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Abstract

We have carried out a new evaluation of the eighth-order contribution to the electron g−2

using FORTRAN codes generated by an automatic code generator gencodeN. Comparison of the

“new” result with the “old” one has revealed an inconsistency in the treatment of the infrared

divergences in the latter. With this error corrected we now have two independent determinations

of the eighth-order term. This leads to the revised value 1 159 652 182.79 (7.71) × 10−12 of the

electron g−2, where the uncertainty comes mostly from that of the best non-QED value of the fine

structure constant α. The new value of α derived from the revised theory and the latest experiment

is α−1 = 137.035 999 084 (51) [0.37 ppb] , which is about 4.7 ppb smaller than the previous α−1.

PACS numbers: 13.40.Em,14.60.Cd,12.20.Ds,06.20.Jr
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I. INTRODUCTION AND SUMMARY

The anomalous magnetic moment of the electron has played a central role in testing the

validity of QED [1, 2]. The test became very stringent when the precision of measurement

of the electron and positron was improved by three orders of magnitude over the best earlier

result [3] by the University of Washington group in the Penning trap experiment [4]

ae− = 1 159 652 188.4 (4.3) × 10−12 [3.7ppb] ,

ae+ = 1 159 652 187.9 (4.3) × 10−12 [3.7ppb] , (1)

where ae ≡ (g−2)/2 and g is the g-factor of electron. The main source of the remaining

uncertainty in Eq. (1) is the uncontrolled shift of the frequency due to the resonance between

the electron and the metal cavity of hyperbolic shape. Brown et al. [5] showed that this

source of uncertainty can be reduced significantly using a metal trap with the cylindrical

cavity whose resonance structure can be calculated analytically.

The recent Harvard measurement is based on the cylindrical cavity. Their value an-

nounced in 2006 is [6]

ae(HV06) = 1 159 652 180.85 (0.76) × 10−12 [0.66ppb] , (2)

which has a 5.5 times smaller uncertainty than the previous measurements listed in Eq. (1).

Very recently, the same Harvard group has succeeded in reducing the uncertainty further by

a factor 2.7 [7]:

ae(HV08) = 1 159 652 180.73 (0.28) × 10−12 [0.24ppb] . (3)

To match the precision of the measurement the theory of ae must include radiative cor-

rections of up to the eighth-order of QED perturbation theory as well as the hadronic and

weak contributions

ae = ae(QED) + ae(hadron) + ae(weak). (4)

The hadronic [8, 9, 10, 11] and weak contributions [12] to ae are very small, but not entirely

negligible relative to the measurement uncertainties (2) or (3):

ae(hadron) = 1.682 (20) × 10−12, (5)

ae(weak) = 0.0297 (5) × 10−12. (6)
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The QED contribution ae(QED) can be divided further into four parts taking account of

the presence of other leptons:

ae(QED) = A1 + A2(me/mµ) + A2(me/mτ ) + A3(me/mµ, me/mτ ) , (7)

where me, mµ, and mτ are masses of the electron (e), muon (µ) and tau-lepton (τ), respec-

tively. A1, being dimensionless, depends only on the fine structure constant α. A2 denotes

contributions from the Feynman diagrams which have closed loops of either muon or tau-

lepton. A3 stands for the contributions of the Feynman diagrams which contain both µ loop

and τ loop. Each Ai can be calculated by the QED perturbation theory

Ai = A
(2)
i

(α

π

)
+ A

(4)
i

(α

π

)2

+ A
(6)
i

(α

π

)3

+ · · · . (8)

The purpose of this paper is to give a detailed account of derivation of the revised value

of the eighth-order coefficient of A1 reported recently [13]

A
(8)
1 = −1.914 4 (35) . (9)

Making use of our automating algorithms in handling ultraviolet (UV) and infrared (IR)

divergences [14, 15], we are now able to generate the eighth-order FORTRAN codes very

easily and swiftly. However, numerical evaluation of these codes is still nontrivial and

requires a huge computational resource. Thus far the “new” calculation has achieved a

relative uncertainty of about 3 % . Although this is still more than an order of magnitude

less accurate than that of Ref. [16], it is good enough for the purpose of checking the old

calculation.

Comparison of the “new” numerical result with the old one has revealed an inconsistency

in the treatment of the IR divergence in the latter. With this error of the old calculation

corrected, we now have two independent determinations of A
(8)
1 . Of course, precise evaluation

of all terms of “new” A
(8)
1 by the integration routine VEGAS [17] requires an enormous

amount of computation. Fortunately, as is described in Sec. IVD, the correction term itself

can be evaluated easily and very precisely. This is why we are able to give the uncertainty

in Eq. (9) which is essentially identical with that of the previous calculation [16].

Besides A
(8)
1 the known terms of Eq. (7) are as follows [2, 18, 19, 20, 21, 22, 23, 24, 25,
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26, 27, 28, 29]:

A
(2)
1 = 0.5,

A
(4)
1 = −0.328 478 965 579 · · · ,

A
(6)
1 = 1.181 241 456 587 · · · ,

A
(10)
1 = 0.0 (4.6),

A
(4)
2 (me/mµ) = 5.197 386 70 (27) × 10−7,

A
(4)
2 (me/mτ ) = 1.837 63 (60) × 10−9,

A
(6)
2 (me/mµ) = −7.373 941 58 (28) × 10−6,

A
(6)
2 (me/mτ ) = −6.581 9 (19) × 10−8,

A
(6)
3 (me/mµ, me/mτ ) = 0.190 945 (62) × 10−12 . (10)

Here, A
(2)
1 , A

(4)
1 , and A

(6)
1 are known analytically. A

(4)
2 , A

(6)
2 and A

(6)
3 are known analytically

as functions of mass ratios so that their uncertainties are due to those of measured lepton

masses only. Note that A
(10)
1 is actually unknown and the value listed above is an educated

guess calculated by the recipe proposed in Ref. [29] to indicate a likely range of the value

taken by A
(10)
1 . This will soon be replaced by a real number, which is being evaluated

by FORTRAN codes generated with the help of the automatic code generator gencodeN

[14, 15]. Until then A
(10)
1 in Eq. (10) is the largest source of theoretical uncertainty.

In order to obtain the numerical value of the theoretical g−2, an explicit value of the

fine structure constant α, which is determined by the physical phenomena other than g−2,

is required. At present the best values of α available in the literature are from the Cesium

atom experiments [30, 31] and the Rubidium atom experiment [32]

α−1(Cs06) = 137.036 000 00 (110) [8.0ppb] , (11)

α−1(Rb06) = 137.035 998 84 (91) [6.7ppb] . (12)

They lead to the theoretical predictions of ae:

ae(Cs) = 1 159 652 172.99 (0.10)(0.31)(9.32)× 10−12,

ae(Rb) = 1 159 652 182.79 (0.10)(0.31)(7.71)× 10−12, (13)

respectively, where the uncertainty 0.10 comes from the eighth-order result (9), 0.31 is an

estimated uncertainty of the tenth-order term, and 9.32 and 7.71 come from the uncertain-

ties of the input values of the fine structure constants given in Eqs. (11) and (12). The
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uncertainty due to the hadronic and weak contributions (6) is 0.02 × 10−12. The revised

theoretical anomaly ae is in closer agreement with the experimental values (2) and (3) than

the old value [16].

Unfortunately, the precision of ae given in Eq. (13) is not high enough for direct confronta-

tion between the experimental and theoretical ae’s. This is because the uncertainties in ae

due to these α’s amount to 9.3×10−12 for α(Cs06) and 7.7×10−12 for α(Rb06), respectively,

which are an order of magnitude larger than the experimental uncertainty 0.76× 10−12 and

the theoretical uncertainty 0.28 × 10−12 of ae.

This implies that, assuming the validity of QED, the electron g−2 is in fact the best source

of the fine structure constant α, an order of magnitude better than any alternative. Because

of high precision of the experiments (2) and (3) the fine structure constant α determined

from ae is rather sensitive to the revision of the theoretical prediction. Equating the Harvard

measurements (2) or (3), and the theory (4), we obtain [7, 33, 34]

α−1(ae(HV06 = Th07)) = 137.035 999 070 (12)(37)(90) [0.71ppb] , (14)

α−1(ae(HV08 = Th07)) = 137.035 999 084 (12)(37)(33) [0.37ppb] , (15)

where the first and second uncertainties come from the numerical uncertainties of A
(8)
1 and

A
(10)
1 , respectively, and the third in Eq. (14) or Eq. (15) comes from the experiment (2) or

(3), respectively.

These values of α−1 are smaller than the old α−1(ae(HV06 = Th06)) by −6.411 80(73)×

10−7 which is about 4.7 ppb (or about 7 s. d.), but are still in good agreement with α−1(Rb06)

of Eq. (11) and α−1(Cs06) of Eq. (12), whose uncertainties are about 7 ppb.

The organization of the paper is as follows. In Sec. II, we briefly overview the “old”

and “new” approaches to the numerical calculation of the electron g−2 in QED. In Sec.

III, the diagrams of Group V of the eighth-order term are discussed. We compared the

results of the “old” and “new” calculations and found an unaccountable difference in the

results of the diagram M18. In Sec. IV, the diagram M16 is closely examined instead of

M18. This is because M16 has a similar structure to M18, but somewhat simpler. We found

a source of the discrepancy between the “old” and “new” results and the errors in the “old”

calculation of M16 and M18 are corrected. Sec. V gives the summary of the updated value

of the eighth-order contribution to the electron g−2.

Appendix A presents the tests of the automation system gencodeN for the fourth-order
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and sixth-order g− 2’s. Appendix B gives our renormalization scheme of the magnetic

moment amplitude in the “new” approach. Similarly, Appendix C gives the renormalization

scheme of the renormalization constants in the “new” approach.

II. OLD VS NEW APPROACH

The purpose of this paper is the presentation of the results of evaluation of A
(8)
1 by two

independent methods. Although these methods started from the same Feynman-parametric

representation of A
(8)
1 , they took different approaches, in particular, in the handling of the

self-energy subdiagrams and associated infrared (IR) divergences. Furthermore, the “new”

approach was instrumental in discovering an error in the handling of infrared divergence in

the old method [16]. After correcting this error, we now have two independent evaluations

of A
(8)
1 , enhancing substantially the credibility of the calculation.

A. Common starting point

The anomalous magnetic moment ae is given by the static limit of the magnetic form

factor that is related to the proper vertex part Γν . Throughout this paper our attention

is focused on the q-type diagrams, namely, proper vertex diagrams that have no closed

lepton loops. In both old and “new” formulations, we use a relation derived from the Ward-

Takahashi identity [35, 36]

Λν(p, q) ≃ −qµ

[
∂Λµ(p, q)

∂qν

]

q→0

−
∂Σ(p)

∂pν

(16)

between the self-energy part Σ(p) and the sum of vertex parts Λν(p, q) obtained by inserting

an external vertex in the lepton lines of Σ in all possible ways. Here, the momentum of

the incoming lepton is p − 1
2
q and that of the outgoing lepton is p + 1

2
q. By means of

Eq. (16) a set of vertex diagrams are amalgamated into a single self-energy-like diagram,

which reduces the number of independent integrals substantially. For the eighth-order q-

type diagrams, the number of Feynman diagrams is reduced from 518 to 74. Taking into

account the time-reversal symmetry, the number is further reduced from 74 to 47.

The amplitude of the magnetic moment contribution of a diagram is obtained by apply-

ing Feynman-Dyson rules of QED in the momentum space. Carrying out the momentum
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integration analytically, we can express the amplitude of 2nth-order diagram G as an integral

over the Feynman parameters zi:

M
(2n)
G =

(
−

1

4

)n

(n − 1)!

∫
(dz)G

[
1

n − 1

(
E0 + C0

U2V n−1
+

E1 + C1

U3V n−2
+ · · ·

)

+

(
N0 + Z0

U2V n
+

N1 + Z1

U3V n−1
+ · · ·

)]
, (17)

where (dz)G =
∏

i dziδ(1 −
∑

i zi). The factor (α/π)n is omitted for simplicity.

The quantities Ek, Ck, Nk, and Zk are polynomials of symbols called building blocks

Bij , Ai, and Cij [35]. The symbols Bij and U are homogeneous polynomials of Feynman

parameters, related to the flow of loop momenta in the diagram. The symbol Ai is called

scalar current that is associated with the flow of external momenta. They are functions of

Bij , U , and zi. The symbol Cij is given by zi, Bij and U . The denominator function V is

defined by

V =
∑

i

zi − G, G =
∑

i

ziAi, (18)

where the summation is over the electron lines only, and the electron mass is chosen to unity

for simplicity.

B. Different structure of integrand

Although the “old” and “new” methods have the common starting point, they have an im-

portant difference in practice. In the “old” version of the programs, the size of the integrand

was reduced by taking symmetries of a diagram into account. One type of modifications was

applied to the integrand by using 8 “junction laws” and 4 “loop laws” satisfied by the scalar

currents Ai (where Feynman parameters zi play the role of resistance) [35, 36]. Another

type of modification was to reduce the number of integration variables by exploiting the

fact that in some diagrams the integrand depends only on a particular combination of Feyn-

man parameters. These resulted in substantial reduction in the size of integrands and the

amount of computing time required to achieve desired precision. In the “new” version, those

modifications were not employed at all because they are diagram-specific and not suitable

for automation. As a result, the size of FORTRAN source code for M01 (see Fig. 1), which

requires only vertex renormalization, is about 515KB in the “new” version in contrast to
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316KB of the old version. A more notable difference is seen for the diagram M12 which

requires IR subtraction. The “new” M12 occupies 630KB while the old M12 occupies only

21KB. As a consequence, the old and “new” integrals have much different forms so that they

can be regarded to be independent of each other as far as numerical integration is concerned.

C. Ultraviolet (UV) divergence

The amplitude MG has (logarithmic) UV-divergences in general. Suppose we want to find

out whether MG diverges when all loop momenta of a subdiagram S consisting of NS lines

and nS closed loops go to infinity. In the parametric formulation this limit corresponds to

the vanishing of U when all zi for i ∈ S vanish simultaneously. To find the criterion for the

UV divergence from S, consider the part of the integration domain where zi for i ∈ S satisfy
∑

i∈S zi ≤ ǫ. In the limit ǫ → 0 one finds [36, 37]

V = O(1), U = O(ǫnS )

Bij =




O(ǫnS−1) for i, j ∈ S,

O(ǫnS ) otherwise.
(19)

The UV-divergent part can be identified by the following procedure called K-operation:

(a) In the limit (19) keep only terms with the lowest power of ǫ in U , Bij , and Ai. In this

limit U factorizes as USUG/S where G/S is obtained from G by shrinking S to a point in

G. Bij factorizes similarly. V is reduced to VG/S , where VG/S is the V function defined

on G/S.

(b) Replace VG/S by VG/S + VS .

(c) Rewrite the integrand of MG in terms of parametric functions redefined in (a) and (b),

and drop all terms except those with the largest number of contractions [35] within S.

The result is denoted by KSMG, in which KS stands for an operator acting on MG.

By construction, KSMG has the same UV divergence as MG in the same integration domain.

Therefore it can be used as a pointwise subtraction term in the subtractive renormalization.

An important feature of K-operation is that the resulting integral can be factorized exactly

into a product or a sum of products of lower-order quantities that consists of a leading
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UV-divergent part of the renormalization constant and the magnetic moment part. The

K-operation associated with a UV-divergent subdiagram S produces, when S is of vertex

type, the subtraction term of the form [36, 37]

KSMG = LUV
S MG/S , (20)

where LUV
S is the leading UV-divergent part of the vertex renormalization constant LS and

MG/S is the magnetic moment part of the reduced diagram G/S. When S is a self-energy

subdiagram, the K-operation yields [36, 37]

KSMG = δmUV
S MG/S (i⋆) + BUV

S MG/[S,i] , (21)

where δmUV
S is the leading UV-divergent part of the mass-renormalization constant δmS ,

BUV
S is the leading UV-divergent part of the wave-function renormalization constant BS , and

the reduced diagram G/[S, i] is obtained from G by removing S and a lepton line i adjacent

to S.

The whole UV-divergent structure of the amplitude MG can be recognized by Zimmer-

mann’s forest formula [14]. A forest is a set of UV-divergent subdiagrams in which any

pair of subdiagrams is either disjoint (they do not share lines or vertices) or inclusive (one

subdiagram is a subgraph of the other subdiagram). Each subtraction term corresponds

to a forest. In our formulation, the subtraction term is obtained by successive application

of K-operations for every element of the forest. The UV-finite amplitude MG created by

K-operation is thus expressed in the form

MG = MG +
∑

f

∏

S∈f

(−KS) MG , (22)

where the summation is taken over the normal forests of the diagram G that do not include

G itself as an element.

N. B. In both old and “new” approaches UV divergence is treated by the same K-operation.

D. Infrared (IR) divergence

A diagram may have an IR singularity when some of the internal photon momenta vanish.

In order that this singularity becomes actually divergent, however, it must be enhanced by

vanishing of denominators of two or more electron propagators (called enhancers) due to
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kinematical constraints. Such a situation occurs in diagrams that have self-energy-like sub-

diagrams. In Eq. (17) this corresponds to the vanishing of V -function of the denominators

in the integration domain characterized by [36, 37]

zi =





O(δ) if i is an electron line in R,

O(1) if i is a photon line in R,

O(ǫ), ǫ ∼ δ2, if i ∈ S,

(23)

where R = G/S.

This enables us to obtain a simple IR power-counting rule for identifying IR divergent

terms. When there are two enhancers, the amplitude shows a logarithmic IR divergence. We

can identify and construct the corresponding subtraction term by the following procedure

called I-operation [36, 37]:

(a) In the limit (23) keep only terms with lowest power of ǫ and δ in U, Bij, Ai. The

numerator then factorizes to the product

F → FRFS , (24)

where FR is a numerical factor obtained by replacing all scalar currents Ai in the diagram

R by one.

(b) Make the following replacements:

U → USUR, V → VS + VR, F → F0[LR]FS , (25)

where F0[LR] is the no-contraction part of the vertex renormalization constant defined

in R. The difference between F0[LR] and FR causes a finite difference of the integration.

(c) Rewrite the integrand of MG in terms of redefined parametric functions, keeping only

the IR-divergent terms.

In the “old” method all logarithmic IR divergences have been subtracted by means of the

I-operation. However, the case involving linear IR divergence, which has three enhancers,

was handled by an ad hoc manner instead of a systematic approach. Actually, the cause

of linear IR-divergence is easy to identify. It is caused by our treatment of self-energy

subdiagram by means of K-operation which subtracts only the UV-divergent part of the
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self-mass. The unsubtracted part of self-mass keeps the number of enhancers unchanged,

except in second-order case where the K-operation subtracts the self-mass term completely.

In the “new” approach, a systematic method is developed to handle the linear IR di-

vergence. To remove the finite remnant of self-mass term completely, an R-subtraction

operation [15] is newly introduced. After the R-subtraction operation is carried out, which

decreases the number of enhancers to two, only logarithmic IR divergences remain, which

can be handled by the I-subtraction operation similar to, but different in detail from, the

I-operation of the “old” method.

For a formal treatment, we introduce two operators for these subtractions. The R-

subtraction operator RS acts as

RSMG = δmR
SMG/S (i⋆) , (26)

where δmR
S is the residual part of the mass renormalization constant defined by

δmR
S = δmS − δmUV

S +
∑

f

∏

S′∈f

(−KS′) δ̃mS (27)

in which the leading UV-divergent part δmUV
S and the subdivergent parts associated with

the forests
∏

S′∈f (−KS′) δ̃mS are subtracted away, where δ̃m ≡ δm − δmUV.

The I-subtraction operator IS acts on the UV-renormalized amplitude MG as

ISMG = LR
G/SMS , (28)

where LR
G/S is the residual part of the vertex renormalization constant defined by

LR
G/S = LG/S − LUV

G/S +
∑

f

∏

S′∈f

(−KS′) L̃G/S (29)

in which the leading UV-divergent part LUV
G/S and the subdivergent parts associated with the

forests
∏

S′∈f (−KS′) L̃G/S are subtracted away, where L̃ ≡ L − LUV.

N. B. The IR power counting rule identifies only IR-divergent terms. It does not specify

how to handle IR-finite term. The “new” I-subtraction operation handles the IR-finite terms

differently from the “old” I-operation. The I-subtraction operation needs not deal with the

IR divergence associated with a vertex subdiagram of the self-energy-like diagram, while the

I-operation directly acts on the vertex subdiagram.

The whole set of IR subtraction terms can be obtained by the combinations of these two

operations, both of which belong to annotated forests [15]. An annotated forest is a set of
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self-energy-like subdiagrams, to each element of which the distinct operation of I-subtraction

or R-subtraction is assigned. The IR-subtraction term associated with an annotated forest

is constructed by successively applying operators I or R, and takes the form

(−ISi
) . . . (−RSj

) . . .MG (30)

where the annotated forest f̃ consists of the subdiagrams Si, . . . and Sj , . . . .

N. B. The IR divergence is treated differently in the old and “new” approaches. This

difference plays an important part in ensuring the independence of two calculations.

E. Residual renormalization

Because of difference in the handling of IR divergences in the “old” and “new” methods,

we obtain different forms of residual renormalization. Since the “old” residual renormaliza-

tion is described in Refs. [36, 37], let us consider here only the “new” residual renormaliza-

tion.

In the “new” approach the UV- and IR-finite amplitude has the form

∆MG = MG +
∑

f

∏

S∈f

(−KS)MG +
∑

ef

(−ISi
) · · · (−RSj

) · · ·MG , (31)

where MG is the UV-finite quantity defined by Eq. (22). ∆MG can be readily turned into

a numerical integration code by gencodeN [14, 15] and is to be evaluated by numerical

means.

This procedure is different from the standard on-shell renormalization which is defined

by the on-shell quantities. The difference between the on-shell quantities and the quantity

evaluated by Eq. (31) must be compensated by products of known lower-order quantities.

We call this step the residual renormalization. See Appendix B for details.

III. EIGHTH-ORDER TERMS

The eighth-order term A
(8)
1 receives contributions from 891 Feynman diagrams. The

373 of them have closed lepton loops and had been evaluated by two or more independent

methods [16]. The remaining 518 diagrams of q-type form one gauge-invariant set (Group V).

In our approach they are represented by 47 independent diagrams shown in Fig.1 by using
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M01 M02 M03 M04 M05 M06 M07

M08 M09 M10 M11 M12 M13 M14

M15 M16 M17 M18 M19 M20 M21

M22 M23 M24 M25 M26 M27 M28

M29 M30 M31 M32 M33 M34 M35

M36 M37 M38 M39 M40 M41 M42

M43 M44 M45 M46 M47

FIG. 1: Eighth-order Group V diagrams represented by 47 self-energy-like diagrams M01–M47.

the relation derived from Ward-Takahashi identity and the time-reversal symmetry. Thus

far, there is only one complete evaluation of the eighth-order term, which was performed

by numerical means [16]. Some of these diagrams have linear IR divergence, which was

treated by an ad hoc subtraction method. In contrast gencodeN is capable of dealing with

such hard IR divergence in a systematic fashion [15]. The application of gencodeN to the

calculation of the eighth-order q-type diagrams provides us the opportunity not only to test

if it works properly, but also to check the previous result.

Even in the eighth-order case gencodeN creates FORTRAN programs very rapidly. The

entire 47 program sets are generated in less than ten minutes on hp’s Alpha. The numerical

evaluation is, however, quite non-trivial and requires a huge computational resource. For

the preliminary evaluation we have used 64 to 256 Xeon CPU’s per diagram and run the

programs over a few months. To our surprise it uncovered an inconsistency in the treatment

of IR subtraction terms in the old calculation. In Secs. III and IV we describe how this

inconsistency was uncovered by a detailed comparison of the old code and the code generated

by gencodeN.
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M16
1 2 3 4 5 6 7

a b c d

M18
1 2 3 4 5 6 7

a b c d

FIG. 2: Self-energy-like diagrams of M16 and M18. Feynman parameters assigned to the electron

lines are z1 ∼ z7 and those to the photon lines are za ∼ zd.

A. IR treatments of the eighth-order diagrams

The treatments of IR subtraction terms are different in gencodeN and the “old” ap-

proach. The difference of IR subtraction terms leads to the difference of the finite part

of the amplitude ∆Mi (i = 01, · · · , 47). The difference ∆Mold
i − ∆Mnew

i between the old

amplitude ∆Mold
i and the “new” one ∆Mnew

i is finite and can be expressed analytically in

terms of finite lower-order quantities. We will see if this difference is numerically reproduced

by substituting the numerical values calculated separately for these lower-order quantities.

If the numerical discrepancy is found, there must be something wrong in either the “old” or

“new” calculation. This is what we tried to find out.

We noted in Sec. IIC that the subtraction of UV divergences is achieved by the same

K-operation in both gencodeN and “old” calculation. Therefore, the difference between

∆Mold
i and ∆Mnew

i , if it exists, comes exclusively from the difference of IR subtraction

procedures between the “new” and “old” calculations. To examine this difference more

closely let us begin by considering relatively simple diagrams which contain only one second-

order self-energy subdiagram. Diagrams belonging to this class are M02, M03, M09, M13,

M14, M15, M23, M24, M27, M43, M44. As an example let us consider the diagram M14.

The IR divergence occurs in M14 from the second-order self-energy subdiagram which

consists of an electron line “2” and a photon line “b” in Fig. 3(a). In the W-T summed

diagram this subdiagram plays dual roles. One part of this subdiagram behaves as a genuine

self-mass term and the associated UV singularity is removed completely by the K2-operation.

Another part works as the second-order magnetic moment M2, and the residual diagram

surrounding M2 behaves like a sixth-order vertex diagram L6g5 of Fig. 3(b), which is IR-

divergent.

14



M14

(a)

1 2 3 4 5 6 7

a b c d

6g5
(b)

4lM14

(a)

1 2 3 4 5 6 7

a b c d

6g5
(b)

4l

FIG. 3: (a) Self-energy-like diagram of M14. (b)Vertex diagrams 6g5 and 4l from which the vertex

renormalization constants L6g5 and L4l, respectively, are derived.

In the “old” approach, the finite contribution ∆M14 was defined by

∆Mold
14 ≡ M14 +

∑

f

∏

S∈f

(−KS)M14 − (I6g5 + I2∆L4l)M2. (32)

Here the second term on the right-hand side is the sum of UV subtraction terms given by

the K-operation. The last two terms beginning with the letter “I” are the IR subtraction

terms generated by the I-operations I134567 and I13(1−I134567) in the “old” approach. They

arise from the “magnetic-moment part” of the self-energy-like subdiagram mentioned above.

Note that they are exactly identical with the IR-divergent parts of L6g5:

L6g5 ≡ I6g5 + I2∆L4l + ∆L6g5 −
∑

f

∏

S∈f

(−KS)L̃6g5 + LUV
6g5 . (33)

Here the sum appearing on the right-hand side denotes all the UV subdivergences contained

in L6g5 (whose explicit form is −LUV
2 L̃4c − LUV

4l L̃2 + (LUV
2 )2L̃2), and the last term is the

overall UV divergence of L6g5.

In the “new” (or gencodeN) approach, we introduce a term LR
6g5 defined by

LR
6g5 ≡ L6g5 − LUV

6g5 +
∑

f

∏

S∈f

(−KS)L̃6g5 (34)

and ∆Mnew
14 by

∆Mnew
14 = M 14 − I2 M 14, (35)

where I2 is an I-subtraction operation associated with the self-energy-like subdiagram S =

{2, b}, and yields

I2 M 14 = LR
6g5 M2. (36)
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From Eqs.(33) and (34) we obtain

LR
6g5 = I6g5 + I2∆L4l + ∆L6g5. (37)

This is UV-finite and consists of not only IR divergent terms but also a completely finite

term ∆L6g5. It follows that ∆Mold
14 and ∆Mnew

14 differ by

∆Mold
14 − ∆Mnew

14 = ∆L6g5M2 . (38)

Since ∆L6g5 is UV- and IR-finite, it can be computed without encountering with UV or IR

divergence. This is true for every ∆Mold
i − ∆Mnew

i as it originates from the choice of finite

pieces that accompany the singular terms. The choice adopted in ∆Mnew
14 turned out to be

preferred since it leads to a simpler formula and can be readily extended to other cases.

All eleven diagrams listed above can be analyzed in the same manner. The diagrams M04,

M11, M12, M17, M29, M30, which contain two or three second-order self-energy-like subdia-

grams, are slightly more complicated, but can be treated in a similar manner. Evaluation

of the diagrams with one self-energy subdiagram of fourth- or sixth-order such as M08, M10,

M26, M38, M40, M41 is more complicated and needs the residual self-mass renormalization,

the R-subtraction, as well as the I-subtraction. But they do not present particular diffi-

culty as far as IR subtraction is concerned. (See Appendix B for more information on these

diagrams.)

The diagrams M28, M42, M45, M46, M47 are even more complicated due to nested struc-

ture, but they can also be handled by slight extensions. (See Appendix B.)

The most difficult of the eighth-order q-type diagrams are those containing one second-

order self-energy-like subdiagram and one fourth-order self-energy-like subdiagram, namely,

M16 and M18 of Fig. 2. The difficulty originates from the fact that these diagrams have

linear IR divergence. Detailed analysis of these diagrams is deferred to Sec. IV.

B. Numerical result of eighth-order calculation

We present the results of our numerical study for ∆Mold
i −∆Mnew

i in Tables I, II and III.

In these tables, the second columns list the analytic expression of ∆Mold
i −∆Mnew

i in terms

of finite pieces of lower-order renormalization constants and magnetic moment amplitudes

multiplied by the multiplicity, which is 1 for the time-reversal-symmetric diagram and 2
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TABLE I: Comparison of the numerical calculation of M01–M15 of the eighth-order Group V

diagrams. The second column shows the analytic expression for ∆Mold
i −∆Mnew

i for each diagram

Mi in terms of lower-order finite quantities multiplied by the multiplicity. The value A in the third

column is obtained by substituting the values of lower-order renormalization constants, such as

∆M4a,∆L4s and ∆M4a(1⋆), for the corresponding expression in the second column. See Appendices

B and C for the detail. In contrast, the value for ∆Mold
i − ∆Mnew

i in the fourth column, denoted

by value B, is obtained by taking the direct difference between the value of ∆Mold
i quoted from

Ref. [16], and the one of ∆Mnew
i calculated via gencodeN in the “new” IR subtraction procedure

[14, 15]. The fifth column lists up the differences A−B. If the whole calculation is done correctly,

A − B must vanish within the numerical uncertainty. In evaluating ∆Mnew the double precision

is used for the diagrams without a self-energy subdiagram, while the quadruple precision is used

for the remainder.

Diagram difference value A value B A − B

M01 0 0 −0.0129(47) 0.0129(47)

M02 2∆L6f1M2 −0.0063(2) 0.0060(110) −0.0124(110)

M03 ∆L6f3M2 −0.1133(1) −0.1055(100) −0.0078(100)

M04 2(∆L6d1 + ∆L6d3)M2 0.3350(2) 0.3408(175) −0.0058(175)

M05 0 0 0.0020(28) −0.0020(28)

M06 0 0 −0.0223(61) 0.0223(61)

M07 0 0 −0.0102(40) 0.0102(40)

M08 2(∆δm4a∆M4a(1⋆) + ∆L4c∆M4a) −2.1809(7) −2.1790(121) −0.0019(121)

M09 2∆L6f2M2 0.0806(1) 0.0894(109) −0.0088(109)

M10 2(∆δm4b∆M4a(1⋆) + ∆L6d2M2 + ∆L4c∆M4b) 15.8898(49) 15.8795(147) 0.0103(155)

M11 2∆L6d5M2 0.6949(2) 0.6827(112) 0.0122(112)

M12 (2∆L6a1 + ∆L6a3)M2 1.2842(0) 1.2875(74) −0.0034(74)

M13 2∆L6h1M2 −0.4211(2) −0.4238(48) 0.0027(48)

M14 2∆L6g5M2 0.0892(2) 0.0960(95) −0.0068(95)

M15 2∆L6g1M2 0.0883(2) 0.0893(71) −0.0009(71)
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TABLE II: Comparison of the numerical calculations of M16–M30 of the eighth-order Group V

diagrams.

Diagram difference value A value B A − B

M16 2(∆δm4a∆M4b(1⋆) + ∆L6c1M2 + ∆L4s∆M4a) −2.6042(6) −2.6316(235) 0.0274(235)

M17 2(∆L6e1 + ∆L6d4)M2 −2.1201(2) −2.1010(189) −0.0173(189)

M18 2{∆δm4b∆M4b(1⋆) + ∆L4s∆M4b 16.9686(39) 17.1897(206) −0.2207(210)

+(∆L6b1 + ∆L6a2)M2}

M19 0 0 0.0002(3) −0.0002(3)

M20 0 0 0.0010(17) −0.0010(17)

M21 0 0 0.0003(3) −0.0003(3)

M22 0 0 −0.0090(25) 0.0090(25)

M23 2∆L6h2M2 0.0501(2) 0.0438(59) 0.0064(59)

M24 2∆L6g2M2 0.0789(2) 0.0945(61) −0.0155(61)

M25 0 0 −0.0031(20) 0.0031(20)

M26 ∆δm6f (M2⋆ − M2⋆ [I]) 2.5119(3) 2.5369(95) −0.0250(95)

M27 2∆L6g4M2 −0.0630(1) −0.0459(90) −0.0171(90)

M28 2{∆δm6d(M2⋆ − M2⋆ [I]) + ∆L6c2M2} −7.5332(5) −7.5307(153) −0.0025(153)

M29 2∆L6e2M2 −0.2857(2) −0.2809(109) −0.0048(109)

M30 ∆δm6a(M2⋆ − M2⋆ [I]) + 2∆L6b2M2 0.2763(6) 0.2675(153) 0.0088(153)

otherwise. Each value in the third columns, called “value A”, is obtained by substituting

the values of these renormalization constants, etc., listed in Table IV, for the corresponding

expression in the second columns.

In contrast to value A, each value in the fourth columns, called “value B”, is obtained

by taking the difference between the numerical value ∆Mold
i quoted from the literature [16]

and the one ∆Mnew
i newly calculated via gencodeN according to the “new” IR subtraction

procedure [15]. The fifth columns list up the difference of value A and value B for each i,

denoted by A − B. It must be zero within numerical precision if the whole calculation has

been done correctly. If value A and value B are different, there are two possible sources.

One possibility is that the program used for a numerical calculation has a bug. It means

that either ∆Mold
i or ∆Mnew

i is wrong, or both are wrong. The other possibility is that we
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TABLE III: Comparison of the numerical calculations of M31–M47 of the eighth-order Group V

diagrams.

Diagram difference value A value B A − B

M31 0 0 0.0007(5) −0.0007(5)

M32 0 0 −0.0024(10) 0.0024(10)

M33 0 0 0.0001(3) −0.0001(3)

M34 0 0 −0.0010(13) 0.0010(13)

M35 0 0 0.0001(13) −0.0001(13)

M36 0 0 −0.0027(22) 0.0027(22)

M37 0 0 0.0004(5) −0.0004(5)

M38 ∆δm6h(M2⋆ − M2⋆ [I] ) −0.9088(3) −0.9112(40) 0.0024(40)

M39 0 0 −0.0031(18) 0.0031(18)

M40 2∆δm6g(M2⋆ − M2⋆ [I] ) 3.8281(3) 3.8326(71) −0.0045(71)

M41 ∆δm4a(∆M4a(2⋆)) + ∆L4x∆M4a 0.9809(3) 0.9713(83) 0.0096(83)

M42 ∆δm6c(M2⋆ − M2⋆ [I]) + ∆L4l∆M4a −7.0218(4) −7.0202(114)−0.0016(114)

+∆δm4a{∆M4b(2⋆) − ∆δm2⋆(M2⋆ − M2⋆ [I])}

M43 ∆L6h3M2 0.4724(1) 0.4703(42) 0.0022(42)

M44 2∆L6g3M2 −0.0748(1) −0.0499(69) −0.0250(69)

M45 ∆δm6e(M2⋆ − M2⋆ [I]) + ∆L6c3M2 −0.0523(3) −0.0498(90) −0.0025(90)

M46 ∆δm4b∆M4a(2⋆) + ∆L6e3M2 + ∆L4x∆M4b −7.9339(22) −7.9232(86) −0.0107(89)

M47 ∆δm6b(M2⋆ − M2⋆ [I]) + ∆L6b3M2 + ∆L4l∆M4b 10.5872(15) 10.5864(102) 0.0008(103)

+∆δm4b{∆M4b(2⋆) − ∆δm2⋆(M2⋆ − M2⋆ [I])}

incorrectly identified the analytic difference between the “old” and “new” methods.

For a diagram Mi without any self-energy-like subdiagrams, the analytic expression of

∆Mold
i − ∆Mnew

i is trivially zero, as it does not have IR divergence. We can see from the

corresponding values B in Tables I, II and III that this is confirmed within the numerical

precision employed.

The diagrams containing self-energy-like subdiagrams suffer from IR divergence. Tables I,

II and III show that “old” and “new” calculations are in good agreement for most of these
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TABLE IV: Finite renormalization constants used in Table I, II, and III. Sixth-order vertex

renormalization constants are shown in this table. Their validity is checked by comparing the sum

XLBD ≡
∑5

i=1 ∆L6xi + 1
2∆B6x + 2∆δm6x, x = a, · · · h to the previous XLBD values listed in

Ref. [16].

∆L6a1 0.539604( 45) ∆L6a2 −0.167211( 81) ∆L6a3 1.489159( 98)

∆L6b1 −1.479745(109) ∆L6b2 0.582944(106) ∆L6b3 −0.016344( 73)

∆L6c1 −0.219365( 98) ∆L6c2 0.071504( 87) ∆L6c3 −0.552261(107)

∆L6d1 0.834949( 96) ∆L6d2 −0.090796( 92) ∆L6d3 −0.499995( 97)

∆L6d4 −1.378190(109) ∆L6d5 0.694916(101)

∆L6e1 −0.741904(144) ∆L6e2 −0.285670(108) ∆L6e3 −0.141787(122)

∆L6f1 −0.006322(114) ∆L6f2 0.080648( 97) ∆L6f3 −0.226693(106)

∆L6g1 0.088204( 70) ∆L6g2 0.078922(103) ∆L6g3 −0.074834( 92)

∆L6g4 −0.062995( 85) ∆L6g5 0.089213( 69)

∆L6h1 −0.421132(108) ∆L6h2 0.050140(108) ∆L6h3 0.944887(116)

∆δm6a −0.15331(26) ∆δm6b 1.83795(19) ∆δm6c −3.05047(17)

∆δm6d −1.90117(11) ∆δm6e 0.11193(13) ∆δm6f 1.25594(10)

∆δm6g 0.95702(6) ∆δm6h −0.45441(5)

diagrams. However, a large discrepancy −0.221 (21) is found for the diagram M18. Though

no detectable discrepancy is found for M16, it has a structure similar to M18 and is somewhat

simpler to analyze. In Section IV we thus look for the origin of such a discrepancy through

a detailed investigation of M16.

IV. DETAILED EXAMINATION OF M16

In the “old” approach the finite contribution ∆M16 was given by [36, 38]

∆Mold
16 ≡ M16 +

∑

f

∏

S∈f

(−KS)M16

− I6c1M2 −
1

2
J6cM2 − I4s∆M4a − ∆δm4aI4b(1⋆) + I2⋆∆δm4aM2 , (39)
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TABLE V: Finite renormalization constants used in Table I, II and III. Fourth-order and second-

order quantities are given here.

∆L4c 0.003387(16) ∆L4x −0.481834(54)

∆L4s 0.407633(20) ∆L4l 0.124796(67)

∆B4a −0.039811(15) ∆B4b −0.397283(15)

∆δm4a −0.301485(61) ∆δm4b 2.20777(44)

∆M4a 0.218359(39) ∆M4b −0.187526(39)

∆M4a(1⋆) 3.6192(31) ∆M4a(2⋆) −3.6003(19)

∆M4b(1⋆) 4.2486(15) ∆M4b(2⋆) 1.6432(15)

∆M2 0.5 ∆M2⋆ 1

∆M2⋆ [I] −1 ∆δm2⋆ −0.75

∆B2 0.75 ∆B2⋆ [I] −0.5

∆L2⋆ −0.75 ∆B2⋆ 1.5

while the “new” version is given by

∆Mnew
16 ≡ M16 +

∑

f

∏

S∈f

(−KS)M16

− LR
6c1M2 − LR

4s∆M4a − ∆δm4aM 4b(1⋆) + LR
2⋆∆δm4aM2 , (40)

where LR
2⋆ = I2⋆ . Note that “2⋆” denotes the second-order diagram with a two-point vertex

inserted into the internal lepton line. “4b(1⋆)” denotes the diagram obtained from the

fourth-order diagram 4b by inserting a two-point vertex into the lepton line 1 .

A. Unrenormalized amplitude and UV subtraction terms of M16

We began our examination by comparing the unrenormalized amplitude M16 and its UV

subtraction terms in the “old” and “new” programs. For this purpose we used the “spot-

check” method, by which the values of “old” and “new” integrands are compared at the

same set of numerical values of integration variables. The integrand of M16 is defined in the

Feynman parameter space that spans a hyperplane in 11-dimensional space satisfying

z1 + z2 + · · ·+ z7 + za + zb + zc + zd = 1 . (41)
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In the “new” version, this hyperplane is mapped onto a unit 10-dimensional hypercube. On

the other hand, in the “old” version the integration space is mapped onto an 8-dimensional

hypercube, since the integrand depends only on the combination of Feynman parameters

z137 = z1 + z3 + z7. To carry out the spot check, we must use the same mappings, so we

changed the mapping of the “new” integrand to the “old” one defining z1 = z3 = z7 =

(1/3)z137. In practice the set of input parameters is chosen from the neighborhood of the

singular point of interest where numerical disagreement is likely to be magnified. But points

too close to the singular point are avoided, where the noise due to round-off error obscures

the meaningful information. The “old” integrals and “new” integrals of the unrenormalized

term and UV subtraction terms should be algebraically equivalent but have different forms

because of extensive simplification of the “old” integrands by means of various relations

among scalar currents. The “spot-check” comparison of “old” and “new” unrenormalized

and UV integrands proves unambiguously that they have nevertheless the same values within

the precision of numerical evaluation. (Typically more than 10 digits in 14 digits precision.)

B. IR subtraction terms of M16

The “spot-check” method, however, is not directly applicable for comparison of “old” and

“new” IR subtraction terms, because they are algebraically different by construction. For

this purpose we need to understand precisely the analytic structure of the IR subtraction

terms in both “old” and “new” methods. Thus we follow an alternative approach by which

we can identify how they differ from each other in the analytic form.

In the “old” method, the IR singularities of M16 are isolated by the IR-operations, where

R = {1, 3, 7, a}, {1, 2, 3, 7, a, b}, or {1, 3, 4, 5, 6, 7, a, c, d}. Thus, the formal expression of the

IR-free contribution of M16 is given by [37]

∆M16 ≡ (1 − I137)(1 − I134567)(1 − I1237)M 16, (42)

where M 16 is the UV-finite amplitude obtained by the K-operations. The product

I134567I1237 gives no contribution, since they overlap each other and cannot take these IR

limits simultaneously.

Following the “old” prescription in Ref. [37], individual IR subtraction terms of Eq. (42)

22



can be written as follows:

− I134567M 16 = −I6c1M2, (43)

− I1237M 16 = −I4c∆M4a − M4b(1⋆)[I]∆δm4a, (44)

− I137(1 − I134567)(1 − I1237)M16 = +I2⋆∆δm4aM2 . (45)

I6c1 and I4c are the no-contraction terms of the vertex renormalization constant L6c1 and

L4c, respectively. M4b(1⋆) is the magnetic moment amplitude, which is obtained from the

fourth-order diagram M4b with the two-point vertex inserted into the fermion line 1. Its

argument [I] implies that the numerator of the no-contraction term of M4b(1⋆) is replaced by

that of the vertex renormalization constant L4s, while discarding the contraction terms.

If there were only logarithmic IR divergence, ∆M 16 defined in (42) would be IR-finite,

but it is not. The problem here is that I6c1 and M4b(1⋆)[I] in Eqs. (43) and (44) have linear

IR divergence. The I-operation prescription is constructed so that it only deals with the

leading IR singularity. Of all eighth-order q-type diagrams, M16 and M18 have the linear IR

divergence. Since these are the only cases, we chose to deal with their next-to-leading-order

IR divergences by an ad hoc method rather than constructing a general rule.

In the I134567 limit of Eq. (43), the diagram M16 decouples into the vertex diagram L6c1

which consists of lepton lines 1, 3, 4, 5, 6, 7 and photon lines a, c, d and the magnetic moment

part M2 which consists of lepton line 2 and photon line b. All IR singularities originate from

the vertex diagram L6c1. The no-contraction term L6c1[F0], namely I6c1, includes the leading

linear IR singularity as well as the next-to-leading logarithmic singularity.

The logarithmic IR singularity also arises from the I137-limit of the one-contraction term

L6c1[F1]. To deal with this, we constructed the quantity Junrenorm.
6c in which the numerator

is the I137 limit of L6c1[F1], but the denominator V and U is the same as L6c1. The UV

divergences of Junrenorm.
6c are removed by the K456, K56, K45-operations:

1

2
J6c = (1 − K456)(1 − K45)(1 − K56)

(
−

1

32

∫
(dz)G/S

f1

U3V 2

)
,

f1 = −16[B45(2 − A6) + 2B46(1 − 2A5) + B56(2 − A4)] , (46)

where S = {2, b}.

Next we consider the I1237-limit of Eq. (44). In this limit, the self-energy-like subdiagram

consisting of lepton lines 4, 5, 6 and photon lines c, d plays dual roles. When this fourth-

order self-energy-like subdiagram behaves as a magnetic moment M4a, the residual diagram
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resembles a vertex diagram L4s. Its singularity is logarithmic, so I1237-operation properly

works for this part.

The problem arises when the self-energy-like subdiagram acts as the self-mass δm4a, which

is the second one of its dual roles. The residual diagram is the magnetic moment amplitude

with one two-point vertex inserted, namely, M4b(1⋆). The power counting shows that it has

a linear IR singularity. Thus, the I-operation is not enough to remove the IR singularity of

this term. M4b(1⋆)[I] is not sufficient to remove all IR singularities arising in the I1237 limit.

The IR structure of M4b(1⋆) is more closely scrutinized in the next subsection, where I4b(1⋆) is

constructed to include both linear and logarithmic IR singularities of the magnetic moment

amplitude M4b(1⋆). (A similar subtraction method works also for M18.)

Taking these considerations into account, we replace the IR subtraction terms of M16 in

the “old” method listed in Eqs. (43) and (44) with [36, 38]

− I
′
134567M 16 = −(I6c1 +

1

2
J6c)M2 (47)

− I
′
1237M 16 = −I4c∆M4a − I4b(1⋆)∆δm4a (48)

which are more convenient for comparison with the “new” approach. Note that Eq.(45) is

unchanged.

Now, let us look at the “new” approach. All IR singularities, both linear and logarithmic,

are subtracted by using the general rule applicable to any order of the perturbation theory.

The R- and I-subtractions, and their combinations determine the IR subtraction terms of

M16 as follows:

−I2M 16 = −LR
6c1 M2 ,

−I456M 16 = −LR
4s M 4a,

−R456M 16 = −δmR
4a M 4b(1⋆) ,

+I2R456 M 16 = +LR
2⋆ δmR

4a M2 . (49)
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By definition given in Eqs. (27) and (29), the residual quantities are explicitly given by

LR
6c1 = (1 − K456)(1 − K45)(1 − K56)(L6c1 − LUV

6c1 )

= L6c1 − LUV
6c1 − (BUV

4a L̃
′

2 + δmUV
4a L2⋆) − 2LUV

2 L̃4s + 2LUV
2 (δm2L2⋆ + BUV

2 L̃
′

2),

LR
4s = (1 − K2)(L4s − LUV

4s ) = L4s − LUV
4s − (BUV

2 L̃
′

2 + δm2L2⋆),

M 4a = (1 − K45)(1 − K56)M4a = M4a − 2LUV
2 M2 ,

δmR
4a = δm4a − δmUV

4a

M 4b(1⋆) = (1 − K2)M4b(1⋆) = M4b(1⋆) − (BUV
2 M2⋆ + δm2M2⋆⋆) , (50)

where L̃ = L − LUV . (See below Eq. (27).) In terms of the “old” expression of the

unrenormalized amplitude and renormalization constants, the residual quantities are related

to the IR divergent and finite pieces of the “old” method by the following relations:

LR
6c1 = I6c1 +

1

2
J6c + ∆L6c1 ,

LR
4s = I4s + ∆L4s,

M 4a = ∆M4a,

δmR
4a = ∆δm4a,

M 4b(1⋆) = I4b(1⋆) + ∆M4b(1⋆) . (51)

We are now ready to compare the IR subtraction terms of “old” and “new” method side

by side:

old new

(a) −(I6c1 + 1
2
J6c)M2 −(I6c1 + 1

2
J6c + ∆L6c1)M2

(b) −I4s∆M4a −(I4s + ∆L4s)∆M4a

(c) −I4b(1⋆)∆δm4a −(I4b(1⋆) + ∆M4b(1⋆))∆δm4a

(d) +I2⋆∆δm4aM2 +I2⋆∆δm4aM2 .

(52)

Actually, instead of examining the IR subtraction terms of the “old” method themselves we

reconstructed them from the “new” programs by dropping finite terms (eg. ∆L4s ) from the

“Residual” term (eg. LR
4s), and compared them with the terms in the “old” programs by the

spot-check method. To obtain I6c1 and I4s, we only need to comment out the contraction

terms (equivalently drop the terms proportional to Bij) of LR
6c1 and LR

4s of the “new” pro-

grams. In this way, we found that the reconstructed IR subtraction terms from the “new”

programs are identical with “old” ones for (a), (b), and (d).
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However, the “old” IR subtraction term (c) I4b(1⋆)∆δm4a cannot be constructed by such a

simple recipe from the “new” programs generated by gencodeN. Dropping the finite terms

in M 4b(1⋆)∆δm4a is not enough to reproduce I4b(1⋆)∆δm4a. Therefore, we reconstructed the

subtraction term I4b(1⋆)∆δm4a from the scratch using the definitions of the fourth-order

quantities I4b(1⋆) and ∆δm4a. Then, the result is compared with the integrand in the “old”

program of ∆Mold
16 .

C. I4b(1⋆)∆δm4a by the “old” I-operation

Let us first explain how I4b(1⋆)∆δm4a is obtained in the “old” program. In the old ap-

proach, the IR subtraction term I4b(1⋆)∆δm4a originates from the I1237-operation. In addition

to this term, I1237 operation yields the term I4s∆M4a.

The IR-limit associated with the operator I1237 is given by

za + zb = 1 −O(δ), z1, z2, z3, z7 = O(δ), z4, z5, z6, zc, zd = O(ǫ), ǫ ∼ δ2, δ → 0. (53)

In the neighborhood of this limit we have A1 = 1 − O(δ), A2 = 1 − O(δ), and V =

O(δ2). As is discussed in the previous section, the result of I1237-operation includes both

linear and logarithmic IR divergences. In particular, the linear divergence is associated with

I137I1237 limit. If we apply the I137I1237 operation, however, it subtracts the linear divergence

correctly, but not the logarithmic divergence. Thus, we chose an ad hoc method in which

the piece including linear divergence is separated out from the result of I1237-operation and

put aside for a while. The remainder that contains only logarithmic divergence is named fk.

The linear divergent piece is redefined so that it is defined on the subdiagram {1, 2, 3, 7, a, b}

without decomposing it into two subdiagrams {2, b} and {1, 3, 7, a}, which occurs in the

näıve I137I1237 limit. This term is named fl. The explicit forms of fk and fl in the old

FORTRAN program of ∆M16 read:

fk =

∫
(dz)G

1

4U2
L4s[F0]

(
E0 + C0 + δm4a[f0] + gSF1 + Y1

V 3
+

3(gS − Vt)δm4a[f0] + Y0

V 4

)
,

(54)

fl = −
3

2

∫
(dz)G

δm4a[f0]

U2V 4
z2(1 − A2)

2(−1 + 6A1 − 3A2
1 + 2A3

1) , (55)
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where

L4s[F0] = (4A1 − 2A2)(1 − A1 + A2
1) + (−2 + A1A2)(1 − 4A1 + A2

1)

F1 = B45(2 − A6)/U + 2B46(1 − 2A5)/U + B56(2 − A4)/U

Y1 = − z4(B45(1 − A6) + B46 + B56A4)/U

+ z5(B45(1 − A6) − 4B46A5 + B56(1 − A4))/U

− z6(B45A6 + B46 + B56(1 − A4))/U

Vt = z137(1 − A1) − z2(1 − A2)

E0 = 2A4A5A6 − A4A5 − A4A6 − A5A6

C0 = −3zczd/US

δm4a[f0] = E0 + 1 − 2A5

Y0 =z4(−A4 + A5 + A6 + A4A5 + A4A6 − A5A6)

+ z5(1 − A4A5 + A4A6 − A5A6 + 2A4A5A6)

+ z6(A4 + A5 − A6 − A4A5 + A4A6 + A5A6)

gS = z4A4 + z5A5 + z6A6 . (56)

The building blocks U, V, Ai, Bij of the above integrands are obtained from those for M16

by taking the IR-limit associated with the I1237-operation. Recall that in the IR-limit the

subdiagram S consisting of the fermion lines 4, 5, 6 and photon lines c, d, and the reduced

diagram G/S consisting of the fermion lines 1, 2, 3, 7 and the photon lines a, b decouple from

each other. Thus, the building blocks are actually the same as those obtained by taking the
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UV-limit associated with the K456 limit. Their explicit forms are

U = US UG/S ,

US = z46cdz5 + z4cz6d, UG/S = z137az2b + z2zb

V = VS + VG/S ,

VS = z456 − z4A4 − z5A5 − z6A6 + λ2zcd, VG/S = z1237 − z137A1 − z2A2 + λ2zab,

Ai = 1 −

7∑

j=1

ziBij/U, i = 1, · · ·7,

B11 = B13 = B17 = B33 = B37 = B37 = z2bUS ,

B45 = z6d UG/S , B46 = −z5 UG/S , B56 = z4c UG/S ,

Bij = 0 for i ∈ S and j ∈ G/S. (57)

In the above zi1i2··· stands for zi1 + zi2 + · · · and the electron mass is taken as a unit of

mass scale (i.e., 1) and the photon mass is λ. In the leading order of the I1237 limit L4s[F0]

tends to 4. The actual form of L4s[F0] in Eq. (56) was chosen so that the integral fk

decouples into known lower-order quantities. This difference for L4s[F0] is IR-finite. Note

that δm4a[f0] is related to the integrand of ∆δm4a, namely, the UV- and IR-finite part of

the mass renormalization constant δm4a given later in Eq. (65).

In order to clarify the structure of fk and fl, let us split fk into the three parts fk1, fk2, fk3,

fk1 =

∫
(dz)G

1

4U2
L4s[F0]

(
E0 + C0 + gSF1 + Y1

V 3
+

3gSδm4a[f0] + Y0

V 4

)
,

fk2 =

∫
(dz)G

1

4U2
L4s[F0]δm4a[f0]

(
1

V 3
−

3z137(1 − A1)

V 4

)
,

fk3 =

∫
(dz)G

1

4U2
L4s[F0]δm4a[f0]

3z2(1 − A2)

V 4
, (58)

and fl into the two parts fl1, fl2

fl1 =
3

4

∫
(dz)G

δm4a[f0]

U2V 4
z2A2(1 − A2)(−1 + 6A1 − 3A2

1 + 2A3
1) ,

fl2 = −
3

4

∫
(dz)G

δm4a[f0]

U2V 4
z2(1 − A2)(2 − A2)(−1 + 6A1 − 3A2

1 + 2A3
1) . (59)

The integrand fk1 was compared with the integrand I456M16 generated by gencodeN by

the spot-check method. We confirmed that the integral fk1 minus its K2 limit, fkv, is equal

to I4s∆M4a, which is listed as (b) of (52). It turns out that fk2 +fl1 is equal to I4b(1⋆)∆δm4a,
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which is reconstructed from the lower order quantities in the next subsection. Thus, the

difference between the “old” calculation and the reconstructed one is confined in fk3 + fl2.

It is IR-finite but contributes a nonzero value to ∆Mold
16 .

D. I4b(1⋆)∆δm4a reconstruction from the lower-order quantities

In order to understand where this difference fk3 +fl2 came from, let us examine IR diver-

gence structure of mass-inserted magnetic moment amplitude M4b(1⋆) in the “old” approach.

I4b(1⋆) is defined from M4b(1⋆) as follows[36, 38]:

M4b(1⋆) = (1 − K2)(1 − Iall)(M4b(1⋆) − M4b(1⋆)[f ]) + K2M4b(1⋆)

+ Iall(1 − K2)M4b(1⋆)[N0 + Z0 − f, E0 + C0] + M4b(1⋆)[f ]

≡ ∆M4b(1⋆) + (δm2M2⋆⋆ + BUV
2 M2⋆) + I4b(1⋆) . (60)

The two terms in the second line of the r.h.s. define I4b(1⋆):

I4b(1⋆) ≡ Iall(1 − K2)M4b(1⋆)[N0 + Z0 − f, E0 + C0] + M4b(1⋆)[f ], (61)

where the function f is introduced in the first term in an ad hoc manner to subtract out

the linear IR divergence coming from N0 + Z0. The linear IR divergence is confined to the

second term M4b(1⋆)[f ], which has the form

M4b(1⋆)[f ] = −
1

8

∫
(dy)G/S

f

U2
G/SV 3

G/S

,

f = −8y2A2(1 − A2)(−1 + 6A1 − 3A2
1 + 2A3

1) . (62)

The explicit form of the first term of Eq.(61) is

IallM4b(1⋆)[N0 +Z0 − f, E0 +C0] = lim
λ→0

∫
(dy)G/S

L4s[F0]

U2
G/S

(
1

2V 2
G/S

−
y137(1 − A1)

V 3
G/S

)
, (63)

but i where

VG/S = y137(1 − A1) + y2(1 − A2) + λ2(ya + yb),

(dy)G/S = dy1dy2dy3dy7dyadyb δ(1 − y1237 − yab). (64)

The finite part of the mass renormalization constant ∆δm4a is

∆δm4a =
1

4

∫
(dy)S

δm4a[f0]

U2
SVS

, (65)
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where δm4a[f0] is expressed in the same form in Eq. (56) and

(dy)S = dy4dy5dy6dycdyd δ(1 − y456 − ycd). (66)

Using the identity

1

V m
S V n

G/S

=
Γ(m + n)

Γ(m)Γ(n)

∫ 1

0

dt

∫ 1

0

ds δ(1 − t − s)
tm−1sn−1

(t VS + s VG/S)m+n
, (67)

we can express the product of ∆δm4a and the first term of I4b(1⋆) defined in Eq. (61) in the

same Feynman parameter space as that for the original amplitude M16

f rc
k2 ≡ ∆δm4a × IallM4b(1⋆)[N0 + Z0 − f, E0 + C0]

=

∫
(dz)G

L4s[F0]δm4a[f0]

4U2

(
1

V 3
−

3z137(1 − A1)

V 4

)
, (68)

which is identical with fk2. Similarly, the contribution of the product of ∆δm4a M4b(1⋆)[f ]

to M16 is

f rc
l1 ≡ ∆δm4aM4b(1⋆)[f ]

=
3

4

∫
(dz)G

δm4a[f0]

U2V 4
z2A2(1 − A2)(−1 + 6A1 − 3A2

1 + 2A3
1) , (69)

which is identical with fl1.

Therefore we find that the combination, −fk3 − fl2, is extra in the “old” ∆Mold
16 so that

the correction term

∆Madd
16 ≡ 2(fk3 + fl2)

= −2 ×
9

4

∫
(dz)G

δm4a[f0]

U2V 4
z2A2(1 − A1)

3(1 − A2) , (70)

where the overall factor 2 comes from time-reversal diagram, must be added to ∆Mold
16 .

Evaluating it numerically, we obtain ∆Madd
16 = 0.029 437 8 (98), which is smaller than the

current uncertainty of value B for M16 in Table II and cannot be detected by the direct

comparison of value A and value B until the latter is evaluated more precisely.

The difference between ∆Mnew
18 and ∆Mold

18 can be analyzed in the same manner. It is

found that the difference is numerically not small for M18:

∆Madd
18 ≡ 2(1 − K5)(fk3 + fl2)

= −2 ×
9

4

∫
(dz)G(1 − K5)

{
δm4b[f0]

U2V 4
z2A2(1 − A1)

3(1 − A2)

}

= −0.215 542 (19) , (71)

30



where Ai, U, and V are defined in the I1237 limit of M18. Of course their explicit forms are

different from those of M16. If we add ∆Madd
18 to ∆Mold

18 , the value B for M18 in Table II be-

comes 16.974 (21) and the difference between value A and value B is reduced to −0.006 (21),

which is consistent with zero within the precision of numerical calculation.

V. CONCLUSION

The results described in this paper are summarized as follows:

1) There was an inconsistency between the “old” integrals ∆Mold
16 and ∆Mold

18 and their

residual renormalization terms. This inconsistency is resolved in this paper.

2) Other 45 integrals of Group V of the “old” calculation are in good agreement with the

“new” ones.

3) Programs generated by gencodeN have no error for N = 8. Namely, the automation

scheme has cleared the eighth-order test without difficulty.

The separation of the IR divergent and finite pieces in a given amplitude can be made

arbitrarily. There is no overriding rule that dictates how to carry out such a separation. We

only have to keep a record of what is subtracted as an IR subtraction term. All IR subtraction

terms are summed up in the end and the arbitrariness in the choice of IR divergent part

cancel out, leaving a finite contribution as a part of the residual renormalization.

The important point is that the IR subtraction term prepared for the numerical calcu-

lation and the one used to calculate the residual renormalization must be the same. What

we found is that I4b(1⋆) used in the numerical calculation of M16 and M18 and I4b(1⋆) for the

residual renormalization constant ∆M4b(1⋆) had different forms in the FORTRAN programs

of the “old” calculation. This is the reason why M16 and M18 had IR-finite but redundant

contributions.

The development of automatic code generator [14, 15] was crucial in enabling us to

discover the existence of extra IR subtraction terms in M16 and M18 on short notice. Adding

the correction terms ∆Madd
16 and ∆Madd

18 to the “old” value, we find the entire contribution

of Group V to be

A
(8)
1 (GroupV) = −2.179 16 (343), (72)
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which is in good agreement with the still preliminary value

A
(8)
1 (GroupV) = −2.219 (53), (73)

obtained by the “new” code generated by gencodeN.

Due to the different forms of IR subtraction terms, the forms of the residual renormal-

ization are also different in the “old” and “new” calculations. The residual renormalization

terms in the “old” IR procedure are given by [16, 36, 38]

A
(8)
1 (GroupV)old = ∆M (8)old − 5∆M (6)old∆B2

− ∆M (4){4∆L(4) + 3∆B(4) − 9(∆B2)
2}

− M2{2∆L(6) + ∆B(6) − (10∆L(4) + 6∆B(4))∆B2 + 5(∆B2)
3}

− ∆M (4⋆)∆δm(4)

− (M2⋆ − M2⋆ [I]){∆δm(6) − ∆δm(4)(5∆B2 + ∆δm2⋆)}

+ M2∆δm(4)(4∆L2⋆ + ∆B2⋆ − B2⋆ [I]) , (74)
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where

∆M (8)old =
47∑

i=01

∆Mold
i ,

∆M (6)old =
h∑

x=a

∆Mold
6x

∆M (4) = ∆M4a + ∆M4b,

∆M (4⋆) = 2∆M4a(1⋆) + ∆M4a(2⋆) + 2∆M4b(1⋆) + ∆M4b(2⋆)

∆L(6) =

h∑

x=a

5∑

i=1

ηx∆L6xi

∆L(4) = 2∆L4c + ∆L4x + 2∆L4s + ∆L4l,

∆B(6) =
h∑

x=a

ηx∆B6x,

∆B(4) = ∆B4a + ∆B4b,

∆δm(6) =
h∑

x=a

ηx∆δm6x,

∆δm(4) = ∆δm4a + ∆δm4b

ηx =





1 for x = a, b, c, e, f, h

2 for x = d, g.
(75)

The numerical values of the finite renormalization constants are listed in Tables IV and V,

and also in Appendix A. B2⋆ [I] is obtained from the Iall-operation of the wave function

renormalization constant B2⋆ .

The formula of the residual renormalization for the “new” calculation is much simpler

than that for the “old” one. Since the mass renormalization is completed within the numer-

ical calculation, the mass renormalization constant should not appear in the residual renor-

malization. The exceptions are the vertex and wave-function renormalization constants that

have self-energy subdiagrams. The mass inserted vertex (wave-function) renormalization

constant L2⋆(B2⋆) has no overall UV divergence. As a result, the K-operation cannot pick

up the renormalization terms proportional to L2⋆(B2⋆). It must be restored in the residual

renormalization in order to carry out the complete on-shell renormalization. The residual
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renormalization formula in the “new” approach is given by

A
(8)
1 (GroupV)new = ∆M (8)new − 5∆M (6)new∆B2

− ∆M (4){3∆L(4) + 3∆B(4) − 9(∆B2)
3}

− M2{∆LB(6) − 6(∆L(4) + ∆B(4))∆B2 + 5(∆B2)
2}

+ M2∆δm(4)(4∆L2⋆ + ∆B2⋆) , (76)

where

∆LB(6) = ∆L(6) + ∆B(6) + ∆L(4)∆B2 + ∆δm(4)B2⋆ [I], (77)

∆M (6)new = ∆M (6)old − (M2⋆ − M2⋆ [I])∆δm(4) − M2∆L(4). (78)

In Eq. (76) the vertex renormalization constant ∆L(n) and the wave function renormalization

constant ∆B(n) appear in the same weight for each order of the perturbation. It is because

we have already subtracted one ∆L(n) as an IR subtraction term. Calculating the combina-

tion ∆L(n) + ∆B(n) is much easier than calculating each of them separately. Because of the

Ward-Takahashi-identity for the renormalization constants L(n) + B(n) = 0, many cancella-

tions occur between two terms. Thus, we introduced a combined renormalization constant

∆LB(6). Its relation to the “old” renormalization constants ∆L(6) and ∆B(6) are given in

Eq. (77). More detailed definitions of ∆LB6x for each diagram are given in Appendix C3.

The left-hand side of Eq. (77), ∆LB(6), was directly calculated with the programs made by

the automatic code generator for the residual renormalization constants [39] and obtained

as

∆LB(6) =

h∑

x=a

ηx∆LB6x = 0.100 86 (77) . (79)

This result was checked by comparing with the right-hand side of Eq. (77) calculated using

the residual renormalization constant for the “old” calculation. The sixth-order magnetic

moment ∆M (6)new was calculated with the programs generated by gencodeN and given as

∆M (6)new = 0.42610 (53). (80)

See Appendix A2 for the detail of ∆M (6)new .

As we have shown in the paper, the two results (72) and (73) of the eighth-order contribu-

tion from Group V diagrams are obtained by means of the totally independent calculations.
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Further theory corrections to the eighth-order term of the electron g−2 is very unlikely.

The new theoretical prediction should be announced when we complete all the tenth-order

calculation.
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APPENDIX A: TEST OF GENCODEN BY LOWER-ORDER ae

Although gencodeN was developed primarily to deal with the tenth-order q-type dia-

grams, it can be readily applied to the calculation of fourth-, sixth-, and eighth-order q-type

diagrams. Since these lower-order terms are also known from previous works, this serves for

debugging of gencodeN.

1. Fourth-order ae

The fourth-order case is the simplest nontrivial example. The g−2 receives correction

at this order from four types of vertex diagrams, 4c, 4x, 4s and 4l shown in Fig. 4(b).

Following the remark in Sec. IIA, the sum of g−2 from the vertex diagrams 2M4c(s) +M4x(l)

is expressed as a quantity associated with a single self-energy diagram M4a(4b) in Fig. 4 (a)

via the Ward-Takahashi identity (16). (The factor 2 is assigned to the diagram to account

for the presence of the diagram which is related by reversing the orientation of the lepton

line.) gencodeN creates two program sets for M4a and M4b within a few seconds on a

generic Linux PC. These programs give the finite amplitudes ∆M4a(4b) as the sum of the

unrenormalized Ward-Takahashi summed g−2 amplitudes, also denoted by M4a(4b), and

necessary UV and/or IR subtraction terms. The relation of ∆M4a(4b) to M4a(4b) is given in
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M4a 4c 4x

M4b

(a)

4s

(b)

4l

FIG. 4: Fourth-order q-type diagrams. (a) Self-energy-like diagrams M4a and M4b. (b) Vertex

diagrams 4c, 4x, 4s, and 4l. Their contributions to the magnetic moment are related to M4a =

2M4c + M4x, and M4b = 2M4s + M4l.

Appendix B1. It took about 10 minutes each to carry out their numerical integration by

VEGAS [17] with ten million sampling points per iteration for 50 iterations on hp’s Alpha

machine.

The values obtained in this way are

∆M4a = 0.218 78 (35) ,

∆M4b = −0.187 73 (40) . (A1)

The contribution from the fourth-order q-type diagrams is expressed as

A
(4)
1 (q-type) = ∆M4a + ∆M4b − ∆B2M2 (A2)

taking the residual renormalization into account. M2 = 1/2 is the second-order correction

to g−2 and ∆B2 = 3/4 is the finite part of the second-order wave function renormalization

constant B2. Substituting the numerical values (A1) for the formal expression (A2), we

obtain

A
(4)
1 (q-type) = −0.343 95(53), (A3)

which is in good agreement with the analytic value −0.344 166 · · · [18, 19].
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M6a M6b M6c M6d

M6e M6f M6g M6h

FIG. 5: Sixth-order q-type self-energy-like diagrams M6x, x = a, . . . , h. The time reversal diagrams

of M6d and M6g are not shown here. The fermion lines of a diagram is named 1 to 5 from left to

right. The vertex diagram obtained by inserting an external photon vertex into the fermion line i

of the self-energy diagram 6x is named 6xi.

2. Sixth-order ae

The sixth-order diagrams can be evaluated in a similar manner and are found to give

a result in good agreement with the numerically [20] and analytically [21] known values

as follows. Fifty vertex diagrams of the sixth-order q-type diagrams are reduced to eight

self-energy-like diagrams shown in Fig. 5 by means of the Ward-Takahashi identity and the

time-reversal symmetry. It takes just one minute to create all eight FORTRAN programs

for M6x (x = a, b, . . . , h) by gencodeN on hp’s Alpha machine. Numerical evaluation was

carried out on RIKEN’s PC-cluster system (RSCC). After computation of 2 to 6 wall-clock

hours with 16 Xeon-CPU’s for each diagram to carry out a VEGAS integration with one

hundred million sampling points per iteration for 450 iterations, we obtained

∆M (6)new =
h∑

x=a

∆Mnew
6x = 0.426 0 (11). (A4)

After continuing computation with one billion sampling points per iteration for 200 iterations

for each diagram, we obtain the updated result ∆M (6)new given in Eq. (80). The contribution

of q-type diagrams to A
(6)
1 including the residual renormalization is given by

A
(6)
1 (q-type) = ∆M (6)new − 3∆M (4)∆B2 + M2

{
−∆B(4) − ∆L(4) + 2(∆B2)

2
}

= 0.905 26 (53), (A5)

where ∆B(L)(4) is the sum of the finite parts of the fourth-order wave function (vertex)

renormalization constants. See Appendix C2 for their definitions. The formula of the
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residual renormalization (A5) can be obtained by using the definitions of the finite quantities

∆M4a(b), ∆M6x, etc., in Appendixes B and C. The values of finite quantities such as ∆L4c . . .

are given in Table V. The various finite pieces appearing in (A5) are

∆B(4) = ∆B4a + ∆B4b = −0.437094(21) (A6)

∆L(4) = 2∆L4c + ∆L4x + 2∆L4s + ∆L4l = 0.465 024 (17) (A7)

∆M (4) = ∆M4a + ∆M4b = 0.030 804 · · · (known exactly ) . (A8)

Eq. (A5) again shows good agreement with the analytic result 0.904 979 · · · by Laporta and

Remiddi [21].

APPENDIX B: DIVERGENCE STRUCTURE OF THE MAGNETIC MOMENTS

We briefly summarize our notation in Appendices B and C. The relation between the

unrenormalized amplitude M and the finite amplitude ∆M of magnetic moment is listed in

this appendix.

A symbol with a prefix ∆ means a finite quantity. A renormalization constant with a

superscript “UV”, AUV, is the leading UV-divergent term of the on-shell renormalization

constant A. A can be L, B, and δm according to a vertex-, wave-function , and mass-

renormalization constant, respectively. AUV is identical with Â in Refs. [16, 36]. The

subtraction terms proportional to a UV-renormalization term AUV are generated by the

K-operations. A renormalization constant with a superscript “R”, such as LR
4s, is the resid-

ual term defined in Eqs. (27) and (29). A of AR must be either L or δm. BR is also

defined accordingly, but there appears no BR term in the definition of a finite magnetic mo-

ment amplitude. The subtraction terms involving AR are generated by the R/I-subtraction

operations.

The subscript of M or A stands for the name of a diagram. A self-energy-like diagram

of the second-, fourth-, and sixth-orders are called 2, 4a and 4b, and 6a, 6b, 6c, 6d, 6e, 6f, 6g,

and 6h, respectively. (See Figs. 4 and 5.) The 47 independent self-energy-like diagrams of

the eighth-order are named from 01 to 47. (See Fig. 1.) The fermion lines are always named

from 1 to n − 1 from the left to right, where n is the order of the perturbation theory.

The name of a vertex diagram is determined based on the Ward-Takahashi related self-

energy diagram. When the vertex diagram is obtained by inserting the external photon
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into the fermion line i of a self-energy diagram nx, this is called nxi. Thus, we have

L4xi, i = 1, 2, 3, x = a, b, and L6xi, i = 1, · · ·5, x = a, · · ·h for the fourth-, and sixth-order

vertex renormalization constants, respectively. The vertex renormalization constant of the

second-order is named L2, since there is only one vertex diagam of the second order. In

the early article [40], the fourth-order vertex diagrams are given other names. We follow

the naming system Ref.[40] in this paper. The correspondence between two names of the

fourth-order vertex diagrams is that 4a1 = 4a3 = 4c, 4a2 = 4x, 4b1 = 4b3 = 4s, and

4b2 = 4l. (See Fig. 4).

When a two-point vertex is inserted into the fermion line i of a diagram nx, the resulting

diagram is called nx(i⋆). Namely, ⋆ indicates the two-point vertex.

The primed quantity, for example L4x(i′), is the derivative amplitude obtained by applying

−zi
∂

∂zi
operation on the integrand, where zi is the Feynman parameter assigned to the

fermion line i. Note that L4x(i′) is equal to L4x, but its UV-divergent part LUV
4x(i′) is not equal

to LUV
4x . Since second order quantities such as B2 and δm2 have only one electron line, it

is not really necessary to distinguish different electron lines. We therefore use somewhat

sloppy notations B2⋆ and B2′ instead of B2(1⋆) and B2(1′).

For L2, which contains electron lines 1 and 2, it is sometimes necessary to distinguish

lines in which insertion is made. L2⋆⋆† implies that two two-point vertices are inserted into

the fermion line 1 of L2, while L2⋆†⋆ means that one two-point vertex is inserted into the line

1 and another into the line 2. M4a contains three electron lines 1,2,3 and M4a(1⋆⋆) means

that two-point vertex insertion has been made twice in the electron line 1, and so on.

1. Fourth-order magnetic moments

The fourth-order magnetic moments are the same for both old and new approaches. The

UV-finite amplitude are also given here.

M4a = ∆M4a + 2 LUV
2 M2

M 4a = ∆M4a

M4b = ∆M4b + BUV
2 M2 + δm2 M2⋆ + LR

2 M2

M 4b = ∆M4b + LR
2 M2

In the new approach no explicit form of M4⋆ is needed because the mass renormalization
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is completed by the R-subtraction operation. They are, however, listed here, since they are

used in the old approach.

M4a(1⋆) = ∆M4a(1⋆) + LUV
2 M2⋆ + I4a(1⋆)

M4a(2⋆) = ∆M4a(2⋆) + I4a(2⋆)

M4b(1⋆) = ∆M4b(1⋆) + (δm2 M2⋆⋆ + BUV
2 M2⋆) + I4b(1⋆)

M4b(2⋆) = ∆M4b(2⋆) + δmUV
2⋆ M2⋆ + I4b(2⋆) + LR

2 M2⋆ + M2⋆ [I] δm̃2⋆ − 2 M2⋆ [I] LR
2

2. Sixth-order magnetic moments by gencodeN

The finite amplitudes of the sixth-order are given in the following. For simplicity, we

drop the superscript “new” from ∆Mnew
6x .

M6a = ∆M6a + 2 δm2 M4b(1⋆) + 2 BUV
2 M4b − δm2 (δm2 M2⋆⋆ + BUV

2 M2⋆)

− BUV
2 (δm2 M2⋆ + BUV

2 M2)

+ 2 LR
4s M2

M6b = ∆M6b + δm2 M4b(2⋆) + BUV
2 M4b + δmUV

4b M2⋆ + BUV
4b M2 − δm2 δmUV

2⋆ M2⋆

− BUV
2 (δmUV

2′ M2⋆ + BUV
2′ M2)

+ LR
2 ∆M4b + LR

4l M2 + M2⋆ ∆δm4b

M6c = ∆M6c + 2 LUV
2 M4b + δmUV

4a M2⋆ + BUV
4a M2 − 2 LUV

2 (δm2 M2⋆ + BUV
2 M2)

+ LR
2 ∆M4a + M2⋆ ∆δm4a

M6d = ∆M6d + LUV
4s M2 + δm2 M4a(1⋆) + BUV

2 M4a + LUV
2 M4b − BUV

2 LUV
2′ M2

− LUV
2 (δm2 M2⋆ + BUV

2 M2)

+ LR
4c M2

M6e = ∆M6e + 2 LUV
4s M2 + δm2 M4a(2⋆) + BUV

2 M4a − 2 LUV
2′ BUV

2 M2

+ LR
4x M2

M6f = ∆M6f + 2 LUV
4c M2 + 2 LUV

2 M4a − 3 LUV
2 LUV

2 M2

M6g = ∆M6g + LUV
4c M2 + LUV

4l M2 + LUV
2 M4a − 2 LUV

2 LUV
2 M2

M6h = ∆M6h + 2 LUV
4x M2
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3. eighth-order magnetic moments by gencodeN

The finite amplitudes of the eighth-order are given in the following. For simplicity, we

drop the superscript “new” from ∆Mnew
i .

M01 = ∆M01 + 2 LUV
2 M6f + 2 LUV

4c M4a + 2 LUV
6f1 M2 − 3 (LUV

2 )2 M4a

− 6 LUV
2 LUV

4c M2 + 4 (LUV
2 )3 M2

M02 = ∆M02 + δm2 M6f(1⋆) + BUV
2 M6f + LUV

2 M6d + LUV
4s M4a + LUV

4c M4b + LUV
6d5 M2

− LUV
2 (δm2 M4a(1⋆) + BUV

2 M4a) − BUV
2 LUV

2′ M4a − LUV
4c (δm2 M2⋆ + BUV

2 M2)

− BUV
2 LUV

4c(3′) M2 − 2 LUV
2 LUV

4s M2 − (LUV
2 )2 M4b + 2 LUV

2 BUV
2 LUV

2′ M2

+ (LUV
2 )2 (δm2 M2⋆ + BUV

2 M2)

+ LR
6f1 M2

M03 = ∆M03 + 2 LUV
2 M6d + δm2 M6f(3⋆) + BUV

2 M6f + 2 LUV
6d1 M2

− 2 LUV
2 (δm2 M4a(1⋆) + BUV

2 M4a) − (LUV
2 )2 M4b − 2 LUV

2 LUV
4s M2

− 2 BUV
2 LUV

4c(1′′) M2 + (LUV
2 )2 (δm2 M2⋆ + BUV

2 M2) + 2 LUV
2 BUV

2 LUV
2′ M2

+ LR
6f3 M2

M04 = ∆M04 + δm2 M6d(3⋆) + BUV
2 M6d + δm2 M6d(1⋆) + BUV

2 M6d + LUV
2 M6a + LUV

6a1 M2

− δm2 (δm2 M4a(1⋆⋆) + BUV
2 M4a(1⋆)) − BUV

2 (δm2 M4a(1⋆) + BUV
2 M4a)

− 2 LUV
2 (δm2 M4b(1⋆) + BUV

2 M4b) − BUV
2 (LUV

4s(3′) + LUV
4s(1′′)) M2

+ LUV
2 δm2 (δm2 M2⋆⋆ + BUV

2 M2⋆) + LUV
2 BUV

2 (δm2 M2⋆ + BUV
2 M2)

+ (BUV
2 )2 LUV

2′′ M2

+ LR
6d3 M2 + LR

6d1 M2

M05 = ∆M05 + LUV
2 M6h + LUV

4x M4a + LUV
6f2 M2 + LUV

6h1 M2 − 3 LUV
2 LUV

4x M2

M06 = ∆M06 + LUV
2 M6g + LUV

2 M6f + LUV
4l M4a + LUV

6f3 M2 + LUV
6g5 M2

− 2 (LUV
2 )2 M4a − 2 LUV

2 LUV
4l M2 − 3 LUV

2 LUV
4c M2 + 3 (LUV

2 )3 M2
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M07 = ∆M07 + LUV
2 M6g + LUV

2 M6f + LUV
4c M4a + LUV

6d2 M2 + LUV
6g1 M2

− 2 (LUV
2 )2 M4a − 4 LUV

2 LUV
4c M2 − LUV

2 LUV
4l M2 + 3 (LUV

2 )3 M2

M08 = ∆M08 + LUV
2 M6c + 2 LUV

2 M6d + δmUV
4a M4a(1⋆) + BUV

4a M4a + LUV
6c1 M2

− 2 (LUV
2 )2 M4b − LUV

2 (δmUV
4a M2⋆ + BUV

4a M2) − 2 LUV
2 (δm2 M4a(1⋆) + BUV

2 M4a)

− 2 LUV
2 LUV

4s M2 − BUV
4a LUV

2′ M2 + 2 (LUV
2 )2 (δm2 M2⋆ + BUV

2 M2)

+ 2 LUV
2 BUV

2 LUV
2′ M2

+ LR
4c ∆M4a + M 4a(1⋆) ∆δm4a

M09 = ∆M09 + δm2 M6f(2⋆) + BUV
2 M6f + LUV

2 M6e + LUV
4s M4a + LUV

6e1 M2 + LUV
6d3 M2

− LUV
2 (δm2 M4a(2⋆⋆) + BUV

2 M4a) − BUV
2 LUV

2′ M4a − BUV
2 LUV

4c(2′) M2

− BUV
2 LUV

4c(1′) M2 − 3 LUV
2 LUV

4s M2 + 3 LUV
2 BUV

2 LUV
2′ M2

+ LR
6f2 M2

M10 = ∆M10 + δm2 M6d(2⋆) + BUV
2 M6d + δmUV

4b M4a(1⋆) + BUV
4b M4a

+ LUV
2 M6b + LUV

6b1 M2 − δm2 δmUV
2⋆ M4a(1⋆) − BUV

2 (δmUV
2′ M4a(1⋆) + BUV

2′ M4a)

− LUV
2 (δm2 M4b(2⋆) + BUV

2 M4b) − BUV
2 LUV

4s(2′) M2

− LUV
2 (δmUV

4b M2⋆ + BUV
4b M2) − BUV

4b LUV
2′ M2 + LUV

2 δm2 δmUV
2⋆ M2⋆

+ LUV
2 BUV

2 (δmUV
2′ M2⋆ + BUV

2′ M2) + BUV
2 BUV

2′ LUV
2′ M2

+ LR
4c (∆M4b + LR

2 M2) − LR
4c LR

2 M2 + LR
6d2 M2 + M4a(1⋆) ∆δm4b

M11 = ∆M11 + 2 δm2 M6d(5⋆) + 2 BUV
2 M6d + 2 LUV

4s M4b

− δm2 (δm2 M4a(1⋆3⋆) + BUV
2 M4a(1⋆)) − BUV

2 (δm2 M4a(1⋆) + BUV
2 M4a)

− 2 LUV
4s (δm2 M2⋆ + BUV

2 M2) − 2 BUV
2 LUV

2′ M4b

+ 2 BUV
2 LUV

2′ (δm2 M2⋆ + BUV
2 M2)

+ 2 LR
6d5 M2
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M12 = ∆M12 + 2 δm2 M6a(1⋆) + 2 BUV
2 M6a + δm2 M6a(3⋆) + BUV

2 M6a

− 2 δm2 (δm2 M4b(1⋆⋆) + BUV
2 M4b(1⋆)) − 2 BUV

2 (δm2 M4b(1⋆) + BUV
2 M4b)

− δm2 (δm2 M4b(1⋆3⋆) + BUV
2 M4b(1⋆)) − BUV

2 (δm2 M4b(1⋆) + BUV
2 M4b)

+ (δm2)
2 (δm2 M2⋆⋆⋆ + BUV

2 M2⋆⋆) + 2 δm2 BUV
2 (δm2 M2⋆⋆ + BUV

2 M2⋆)

+ (BUV
2 )2 (δm2 M2⋆ + BUV

2 M2)

+ 2 LR
6a1 M2 + LR

6a3 M2

M13 = ∆M13 + δm2 M6h(1⋆) + BUV
2 M6h + LUV

4x M4b + LUV
6d4 M2

− LUV
4x (δm2 M2⋆ + BUV

2 M2) − BUV
2 LUV

4x(1′) M2

+ LR
6h1 M2

M14 = ∆M14 + δm2 M6g(5⋆) + BUV
2 M6g + LUV

2 M6d + LUV
4l M4b + LUV

6d3 M2

− LUV
2 (δm2 M4a(1⋆) + BUV

2 M4a) − LUV
4l (δm2 M2⋆ + BUV

2 M2) − BUV
2 LUV

4c(1′) M2

− (LUV
2 )2 M4b − LUV

2 LUV
4s M2 + (LUV

2 )2 (δm2 M2⋆ + BUV
2 M2) + LUV

2 BUV
2 LUV

2′ M2

+ LR
6g5 M2

M15 = ∆M15 + δm2 M6g(1⋆) + BUV
2 M6g + LUV

2 M6d + LUV
4c M4b + LUV

6a2 M2

− LUV
2 (δm2 M4a(1⋆) + BUV

2 M4a) − LUV
4c (δm2 M2⋆ + BUV

2 M2) − BUV
2 LUV

4l(1′) M2

− (LUV
2 )2 M4b − LUV

2 LUV
4s M2

+ (LUV
2 )2 (δm2 M2⋆ + BUV

2 M2) + LUV
2 BUV

2 LUV
2′ M2

+ LR
6g1 M2

M16 = ∆M16 + δm2 M6c(1⋆) + BUV
2 M6c + δmUV

4a M4b(1⋆) + BUV
4a M4b + 2 LUV

2 M6a

− δm2 (δmUV
4a M2⋆⋆ + BUV

4a M2⋆) − BUV
2 (δmUV

4a M2⋆ + BUV
4a M2)

− 4 LUV
2 (δm2 M4b(1⋆) + BUV

2 M4b)

+ 2 LUV
2 δm2 (δm2 M2⋆⋆ + BUV

2 M2⋆) + 2 BUV
2 LUV

2 (δm2 M2⋆ + BUV
2 M2)

+ LR
6c1 M2 + LR

4s ∆M4a + M 4b(1⋆) ∆δm4a − LR
2⋆ ∆δm4a M2
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M17 = ∆M17 + δm2 M6e(1⋆) + BUV
2 M6e + δm2 M6d(4⋆) + BUV

2 M6d + LUV
4s M4b

+ LUV
6a3 M2 − δm2 (δm2 M4a(1⋆2⋆) + BUV

2 M4a(1⋆))

− BUV
2 (δm2 M4a(2⋆) + BUV

2 M4a) − LUV
4s (δm2 M2⋆ + BUV

2 M2) − 2 BUV
2 LUV

4s(1′) M2

− BUV
2 LUV

2′ M4b + δm2 BUV
2 LUV

2′ M2⋆ + (BUV
2 )2 (LUV

2′ + LUV
2′′ ) M2

+ LR
6e1 M2 + LR

6d4 M2

M18 = ∆M18 + δm2 M6b(1⋆) + BUV
2 M6b + δm2 M6a(2⋆) + BUV

2 M6a + δmUV
4b M4b(1⋆)

+ BUV
4b M4b − δm2 (δm2 M4b(1⋆2⋆) + BUV

2 M4b(1⋆)) − BUV
2 (δm2 M4b(2⋆) + BUV

2 M4b)

− δm2 (δmUV
4b M2⋆⋆ + BUV

4b M2⋆) − BUV
2 (δmUV

4b M2⋆ + BUV
4b M2)

− δm2 δmUV
2⋆ M4b(1⋆) − BUV

2 (δmUV
2′ M4b(1⋆) + BUV

2′ M4b)

+ δm2 δmUV
2⋆ (δm2 M2⋆⋆ + BUV

2 M2⋆) + BUV
2 δmUV

2′ (δm2 M2⋆⋆ + BUV
2 M2⋆)

+ BUV
2 BUV

2′ (δm2 M2⋆ + BUV
2 M2)

+ LR
6b1 M2 + LR

4s (∆M4b + LR
2 M2) + LR

6a2 M2 − LR
4s LR

2 M2

+ (M 4b(1⋆) − LR
2⋆ M2) ∆δm4b

M19 = ∆M19 + 2 LUV
6h2 M2

M20 = ∆M20 + LUV
2 M6h + LUV

6f2 M2 + LUV
6g4 M2 − 2 LUV

2 LUV
4x M2

M21 = ∆M21 + 2 LUV
6g2 M2

M22 = ∆M22 + LUV
2 M6g + LUV

4c M4a + LUV
6f1 M2 + LUV

6c2 M2

− (LUV
2 )2 M4a − 3 LUV

2 LUV
4c M2 − LUV

2 LUV
4l M2 + 2 (LUV

2 )3 M2

M23 = ∆M23 + δm2 M6h(2⋆) + BUV
2 M6h + LUV

6e2 M2

+ LUV
6d4 M2 − BUV

2 (LUV
4x(1′) + LUV

4x(2′)) M2

+ LR
6h2 M2

M24 = ∆M24 + δm2 M6g(2⋆) + BUV
2 M6g + LUV

4s M4a + LUV
6b2 M2

+ LUV
6d5 M2 − BUV

2 LUV
2′ M4a − BUV

2 LUV
4l2′ M2

− 2 LUV
4s LUV

2 M2 − BUV
2 LUV

4c(3′) M2 + 2 LUV
2 BUV

2 LUV
2′ M2

+ LR
6g2 M2
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M25 = ∆M25 + 2 LUV
2 M6g + 2 LUV

6d2 M2 − (LUV
2 )2 M4a − 2 LUV

2 LUV
4l M2

− 2 LUV
2 LUV

4c M2 + 2 (LUV
2 )3 M2

M26 = ∆M26 + 2 LUV
2 M6c + 2 LUV

4c M4b + δmUV
6f M2⋆ + BUV

6f M2 − 3 (LUV
2 )2 M4b

− 2 LUV
2 (δmUV

4a M2⋆ + BUV
4a M2) − 2 LUV

4c (δm2 M2⋆ + BUV
2 M2)

+ 3 (LUV
2 )2 (δm2 M2⋆ + BUV

2 M2)

+ LR
2 ∆M6f + M2⋆ ∆δm6f

M27 = ∆M27 + δm2 M6g(4⋆) + BUV
2 M6g + LUV

2 M6e + LUV
6d1 M2 + LUV

6a2 M2

− BUV
2 LUV

4l(1′) M2 − BUV
2 LUV

4c(1′′) M2 − 2 LUV
2 LUV

4s M2 − LUV
2 (δm2 M4a(2⋆)

+ BUV
2 M4a) + 2 LUV

2 BUV
2 LUV

2′ M2

+ LR
6g4 M2

M28 = ∆M28 + δm2 M6c(2⋆) + BUV
2 M6c + LUV

2 M6b + LUV
4s M4b + δmUV

6d M2⋆ + BUV
6d M2

− LUV
2 (δm2 M4b(2⋆) + BUV

2 M4b) − BUV
2 LUV

2′ M4b − δm2 δmUV
4a(1⋆) M2⋆

− BUV
2 (δmUV

4a(1′) M2⋆ + BUV
4a(1′) M2) − LUV

2 (δmUV
4b M2⋆ + BUV

4b M2)

− LUV
4s (δm2 M2⋆ + BUV

2 M2) + LUV
2 δm2 δmUV

2⋆ M2⋆

+ LUV
2 BUV

2 (δmUV
2′ M2⋆ + BUV

2′ M2) + BUV
2 LUV

2′ (δm2 M2⋆ + BUV
2 M2)

+ LR
6c2 M2 − LR

2 LR
4c M2 + LR

2 (∆M6d + LR
4c M2) + M2⋆ ∆δm6d

M29 = ∆M29 + 2 δm2 M6e(2⋆) + 2 BUV
2 M6e + 2 LUV

6a1 M2 − δm2 (δm2 M4a(2⋆⋆) + BUV
2 M4a(2⋆))

− BUV
2 (δm2 M4a(2⋆) + BUV

2 M4a) − 2 BUV
2 (LUV

4s(3′) + LUV
4s(1′′)) M2 + 2 (BUV

2 )2 LUV
2′′ M2

+ 2 LR
6e2 M2

M30 = ∆M30 + 2 δm2 M6b(2⋆) + 2 BUV
2 M6b + δmUV

6a M2⋆ + BUV
6a M2

− δm2 (δm2 M4b(2⋆⋆) + BUV
2 M4b(2⋆)) − BUV

2 (δm2 M4b(2⋆) + BUV
2 M4b)

− 2 δm2 δmUV
4b(1⋆) M2⋆ − 2 BUV

2 (δmUV
4b(1′) M2⋆ + BUV

4b(1′) M2)

+ 2 δm2 BUV
2 δmUV

2′⋆ M2⋆ + (BUV
2 )2 (δmUV

2′′ M2⋆ + BUV
2′′ M2)

+ 2 LR
6b2 M2 − 2 LR

2 LR
4s M2 + LR

2 (∆M6a + 2 LR
4s M2) + M2⋆ ∆δm6a
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M31 = ∆M31 + 2 LUV
6h3 M2

M32 = ∆M32 + LUV
6g3 M2 + LUV

6h2 M2

M33 = ∆M33 + 2 LUV
6g3 M2

M34 = ∆M34 + LUV
4x M4a + LUV

6c3 M2 + LUV
6h1 M2 − 2 LUV

4x LUV
2 M2

M35 = ∆M35 + LUV
2 M6h + LUV

6e3 M2 + LUV
6g4 M2 − 2 LUV

4x LUV
2 M2

M36 = ∆M36 + LUV
2 M6g + LUV

4l M4a + LUV
6b3 M2 + LUV

6g5 M2 − (LUV
2 )2 M4a

− 3 LUV
2 LUV

4l M2 − LUV
2 LUV

4c M2 + 2 (LUV
2 )3 M2

M37 = ∆M37 + 2 LUV
6g2 M2

M38 = ∆M38 + 2 LUV
4x M4b + δmUV

6h M2⋆ + BUV
6h M2 − 2 LUV

4x (δm2 M2⋆ + BUV
2 M2)

+ LR
2 ∆M6h + M2⋆ ∆δm6h

M39 = ∆M39 + LUV
2 M6g + LUV

4c M4a + LUV
6g1 M2 + LUV

6c2 M2 − (LUV
2 )2 M4a

− 3 LUV
2 LUV

4c M2 − LUV
2 LUV

4l M2 + 2 (LUV
2 )3 M2

M40 = ∆M40 + LUV
2 M6c + LUV

4l M4b + LUV
4c M4b + δmUV

6g M2⋆ + BUV
6g M2

− 2 (LUV
2 )2 M4b − LUV

2 (δmUV
4a M2⋆ + BUV

4a M2) − LUV
4l (δm2 M2⋆ + BUV

2 M2)

− LUV
4c (δm2 M2⋆ + BUV

2 M2) + 2 (LUV
2 )2 (δm2 M2⋆ + BUV

2 M2)

+ LR
2 ∆M6g + M2⋆ ∆δm6g

M41 = ∆M41 + 2 LUV
2 M6e + δmUV

4a M4a(2⋆) + BUV
4a M4a + 2 LUV

6c1 M2

− 2 LUV
2 (δm2 M4a(2⋆) + BUV

2 M4a) − 4 LUV
2 LUV

4s M2 − 2 BUV
4a LUV

2′ M2

+ 4 LUV
2 BUV

2 LUV
2′ M2

+ LR
4x ∆M4a + M 4a(2⋆) ∆δm4a
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M42 = ∆M42 + 2 LUV
2 M6b + δmUV

4a M4b(2⋆) + BUV
4a M4b + δmUV

6c M2⋆ + BUV
6c M2

− 2 LUV
2 (δm2 M4b(2⋆) + BUV

2 M4b) − 2 LUV
2 (δmUV

4b M2⋆ + BUV
4b M2)

− δmUV
4a δmUV

2⋆ M2⋆ − BUV
4a (δmUV

2′ M2⋆ + BUV
2′ M2)

+ 2 LUV
2 δm2 δmUV

2⋆ M2⋆ + 2 LUV
2 BUV

2 (δmUV
2′ M2⋆ + BUV

2′ M2)

+ LR
4l ∆M4a − (LR

2 )2 ∆M4a + LR
2 (∆M6c + LR

2 ∆M4a + M2⋆ ∆δm4a)

+ M2⋆ (∆δm6c + LR
2 δmR

4a) + M 4b(2⋆) ∆δm4a

− δmR
2⋆ ∆δm4a M2⋆ − ∆δm4a LR

2 M2⋆

M43 = ∆M43 + δm2 M6h(3⋆) + BUV
2 M6h + 2 LUV

6e2 M2 − 2 BUV
2 LUV

4x(2′) M2

+ LR
6h3 M2

M44 = ∆M44 + δm2 M6g(3⋆) + BUV
2 M6g + LUV

4s M4a + LUV
6b2 M2 + LUV

6e1 M2

− BUV
2 LUV

2′ M4a − BUV
2 LUV

4l(2′) M2 − BUV
2 LUV

4c(2′) M2 − 2 LUV
4s LUV

2 M2

+ 2 LUV
2 BUV

2 LUV
2′ M2

+ LR
6g3 M2

M45 = ∆M45 + δm2 M6c(3⋆) + BUV
2 M6c + 2 LUV

4s M4b + δmUV
6e M2⋆ + BUV

6e M2

− 2 BUV
2 LUV

2′ M4b − δm2 δmUV
4a(2⋆) M2⋆ − BUV

2 (δmUV
4a(2′) M2⋆ + BUV

4a(2′) M2)

− 2 LUV
4s (δm2 M2⋆ + BUV

2 M2) + 2 BUV
2 LUV

2′ (δm2 M2⋆ + BUV
2 M2)

+ LR
6c3 M2 + LR

2 (∆M6e + LR
4x M2) + M2⋆ ∆δm6e − LR

4x LR
2 M2

M46 = ∆M46 + δm2 M6e(3⋆) + BUV
2 M6e + δmUV

4b M4a(2⋆) + BUV
4b M4a + 2 LUV

6b1 M2

− δm2 δmUV
2⋆ M4a(2⋆) − BUV

2 (δmUV
2′ M4a(2⋆) + BUV

2′ M4a) − 2 BUV
2 LUV

4s(2′) M2

− 2 BUV
4b LUV

2′ M2 + 2 BUV
2 BUV

2′ LUV
2′ M2

+ LR
6e3 M2 − LR

4x LR
2 M2 + LR

4x (∆M4b + LR
2 M2) + M 4a(2⋆) ∆δm4b
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M47 = ∆M47 + δm2 M6b(3⋆) + BUV
2 M6b + δmUV

4b M4b(2⋆) + BUV
4b M4b + δmUV

6b M2⋆

+ BUV
6b M2 − δm2 δmUV

2⋆ M4b(2⋆) − BUV
2 (δmUV

2′ M4b(2⋆) + BUV
2′ M4b)

− δm2 δmUV
4b(2⋆) M2⋆ − BUV

2 (δmUV
4b(2′) M2⋆ + BUV

4b(2′) M2) − δmUV
4b δmUV

2⋆ M2⋆

− BUV
4b (δmUV

2′ M2⋆ + BUV
2′ M2) + δm2 (δmUV

2⋆ )2 M2⋆ + BUV
2 δmUV

2′ δmUV
2⋆ M2⋆

+ BUV
2 BUV

2′ (δmUV
2′ M2⋆ + BUV

2′ M2)

+ M2⋆ [∆δm6b + LR
2 {δmR

4b − (δm2 δmR
2⋆ + BUV

2 δmR
2′)}]

+ LR
2 (∆M6b + M2⋆ ∆δm4b + LR

2 ∆M4b + LR
4l M2) + MR

4b(2⋆) ∆δm4b

+ LR
4l (∆M4b + LR

2 M2) + LR
6b3 M2 − ∆δm4b δmR

2⋆ M2⋆ − LR
2 ∆δm4b M2⋆

− (LR
2 )2 (∆M4b + LR

2 M2) − 2 LR
4l LR

2 M2 + (LR
2 )3 M2

APPENDIX C: DIVERGENCE STRUCTURE OF THE RENORMALIZATION

CONSTANTS

1. Second-order renormalization constants

L2 = LUV
2 + L̃2 , LR

2 = L̃2 = I2

B2 = BUV
2 + B̃2 , BR

2 = B̃2 = −I2 + ∆B2

LR
2 + BR

2 = ∆B2

B2⋆ = −2 L2⋆ , L2⋆ = I2⋆ + ∆L2⋆

B2⋆⋆ = −2 (2 L2⋆⋆† + L2⋆†⋆)

δm2⋆ = δmUV
2⋆ + I2 + ∆δm2⋆

2. Fourth-order renormalization constants

L4x = LUV
4x + I4x + ∆L4x

L4c = LUV
4c + I4c + ∆L4c + LUV

2 L̃2

B4a = BUV
4a − I4x + ∆B4a + 2 LUV

2 B̃2 − 2 I4c
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L4l = LUV
4l + I4l + (LR

2 )2 + ∆L4l + L̃2 LUV
2

L4s = LUV
4s + I4s + ∆L4s + δm2 L2⋆ + BUV

2 L̃2′

B4b = BUV
4b + ∆B4b + δm2 B2⋆ + BUV

2 B̃2′ + LR
2 B̃2 − 2 I4s − I4l

∆LB4a = 2 LR
4c + LR

4x + BR
4a = 2 ∆L4c + ∆L4x + ∆B4a

∆LB4b = 2 LR
4s + LR

4l + BR
4a − LR

2 ∆B2 = 2 ∆L4s + ∆L4l + ∆B4a

∆LB(4) = ∆LB4a + ∆LB4b = ∆L(4) + ∆B(4)

3. Sixth-order renormalization constants

L6a1 = LR
6a1 + 2 δm2 L4s(1⋆) + 2 BUV

2 L̃4s(1′) − δm2 (δm2 L2⋆⋆† + BUV
2 L2′⋆)

− BUV
2 (δm2 L2′⋆ + BUV

2 L̃2′′) + LUV
6a1

L6a2 = LR
6a2 + LUV

2 L̃4s + δm2 L4l(1⋆) + BUV
2 L̃4l(1′) − LUV

2 (δm2 L2⋆ + BUV
2 L̃2′) + LUV

6a2

L6a3 = LR
6a3 + 2 (δm2 L4s(1⋆) + BUV

2 L̃4s(1′)) − δm2 (δm2 L2⋆†⋆ + BUV
2 L2′⋆)

− BUV
2 (δm2 L2′⋆ + BUV

2 L̃2′′) + LUV
6a3

L6b1 = LR
6b1 + δm2 L4s(2⋆) + BUV

2 L̃4s(2′) + δmUV
4b L2⋆ + BUV

4b L̃2′ − δm2 δmUV
2⋆ L2⋆

− BUV
2 (δmUV

2′ L2⋆ + BUV
2′ L̃2′) + LUV

6b1

L6b2 = LR
6b2 + δm2 L4l(2⋆) + BUV

2 L̃4l(2′) + LUV
4s L̃2 − BUV

2 LUV
2′ L̃2 + LUV

6b2

L6b3 = LR
6b3 + LUV

2 L̃4l + LUV
4l L̃2 − (LUV

2 )2 L̃2 + LUV
6b3

L6c1 = LR
6c1 + 2 LUV

2 L̃4s + δmUV
4a L2⋆ + BUV

4a L̃2′ − 2 LUV
2 (δm2 L2⋆ + BUV

2 L̃2′) + LUV
6c1

L6c2 = LR
6c2 + LUV

2 L̃4l + LUV
4c L̃2 − (LUV

2 )2 L̃2 + LUV
6c2

L6c3 = LR
6c3 + LUV

4x L̃2 + LUV
6c3

L6d1 = LR
6d1 + δm2 L4c(1⋆) + BUV

2 L̃4c(1′) + LUV
2 L̃4s − LUV

2 (δm2 L2⋆ + BUV
2 L̃2′) + LUV

6d1
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L6d2 = LR
6d2 + LUV

2 L̃4c + LUV
2 L̃4l − (LUV

2 )2 L̃2 + LUV
6d2

L6d3 = LR
6d3 + δm2 L4c(1⋆) + BUV

2 L̃4c(1′) + LUV
2 L̃4s − LUV

2 (δm2 L2⋆ + BUV
2 L̃2′) + LUV

6d3

L6d4 = LR
6d4 + δm2 L4x(1⋆) + BUV

2 L̃4x(1′) + LUV
6d4

L6d5 = LR
6d5 + δm2 L4c(3⋆) + BUV

2 L̃4c(3′) + LUV
4s L̃2 − BUV

2 LUV
2′ L̃2 + LUV

6d5

L6e1 = LR
6e1 + δm2 L4c(2⋆) + BUV

2 L̃4c(2′) + LUV
4s L̃2 − BUV

2 LUV
2′ L̃2 + LUV

6e1

L6e2 = LR
6e2 + δm2 L4x(2⋆) + BUV

2 L̃4x(2′) + LUV
6e2

L6e3 = LR
6e3 + LUV

2 L̃4x + LUV
6e3

L6f1 = LR
6f1 + LUV

2 L̃4c + LUV
4c L̃2 − (LUV

2 )2 L̃2 + LUV
6f1

L6f2 = LR
6f2 + LUV

2 L̃4x + LUV
6f2

L6f3 = LR
6f3 + 2 LUV

2 L̃4c − (LUV
2 )2 L̃2 + LUV

6f3

L6g1 = LR
6g1 + LUV

2 L̃4c + LUV
4c L̃2 − (LUV

2 )2 L̃2 + LUV
6g1

L6g2 = LR
6g2 + LUV

6g2

L6g3 = LR
6g3 + LUV

6g3

L6g4 = LR
6g4 + LUV

2 L̃4x + LUV
6g4

L6g5 = LR
6g5 + LUV

2 L̃4c + LUV
4l L̃2 − (LUV

2 )2 L̃2 + LUV
6g5

L6h1 = LR
6h1 + LUV

4x L̃2 + LUV
6h1

L6h2 = LR
6h2 + LUV

6h2
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L6h3 = LR
6h3 + LUV

6h3

B6a = BR
6a + 2 (δm2 B4b(1⋆) + BUV

2 B̃4b(1′)) − δm2 (δm2 B2⋆⋆ + BUV
2 B2′⋆)

− BUV
2 (δm2 B2′⋆ + BUV

2 B̃2′′) + BUV
6a

B6b = BR
6b + δm2 B4b(2⋆) + BUV

2 B̃4b(2′) + δmUV
4b B2⋆ + BUV

4b B̃2′ − δm2 δmUV
2⋆ B2⋆

− BUV
2 (δmUV

2′ B2⋆ + BUV
2′ B̃2′) + BUV

6b

B6c = BR
6c + 2 LUV

2 B̃4b + δmUV
4a B2⋆ + BUV

4a B̃2′ − 2 LUV
2 (δm2 B2⋆ + BUV

2 B̃2′) + BUV
6c

B6d = BR
6d + δm2 B4a(1⋆) + BUV

2 B̃4a(1′) + LUV
2 B̃4b + LUV

4s B̃2 − LUV
2 (δm2 B2⋆ + BUV

2 B̃2′)

− BUV
2 LUV

2′ B̃2 + BUV
6d

B6e = BR
6e + δm2 B4a(2⋆) + BUV

2 B̃4a(2′) + 2 LUV
4s B̃2 − 2 BUV

2 LUV
2′ B̃2 + BUV

6e

B6f = BR
6f + 2 LUV

2 B̃4a + 2 LUV
4c B̃2 − 3 (LUV

2 )2 B̃2 + BUV
6f

B6g = BR
6g + LUV

2 B̃4a + LUV
4c B̃2 + LUV

4l B̃2 − 2 (LUV
2 )2 B̃2 + BUV

6g

B6h = BR
6h + 2 LUV

4x B̃2 + BUV
6h

The residual renormalization constants ∆LB6x for each diagram appearing in Eq. (77)

are defined in the following equations.

∆LB6a = 2 LR
6a1 + 2 LR

6a2 + LR
6a3 + BR

6a

− 2 LR
4s ∆B2

∆LB6b = 2 LR
6b1 + 2 LR

6b2 + LR
6b3 + BR

6b

− LR
2 (BR

4b + 2 LR
4s + LR

4l) − LR
4l ∆B2 + (LR

2 )2 ∆B2
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∆LB6c = 2 LR
6c1 + 2 LR

6c2 + LR
6c3 + BR

6c

− LR
2 (BR

4a + 2 LR
4c + LR

4x)

∆LB6d = LR
6d1 + LR

6d2 + LR
6d3 + LR

6d4 + LR
6d5 + BR

6d

− LR
4c ∆B2

∆LB6e = 2 LR
6e1 + 2 LR

6e2 + LR
6e3 + BR

6e

− LR
4x ∆B2

∆LB6f = 2 LR
6f1 + 2 LR

6f2 + LR
6f3 + BR

6f

∆LB6g = LR
6g1 + LR

6g2 + LR
6g3 + LR

6g4 + LR
6g5 + BR

6g

∆LB6h = 2 LR
6h1 + 2 LR

6h2 + LR
6h3 + BR

6h

∆LB(6) =

h∑

x=a

ηx∆LB6x = ∆L(6) + ∆B(6) + ∆L(4) ∆B2 + ∆δm(4) B2⋆ [I]
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