrbině je tento rozdíl $a \sin \theta$. Pro mřížku tvořenou N štěrbinami

Obr. 37.20 Pološířka $\Delta \theta_{1/2}$ centrální čáry je úhel mezi středem této čáry a sousedním minimem v grafu intenzity *I* jako funkce θ (srov. Obr. 37.18a).

je vzdálenost mezi horní a dolní štěrbinou (N - 1)d, což při velkém počtu štěrbin můžeme nahradit výrazem Nd (obr. 37.21), kde d je vzdálenost mezi sousedními štěrbinami. Dráhový rozdíl mezi horním a dolním paprskem je tedy v našem případě Nd sin $\theta_{1/2}$. První minimum proto vznikne, když

$$Nd\sin\Delta\theta_{1/2}\approx\lambda.$$
 (37.26)

Poněvadž úhel $\Delta \theta_{1/2}$ je malý, je sin $\Delta \theta_{1/2} \approx \Delta \theta_{1/2}$ (v radiánech). Dosadíme-li to do rov. (37.26), dostaneme pro pološířku centrální čáry výraz

$$\Delta \theta_{1/2} = \frac{\lambda}{Nd} \quad \text{(pološířka centrální čáry).} \quad (37.27)$$

Uvádíme bez důkazu, že i pološířka kterékoli jiné čáry závisí na poloze čáry vzhledem k centrální ose a je rovna

$$\Delta \theta_{1/2} = \frac{\lambda}{Nd\cos\theta} \quad \begin{array}{l} \text{(pološířka čáry difraktované} \\ \text{ve směru } \theta\text{)}. \end{array}$$
(37.28)

Obr. 37.21 Vzdálenost mezi horní a dolní štěrbinou mřížky tvořené *N* štěrbinami je přibližně *Nd*. Dráhový rozdíl mezi horním a dolním paprskem procházejícím mřížkou je *Nd* sin $\Delta\theta_{1/2}$, kde $\Delta\theta_{1/2}$ má význam vyznačený na obrázku. (Pro zřetelnost je zde úhel $\Delta\theta_{1/2}$ přehnaně velký.)

Všimněte si, že při dané vlnové délce λ a při dané rozteči *d* mezi štěrbinami se s rostoucím počtem *N* štěrbin

šířka čar zmenšuje. Ze dvou difrakčních mřížek může tedy mřížka s vyšším *N* lépe rozlišit vlnové délky, neboť její difrakční čáry jsou užší a méně se překrývají.

Aplikace difrakčních mřížek

Difrakčních mřížek se často používá k určení vlnových délek emitovaných nejrůznějšími zdroji světla od lamp po hvězdy. *Mřížkový spektroskop*, který používá mřížku k tomuto účelu, je na obr. 37.22. Světlo ze zdroje S je čočkou L₁ fokusováno na štěrbinu S₁ umístěnou v ohniskové rovině čočky L₂. Světlo vycházející z tubusu C (zvaného *kolimátor*) je rovinná vlna a ta kolmo dopadá na mřížku G. Na ní dochází k difrakci a vzniká difrakční obrazec s centrální čárou řádu m = 0 pod úhlem $\theta = 0$, tedy podél centrální osy mřížky.

Difrakční obrazec, který by se objevil na stínítku, si můžeme prohlédnout dalekohledem. Zajímá-li nás intenzita ve směru θ , nastavíme prostě dalehohled D do tohoto směru (obr. 37.22). Čočka L₃ dalekohledu fokusuje světlo difraktované pod úhlem θ (a pod nepatrně menším a větším úhlem) do své ohniskové roviny FF' nacházející se uvnitř dalekohledu. Okulárem E si tento fokusovaný obrazec zvětšíme.

Budeme-li měnit úhel θ dalekohledu, můžeme prozkoumat celý difrakční obrazec. S výjimkou nultého řádu m = 0 je v každém řádu původní světlo rozloženo podle vlnových délek (tj. podle barvy), takže s pomocí rov. (37.25) můžeme určit, které vlnové délky zdroj emituje. Jestliže vlnové délky emitovaného světla jsou ze širokého intervalu, pozorujeme — otáčíme-li dalekohledem v rozmezí úhlů odpovídajících nějakému řádu m — široký pás barev, jehož krátkovlnému okraji přísluší menší úhel θ a dlouhovlnému větší. Emituje-li zdroj diskrétní vlnové délky, pozorujeme diskrétní svislé čáry v barvě příslušných vlnových délek.

Například světlo emitované výbojkou naplněnou plynným vodíkem má ve viditelné oblasti čtyři diskrétní vlnové délky. Pozorujeme-li toto světlo přímo, jeví se bílé. Jestliže ho však pozorujeme mřížkovým spektroskopem, můžeme v několika řádech rozlišit čáry čtyř barev odpovídající těmto vlnovým délkám viditelné oblasti. (Tyto čáry se nazývají *emisní čáry*.) Čtyři řády jsou znázorněny na obr. 37.23. V centrálním řádu (m = 0) se čáry všech čtyř vlnových délek překrývají a vytvářejí jedinou bílou čáru v primárním směru $\theta = 0$. Ve vyšších řádech jsou barvy separovány.

Pro přehlednost není v obr. 37.23 vyznačen třetí řád; překrývá se totiž s druhým a čtvrtým řádem. Červená čára čtvrtého řádu chybí, neboť mřížka, kterou jsme použili, ji nevytváří (jde o mřížku z př. 37.6). Pokusíme-li se totiž pomocí rov. (37.25) vypočítat úhel θ pro vlnovou délku

Obr. 37.22 Jednoduchý mřížkový spektroskop používaný k analýze vlnových délek světla emitovaného zdrojem S.

odpovídající červené barvě a řádu m = 4, shledáme, že sin θ je větší než jedna, což není možné. Říkáme pak, že čtvrtý řád je pro tuto mřížku *neúplný*. Nemusí však být neúplný pro mřížku s větší mřížkovou konstantou *d*, která difraktuje čáry pod menšími úhly θ , než jak je to nakresleno v obr. 37.23. Na obr. 37.24 je fotografie emisních čar kadmia ve viditelné oblasti.

Obr. 37.23 Nultý, první, druhý a čtvrtý řád emisních čar vodíku ve viditelné oblasti. Všimněte si, že při větších úhlech je vzdálenost mezi čárami větší. (Jsou také slabší a širší, to však zde není vyznačeno.)

Obr. 37.24 Viditelné emisní čáry kadmia pozorované mřížkovým spektroskopem.

PŘÍKLAD 37.6

Difrakční mřížka má $1,26 \cdot 10^4$ vrypů rovnoměrně rozmístěných v šířce w = 25,4 mm. Kolmo na ni dopadá modré světlo o vlnové délce 450 nm.

(a) Jaké úhly svírají s centrální osou maxima druhého řádu?ŘEŠENÍ: Mřížková konstanta je

$$d = \frac{w}{N} = \frac{(25,4\cdot10^{-3} \text{ m})}{(1,26\cdot10^4)} = 2,016\cdot10^{-6} \text{ m} = 2016 \text{ nm}.$$

V rov. (37.25) odpovídá maximům druhého řádum=2. Pro $\lambda=450\,\mathrm{nm}$ tak dostáváme

$$\sin \theta = \frac{m\lambda}{d} = \frac{2(450 \text{ nm})}{(2\,016 \text{ nm})} = 0,446,$$

$$\theta = 26,51^{\circ} \doteq 26,5^{\circ}. \qquad (\text{Odpověd})$$

(b) Jaká je pološířka čáry druhého řádu?ŘEŠENÍ: Z rov. (37.28) vypočteme

$$\Delta \theta_{1/2} = \frac{\lambda}{Nd \cos \theta} = \frac{(450 \text{ nm})}{(1, 26 \cdot 10^4)(2\,016 \text{ nm}) \cos 26, 51^\circ}$$

= 1,98 \cdot 10^{-5} rad. (Odpověď)

KONTROLA 6: Obrázek ukazuje čáry různého řádu monochromatického červeného světla vytvořené difrakční mřížkou. (a) Nachází se střed obrazce vpravo, nebo vlevo? (b) Přepneme-li na zelené monochromatické světlo, budou pološířky čar v týchž řádech větší, menší, nebo stejné jako pološířky čar na obrázku?

Jemné vrypy o šířce 0,5 µm na kompaktním disku dělají z disku difrakční mřížku. Svítí-li na disk malý zdroj bílého světla, tvoří difraktované světlo barevné pruhy, které jsou směsicí difrakčních obrazců od vrypů.

37.8 MŘÍŽKY: DISPERZE A ROZLIŠOVACÍ SCHOPNOST

Disperze

Má-li mřížka posloužit k rozlišení vlnových délek, které jsou si blízké (jako v mřížkovém spektroskopu), musí mřížka difrakční obrazec dostatečně roztáhnout, aby difrakční čáry příslušných vlnových délek byly odděleny. Toto roztažení, nazývané **disperze**, je definováno vztahem

$$D = \frac{\Delta \theta}{\Delta \lambda} \quad \text{(definice disperze).} \tag{37.29}$$

V tomto vzorci je $\Delta\theta$ úhlová vzdálenost dvou čar, jejichž vlnové délky se liší o $\Delta\lambda$. Čím větší je *D*, tím větší je vzdálenost dvou emisních čar, jejichž vlnové délky se liší o $\Delta\lambda$. V dalším bude ukázáno, že disperze mřížky závisí na úhlu θ a je dána vztahem

$$D = \frac{m}{d\cos\theta}$$
 (disperze mřížky). (37.30)

Chceme-li tedy mít vysokou disperzi, musíme použít mřížky s malou mřížkovou konstantou (malé d) a pracovat ve vysokém řádu (velké m). Všimněte si, že disperze nezávisí na počtu vrypů. V soustavě SI je jednotkou D stupeň na metr nebo radián na metr.

Rozlišovací schopnost

Aby bylo možné rozlišit spektrální čáry blízkých vlnových délek, musí být šířky čar co nejužší. Jinak řečeno, mřížka musí mít vysokou **rozlišovací schopnost** R, definovanou

podílem

$$R = \frac{\lambda_{\text{stř}}}{\Delta \lambda} \quad \text{(definice rozlišovací schopnosti).} \quad (37.31)$$

Zde λ_{str} je průměr vlnových délek dvou spektrálních čar, které lze ještě považovat za separované a $\Delta\lambda$ je rozdíl jejich vlnových délek. Čím je *R* větší, tím blíže mohou být dvě emisní čáry, přičemž se dají ještě rozlišit. V dalším bude ukázáno, že rozlišovací schopnost mřížky je dána jednoduchým výrazem

$$R = Nm$$
 (rozlišovací schopnost mřížky). (37.32)

Abychom dosáhli vysoké rozlišovací schopnosti, musí mít mřížka mnoho vrypů (velké *N* v rov. (37.32)).

Odvození rov. (37.30)

Vyjděme z rov. (37.25), která určuje polohy spektrálních čar v difrakčním obrazci mřížky:

$$d\sin\theta = m\lambda.$$

Považujme θ a λ za proměnné a diferencujme tuto rovnici. Dostaneme

$$d\cos\theta\,\mathrm{d}\theta=m\,\mathrm{d}\lambda.$$

Nahradíme-li diferenciály malými rozdíly, dostaneme

$$d\cos\theta\Delta\theta = m\Delta\lambda, \qquad (37.33)$$

$$\frac{\Delta\theta}{\Delta\lambda} = \frac{m}{d\cos\theta}.$$

Podíl na levé straně je disperze D (srov. rov. (37.29)); tím jsme tedy odvodili rov. (37.30).

Odvození rov. (37.32)

Vyjděme z rov. (37.33), která byla odvozena z rov. (37.25), jež určuje polohy čar v difrakčním obrazci vytvořeném mřížkou. V rov. (37.33) značí $\Delta\lambda$ malý rozdíl vlnových délek dvou vln difraktovaných mřížkou a $\Delta\theta$ je jejich úhlová vzdálenost v difrakčním obrazci. Má-li být $\Delta\theta$ nejmenším úhlem, který dovoluje rozlišit dvě čáry, musí být (podle Rayleighova kritéria) roven pološířce každé z čar. Tuto pološířku udává rov. (37.28):

$$\Delta \theta_{1/2} = \frac{\lambda}{Nd\cos\theta}$$

Ztotožníme-li $\Delta \theta_{1/2}$ v této rovnici s $\Delta \theta$ v rov. (37.33), shledáme, že

$$\frac{\lambda}{N} = m \Delta \lambda.$$

Odtud ihned plyne, že

$$R = \frac{\lambda}{\Delta \lambda} = Nm.$$

To je však rov. (37.32), kterou jsme chtěli odvodit.

Porovnání disperze a rozlišovací schopnosti

Rozlišovací schopnost mřížky nesmíme zaměňovat s disperzí mřížky. V tab. 37.1 jsou uvedeny charakteristiky tří mřížek, všechny jsou osvětleny světlem s vlnovou délkou $\lambda = 589$ nm a difraktované světlo pozorujeme v prvním řádu (m = 1 v rov. (37.25)). Ověřte si, že tabelované hodnoty *D* a *R* lze vypočítat z rov. (37.30), resp. rov. (37.32). (Při výpočtech *D* musíte převést rad/m na °/µm.)

Za podmínek uvedených v tab. 37.1 mají mřížky A a B touž *disperzi* a A a C touž *rozlišovací schopnost*.

Tabulka 37.1	Tři	mřížky	ya
--------------	-----	--------	----

Mřížka	Ν	d (nm)	θ	D (°/ μ m)	R
А	10 000	2 540	13,4°	23,2	10 000
В	20000	2 5 4 0	13,4°	23,2	20 000
С	10000	1 370	25,5°	46,3	10 000

^{*a*} Údaje odpovídají $\lambda = 589$ nm a m = 1.

Obr. 37.25 představuje rozložení intenzity světla v difrakčním obrazci (profily čar) vytvořeném těmito mřížkami při difrakci světla o dvou vlnových délkách λ_1 a λ_2 v blízkosti $\lambda = 589$ nm. Mřížka B s vyšší rozlišovací schopností vytváří užší čáry a je schopna rozlišit čáry, jejichž vlnové délky jsou si mnohem bližší než ty, jež jsou nakresleny v obrázku. Mřížka C s vyšší disperzí vytváří větší úhlovou vzdálenost mezi čárami.

Obr. 37.25 Rozložení intenzity v difrakčním obrazci vytvořeném světlem o dvou vlnových délkách, které prošlo mřížkami z tab. 37.1. Mřížka B má největší rozlišovací schopnost a mřížka C největší disperzi.

PŘÍKLAD 37.7

Na difrakční mřížku z př. 37.6 kolmo dopadá žluté světlo sodíkové výbojky. Toto světlo obsahuje dvě blízké emisní čáry (známé jako sodíkový dublet) o vlnových délkách 589,00 nm a 589,59 nm.

(a) Pod jakým úhlem se objeví maximum prvního řádu příslušné kratší z těchto vlnových délek?

ŘEŠENÍ: Maximum prvního řádu odpovídá hodnotě m = 1 v rov. (37.25). Z př. 37.6a víme, že mřížková konstanta *d* je 2016 nm, takže

$$\sin \theta = \frac{m\lambda}{d} = \frac{1(589,00 \text{ nm})}{(2\,016 \text{ nm})} = 0,292,$$

$$\theta = 16,99^{\circ} \doteq 17^{\circ}.$$
 (Odpověď)

(b) Jaká je v prvním difrakčním řádu úhlová vzdálenost čar sodíkového dubletu?

ŘEŠENÍ: Zde vstupuje do hry *disperze* mřížky. Rov. (37.30) dává hodnotu disperze

$$D = \frac{m}{d\cos\theta} = \frac{1}{(2\,016\,\text{nm})\cos 16,99^\circ} = 5,187 \cdot 10^{-4}\,\text{rad}/\,\text{nm}.$$

Z rov. (37.29), jež je definiční rovnicí disperze, plyne

$$\Delta \theta = D \Delta \lambda =$$

= (5,187 \cdot 10^{-4} rad/nm)(589,59 nm - 589,00 nm) =
= 3,06 \cdot 10^{-4} rad = 0,017 5^{\circ}. (Odpověď)

Tento výsledek závisí na mřížkové konstantě d, nikoli však na počtu vrypů mřížky.

(c) Jak blízké mohou být vlnové délky dvou čar, které lze ještě touto mřížkou oddělit v prvním řádu?

ŘEŠENÍ: Zde vstupuje do hry *rozlišovací schopnost* mřížky. Podle rov. (37.32) je rozlišovací schopnost

$$R = Nm = (1, 26 \cdot 10^4)(1) = 1, 26 \cdot 10^4$$

Z rov. (37.31), jež je definiční rovnicí rozlišovací schopnosti, plyne

$$\Delta \lambda = \frac{\lambda}{R} = \frac{(589 \text{ nm})}{(1,26 \cdot 10^4)} = 0,0467 \text{ nm}.$$
 (Odpověď)

Tato mřížka může tedy snadno rozlišit obě sodíkové čáry, neboť rozdíl jejich vlnových délek je 0,59 nm. Všimněte si, že tento výsledek závisí pouze na počtu vrypů mřížky a je nezávislý na mřížkové konstantě d, tj. na vzdálenosti sousedních vrypů.

(d) Kolik musí mít mřížka vrypů, aby právě rozlišila čáry sodíkového dubletu?

ŘEŠENÍ: Podle rov. (37.31), jež je definiční rovnicí *R*, musí mít mřížka rozlišovací schopnost

$$R = \frac{\lambda}{\Delta\lambda} = \frac{(589 \text{ nm})}{(0,59 \text{ nm})} = 998.$$

Podle rov. (37.32) je počet vrypů potřebný k dosažení této rozlišovací schopnosti (v prvním řádu)

$$N = \frac{R}{m} = \frac{(998)}{(1)} = 998$$
 vrypů. (Odpověď)

Poněvadž naše mřížka má zhruba 13krát více vrypů, může čáry sodíkového dubletu snadno rozlišit, jak jsme již ukázali v (c).

37.9 RENTGENOVÁ DIFRAKCE

Rentgenové záření je elektromagnetické záření, jehož vlnová délka je řádu angströmů: 1 Å = 10^{-10} m přesně. Porovnejte to s vlnovou délkou středu viditelného spektra, jež je 550 nm = $5,5 \cdot 10^{-7}$ m. Obr. 37.26 ukazuje, že rentgenové záření vzniká, když elektrony emitované žhavým vláknem F a urychlené napětím U dopadají na kovový terčík T.

Obr. 37.26 Rentgenové záření vzniká, když elektrony emitované rozžhaveným vláknem F a urychlené napětím *U* dopadají na kovový terčík T. "Okénko" W v evakuované komůrce C je pro rentgenové záření propustné.

K rozlišování různých vlnových délek rentgenového záření nelze použít standardní optickou mřížku. Z rovnice (37.25) plyne, že např. pro $\lambda = 1 \text{ Å} = 0,1 \text{ nm a}$ $d = 3000 \text{ nm je maximum prvního řádu pod úhlem } \theta$:

$$\sin \theta = \frac{m\lambda}{d} = \frac{(1)(0, 1 \text{ nm})}{(3\ 000 \text{ nm})} = 0,000\ 03,$$
$$\theta = 0.001\ 9^{\circ}.$$

To není prakticky použitelné, protože je to příliš blízké centrálnímu maximu. Potřebujeme mřížku s $d \doteq \lambda$, ale protože vlnové délky rentgenového záření jsou zhruba stejné jako průměry atomů, nelze takové mřížky mechanicky vyrobit.

V roce 1912 připadl německý fyzik Max von Laue na myšlenku, že krystalická pevná látka, kterou tvoří pravidelné uspořádání atomů, by mohla být přirozenou trojrozměrnou "difrakční mřížkou" pro rentgenové záření. Krystal je tvořen tak, že se v něm opakuje jistá základní formace atomů — **elementární buňka**. V případě nejjednodušší kubické mřížky vypadá situace jako na obr. 37.27. Elementární buňka je krychle o hraně velikosti a_0 ; tato délka se nazývá **mřížkový parametr** (dříve též **mřížková konstanta**). (Bohužel se tato mřížka, jako většina jednoduchých a názorných modelů, v přírodě téměř nevyskytuje. Údajně v ní krystaluje polonium Po.)

Dopadá-li na krystal svazek rentgenového záření, je toto záření krystalovou strukturou *rozptylováno*, tj. mění se jeho směr. V některých směrech interferují rozptýlené vlny destruktivně, a tím vznikají minima intenzity; v jiných směrech je interference konstruktivní, což dává maxima intenzity. Tento proces rozptylu a interference je určitou formou difrakce, i když se nepodobá difrakci světla procházejícího štěrbinou nebo míjejícího nějakou hranu, o níž jsme už pojednali.

I když je proces difrakce rentgenového záření na krystalu složitý, lze směry maxim určit pomocí jednoduché představy. Tyto směry odpovídají totiž situaci, jako by se rentgenové záření odráželo na soustavě rovnoběžných *reflexních rovin* (nebo *krystalových rovin*) proložených atomy krystalu. V každé z těchto rovin jsou atomy pravidelně uspořádány. (Ve skutečnosti se rentgenové záření neodráží; těchto fiktivních rovin používáme pouze proto, abychom zjednodušili analýzu skutečného difrakčního jevu.)

Na obr. 37.27b jsou tři roviny soustavy s *mezirovinnou vzdáleností d*, na nichž se odrážejí vyznačené paprsky dopadajícího rentgenového záření. Paprsky 1, 2 a 3 se odrážejí od první, druhé, resp. třetí roviny. Při každém odrazu je úhel dopadu i úhel odrazu roven θ . Na rozdíl od zvyklostí v optice jsou tyto úhly vztaženy k odrážející rovině a ne k normále této roviny. V případě nakresleném na obr. 37.27b je mezirovinná vzdálenost *d* rovna mřížkové konstantě a_0 .

Obr. 37.27c znázorňuje odraz na dvou sousedních rovinách v pohledu ve směru kolmém k rovině dopadu. Vlny odpovídající paprskům 1 a 2 dopadají na krystal ve fázi. Po odrazu musejí být opět ve fázi, neboť odrazy a odrážející roviny jsme definovali pouze proto, abychom vysvětlili maxima intenzity při difrakci rentgenového záření na krystalu. Na rozdíl od světelných paprsků se paprsky rentgenového záření při vstupu do krystalu nelámou; index lomu rentgenového záření je tedy roven jedné. Když vlny odpovídající paprskům 1 a 2 vystupují z krystalu, je proto jejich fázový rozdíl určen výhradně jejich dráhovým rozdílem. Aby tyto vlny byly ve fázi, musí být jejich dráhový rozdíl roven celistvému násobku vlnové délky rentgenového záření.

Čárkované kolmice na obr. 37.27c ukazují, že dráhový rozdíl je $2d \sin \theta$. Tak tomu ovšem je pro každou dvojici

sousedních rovin v soustavě znázorněné na obr. 37.27b. Nastává tedy maximum intenzity při rentgenové difrakci za podmínky

> $2d \sin \theta = m\lambda$, kde m = 1, 2, 3, ...(Braggův zákon), (37.34)

kde *m* udává řád maxima intenzity. Rov. (37.34) se nazývá **Braggův zákon**, neboť ji poprvé odvodil britský fyzik W. L. Bragg. (V roce 1915 sdílel se svým otcem Nobelovu cenu za to, že použili rentgenového záření ke studiu struktury krystalů.) Úhel dopadu a odrazu v rov. (37.34) se nazývá **Braggův úhel**.

Na obr. 37.27d má krystalová struktura touž orientaci jako na obr. 37.27a, ale úhel, pod nímž vstupuje svazek do struktury, je jiný než na obr. 37.27b. Máme-li vysvětlit difrakci rentgenového záření Braggovým zákonem i v tomto případě, musíme k novému úhlu dopadu najít jinou soustavu rovin s jinou mezirovinnou vzdáleností da jiným Braggovým úhlem θ .

Obr. 37.28 ukazuje, jak souvisí mezirovinná vzdálenost d s mřížkovou konstantou a_0 . Pro tu konkrétní soustavu rovin, která je na obrázku nakreslena, platí

$$5d = \sqrt{5}a_0$$

neboli

$$d = \frac{a_0}{\sqrt{5}}.$$
 (37.35)

Obr. 37.28 naznačuje, jak lze nalézt rozměry elementární buňky, jestliže rentgenovou difrakcí změříme mezirovinnou vzdálenost.

Obr. 37.28 Soustava mřížkových rovin ve struktuře obr. 37.27a a způsob, jak nalézt vztah mezi délkou hrany a_0 elementární buňky a mezirovinnou vzdáleností d.

Difrakce rentgenového záření je mocným nástrojem pro studium jak rentgenových spekter, tak uspořádání atomů v krystalech. Ke studiu spektra zvolíme určitou soustavu krystalových rovin, jejichž mezirovinnou vzdálenost *d* známe. Tyto roviny efektivně odrážejí různé vlnové délky pod různými úhly. K určení vlnové délky pak můžeme použít detektor, který je schopen rozlišovat jeden úhel od druhého. Naopak krystal můžeme studovat pomocí svazku monochromatického rentgenového záření a určit nejen mezirovinné vzdálenosti různých soustav krystalových rovin, ale i strukturu elementární buňky.

PŘÍKLAD 37.8

Pod jakým Braggovým úhlem musí dopadat rentgenové záření s $\lambda = 1,10$ Å na soustavu rovin znázorněnou na obr. 37.28, mají-li odrazy na rovinách dávat maximum intenzity? Předpokládejte $a_0 = 5,63$ Å.

ŘEŠENÍ: Mezirovinnou vzdálenost *d* těchto rovin dává

Obr. 37.27 (a) Prostá kubická mřížka. Elementární buňka je vyznačena stínováním. (b) Dopadající rentgenové záření difraktuje na struktuře (a). Rentgenové záření difraktuje tak, jako by se odráželo od soustavy rovnoběžných rovin, tj. s úhlem dopadu rovným úhlu odrazu. Oba tyto úhly se měří od krystalových rovin, nikoli od normály, jak tomu bylo v optice. (c) Dráhový rozdíl vln efektivně odražených dvěma sousedními rovinami je $2d \sin \theta$. (d) Jiná orientace rentgenového záření vzhledem ke struktuře. Nyní rentgenové záření efektivně odráží jiná soustava rovin. rov. (37.35):

$$d = \frac{a_0}{\sqrt{5}} = \frac{(5,63\text{ Å})}{\sqrt{5}} = 2,518\text{ Å}.$$

Braggovy úhly vyplývají z rov. (37.34):

$$\sin \theta = \frac{m\lambda}{2d} = \frac{m(1,10\,\text{\AA})}{2(2,518\,\text{\AA})} = (0,218\,4m).$$

Difrakce

Dopadají-li vlny na hranu nebo na překážku či otvor, rozšíří se směry šíření těchto vln a dojde k interferenci. Tento jev se nazývá *difrakce*.

Difrakce na štěrbině

Vlny procházející dlouhou úzkou štěrbinou šířky a vytvářejí difrakční obrazec na štěrbině. Ten má centrální maximum a další maxima oddělená minimy. Měříme-li úhly od centrální osy, mají minima úhlovou souřadnici θ vyhovující rovnici

$$a \sin \theta = m\lambda$$
, kde $m = 1, 2, 3, ...$ (minima). (37.3)

Intenzita difrakčního obrazce pod libovolným úhlem θ je

$$I = I_{\max} \left(\frac{\sin \alpha}{\alpha}\right)^2$$
, kde $\alpha = \frac{\pi a}{\lambda} \sin \theta$ (37.5, 37.6)

a I_{max} je intenzita ve středu obrazce.

Difrakce na kruhovém otvoru

Difrakce na kruhovém otvoru nebo čočce o průměru d vytváří centrální maximum a soustředná maxima a minima. První minimum je pod úhlem θ určeným rovnicí

$$\sin \theta = 1,22 \frac{\lambda}{d} \quad \text{(první minimum;} \\ \text{kruhový otvor).} \quad (37.12)$$

Rayleighovo kritérium

Rayleighovo kritérium říká, že dva objekty jsou na hranici rozlišení, jestliže centrální difrakční maximum jednoho padne do prvního minima druhého. Úhlová vzdálenost objektů musí být alespoň

$$\theta_{\rm R} = \frac{1,22\lambda}{d}$$
 (Rayleighovo kritérium), (37.14)

kde *d* je poloměr apertury.

Difrakce na dvojštěrbině

Vlny procházející dvěma štěrbinami, z nichž každá má šířku aa mezi jejichž středy je vzdálenost d, vytvářejí difrakční obrazec. Jeho intenzitu I jako funkci úhlu θ udává vztah

$$I = I_{\max}(\cos^2 \beta) \left(\frac{\sin \alpha}{\alpha}\right)^2 \quad (dvojštěrbina), \qquad (37.19)$$

Možná maxima nastávají pod úhly $\theta = 12,6^{\circ}$ (m = 1), $\theta = 25,9^{\circ}$ (m = 2), $\theta = 40,9^{\circ}$ (m = 3) a $\theta = 60,9^{\circ}$ (m = 4). Maxima vyššího řádu nemohou existovat, neboť by vyžadovala, aby byl sin θ větší než 1.

přehled & shrnutí

kde $\beta = (\pi d/\lambda) \sin \theta$ a α má týž význam jako při difrakci na jedné štěrbině.

Difrakce na mnoha štěrbinách

Difrakce na N (mnoha) štěrbinách dává maxima (čáry) pod úhly θ určenými rovnicí

$$d \sin \theta = m\lambda$$
, kde $m = 0, 1, 2, ...$ (maxima) (37.25)

s pološířkou čar danou výrazem

$$\Delta \theta_{1/2} = \frac{\lambda}{Nd\cos\theta} \quad \begin{array}{l} \text{(pološířka čáry} \\ \text{difraktované ve směru } \theta\text{).} \end{array} \quad (37.28)$$

Difrakční mřížka

Difrakční mřížka je soustava "štěrbin" používaná k rozložení vlny do složek o různých vlnových délkách tím, že oddělí a roztáhnou difrakční maxima těchto složek. Mřížku charakterizuje její disperze D a rozlišovací schopnost R:

$$D = \frac{\Delta\theta}{\Delta\lambda} = \frac{m}{d\cos\theta},\qquad(37.29,37.30)$$

$$R = \frac{\lambda_{\text{stř}}}{\Delta \lambda} = Nm. \qquad (37.31, 37.32)$$

Rentgenová difrakce

Pravidelné uspořádání atomů v krystalu představuje trojrozměrnou difrakční mřížku pro vlny s krátkou vlnovou délkou, tj. pro rentgenové záření. Pro účely analýzy si můžeme představit, že atomy jsou uspořádány v rovinách s mezirovinnou vzdáleností *d*. V důsledku konstruktivní interference mohou vznikat difrakční maxima. Objevují se tehdy, když směr θ dopadu vlny měřený od těchto rovin a vlnová délka λ záření splňují Braggův zákon:

$$2d \sin \theta = m\lambda$$
, kde $m = 1, 2, 3, ...$
(Braggův zákon). (37.34)

OTÁZKY

1. Světlo o frekvenci f osvětlující dlouhou a úzkou štěrbinu vytváří difrakční obrazec. (a) Rozšíří se difrakční obrazec od svého středu, nebo se naopak zúží, když použijeme světla o frekvenci 1,3 f? (b) Rozšíří se, nebo se zúží difrakční obrazec, když celé zařízení ponoříme do čirého kukuřičného sirupu?

2. Experimentujete s difrakcí na štěrbině a používáte světla o vlnové délce λ . Co budete pozorovat na vzdáleném pozorovacím stínítku v bodech, v nichž dráhový rozdíl paprsků procházejících horním a spodním bodem štěrbiny je (a) 5λ , (b) $4, 5\lambda$?

3. Mluvíte stejně hlasitě, jednou do hlásné trouby, podruhé bez ní. Ve kterém případě vás osoba stojící přímo před vámi slyší hlasitěji?

4. Na obr. 37.29 jsou čtyři obdélníkové otvory, z nichž vycházejí buď zvukové nebo světelné vlny. Strany mají délky buď *L* nebo 2*L*, kde *L* je trojnásobek vlnové délky. Uspořádejte sestupně otvory podle toho, jak difrakcí rozšíří vlnový svazek ve směru (a) vodorovném, (b) svislém.

5. Při difrakci na štěrbině je dráhový rozdíl paprsků vycházejících z horního a dolního bodu štěrbiny a jdoucích do určitého bodu pozorovacího stínítka roven 4,0 vlnové délky. Kolik překrývajících se kružnic obsahuje řetěz fázorů ve fázorovém diagramu obdobném diagramům na obr. 37.6?

6. Pozorujete-li večer pouliční světla ze svého bytu přes záclony, můžete vidět zajímavé difrakční obrazce. Např. má-li tkanivo záclon oka ve tvaru obdélníčků, vidíte difrakční obrazec ve tvaru kříže, jsou-li oka šestiúhelníková, vidíte šesticípou hvězdici. Pozorujete-li takto semafory na křižovatce, které difrakční obrazce jsou větší: zelené, nebo červené?

7. Mnozí lidé vidí v noci kruhy (tzv. *entopické halo*) obklopující pouliční svítilny v jinak tmavém prostředí. Tyto kruhy jsou první vedlejší difrakční maxima difrakčních obrazců struktur, o nichž se domníváme, že jsou uvnitř rohovky (nebo možná čočky) oka pozorovatele. (Centrální maxima těchto obrazců překrývá svítilna.) (a) Byl by určitý kruh větší, nebo menší, kdyby svítilna změnila světlo z modrého na červené? (b) Je vnější okraj kruhu modrý, nebo červený, vydává-li svítilna bílé světlo?

8. Na obr. 37.30 jsou znázorněny jasné proužky, které jsou v centrálním maximu difrakční obálky ve dvojštěrbinovém difrakčním experimentu užívajícím světlo téže vlnové délky. Je (a) šířka štěrbiny a, (b) vzdálenost štěrbin d, (c) hodnota poměru d/a v experimentu B větší, menší, nebo stejná jako v experimentu A?

9. Obr. 37.31 ukazuje červenou a zelenou čáru téhož řádu v obrazci vytvořeném difrakční mřížkou. Zvětšíme-li počet vrypů mřížky (například odstraněním pásky, která polovinu vrypů zakrývala), zvětší se, zmenší se, nebo zůstanou stejné (a) pološířky čar a (b) vzdálenost čar? (c) Posunou se čáry vpravo, vlevo, nebo zůstanou na místě?

Obr. 37.31 Otázky 9 a 10

10. Jestliže bychom za podmínek otázky 9 a obr. 37.31 zvětšili mřížkovou konstantu, zvětšily by se, zmenšily by se, nebo by zůstaly nezměněné (a) pološířky čar a (b) vzdálenosti čar?
(c) Posunuly by se čáry vpravo, vlevo, nebo by zůstaly na místě?

11. (a) Čáry na obr. 37.32a vznikly difrakcí světla téhož spektrálního složení na mřížkách A a B. Čáry jsou téhož řádu a také úhly θ jsou stejné. Která mřížka má větší počet vrypů? (b) Obr. 37.32b ukazuje čáry dvou řádů vytvořené difrakční mřížkou za použití světla se dvěma vlnovými délkami v červené oblasti spektra. Která dvojice čar je vyšsího řádu *m*, ta vpravo, nebo ta vlevo? Je střed difrakčního obrazce vpravo, nebo vlevo na (c) obr. 37.32a, (d) obr. 37.32b?

12. (a) Zvětší se, zmenší se, nebo zůstane beze změny nejmenší rozdíl $\Delta\lambda$ dvou vlnových délek, které může určitá difrakční mřížka rozlišit, jestliže se zvětší vlnová délka? (b) Je v určitém oboru vlnových délek (řekněme kolem 500 nm) $\Delta\lambda$ větší v prvním, nebo ve třetím řádu?

CVIČENÍ & ÚLOHY

ODST. 37.2 Difrakce na štěrbině. Polohy minim

1C. Na štěrbinu o šířce 0,022 mm dopadá monochromatické světlo a první difrakční minimum svírá se směrem dopadajícího světla úhel 1,8°. Jaká je vlnová délka použitého světla?

2C. Monochromatické světlo o vlnové délce 441 nm dopadá na úzkou štěrbinu. Stínítko je ve vzdálenosti 2,00 m a na něm je vzdálenost mezi druhým difrakčním minimem a centrálním maximem 1,50 cm. (a) Vypočtěte difrakční úhel θ druhého minima. (b) Stanovte šířku štěrbiny.

3C. Světlo o vlnové délce 633 nm dopadá na úzkou štěrbinu. Úhel mezi prvním difrakčním minimem na jedné straně centrálního maxima a prvním minimem na druhé straně je 1,20°. Jaká je šířka štěrbiny?

4C. Na štěrbinu dopadá světlo o vlnových délkách $\lambda_a a \lambda_b$ zvolených tak, že první difrakční minimum komponenty λ_a koinciduje s druhým minimem komponenty λ_b . (a) Jak spolu obě vlnové délky souvisejí? (b) Koincidují ještě nějaká minima?

5C. Na stínítku vzdáleném 40 cm od štěrbiny je vzdálenost mezi prvním a pátým minimem difrakčního obrazce 0,35 mm. Použité světlo má vlnovou délku 550 nm. (a) Stanovte šířku štěrbiny. (b) Vypočtěte úhel θ prvního difrakčního minima.

6C. Jaký musí být poměr šířky štěrbiny a vlnové délky, aby bylo první difrakční minimum pod úhlem $\theta = 45,0^{\circ}$?

7C. Na štěrbinu o šířce a = 0,40 mm dopadá rovinná vlna s vlnovou délkou 590 nm. Mezi štěrbinou a pozorovacím stínítkem je tenká spojná čočka s ohniskovou vzdáleností +70 cm, která fokusuje světlo na stínítko. (a) Jak daleko je stínítko od čočky? (b) Jaká je na stínítku vzdálenost mezi středem difrakčního obrazce a prvním minimem?

8Ú. Na štěrbinu o šířce 1,00 mm dopadá světlo o vlnové délce 589 nm. Difrakční obrazec pozorujeme na stínítku ve vzdálenosti 3,00 m. Jaká je vzdálenost mezi prvními dvěma difrakčními minimy na téže straně centrálního difrakčního maxima?

9Ú. Zvuková vlna o frekvenci 3 000 Hz a rychlosti 343 m/s difraktuje na obdélníkovém otvoru reproduktoru a šíří se velkým auditoriem. Otvor, jehož vodorovná šířka je 30,0 cm, je umístěn proti stěně ve vzdálenosti 100 m (obr. 37.33). Ve kterých místech této stěny budou posluchači v prvním difrakčním minimu a tedy budou jen s obtížemi slyšet zvuk? (Zanedbejte odrazy od stěn.)

10Ú. Výrobci drátů (a jiných věcí s malými rozměry) používají někdy laseru, aby kontinuálně kontrolovali tloušťku výrobku. Na drát dopadá laserový svazek a vzniká difrakční obrazec, který je prakticky stejný jako difrakční obrazec od štěrbiny o šířce rovné průměru vlákna (obr. 37.34). Předpokládejte, že na drát svítí He-Ne laser, jehož světlo má vlnovou délku 632,8 nm, a že difrakční obrazec pozorujete na stínítku ve vzdálenosti 2,60 m. Požadovaná šířka drátu je 1,37 mm. Jaká je vzdálenost mezi oběma minimy desátého řádu (po obou stranách centrálního maxima)?

ODST. 37.4 Intenzita při difrakci na štěrbině (kvantitativně)

11C. Na štěrbinu o šířce 0,10 mm dopadá světlo o vlnové délce 589 nm. Uvažujte paprsky difraktované pod úhlem $\theta = 30^{\circ}$ a vypočtěte, jaký je na stínítku fázový rozdíl Huygensových vlnek z horního bodu štěrbiny a z jejího středu. (*Tip*: Viz rov. (37.4).)

12C. Monochromatické světlo s vlnovou délkou 538 nm dopadá na štěrbinu o šířce 0,025 mm. Vzdálenost mezi štěrbinou a stínítkem je 3,5 m. Uvažujte o bodu na stínítku, který je od centrálního maxima ve vzdálenosti 1,1 cm. (a) Vypočtěte úhel θ pro tento bod. (b) Vypočtěte α . (c) Vypočtěte poměr intenzity v tomto bodě a intenzity centrálního maxima.

13Ú. Jestliže zdvojnásobíte šířku štěrbiny, vzroste intenzita centrálního maxima difrakčního obrazce čtyřikrát, i když intenzita procházející rozšířenou štěrbinou je pouze dvojnásobná. Vysvětlete to kvantitativně.

14Ú. Babinetův princip. Monochromatický svazek rovnoběžných paprsků světla dopadá na vymezující otvor o průměru $x \gg \lambda$. Bod *P* vzdáleného pozorovacího stínítka leží v geometrickém stínu (obr. 37.35). Do vymezujícího otvoru jsou postupně umístěny dvě překážky: A je nepropustný kruh s otvorem a B je "fotografickým negativem" překážky A. Ukažte pomocí představ o superpozici vlnění, že intenzita v bodě *P* je stejná, ať difrakce nastává na kterémkoli z objektů A a B.

15Ú. Pološířka centrálního difrakčního maxima je definována jako úhel mezi dvěma body centrálního maxima, v nichž je intenzita rovna polovině intenzity ve středu obrazce (obr. 37.7b). (a) Ukažte, že intenzita klesne na polovinu maximální hodnoty, když sin² $\alpha = \alpha^2/2$. (b) Ověřte, že $\alpha = 1,39$ rad (zhruba 80°) je řešením transcendentní rovnice v (a). (c) Ukažte, že pološířka je $\Delta\theta = 2 \arcsin(0,443\lambda/a)$. (d) Vypočtěte pološířky centrálního maxima pro štěrbiny, jejichž šířky jsou 1,0, 5,0 a 10 vlnových délek.

16Ú. (a) Ukažte, že hodnoty α odpovídající maximům intenzity při difrakci na štěrbině lze přesně stanovit derivováním rov. (37.5) podle α a anulováním této derivace, což dává podmínku tg $\alpha = \alpha$. (b) Nalezněte hodnoty α splňující tento vztah. Můžete postupovat buď tak, že vynesete křivku $y = \text{tg } \alpha$ a přímku $y = \alpha$ a odečtete jejich průsečíky, nebo tak, že najdete příslušné hodnoty α zkusmo pomocí kapesního kalkulátoru. (c) Stanovte (necelé) hodnoty m odpovídající maximům v difrakčním obrazci od štěrbiny. Všimněte si, že vedlejší maxima nejsou přesně uprostřed mezi minimy.

17Ú*. Odvodte tento výraz pro intenzitu v difrakčním obrazci od mřížky tvořené třemi štěrbinami:

$$I = \frac{1}{9}I_{\max}(1 + 4\cos\varphi + 4\cos^2\varphi),$$

kde $\varphi = (2\pi d \sin \theta)/\lambda$. Předpokládejte, že $a \ll \lambda$. Inspirujte se odvozením odpovídajícího výrazu pro dvojštěrbinu (rovnice (36.21)).

ODST. 37.5 Difrakce na kruhovém otvoru

18C. Předpokládejte, že svítilna v otázce 7 emituje světlo o vlnové délce 550 nm. Má-li kruh úhlový průměr přibližně 2,5°, jaký je (délkový) průměr struktury v oku, která tento kruh způsobuje?

19C. Mezi dvěma reflektory přibližujícího se automobilu je vzdálenost 1,4 m. Při jaké (a) úhlové vzdálenosti a (b) maximální vzdálenosti od automobilu je oko rozliší? Předpokládejte, že průměr pupily je 5,0 mm, a počítejte s vlnovou délkou 550 nm. Předpokládejte také, že rozlišení omezuje pouze difrakce.

20C. Astronaut letí v raketoplánu 160 km nad Zemí a tvrdí, že je právě tak schopen rozlišit dva bodové zdroje na zemském povrchu. Předpokládejte ideální podmínky a vypočtěte (a) úhlovou

a (b) délkovou vzdálenost těchto zdrojů. Počítejte s $\lambda = 540$ nm a průměrem pupily astronautova oka 5,0 mm.

21C. Stanovte minimální vzdálenost dvou bodů na povrchu Měsíce, které může rozlišit 200palcový = 5,1 m dalekohled na Mount Palomaru. Předpokládejte, že tato vzdálenost je určena difrakčními jevy. Vzdálenost od Země na Měsíc je $3,8\cdot10^5$ km. Počítejte s vlnovou délkou 550 nm.

22C. Stěna velkého pokoje je obložena kachlemi, v nichž jsou po 5,0 mm vyvrtány drobné dírky. Jak daleko může být člověk od takového obložení, aby ještě rozlišil jednotlivé dírky? Předpokládejte ideální podmínky, průměr pupily pozorovatelova oka 4,0 mm a vlnovou délku osvětlení místnosti 550 nm.

23C. Pupila lidského oka má průměr 5,00 mm. Jak daleko od sebe musejí být dva malé objekty, abychom jejich obrazy právě rozlišili, jsou-li 250 mm od oka a osvětleny světlem o vlnové délce 500 nm?

24C. Odhadněte, jaká je za ideálních podmínek vzdálenost dvou objektů na planetě Marsu, které může ještě rozlišit pozorovatel na Zemi (a) prostým okem a (b) 200palcovým dalekohledem na Mount Palomaru. Vzdálenost k Marsu je 8,0·10⁷ km, průměr pupily je 5,0 mm, vlnová délka světla je 550 nm.

25C. Superman je schopen vidět pomocí rentgenového záření o vlnové délce 0,10 nm a jeho pupila má průměr 4,0 mm. Z jaké maximální výšky je schopen rozeznat padouchy od hrdinů za předpokladu, že k tomu potřebuje rozlišit body vzdálené od sebe 5,0 cm?

26C. Křižník používá radaru s vlnovou délkou 1,6 cm. Kruhová anténa má průměr 2,3 m. Jaká je nejmenší vzdálenost mezi dvěma motorovými čluny, které může tento radarový systém rozlišit jako dva oddělené objekty ze vzdálenosti 6,2 km?

27Ú. Jaderně čerpané rentgenové lasery jsou považovány za možnou zbraň k ničení prvních stupňů mezikontinentálních balistických střel ve vzdálenostech až 2 000 km. Jedním z omezení takového zařízení je rozšíření svazku v důsledku difrakce, jež má za následek snížení intenzity. Uvažujte laser pracující na vlnové délce 1,40 nm. Elementem emitujícím světlo je konec drátu o průměru 0,200 mm. (a) Vypočtěte průměr centrálního svazku na terči ve vzdálenosti 2 000 km od zdroje svazku. (b) Kolikrát se zmenší intenzita svazku na cestě k terči? (Laser je zažehnut v prostoru mimo atmosféru, takže ztráty pohlcením v atmosféře není třeba brát v úvahu.)

28Ú. (a) Jak daleko musíte být od zrnek červeného písku, abyste byl právě na hranici rozlišení jednotlivých zrn, je-li průměr vaší pupily 1,5 mm, zrnka jsou kulovitá o poloměru 50 μ m a světlo od zrn písku má vlnovou délku 650 nm? (b) Kdyby byla zrnka modrá a světlo od nich mělo vlnovou délku 400 nm, byla by vaše vzdálenost v otázce (a) větší, nebo menší?

29Ú. Barvy krovek svižníka (obr. 37.36) vznikají interferencí na tenkých kutikulárních vrstvách. Kromě toho tvoří tyto vrstvy šupinky o průměru $60 \mu m$, které vytvářejí různé barvy. Barvy, které vidíte, jsou pak pointilistickou směsí barev vzniklých interferencí na tenkých vrstvách, jež se mění podle toho, odkud se

díváte. Odhadněte vzdálenost, ze které musíte pozorovat krovky, abyste podle Rayleighova kritéria byli na hranici rozlišení různých barevných šupin. Počítejte s vlnovou délkou světla 550 nm a s průměrem pupily vašeho oka 3,00 mm.

Obr. 37.36 Úloha 29. Zabarvení svižníků je pointilistickou směsí barev vzniklých interferencí na tenkých vrstvách.

30Ú. (a) Podmořským zdrojem zvuku pro detekci ponorek je kruhová membrána o průměru 60 cm kmitající s frekvencí 25 kHz. Ve velké vzdálenosti od zdroje odpovídá rozložení intenzity zvuku difrakčnímu obrazci na kruhovém otvoru, jehož průměr je týž jako průměr membrány. Počítejte s rychlostí zvuku ve vodě 1 450 m/s a zjistěte úhel mezi normálou k membráně a směrem prvního minima. (b) Zopakujte to pro zdroj mající (slyšitelnou) frekvenci 1,0 kHz.

31Ú. V červnu 1985 byl z optické základny amerického letectva v Maui na Hawai vyslán laserový svazek, který se odrazil zpět od raketoplánu *Discovery*, když přelétal Maui ve výšce 220 mil. Průměr centrálního maxima svazku na raketoplánu byl 30 stop a vlnová délka svazku 500 nm. Jaký je efektivní průměr laserové apertury na základně v Maui? (*Tip*: Jedinou příčinou rozšiřování laserového svazku je difrakce; předpokládejte kruhovou výstupní aperturu.)

32Ú. Na špionážní družici ve výšce 160 km nad zemským povrchem byla čočka s ohniskovou vzdáleností 3,6 m, která je schopna rozlišit pozemní objekty o velikosti 30 cm; s její pomocí bylo snadno možné měřit velikost vzduchových nasávacích ventilů letadel. Jaký je efektivní průměr čočky, považujeme-li difrakci za jediný omezující faktor? Předpokládejte $\lambda = 550$ nm.

33Ú. Radar pracující s milimetrovou vlnou vysílá užší svazek než konvenční mikrovlnný radar, a je proto méně zranitelný protiradarovými střelami. (a) Vypočtěte úhlovou šířku centrálního maxima (od prvního minima k prvnímu minimu) vytvořeného 220 GHz radarovým svazkem vyslaným kruhovou anténou o průměru 55,0 cm. (Frekvence je zvolena tak, aby padla do málo pohlcujícího atmosférického "okna".) (b) Vypočtěte stejný údaj pro radar na křižníku ze cvič. 26.

34Ú. (a) Jaká je úhlová vzdálenost dvou hvězd, jejichž obrazy lze ještě rozlišit Thawovým refraktorem Alleghenské observatoře v Pittsburghu? Průměr objektivu je 76 cm a jeho ohnisková vzdálenost je 14 m. Předpokládejte $\lambda = 550$ nm. (b) Stanovte vzdálenost mezi těmito ještě rozlišitelnými hvězdami, je-li každá z nich ve vzdálenosti 10 světelných let od Země. (c) Nalezněte průměr prvního tmavého kroužku v difrakčním obrazci, vytvořeného obrazem jedné hvězdy v dalekohledu. Tento průměr lze změřit na fotografické desce umístěné v ohniskové rovině objektivu. Předpokládejte, že struktura obrazu souvisí pouze s difrakcí na apertuře objektivu a nikoli s vadami objektivu.

35Ú. Kruhová překážka dává týž difrakční obrazec jako kruhový otvor stejného průměru (s výjimkou směrů velmi blízkých $\theta = 0.$) Drobné kapičky vody ve vzduchu jsou příkladem takových překážek. Pozorujete-li Měsíc přes rozptýlené vodní kapičky, např. mlhu, vidíte difrakční obrazec od mnoha kapiček. Výsledkem je jasné kolo okolo Měsíce (obr. 37.37). V blízkosti Měsíce je obrazec bílý. (a) Jaká barva je na hranici tohoto bílého obrazce? Červená, nebo modrá? (b) Předpokládejte, že ohraničující kruh má úhlový průměr 1,5krát větší, než je úhlový průměr Měsíce 0,50°. Jak asi jsou velké kapičky mlhy?

Obr. 37.37 Úloha 35. Korona okolo Měsíce vzniká složením difrakčních obrazců od kapiček vody ve vzduchu.

36Ú. Ve společném sovětsko-francouzském experimentu, jenž svazkem světla monitoroval povrch Měsíce, byly pulzy světla z rubínového laseru ($\lambda = 0.69 \,\mu$ m) nasměrovány k Měsíci reflektorem (dalekohledem) se zrcadlem o poloměru 1,3 m. Odražeč na Měsíci se choval jako kruhové rovinné zrcadlo o poloměru 10 cm a odrážel světlo přímo zpět do dalekohledu na Zemi. Odražené světlo tak prošlo dalekohledem a bylo detegováno v ohnisku. Jaká část původní světelné energie byla detektorem

snímána? Předpokládejte, že v obou směrech šíření je veškerá energie soustředěna v centrálním difrakčním maximu.

ODST. 37.6 Difrakce na dvojštěrbině

37C. Centrální difrakční obálka difrakčního obrazce od dvojštěrbiny obsahuje 11 světlých proužků a první difrakční minima eliminují světlé proužky (tj. koincidují s nimi). Kolik světlých proužků je mezi prvním a druhým minimem difrakční obálky?

38C. Kolik světlých interferenčních proužků leží v centrální difrakční obálce, je-li na obr. 37.38 d = 2a?

Obr. 37.38 Cvičení 38 a úloha 39

39Ú. Při d = a v obr. 37.38 splynou obě štěrbiny v jednu o šířce 2a. Ukažte, že rov. (37.19) se redukuje na rovnici vztahující se k difrakčnímu obrazci od takové štěrbiny.

40Ú. (a) Jaký musí být poměr d/a dvojštěrbiny, aby difrakce eliminovala čtvrtý světlý vedlejší proužek? (b) Které jiné světlé proužky jsou rovněž eliminovány?

41Ú. Dvě štěrbiny o šířce a a s roztečí d jsou osvětleny koherentním světlem o vlnové délce λ . Jaká je rozteč světlých interferenčních proužků pozorovaných na stínítku ve vzdálenosti l od dvojštěrbiny?

42Ú. (a) Kolik proužků se objeví mezi prvními difrakčními minimy difrakční obálky po obou stranách centrálního maxima v difrakčním obrazci na dvojštěrbině, když $\lambda = 550$ nm, d = $= 0,150 \text{ mm a} a = 30 \mu \text{m}$? (b) Jaký je poměr intenzity třetího světlého proužku k intenzitě centrálního proužku?

43Ú. Světlo o vlnové délce 440 nm prochází dvojštěrbinou a vytváří difrakční obrazec, v němž intenzita I závisí na difrakčním úhlu θ podle obr. 37.39. Vypočtěte (a) šířku štěrbin a (b) vzdálenost mezi štěrbinami. (c) Ověřte hodnoty intenzity odpovídající v grafu interferenčním proužkům s m = 1a m = 2.

44Ú. Dvojštěrbina pro difrakci zvuku (s roztečí štěrbin d a šířkou štěrbin a) je napájena dvěma reproduktory, jak to ukazuje obr. 37.40. S použitím zpožďovací linky lze měnit fázi jednoho z reproduktorů. Popište podrobně, jak se bude měnit velmi vzdálený difrakční obrazec na dvojštěrbině, bude-li se měnit fázový rozdíl obou reproduktorů od nuly do 2π . Vezměte v úvahu jak difrakční, tak interferenční efekty.

Obr. 37.40 Úloha 44

ODST. 37.7 Difrakční mřížky

45C. Difrakční mřížka široká 20,0 mm má 6 000 vrypů. (a) Vypočtěte vzdálenost d mezi sousedními vrypy. (b) Pod kterými úhly se objeví maxima intenzity, má-li dopadající záření vlnovou délku 589 nm?

46C. Difrakční mřížka má 200 vrypů/mm a dává maximum intenzity pod úhlem $\theta = 30,0^{\circ}$. (a) Jaké jsou možné vlnové délky dopadajícího viditelného světla? (b) Jakým barvám odpovídají?

47C. Mřížka má 315 vrypů/mm. Pro kterou vlnovou délku viditelného spektra lze pozorovat difrakci pátého řádu?

48C. Kolik řádů celého viditelného spektra (400 nm až 700 nm) může vzniknout na mřížce s 400 vrypy/mm kromě řádu m = 0?

49C. Difrakční mřížka o šířce 3,00 cm dává druhý řád difrakce světla o vlnové délce 600 nm pod úhlem 33,0°. Jaký je celkový počet vrypů mřížky?

50C. Někteří tropičtí vírníkovití brouci jsou zbarveni optickou interferencí pocházející od šupinek vytvářejících difrakční mřížku. (My pozorujeme světlo rozptýlené a nikoli prošlé.) Když světlo dopadá kolmo na tuto mřížku, je úhel mezi maximy prvního řádu (po obou stranách maxima nultého řádu) asi 26°. Jaká je její mřížková konstanta? Za vlnovou délku světla vezměte hodnotu 550 nm.

51C. Difrakční mřížku o šířce 1,0 cm tvoří 10000 rovnoběžných štěrbin. Monochromatické světlo dopadající kolmo na mřížku je v prvním řádu odchýleno o 30°. Jaká je jeho vlnová délka?

52Ú. Světlo o vlnové délce 600 nm dopadá kolmo na difrakční mřížku. Úhly dvou sousedních maxim jsou určeny podmínkami sin $\theta = 0,2$ a sin $\theta = 0,3$. Maximum čtvrtého řádu chybí. (a) Jaká je vzdálenost sousedních štěrbin? (b) Jaká je nejmenší možná šířka štěrbin? (c) Které řády maxim intenzity vytváří mřížka za předpokladu, že má parametry odvozené v (a) a (b)?

53Ú. Difrakční mřížku tvoří štěrbiny o šířce 300 nm a s roztečí 900 nm. Kolmo na mřížku dopadá monochromatická rovinná vlna s vlnovou délkou $\lambda = 600$ nm. (a) Kolik je v celém obrazci difrakčních maxim? (b) Jaká je šířka spektrální čáry pozorované v prvním řádu, má-li mřížka 1 000 štěrbin?

54Ú. Předpokládejte, že viditelné spektrum je vymezeno vlnovými délkami 430 nm a 680 nm. Vypočtěte, kolik vrypů na milimetr má mřížka, která rozloží spektrum prvního řádu do úhlu 20°.

55Ú. Světlo výbojky dopadá kolmo na mřížku s roztečí štěrbin 1,73 µm. Ostrá maxima zeleného světla pozorujeme pod úhly $\theta = \pm 17,6^{\circ}, +37,3^{\circ}, -37,1^{\circ}, +65,2^{\circ}$ a $-65,0^{\circ}$. Vypočtěte vlnovou délku zeleného světla, která nejlépe vyhovuje těmto hodnotám.

56Ú. Na mřížku dopadá světlo pod úhlem ψ (obr. 37.41). Ukažte, že světlé proužky se objeví pod úhly θ , které splňují rovnici

 $d(\sin\psi + \sin\theta) = m\lambda$, kde $m = 0, 1, 2, \dots$

(Porovnejte tuto rovnici s rov. (37.25).) V této kapitole jsme probírali pouze speciální případ $\psi = 0$.

Obr. 37.41 Úloha 56

57Ú. Světlo o vlnové délce 600 nm dopadá pod různými úhly na mřížku s $d = 1,50 \,\mu\text{m}$. Vyjádřete graficky úhlovou odchylku α směru maxima prvního řádu od směru dopadu jako funkci úhlu dopadu, tj. $\alpha = \alpha(\psi)$. (Viz úlohu 56.)

58Ú. Dvě emisní čáry mají vlnové délky λ a $\lambda + \Delta \lambda$, kde $\Delta \lambda \ll \lambda$. Ukažte, že jejich úhlová vzdálenost v mřížkovém spektrometru je přibližně dána výrazem

$$\Delta\theta = \frac{\Delta\lambda}{\sqrt{(d/m)^2 - \lambda^2}},$$

^o a dublet je v tomto řádu na hranici rozlišení. Nalezněte
 (a) mřížkovou konstantu a (b) šířku celé mřížky.

68C. Ukažte, že disperze mřížky je $D = (tg \theta)/\lambda$.

69C. Mřížka má 40 000 vrypů a šířku 76 mm. (a) Jakou disperzi *D* lze očekávat pro první tři řády sodíkového světla $(\lambda = 589 \text{ nm})$? (b) Jaká je v těchto řádech rozlišovací schopnost mřížky?

70Ú. Na difrakční mřížku kolmo dopadá světlo složené ze dvou vlnových délek, 500 nm a 600 nm. Požadujeme, aby (1) difrakční úhly θ prvních a druhých maxim pro obě tyto vlnové délky byly menší nebo nejvýše rovny 30°, (2) disperze byla co největší a (3) chyběl třetí řád pro vlnovou délku 600 nm. (a) Jaká by měla být mřížková konstanta? (b) Jaká je nejmenší možná šířka jednotlivých štěrbin mřížky? (c) Které řády maxim intenzity vlnové délky 600 nm mřížka vytvoří při hodnotách odvozených v (a) a (b)?

71Ú. (a) Úhel θ udává polohu čáry vzniklé difrakcí na mřížce. Vyjádřete součin pološířky této čáry a rozlišovací schopnosti jako funkci úhlu θ . (b) Uveďte číselnou hodnotu tohoto součinu pro první řád a mřížku z úlohy 53.

72Ú. Mřížka má rozlišovací schopnost $R = \lambda_{\text{stř}} / \Delta \lambda = Nm$. (a) Ukažte, že odpovídající rozdíl frekvencí Δf , které lze ještě rozlišit, je dán výrazem $\Delta f = c/(Nm\lambda)$. (b) Ukažte s pomocí obr. 37.17, že časy, za které světlo proběhne dráhy odpovídající oběma krajním paprskům, se liší o hodnotu $\Delta t = (Nd/c) \sin \theta$. (c) Ukažte, že $(\Delta f)(\Delta t) = 1$ nezávisle na parametrech mřížky. Předpokládejte $N \gg 1$.

ODST. 37.9 Rentgenová difrakce

73C. Rentgenové záření o vlnové délce 0,12 nm vykazuje na krystalu fluoridu lithného reflexi druhého řádu pod Braggovým úhlem 28°. Jaká je mezirovinná vzdálenost reflexních rovin v krystalu?

74C. Jaký je nejmenší Braggův úhel pro reflexi rentgenového záření o vlnové délce 30 pm na reflexních rovinách krystalu vápence s mezirovinnou vzdáleností 0,30 nm?

75C. Nastává-li reflexe prvního řádu pod Braggovým úhlem 3,4°, pod jakým úhlem nastane reflexe druhého řádu na téže soustavě reflexních rovin?

76C. Na obr. 37.42 je graf intenzity rentgenového záření difraktovaného krystalem v závislosti na difrakčním úhlu. Rentgenové záření obsahuje dvě vlnové délky a mezirovinná vzdálenost reflexních rovin je 0,94 nm. O které dvě vlnové délky jde?

77C. Svazek rentgenového záření o vlnové délce λ vykazuje reflexi prvního řádu, dopadá-li na stěnu krystalu pod úhlem 23° a svazek rentgenového záření o vlnové délce 97 pm vykazuje reflexi třetího řádu, dopadá-li na touž krystalovou stěnu pod úhlem 60°. Najděte (a) mezirovinnou vzdálenost a (b) vlnovou délku λ za předpokladu, že oba svazky reflektují na téže soustavě reflexních rovin.

78C. Svazek rentgenového záření o určité vlnové délce dopadá na krystal tak, že svírá 30,0° s jistou soustavou reflexních rovin, jejíž mezirovinná vzdálenost je 39,8 pm. Jaká je vlnová délka rentgenového záření, nastává-li na těchto rovinách reflexe prvního řádu?

79C. Dokažte, že není možné současně určit vlnovou délku záření i mezirovinnou vzdálenost reflexních rovin v krystalu pouze ze změřených Braggových úhlů několika řádů.

80Ú. Na obr. 37.43 je schematicky naznačen svazek tvrdého rentgenového záření s vlnovými délkami v rozsahu od 95,0 pm do 140 pm, který dopadá na soustavu reflexních rovin s mezirovinnou vzdáleností d = 275 pm. Při kterých vlnových délkách budou reflexe na těchto rovinách představovat difrakční maxima intenzity?

Obr. 37.43 Úlohy 80 a 83

81Ú. Reflexe prvního řádu nastává na reflexních rovinách vyznačených na obr. 37.44, když svazek rentgenového záření o vlnové délce 0,260 nm svírá s horní stěnou krystalu úhel 63,8°. Jaká je hodnota mřížkové konstanty a_0 ?

82Ú. Uvažujte dvojrozměrnou čtvercovou krystalovou strukturu, např. jednu stěnu struktury znázorněné na obr. 37.27a. Jednou z mezirovinných vzdáleností reflexních rovin je mřížková konstanta a_0 . (a) Vypočtěte a zakreslete dalších pět menších mezirovinných vzdáleností. (b) Ukažte, že tyto výsledky v (a) splňují obecnou rovnici

$$d = \frac{a_0}{\sqrt{h^2 + k^2}},$$

kde h a k jsou nesoudělná celá čísla.

83Ú. Svazek rentgenového záření o vlnové délce 0,125 nm dopadá na horní stěnu krystalu pod úhlem 45,0° (obr. 37.43). Reflexní roviny mají mezirovinnou vzdálenost d = 0,252 nm. O jaké úhly je třeba krystal pootočit kolem osy kolmé k rovině obrázku, aby odrazy na těchto reflexních rovinách dávaly difrakční maxima intenzity?