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Abstrakt: Numerické modelování transportních dějů v plazmatu typicky následuje kla-
sickou difúzní teorii. Existuje však rozpor mezi výsledky simulací a experimentálními
daty v případě intezivních laserových impulzů, jelikož energetické elektrony a fotony
pronikají hluboko do terče. Musí být proto tato nelokalita transportu modelována, což
má zásadní důležitost pro aplikace jako je inerciální fúze, předpulzy laserů o ultra-
vysoké intenzitě, magneticky držená fúze nebo studie teplé husté hmoty. Tato práce
shrnuje podkladovou teorii a příspěvky k výzkumu tohoto komplexního jevu. Je násle-
dováno několik přístupů, jednak kinetické simulace problému v rámci Vlasov–Fokker–
Planck–Maxwell modelu a stejně tak hydrodynamický model opatřený doplňujícími
modely pro nelokální transport elektronového tepla a radiace. Jsou navrhnuty nové fy-
zikální modely a numerické metody, které jsou demonstrovány na fyzikálně relevantních
simulacích.

Klíčová slova: nelokální transport, laserové plazma, kinetické modelování, Fokker–Planck,
lagrangeovská hydrodynamika, transport tepla, absorpce laseru, radiační transport

Title:
Modelling of non-local energy transport in plasma

Abstract: Numerical modelling of transport processes in plasma follows the classical di-
ffusion theory typically. However, a discrepancy between the simulation results and the
experimental data exists in the case of intense laser pulses, since the energetic electrons
and photons penetrate deep into the target. Hence, non-locality of the transport must
be modelled, which holds a significant importance for applications like inertial fusion,
prepulses of ultra-high intensity lasers, magnetic confinement fusion or warm dense
matter studies. This work summarizes the background theory and contributions to the
research of this complex phenomenon. Multiple approaches are followed, it is the kine-
tic treatment of the problem in terms of Vlasov–Fokker–Planck–Maxwell simulations
as well as the hydrodynamic model equipped with additional closure models for the
electron heat and radiation non-local transport. New physical models and numerical
methods are proposed and demonstrated in physically relevant simulations.

Key words: non-local transport, laser plasma, kinetic modelling, Fokker–Planck, Lagran-
gian hydrodynamic, heat transport, laser absorption, radiation transport
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1 Introduction
Plasma, the fourth state of matter, is the primordial origin of all matter, as the quark–
gluon plasma dominated the early stage of the universe, and maybe its ultimate end
at the same time, when becomes trapped on the accretion disk of a quasar. Plasma
also accompanied our kind from its very beginning, as our civilization would not exist
probably, when fire, a form of plasma, was not discovered. And it may also define its
future, as it provides a nearly unlimited source of energy due to the thermonuclear
fusion. Hence, its mysterious nature has attracted attention of scientists for long time.

Unless being absolutely still and homogeneous, plasma exhibits transport pro-
cesses. Therefore, their understanding is a cardinal discipline of the plasma research
from its beginning. Actually, it can be tracked even before its foundation to the studies
of gases. It was as early as 1905, when Lorentz described the transport processes in
metals in a simple collisional manner by what is hence known as the Lorentz gas [1].
Another landmark is then the formulation of the theory of gases by Chapman in 1916
[2]. However, plasma is not a neutral gas, even though it behaves like that in certain
aspects. The important distinction is that long range forces are involved unlike the
close encounters in a gas. A fundamental yet incomplete description was then given
by Landau for the Coulombic interaction [3]. Later, the notion of dynamic friction
in the astrophysical context originally was formulated by Chandrasekhar [4], but its
statistical basis predetermined it to be generalized to other fields. However, the effect
of electron–electron collisions was not clear and a strong belief existed that the theory
of gases should be simply extended for plasma as done by Cowling [5]. The influential
paper of Cohen, Spitzer and Routly then described the collisions in a consistent man-
ner as the dynamic friction and diffusion [6]. The theory was then further improved
in the work of Spitzer and Härm [7], which defines what is till today referred to as
the classical diffusion theory of plasma. In the context of magnetized plasmas, it was
rather the work of Braginskii [8] based on the earlier formulation of Landau, which
presents the cornerstone of the description. However, the models relied only on the
small anisotropy approximations, limiting their accuracy. A systematic formulation
was then provided by Rosenbluth [9].

In parallel, the research of lasers started. However, it was recognized with their
increasing power [10] that the diffusion theory does not reflect the phenomenon of heat
flux saturation for steep gradients in plasma and the heat flux limiting technique was
proposed for the numerical solution [11]. The physical findings were then confirmed
by the dedicated experiments [12]. Kinetic simulations suggested that there may exist
such a limitation [13, 14], but it was believed that the diffusion description can be just
simply corrected. The flux limiting techniques could solve with a partial success the
problem of the excessive heat flow, but they could not describe the pre-heating effect
occurring on the downstream of the gradient. Empirical methods were proposed then
[15], delocalizing the electron heat flux and introducing the notion of non-locality to
the hydrodynamic simulations. However, the ground-shaking mathematical analysis of
the problem showed that such treatment may produce severe non-physical effects [16].
From that time, various models of non-local transport have been proposed [17, 18, 19],
but all possessing their own inherent advantages and disadvantages.
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This defines the starting point of our research, which focuses on the phenomenon
of non-local energy transport in plasma. This topic has a great importance for multiple
fields of applications like the inertial fusion research [20], pre-pulse physics of ultra-high
intensity lasers [21, 22, 23], magnetic confinement fusion [24] or warm dense matter
research [25]. The complex nature of the non-local energy transport is given by the
fact that it originates from the microscopic phenomena in the plasma, but becomes
manifested on the macroscopic level. Therefore, also the numerical modelling must be
reformed to reflect this multi-scale problem adequately. This text addresses several
aspects of the non-local transport in the context of laser–target interaction, which
cannot be attributed to the electrons solely as discussed so far, but also to the radiative
transfer, where energetic photons may penetrate deep into the target. Moreover, the
laser absorption methods are deeply connected to both phenomena, when an intense
laser beam impinges a solid target and its power drives both effects. Finally, it is
the hydrodynamic modelling which provides the vessel for integration of all mentioned
methods together and simulation of plasma formation and expansion, which must be
also improved to accommodate the new models and follow the shift of paradigm in the
modelled detail.

The text is organized as follows. The introduction to the basic kinetic theory
is given in chapter 2, which is reduced to the hydrodynamic description in chapter 3.
However, the hydrodynamic model is incomplete as it misses exactly the transport pro-
cesses we are mostly interested in. This is addressed by chapter 4, which reintroduces
the phenomenon of heat transport, followed by chapter 5 dedicated to the radiative
transfer. Finally, a brief overview of the methods for laser absorption is given in chap-
ter 6. When the theory and the status of the current research are summarized, our
contributions to the them can be put into the right context as done in chapter 7.
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2 Kinetic theory
Kinetic description of plasma originates from the statistical picture, where the exact
population of species is replaced by the distribution function through the averaging
process. It is assumed that there exists sufficiently high number of species on every
observable scale, so the statistics of such ensemble converge to the average values and
the continuous description is valid. The distribution function fα = fα(~x,~v, t) is then
function of the phase space coordinates and describes the number of particles α in the
differential volume d~x, d~v, where ~x is the spatial coordinate and ~v is the velocity space
coordinate and t is time. Following Liouville’s theorem, the total derivative dfα

dt can be
expanded to form the Boltzmann equation:

∂fα
∂t

+ ~v · ∇~xfα −
~Fα
mα

· ∇~vfα =
(
∂fα
∂t

)
coll
. (1)

The symbol ~F = F (~x,~v, t) represents the generalized force exerted on the α species and
mα is their mass. The term on the right-hand-side represents the collision operator,
where it is assumed that the collisions involve only strongly localized transient fields.
Therefore, they can be separated in the averaging process and ~F does not include these
microscopic contributions.

In the context of plasma dynamics, the electron distribution fe is of a significant
interest as it is responsible for the most transport phenomena described in later chap-
ters. Because its frequent occurrence in the text, the lower index is omitted henceforth.
The collective behaviour of the plasma is intermediated by the macroscopic electric field
~E = ~E(~x, t) and magnetic field ~B = ~B(~x, t) acting on the electrons through the Lorenz
force. Inserting it to (1), yields the kinetic equation:

∂f

∂t
+ ~v · ∇~xf −

e

me

( ~E + ~v × ~B) · ∇~vf =
(
∂f

∂t

)
coll
, (2)

where e is the elementary charge.
The description is enclosed by the Maxwell’s equations for the macroscopic fields,

which are composed of Ampère’s law and Faraday’s law taking the following forms
respectively:

− 1
c2
∂ ~E

∂t
+∇× ~B = µ0~j, (3)

∂ ~B

∂t
+∇× ~E = 0. (4)

The quantity ~j = ~j(~x, t) is the electric current and its relation to the distribution
function is defined in chapter 2.2. The symbol µ0 represents the vacuum permeability.
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2.1 Collision operator
The kinetic description cannot be complete without a particular definition of the col-
lision operator operating on the right-hand-side of the kinetic equation (2). In the
simplest case, when the plasma is ideal in the sense that the collective phenomena
completely dominate over the close range interactions, it can be modelled as nearly
collision-less and the collision operator is set (∂f/∂)coll ≡ 0. This form of the equation
is known as the Vlasov equation.

However, the collisions cannot be neglected in the applications of the primary
interest here. In order to reduce complexity of the collision term, it is expanded to
the BBGKY hierarchy in the number of interacting particles [26, 27]. This expansion
is then truncated after the first term, i.e. the binary interaction between the species.
This approximation is related to the Debye-Hückel theory of shielding, where potential
of a single particle over the distances longer than the Debye length λDe is effectively
shielded and decays exponentially. Therefore, even in the case of long range inverse
square forces like the Coulomb interaction between the particles, only the close range
interaction on the distances < λDe must be modelled within the collision term and the
long range interaction is intermediated by the macroscopic fields. The collisions then
present local fluctuations and do not contribute to the mean values of the fields. This
kind of wavelength splitting is applicable only when the electrons are weakly coupled,
i.e. the kinetic energy of the species is significantly higher than the potential energy.

2.1.1 Fokker–Planck operator

In order to simplify the collision operator, several additional assumptions are made.
First, the observed time scales are relatively short compared to the collision time that
it takes an average particle to be deflected to the perpendicular direction. However,
the number of single events is high per that time, implying that the deflection can be
considered as a series of small angle collisions. It is in an agreement with the fact the
plasma parameter ND = 4π

3 neλ
3
De � 1, so there is a high number of particles in the

Debye sphere and the statistical treatment on this scale is meaningful. Moreover, the
binary collisions are also elastic, conserving the relative velocity during the encounter.
Finally, they can be superposed within the Debye sphere (i.e. distances ≤ λDe), as
they are not correlated, and form a Markovian chain, where the event can be modelled
by the probability ψ. In particular, the probability ψ = ψ(~v,∆~v) is introduced for
the transition of the distribution function from velocity ~v to ~v + ∆~v. The distribution
function then can be expressed as [28]:

f(~x,~v, t) =
∫
ψ(~v −∆~v,∆~v)f(~x,~v −∆~v, t−∆t) d∆~v. (5)

These considerations enable to expand the collision term to the Taylor series in
the velocity increments. When this procedure is ceased after the second term following
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the assumption on short time increment ∆t, the Fokker–Planck operator is obtained:
(
∂f

∂t

)
coll

= −∇~v ·
f

〈
∆~v
∆t

〉+ 1
2∇~v∇~v

:
f

〈
∆~v∆~v

∆t

〉 . (6)

The physical meaning of the terms can be identified. The first term is known as
the dynamic friction and describes the slowing down process, while the second term
of diffusion is responsible for spreading of the distribution function and increase of
entropy. The averaged collision coefficients appearing in (6) are defined as follows [9]:〈

∆~v
∆t

〉
= 1

∆t

∫
ψ(~v,∆~v)∆~v d~v, (7)〈

∆~v∆~v
∆t

〉
= 1

∆t

∫
ψ(~v,∆~v)∆~v∆~v d∆v. (8)

Then, transition to the center of mass system for the colliding particles α and β
is performed, where the relative velocity ~g = ~vβ − ~vα is introduced (g = |~g|). For an
interaction with the differential cross-section σ, the probability is given by the volume
of the collision cylinder ψ d∆~v = ∆tfβgσ d~vβ. Substitution to (7–8) yields [29]:〈

∆~v
∆t

〉
=
∑
β

mβ

mα +mβ

∫
∆~ggfβσ d~vβ, (9)

〈
∆~v∆~v

∆t

〉
=
∑
β

(
mβ

mα +mβ

)2 ∫
∆~g∆~ggfβσ d~vβ. (10)

The derivation is continued by insertion of the Coulomb cross-section, which takes
form [28]:

σ(χ, θ) = b2
0

4 sin4 χ
2
, b0 =

q2
αq

2
β

4πε0µαβg2 , µαβ = mαmβ

mα +mβ

, (11)

where χ is the deflection angle, θ azimuthal angle, ε0 vacuum permittivity, qα charge
of the α species and µαβ reduced mass in the center of mass system. The integration
is elaborated, while the divergence of the collision integral is overcome by limiting
the impact parameter of the collisions to only the Debye length λDα following the
assumptions [30]. Finally, the form with the Rosenbluth potentials are obtained after
some manipulations: 〈

∆~v
∆t

〉
=
∑
β

mβ

mα +mβ

Yαβ∇~vα ·Hαβ, (12)

〈
∆~v∆~v

∆t

〉
=
∑
β

(
mβ

mα +mβ

)2

Yαβ∇~vα∇~vα : Gαβ, (13)
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where the potentials themselves are defined as:

Hαβ =
∫
fβ
∣∣∣~vα − ~vβ∣∣∣−1

d~vβ, (14)

Gαβ =
∫
fβ
∣∣∣~vα − ~vβ∣∣∣ d~vβ. (15)

The name potentials stems from the fact that they satisfy the Poisson equation in the
form:

∇2
~vHαβ = −4πfβ, ∇2

~vGαβ = 2Hαβ. (16)
In the previous, it is assumed that Yαβ is slowly spatially variable and is given

by:

Yαβ =
q2
αq

2
β

4πε2
0µ

2
αβ

ln Λαβ, Λαβ = λDα
b0

, (17)

The term ln Λαβ is known as the Coulomb logarithm. The relative velocity g in the
definition of the impact parameter b0 (11) is approximated by the thermal velocity
of the species usually. It is worth noting that Λαβ ∼ ND, so the Coulomb logarithm
attains high values in ideal plasma, where ND � 1. This correlates again with the fact
that the small angle deflections are more frequent in the plasma as it can be shown
that the ratio between the contribution from subsequent small deflections a single π/2
scattering is ∼ ln Λ [31].

The Coulomb logarithm can be interpreted as a ratio between the maximal impact
parameter bmax and "minimal" impact parameter bmin. The maximum cut-off is given
by the Debye length, conforming with the assumptions made. The "minimal" value is
given by b0, which can be interpreted as the impact parameter of the π/2 deflection.
However, this parameter does not present a true cut-off in the physical sense. It can be
viewed as a mere convenient approximation of a more exact treatment [32]. Moreover,
the definition is usually modified in case of dense plasmas, where electrons undergo
partial degeneracy [33]. In the first approximation, the quantum treatment of highly
energetic encounters can be reduced to limiting the value by the reduced thermal de
Broglie wavelength λ~ [28]. The impact parameters are then defined as:

bmax = λDe =
√
ε0kBTe
nee2 , bmin = max(b0, λ~), λ~ = ~√

mekBTe
, (18)

where kB is the Boltzmann constant, ~ reduced Planck constant, ne electron density,
Te electron kinetic temperature.

In addition to the Rosenbluth formalism used here, there exists a different ap-
proach based on the work of Landau [3], which treats the collisions as an anisotropic
diffusion process in phase space. However, both formulations are equivalent and the
Landau form of the operator can be derived from (6) by using the differential identity
∇~vα∇~vαg = I/g−~g~g/g3, where I is the identity tensor. After some manipulations, the
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Landau form of the Fokker–Planck operator is obtained:(
∂fα
∂t

)
coll

=
∑
β

1
2Yαβ

µ2
αβ

mα

∇~vα ·
∫ g2I − ~g~g

g3 ·
(
∇~vα

fα
mα

fβ − fα∇~vβ
fβ
mβ

)
d~vβ. (19)

The operator holds many convenient properties like full symmetry of the integral part
in the index of the species and other, which are further explored in the subsequent
chapters.

It is also of an interest to investigate the limit mα � mβ, which will be the case
for the electron–ion scattering for example. Under these conditions, the second term
in the Fokker–Planck–Landau operator (19) can be neglected compared to the first
one. Furthermore, approximation of the relative velocities as ~g ≈ ~vα for nearly static
scatterers yields the simplified form of the operator:(

∂fα
∂t

)
coll

=
∑
β

1
2Yαβ

µ2
αβ

m2
α

nβ∇~vα ·
(
~v2
αI − ~vα~vα

v3
α

· ∇~vαfα
)
, (20)

where nβ =
∫
fβ d~vβ is the density of the β species.

2.1.2 Bhatnagar–Gross–Krook operator

The Fokker-Planck operator presented in chapter 2.1.1 has inherently non-linear struc-
ture. Its numerical solution is demanding consequently. However, when the physical
system is close to the collisional equilibrium, even only a linearized form can be suffi-
cient for the description of the relaxation processes. A linear operator of this kind was
constructed by Bhatnagar, Gross and Krook [34]. It can be written as:(

∂fα
∂t

)
coll

= −
∑
β

ναβ(fα − fβ0), (21)

where ναβ is the collision frequency between α and β species. This kind of operator
is called empirical, as the a priori known equilibrium distribution functions fα0 for a
single specie plasma appear in the definition. In addition, an apparent drawback of
this approach is violation of the conservation laws. Unless the collision frequency is in-
dependent of velocity, it does not conserve neither of mass, momentum nor energy [35].
On the other hand, convergence to the equilibrium is guaranteed and the distribution
function remains positive.

This can be compared to the Fokker–Planck operator from chapter 2.1.1, which
conserves all three mentioned collisional invariants as shown in chapter 2.2. Moreover,
it satisfies the H-theorem, so the entropy S = −

∫
f log f d~v increases in time. In order

to prove this, (19) is simplified to the single specie case and rewritten as:(
∂fα
∂t

)
coll

∼ ∇ ·
∫ g2I − ~g~g

g3 · ff ′
(
∇ log f −∇′ log f ′

)
d~v′, (22)

where f ′ = f(~x,~v′, t) and ∇′ is the velocity derivative with respect to ~v′ analogously.
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The Fokker–Planck–Landau operator in this form is multiplied by −(1 + log f) and
integrated to obtain:

∂S

∂t
∼
∫ ∫

ff ′
g2I − ~g~g

g3 :
(
∇ log f −∇′ log f ′

) (
∇ log f −∇′ log f ′

)
d~v d~v′, (23)

where Green’s theorem was applied, assuming that f vanishes when |~v| → ∞, and
symmetry of the inner part of the operator was utilized. Due to symmetry and pos-
itivity of the expression for any f > 0, it can be concluded that ∂S/∂t ≥ 0 and a
unique maximum exists. The maximum of entropy is attained when the distribution
function reaches the Maxwell–Boltzmann distribution, which takes the following form
for electrons:

fM(~x,~v, t) = fM(ne, ~u, Te, ~v) = ne

(
me

2πkBTe

)3/2

exp
(
me|~v − ~u|2

2kBTe

)
, (24)

where ~u is the mean velocity. This provides the sought equilibrium solution, as it also
zeros the collision operator itself. This function is then inserted to the Bhatnagar–
Gross–Krook (BGK) operator (21) usually [34].

As a final remark, it should be noted that a conserving form of the BGK operator
exists, where the parameters of density and temperature are unknown functions [36].
In order to determine them, a system of coupled integral equation must be solved, so
the method its convenient tractability.

2.2 Velocity moments
The kinetic description of plasma presented so far used functions defined in the phase
space. However, macroscopic measurable quantities like electron density or electric
current appear in the configuration space only. The link between the two is provided
by the velocity moments of the distribution function.

Proceeding further, elastic binary collisions are considered following chapter 2.1.
Under these conditions, mass, momentum and energy are conserved during the scatter-
ing event. In particular, they present special cases of summation invariants. In other
words, the sum of the quantities before and after (denoted by prime) the collision is
equal:

φα + φβ = φ′α + φ′β, (25)
where φα ∈ {mα,mα~vα,

1
2mα|~vα|2}.

The conservation properties for a continuous collision operator can be proved as
well. Restricting ourself to the single specie case again, the Fokker–Planck–Landau
operator in the form (22) is taken and multiplied by one of the summation invariants
φ, which we consider as functions of velocity now. Integration over the velocity space
is performed and the expression is rearranged in a similar manner to (23) to obtain:
∫
φ

(
∂fα
∂t

)
coll

d~v ∼
∫ ∫ (

∇φ−∇′φ′
)
·
g2I − ~g~g

g3 .ff ′
(
∇ log f −∇′ log f ′

)
d~v d~v′. (26)
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This formulation shows that mass, momentum and energy are collisional invariants of
the Fokker–Planck operator or any linear combination of 1, ~v and |~v|2 is conserved
more generally. Note that the property of the central tensor was used here, that its
product with a vector collinear with ~g is zero.

The governing equations for the velocity moments of the distribution function are
obtained using the mean value operator defined as follows for functions X = X(~v):

〈X〉α =
∫
X(~vα)fα(~vα) d~vα∫

fα(~vα) d~vα
. (27)

Multiplication of the kinetic equation (1) by φα and integration over the velocity
space yields the moment equation:

∂

∂t
〈nαφα〉α +∇~x · 〈nα~vαφα〉α−

qα
mα

〈nα( ~E + ~vα× ~B) · ∇~vφα〉α =
∫
φα

∑
β 6=α

(
∂fα
∂t

)β
coll

d~vα,

(28)
where the Lorenz force was inserted. The collision operator on the right-hand-side is
expanded to the contributions from different species, where the contribution from the
identical species α vanishes, since φα are collisional invariants. Due to the symmetry
of the Fokker–Planck operator (19), it can be recognized that the sum of the kinetic
equations gives on the right-hand-side:

∫ ∑
α

∑
β

φα

(
∂fα
∂t

)β
coll

d~vα = 0, (29)

so the total mass, momentum and energy are conserved by collisions.

2.2.1 Mass equation

The first invariant φα = mα represents the zeroth velocity moment of the kinetic
equation. Insertion of φα to the moment equation (28) yields:

∂

∂t
(mαnα) +∇ · (mαnα~uα) = 0, (30)

where we restricted ourselves only to the single specie case, so the collisional contribu-
tions to the equation are zero due to the collisional invariance and this simplification
is applied even for other velocity moments for brevity.

In the previous, the definitions of the integral and mean quantities of the particle
density and mean velocity were used respectively:

nα =
∫
fα d~v, ~uα = 〈~vα〉α = 1

ne

∫
~vfα d~v. (31)

It can be recognized from the form of (30) that it represents the law of mass
conservation, since integration over the whole volume Ω of the configuration space
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yields:
dMα

dt = −
∮

Γ
ρα~uα · ~n dΓ, (32)

where ρα = mαnα is the mass density, Mα =
∫

Ω ρα d~x the total mass and ~n the outer
unit normal defined on the boundary Γ = ∂Ω. Provided that the system is closed, i.e.
there is no exchange of particles over the boundaries, the total mass is conserved.

A closely related phenomenon to the mass conservation is the law of charge con-
servation. Taking divergence of the Ampère’s law (3) and Faraday’s law (4) yields:

∂

∂t
∇ · ~E = − 1

ε0
∇ ·~jα, (33)

∂

∂t
∇ · ~B = 0, (34)

where ~jα = qαnαuα is the electric current. Assume that Gauss’s law for the electric
field and magnetic field holds at the beginning of the reference time in the form:

∇ · ~E = ρqα
ε0
, ∇ · ~B = 0, (35)

where the charge density is defined as ρqα = qαnα. Substitution back to (33) and (34)
yields the law of non-existence of magnetic monopoles and continuity equation for
electric charge:

∂

∂t
ρqα +∇ ·~jα = 0. (36)

Similarly to (32), the total charge Qα =
∫

Ω qαne d~x is conserved when the electric
currents through boundaries are zero. Therefore, the electrodynamic theory behaves
consistently with the kinetic theory for the collisional invariant φα = qα.

2.2.2 Momentum equation

The first velocity moment of the kinetic equation (1) governs the momentum ρα~uα. It
is obtained from (28) by choosing the invariant φα = mα~vα:

∂

∂t
(ρα~uα) +∇ · (ρα~uα~uα + ρα〈~w~w〉) = ρqα

~E +~jα × ~B, (37)

where ~w = ~vα − ~uα is the chaotic part of the velocity. The two components of the
stress tensor appearing in the divergence can be identified as the dynamic pressure and
kinetic pressure:

Dα = ρα~uα~uα = mα

∫
~uα~uαfα d~v, (38)

Pα = ρα〈~w~w〉α = mα

∫
(~v − ~uα)(~v − ~uα)fα d~v, (39)

Similarly to the continuity equation (30), the integral over the domain give rise
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to the law of momentum conservation:

d ~Pα
dt = −

∮
Γ
(Dα + Pα) · ~n dΓ +

∫
Ω
ρqα
~E +~jα × ~B d~x, (40)

where the total momentum of α species is defined as ~Pα =
∫

Ω ρα~uα d~x. The contribution
to the boundary integral from Dα is zero, when the system is closed, since ~uα · ~n = 0.
The pressure part can be interpreted as the macroscopic normal and tangential forces
acting at the boundary and becomes zero for an isolated system. However, the Lorenz
force action do not vanish in general, since the momentum is exchanged with the fields
as illustrated further.

The field counterpart of the momentum equation is obtained by vector multipli-
cation of (3) and (4) by ~B and ~E respectively:

∂ ~E

∂t
× ~B − c2(∇× ~B)× ~B = − 1

ε0
~j × ~B, (41)

~E × ∂ ~B

∂t
+ (∇× ~E)× ~E = 0. (42)

The antisymmetric products are reduced to a symmetric tensor through the differential
identity:

(∇× ~A)× ~A = ( ~A∇) ~A− 1
2∇|

~A|2 = ∇ ·
(
~A ~A− 1

2 |
~A|2I

)
− (∇ · ~A) ~A. (43)

When applied to the system (41–42) considering the Gauss’s law (35), the sum of the
equations results in the equation of electromagnetic momentum:

∂

∂t
~γEM −∇ ·

(
TE + TB

)
= −ρqα ~E −~jα × ~B, (44)

where ~γEM = ε−1
0
~E × ~B is the electromagnetic momentum vector and TE,TB are the

electric and magnetic parts of the Maxwell’s stress tensor:

TE = ε0

(
~E ~E − 1

2 |
~E|2I

)
, TB = µ−1

0

(
~B ~B − 1

2 |
~B|2I

)
. (45)

Integration of (44) over the configuration space yields the law of electrodynamic
momentum conservation:

d ~PEM
dt =

∮
Γ
(TE + TB) · ~n dΓ−

∫
Ω
ρqα
~E +~jα × ~B d~x. (46)

The boundary term is obviously zero for the normal components of the fields and
the second term is again the interaction part or the action of Lorentz force in other
words, which appeared in (40). Together, they give the sought law of total momentum
conservation for ~Pα + ~γEM .
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2.2.3 Energy equation

The last, but not least, collisional invariant is the kinetic energy φα = 1
2me|~v|2 and

the corresponding second velocity moment of the kinetic equation (1). Insertion to the
moment equation (28) yields:

∂

∂t

(
1
2ραu

2
α + 1

2ρα〈w
2
α〉α

)
+∇ · ρα

(
1
2u

2
α~uα + 1

2〈w
2〉α~uα+

+〈~wα ~wα〉α + 1
2〈w

2
α ~wα〉α

)
= ~jα · ~E, (47)

where identification with the kinetic pressure tensor (39), kinetic energy density εkα =
1/2ραu2

α, internal energy density εiα and heat flux ~qα can be made. The latter are
defined as:

εiα = 1
2ρα〈w

2
α〉α = 1

2mα

∫
|~v − ~uα|2 fα d~v, (48)

~qα = 1
2ρα〈w

2
α ~wα〉α = 1

2mα

∫
|~v − ~uα|2 (~v − ~uα)fα d~v. (49)

After the substitution, the equation of energy reads:

∂

∂t

(
εkα + εiα

)
+∇ ·

(
εkα~uα + εiα~uα + Pα · ~uα + ~qα

)
= ~jα · ~E. (50)

Integration of (50) over space provides the law of energy conservation for the
total energy of α species Eα =

∫
Ω ε

k
α + εiα d~x, which takes the form:

dEα
dt = −

∮
Γ

(
(εiα + εkα)~uα · ~n+ Pα : ~uα~n+ ~qα · ~n

)
dΓ +

∫
Ω
~jα · ~E d~x. (51)

The first boundary term is convective and is zero when there is no mass flow over the
boundaries. The pressure part describes the action of the boundary forces and becomes
zero together with the normal heat flux for an isolated system. The last part describes
the total amount of Joule heating, which presents an interaction term between the α
particles and electromagnetic fields.

The field counterpart of the energy equation is obtained from (3) and (4) when
multiplied by ~E and ~B respectively. The system then takes the form:

1
2
∂

∂t
| ~E|2 − c2∇× ~B · ~E = − 1

ε0
~jα · ~E, (52)

1
2
∂

∂t
| ~B|2 +∇× ~E · ~B = 0. (53)

A linear combination of the equation then gives the energy equation for electromagnetic
field after some manipulations:

∂

∂t
εEM +∇ · ~S = ~jα · ~E, (54)
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where the density of electromagnetic energy and Poynting vector are defined as follows:

εEM = 1
2ε0| ~E|2 + 1

2µ
−1
0 | ~B|2, ~S = −µ−1

0
~E × ~B. (55)

The law of electromagnetic energy conservation can be derived from (54) by
integration over space:

dEEM
dt = −

∮
Γ
~S · ~n dΓ−

∫
Ω
~jα · ~E d~x. (56)

Provided that the Poynting vector ~S is zero at the boundary, the electromagnetic
energy is conserved except the action on particles through the Joule heating term
~jα · ~E. However, comparison of (56) with (51) reveals that the total energy Eα +EEM
is conserved.

2.3 Cartesian tensor expansion
The kinetic theory described the distribution function f = f(~x,~v, t) in 7 dimensions
of the phase space essentially. Consequently, solution of the kinetic equation (1) is
cumbersome, when a non-linear collision operator like the one presented in chapter
2.1.1 is applied especially. For this reason, it is desirable to expand the distribution
function and solve only a finite set of equations in a lower number of dimensions.
Expansions in spherical harmonics or Cartesian tensors belong to the most frequently
used. The rationale of this choice can be seen in the fact that spherical harmonics
present eigenvectors of the diffusion operator, greatly simplifying the structure of the
Fokker–Planck collision operator. Moreover, the Maxwell–Boltzmann distribution (24)
is modelled by the zeroth mode already and higher modes present only anisotropic
corrections to it. Alternatively, an expansion in Cartesian tensors can be made, which
is also pursued here, but the two approaches are formally equivalent [37].

In the following, the distribution function f is expanded in Cartesian tensors as:

f(~x,~v, t) = f(~x, ~n, v, t) = f0(~x, v, t) + ~f1(~x, v, t) · ~n+ f2(~x, v, t) : ~n~n+ . . . , (57)

where v = |~v| and ~n = ~v/v. The term f0 is the isotropic part of the distribution
function, ~f1 the first order tensor (i.e. vector) anisotropic correction and f

2
is the

second order tensor anisotropic correction, etc. Note that the series is infinite, but it is
truncated after several terms typically, as mainly electron–ion collisions isotropize the
electron distribution function due to the high mass ratio of the species, which leads
to a high momentum exchange during an encounter. However, the energy exchange is
significantly slower due to this ratio, so rather the direction of momentum is affected.
In a typical collisional plasma, the ordering f0 � |~f1| � |~f2| holds consequently.

The velocity moments of the distribution function, which were defined in chapter
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2.2, then take the form:

ne = 4π
∫ +∞

0
f0v

2 dv, ~ue = 1
ne

4π
3

∫ +∞

0
~f1v

3 dv, (58)

εTe = 1
2me4π

∫ +∞

0
f0v

4 dv, ~qTe = 1
2me

4π
3

∫ +∞

0
~f1v

5 dv, (59)

while the pressure tensors are obtained in the form:

De + P e = 4π
3 me

(∫ +∞

0
f0v

4 dv
)
I + 8π

15me

∫ +∞

0
f2v

4 dv. (60)

I must be noted that εTe and ~qTe are rather the total quantities related to (48), (49) by
the following relations:

εTe = εke + εie, ~qTe = ~qe + εTe ~ue + P e · ~ue. (61)

It is enlightening and also serves for the purposes of later reference to derive the splitting
of the pressure tensor P e = peI + Π to the scalar pressure pe and the anisotropic part
Π:

pe = 4π
3 me

(∫ +∞

0
f0v

4 dv
)
− 1

3ρeu
2
e, Πe = 8π

15me

∫ +∞

0
f2v

4 dv + 1
3ρeu

2
e − ρe~ue~ue.

(62)
From the given expression, it is clear that f0 contributes to the scalar pressure and f2

to the anisotropic part only.
To proceed further, the expansion (57) is inserted to the kinetic equation (2),

where the equations for the first two contributions parts of the distribution function
give:

∂f0

∂t
+ v

3∇ ·
~f1 −

e

me

1
3v2

∂

∂v

(
v2 ~E · ~f1

)
= C0, (63)

∂ ~f1

∂t
+ v∇f0 −

e

me

∂f0

∂v
~E − e

me

~B × ~f1+

+ 2
5v∇ · f2 −

2e
5mev3

∂

∂v

(
v3 ~E · f2

)
= C1. (64)

The equations for higher anisotropic corrections can be found in the literature and are
not detailed here [37].

The symbols C0 and C1 represent the tensor expansion of the collision operator on
the right-hand-side. Their complete prescription for the Fokker–Planck operator can
be found in the literature [28]. However, we are particularly interested in a simplified
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form of the collision operator for a two-specie plasma:
(
∂f

∂t

)
coll

= Cee + Cei = Cee + νei
2

∂2

∂~n2 f =

= Cee + νei
2

 1
sinϕ

∂

∂ϕ

(
sinϕ ∂

∂ϕ
f

)
+ 1

sin2 ϕ

∂2

∂θ2 f

 , (65)

where φ is the polar angle and θ the azimuthal angle of the velocity vector in spheri-
cal coordinates. The symbol Cee represents the Fokker–Planck operator for electron–
electron collisions following the definition (6) and Cei is the electron–ion collision op-
erator in the approximation (20). The simplification made here is that electron–ion
collisions lead to pure scattering of the electrons on a static background of ions. This
procedure assumes that the thermal velocities of ions are significantly lower than that
of electrons, i.e. vT i � vTe (v2

Tα = kBTα/mα). Moreover, the system is observed for
notably shorter times than the thermal relaxation time 1/νεei ∼ mi/meνei. Due to the
high mass ratio between the ions and electrons typically, the approximation is justified.
The collisional terms C0 and C1 then take the form:

C0 = ν̄ee
v2

∂

∂v

(
C(f0)f0 +D(f0) ∂f0

∂v

)
+ C11(~f1, ~f1), (66)

C1 = −νei ~f1 + C01(f0, ~f1), (67)

where the Rosenbluth potentials of friction C and diffusion D are defined as:

C(f0) = 4π
∫ v

0
f0(v′)v′2dv′, (68)

D(f0) = 4π
v

∫ v

0
v′2
∫ +∞

v′
f0(v′′)v′′dv′′dv′. (69)

It is evident from the form of (66–67) that the tensor expansion separates the maxwelliza-
tion process mediated by C0 and isotropization process mediated by C1. The angular
diffusion operator (also known as Laplace–Beltrami) from (65) simplifies substantially,
manifesting the convenient construction of the expansion basis, where spherical har-
monics are eigenvectors of this operator. It can be immediately recognized that the
basis function cosϕ coincides with the scalar product of ~n. The collision term C01 is
responsible for the electron–electron scattering and holds main importance for low-Z
plasmas, otherwise electron–ion collisions dominate due to favourable charge and mass
ratio. In the Lorentz approximation (for Z → ∞), this term is neglected completely.
Finally, the term C11 describes growth of f0 due to electron–electron scattering, but it
presents a second order effect∼ |~f1|2 and can be neglected usually (assuming |~f1| � f0).
Definitions of both can be found in the literature and it is not detailed due to their
complex formulation [28].
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For completeness, the formulae for the collision frequencies read:

νee(v) = ν̄eenev
−3 = 4πe4

m2
e

nev
−3 log Λee, (70)

νei(v) = 4πe4

m2
e

Z2niv
−3 log Λei, (71)

where Z is the mean ionization. The expressions can be derived from the Fokker–
Planck operator (6) after substitution of the Maxwell–Boltzmann distribution (24) as
the target distribution fβ, which linearises the operator effectively. It can be shown
that a solution exists in the form of Chandrasekhar function [38], which behaves as
∼ v−3 in the high velocity limit and yields the sought formulae when the approximation
me/mi ≈ 0 is made.
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3 Hydrodynamics
The fluid model describes plasma as a continuum governed by the equations for macro-
scopic quantities. The single-specie model was derived in chapter 2.2 from the kinetic
theory through velocity moments of the kinetic equation (1). In particular, it is com-
prised of the mass equation (30), momentum equation (37) and energy equation (50).
These macroscopic quantities then parametrize the shifted Maxwell–Boltzmann distri-
bution (24), which presents the assumed solution of the kinetic problem within the
fluid description. Only infinitesimal perturbation are considered classically, in order to
model the transport processes as described in chapter 4. This procedure is valid only
for well thermalized plasma (t � ν−1

αα), isotropized (t � ν−1
α ), where να is the total

scattering frequency) and dominated by kinetic phenomena (εiα � εEM). Under these
conditions, the solution attains the near (collisional) equilibrium limit.

3.1 Multi-specie fluid model
The single-specie model derived in chapter 2.2 can be then extended to the multi-specie
case by adding the inter-specie interaction according to (28):

∂ρα
∂t

+∇ · (ρα~uα) = 0, (72)
∂ρα~uα
∂t

+∇ · (ρα~uα~uα) = −∇ · Pα + ρqα
~E +~jα × ~B + ~gαβ, (73)

∂ραε
T
α

∂t
+∇ ·

(
ραε

T
α~uα

)
= −∇ · (Pα · ~uα)−∇ · ~qα +~jα · ~E + gαβ, (74)

where εTα = εTα/ρα is the total specific energy of α species. The collisional coupling
between the species is mediated by the exchange terms:

~gαβ =
∫
mα~vα

∑
β 6=α

(
∂fα
∂t

)β
coll

d~vα, (75)

gαβ =
∫ 1

2mα|~vα|2
∑
β 6=α

(
∂fα
∂t

)β
coll

d~vα. (76)

The multi-specie model (72–74) considers only momentum and energy transfers
between the species based on the form of the collision operator (19), where contribution
to the zeroth velocity moment is always zero. In other words, the processes resulting
in exchange of particles like ionization or recombination are not modelled dynamically,
but left for the stationary closure model described later in chapter 3.4.

3.2 One-fluid hydrodynamic model
The multi-specie model of chapter 3.1 offers a complete fluid description of the plasma
when the self-consistent fields are obtained from the electromagnetic closure, i.e. the
Maxwell’s equations (3–4). However, the model represents a non-linear problem, ex-
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pensive to solve on long time scales. Therefore, the model is reduced to the one-fluid
description, provided that a quasi-static electric field develops between the species and
couples them together effectively (t � ω−1

pα ). Hence, the electrically charged particles
of different species are separated only on distances of the Debye length λDα and the
plasma can be considered quasi-neutral (∑α ρ

q
α ≈ 0). The flows of the particles do not

need to be modelled separately as their profiles are inter-dependent. Consequently, the
plasma is described with the one-fluid quantities like the mass density ρ, center of mass
velocity ~u and specific internal energy ε:

ρ =
∑
α

∫
mαfα d~vα, (77)

~u =
∑
α

∫
mα~vαfα d~vα∑

α

∫
mαfα d~vα

, (78)

ε =
∑
α

∫ 1
2mα|~vα − ~uα|2fα d~vα∑
α

∫
mαfα d~vα

. (79)

In particular, the velocities are ~u ≈ ~ue ≈ ~ui and densities are ne = Zni for
electron–ion plasma, where Z is the mean ionization. Finally, the one-fluid model is
obtained by summing over the α index the system (72–74):

∂

∂t
ρ+∇ · (ρ~u) = 0, (80)

∂

∂t
(ρ~u) +∇ · (ρ~u~u) = −∇ · P −∇ · PB, (81)

∂

∂t
(ρ(1

2u
2 + ε)) +∇ · (ρ(1

2u
2 + ε)~u) = −∇ · (P · ~u)−∇ · ~q +~j · ~E, (82)

where ~j = ∑
α
~jα is the electric current, ~q = ∑

α ~qα heat flux, P = ∑
α Pα

and
PB = −TB is the magnetic pressure tensor. The contributions from the collisional
momentum and energy exchange terms cancel out according to (29) and the Lorenz
force densities vanish due to the quasineutrality condition. However, solenoidal currents
can exist even under the quasi-neutrality requirement, because the continuity equation
(36) only restricts the potential (or divergent) part. In magneto-hydrodynamics, where
the interplay with a magnetic field is modelled, the solenoidal currents are given by the
electrostatic Ampère’s law ~j = µ−1

0 ∇× ~B. Their substitution to the Hall term ~j × ~B
yields the magnetic pressure term −∇ ·PB. Although, the term is proportional to the
magnetic energy 1/(2µ0)| ~B|2 according to the definition (45) and the kinetic pressure
tensor P to the internal energy ρε, so it can be neglected in ideal hydrodynamics, where
the assumption εEM � ρε is enforced strictly.

The expression for the electric field can be obtained from the momentum equa-
tions (73) when multiplied by ρ/ρα and summed over the α index, while the velocities
are considered equal already. This procedure can be seen as relative temporal varia-
tions of the contributions to the total momentum and the electric field is constructed
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in such way to zero them all. Finally, the expression for the electric field is obtained:

~E = −~u× ~B + σ−1~j +
(∑

α

qα
mα

)−1∑
α

1
ρα
∇ · Pα, (83)

where σ is the total electric conductivity originating from the collisional terms ~gαβ,
where a collisional friction between the species exists. In the case of electron–ion
plasma, the situation simplifies notably, because the mass and charge ratio favours the
electron pressure contribution −∇ · P e/(ene).

The procedure leading to the one-fluid model (80–82) assumed that there exists
a single equilibrium distribution for all species. However, the electron–ion energy
exchange time is related to the electron–electron thermalization time as (νεei)−1 ∼
mi/meZ

−2ν−1
ee , so the condition t � ν−1

ee can be satisfied securely, but t � (νεei)−1

may not. In other words, the equilibrium is reached significantly earlier for electrons
separately than the common equilibrium between the species. It is then possible to
retain the separate energy equations for electrons and ions instead of the common
one (82). This approach is known as two-temperature one-fluid model. The energy
equations then read:

∂

∂t
(ρe(1

2u
2 + εe)) +∇ · (ρe(1

2u
2 + εe)~u) = −∇ · (P e · ~u)−∇ · ~qe +~je · ~E+

+Gei(Ti − Te), (84)
∂

∂t
(ρi(1

2u
2 + εi)) +∇ · (ρi(1

2u
2 + εi)~u) = −∇ · (P i · ~u)−∇ · ~qi +~ji · ~E+

+Gie(Te − Ti), (85)

where most of the terms cancel out as in (82), because the quasi-neutrality still holds,
but Gei, Gie are the heat exchange coefficients for the linearized heat transfer approx-
imating gei, gie terms respectively. It is applicable only for gentle deviations from the
common equilibrium, i.e. Gei|Te−Ti|∆t� 1 holds ideally (∆t is a typical resolved time
scale). Moreover, the symmetry Gei = Gie is required to satisfy energy conservation.

3.3 Lagrangian hydrodynamics
The fluid model presented in chapter 3.2 used the Eulerian description, where the
reference frame is fixed (the laboratory frame normally). However, ablative processes
during laser–target interaction lead to enormous expansion of the matter, where the
Lagrangian description is preferable.

The hydrodynamics is modelled within the reference frame co-moving with the
fluid. Only the Galilean transformations of the coordinate system are used, respecting
the assumption of non-relativistic motion of the fluid. It is convenient to define the
differential operator of substantial (or material) derivative:

D~h
Dt = ∂~h

∂t
+ (~u∇)~h, (86)
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for a vector function ~h (or for a scalar function analogously).
Equipped with the substantial derivative, the one-fluid model (80–82) can be

rewritten as:

D
Dtρ = −ρ∇ · ~u, (87)

ρ
D
Dt~u = −∇ · P −∇ · PB, (88)

ρ
D
Dtε = −P : ∇~u−∇ · ~q +~j · ~E, (89)

where the lower velocity moment equations were substituted to simplify the formula-
tion.

The next step is transformation of the coordinate system itself. The hydrody-
namic equations (80–82) are primarily hyperbolic, so the quantities ρ, ρ~u, 1/2ρu2 + ρε

are advected along the characteristics. Therefore, the time-dependent flux ~ψt : ~X → ~x
of the equations can be defined, which assigns the coordinate of an infinitesimal volume
of the solution at time t to its initial (or material) coordinate X, so it ideally holds
ρ(~ψt(X), t) = ρ(X, 0), etc. Provided that this assignment is bijective and difeomor-
phic, so the characteristics do not intersect and no singularities exist, a well-defined
invertible transformation of the coordinates ( ~X, t) → (~x, t) can be defined. The pair
of the space-time coordinates ( ~X, t) is called the Lagrangian coordinates. A function
h̃ = h̃( ~X, t), defined in the Lagrangian coordinates and corresponding to the function
h = h(~x, t) in the Eulerian coordinates, is then differentiated as follows:

∂h̃

∂t

∣∣∣∣
~X,t

= ∂h

∂t

∣∣∣∣
~ψt( ~X),t

= ∂h

∂t

∣∣∣∣
~ψt( ~X),t

+ ∂ ~ψt
∂t
· ∂h
∂~x

∣∣∣∣
~ψt( ~X),t

= Dh
Dt

∣∣∣∣
~ψt( ~X),t

, (90)

where the fact was utilized that the slope of the characteristics ∂ ~ψt/∂t is equal to the
velocity of the convection ~u.

In addition to the time derivative, the divergence operator is needed. It can be
transformed as follows:

∇ ~X · h̃| ~X,t =
∣∣∣∣∣∣d
~ψt

d ~X

∣∣∣∣∣∣
~X

∇~x · h|~ψt( ~X),t = ρ0( ~X)
ρ(~ψt, t)

∇~x · h|~ψt( ~X),t , (91)

where ρ0(~x) = ρ(~x, 0) is the initial density. This fact already reflects the fact that
ρ|J | is an invariant of the flow, i.e. Dρ|J |/Dt = 0, where J = d~ψt/d ~X is the Jacoby
matrix. This can be seen as a consequence of the mass conservation law (87), provided
the relation D|J |/Dt = ∇ · ~u|J | holds, as can be verified from the definition [39]. The
continuity equation then gives:

0 = Dρ
Dt + ρ∇ · ~u = Dρ

Dt + ρ|J |−1D|J |
Dt = |J |−1Dρ|J |

Dt (92)

Following these considerations, the system (88–89) can be transformed to the
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following form:

ρ0
∂

∂t
~̃u = −∇ ~X · P̃ −∇ ~X · P̃

B
, (93)

ρ0
∂

∂t
ε̃ = −P̃ : ∇ ~X ~̃u−∇ ~X · ~̃q + ρ0

ρ̃
~̃j · ~̃E. (94)

where the functions in the Lagrangian coordinates are denoted by the upper tilde.
Finally, it must be explained how the Maxwell’s equations (3–4) are transformed.

The procedure is not as straightforward as in the case of the hydrodynamic part.
The fields must be transferred to the Lagrangian frame by the proper Lorentz trans-
formations in the low velocity limit. In the simplest case of Lagrangian magneto-
hydrodynamics, the local electric force can be identified with the classical local Lorentz
force, giving the expression for the electric field [40]:

~̃E(~ψ−1
t (~x), t) = ~E(~x, t) + ~u(~x, t)× ~B(~x, t). (95)

The Faraday’s law (4) maintains its form even in the moving frame and becomes:

∂

∂t
~̃B = −∇× ~̃E, (96)

where the differential operator in Eulerian coordinates is retained, because the formula
(91) cannot be applied here and the final expression is more complex. It should be
noted that (96) together with the definition of the electric field (95) and (83) can be
interpreted in such way that the convection of the magnetic field was eliminated by
the change of the reference frames similarly to the rest of the quantities.

3.4 Equation of state
The (magneto-)hydrodynamic equations (87–89) together with the equations for the
electric field (83) and magnetic field (4) eventually still do not pose a closed system
of differential equations. The prescriptions of the pressure tensor and heat flux are
missing in the hydrodynamic picture. The reason is that both are given by higher
velocity moments than appearing in the hydrodynamic system, as in the case of the
heat flux according to the definition (49), or multi-directional correlations rather than
the scalar in the case of the pressure (39). Discussion of the former is left for the
dedicated chapter about the heat transport processes 4, while the latter is the subject
of this chapter.

3.4.1 Ideal gas

Based on the kinetic theory, it was recognized after the Cartesian tensor expansion
(62) (and also the definition (39)) that the higher order tensors contribute to the
anisotropic part of the tensor only. The scalar part was obtained directly from the
isotropic part of the distribution function. Considering the equilibrium distribution
(24) used throughout the macroscopic model, the scalar pressure (62) can be related
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to the internal energy of the plasma:

p = (γ − 1)ρε. (97)

This can be recognized as the ideal gas equation of state, where γ is the Poisson
constant. As the degrees-of-freedom of the species motion were not restrained anyhow,
the constant attains the adiabatic value γ = 5/3 in the kinetic model of chapter 2.
Because the reduced hydrodynamic description does not self-consistently provide this
value, it can be varied depending on the given physical problem, so the value γ = 7/5
can be used for simple diatomic molecules for example. The ionization is not provided
by the model and is assumed constant for the ideal gas.

3.4.2 Quotidian Equation of State

The Quotidian Equation of State (QEOS) [41] is one of the most popular models in
hydrodynamic simulations of plasma. It provides the analytic formulae for a wide range
of temperatures and densities in the one-temperature or even two-temperature model.
Conceptually, it is based on the formulation in terms of the Helmholtz free energy:

Ftot(ρ, Te, Ti) = Fi(ρ, Ti) + Fe(ρ, Te) + Fb(ρ, Te), (98)

where Fi is the ion contribution, Fe electron contribution and Fb bounding correction.
The ion part is approximated by the solid and liquid scaling laws and by the Cowan
model [42]. The term Fb supplements the model by semi-empirical bonding corrections,
which serve to decrease the total pressure for solid material and give correct bulk
modulus [43]. The bulk modulus of solid and solid density are externally entered
parameters in this model. Finally, the electron term is based on the Thomas–Fermi
theory [44].

The basic assumptions behind the Thomas–Fermi theory are such that electrons
move in the electrostatic field of a point-like ion. As the model originates from the sta-
tistical description in the continuum limit, there should be statistically representative
number of electrons at any distance from the nucleus, so the model is fully valid only
for infinitely ionized atoms. In essence, the total energy of electrons is given by:

ETF = Ckin
TF

∫
n5/3(~x) d~x−

∫
n(~x)Ze

2

|~x|
d~x+ 1

2e
2
∫ ∫ n(~x)n(~x′)

|~x− ~x′|
d~x d~x′, (99)

the symbol Ckin
TF is a positive constant. The first term is the kinetic energy of the

electrons distributed to Fermi spheres in the phase space, i.e. the volume of phase
space occupied by fermionic matter in ground state. The second term is the potential
in the field of the ion, which is calculated from the classical solution of the Poisson
equation in an agreement with the assumptions already stated. The last term is the
expulsion potential of point-like electrons. This energy is then minimized through
variations of the density profile for the given total number of electrons. From the form
of the equation, it is clear that the resulting solution is only function of the radius,
so no higher spherical modes are present and no notion of electron orbitals exists,
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except the spherically symmetric ones, but no quantization exists either. On the other
hand, the solution scales with the ionization Z, so it can be precomputed once and
applied on all ions. Another drawback of the theory is the absence of a proper electron
energy exchange term, which would respect Pauli exclusion principle. An answer to
this deficiency is given by the Thomas–Fermi–Dirac theory, but the model shares the
other inaccuracies and the solution cannot be scaled directly, which presents a notable
practical inconvenience. Therefore, the classical Thomas–Fermi approach is applied
usually.

The convenient simplicity and versatility of the QEOS model stemmed develop-
ment of many equations of state originating from it. The model was later adopted in
the library MPQeos [45] and further extended in FEOS package. It provides in addi-
tion to the basic QEOS model proper treatment of mixtures, where the properties of
the modelled atoms do not need to be averaged a priori. There are also improvements
of the cold curve and the region of liquid–vapour coexistence is treated rigorously [46].

3.4.3 Other equations of state

The Thomas–Fermi model used in the plain QEOS disregarded shell structure of the
atoms, making the model applicable only for high-Z materials approximately. This
crude simplification of the atomic description was addressed by many other authors.
One of the more advanced models is the BADGER library [47]. The ion model is
essentially the same as in the one used in QEOS. However, the correction for the
atomic bounds do not use the empirical parameters, but a model based on scaled
binding energies (SBE) instead. The ionization model is then separated from the
electron equation of state and can be switched independently. The model based on the
Thomas–Fermi model described in the previous chapter is one of the options, but the
continuum treatment predetermines it only for high-Z materials as already stated. On
the other, the screened hydrogenic model with l-splitting (SHM) can be used instead,
where the notion of the atomic structure in the approximation of the principal and
azimuthal quantum numbers is present. Another option is the individual electron
accounting model (IEM) model, where the electrons in the approximation of discrete
particles are part of the quantum system of the ion. Finally, the electron equation
of state models not only the free electrons, but also the bound electrons, which were
disregarded in the QEOS(-like) models, using the already mentioned SHM model. All
species then interact through the Coulombic forces and partial charge screening is also
present between them.

In addition to the analytic models presented so far, there is another wide group
of empirical models. One of the major members of the family is the SESAME library
[48, 49, 50]. The experimentally measured values of quantities like pressure or ionization
are tabulated for various temperatures and densities. Interpolation of the data is then
necessary between the discrete point of the thermodynamic space.

The interpolation routines are part of HerEOS (Hermite-interpolated Equation
of State) [51, 52]. The library provides thermodynamically consistent interpolation of
the quantities rather than direct interpolation between the given values of pressure and
other. In particular, all thermodynamic potentials are calculated from the Helmholtz
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free energy F = F (ρ, T ), where the temperature is the common one for one-temperature
models, electron or ion, depending on the given equation of state. For example, the
specific internal energy and pressure are calculated as follows:

ε(ρ, T ) = F − T
(
∂f

∂T

)
ρ

, p(ρ, T ) = ρ2
(
∂F

∂ρ

)
T

, (100)

where the thermodynamic notation of derivatives is used, so the lower index denotes
the quantity constant during the process. This approach guarantees that the derived
quantities are true potentials as in the theory of thermodynamics. The potentiality
is not self-provided for interpolated functions as inconsistencies arise between the dis-
cretely approximated quantities, which may lead to violation of the thermodynamic
laws. In contrast, the calculation from F gives fully consistent results provided that
the interpolated function F is smooth enough. This is achieved by high-order Hermite
polynomials used for the interpolation. Another merit of the interpolation in general
is the acceleration of the computation, where the analytic model does not need to be
evaluated at the points of the thermodynamic space repeatedly during the numerical
simulation.
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4 Heat transport
The term heat refers to the energy confined in the chaotic motion of the plasma species.
Collisional processes thermalize the plasma and lead to establishing of the collisional
equilibrium as explained in chapter 2. However, the physical system rarely attains
the full global thermal equilibrium (TE). Due to the presence of strong energy sources
like an impinging laser beam (see chapter 6), the physical system is deviated from the
global equilibrium and only local thermal equilibrium (LTE) is attained. The heat
transport process then emerge, equalizing the thermodynamic conditions.

The kinetic theory provided a description of the heat transfer implicitly together
with the rest of the velocity moments of the distribution function (see chapter 2.2).
However, the reduction of the kinetic model to the fluid description of chapter 3 trun-
cated the velocity moments expansion yet after the energy moment. Principally, the
expansion can be extended further, but higher velocity moments are not invariants of
the collision operator according to chapter 2.2. Consequently, they are not governed by
conservation laws resembling those of the lower ones. Therefore, heat flux correspond-
ing to the third velocity moment is not provided by the classical fluid model and must
be supplied externally. This is circumvented by construction of a closure model for the
heat flux, relying on the lower moments only. Various approaches to this problem are
subjects of this chapter.

4.1 Diffusion transport
The diffusion treatment of the heat transport is the most frequently adopted one due to
its simplicity. Moreover, it is also positivity of the diffusion operator, which guarantees
monotonous increase of the entropy in an agreement with the Onsager relations of
irreversible processes. Fundamentally, it is based on the linear perturbation theory, so
its predictions are valid only for small deviations from the equilibrium. In particular, it
will be shown that the perturbation of the Maxwell–Boltzmann distribution (24) scales
with mean free path of the electrons λe. Therefore, the assumption λe � L is made,
where L is the characteristic length scale of the plasma profile (it is LT = Te/|∇Te| for
the temperature and Ln = ne/|∇ne| for the density approximately).

Under the conditions stated above, the distribution function f can be formally
expanded using the Hilbert expansion in a small parameter λ combined with the ex-
pansion in Legendre polynomials in the directional cosine µ = cosϕ of the polar angle
ϕ [53]:

f =
∞∑
i=0

λi
∞∑
j=0

fijPj(µ) = f00 + f01µ+ f10λ+ f11λµ+O(λ2, µ2). (101)

The Chapman–Enskog approach then defines the methodology how to successively solve
such a parametric expansion, where the procedure should start with the unperturbed
coefficients neglecting the corrections [2, 54, 55]. However, it is clear from chapter 2.1
that the solution is the Maxwell–Boltzmann distribution (24) for collisionally dominant
plasma so it can be identified that f00 = fM and f10 = 0, as it is isotropic. Then, the
first order correction are sought, but f01 correction can be neglected compared to fM
for the linear theory, so only f11 remains to be solved. When the higher order terms
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are neglected, this truncated expansion exactly coincides with the Cartesian tensor
expansion in chapter 2.3. For convenience and brevity, the equations are not derived
again for the expansion (106), but the discussion continues with the the equivalent
tensor formulation (57).

The solution of the kinetic problem has an analytic formulation only for the
Lorentz approximation [1]. In this limit, the electron–electron collisions are neglected
compared to the electron–ion ones. Moreover, the sought solution should be stationary
to depend only on the thermodynamic potentials, so the transient term is ∂ ~f1/∂t ≈ 0.
Finally, we restrict ourselves to the case without a magnetic field. The equation for ~f1
(64) gives the solution:

~f1 = −λei
(
∇fM −

e

mev

∂f0

∂v
~E

)
, (102)

where λei = v/νei is the electron–ion scattering mean free path. Using only the defini-
tion of the equilibrium distribution (24), the gradient term can be evaluated as:

∇fM =
∇ne
ne

+
(
mev

2

2kBTe
− 3

2

)
∇Te
Te

 fM . (103)

The expression for the stationary self-consistent electric field can be directly de-
rived under the condition of quasi-neutrality. Essentially, it implies, based on the
continuity equation (36), that the electric current must be zero for a single-directional
perturbation of the distribution function, so the definition (58) gives the condition:∫ +∞

0
~f1v

3 dv = 0. (104)

Inserting the solution of ~f1 (102) to it, the diffusion electric fields is obtained:

~E = kBTe
e

(
∇Te
Te

+ ξ1∇Te
Te

)
, (105)

where the factor ξ1 = 5/2 for the Lorentz gas.
Finally, the electric field (105) is inserted to the ~f1 formula (102) and the full

distribution function is constructed from the expanded form (57) to obtain:

f = ne

(
me

2πkBTe

)3/2

exp
(
− mev

2

2kBTe

)1−D
(
mev

2

2kBTe
, ~n

) , (106)

where D is the transport function taking the form:

D(ζ, ~n) = ξ0λei(ζ − 4)~n · ∇Te
Te

, (107)

The notation with the transport function D follows the work of Spitzer and Härm [6, 7]
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and agrees with the classical results for the Lorentz gas [1]. Considering also electron–
electron collisions throughout the derivation is non-trivial and the system must be
solved numerically. The results obtained with an expansion in Legendre polynomials
were tabulated in the influential paper [7]. The findings were later fitted by analytic
formulae giving the correction factors [56]:

ξ0(Z) = Z + 0.24
Z + 4.2 , ξ1(Z) = 1 + 3

2
Z + 0.477
Z + 2.15 . (108)

Finally, the diffusion heat flux reads according to the definition (59):

~qSH = 4π
3

∫ +∞

0

1
2mev

5 ~f1 dv = −128
3π ξ

0λSHvTenekB∇Te, (109)

where the Spitzer–Härm mean free path is defined as:

λSH = 3v4
Teme

4
√

2πZe4 ln Λei

. (110)

To conclude, the diffusion approximation for a small perturbation of the equi-
librium distribution resulted in the Fourier’s law for heat diffusion ~qSH = −κSH∇Te.
The electric field had a significant role in eliminating the dependency on the density
gradient, which is only true if both gradients are aligned as was tactfully assumed. In
the opposite case the solution is more complex and kinetic simulations are needed [57].
The electric field also reduced the heat flux significantly as the electrons cannot free
stream in a single direction, but a return current balancing the flow is formed when
the quasi-neutrality condition is enforced. Actually, the main contribution to the heat
flux is not provided by the electrons with the thermal velocity vTe, but super-thermal
species with velocities about v ≈ 3.7vTe [58]. The dependency on the electron–electron
collisions manifests that the electron–electron collisions make the transport less effi-
cient, but the densities are lower for low-Z plasmas typically, outweighing the effect by
the value of the mean free path.

4.1.1 Diffusion transport in a magnetic field

The diffusion model presented in this chapter did not assume presence of a magnetic
field. The theory considering also this effect was summarized by Braginskii [8]. Instead
of the simple Fourier’s law, the following expressions are given:

~E = −∇pe
nee

+
~j × ~B

nee
+ α ·~j − β · ∇Te, (111)

~q = −κ · ∇Te − Teβ ·~j, (112)

where α is the resistivity coefficient, β thermoelectric coefficient, κ heat conductivity
coefficient. All coefficients are tensors depending on the magnetization of the plasma.
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In essence, their structure is following when applied on a vector ~r:

A · ~r = A‖(~b · ~r)~b+ A⊥~b× (~r ×~b) + A∧~b× ~r, (113)

where~b = ~B/| ~B| is the unit vector in the direction of the magnetic field and A‖, A⊥, A∧
are transport coefficients parallel, perpendicular and cross-component contributions re-
spectively. The parallel terms are not affected by the magnetic field classically and the
values are identical with the findings of Spitzer and Härm [7]. However, the perpen-
dicular coefficients are strongly dependent on the magnetization and the heat flow is
limited across the field lines, while the resistivity grows. The most interesting term is
the one proportional to the temperature gradient, which is responsible for the Nernst
effect in the case of the thermoelectric term β ·∇Te and Righi–Leduc effect in the case
of the anisotropic heat conduction term κ · ∇Te. It means that an electric field and
heat flux perpendicular to the both gradients, of the temperature and magnetic field, is
generated. These terms then become non-local when the Knudsen number of electrons
Kne = λe/L grows [59].

4.1.2 Heat flux limiting

The heat diffusion model is widely used for plasma simulations for the reasons already
mentioned in the introduction of this chapter about the diffusion transport. However,
it was recognized based on experimental data that the predictions of the diffusion
theory significantly overestimate the heat flux in the upstream of a steep front and
underestimate in the downstream [11]. It was proposed to use the heat flux limiting
techniques to cure this problem crudely. The heat flux is limited to a fraction of the
free streaming value qfs = nemev

3
Te, which is the absolutely highest value the heat flux

can attain when all electrons propagate in a single direction. The heat flux is then
limited by one of the formulae typically [60]:

~q = min(1, f limqfs/|~qSH |)~qSH , or ~q = ~qSH
1 + |~qSH |/(f limqfs)

, (114)

where f lim is a factor between 0.02 and 0.15 based on experimental data and Fokker–
Planck simulations [61, 62]. However, the redefinition of the flux using the local values
of the temperature changes the structure of the diffusion equation, which becomes
hyperbolic instead of parabolic locally. This can have unforeseen consequences as the
entropy may not increase and non-physical artifacts may appear in the simulations [60].
Therefore, limitation of the conductivity is preferred, which does not guarantee that
the flux is lower than the given value, but maintains the parabolic structure of the
equation, so the behaviour remains purely diffusive. They are defined as follows:

κ = min(1, f limqfs/|~qSH |)κSH , or κ = κSH
1 + |~qSH |/(f limqfs)

. (115)

The problem associated with the flux limiting techniques is given by the fact
that the value qfs depends on the local temperature and density without any notion of
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the actually transported species. Consequently, the limiter fraction f lim is temporally,
spatially and physical problem dependent factor, which can be accurately estimated
only on the basis of fully kinetic simulations [63, 64, 65]. This problem led to the
development of semi-empirical methods, designed to feasibly cure this loss of predictive
capabilities of the hydrodynamic simulations.

4.1.3 Convolution extension

One of the major representatives of the semi-empirical methods is the method of Luc-
ciani, Mora and Virmont (LMV) [15]. The idea was to propose a convolution of the
classical diffusion results to take into account the emerging non-locality. The heat flux
is then calculated as:

~q =
∫

Ω
K(~x, ~x′)~qSH d~x′, (116)

where K is the convolution kernel defined in 1D as follows:

K(x, x′) = 1
2λLMV (x′) exp

−
∣∣∣∣∣∣
∫ x′

x ne(x′′) dx′′
λLMV (x′)ne(x′)

∣∣∣∣∣∣
 , (117)

where λLMV is a function defined in the reference [15]. The convolution introduces the
notion of non-locality, where the flux is dislocated on the length scale comparable with
λLMV . However, a shortcoming of the theory is the asymmetric convolution kernel,
where only an ad hoc density correction is present in the form of a path integral. As
revealed later in the influential paper, negative entropy is generated and non-physical
instabilities may arise [16, 66].

A multi-dimensional extension of the method based on less empirical foundation
was proposed by Schurtz, Nicolaï and Busquet (SNB) [17], which remains the most
widely used non-local transport model probably and has been implemented in large
ICF codes [67, 20]. The generalization is made by reformulation of the problem in
multiple dimension in terms of the equivalent linear stationary transport equation:

~n · ∇~q = 1
λSNB

(
3

4π~n · ~qSH − ~q
)
. (118)

It can be recognized that the integral solution of the linear transport equation (118) in
1D is the Fredholm equation of the second kind, which nearly coincides with (116), but
the kernel is symmetric. The transport equation can be solved by the discrete ordinates
method or by angular moments as in the case of radiation transport described in chap-
ter 5. The authors also propose a multi-group extension of the method, so non-locality
of the species varying with their velocity can be taken into account approximately.
However, one of the most cumbersome simplifications of the model is the non-existence
of a non-local electric field. Instead, the mean free path is merely limited by the local
value of the Spitzer-Härm electric field (105) based on the work of Bendib, Luciani and
Matte (BLM) [68]:

1
λSNB

= 1
aλSH

+ |e
~ESH |
kBTe

, (119)
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where a is a problem dependent positive constant. It is apparent that the configuration
of the electric field and non-local fluxes can significantly more complicated in multiple
dimensions unlike the 1D case considered by BLM and the local diffusion field is not
representative of the actual non-local transport conditions. An effort was then made
to reformulate the method with self-consistent electric and magnetic fields [69]. Also
the electron–electron collision operator used for theoretical foundation of the model,
which was originally approximated by the BGK operator of chapter 2.1.2, was replaced
by the more accurate model of Albritton, Williams, Bernstein and Schawrtz (AWBS)
[70, 18].

4.2 P1/M1 model of non-local transport
The chapter about the diffusion transport 4.1 revealed that the problem of heat trans-
port becomes non-trivial when steep gradients of the length scale L comparable or
smaller than the mean free path of the species λ are present in the plasma. In particu-
lar, the condition was specified to λei/L� 0.06/

√
Z for electrons [71]. This shows that

the non-locality emerge very early and a discrepancy between the diffusion predictions
and more accurate kinetic simulations arise [63]. The extensions of the diffusion model
in chapter 4.1.3 approached the problem empirically or semi-empirically, but did not
possess a solid theoretical foundation and empirical factors had to be adjusted for the
given physical scenario, decreasing the predictive capabilities of the models. However,
solution of the full kinetic problem was and still is prohibitively computationally ex-
pensive on the hydrodynamic scales. Therefore, simplified non-local transport models
were proposed.

A simplified model directly originating from the kinetic theory is the P1 and
M1 method using the terminology of radiation transport (see chapter 5.2). They are
based on the angular moments technique, formally equivalent to the Cartesian tensor
expansion of chapter 2.3, which is truncated after the first term. The collision operators
on the right-hand-side of the system (63–64) do not involve the full non-linear collision
operator, but they are simplified in the work of Del Sorbo et al. as follows [18, 72]:

C0 = νeev
∂

∂v
(f0 − fM), (120)

C1 = νeev
∂

∂v
~f1 − (νee + νei)~f1. (121)

The Fokker–Planck operator for electron–electron collisions uses the linear AWBS ap-
proximation [70], which is valid for high-velocity species near the equilibrium. However,
it has an apparent advantage over the BGK operator described in chapter 2.1.2 in the
aspect of conserving mass, but it is still rather an empirical operator as the equilibrium
distribution function must be entered explicitly.

The P1 and M1 models then differ in the definition of the closure relation replacing
the f2 contributions to the system of equations (63–64). Setting f2 = 0 yields the
P1 model, which is applicable only for very small anisotropy |~f1| � f0. It must be
noted that form of the closure appearing in the reference is different. The reason is
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that formally equivalent technique of angular moments is followed there instead of the
tensor expansion (57).

In contrast to the P1 model, M1 method is designed to approximately treat
strongly anisotropic media. The idea is that f2 should maximize the entropy as random
scatterings do in long term. The procedure is not detailed here as it is essentially
identical with the one performed in the case of radiative transport in chapter 5.2. The
system is solved in the stationary limit, i.e. ∂f0/∂t = 0, ∂ ~f1/∂t = 0. The electric field
is also calculated as stationary, where the solution can be derived immediately from
(64) in the Lorenz limit for the zero current condition (104) in the form:

~E = −me

6e

∫ +∞

0
∇f0v

7 dv∫ +∞

0
f0v

5 dv
. (122)

This formula gives the Spitzer–Härm electric field (105) for the Maxwell–Boltzmann dis-
tribution (24). The electron–electron collisions in (121) are taken into account through
a correction factor. The whole procedure of solution is performed iteratively until
quasi-neutrality is achieved [18].

4.3 BGK model of non-local transport
A problem of the P1/M1 methods is given by their originally kinetic nature, which
requires to solve the global system of equations for tens or hundreds of velocity bins as
in the case of VFP codes, making it expensive to compute. The reason can be seen in
the fact that the equilibrium distribution function is described as any other distribution
function without any distinction. Secondly, the anisotropy of the distribution function
is strongly limited by the truncated Cartesian expansion. It was assumed that |~f1| � f0
and when this condition is not fulfilled, a strong flux of electrons causes negativity of
the distribution function in the opposite direction as both directions are artificially
connected though a single component of ~f1 vector. The entropy maximizing closure
then leads to an excessively diffusive system even for nearly coherent electron fluxes [73].

These drawback led us to the construction of a model based on the first-principles
similar by its nature to the discrete ordinates method used in radiative transport of
chapter 5.3. The primary quantity in the description is the electron specific heat
flux intensity Ive = Ive (~x, ~n, v, t) [19, 74, 60]. Essentially, it determines the differential
amount of energy dEe transported by the electrons with velocities in the interval (v, v+
dv) along the unit vector ~n in time dt across an infinitesimal oriented surface d~S into
the solid angle d~n:

dEe = Ive (~x, ~n, v, t)~n · d~S d~n dv dt. (123)
Taking the phase space volume expressed in the spherical coordinates similarly to
chapter 2.3, the intensity is defined as follows:

Ive (~x, ~n, v, t) d~x d~n dv = 1
2me|~v|3fe(~x, ~x, t) d~x d~v = 1

2mev
5fe(~x, ~n, v, t) d~x d~n dv. (124)
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The connection to the definition of the heat flux (59) is obvious and the heat flux
becomes then:

~qTe =
∫ +∞

0

∫
4π
Ive~n d~n dv =

∫
4π
Ie~n d~n. (125)

This expression also defines the total electron intensity Ie, which is the velocity integral
of Ive .

The BGK non-local electron heat transport model is based on the kinetic equation
(2) in the stationary limit (considering long times compared to the collision time ν−1

e )
equipped with the BGK operator (21):

~n · ∇f − e

mev

∂f

∂v
~n · ~E = −νe

v
(f − fM), (126)

where presence of a magnetic field is not considered. Next, the averaging operator is
defined for a function of velocity h as follows:

〈h〉I =
∫ +∞

0

1
2mev

5h dv. (127)

Application of this operator on the kinetic equation (126) yields:

~n · ∇Ie + 4e
me

〈
f

v2

〉I
~n · ~E =

〈
fM
λe

〉I
−
〈
f

λe

〉I
, (128)

where λe = v/νe is the electron mean free path. Approximating the unknown distri-
bution function by a Maxwellian, the averaging can be performed to obtain:

~n · ∇Ie = − e

kBTe
Ie~n · ~E + 1

αλSH

 √2
π3/2ρev

3
Te − Ie

 . (129)

Following this approach, a problem arises in the case of the electric field term, where the
zero current condition (104) is related to a different velocity moment of the distribution
function. Approximation of the third velocity moment of the angular distribution func-
tion by the fifth, i.e. by the intensity, would only non-physically shift the equilibrium
intensity and the mean free path. Therefore, the electric field is approximated only by
the corrective factor α of the mean free path, which is adjusted to give an agreement
of the method with the diffusion heat flux (109) in the limit. The calculation shows
that it has the value [19]:

α(Z) = 64
3
√

2π
ξ0(Z) .= 8.51ξ0(Z). (130)

The main benefits of the method can be seen in an arbitrary anisotropy of the
transport, which depends only on the numerical quadrature used for the solution of the
steady state transport (129). It is also the tractable formulation making the calcula-
tion inexpensive and solvable by various numerical methods, while the intensity-based
formulation guarantees that the method is always conservative. It can be also extended
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to an arbitrary number of velocity groups by performing only partial integration in the
averaging operator (127). However, the main drawback of the method is the absence of
a self-consistent non-local electric field. It is this field that limits the heat transport in
the non-local limit and couples the energy groups together. Still, the method provides
good results when the mean free path is known experimentally for example [25].
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5 Radiation transport
The description of the transport processes in plasma in chapters 3, 4 was limited to
only convection, i.e. transport by means of an ordered motion, or conduction, i.e. by
a chaotic motion, of massive particles. However, strong changes of momenta of the
charged particles lead to emission of the thermal radiation, which presents the third
mean of energy transport. There exist two fundamental approaches to derivation of
the equation of radiative transport similarly to the light itself possessing the wave and
particle descriptions.

Considering its wave nature, it can be modelled as an electromagnetic wave prop-
agating through space following the Maxwell’s equations (3–4). This methodology is
applied in chapter 6 for description of the coherent radiation of a laser, but it is not
feasible for the thermal radiation having a broad frequency spectrum. However, the
short wavelengths allow to treat the radiation as an energy continuum described by
the radiometric quantities, where the final model coincides with the particle approach
followed here.

The particle description is chosen to support the analogy between the radiative
and heat transport of chapter 4, which is most pronounced in the case of the non-local
transport and led us to formulation of the model of chapter 4.3. Within the framework
of the particle theory, the radiation can be seen as an ensemble of photons, quanta
of electromagnetic force. Similarly to chapter 2, they can be described by the photon
distribution function fR = fR(~x, ~n, ν, t) [75]. It determines the number of photons with
frequencies in the interval (ν, ν+dν) in the volume d~x propagating along the unit vector
~n at position ~x and time t. The distinction of the formalism is given by the presence
of the frequency ν instead of the velocity, which was related to the non-relativistic
kinetic energy of the species, but becomes meaningless for the massless particles. The
correspondence can be recovered through the relation ~pν = (hν/c)~n for the momentum
of a photon.

Considerations about the fundamental processes in the medium like absorption
and scattering lead to reformulation of the Boltzmann equation (1) for the photons
distribution [76]:

∂fR
∂t

+ c~n · ∇fR = qν − ckνfR + c
∫ +∞

0

∫
4π
σνs (ν ′, ν, ~n′ · ~n)fR(ν ′, ~n′)−

− σνs (ν, ν ′, ~n · ~n′)fR(ν, ~n) d~n′ dν ′. (131)

The isotropic emission is modelled through the emission function qν = qν(ν, ~x, t) and
absorption by the absorption coefficient kν = kν(ν, ~x, t). The scattering processes
are treated by the Bolzmann collision operator with the isotropic differential scattering
coefficient σνs (ν, ν ′, ~n·~n′) = σνs (ν, ν ′, ~n·~n′, ~x, t), such that the the probability of scattering
from ν to ν ′ and from ~n to ~n′ in time dt and spectral interval (ν, ν + dν) is given by
cσνs (ν, ν ′, ~n · ~n′) dν d~n dt.

Similarly to chapter 4.3, the specific radiation intensity IνR = IνR(~x, ~n, ν, t) can
be defined, which describes the infinitesimal amount of energy dER transported by
radiation with the frequency in the interval (ν, ν + dν) along the unit vector ~n at
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position ~x and time t across an infinitesimal oriented surface d~S in time dt and solid
angle d~n:

dER = IνR(~x, ~n, ν, t)~n · d~S d~n dν dt. (132)
The relation between the distribution function and the specific intensity can be found
by transforming the phase space volume to the spherical coordinates. Realizing also
that the energy of a photon is hν, the formula reads:

IνR(~x, ~n, ν, t) d~x d~n dν = hνcfR(~x, ~pν , t) d~x d~pν = h4ν3

c2 fR(~x, ~n, ν, t) d~x d~n dν. (133)

Equipped with these relations, the Boltzmann equation of radiation (131) can
be rewritten for the intensity. The Boltzmann integral is further simplified for nearly
isotropic media by approximation of the BGK operator of chapter 2.1.2, but the re-
laxation is made towards the implicitly defined angular mean of the intensity ĪνR =
1/(4π)

∫
4π I

ν
R d~n. This choice guarantees that the radiation energy is conserved as

shown later. The equation of radiation transfer then reads in the form most commonly
found in the literature [75]:

1
c

∂IνR
∂t

+ ~n · ∇IνR = jν − kνIνR + σν(ĪνR − IνR) = −χνIνR + jν + σν ĪνR, (134)

where jν = h4ν3/c3qν is the (spectral) emissivity, σν the scattering coefficient and
χν = kν + σν the total extinction coefficient.

Following this notation, the spectral radiation energy density ενR, radiation flux
~qνR and radiation pressure PR,ν present angular moments of the intensity:

ενR = 1
c

∫
4π
IνR d~n, ~qνR =

∫
4π
IνR~n d~n, PR,ν = 1

c

∫
4π
IνR~n~n d~n. (135)

An analogy can be seen here with the velocity moments of the distribution function
elaborated in chapter 2.2. The difference is given by the fact that the velocity of
propagation is assumed to be constant. Practically, it can be reasoned that way the
refractive index in the X-ray range, which is mostly spectrally covered by the high-
temperature laser plasma [77], are close to the vacuum values in the coronal region. In
contrast, the transport is dominated by many subsequent absorptions and reemissions
in the dense regions rather than the behaviour of a single photon [78]. Therefore, the
velocity of photons and the related transient term in the radiation transfer equation
(134) are of an lesser importance here. Furthermore, the transition to the fluid reference
frame is not performed as the mean velocities in the hydrodynamics were assumed non-
relativistic, i.e. |~u| � c.

Integration of (134) over all solid angles yields the zeroth angular moment equa-
tion for the radiation energy:

∂ενR
∂t

+∇ · ~qνR = 4πjν − ckνενR = −gνR. (136)

Similarly to the energy conservation equation for massive particles (74), it has form
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of a conservation law, where an interaction term appears on the right-hand-side of the
equation. Consistently with other species, this term provides coupling with the elec-
tron distribution function, where the emission and absorption processes symmetrically
exchange the energy, so the total energy is conserved. Analogously, the first angular
moment of (134) provides the equation for the radiation flux in the form:

1
c2
∂~qνR
∂t

+∇ · PR,ν = −χ
c
~qνR = −~gνR, (137)

where the momentum exchange term appears on the right-hand-side for coupling with
the equation of electron momentum (73).

In order to simplify the equation of radiative transfer (134) even further, the
source spectrum is approximated by the gray body emission, i.e. the black body
emission reduced by the opacity of the medium. This is a great simplification, because
the matter is not in an equilibrium with the radiation in general and the source function
Sν = jν/kν is not known a priori [75]. However, following this approximation under
the assumption that the physical system is not far from the LTE regime, the gray body
radiative transfer equation for the total quantities becomes:

1
c

∂IR
∂t

+ ~n · ∇IR = ρκP

(
σSB
π
T 4
e − IR

)
+ σP

(
ĪR − IR

)
, (138)

where σSB is the Stefan–Boltzmann constant, IR =
∫+∞

0 IνR dν is the (total) radiation
intensity, κP the Planck specific opacity and σP the (total) scattering coefficient. Here,
the mean opacities were used, which are defined as follows:

ρκP = S−1
B

∫ +∞

0
kνSνB dν, σP = S−1

B

∫ +∞

0
σνSνB dν, (139)

where SνB = SνB(ν) represents the Planck’s law of radiation and SB = σSB/πT
4
e the

Stefan–Boltzmann law for the total emission.
As shown in the chapter dedicated to the radiation diffusion 5.1, the averaging

procedure (139) is not the only one. Essentially, it depends on the regime of transport
how the averaging should be performed. In the optically thin limit, kνL � 1 holds
as it takes a photon a long distance to get absorbed. The gradient term on the left-
hand-side of (134) dominates over the right-hand-side and the intensity is only weakly
attenuated like ∼ exp(−kνs), where s is the path integral. The Planck averaging is
then justified. However, the diffusion limit kνL� 1 leads to a strong coupling between
the emission and absorption and the Rosseland averaging of chapter 5.1 will be more
appropriate. This problem is tackled by splitting the transport to more energy groups,
which is known as the multi-group transport, or definition of an transport conditions
dependent averaging process [79].

5.1 Radiation diffusion
Similarly to the velocity moments of the electron distribution function, the system
(136–137) is not closed. There are still three unknowns ενR, ~qνR and PR,ν for all spectral
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frequencies. It remains also here to define an appropriate closure relation. In the
diffusion limit kνL� 1, the photons perform only close random walks in the medium
and the radiation can be considered nearly isotropic. In an analogy to chapter 4.1, the
intensity is expanded in the Legendre polynomials and the small parameter (kν)−1 to
the first term:

IνR = Iν0 + µ(kν)−1Iν1 , (140)
where µ = cos(ϕ) is the directional cosine for the polar angle ϕ from the z axis.
The solution for Iν0 is found from the transport equation (134) immediately, since all
terms multiplied by the small parameter can be neglected and only the source function
remains [80]. Having the zeroth approximation, the first one is obtained when Iν0 is
inserted instead of the unknown intensity, so the solution reads:

Iν0 = Sν , Iν1 = − ∂

∂z
Sν . (141)

Substitution of the solution to the definitions of the angular moments (135) gives:

ενR = 4π
c
Sν , ~qνR = − 4π

3χν∇S
ν , PR,ν = 4π

3c S
νI = 1

3ε
ν
RI. (142)

The procedure led to the Eddington’s approximation of the transport, where the radi-
ation pressure tensor is isotropic and given by the value of the energy density.

The equation of diffusion is obtained by insertion of the flux (142) to the energy
equation (136), which yields:

∂ενR
∂t
−∇ ·

(
f limR

c

3χν∇εR
)

= 4πjν − ckνενR. (143)

The factor f limR = f limR (KnR) is the flux limiter depending on the radiation Knudsen
number KnR = |∇εR|/(kνεR) [81]. In the diffusion limit KnR → 0, it must converge to
the unity. However, it should attain values of 3/KnR in the free streaming limit, i.e.
KnR → +∞. The reason is that this value eliminates the gradient term in the diffusion
operator of (143) and changes the whole equation to a hyperbolic wave equation for
ενR. Conceptually, this is a similar approach to the flux limiting performed in chapter
4.1.2. There exist numerous formulae in the literature for the definition of the limiter.
As the most common can be considered the "sum" flux limiter, the limiter of Larsen
[82], Levermore and Pomraning [83] or Minerbo [84], which are defined as follows
respectively:

f sum
R = 1/(1 +KnR/3), fLarsen

R = (1 + (KnR/3)n)−1/n n ∈ R+, (144)

fLP
R = 2 +KnR

2 +KnR +Kn2
R/3

, fMinerbo
R =


2

1+
√

1+ 4
3Kn

2
R

KnR ≤ 3/2

3
1+KnR+

√
1+2KnR

KnR > 3/2
, (145)

All of them are based on different assumptions and their description is beyond the
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scope of this text. A better insight is provided in chapter 5.2 by relating to a different
method, the variable Eddington factor. However, the variety of the formulations shows
already the inconsistency of the diffusion model, which cannot model the non-local
optically thin regime correctly.

Finally, the diffusion equation (143) can be simplified to the gray body approxi-
mation by integration over the frequencies:

∂εR
∂t
−∇ ·

(
f limR

c

3ρκR
∇εR

)
= cρκP (aRT 4

e − εR), (146)

where aR = 4σSB/c presents the radiation constant. The scattering opacity can be
included in principle, but laser plasmas are typically dominated by the absorption
processes [85, 78]. The Rosseland opacity κR is calculated as:

(ρκR)−1 =
(
∂SB
∂Te

)−1 ∫ +∞

0
(kν)−1∂S

ν
B

∂Te
dν. (147)

This kind of averaging procedure originates from the equilibrium diffusion approxima-
tion, where the temperatures of the radiation and matter are approximately the same,
i.e. TR ≈ Te, where the radiation temperature is defined as εR = aRT

4
R. The diffusion

flux (142) is then given only by the gradient of the source, so the intensity reads [76]:

IνR = Sν − 1
χν

∂Sν

∂Te
~n · ∇Te. (148)

The gray body approximation crudely simplifies the transport, but provides the
first quantitative estimate for many radiation-hydrodynamic codes [86] and solution of
the coupled non-linear radiation–diffusion problem (146),(74) is non-trivial numerically
[87, 81]. Radiative shocks may propagate in the medium and exactly the intermediate
regime of transport is attained [85].

5.2 Angular moments method
A problem of the diffusion treatment of the radiate transfer was inability to described
optically thin regime self-consistently, which led many authors to proposition of various
flux limiters to at least crudely approximate the non-locality of the transport. However,
the diffusion equations still possesses the infinite signal velocity of the radiation and
parabolic nature of the differential operators.

The basic improvement of the model is generalization of the derivation of the
diffusion theory performed in the previous chapter. The Legendre expansion method is
followed until the closure relation for the pressure tensor is obtained in (142). Rather
than taking the definition of the radiation flux directly, only the closure relation is
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inserted to the system (136–135), which yields:

∂ενR
∂t

+∇ · ~qνR = ckν
(

4π
c
Sν − ενR

)
, (149)

1
c

∂~qνR
∂t

+ c∇(fEεν) = −χ~qνR, (150)

where fE = |PR,ν |/εν is the variable Eddington factor, which reflects anisotropy of the
transport. The formulation of the closure is identical with the formula (142) for the
value fE = 1/3 defining the method known as P1 approximation [82]. This provides
already the simplest non-local model of radiative transfer, as the system is hyperbolic
and combination of the equations gives a single wave equation for one of the quantities,
ignoring the right-hand-side for the moment. However, it is apparent that the velocity
of propagation is c/

√
3 .= 0.58c, which is far from the correct speed of light. A simple

improvement is scaling the velocity in the first term of (150) by one third as well,
which gives the correct velocity of the transport, but leads to excessive attenuation in
the optically thin limit [88]. In principle, the value of fE should be within the interval
(1/3, 1) and numerous interpolating formulas were proposed [82]. For example, a simple
yet popular expression is fE = 1/3 + 2/3(|~qR|/(cεR))2 [89].

It cannot remain unnoticed that there exists a relation between the flux-limiters
and the variable Eddigton factor [90]. Based on fundamental properties of the pressure
tensor and existence of symmetries due to numerical construction of the schemes for
example, an improved prescription of the pressure tensor is given (for the total radiation
for simplicity):

PR =
(

1
2(1− fE)I + 1

2(3fE − 1)∇εR∇εR
|∇εR|2

)
εR. (151)

The flux limiter and the Eddington factor are related based on implicit constraints
between ~qR and PR by:

fE = f limR
3 + (f limR )2

9 Kn2
R. (152)

A method of particular interest is the one proposed by Minerbo [84]. The idea
was that the ensemble is close to the Maxwell–Boltzmann distribution and entropy is
maximized. It must be noted that this concept is applicable on both, fermionic and
bosonic, species, which attain Maxwell–Boltzmann statistics in the high velocity limit,
so this method was also applied in the electron heat transport in chapter 4.2. The
Eddington factor then reads:

fMinerbo
E =



1
3 0 ≤ |~qR|

cεR
≤ 1

3
1
2

1−
(
|~qR|
cεR

)2

+
(
|~qR|
cεR

)2 1
3 <

|~qR|
cεR
≤ 1

, (153)

where a cut-off for low anisotropies is made, since it was believed that the value should
not be lower than 1/3, but other authors suggest that this is not a true physical
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requirement [82].
As a final remark, it should be noted that the angular moments method can be

extended to an arbitrary order, which is known as the PN method. However, there exist
multiple variants depending on the closure relation for the last angular moment [76].

5.3 Discrete ordinates method
In addition to the angular moments method presented in chapter 5.2, there exists an-
other large family of methods known as the discrete ordinates method or SN method.
Unlike the PN methods, where a series of coupled equations for the Cartesian tensors
of an increasing order, the SN methods give freedom in the choice of the angular dis-
cretization and the structure of the solved equations remains identical. They are based
on the work of Chadrasekhar [91], but became widely used later due to Pomraning [76].

In essence, the method is based on the approximation of the angular integral over
the unit sphere as follows:

1
4π

∫
4π
IνR(~n) ≈

∑
i

ΨiI
ν
R(~ni) =

∑
i

Ψi(IνR)i, (154)

where Ψi are weights of the quadrature, ~ni are its abscissae and (IνR)i are values of the
intensity along the discrete directions (ordinates). The weights must satisfy at least the
conditions of partitioning of the unity and symmetry, i.e. ∑i Ψi = 1 and ∑i Ψi~ni = 0.
The equation of radiative transfer (134) after the substitution splits to the series of
equations:

1
c

∂

∂t
(IνR)i + ~ni · ∇(IνR)i = jν + σνs ĪνR − χν(IνR)i. (155)

The function ĪνR = ∑
i Ψi(IνR)i is the discrete angular mean of the intensity.

The linear system of equations is solved numerically in an explicit manner clas-
sically, where the domain is swept by the discrete rays, i.e. the characteristics of the
hyperbolic equation (155). However, a problem arise for the laser plasma, where the
spatial scales are minuscule and the radiation crosses the domain quickly. Rather than
the transient transport, the steady state transfer is modelled, but strong coupling with
the matter may exist. Therefore, it was proposed in [92] to solve an implicit set of
equations for the radiation and matter, where the source function is expanded to the
Taylor series in temperature Sν = SνATe + Sνb , which enables the implicit coupling.

Another problem of the classical models was the locking phenomenon, where the
methods were unable to treat the diffusive regime correctly and infeasible number of
cells was needed to resolve the mean free path of photons λR = (ρκP )−1 [93]. This
remedy was solved with the advent of the high-order discontinuous Galerkin (DG)
methods effectively [94, 92, 74].

Finally, the method traditionally suffered from the ray effects, i.e. artificial effects
originating from the fact that preferred directions of the quadrature exist in space
[95, 96]. An answer to this issue can be application of the angular finite element method,
which enables the local refinement techniques to be employed straightforwardly [97].
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6 Laser absorption
Laser absorption has a major role in the laser plasma modelling as it presents the
main driving force. Similarly to the kinetic theory of chapter 2, the interaction of
the laser radiation with plasma can be divided to collisional and collective effects
[32]. The former originates from an interaction of a single particle of the medium
with the incoming radiation, while the latter is given by a resonant excitation of the
collective fields. For dense plasmas and moderate intensities of the laser and/or rather
short wavelength of the laser, the dominant mechanism of the laser–plasma interaction
is the collisional absorption. More specifically, the limit is about the value ILλ2

L <
1 · 1015 W/cm2µm2, where IL is the intensity of the laser and λL its wavelength [98]. For
higher intensities or longer wavelengths than the given value, the resonance absorption
is dominant and other collective effects may contribute significantly like parametric
instabilities or Landau damping.

In order to understand the collisional absorption for moderate intensities of the
laser, the linear model of the plasma response is sufficient as the distribution function
is not distorted significantly. Essentially, the description of motion of a single particle
provides the full picture of interaction as already stated. For this purpose, the equation
of motion for a single electron in the electric field of the laser ~E is considered in the
form:

me
d~ve
dt = −e ~E −meν̄ei~ve. (156)

The linear dumping of the oscillations, through the BGK operator with the mean
electron–ion collision frequency λ̄ei, is applied. The ions are considered relatively cold,
so their thermal velocity vT i is negligible compared to the velocity of the oscillating
electrons ~ve. Also non-relativistic intensities of the laser are considered, so the effect
of the magnetic field can be neglected in the first approximation.

The electromagnetic field of the laser is governed by the Maxwell’s equations
(3–4). For the purposes of the derivation, the laser radiation is approximated as a
monochromatic planar wave with the angular frequency ωL and wave vector ~k, which
has the harmonic amplitude ∼ exp(i~k · ~x− iωLt). It is also assumed that the electron
is only weakly dumped and its quiver velocity is synchronous with the driving field.
Insertion of the harmonic profile to (3–4) and (156) then yields:

iωL~ve = e

me

~E + ν̄ei~ve, (157)

i~k × ~E = iωL ~B, (158)

i~k × ~B = − 1
c2 iωL

~E − µ0nee~ve, (159)

where the current ~j = −ene~ve is inserted simply averaging the process over an ensemble
of particles provided that the interaction is linear as already stated. Multiplication of
(158) by ×~k and subsequent substitution of (157) and (159) gives the stationary wave
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equation for the electric field:

(~k · ~E)~k −
~k · ~k − ω2

L

c2 +
ω2
pe

c2(1 + iν̄ei/ωL)

 ~E = 0. (160)

The electron plasma frequency is defined classically as ω2
pe = e2ne/(ε0me). The wave

equation gives the dispersion relation of the transverse electromagnetic waves (~k· ~E = 0)
and the definition of the complex relative refractive index n̂ as well as the dielectric
constant ε̂:

ε̂ = n̂2 = 1−
ω2
pe

ωL(ωL + iν̄ei)
, (161)

where the relation |~k| = n̂ωL/c = n̂k0 holds. It is evident from the expression that a
resonance occurs when ωL = ωpe (despite the fact that this phenomenon is not modelled
correctly by the formula due to the assumptions made). In other words, the density
must be smaller than the critical density:

nc = meε0

e2 ω2
L = 4π2c2meε0

e2λ2
L

, (162)

where λL = 2πc/ωL is the vacuum wavelength. Beyond the critical surface where ne =
nc, only evanescent field exists there, exponentially decaying on distances comparable
with the penetration depth δpen = λL/(2πIm n̂).

The resonance absorption mechanism is caused by a p-polarized laser, which
has a longitudinal component of the electric field. This causes stimulation of the
plasma waves near the caustic of the beam, which reach the resonance conditions at
the critical plane. To see this, the dielectric approximation can be applied using the
dielectric function (161). The macroscopic Gauss’s law then gives the equation for the
longitudinal waves:

0 = ∇ · (ε̂ ~E) = ε̂∇ · ~E +∇ε̂ · ~E. (163)
It was observed that ε̂ has a resonance at the critical point, so once the plasma waves
and the corresponding longitudinal oscillations with ∇ · ~E 6= 0 are generated, the
dielectric function having the values Re ε̂ → 0 close to the critical plane causes their
resonant excitation and absorption due to the collisions (correlating with the non-zero
imaginary part).

When the main absorption mechanisms are understood, the modelling within the
framework of the kinetic and hydrodynamic models must be explained. As already
mentioned in the chapter about the radiative transfer 5, the small dimensions of the
plasma justify stationary treatment also of the laser radiation on the hydrodynamic
time scales. The equation of energy conservation for the electromagnetic field (54) then
misses the inertial term and only the convective and interaction parts are present. Sub-
stitution of the latter in the energy equation of the particles (50) results in the usual
form of the equation, where ∂εTα/∂t ∼ −∇ · ~S. The contribution to the momentum
equation (37) is neglected normally, since the assumption εEM � εiα was made to guar-
antee dominance of the collisional effects. However, mild effects of the ponderomotive
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force can be included even within the hydrodynamic description [32]. The content of
the following chapters is then to present the basic methods giving the closure model
for the Poynting vector ~S.

6.1 Ray-tracing models
Modelling of laser absorption in the context of the hydrodynamic models like the one-
fluid model of chapter 3.2 limits the response frequencies of the medium strongly.
Unlike electrons, ions cannot swiftly react on the field local field due to their higher
inertia and the center of mass system of the one-fluid model is tightly coupled with
them due to their the mi/me � 1 mass ratio. Moreover, the laser is typically modelled
within the hydrodynamic description as only a source of energy as already reasoned, so
its dynamic effects are limited. Therefore, the frequency splitting between the slowly
evolving envelope and high frequency carrying wave can be made, i.e. L � λL. The
electric field is then described as:

~E = Ê(~x, t) exp(iΦ(~x, t)), (164)

where Ê = Ê(~x, t) is the aforementioned amplitude and Φ = Φ(~x, t) is the phase.
Further, the analysis of the of propagation of transverse electromagnetic waves in the
plasma made in the introduction this chapter is used. Following the derivation of the
system (157–159), the stationary wave equation for the transverse waves reads:

∇×∇× ~E − k2
0n̂

2 ~E = 0. (165)

Inserting the expression (164) to (165) yields:

(∇Φ)2 ~E − ( ~E · ∇Φ)∇Φ− k2
0n̂

2 ~E. (166)

Considering that ~k = ∇Φ essentially, the central term is zero for the transverse waves
and the eikonal equation is obtained:

(∇Φ)2 = k2
0n̂

2. (167)

This procedure separated the phase from the amplitude and the rays in the geometric
approximation follow the gradient of the phase. The phase can be also seen as a
potential, where the Fermat’s principle minimizes the (optical) path integral and defines
the unique metric of the space [99]. The widely used ray equation can be obtained by
differentiation along the path element ds:

d~k
ds = 1

|~k|
(~k∇)~k = 1

2|~k|
∇|~k|2 −

~k

|~k|
× ∇ × ~k = 1

2|~k|
∇|~k|2 −

~k

|~k|
× ∇ ×∇Φ. (168)

The second term is evidently zero and the ray equation reads:

d~k
ds = k0∇n̂. (169)
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Another common formulation is known as the equation of motion of the rays
and can be readily obtained from the definition of the group velocity vg = ∂ω/∂|~k| =
c|∇Φ|/k0, which gives [100]:

d2~xRT
dt2 = d~vRT

dt = c

k0

d∇Φ
dt = c

k0
(~vRT · ∇)∇Φ =

= c2

k2
0
(∇Φ · ∇)(∇Φ) = c2

2k2
0
∇|∇Φ|2 = c2

2 ∇n̂
2, (170)

where ~xRT is the trajectory of the ray and ~xRT its (group) velocity vector. This can be
also seen as the Hamilton’s equations [101]:

d~xRT
dt = ~vRT ,

d~vRT
dt = c2

2 ∇n̂
2, H = 1

2((~vRT )2 − c2n̂2), (171)

where H = H(~xRT , ~vRT , t) is the Hamiltonian of the system.
Either way, the incoming radiation is modelled as a bundle of independent rays

following the density gradients, since Re n̂2 ∼ 1 − ne/nc as can be recognized from
the definition (161). The common approach is then to simply replace the dielectric
function by the normalized density ne/nc [102]. The geometric optics is then limited
to the cases where Im ε̂ � Re ε̂. However, it is also possible to solve the equation
(169) or (170) in the complex domain, which is known as the complex geometrical
optics (CGO) [103]. It has the advantage of being able to solve the (165) behind the
caustics. A fundamental problem of the methods is the missing diffraction, where a
high number of the rays must be used, but artificial effects can be still noticed as the ray
models the behaviour of the wave only on its axis. This led to formulation of numerous
paraxial methods [104] (and the references therein). A recent method method of this
kind is the paraxial complex geometrical optics (PCGO), which expands the eikonal
equation (167) around the central ray in a Taylor series to describe the curvature of
the wave front [101]. This results in an additional Riccati type ordinary differential
equation, which must be solved along the ray, but reduces the number of rays greatly.
Rather then a simple average, the energy deposition is calculated from a mesh-less
interpolation of the Gaussian beamlets [73].

Finally, the absorption rate must be specified. The phase Φ is integrated along
the characteristics ~xRT =

∫
~vRT dt provided they are known already:

Φ(~x, t) = ±
∫ ~x

~x0

~k d~x′ − ωt = ±k0

∫ s

s0
n̂ ds− ωt. (172)

The Wentzel–Kramers–Brillouin (WKB) solution for the Helmholtz equation (165) is
obtained in the form [32]:

~E =
(

Q(s0)
n̂(s)Q(s)

)1/2
Ê+ exp

(
ik0

∫ s

s0
n̂ ds

)
+ Ê+ exp

(
ik0

∫ s

s0
n̂ ds

) exp (−iωt) ,

(173)
whereQ = Q(s) is the "cross-section" of the beam (a function of the path). Substitution
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to (165) reveals that dQ/ ds = 0, i.e. the beam is not attenuated by gradual reflections,
when the second derivatives are neglected compared to the first. The conditions are
precisely:

d2Ê

ds2 � k0Ê
dn̂
ds ,

d2Ê

ds2 � k0n̂
dÊ
ds , ⇒ dÊ

ds � n̂Ê, (174)

where Ê(s) = (Q(s0)/(n̂(s)Q(s)))1/2. This relation can be translated to the refractive
indices as | dn̂/ ds| � |n̂|2. However, this criterion cannot be satisfied near the critical
plane, where rather the opposite is true. Hence, WKB approximation can never self-
consistently describe the interaction in the vicinity of the critical density [98].

The intensity of the ray is taken as the average magnitude of the Poynting vector,
which gives after substitution of (173) the relation:

IL(s) = 1
µ0
| ~E × ~B| = 1

2ε0cn̂rÊÊ
∗ exp(−2k0

∫ s

s0
n̂i ds′) = I(s0) exp(−

∫ s

s0
αL ds′),

(175)
where n̂r = Re n̂, n̂i = Im n̂ and the upper line means averaging over a period
and the asterisk denotes the complex conjugate. Finally, the absorption coefficient
is αL = −2k0Im n̂. In other words, the intensity of the ray follows the differential
Beer–Lambert law in the form:

dIL
ds = ∇ · ~S = −αLIL. (176)

This means that the intensity carried by a ray is linearly attenuated along its path.

6.2 Stationary Maxwell’s equations
It was recognized in chapter 6.1 that the optical approximation is mostly valid in the
coronal region, where the densities of the plasma are low and vary slowly compared to
the wavelength of the laser. However, it is unable to self-consistenly model the vicinity
of the critical plane, where |∇ε̂|/|ε̂| � k0n̂r always holds. The problem is circumvented
by formulation of an empirical factor for reflection and absorption at the critical density
typically [105]. An alternative approach presents the wave optics, which relies on the
fundamental principles of electrodynamics without retreating to strongly simplifying
assumptions of optics. On the other hand, the differential treatment of the stationary
wave equation (165) is prohibited by the requirement on the spatial step, where a single
wavelength λL/n̂r must be resolved classically. Moreover, the microscopic conditions
for the electromagnetic fields are not known as the hydrodynamic model requires only
the period averaged value of the Poynting vector. Therefore, the phase of the field is
not involved in the model and can be considered as an independent unknown.

These considerations led to development of the approach based on the stationary
Maxwell’s equations (SME) [106, 107]. Rather than solving the Helmholtz equation
(165) directly, the method relies on the Maxwell’s equations (3–4) rewritten for the
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harmonic waves (following the introduction of chapter 6) in 1D:

H ′ + ik0n̂
2E = 0 , (177)

E ′ + ik0H = 0 , (178)

where the prime denotes the spatial derivative. It must be noted that the Gaussian
system of units is used here in accordance with the references [106, 107]. The key
idea of the method is then decomposition of the field to the incoming wave P = P (x)
(from the left hand side without the loss of generality) and outgoing (reflected) wave
R = R(x):

E = P +R, H = n̂(R− P ). (179)
Substitution to the system (177–178) yields the governing equations for both waves:

P ′ = +ik0n̂P −
n̂′

2n̂(P −R) , (180)

R′ = −ik0n̂R + n̂′

2n̂(P −R). (181)

The next step is definition of the (complex) reflection coefficient V (x) = R(x)/P (x).
This procedure implicitly assumes that the incoming wave P does not vanish, but we
are interested only in such solutions. Reformulation of the coupled system (180–181)
to the new primary variables P and V yields:

V ′ = −2ik0n̂V + n̂′

2n̂(1− V 2) , (182)

P ′ = +ik0n̂P −
n̂′

2n̂P (1− V ). (183)

The solution of the given system is equivalent with the wave solution in terms of E and
B as back substitution can be made. However, the complex amplitude of the incoming
wave P can be reduced to the real function A proportional to the magnitude of the
incoming wave ∼ |P̃ |2 = PP ∗. The governing equation then reads:

A′ = −2k0n̂iA− Re
(
n̂′

n̂
(1− V )

)
A. (184)

The new formulation in terms of A and V is no longer equivalent to the original
system as the piece of information about the phase is lost in the case of A. However,
the solution fully suffices for the purposes of the hydrodynamic simulations, where only
the Poynting vector |~S| ∼ A is needed. In particular, the expression for the Poynting
vector reads [107]:

|~S| = A(k0n̂(|Ṽ |2 − 1)− 2k0n̂iIm V ). (185)
It can be recognized that the Beer–Lambert law (175) is obtained in the limit

|n̂′/n̂| � k0|n̂|. Therefore, the theory is fully consistent with the WKB approximation,
but the additional terms represent the exact gradual reflections of the wave and the
theory then holds even in the vicinity of the critical plane. As the derivative of the

52



refractive index goes to infinity, the reflection coefficient V closes to the unity, i.e. the
wave is completely reflected at the critical point.

The cornerstone of the method is the observation that the equation for the reflec-
tion coefficient (182) is decoupled from P or A and can be solved independently. After
the solution for V is known, the complementary equation for A or P can be solved.
Unlike the classical methods for the Maxwell’s equations, the boundary conditions are
known even in the macroscopic description, since the reflection coefficient can be set
V ≈ 0 several penetration depths δpen behind the critical plane. The other boundary
condition is given by the known magnitude of the intensity of the laser outside the
domain, i.e. |~S| = IL at the outer boundary.

Another important advantage of the method is the fact that it can be directly
reformulated for an oblique incidence of the of the laser. The structure of the equations
remains nearly the same and the refractive index is replaced by the effective value
[108]. As the approach is fully wave-based, the resonance absorption in the dielectric
approximation is naturally included in the solution, but it is not modelled directly as
only the perpendicular components are simulated.

The equation for the reflection coefficient (182) presents a non-linear ordinary
differential equation of the Riccati type. We proposed two possible approaches to its
solution in [107]. The first one is semi-analytic, where the equation is integrated over a
computational cell, where the density profile is approximated by a piecewise constant
profile [109, 110, 60] or later extended to arbitrary profile as we proposed in [107]. The
advantage of the semi-analytic treatment is the fact it is not principally limited by the
constrained on the resolution of the wavelength λL/n̂r, so it can be readily applied
even in the coronal plasma. However, the solution itself is still oscillatory, so aliasing
effects may be encountered, but strongly rarefied coronal plasma can be considered
nearly transparent and a cut-off can be applied [60]. Another fundamental approach
is the differential solution of the equation or an equivalent set of linear first order
equations not asimilar to the system (182–183). We proposed to use the high-order
finite element method for this purpose, where an arbitrary order of convergence can be
attained depending on the choice of the basis only [107]. This is in a contrast with the
semi-analytic method, where only the second order convergence is attained.

Concluding the chapter of laser absorption, the methods of geometrical optics
and wave optics can be seen as mutually complementary. The former is ideally suited
for modelling of the absorption in the far coronal plasma, where the dynamics of
the plasma involves remarkably longer length scales that the wavelength of the laser,
i.e. L � λL/n̂r. On the other hand, it fails to describe the vicinity of the critical
plane, where abrupt heating of the plasma occurs and highly non-local electrons are
produced [111, 112]. The coupling of the laser and non-local transport of these is crucial
for the fusion research for example [113]. The wave optics provides an answer to this
problem by modelling the processes self-consistently, but its inherent complexity makes
full simulations of the wave propagation for multi-dimensional hydrodynamic codes
infeasible. The method based on the stationary Maxwell’s equations then presents an
attractive option for solution near the critical point. A combination of the geometrical
and wave approach was then proposed in the literature [114], but remains a topic of the
future work to accommodate for the SME method, where its benefits could be utilized.
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7 Contributions of the author
The theoretical background and the current status of the research of the non-local
transport in many aspects was presented the previous chapters. However, the topics
cannot be considered exhausted even by far. There remain unsolved problems and
unexplored frontiers of the non-local transport research. This motivated us to continue
in this endeavour and contribute to the theoretical understanding of the non-local
effect.

Our work was already referred where appropriate, but no compact summary was
given. This is the subject of this chapter to map the scientific efforts made in the past
years. As the non-local transport is rich on the physical mechanisms involved, also our
research can be divided to more than one category. Therefore, there are presented four
chapters schematically sorting the scientific publications. Chapter 7.1 is dedicated to
the hydrodynamic description and simulation of the plasma, chapter 7.2 follows with
the non-local electron heat transport model extending the discussion of chapter 4. The
chapter about the non-local radiation transport 7.3 follows the lines of chapter 5 and
the laser absorption modelling of chapter 7.4 extends the methods of chapter 6.

7.1 Lagrangian hydrodynamics
Despite the fact that hydrodynamics in general and Lagrangian hydrodynamics with
no exception is a well-established discipline, the classical numerical schemes rather rely
on the low order discretizations typically. This correlates with the macroscopic physical
phenomena typically studied, but makes them inappropriate for modelling of the small
scale effect important for the description of the non-local transport. Moreover, the
rigid structure of the classical simulation codes makes integration and testing of new
physical models difficult.

For this reasons, the development of our new multi-dimensional hydrodynamic
code started as reviewed in the proceedings [115]. This new simulation code named
Plasma Euler and Transport Equations version 2 (PETE2) was preceded by PETE,
which is an older 1D code originally developed by M. Holec as part of [74] and partially
described in [92]. Further extensions of PETE were implemented to investigate the
radiation transport effects and are detailed in chapter 7.3. Returning to PETE2, it
essentially relies on curvilinear high-order finite elements. This modern numerical
approach provides the code flexibility in the choice of the polynomial order of the
elements and connected spatial order of convergence of the method. Moreover, it is
easily extensible and scalable due to use of the MFEM library [116].

Fundamentally, the numerical code is based on the two-temperature Lagrangian
one-fluid model of chapters 3.2 and 3.3, but extended by additional models of other
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chapters. The solved system of equations reads:

Dρ
Dt = −ρ∇ · ~u, (186)

ρ
D~u
Dt = −∇ · (P e + P i), (187)

ρcV e
DTe
Dt = −P e : ∇~u+Gei(Ti − Te)−∇ · (~qe + ~S), (188)

ρcV i
DTi
Dt = −P i : ∇~u+Gie(Te − Ti), (189)

where cV e, cV i are the specific heats. They are introduced to the model in order to tackle
the classical problem of the hydrodynamic codes that the functions of internal energies
εe(ρ, Te), εi(ρ, Ti) must be inverted to obtain the temperature. i.e. the inverse equation
of state is evaluated. This is a time consuming iterative procedure in classical codes.
Therefore, PETE2 differentiates (similarly to PETE) the term to use the temperatures
as the primary variables. However, the problem of this approach is the consequent
violation of energy conservation. This is circumvented by use of corrections similar
to the Symmetrical Semi-Implicit (SSI) method [117], which guarantee the asymptotic
conservation of energy. The equation of state is taken from the HerEOS library detailed
in chapter 3.4.3.

The hydrodynamic scheme implements the high-order curvilinear finite element
method [118], which has many appealing features. It conserves mass, momentum and
energy numerically for arbitrary orders of the finite elements. Moreover, the thermody-
namic quantities are conserved locally as their basis functions are discontinuous, which
provides robustness of the scheme in treatment of propagating shocks in the medium.
This discretization is also compatible in the lowest order of the elements with the com-
patible staggered hydrodynamics [119] used in the numerical code PALE2 that is being
developed at our faculty [120, 121], which enables their interoperability. Finally, the
method relies on the isoparametric elements, meaning that their spatial mapping uses
the identical basis as the interpolation of the values. In other words, the elements are
curvilinear, which prevents entangling of the mesh.

The electron heat flux ~qe closure is provided by a diffusive model, which was
covered in chapter 4.1 from the physical point of view. However, the coupled system
of equations for the heat flux (109) and temperature (188) must be solved together.
Instead of solving the equation for temperature, it is reformulated to the dual form
for the heat fluxes, which guarantees numerical conservativity. For the purposes of
numerical solution, we have developed a diffusion solver based on the mixed hybrid
FEM (MHFEM) method [122]. It matches the hydrodynamic discretization perfectly
and the use of the hybridization technique reduces the size of the resulting sparse matrix
greatly, so the solution of the linear system is computationally inexpensive even for the
high-order finite elements.

Finally, the laser absorption is modelled by the simple Beer–Lambert law (175)
in the normal direction to the target. Numerically, the discontinuous Galerkin FEM
(DGFEM) elements are employed with a simple upwinding [123]. However, this point
constrains the applicability of the whole code to only the physical scenarios where the

55



spot size of the laser is significantly wider than the ablation depth as no notion of
beam convergence exists. An additional model of absorption is present in the code as
described in chapter 7.4, but it is also a one-dimensional model in principle. Therefore,
an extension of the code by a multi-dimensional ray-tracing method, explained in
chapter 6.1, is highly desirable.

The first results were obtained in 3D for ablation of an Aluminum target at the
room temperature irradiated by a laser with the intensity IL = 1 · 1014 W/cm2 and
spot size rL = 5 µm. The simulation details can then found in the reference [115].
The situation is illustrated for the time t = 30 ps in Figure 1. The deformation of the
curvilinear elements is clearly visible as well as the high-order interpolation.

(a) Density [g/cm3] (b) Temperature [eV]

(c) Heat flux [erg/s/cm2] (d) Laser intensity [erg/s/cm2]

Figure 1: The plasma profiles in the simulation of Aluminum ablation in the 3D Carte-
sian geometry at 30 ps. Quadratic thermodynamic and cubic kinematic finite elements
were used.

Another direction of the current research is promotion of the PETE2 code to the
magneto-hydrodynamic model and extension of the PALE2 code by the mechanisms
of the magnetic field generation as we outlined in [124]. The mechanism of particular
interest is the Biermann battery effect [125], which originates from the electron pressure
term appearing in the equation of the quasi-static electric field (83). The effect on
generation of the magnetic field can be seen when inserting the term to the Farraday’s
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law (4), which yields:

∂ ~B

∂t
∼ ∇× ∇pe

ene
= kB
ene
∇ne ×∇Te. (190)

This implies that gigantically strong magnetic fields can be generated in laser plasma
at the places where the gradients are not collinear as can happen due to (non-local)
heat transport processes (see section 4) acting on top of the pure convection of the
hydrodynamic model [126].

7.2 Electron non-local transport
7.2.1 Hydrodynamic closure models

The state-of-the-art hydrodynamic codes PETE and PETE2 are unique due to the
fact that they are equipped with the BGK SN non-local transport model detailed in
chapter 4.3. The topic of this chapter is a short review of the closure model for the
non-local electron heat transport.

We proposed the method of the BGK transport model in [19]. The identical
derivation of the model as done in chapter 4.3 was presented there, but in a slightly more
detailed manner. My contribution was on the side of implementation and explanation
of the laser absorption code, which was already based on the stationary Maxwell’s
equations of chapter 6.2, but without the high-order extension, which is subject of
chapter 7.4. Furthermore, it was implementation of the reference diffusion solver to
PETE. Another part of my work are the numerical tests and some of the realistic
simulations. Finally, it was also a critical assessment of certain parts of the model,
which led to its correction.

Understanding the foundations of the model, attention can be turned to the
numerical tests and comparison with other methods. One of the basic tests of the non-
local transport is known as the Short–Epperlein test [56, 127]. It is an asymptotic kind
of problem, which investigates the behaviour only for infinitesimal perturbations of the
quantities. In particular, the temperature is perturbed as Te = T 0

e +δTe cos(kx), where
the T0 = 1000 eV and δTe = 10−4T 0

e . Other profiles are kept uniform. The average heat
flux magnitude is evaluated for different values of the wave number k, which changes
the regime of the transport from strongly diffusive for kλe � 1 to moderately non-local
for kλe ∼ 1. The symbol λe represents the thermal mean free path, but the models of
transport are independent of its specific value in this test. Instead of the heat fluxes
themselves, the effective heat conductivities κ = |~qe|/(kTe) are assessed. The results
are plotted in Figure 2. The reference profiles for the LMV model [15], AWBS [70] and
the Fokker–Planck (FP) are taken from [56]. It is clear from the analysis that the BGK
SN model behaves similarly to the other simplified models, having the non-local limit
(kλe)−2. As was recognized based on a Fourier analyses, this is the case for all models
based on a linear transport equation [16]. The kinetic simulations exhibit rather the
dependency ∼ (kλe)−1. While being closer to the FP curve for the stronger non-local
regime, the results are relatively far from it for the weak regime, where the model tends
to overestimate the values of the heat flux.
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Figure 2: Effective heat conductivities normalized to the results of the diffusion theory
as a function of the Knudsen number kλe. The curves correspond to different non-local
electron transport models.

Another problem of interest, which is non-asymptotic unlike the previous one, is
the hotspot relaxation problem [128]. The initially Gaussian profile of the temperature
with the base value 1 keV and the maximum 5 keV is let to relax by means of the heat
transport methods. As the profile non-linearly relaxes, also the regime of transport
changes from highly non-local at the beginning to nearly diffusive at the end. This
problem has a better relevance to real simulations and clearly shows the importance
of the non-local transport modelling. The results are plotted in Figure 3 for different
models of the transport closure along with the reference kinetic solution taken from
[128]. At the very early stage of the simulation, the unlimited heat diffusion greatly
overestimates the heat fluxes, while the flux-limited diffusion and our non-local model
relatively well agree with the reference solution in temperatures. However, the fluxes
show that they are departing from the reference dynamically, while the unlimited dif-
fusion closes. The later stage shows that the heat flux limiting excessively inhibit the
transport and its non-linear nature causes the "heat flux starvation", where a non-
physical profile of the temperature appears. In contrast, the BGK SN model gives
smooth profiles of the temperature and very closely copies the profile of the reference.
The unlimited diffusion slows down and becomes more accurate as the system transits
to the diffusion regime.

Another approach to the non-local transport we proposed in [129], where the P1
model is used as described in chapter 4.2, but the BGK operator is applied for the
electron–electron collisions. An implicit numerical scheme for f0 and ~f1 based on high-
order finite elements is formulated and an implicit coupling with temperatures of the
temperatures of the bulk electrons is made through the expansion of the equilibrium
distribution as fM(T n+1) = ∂fM/∂T (T n+1−T n) + fM(T n), where the upper index de-
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Figure 3: The hotspot relaxation problem for different models of electron heat transport
at two different times. The profile of the electron temperature Te, heat flux qe and
Knudsen number Nne are plotted. The curves corresponds to the following: blue –
diffusion solution with f lim = 0.05, orange – unlimited heat diffusion, green – BGK SN
non-local transport, dashed red – reference Fokker–Planck.

notes the time level. This procedure is similar to the one used for the radiative transfer
in chapter 5.3. An advantage of the P1 approach over the SN is the existence of the
stationary electric field formula (122), so the effects of the electric field on the trans-
port can be evaluated correctly. However, a basic numerical analysis of the resulting
linear system reveals that the electric field destabilizes the transport numerically even
for relatively small magnitudes when treated explicitly.

7.2.2 Vlasov–Fokker–Planck–Maxwell

Our latest effort to simulate the non-local transport was made in [130], where a reduced
Vlasov–Fokker–Planck–Maxwell (VFPM) code was developed, which principally solves
the problem of non-local transport in the greatest detail of the methods mentioned
in this chapter. In spite of the fact that the computational costs are higher than in
the case of the hydrodynamic closure models, its implicit nature enables to choose the
temporal step relatively long compared to the collision times τee = ν−1

ee .
In essence, the code solves the equations of the Cartesian expansion to the first

order (63–64) with the collision operators (66–67), where the contributions C01 and
C11 are neglected. The system is closed by the coupled and fully implicit Maxwell’s
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equations (3–4). A similarly composed method appeared in the literature for studies
of non-local magnetic fields generation and inertial fusion [131, 132], but the novelty is
given by the fact that the method conserves not only mass, but also energy. Moreover,
its multi-dimensional construction enables 2D as well as 3D simulation. Finally, high-
order finite elements are employed, implying that the method has an arbitrary order
of convergence in space (depending only on their polynomial order virtually).

Figure 4: The total heat flux of the solution (a) and its error (b) in the problem of
diffusion transport in the presence of a magnetic field. The computational mesh has
8× 8 cells with the cubic finite elements and 160 velocity levels. (The values are in the
normalized units).

Following the lines of chapter 2.3, the velocity moments can be elaborated and
the full magneto-hydrodynamic system (72–74) is obtained with the only exception
that the dynamic and kinetic pressure tensors (60) are rather scalars than tensors. It
is also evident that the diffusion analysis of chapter 4.1 is fully applicable as only the
first order Legendre expansion was applied (actually the tensor expansion was used for
convenience). Therefore, the full Braginskii transport solution (111–112) is obtained in
the diffusion limit. However, the transport coefficients are given self-consistently and
there is no need of a closure model in contrast to the hydrodynamic simulations. This
is also one of the numerical tests in the paper. An rectangular domain is considered
with the initial conditions:

ñe(x̃, ỹ) = 1 + δñe(cos(πx̃/∆x̃) + cos(πỹ/∆ỹ)), (191)
T̃e(x̃, ỹ) = 1 + δT̃e(cos(πx̃/δx̃)− cos(πỹ/∆ỹ)), (192)
B̃(x̃, ỹ) = δB̃ sin(πx̃/∆x̃) sin(πỹ/∆ỹ), (193)

where δñe = δT̃e = δB̃ = 10−3. Note that the values and the whole system are
normalized to the initial values of temperature and density. The normalized magnetic
field value represents the magnetization, i.e. the product of the electron–ion collision
time and cyclotron frequency B̃ = eB/(meνei). The size of the domain is ∆x̃ =
∆ỹ = 104, where the spatial unit is the electron–ion mean free path. The system is
solved in the diffusion approximation, i.e. for stationary ~f1, ~E, ~B and f0 = fM . Other
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simulation details can be found in the article [130]. The solution along its error at the
final time t = 10−4τei is drawn in Figure 4. The results manifest that the symmetry
of the solution is maintained to a great extend and even a low number of elements
with a higher polynomial order is able to capture its features precisely. Physically, the
transport is dominated by the conductive term α ·~j and the corresponding convective
heat flux ∼ 5/2v2

Te
~j. Therefore, the flux follows the electric field lines mostly and

circulates around the domain.

Figure 5: Magnetic field magnitude (a) and electron temperature (b) in the magnetic
diffusion problem. The computational domain has 5× 5× 5 cells with the cubic finite
elements and 40 velocity levels. (The values are in the normalized units).

A similar kind of problem, but with a non-stationary magnetic field and evolving
f0, is the magnetic diffusion problem. An initially Gaussian profile of the magnetic
field ~̃B(~̃x) = δ ~̃B exp(−|~̃x|2/σ̃B) diffuses due to the eddy currents. The solution for the
magnetic field then can be obtained readily:

~E = α~j = 1
µ0
α∇× ~B, (194)

∂ ~B

∂t
= −∇× ~E ' 1

µ0
α∆ ~B = ηB∆ ~B, (195)

where α is the scalar resistivity and η̃B = σ̃B is the normalized diffusivity of the
magnetic field. The size of the domain 104 in the normalized units in each dimension
and σ̃B = 0.15 ·104. The magnetic field strength is chosen δB̃ = 10−3 in each Cartesian
component of the ~̃B vector. The 3D solution at the time t = 10τei is illustrated in
Figure 5. The diffusion of the magnetic field notably progressed and the Joule heating
process heats the electrons. Numerically, a reasonable detail of the solution is provided
despite the low number of cells and also the discontinuity of the finite elements used
for the temperature is apparent.

The last, but not least, problem regards the non-local transport. As already
stated, the non-locality is inherently modelled with the VFPM method. The physical
scenario is similar to the hotspot problem of chapter 7.2.1, but the temperature profile
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Figure 6: The electron temperature (orange) and heat flux (blue) for the heat bath
problem at the final time t = 10τei. The initial profile is drawn by the dashed line.
(The values are in the normalized units).

is asymmetric here. In particular, it has the transition profile:

T̃e(x̃) = 1 + δT̃e
2
π

arctan(x̃/σ̃T ). (196)

The parameters are set δT̃e = 0.9, σ̃T = δT̃e/(2Kne). The Knudsen number is chosen
Kne = 10−1, which corresponds to moderately strong non-local transport. The simula-
tion is performed in 1D on the domain ∆x̃ = 200. The rest of the details can be found
in the article [130]. The initial condition and the final solution are plotted in Figure 6.
The temperature profile is smeared, but the heat flux is strongly asymmetric pointing
to the non-linear regime of the transport.
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Figure 7: Energy weighted isotropic part (a) and heat flux weighted anisotropic part
(b) of the distribution function in the heat bath problem at the final time t = 10τei.
(The values are in the normalized units).
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A better insight is provided by the kinetics of the transport. The energy weighted
f0 and heat flux weighted ~f1 are evaluated at the points designated by the vertical
lines in Figure 6. These distributions are then plotted in Figure 7. It is visible on
the isotropic part that the initially equilibrium distribution in the upstream splits to a
two-temperature distribution down the stream due to the non-local species. It is clear
that such significant deviation is far beyond the perturbative regime of the classical
diffusion theory. The heat fluxes confirm this trend and the classical heat flux structure
is completely destroyed in the downstream.

7.3 Radiation non-local transport
The non-local transport of energy on the hydrodynamic scale is not only an effect of
the drifting high-velocity electrons, but also of the photons as explained in chapter
5. The numerical codes PETE and PETE2 include both approaches presented there,
the radiation diffusion and discrete ordinates method for non-local radiation transport.
Their effects and the interplay with the non-local electron transport are then of a great
interest not only from the theoretical point of view, but also for various applications.

We presented a comparison of the impact of the diffusion and non-local radiation
model on the numerical simulations under realistic conditions in [81]. In addition,
the article overviews the numerical code PETE, which was already briefly described
in chapter 7.2.1. Physically, it also solves the system (186–189), but the additional
radiation coupling term is present following the energy equation of radiative transfer
(136). However, the conservative form is preferred, where the equation of electron
energy (188) is modified as follows:

ρcV e
DTe
Dt + DεR

Dt = −P e : ∇~u+Gei(Ti − Te)−∇ · (~qe + ~qR + ~S). (197)

The newly appearing terms ~qR and εR are obtained from the radiative transfer closure.
The non-local radiation transport method is based on the discrete ordinates method
described in chapter 5.3. Numerically, it relies on the high-order discontinuous Galerkin
finite elements (DGFEM), which was presented in [92] and its implementation was
developed as part of [74].

The radiation diffusion model follows chapter 5.1 and solves the coupled system
(146) and (197), where the operator splitting technique is employed, so only the electron
temperature and the terms related to the radiation transport are evolved in the latter.
As part of my work, I developed an implicit numerical scheme for its solution. It
extends the method of mimetic operators from [133] for the purposes of the radiation
diffusion, where the physical system is reformulated in terms of the energies:

εn+1
R − εnR

∆t −∇ · f c

3ρκR
∇εn+1

R = cρκP (Θn+1 − εn+1
R ), (198)

DΘ
Dt = 1

τ
(εn+1
R −Θ), (199)

where Θ = aRT
4
e and the upper index denotes the discrete time levels. This semi-
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discrete form can be solved for Θn+1, where the solution can be written Θn+1 = βΘn +
(1 − β)εn+1

R as inspired by [134]. Two options for the coefficient β were given, where
one is obtained from a fully implicit discretization of (199) and the other one solves
the relaxation analytically provided that the diffusion operator does not contribute
significantly. While the former maintains symmetry of the problem, but assumes only
weak relaxation, the latter has exactly the opposite properties. Both methods operate
correctly only on the time scales comparable with the relaxation time, so splitting of
the time step is necessary. The details about the method and the final form of the
numerical scheme in terms of the mimetic operators can be found in the article [81].
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Figure 8: Dependencies of the radiation flux on the function k/(ρκP ) ∼ KnR. The
curves corresponds to the following: blue – SN non-local model with Planck opacity,
orange – SN non-local model with the average opacity, the rest – the radiation diffusion
model with the respective flux limiters ((144)–(145)).

A similar problem to the Short–Epperlein analysis of the non-local transport
made in chapter 7.2.1 was also performed here. The equilibrium is assumed initially,
i.e. Te = TR, and the base temperatures are chosen T 0 = 1 keV and δT = 5 · 10−2T 0.
The results are plotted in Figure 8. The findings are similar to the ones of chapter
7.2.1, the linear transport equation has the non-local dependency ∼ (KnR)−2 for the
single-group transport, but the flux-limited diffusion gives rather the flux saturation,
i.e. the dependency ∼ (KnR)−1. However, the value of the limiting flux depends on the
base temperature T 0, which should be independent of the perturbations δT , meaning
that the value of the limit is arbitrary in this idealized configuration. This manifests
the non-viability of the flux-limited methods. Another important observation is that
the radiation equation with the Planck opacity does not converge to the diffusion limit,
but an average opacity formulation does, following the discussion from the introduction
of chapter 5. In particular, the average opacity formula is taken from [79].

A comparative study of the laser–target interaction simulations was made then for
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Figure 9: The profiles of the temperature Te, density ne, Knudsen numbers Kne, KnR
and Boltzmann number Bo for the laser interaction with a solid Aluminum target.

different intensities of the laser, materials and the diffusion vs. the non-local radiation
transport method. It was concluded that the effect of the radiation transport depends
on all the mentioned physical parameters, but also on the choice of the numerical
method strongly. This implies that an attention must be paid to the conditions in the
plasma and the numerical treatment must be chosen adequately. However, a relatively
strong non-locality in the radiation transport was observed even for the laser intensities
as low as 1 · 1013 W/cm2 in the given configuration. An example of the simulation
results is presented in Figure 9 and Figure 10. The Aluminum target of the room
temperature and density ρ = 2.7 g/cm3 is irradiated by a flat-top laser (pre-)pulse of
the length 10 ns with the intensity IL = 1 · 1015 W/cm2 and wavelength λL = 0.35 µm
(a small Gaussian ramp of FWHM 1.2 ns is present at the beginning). The resulting
profiles have the classical structure [78], where the different zones are designated by
the Roman numbers in the figure. They can be classified as follows: 0 – unperturbed
target, I – shock wave, II – conduction zone, III – corona. The full discussion of the
interaction is beyond the scope of this text. However, the non-local effects are worth
of mentioning. The electron heat transport operates only in the close vicinity of the
critical plane, i.e. between zones II and III. This is given by the short mean free
path of the electrons, which is λ̄e . 1 µm in this case. The physical conditions are
not favourable for the electrons as the short wavelength of the laser leads to mostly
collisional absorption according to the introduction of chapter 6. The absorption profile
is relatively smooth and no significant amount of electrons is generated at the critical
surface. In contrast, the photon mean free path is remarkably longer and comparable
with the length of the conduction zone. The strong conversion to the thermal radiation
then causes formation of the double ablation front (DAF) structure known from the
inertial fusion research [135], which is manifested by nearly the flat high density profile
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Figure 10: The profiles of the density ne, laser absorption rate |∇ · qL|, heat flux
qe, radiation energy flux qR, Poynting vector qL and convective flux qH for the laser
interaction with a solid Aluminum target.

of the conduction zone. This can be understood as a dynamic equilibrium between the
hydrodynamic convection and the radiation transport, which is the best expressed by
the Boltzmann number Bo = 5/2(pe + pi)|~u|/σSBT 4

R. As can be noticed, its profile is
nearly flat in the conduction zone, so the mechanisms of energy transport are nearly
perfectly balanced.

The prepulse effects can be illustrated on the results of a different study we made
[23], where I authored most of the text and performed the hydrodynamic simulations.
An Aluminum target is considered with the identical parameters as before, but the laser
has the intensity in the pre-pulse 1 · 1012 W/cm2 and the wavelength λL = 1.057 µm.
The length of the pre-pulse was 6 ns in this case. A particle-in-cell (PIC) simulation
then followed and simulated the interaction of the main pulse with the created pre-
plasma, where the intensity at maximum was 1 · 1023 W/cm2 and FWHM 150 fs. Two
cases were studied, where the radiative transport was modelled in one and was not in
the other. The results drawn in Figure 11. In the case with the non-local radiative
transport (NLRT), a strong filamentation can be observed as the laser interacts with
the DAF structure. This increases the overall absorption from 27 % to 38 %, but the
effect of filamentation might be more important for the non-linear interaction with the
target.

We also presented the effects of the prepulses with similar parameters in [22],
where my contribution was elaboration of the final simulations and formulation of the
laser absorption and introductory text. Unlike the previous scenario, a plastic target
with density ne .= 86nc was considered, which favoured more the electron transport.
The length of the pre-pulse was 10 ns again and the intensities of the main pulse
1 · 1022 W/cm2 and 1 · 1023 W/cm2, where also radiation–reaction effects were modelled.
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Figure 11: The profiles of the density ne and laser intensity I in the particle-in-cell
simulation of the interaction with a pre-plasma at time 54 optical cycles or 189 fs from
the beginning of the main pulse. (The underlying PIC simulation data were provided
by M. Jirka).

Without going into details, let us note the final result that the simulations with the
DAF structure due to the energy transport increased the absorption of the pulse from
18.5 % to 54.8 % in the first case and 13.7 % to 61.1 %. Moreover, a strong filamentation
was observed in the pre-plasma. This shows that the pre-pulse physics has a significant
impact on the main pulse and cannot be neglected in the assessments of the experiments
for intense lasers [21].

7.4 Laser absorption
The brief introduction to the topic of laser absorption in chapter 6 pointed to the
fact that the optical methods are unable to precisely determine the behaviour of the
laser beam in the vicinity of the critical plane. This is not an important consideration
in the classical hydrodynamic models as the overall energy balance can be recovered
by introduction of a semi-empirical factor of laser reflection at the critical density for
example [105]. However, the simulations of the non-local transport in chapter 7.3
clearly show that exactly this delicate region near the singularity point is crucial for
generation of the non-local electrons. Consequently, more detailed methods of laser
absorption are required.

Our effort in this direction is the further development of the stationary Maxwell’s
equations method in [107] continuing along the lines of chapter 6.2. The original semi-
analytic method is extended to an arbitrary order of the polynomial approximation of
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the density profile (or complex refractive index n̂ more precisely) in the computational
cells. This is achieved by the analytic solution of the Riccati equation for the complex
reflection index (182). The final form of the expression for V is non-trivial and involves
calculation of a matrix exponential over the cell, but the formula for the amplitude of
the incoming wave P and its magnitude A simplifies greatly and is proportional to
∼ exp(i

∫
k0n̂ dx) (for slowly varying V ). This is a predictable result as the linear

interaction should lead to dependency only on the average values in the weak reflection
limit. However, the expression also conceptually shows why the method is limited to the
only second order of convergence. Provided that the space is sufficiently well resolved,
the differential approach is not only applicable, but may provide an arbitrary order of
convergence to the method. As both approaches are complementary in this sense, a
local switching technique is proposed for them, where a local criterion is formulated:∣∣∣∣∣∣n̂rk0 −

1
4Im

(
n̂′

n̂

)∣∣∣∣∣∣ ∆xc
pc

> Cλ, (200)

where ∆xc is the size of the cell and pc the polynomial order of the elements in the
cell. This can be seen as a slightly modified version of the classical expression ∆xc &
λL/n̂r. The constant Cλ is a dimensionless factor and the numerical tests showed
that Cλ = 0.025 seems to be an optimal value. When the criterion is satisfied, the
semi-analytic solution should be used and provides more accurate results than the
differential treatment. When the opposite is true, the differential solution based on the
finite element method gives better results usually. The construction of the numerical
scheme is also not detailed here, but it follows more or less standard procedure for
the linear system of the first order differential equations obtained from the backward
decomposition of (182) to the form similar to the original system (180–181). It is worth
noting that the profiles of the refractive index do not need to be continuous in neither
of the methods. An analytic solution for the discontinuity can be formulated [109, 110],
which increases the overall robustness of the method and enables to correctly treat the
plasma–vacuum boundary.

The numerical model was tested on the transition layer profiles also known as the
Epstein profiles [136]. They present one of the few problems with an analytic solution
for the full Hemholtz equation in a dissipative inhomogeneous medium. The profile of
the dielectric function is defined as follows:

n̂2 = ε̂ = ε̂l + (ε̂r − ε̂l) 1
exp (−ζ) + 1 , ζ = k0x

∆ξ = ξ

∆ξ , (201)

where ε̂l and ε̂r are the limit values of ε̂ in −∞ and +∞ respectively. In the example
presented here, they have values εl = (10−2 + 10−6i)2 and εr = (5 · 10−4 + 10−2i)2. The
width of the profile ∆ξ = (ξr − ξl)σ, where ξl = −400π and ξr = 400π are positions of
the boundaries. The profiles are illustrated in Figure 12.

The analytic solution in terms of the Poynting vector and its divergence, which are
of the primary importance for the hydrodynamic simulations, is plotted in Figure 13. It
shows the complexity of the exact solution, where its wave nature is manifested as well
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Figure 12: The refractive index β transition profiles as a function of the phase ξ for
the different widths of the profile σ.
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Figure 13: The normalized values of the Poynting vector S̃ (full lines) and magnitude
of its divergence |S̃ ′| (dash-dot lines) as functions of the phase ξ for the transition
profiles of the different widths σ.

as the dependency of the local wavelength on the steepness of the transition profile.
It is evident that the classical WKB methods described in chapter 6.1 cannot capture
these phenomena even approximately.

The reflection and absorption on a steep profile is not the only interesting effect
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for hydrodynamic simulations. It is also the skinning effect, which may play a vital
role. In fact, the full wave based method gives a non-propagating solution even behind
the critical point. Normally, the penetration depth is minuscule, but the situation
changes in strongly rarefied media like low-density foams. We recently performed this
kind of experiments and theoretical calculations in [137], where my contribution were
the hydrodynamic simulations in the code PALE2. It is also equipped with the SME
based solver in the classical semi-analytic formulation, which was made numerically
applicable in 2D for normal incidence of a broad laser beam as part of my previous
work [60].
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8 Conclusions
The theoretical aspects of the non-local transport and the background theory necessary
for its understanding were given in chapters 2–6. The fundamental principles of the
kinetic theory were covered in chapter 2, describing plasma in an unmatched detail.
However, solution in the full phase space is infeasible, as it poses a 7D problem in
general. Hence, the model was reduced to the hydrodynamic framework described
in chapter 3, where the simplifying assumption of the kinetic equilibrium was made.
This procedure eliminated the notion of non-locality from the description completely
as only the convective processes are present in the ideal hydrodynamics. The topic of
chapter 4 was then to reintroduce the heat transport processes. At first, it was achieved
by allowing only infinitesimal deviations from the equilibrium in the classical diffusive
paradigm of chapter 4.1. The additional models of non-local electron transport in
chapters 4.2–4.3 partially borrowed from the kinetic description again, but only in a
limited extent to maintain feasibility of the methods. Along the same lines, also the
radiation transport description continued and a good analogy between the descriptions
of both species, electrons and photons, was recognized, which underpinned construction
of some of the methods actually. The laser absorption modelling described in chapter 6
circumvented the problem of the non-existent high-frequency fields by formulation of
the closure models for the electromagnetic energy flux vector (Poynting vector), which
reduced the laser model to a mere energy source from the hydrodynamical point of
view. The optical approximation in chapter 6.1 separated the envelope from the phase
completely. However, the assumptions of the slowly varying envelope break down in the
vicinity of the resonant points like the critical density in the context of laser plasma.
This was addressed by the wave-based method of chapter 6.2, but only in a single
dimension, making the methods complementary in essence.

Chapter 7 then summarized our scientific efforts in understanding and modelling
of the non-local transport phenomenon. The variety and plurality of the research
directions reflects the complexity of its nature. An overview of the structure of the
new multi-dimensional hydrodynamic code was given chapter 7.1, where its possible
extension to the magneto-hydrodynamic model was also envisioned. The flexible nature
of the code design enables to integrate additional models and a high numerical precision
is achieved thanks to the curvilinear high-order finite elements used.

The subject of chapter 7.2.1 was then extension of the hydrodynamical description
by an additional closure model of non-local transport. Our model, based on the solution
of a linear transport equation for heat flux intensities of the electrons, provides a
feasible option for simulations of this effect. However, certain shortcomings of the
model were recognized theoretically and also on the numerical tests performed. In
contrast, chapter 7.2.2 presented our new fully kinetic code, which can describe the
non-local transport in a great detail, but at expense of higher computational costs.
This inconvenience was addressed by its implicit formulation, which enabled to choose
longer computational time steps and increased overall robustness of the approach. The
numerical performance was then illustrated on test problems, showing also consistency
with the classical diffusion methods. However, the strength of the method in treatment
of the non-local transport in a physically relevant scenario was also presented. This
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new numerical tool then might present a nearly perfect reference for the simplified
transport models of the hydrodynamic codes.

Non-locality of the radiation transport was topic of chapter 7.3. The previously
developed method of non-local radiation transport was compared to the flux-limited
radiation diffusion method, where limitations of the latter approach in treating the
non-locality were identified. For the purposes of this analysis, a new numerical scheme
of the radiation diffusion was proposed. Both methods were then applied in realistic
simulations of laser (pre-)pulses, revealing significant impact of the modelling on the
results. The effects of the radiation transport were even more pronounced in the inter-
action of a ultra-intense laser pulse with a solid target, where the particle simulations
showed drastic filamentation and notable increase of absorption in the pre-plasma.

The final topic regarded the laser absorption as described in chapter 7.4. As the
plasma is formed under an intense laser irradiation in our context, an accurate model
of the absorption mechanisms has an essential importance. Moreover, the detailed
description of the vicinity of the critical plane is crucial for the non-local electron
transport, as it originates from the steep gradients in the plasma. Inability of the
geometrical optics to self-consistently model this region led us to an extension of a
wave-based method. Its validity and completeness was demonstrated on the physically
relevant problem of the transition profiles, where an analytic solution exists.

In conclusion, various physical models and numerical methods were proposed to
address the problem of non-local energy transport in plasma. They approached the
topic in multiple aspects and contributed to the global research in this field. Our plan
is to continue in this effort and further refine the methods of non-local transport and
related models in hydrodynamics and laser absorption. The final goal still remains the
formulation of a single robust yet computationally feasible method of the non-local
transport.

72



List of publications

Journal papers
[1] J. Nikl, I. Göthel, M. Kuchařík, S. Weber and M. Bussmann. Implicit reduced

Vlasov–Fokker–Planck–Maxwell model based on high-order mixed elements. Jour-
nal of Computational Physics, 2020. Submitted.

[2] J. Nikl, M. Kuchařík, J. Limpouch, R. Liska and S. Weber. Wave-based laser ab-
sorption method for high-order transport–hydrodynamic codes. Advances in Com-
putational Mathematics, 45(4):1953–1976, 2019. doi:10.1007/s10444-019-09671-3.

[3] J. Nikl, M. Holec, M. Zeman, M. Kuchařík, J. Limpouch and S. Weber. Macroscopic
laser-plasma interaction under strong non-local transport conditions for coupled
matter and radiation. Matter and Radiation at Extremes, 3:110–126, 2018. doi:
10.1016/j.mre.2018.03.001.

[4] M. Holec, J. Nikl and S. Weber. Nonlocal transport hydrodynamic model for laser
heated plasmas. Physics of Plasmas, 25(3):032704, 2018. doi:10.1063/1.5011818.

[5] M. Holec, J. Nikl, M. Vranic and S. Weber. The effect of pre-plasma formation under
nonlocal transport conditions for ultra-relativistic laser-plasma interaction. Plasma
Physics and Controlled Fusion, 60(4):044019, 2018. doi:10.1088/1361-6587/aab05a.

[6] J. Limpouch, V. Tikhonchuk, J. Dostal, R. Dudzak, M. Krupka, N. Borisenko,
J. Nikl, A. Akunets, L. Borisenko and V. Pimenov. Characterization of the homog-
enization time of a plasma created by laser ionization of a low-density foam. Plasma
Physics and Controlled Fusion, 62(3):035013, 2020. doi:10.1088/1361-6587/ab6b4d.

[7] R. Lokasani, H. Kawasaki, Y. Shimada, M. Shoji, K. Anraku, T. Ejima, T. Hatano,
W. Jiang, S. Namba, J. Nikl, M. Zeman, G. O’Soullivan, T. Higashiguchi and
J. Limpouch. Soft X-ray spectral analysis of laser produced molybdenum plas-
mas using fundamental and second harmonics of a Nd:YAG laser. Optics Express,
27(23):33351–33358, 2019. doi:10.1364/OE.27.033351.

[8] P. Pokorný, M. Novotný, P. Fitl, J. Zuklín, J. Vlček, J. Nikl, E. Marešová, P. Hruška,
J. Bulíř, J. Drahokoupil, M. Čerňanský and J. Lančok. Apparatus for measurements
of thermal and optical stimulated exo-electron emission and luminescence. Measure-
ment Science and Technology, 29(6):065902, 2018. doi:10.1088/1361-6501/aabc80.

Proceedings
[1] J. Nikl, M. Kuchařík and S. Weber. Modelling of the non-local transport of energy

in laser plasmas with high-order numerical methods. In Europhysics Conference
Abstracts – 46th EPS Conference on Plasma Physics, volume 43C, page P5.2010.
European Physical Society, 2019. ISBN 979-10-96389-11-7.

73



[2] J. Nikl, M. Jirka, M. Kuchařík, M. Holec, M. Vranic and S. Weber. The effect of
pre-plasma formed under the non-local transport conditions on the interaction of
the ultra-high intensity laser with a solid target. In Research using Extreme Light:
Entering New Frontiers with Petawatt-Class Lasers IV , volume 11039 of Proc. of
SPIE , page 110391E. 2019. doi:10.1117/12.2522450.

[3] J. Nikl, M. Kuchařík, M. Holec and S. Weber. Curvilinear high-order Lagrangian hy-
drodynamic code for the laser-target interaction. In S. Coda, J. Berndt, G. Lapenta,
M. Mantsinen, C. Michaut and S. Weber, editors, Europhysics Conference Abstracts
– 45th EPS Conference on Plasma Physics, volume 42A, page P1.2019. European
Physical Society, 2018. ISBN 979-10-96389-08-7.

[4] M. Kuchařík, J. Limpouch, R. Liska and J. Nikl. Hydrodynamic simulations of
laser/plasma interactions via ALE methods. In Europhysics Conference Abstracts
– 46th EPS Conference on Plasma Physics, volume 43C, page P5.2009. European
Physical Society, 2019. ISBN 979-10-96389-11-7.

74



References
[1] H. Lorentz. The motion of electrons in metallic bodies I. KNAW, Proceedings,

7:438, 1905.

[2] S. Chapman. VI. On the law of distribution of molecular velocities, and on the
theory of viscosity and thermal conduction, in a non-uniform simple monatomic
gas. Philosophical Transactions of the Royal Society of London. Series A, Con-
taining Papers of a Mathematical or Physical Character , 216(538-548):279–348,
1916. doi:10.1098/rsta.1916.0006.

[3] L. D. Landau. Kinetic equation for the Coulomb effect. Phys. Z. Soviet Union,
10:154, 1936.

[4] S. Chandrasekhar. Dynamical Friction I. General Considerations: the Coefficient
of Dynamical Friction. Astrophysical Journal, 97:255, 1943. doi:10.1086/144517.

[5] T. G. Cowling. The electrical conductivity of an ionized gas in a magnetic field,
with applications to the solar atmosphere and the ionosphere. Proceedings of
the Royal Society of London. Series A. Mathematical and Physical Sciences,
183(995):453–479, 1945. doi:10.1098/rspa.1945.0013.

[6] R. S. Cohen, L. Spitzer and P. M. Routly. The electrical conductivity of an
ionized gas. Physical Review, 80(2):230–238, 1950. doi:10.1103/PhysRev.80.230.

[7] L. Spitzer and R. Härm. Transport phenomena in a completely ionized gas.
Physical Review, 89(5):977–981, 1953. doi:10.1103/PhysRev.89.977.

[8] S. I. Braginskii. Transport processes in a plasma. Reviews of Plasma Physics,
1:205–311, 1965.

[9] M. N. Rosenbluth, W. M. MacDonald and D. L. Judd. Fokker-planck equation for
an inverse-square force. Physical Review, 107(1):1–6, 1957. doi:10.1103/PhysRev.
107.1.

[10] J. M. Dawson. On the production of plasma by giant pulse lasers. Physics of
Fluids, 7(7):981, 1964. doi:10.1063/1.1711346.

[11] R. C. Malone, R. L. McCrory and R. L. Morse. Indications of Strongly Flux-
Limited Electron Thermal Conduction in Laser-Target Experiments. Physical
Review Letters, 34(12):721–724, 1975. doi:10.1103/PhysRevLett.34.721.

[12] D. Gray and J. D. Kilkenny. The measurement of ion acoustic turbulence and
reduced thermal conductivity caused by a large temperature gradient in a laser
heated plasma. Plasma Physics, 22:81–111, 1980. doi:10.1088/0032-1028/22/2/
001.

[13] T. H. Kho and D. J. Bond. Application of a moment method to calculation of
heat flow in a plasma with a Fokker-Planck collision term. Journal of Physics D:
Applied Physics, 14(8):L117–L119, 1981. doi:10.1088/0022-3727/14/8/001.

75



[14] J. P. Matte and J. Virmont. Electron Heat Transport down Steep Tem-
perature Gradients. Physical Review Letters, 49(26):1936–1939, 1982. doi:
10.1103/PhysRevLett.49.1936.

[15] J. F. Luciani, P. Mora and J. Virmont. Nonlocal heat transport due to steep
temperature gradients. Physical Review Letters, 51(18):1664–1667, 1983. doi:
10.1103/PhysRevLett.51.1664.

[16] M. K. Prasad and D. S. Kershaw. Nonviability of some nonlocal electron
heat transport modeling. Physics of Fluids B: Plasma Physics (1989-1993),
1(12):2430–2436, 1989. doi:http://dx.doi.org/10.1063/1.859178.

[17] G. P. Schurtz, P. D. Nicolaï and M. Busquet. A nonlocal electron conduction
model for multidimensional radiation hydrodynamics codes. Physics of Plasmas,
7(10):4238, 2000. doi:10.1063/1.1289512.

[18] D. Del Sorbo, J.-L. Feugeas, P. Nicolaï, M. Olazabal-Loumé, B. Dubroca, S. Guis-
set, M. Touati and V. Tikhonchuk. Reduced entropic model for studies of multi-
dimensional nonlocal transport in high-energy-density plasmas. Physics of Plas-
mas, 22(8):082706, 2015. ISSN 1070-664X. doi:10.1063/1.4926824.

[19] M. Holec, J. Nikl and S. Weber. Nonlocal transport hydrodynamic model for laser
heated plasmas. Physics of Plasmas, 25(3):032704, 2018. doi:10.1063/1.5011818.

[20] J. P. Brodrick, R. J. Kingham, M. M. Marinak, M. V. Patel, A. V. Chankin, J. T.
Omotani, M. V. Umansky, D. Del Sorbo, B. Dudson, J. T. Parker, G. D. Kerbel,
M. Sherlock and C. P. Ridgers. Testing nonlocal models of electron thermal
conduction for magnetic and inertial confinement fusion applications. Physics of
Plasmas, 24(9), 2017. doi:10.1063/1.5001079.

[21] T. Z. Esirkepov, J. K. Koga, A. Sunahara, T. Morita, M. Nishikino, K. Kageyama,
H. Nagatomo, K. Nishihara, A. Sagisaka, H. Kotaki, T. Nakamura, Y. Fukuda,
H. Okada, A. S. Pirozhkov, A. Yogo, M. Nishiuchi, H. Kiriyama, K. Kondo,
M. Kando and S. V. Bulanov. Prepulse and amplified spontaneous emission
effects on the interaction of a petawatt class laser with thin solid targets. Nu-
clear Instruments and Methods in Physics Research, Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment, 745:150–163, 2014. doi:
10.1016/j.nima.2014.01.056.

[22] M. Holec, J. Nikl, M. Vranic and S. Weber. The effect of pre-plasma for-
mation under nonlocal transport conditions for ultra-relativistic laser-plasma
interaction. Plasma Physics and Controlled Fusion, 60(4):044019, 2018. doi:
10.1088/1361-6587/aab05a.

[23] J. Nikl, M. Jirka, M. Kuchařík, M. Holec, M. Vranic and S. Weber. The effect of
pre-plasma formed under the non-local transport conditions on the interaction
of the ultra-high intensity laser with a solid target. In Research using Extreme
Light: Entering New Frontiers with Petawatt-Class Lasers IV , volume 11039 of
Proc. of SPIE , page 110391E. 2019. doi:10.1117/12.2522450.

76



[24] M. Zhao, A. Chankin and D. Coster. Kinetic simulations of electron heat flux
in the scrape-off layer. Nuclear Materials and Energy, 12:819–824, 2017. ISSN
23521791. doi:10.1016/j.nme.2017.01.025.

[25] K. Falk, M. Holec, C. J. Fontes, C. L. Fryer, C. W. Greeff, H. M. Johns, D. S.
Montgomery, D. W. Schmidt and M. Šmíd. Measurement of preheat due to nonlo-
cal electron transport in warm dense matter. Physical Review Letters, 120(2):1–5,
2018. doi:10.1103/PhysRevLett.120.025002.

[26] R. L. Liboff, R. S. Berry, J. L. Birman and H. E. Stanley. Kinetic Theory: Clas-
sical, Quantum, and Relativistic Descriptions. Graduate Texts in Contemporary
Physics. Springer-Verlag, third edition edition, 2003. ISBN 0-387-95551-8. doi:
10.1007/b97467.

[27] N. N. Bogoliubov. Problems of a Dynamical Theory in a Statistical Physics. In
J. DeBoer and G. E. Uhlenbeck, editors, udies in Statistical Mechanics. North-
Holland, 1962.

[28] I. P. Shkarofsky, T. W. Johnston and M. P. Bachynski. The particle kinetics of
plasmas. Addison-Wesley, London, 1966.

[29] P. Kulhánek. Úvod do teorie plazmatu. AGA, 2011.

[30] P. Degond and B. Lucquin-Desreux. The Fokker-Planck asymptotics of the Boltz-
mann collision operator in the Coulomb case. Mathematical Models and Methods
in Applied Sciences, 02(02):167–182, 1992. doi:10.1142/S0218202592000119.

[31] T. J. Boyd, T. J. M. Boyd and J. J. Sanderson. The physics of plasmas. Cam-
bridge University Press, 2003. ISBN 0521452902.

[32] P. Mulser and D. Bauer. High Power Laser-Matter Interaction, volume 238 of
Springer Tracts in Modern Physics. Springer Berlin Heidelberg, 2010. ISBN
978-3-540-50669-0. doi:10.1007/978-3-540-46065-7.

[33] Y. T. Lee and R. M. More. An electron conductivity model for dense plasmas.
Physics of Fluids, 27(5):1273, 1984. doi:10.1063/1.864744.

[34] P. L. Bhatnagar, E. P. Gross and M. Krook. A model for collision processes
in gases. I. Small amplitude processes in charged and neutral one-component
systems. Physical Review, 94(3):511–525, 1954. doi:10.1103/PhysRev.94.511.

[35] W. Manheimer, D. Colombant and A. Schmitt. Analytic insights into nonlocal
energy transport. I. Krook models. Physics of Plasmas, 25(8):082711, 2018. doi:
10.1063/1.5039530.

[36] W. Manheimer, D. Colombant and V. Goncharov. The development of a Krook
model for nonlocal transport in laser produced plasmas. I. Basic theory. Physics
of Plasmas, 15(8):1–10, 2008. doi:10.1063/1.2963078.

77



[37] T. W. Johnston. Cartesian tensor scalar product and spherical harmonic ex-
pansions in Boltzmann’s equation. Physical Review, 120(4):1103–1111, 1960.
doi:10.1103/PhysRev.120.1103.

[38] S. Chandrasekhar. Brownian motion, dynamical friction, and stellar dynamics.
Reviews of Modern Physics, 21(3):383–388, 1949. doi:10.1103/RevModPhys.21.
383.

[39] S. Childress. An introduction to theoretical fluid mechanics, volume 19. American
Mathematical Society, 2009.

[40] F. Wu, R. Ramis and Z. Li. A conservative MHD scheme on unstructured La-
grangian grids for Z-pinch hydrodynamic simulations. Journal of Computational
Physics, 357:206–229, 2018. doi:10.1016/j.jcp.2017.12.014.

[41] R. M. More, K. H. Warren, D. A. Young and G. B. Zimmerman. A new quotidian
equation of state (QEOS) for hot dense matter. Physics of Fluids, 31(10):3059,
1988. doi:10.1063/1.866963.

[42] C. Cranfill and R. M. More. IONEOS: A Fast, Analytic Ion Equation-of-State
Routine. Technical Report LA–7313–MS, Los ALamos Scientific Laboratory,
1978.

[43] J. F. Barnes. Statistical atom theory and the equation of state of solids. Physical
Review, 153(1):269–275, 1967. doi:10.1103/PhysRev.153.269.

[44] R. Feynman, N. Metropolis and E. Teller. Equations of State of Elements Based
on the Generalized Fermi-Thomas Theory. Physical Review, 75(10), 1949.

[45] A. J. Kemp and J. Meyer-ter-Vehn. An equation of state code for hot dense
matter, based on the QEOS description. Nuclear Instruments and Methods in
Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associ-
ated Equipment, 415(3):674–676, 1998. doi:10.1016/S0168-9002(98)00446-X.

[46] S. Faik, M. M. Basko, A. Tauschwitz, I. Iosilevskiy and J. A. Maruhn. Dynamics
of volumetrically heated matter passing through the liquid–vapor metastable
states. High Energy Density Physics, 8(4):349–359, 2012.

[47] T. A. Heltemes and G. A. Moses. BADGER v1.0: A Fortran equation of state
library. Computer Physics Communications, 183(12):2629–2646, 2012. doi:10.
1016/j.cpc.2012.07.010.

[48] J. Abdallah Jr, G. Kerley, B. Bennett, J. Johnson, R. Albers and W. Hueb-
ner. HYDSES: a subroutine package for using Sesame in hydrodynamic codes.
Technical Report LA-8209, Los Alamos Scientific Lab., NM (USA), 1980.

[49] G. T. SESAME report on the Los Alamos equation-of-state library. Technical
Report LALP-83-4, Los Alamos National Laboratory, Los Alamos, 1983.

78



[50] S. P. Lyon and J. D. Johnson. Sesame: the Los Alamos National Laboratory
equation of state database. Technical Report LA-UR-92-3407, Los Alamos Na-
tional Laboratory, Los Alamos, NM, 1992.

[51] M. Zeman, M. Holec and P. Váchal. HerEOS: A framework for consistent treat-
ment of the Equation of State in ALE hydrodynamics. Computers and Mathe-
matics with Applications, 2018. doi:10.1016/j.camwa.2018.10.014.

[52] M. Zeman. Thermodynamically Consistent Interpolation of the Equation of State
for Hydrodynamic Calculations. Bachelor’s project, FJFI ČVUT v Praze, 2016.

[53] R. Courant and D. Hilbert. Methods of mathematical physics. Wiley, 1953.

[54] D. Enskog. The numerical calculation of phenomena in fairly dense gases. Arkiv
Mat. Astr. Fys, 16(1):1–60, 1921.

[55] S. Chapman, T. G. Cowling and D. Burnett. The mathematical theory of non-
uniform gases. Cambridge University Press, third edition edition, 1990. ISBN
052140844X.

[56] E. M. Epperlein and R. W. Short. A practical nonlocal model for electron heat
transport in laser plasma. Phys. Fluids B, 3(1991):3092–3098, 1991. doi:10.1063/
1.859789.

[57] J. J. Bissell, C. P. Ridgers and R. J. Kingham. Super-Gaussian transport theory
and the field-generating thermal instability in laser–plasmas. New Journal of
Physics, 15(2):025017, 2013. doi:10.1088/1367-2630/15/2/025017.

[58] A. V. Brantov and V. Y. Bychenkov. Nonlocal transport in hot plasma.
Part I. Plasma Physics Reports, 39(9):698–744, 2013. doi:Doi10.1134/
S1063780x13090018.

[59] C. P. Ridgers, R. J. Kingham and A. G. R. Thomas. Magnetic Cavitation and the
Reemergence of Nonlocal Transport in Laser Plasmas. Physical Review Letters,
100(7):075003, 2008. doi:10.1103/PhysRevLett.100.075003.

[60] J. Nikl. Some aspects of numerical methods for laser plasma hydrodynamics.
Master’s thesis, FJFI ČVUT v Praze, 2017.

[61] M. D. Rosen, D. W. Phillion, V. C. Rupert, W. C. Mead, W. L. Kruer, J. J.
Thomson, H. N. Kornblum, V. W. Slivinsky, G. J. Caporaso, M. J. Boyle and
K. G. Tirsell. The interaction of 1.06 µm laser radiation with high Z disk targets.
Physics of Fluids, 22(10):2020, 1979. doi:10.1063/1.862501.

[62] A. Sunahara, J. A. Delettrez, C. Stoeckl, R. W. Short and S. Skupsky. Time-
dependent electron thermal flux inhibition in direct-drive laser implosions. Phys-
ical Review Letters, 91(9):950031–950034, 2003. doi:10.1103/PhysRevLett.91.
095003.

79



[63] A. R. Bell, R. G. Evans and D. J. Nicholas. Elecron energy transport in steep tem-
perature gradients in laser-produced plasmas. Physical Review Letters, 46(4):243–
246, 1981. doi:10.1103/PhysRevLett.46.243.

[64] T. H. Kho and M. G. Haines. Nonlinear Kinetic Transport of Electrons and
Magnetic Field in Laser-Produced Plasmas. Physical Review Letters, 55(8):825–
828, 1985. doi:10.1103/PhysRevLett.55.825.

[65] L. Drska, J. Limpouch and R. Liska. Fokker-Planck simulations of ultrashort-
pulse laser-plasma interactions. Laser and Particle Beams, 10(3):461–471, 1992.
doi:10.1017/S0263034600006704.

[66] M. K. Prasad and D. S. Kershaw. Stable solutions of nonlocal electron heat trans-
port equations. Physics of Fluids B: Plasma Physics (1989-1993), 3(11):3087–
3091, 1991. doi:http://dx.doi.org/10.1063/1.859995.

[67] G. Schurtz, S. Gary, S. Hulin, C. Chenais-Popovics, J. C. Gauthier, F. Thais,
J. Breil, F. Durut, J. L. Feugeas, P. H. Maire, P. Nicola??, O. Peyrusse,
C. Reverdin, G. Soulli??, V. Tikhonchuk, B. Villette and C. Fourment. Re-
visiting nonlocal electron-energy transport in inertial-fusion conditions. Physical
Review Letters, 98(9):3–6, 2007. doi:10.1103/PhysRevLett.98.095002.

[68] A. Bendib, J. F. Luciani and J. P. Matte. An improvement of the nonlocal heat
flux formula. Physics of Fluids, 31(4):711, 1988. doi:10.1063/1.866806.

[69] P. D. Nicolaï, J. L. A. Feugeas and G. P. Schurtz. A practical nonlocal model
for heat transport in magnetized laser plasmas. Physics of Plasmas, 13(3):1–14,
2006. doi:10.1063/1.2179392.

[70] J. R. Albritton, E. A. Williams, I. B. Bernstein and K. P. Swartz. Nonlocal
electron heat transport by not quite Maxwell-Boltzmann distributions. Physical
Review Letters, 57(15):1887–1890, 1986. doi:10.1103/PhysRevLett.57.1887.

[71] V. Y. Bychenkov, W. Rozmus, V. T. Tikhonchuk and A. V. Brantov. Nonlocal
electron transport in a plasma. Physical Review Letters, 75(24):4405–4408, 1995.
doi:10.1103/PhysRevLett.75.4405.

[72] D. Del Sorbo, J.-L. Feugeas, P. Nicolaï, M. Olazabal-Loumé, B. Dubroca and
V. Tikhonchuk. Extension of a reduced entropic model of electron transport to
magnetized nonlocal regimes of high-energy-density plasmas. Laser and Particle
Beams, 34(03):412–425, 2016. doi:10.1017/S0263034616000252.

[73] A. Colaïtis. Multiscale Description of the Laser-Plasma Interaction, Application
to the Physics of Shock Ignition in Inertial Confinement Fusion. Ph.D. thesis,
Université de Bordeaux, France, 2015.

[74] M. Holec. Nonlocal Transport Hydrodynamic Modeling of Laser Heated Plasmas.
Doctoral thesis, FJFI ČVUT v Praze, 2016.

80



[75] D. Mihalas and B. W. Mihalas. Foundations of Radiation Hydrodynamics. Oxford
University Press, 1984. ISBN 0195034376.

[76] G. Pomraning. Equations of Radiation Hydrodynamics. Pergamon Press, 1973.

[77] R. Lokasani, H. Kawasaki, Y. Shimada, M. Shoji, K. Anraku, T. Ejima,
T. Hatano, W. Jiang, S. Namba, J. Nikl, M. Zeman, G. O’Soullivan, T. Hi-
gashiguchi and J. Limpouch. Soft X-ray spectral analysis of laser produced
molybdenum plasmas using fundamental and second harmonics of a Nd:YAG
laser. Optics Express, 27(23):33351–33358, 2019. doi:10.1364/OE.27.033351.

[78] R. Sigel, K. Eidmann, F. Lavarenne and R. F. Schmalz. Conversion of laser
light into soft x rays. Part I: Dimensional analysis. Physics of Fluids B: Plasma
Physics, 2(1):199–207, 1990. doi:10.1063/1.859528.

[79] N. Vaytet, M. González, E. Audit and G. Chabrier. The influence of frequency-
dependent radiative transfer on the structures of radiative shocks. Journal of
Quantitative Spectroscopy and Radiative Transfer , 125:105–122, 2013. doi:10.
1016/j.jqsrt.2013.03.003.

[80] J. Castor. Radiation hydrodynamics. Cambridge University Press, New York,
2004. ISBN 0511231334.

[81] J. Nikl, M. Holec, M. Zeman, M. Kuchařík, J. Limpouch and S. Weber. Macro-
scopic laser-plasma interaction under strong non-local transport conditions for
coupled matter and radiation. Matter and Radiation at Extremes, 3:110–126,
2018. doi:10.1016/j.mre.2018.03.001.

[82] G. L. Olson, L. H. Auer and M. L. Hall. Diffusion, P1, and other approximate
forms of radiation transport. Journal of Quantitative Spectroscopy and Radiative
Transfer , 64(6):619–634, 1999. doi:10.1016/S0022-4073(99)00150-8.

[83] C. D. Levermore and G. C. Pomraning. A flux-limited diffusion theory. Astro-
physical Journal, 248:321, 1981.

[84] G. N. Minerbo. Maximum entropy Eddington factors. Journal of Quantita-
tive Spectroscopy and Radiative Transfer , 20(6):541–545, 1978. doi:10.1016/
0022-4073(78)90024-9.

[85] Y. Raizer and Y. Zeldovich. Physics of Shock Waves and High-Temperature
Hydrodynamic Phenomena. Dover Publications, New York, 2002.

[86] N. J. Turner and J. M. Stone. A Module for Radiation Hydrodynamic Calcula-
tions With ZEUS-2D Using Flux-Limited Diffusion. The Astrophysical Journal
Supplement Series, 135(1):30, 2001. doi:10.1086/321779.

[87] C. C. Ober and J. N. Shadid. Studies on the accuracy of time-integration meth-
ods for the radiation-diffusion equations. Journal of Computational Physics,
195(2):743–772, 2004. doi:10.1016/j.jcp.2003.10.036.

81



[88] J. Morel. Diffusion-limit asymptotics of the transport equation, the P1/3
equations, and two flux-limited diffusion theories. Journal of Quantita-
tive Spectroscopy and Radiative Transfer , 65(5):769–778, 2000. doi:10.1016/
S0022-4073(99)00148-X.

[89] D. S. Kershaw. Flux Limiting Nature’s Own Way: A New Method for Numerical
Solution of the Transport Equation. Lawrence Livermore National Laboratory,
UCRL-78378 , 1976. doi:10.2172/104974.

[90] C. Levermore. Relating Eddington factors to flux limiters. Journal of Quanti-
tative Spectroscopy and Radiative Transfer , 31(2):149–160, 1984. doi:10.1016/
0022-4073(84)90112-2.

[91] S. Chandrasekhar. Radiative transfer . Dover Publications, New York, 1960.

[92] M. Holec, J. Limpouch, R. Liska and S. Weber. High-order discontinuous
Galerkin nonlocal transport and energy equations scheme for radiation hydrody-
namics. International Journal for Numerical Methods in Fluids, 83(10):779–797,
2017. doi:10.1002/fld.4288.

[93] I. Babuška and M. Suri. On Locking and Robustness in the Finite Element
Method. SIAM Journal on Numerical Analysis, 29(5):1261–1293, 1992. doi:
10.1137/0729075.

[94] J. C. Ragusa, J. L. Guermond and G. Kanschat. A robust S N-DG-approximation
for radiation transport in optically thick and diffusive regimes. Journal of Com-
putational Physics, 231(4):1947–1962, 2012. doi:10.1016/j.jcp.2011.11.017.

[95] J. C. Chai, H. S. Lee and S. V. Patankar. Ray effect and false scattering in
the discrete ordinates method. Numerical Heat Transfer, Part B: Fundamentals,
24(4):373–389, 1993. doi:10.1080/10407799308955899.

[96] B. Hunter and Z. Guo. Numerical smearing, ray effect, and angular false scatter-
ing in radiation transfer computation. International Journal of Heat and Mass
Transfer , 81:63–74, 2015. doi:10.1016/j.ijheatmasstransfer.2014.10.014.

[97] R. O. Castro and J. P. Trelles. Spatial and angular finite element method for
radiative transfer in participating media. Journal of Quantitative Spectroscopy
and Radiative Transfer , 157:81–105, 2015. doi:10.1016/j.jqsrt.2015.02.008.

[98] S. Eliezer. The interaction of high-power lasers with plasmas. IOP Publishing
Ltd, 2002. ISBN 0750307471.

[99] M. Born and E. Wolf. Principles of optics: Electromagnetic Theory of Propa-
gation, Interference and Diffraction of Light. Cambridge University Press, 7th
edition, 1999. ISBN 0521642221. doi:10.1016/S0030-3992(00)00061-X.

[100] T. B. Kaiser. Laser ray tracing and power deposition on an unstructured
three-dimensional grid. Physical Review E , 61(1):895–905, 2000. doi:10.1103/
PhysRevE.61.895.

82



[101] A. Colaïtis, G. Duchateau, P. Nicolaï and V. Tikhonchuk. Towards modeling of
nonlinear laser-plasma interactions with hydrocodes : The thick-ray approach.
Physical Review E , 89(3):033101, 2014. doi:10.1103/PhysRevE.89.033101.

[102] J. Velechovský. Numerické metody modelování laserového plazmatu. Master’s
thesis, FJFI ČVUT v Praze, 2011.

[103] Y. A. Kravtsov. Complex rays and complex caustics. Radiophysics and Quantum
Electronics, 10(9-10):719–730, 1971. doi:10.1007/BF01031601.

[104] Y. A. Kravtsov and P. Berczynski. Gaussian beams in inhomogeneous me-
dia: A review. Studia Geophysica et Geodaetica, 51(1):1–36, 2007. doi:
10.1007/s11200-007-0002-y.

[105] R. Ramis, K. Eidmann, J. Meyer-Ter-Vehn and S. Hüller. MULTI-fs - A computer
code for laser-plasma interaction in the femtosecond regime. Computer Physics
Communications, 183(3):637–655, 2012. doi:10.1016/j.cpc.2011.10.016.

[106] Y. V. Afanas’ev, N. N. Demchenko, O. N. Krokhin, V. B. Rosanov, Y. V. Afanas,
N. N. Demchenko, O. N. Krokhin and V. B. Rosanov. Absorption and reflection
of laser radiation by a dispersing high-temperature plasma. Sov. Phys. JETP.,
45:90, 1977.

[107] J. Nikl, M. Kuchařík, J. Limpouch, R. Liska and S. Weber. Wave-based
laser absorption method for high-order transport–hydrodynamic codes. Ad-
vances in Computational Mathematics, 45(4):1953–1976, 2019. doi:10.1007/
s10444-019-09671-3.

[108] Y. V. Afanas’ev, E. G. Gamalii, N. N. Demchenko, O. N. Krokhin and V. B.
Rozanov. Theoretical study of the hydrodynamics of spherical targets taking the
refraction of the laser radiation into account. J. Exp. Theor. Phys., 52(3):425–
431, 1980.

[109] T. Kapin, M. Kuchařík, J. Limpouch and R. Liska. Hydrodynamic simulations
of laser interactions with low-density foams. Czechoslovak Journal of Physics,
56:B493–B499, 2006.

[110] J. Velechovský. Modelování absorpce laserového záření v plazmatu (Modelling of
laser radiation absorption in plasma). Bachelor project, FJFI ČVUT v Praze,
2009.

[111] A. Colaïtis, G. Duchateau, X. Ribeyre, Y. Maheut, G. Boutoux, L. Antonelli,
P. Nicolaï, D. Batani and V. Tikhonchuk. Coupled hydrodynamic model for laser-
plasma interaction and hot electron generation. Physical Review E - Statistical,
Nonlinear, and Soft Matter Physics, 92(4):1–5, 2015. doi:10.1103/PhysRevE.92.
041101.

83



[112] I. G. Lebo, N. N. Demchenko, A. B. Iskakov, J. Limpouch, V. B. Rozanov and
V. F. Tishkin. Simulation of high-intensity laser-plasma interactions by use of the
2D Lagrangian code "ATLANT-HE". Laser and Particle Beams, 22(3):267–273,
2004.

[113] P. Nicolaï, J. L. Feugeas, T. Nguyen-Bui, V. Tikhonchuk, L. Antonelli, D. Batani
and Y. Maheut. Effect of nonthermal electrons on the shock formation in a laser
driven plasma. Physics of Plasmas, 22(4), 2015. doi:10.1063/1.4917472.

[114] M. M. Basko and I. P. Tsygvintsev. A hybrid model of laser energy deposi-
tion for multi-dimensional simulations of plasmas and metals. Computer Physics
Communications, 214(6):59–70, 2017.

[115] J. Nikl, M. Kuchařík, M. Holec and S. Weber. Curvilinear high-order Lagrangian
hydrodynamic code for the laser-target interaction. In S. Coda, J. Berndt,
G. Lapenta, M. Mantsinen, C. Michaut and S. Weber, editors, Europhysics Con-
ference Abstracts – 45th EPS Conference on Plasma Physics, volume 42A, page
P1.2019. European Physical Society, 2018. ISBN 979-10-96389-08-7.

[116] MFEM: Modular finite element methods library. <https://mfem.org>. doi:
10.11578/dc.20171025.1248.

[117] E. Livne and A. Glasner. A Finite Difference Scheme for the Heat Conduction
Equation. Journal of Computational Physics, 66(1):59–66, 1985. ISSN 00219991.
doi:10.1016/0021-9991(85)90156-1.

[118] V. Dobrev, T. Kolev and R. Rieben. High-order curvilinear finite element meth-
ods for lagrangian hydrodynamics. SIAM Journal on Scientific Computing,
34(5):B606–B641, 2012. doi:10.1137/120864672.

[119] E. Caramana, D. Burton, M. Shashkov and P. Whalen. The Construction of
Compatible Hydrodynamics Algorithms Utilizing Conservation of Total Energy.
Journal of Computational Physics, 146(1):227–262, 1998. doi:10.1006/jcph.1998.
6029.

[120] M. Kuchařík. Arbitrary Lagrangian-Eulerian ( ALE ) Methods in Plasma Physics.
Doctoral thesis, FJFI ČVUT v Praze, 2006.

[121] R. Liska and M. Kuchařík. Arbitrary Lagrangian Eulerian method for compress-
ible plasma simulations. In J. Donea, A. Huerta, J.-P. Ponthot and A. Rodríguez-
Ferran, editors, Proceedings of Equadiff 11 , pages 213–222. 2007.

[122] F. Brezzi and M. Fortin. Mixed and Hybrid Finite Element Method. Springer,
New York, 1991.

[123] P. Lesaint and P. A. Raviart. On a Finite Element Method for Solving the
Neutron Transport Equation. Mathematical aspects of finite elements in partial
differential equations, 33:89–123, 1974.

84



[124] M. Kuchařík, J. Limpouch, R. Liska and J. Nikl. Hydrodynamic simulations of
laser/plasma interactions via ALE methods. In Europhysics Conference Abstracts
– 46th EPS Conference on Plasma Physics, volume 43C, page P5.2009. European
Physical Society, 2019. ISBN 979-10-96389-11-7.

[125] J. A. Stamper, E. A. McLean and B. H. Ripin. Studies of spontaneous magnetic
fields in laser-produced plasmas by Faraday rotation. Physical Review Letters,
40(18):1177–1181, 1978. doi:10.1103/PhysRevLett.40.1177.

[126] I. V. Igumenshchev, A. B. Zylstra, C. K. Li, P. M. Nilson, V. N. Goncharov and
R. D. Petrasso. Self-generated magnetic fields in direct-drive implosion experi-
ments. Physics of Plasmas, 21(6):062707, 2014. doi:10.1063/1.4883226.

[127] E. M. Epperlein and R. W. Short. Nonlocal electron transport in the presence
of high-intensity laser irradiation. Physical Review E , 50(2):1697–1699, 1994.
doi:10.1103/PhysRevE.50.1697.

[128] A. Marocchino, M. Tzoufras, S. Atzeni, A. Schiavi, P. D. Nicolaï, J. Mallet,
V. Tikhonchuk and J.-L. Feugeas. Comparison for non-local hydrodynamic
thermal conduction models. Physics of Plasmas, 20(2):022702, 2013. doi:
10.1063/1.4789878.

[129] J. Nikl, M. Kuchařík and S. Weber. Modelling of the non-local transport of energy
in laser plasmas with high-order numerical methods. In Europhysics Conference
Abstracts – 46th EPS Conference on Plasma Physics, volume 43C, page P5.2010.
European Physical Society, 2019. ISBN 979-10-96389-11-7.

[130] J. Nikl, I. Göthel, M. Kuchařík, S. Weber and M. Bussmann. Implicit re-
duced Vlasov–Fokker–Planck–Maxwell model based on high-order mixed ele-
ments. Journal of Computational Physics, 2020. Submitted.

[131] A. G. R. Thomas, R. J. Kingham and C. P. Ridgers. Rapid self-magnetization
of laser speckles in plasmas by nonlinear anisotropic instability. New Journal of
Physics, 11(3):033001, 2009. doi:10.1088/1367-2630/11/3/033001.

[132] R. Kingham and A. Bell. An implicit Vlasov–Fokker–Planck code to model non-
local electron transport in 2-D with magnetic fields. Journal of Computational
Physics, 194(1):1–34, 2004. doi:10.1016/j.jcp.2003.08.017.

[133] M. Shashkov and S. Steinberg. Solving Diffusion Equations with Rough Coeffi-
cients in Rough Grids. Journal of Computational Physics, 129(2):383–405, 1996.
doi:10.1006/jcph.1996.0257.

[134] M. Gittings, R. Weaver, M. Clover, T. Betlach, N. Byrne, R. Coker, E. Dendy,
R. Hueckstaedt, K. New, W. R. Oakes, D. Ranta and R. Stefan. The RAGE
radiation-hydrodynamic code. Computational Science & Discovery, 1:015005,
2008. doi:10.1088/1749-4699/08/015005.

85



[135] J. Sanz, R. Betti, V. A. Smalyuk, M. Olazabal-Loume, V. Drean, V. Tikhonchuk,
X. Ribeyre and J. Feugeas. Radiation hydrodynamic theory of double ablation
fronts in direct-drive inertial confinement fusion. Physics of Plasmas, 16(8), 2009.
doi:10.1063/1.3202697.

[136] P. S. Epstein. Reflection of waves in an inhomogeneous absorbing medium. Pro-
ceedings of the National Academy of Sciences of the United States of America,
16(10):627, 1930.

[137] J. Limpouch, V. Tikhonchuk, J. Dostal, R. Dudzak, M. Krupka, N. Borisenko,
J. Nikl, A. Akunets, L. Borisenko and V. Pimenov. Characterization of the
homogenization time of a plasma created by laser ionization of a low-density
foam. Plasma Physics and Controlled Fusion, 62(3):035013, 2020. doi:10.1088/
1361-6587/ab6b4d.

86


	1 Introduction
	2 Kinetic theory
	2.1 Collision operator
	2.1.1 Fokker–Planck operator
	2.1.2 Bhatnagar–Gross–Krook operator

	2.2 Velocity moments
	2.2.1 Mass equation
	2.2.2 Momentum equation
	2.2.3 Energy equation

	2.3 Cartesian tensor expansion

	3 Hydrodynamics
	3.1 Multi-specie fluid model
	3.2 One-fluid hydrodynamic model
	3.3 Lagrangian hydrodynamics
	3.4 Equation of state
	3.4.1 Ideal gas
	3.4.2 Quotidian Equation of State
	3.4.3 Other equations of state


	4 Heat transport
	4.1 Diffusion transport
	4.1.1 Diffusion transport in a magnetic field
	4.1.2 Heat flux limiting
	4.1.3 Convolution extension

	4.2 P1/M1 model of non-local transport
	4.3 BGK model of non-local transport

	5 Radiation transport
	5.1 Radiation diffusion
	5.2 Angular moments method
	5.3 Discrete ordinates method

	6 Laser absorption
	6.1 Ray-tracing models
	6.2 Stationary Maxwell's equations

	7 Contributions of the author
	7.1 Lagrangian hydrodynamics
	7.2 Electron non-local transport
	7.2.1 Hydrodynamic closure models
	7.2.2 Vlasov–Fokker–Planck–Maxwell

	7.3 Radiation non-local transport
	7.4 Laser absorption

	8 Conclusions
	List of publications
	References

