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Abstrakt:
V rámci této práce jsou vyvíjeny numerické metody pro 1D a 2D hydrodynamické
kódy. Dvouteplotní popis nevazkou stlačitelnou tekutionou je aplikován v lagrangeov-
ských souřadnicích, kde regularita 2D sítě je dosažena metodou ALE. Model absorpce
laserového záření založený na stacionárních Maxwellových rovnicích je dále zkoumán a
vylepšován pro numerickou robustnost a přesnost metody. Její aplikace do 2D navržená
v rámci minulé práce je vylepšena pro dosažení vyššího řádu metody. Jsou porovnány
sofistikované modely electron–iontových srážkových frekvencí. Schéma vedení tepla je
aplikováno na dvouteplotní model a rozšířeno o teplotní relaxaci. Model nelokálního
transportu záření a elektronů je doplněn o transport iontů. Provedené 1D a 2D nume-
rické simulace jsou analyzovány a porovnány s literaturou.
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Title:
Some aspects of numerical methods for laser plasma hydrodynamics

Abstract:
Numerical methods for the 1D and 2D hydrodynamical codes are developed in the
context of this thesis. Two-temperature description by a non-viscous compressible fluid
is applied in Lagrangian coordinates, where regularity of the 2D mesh is maintained
by the ALE method. The model of laser absorption based on stationary Maxwell’s
equations is studied and improved for numerical robustness and accuracy of the me-
thod. Its application in 2D, that has been developed in the previous academic work, is
improved to attain higher order of the method. Sophisticated models of electron–ion
collision frequencies are compared. The heat conduction scheme is applied on the two-
temperature model and extended by the temperature relaxation. The ion transport is
added to the model of non-local transport of radiation and electrons. Performed 1D
and 2D simulations are analysed and compared with literature.
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Nomenclature
c . . . . . . . . . . . . . . . . . speed of light in vacuum
π . . . . . . . . . . . . . . . . . Archimedes’ constant
e . . . . . . . . . . . . . . . . . elementary charge
A . . . . . . . . . . . . . . . . . relative atomic mass
Z . . . . . . . . . . . . . . . . . average charge state
me . . . . . . . . . . . . . . . . . electron mass
mp . . . . . . . . . . . . . . . . . proton mass
mu . . . . . . . . . . . . . . . . . unified atomic mass unit
mi . . . . . . . . . . . . . . . . . ion mass (mi ≈ Amu)
kB . . . . . . . . . . . . . . . . . Boltzmann constant
h . . . . . . . . . . . . . . . . . Planck constant
~ . . . . . . . . . . . . . . . . . reduced Planck constant
ε0 . . . . . . . . . . . . . . . . . vacuum permittivity
µ0 . . . . . . . . . . . . . . . . . vacuum permeability
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Introduction
Modelling of laser–target interaction is an appealing research topic, finding application
in a large variety of complex physical problems. High expectations are being put to
inertial confinement fusion (ICF) for example, that could solve the everlasting problem
of energy production for whole mankind one day. For this reason, an extensive effort
is made to numerically simulate with great accuracy the involved physical phenomena
in the process of the interaction.

Several widely used approaches in this field of plasma physics include the kinetic
codes, where the dynamics of the system is described in full phase space of spatial coor-
dinates and momentum. The Boltzmann kinetic equation supplied by an appropriate
collision operator governs the evolution of the system. In the context of plasma physics,
Vlasov–Fokker–Planck equation (VFP), including self-consistent electric fields, is most
common [1]. However, solution of the resulting partial differential equation in full seven
dimensions (including the temporal domain) is extremely computationally expensive.
In the limit of dominant collective behaviour of the plasma over the collisional pro-
cesses, Vlasov equation arises. One of the most popular numerical approaches in this
case is particle-in-cell method (PIC) [2]. However, both methods are applicable only on
limited time scales due to high computational demands and they are not suited for the
description of a dense, only partially ionized and highly collisional plasma appearing
locally during the laser–target interaction.

Hydrodynamical simulations then present the most preferred way of the numerical
modelling. The hydrodynamical description fundamentally originate from the velocity
moments of the kinetic equation that form the equations of conservation. An appro-
priate closure model is then employed to close the system of coupled hydrodynamic
equations, that is the equation of state in the case of hydrodynamics. The closed
system of partial differential equations then can be computationally solved by an ap-
propriate numerical scheme. However, two distinct approaches to description of the
physical reality are recognized. The Eulerian approach is essentially a description of
hydrodynamics from the point of view of a stationary external observer. Contrary, the
Lagrangian approach follows the description in the reference frame co-moving with the
fluid. Both points of view on the same physical phenomena are equivalent, but each
of them is used in a different field of hydrodynamics. In the context of laser–target
interaction, Lagrangian description is usually preferred, because the volume changes of
the matter are extreme during the laser ablation and expansion.

Numerically, the computational mesh moves with the fluid, removing completely
the convective part of the equations. The simulation codes following this procedure
are known as Lagrangian hydrodynamical codes. Two codes of this kind are used and
further developed in the context of this thesis. The first one is the 2D simulation code
PALE2, that is being developed at the Department of Physical Electronics [3, 4]. It
is able to perform the simulations in Cartesian and also cylindrical geometry, that es-
sentially approximates full 3D evolution of the system assuming the axial symmetry of
the problem for normal incidence of the laser beam. However, the problems inherent
to the Lagrangian description in 2D naturally arise. The computational mesh is pro-
gressively deformed and can get even entangled at some point. Arbitrary Lagrangian–
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Eulerian (ALE) methods are employed to prevent this pathological effect in the sim-
ulations [5, 6]. They combine the Eulerian and Lagrangian approaches together by
introduction of an artificial velocity of the mesh in the case of the direct ALE or
repetitively perform the Eulerian step in the indirect ALE. PALE2 follows the latter
approach, where highly sophisticated methods ensure the conservation of the quanti-
ties. The two-temperature description of the fluid, i.e. with separate electron and ion
temperatures, is implemented, but only the one-temperature model is available in the
ALE regime. However, the performed simulations later in the thesis show that the
effect on the global evolution of the system is minimal for longer laser pulses.

The second hydrodynamical code is the 1D simulation code PETE. The con-
vective transport within the hydrodynamic simulations is not sufficient to describe
complex transport mechanisms and thus an effort is made to enhance the equations
of hydrodynamics by additional physical models. The most classical extension is the
thermal diffusion, that is also a part of PALE2. However, the unique feature of code
PETE is incorporation of the radiation transport and non-local transport of electrons
as well. The radiation transport is very important part of the laser plasma simu-
lations, especially in the context of ICF [7]. Moreover, the non-locality of the heat
transport has been recognised several decades ago, but proper physical model suitable
for hydrodynamical simulations has remained a stumbling-block and only approximate
convolution models were used [8]. The novel model proposed in [9] solves this problem
by a unified model of transport of electrons and photons, that is numerically solved by
a high-order method based on finite elements, that is remarkably numerically efficient.

This work continues in the development of both codes, where the governing equa-
tions and applied discretization are briefly discussed, but the reader is pointed to the
cited theses and the previous academic work [10], where more details can be found.
However, the need of properly conservative numerical scheme was recognised and hence
a numerical method to attain the conservation of the energy within the non-local trans-
port model is introduced.

The indispensable part of the laser–target interaction simulations is a laser ab-
sorption algorithm. The simple methods of "absorption on critical density", where all
laser power is absorbed at a single point essentially, or WKB approximation, describing
the laser propagation in terms of geometrical optics, were found insufficient for precise
simulations and thus the model based on stationary Maxwell’s equations is employed
and studied [11, 12]. However, the spatial scales appropriate for the laser absorption are
considerably smaller than the hydrodynamical scale. The mesh refinement technique
is improved here and also a new method specifically designed for the finite elements is
proposed and implemented. Moreover, the basic algorithm is only 1D and hence not
usable for 2D simulations. The method for application of it in 2D was developed in
the previous work [13]. This work continues in this effort and the model is extended
by bilinear interpolation, managing higher order of convergence of the method as also
proven by a test problem.

As mentioned already, the physical closure is absolutely necessary for the nu-
merical simulations. The equations of state incorporated in the simulation codes are
briefly reviewed here. The coefficients related to the collision frequency are appearing
at various places in the model and are also a part of this closure. They can be found
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in the energy exchange between electrons and ions, permittivity for the laser absorp-
tion, heat conductivity coefficients and also the extinction coefficients for the non-local
transport. Hence, the model of collision frequency is of a special interest, but the clas-
sical Spitzer-Härm formula [14] is not able to describe the low temperatures regime,
where the ablation starts. More sophisticated models are implemented and compared
here and also the related coefficients are derived from them.

The heat diffusion extension of the hydrodynamical equations is a part of classical
hydrodynamical codes, including PALE2. The numerical scheme based on the method
of mimetic operators was improved to attain the second order convergence in time in the
previous work and it is now also implemented to code PETE to be able to compare the
non-local and diffusion approaches together. Moreover, several heat flux limiters are
implemented and their effects on the simulations are compared. Finally, electron–ion
temperature relaxation is treated numerically and the heat diffusion scheme is applied
on the two-temperature model here.

The unique non-local transport model of the hydrodynamical code PETE is dis-
cussed and the model is enhanced by the ion contribution. The finite element scheme
is modified appropriately as well as the implementation itself. The improved laser ab-
sorption method, mentioned above, is also incorporated transparently. Stabilisation of
the method was found to be beneficial in some cases and a physically based technique
dedicated to this effort is proposed here.

Finally, all numerical methods are evaluated in a numerical experiment, where
an extensive comparison is made including also 1D and 2D simulations in PETE and
PALE2. The results are analysed and discussed here. The accuracy of the models is
verified by a comparison with literature.

The rest of the thesis is organized as follows. Section 1 is dedicated to an overview
of the governing equations of laser plasma hydrodynamics. Section 2 continues by
description of the laser absorption algorithms and section 3 overviews the equations of
state and shows the physical closure of the simulation in general. The heat diffusion
is discussed and numerically solved in section 4. Later, section 5 discusses the non-
local transport model and the respective finite element scheme. Finally, the results of
numerical simulations are presented and analysed in section 6.
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1 Laser plasma hydrodynamics
The foundations of laser plasma hydrodynamics are based on the hydrodynamical
description of the system. Collisional plasma is approximated by a two-temperature
non-viscous compressible fluid, whose dynamics in Lagrangian coordinates (i.e. the
coordinates in the frame co-moving with the fluid) is governed by Euler equations in
the form:

∂ρ

∂t
= −∇ · ~u , (1)

ρ
∂~u

∂t
= −∇(pi + pe) , (2)

ρ
∂εe
∂t

= −pe∇ · ~u , (3)

ρ
∂εi
∂t

= −pi∇ · ~u , (4)

where ρ stands for mass density, pe and pi denote electron and ion pressures, εe and εi
are specific internal energies of electrons and ions and ~u represents the single fluid ve-
locity. Together, the equations form differential conservation laws of mass, momentum,
electron and ion energy respectively. To close the hydrodynamical system, it must be
supplied by an equation of state (EOS). The equations of state included in the simula-
tion codes PETE and PALE2 are reviewed in section 3.1. They provide the necessary
dependence of electron and ion pressures on the density ρ and the specific internal
energies εe and εi. Internally, these relations assume equilibrium two-temperature
thermodynamics and quasi-neutrality condition to relate the number of species.

However, ideal hydrodynamic description is not sufficient for laser–target inter-
action simulations. The full laser plasma non-local transport hydrodynamic model
modifies the energy equations (3), (4) as follows [9]:

ρ

(
∂εe
∂Te

)
ρ

∂Te
∂t

+ ρ

(
∂εe
∂ρ

)
Te

∂ρ

∂t
= −pe∇ · ~u+Gei(Ti − Te)−∇ · (~qe + ~qR)−∇ · ~S ,

(5)

ρ

(
∂εi
∂Ti

)
ρ

∂Ti
∂t

+ ρ

(
∂εi
∂ρ

)
Ti

∂ρ

∂t
= −pi∇ · ~u+Gie(Te − Ti)−∇ · ~qi . (6)

The model introduces electron–ion temperature relaxation between the electron tem-
peratures Te and ion temperatures Ti as described in section 4.4. The non-local heat
fluxes ~qe, ~qi, ~qR were also added for electrons, ions and radiation. Their divergence then
causes deposition of energy at given point and couples the equations with transported
species. The heat fluxes are supplied from the non-local closure presented in section
5. However, classical thermal diffusion can be transparently inserted instead, where
diffusion heat fluxes ~We and ~Wi computed according to section 4 are assigned to ~qe
and ~qi respectively. The ∇ · ~S term performs laser–plasma coupling, depositing energy
of the laser wave and heating up electron species and altering the refraction index of
the plasma in the end. Finally, chain rule was applied on the left hand side, where
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the thermodynamic relations εe(ρ, Te) and εi(ρ, Ti) are supposed to be known from the
equation of state. This procedure allows construction of a single implicit scheme in
temperatures for non-local transport and electron–ion relaxation eventually.

Numerically, the scheme utilizes operator splitting method [15, 16] and the im-
plicit part comprising of the non-local transport or the diffusion are not solved together
with the hydrodynamical part in the computational sequence. Instead, the equations of
ideal hydrodynamics (1–4) are solved separately by an explicit compatible scheme [17].
Predictor–corrector technique is then applied to attain the second order convergence
in temporal domain. However, the scheme is not detailed here, since the 1D version
was largely covered in the previous work [10] and details about the 2D variant, making
the foundations of PALE2 code, can be found in [3].

Important feature of the hydrodynamic scheme that must be noted is conservation
of mass, momentum and energy, that maintains the simulation close to the physical
reality for arbitrarily late times of evolution of the system. The conservation property
is also related to employed staggered spatial discretization. It means that the scalar
potentials (in the sense of general transport equation) like the density ρ, pressures
pe, pi, temperatures Te, Ti, etc. are discretized inside the computational cells and
denoted by integer sub-index. In contrast, vector fluxes like the velocity ~u, heat fluxes
~qe, ~qi, ~qR, etc. are discretized at the cell boundaries and labelled by half-integer sub-
indices as depicted in Figure 1 for 1D. Consequently, central differences can be used
in the transport equations (1–6) and the second order in spatial domain is achieved.
Moreover, Lagrangian computational mesh is used consistently with the Lagrangian
formulation of the equations of hydrodynamics (1–4). The mesh then flows with the
fluid, maintaining the cell masses constant throughout the simulation. The Lagrangian
character is extraordinarily advantageous for simulations, where extreme change of
volumes occurs, as it typically happens during laser–target interaction.

Vj-1/2 Vj+1/2 Vj+3/2

j-1/2              j              j+1/2           j+1           j+3/2

zj zj+1

Figure 1: A schematic visualisation of the staggered spatial discretization in 1D. The
node positions zj and cell volumes Vj+1/2.

A known issue common to all 2D Lagrangian hydrodynamical codes is that the
mesh can get entangled during the simulation, when the flow is turbulent for example.
Arbitrary Lagrangian–Eulerian (ALE) approach then offers a solution for this rudi-
mentary problem [3, 18, 4, 19]. The computational mesh is untangled/smoothed in a
rezone step and the conservative quantities are then remapped on the new mesh. The
ALE method is also useful for maintaining the mesh sufficiently smooth and regular.
Therefore, it is largely utilized when the 2D laser absorption model presented in section
2.2 is employed, which requires sufficiently dense computational mesh in vicinity of the
critical plane.
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1.1 Conservative update of thermodynamic quantities
Conservation of momentum and mass within the hydrodynamical scheme has been
discussed so far. However, conservation of energy was satisfied only for the equations
of energy in ideal hydrodynamics approximation (3), (4), but not for the full laser
plasma non-local transport hydrodynamic model (5), (6). When the operator splitting
technique is applied, the equations without the hydrodynamical part simplify to:

ρ

(
∂εe
∂Te

)
ρ

(
∂Te
∂t

)
split

= Gei(Ti − Te)−∇ · (~qe + ~qR)−∇ · ~S , (7)

ρ

(
∂εi
∂Ti

)
ρ

(
∂Ti
∂t

)
split

= Gie(Te − Ti)−∇ · ~qi . (8)

The time derivatives were labelled by split in order to distinguish them from the full
derivatives, because only an isochoric evolution of the system without the effect of
hydrodynamics is considered here due to the splitting, but the full temporal evolution
is not necessarily isochoric in any mean in general.

As mentioned earlier, the formulation of the equations of energy (7), (8) in tem-
peratures allows the construction of an implicit scheme in temperatures for the non-
local transport and eventually the electron–ion energy exchange, because the non-local
transport closure is also temperature dependent. This approach is beneficial, because
strong coupling between plasma and transported species can be simulated without
restrictions on extremely short time steps. Moreover, thermodynamic quantities pro-
vided by an EOS are functions of density and temperature (see section 3.1), so the
calculation of temperature from internal energy requires inversion of the EOS (i.e. in-
verse equation of state), that is computationally expensive. On the other hand, the
energy conservation is not maintained, when general non-linear dependency of εe or εi
on temperature is considered and the specific heats (∂εe/∂Te)ρ, (∂εi/∂Ti)ρ are treated
as a constant coefficients. Classically, the system should be treated as non-linear in
temperatures and a global system of equations should be constructed, but the resulting
Jacoby matrix can be very large and dense in general due to non-local nature of the
transport. Solution of the linearised system is then computationally expensive and not
feasible in practice. A cure for this problem was developed, that is known as Sym-
metrical Semi-Implicit (SSI) method [20, 21]. The basic idea behind it is to solve the
linearised equations for the non-local contributions and then locally correct the solu-
tion to converge to the non-linear conservative solution. When time discretization is
performed and discrete time levels are denoted by integer upper indices, an auxiliary
intermediate time level n + 1/2 is added and the update of temperatures according
to the equations (7), (8) takes place between the time levels n and n + 1/2 . Then
SSI method performs additional update of temperatures from the level n+ 1/2 to n as
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follows: (
∂εe
∂Te

)n+1/2

ρ

T n+1
e − T n+1/2

e

∆t = βSSI
(
εn+1/2
e − εe(ρ, T n+1/2

e )
)
, (9)

(
∂εi
∂Ti

)n+1/2

ρ

T n+1
i − T n+1/2

i

∆t = βSSI

(
ε
n+1/2
i − εi(ρ, T n+1/2

i )
)
, (10)

where ∆t is the length of the time step in this context and βSSI is a given constant
in the range 0 < βSSI < 1 in order to achieve convergence of the method, but it was
set βSSI = 0.5 for all performed simulations. The discretized specific internal energies
εn+1/2
e and εn+1/2

i are obtained from the update of temperatures through the discretized
equations (7) and (8):

(εn+1/2
e − εne ) =

(
∂εe
∂Te

)n
ρ

(T n+1/2
e − T ne ) , (11)

(εn+1/2
i − εni ) =

(
∂εi
∂Ti

)n
ρ

(T n+1/2
i − T ni ) . (12)

Conservation of energy then holds in ρεe and ρεi, but the scheme can be implicit in
temperatures, that are maintained approximately consistent with the energies without
a need of inversion of EOS. It has been observed that the relative discrepancies are
usually lower than < 10−5 with this method.
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2 Laser absorption
Laser absorption is the main driving force in all laser plasma simulations and thus the
laser absorption algorithm is an indispensable part of all numerical codes of this kind.
Here, we are interested in laser–target interaction, where the target is usually made of
solid material. After the irradiation of such target by a laser beam, highly dense and
collisional plasma is created above the surface.

Inverse Bremsstrahlung is then assumed to be the main absorption mechanism
for (near-)visible laser wavelengths λ0 and particle-in-cell simulations show that inci-
dent beam intensities up to Ilaserλ2

0 . 1017 (W/cm2)µm2, where relativistic and non-
collisional effects can be neglected [22]. During this phenomenon, electrons are being
scattered on heavier ions with collision frequency νei. When considering more general
model and collisions with other (quasi)particles, a general electron momentum loss
collision frequency νe is taken instead. The global models of νe used in the simulation
code are detailed in section 3.2.

The dispersion relation for linear harmonic electromagnetic (EM) waves with
angular frequency ω0 and wave number k takes the form:

ω2
0 = ω2

pe + kc , (13)

where ωpe stands for the electron plasma frequency, that is defined as:

ω2
pe = e2ne

ε0me

. (14)

The symbol ne represents electron density in the given plasma medium in this context.
The resonant condition for the EM wave is then given by ω0 = ωpe. When expressed
in terms of electron density, the critical density of the medium is obtained:

nc = meε0

e2 ω2
0 = 4π2c2meε0

e2λ2
0
, (15)

where λ0 = 2πc/ω0 is the vacuum wavelength of the EM wave. The wave then does
not propagate any further behind this point and is exponentially attenuated according
to Beer-Lambert law near the critical plane in the range of single wavelength or more
specifically in so called penetration depth given by δpen = λ0/(2π χ), where χ = Im n̂.
The complex refraction index n̂ = n+ iχ appearing in the previous expression can be
approximated in a metallic or collisional plasma medium as [23]:

n̂2 = ε̂ = 1−
ω2
pe

ω0(ω0 + iνe)
. (16)

The term incorporating the collision frequency νe explains the statements above,
because the complex relative permittivity ε̂ is dominated by the imaginary part, when
EM wave approaches the critical plane, i.e. ne → nc, ωpe → ω0. Energy is then
deposited into the plasma, this effect is reflected by the divergence of the laser wave
Poynting vector div~S that acts as one of the source terms on the right hand side of the
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energy conservation equation (5) in the hydrodynamical scheme. Power of the laser
wave is then obviously conserved in the scheme, although reflections in plasma can
be taken into account and only a fraction of the incident laser intensity is effectively
absorbed.

The fundamental mechanism of the absorption gives rise to the simplest laser
absorption algorithm denoted as "absorption on critical density". Laser beam is losslesly
propagated through the medium until the critical plane is reached. Then the power of
the incident laser beam is absorbed in first super-critical computational cell. There is
present the total effectivity of the absorption, but its determination is not given self-
consistently in the basic algorithm and must be externally supplied. Overall properties
of the algorithm are poor, because it creates high temperature gradients and fails to
simulate dynamics of the ablation, especially for lower intensities as concluded in the
previous work [13]. However, it is suitable for comparison of different algorithms and
techniques or sufficient for some one-temperature simulations with high fluence lasers
[24].

In this text, different approach is chosen for purposes of detailed one-temperature
and two-temperature simulations. This algorithm is based on the full 1D solution
of Maxwell’s equations in spatial domain that is referred to as Stationary Maxwell’s
Equations (SME) algorithm. Its description is given in section 2.1.

Finally, a technique for application of the absorption code in 2D simulations
was developed. In connection with Arbitrary Langragian-Eulerian (ALE) method for
computational mesh smoothing implemented in PALE2 code [4, 3], it offers a feasible
method for laser plasma simulations. This algorithm is introduced later in section 2.2.

2.1 Stationary Maxwell’s Equations algorithm
In order to solve laser propagation and attenuation in an inhomogeneous medium in
one dimension (1D), a fully wave-based algorithm constructing a complete stationary
EM field is used. This algorithm originates from [25] and has been further enhanced
at the Department of Physical Electronics throughout the years [12, 11]. It essentially
solves Maxwell’s equations in spatial domain assuming that temporal resolution of
hydrodynamical simulations ∼ 1 ps is much lower than a typical laser wave period
∼ 1 fs. Full details of the inference are beyond the scope of this text, but we refer to
some of the key aspects of the algorithm later, so a brief outline of the algorithm is
given.

Not taking into account free currents and charges in the medium following the
quasi-neutrality closure of hydrodynamic equations, macroscopic Maxwell’s equations
can be written as:

∇× ~E + ∂ ~B

∂t
= 0 , ∇ · ~B = 0 ,

∇× ~H − ∂ ~D

∂t
= 0 , ∇ · ~D = 0 ,

(17)

where ~D and ~H represents electric displacement field and magnetic field intensity
respectively. Note that the notations of complex and real valued fields are not distin-
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guished for brevity of the text, but the complex valued fields are used henceforth and
the real valued fields can be obtained as the real part of them. Provided scalar relative
complex permittivity ε̂ (16) and relative magnetic permeability µ ≈ 1, the following
holds for electric and magnetic fields:

~B = µ0 ~H , ~D = ε0ε̂ ~E . (18)

Substituting these relations back to (17) and considering planar wave propagating
along z axis, i.e. ~E = (Ex, 0, 0), ~H = (0, Hy, 0) and ∂ ~E/∂x = 0, ∂ ~E/∂y = 0, ∂ ~H/∂x =
0, ∂ ~H/∂y = 0, the temporal evolution of the fields in 1D is described by the system:

∂Ex
∂z

+ µ0
∂Hy

∂t
= 0 ,

∂Hy

∂z
+ ε̂ε0

∂Ex
∂t

= 0 .
(19)

Harmonic temporal evolution of the fields is then assumed in the form:

Ex = E(z)e−iω0t , Hy = H(z)e−iω0t . (20)

Substituting the fields definition (20) back to (19) and eliminating H = H(z)
from both equations, the Helmholtz equation is obtained:

∂2E

∂z2 = −ω
2
0
c2 ε̂E . (21)

When considering ε̂ homogeneous for the moment, this linear second-order ordi-
nary differential equation in spatial domain has the well-known solution composed of
two oppositely propagating planar waves with E = E(z) expressed as follows:

P (z) = P0e
−ikz , R(z) = R0e

ikz , (22)

where the wave number is k = ω0
c

√
ε̂ = k0

√
ε̂.

The first term in (22) is the incident wave and the second one is the reflected
wave, where the constants P0 and R0 are determined by boundary conditions. The
Helmholtz equation (21) then can be decomposed into the system of first-order ordinary
differential equations governing the propagation of each of the waves:

∂P

∂z
+ ikP = 0 , (23)

∂R

∂z
− ikR = 0 . (24)

The complete EM field then can be expressed as a superposition of these wavesE = R + P ,
H =

√
ε0/µ0

√
ε̂(R− P ).

The (complex) coefficient of reflection is defined as the ratio of both waves, i.e.
V = R/P . Complementary, the quantity A = 1/4|P |2 = 1/4PP ∗ is introduced.
The system (23), (24) then can be transformed to the new set of variables V and A
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as follows:

∂V

∂z
− i2kV = 0 , (25)

∂A

∂z
+ i2k0χA = 0 . (26)

The system is also formed of linear complex ordinary differential equations with the
formal solution similar to (22):

V (z) = V0e
i2kz , A(z) = A0e

−i2k0χz . (27)

However, the resulting real time-averaged Poynting vector is of the main interest
here as mentioned in the introduction of this section. It is defined as:

~S = 1
4( ~E × ~H∗ + ~E∗ × ~H) , Sz = 1

4(ExHy
∗ + Ex

∗Hy) . (28)

With some effort, Sz can be rewritten in terms of V and A as [11]:

Sz = A(n(|V |2 − 1)− 2χIm V ) . (29)

Piecewise constant approximation of n̂ is then assumed, justifying the constant
ε̂ in the inference. Note that this is in a good agreement with the spatial staggered
discretization used in the hydrodynamical scheme (see section 1), because it can be ob-
served that n̂ calculated from (16) is a function of only central quantities (i.e. constant
within computational mesh cell) and it must be naturally central too. Unlike a com-
putational mesh cell that poses a homogeneous medium, nodes represent step optical
interfaces. The reflection coefficient coefficient V is discretized in a conformal way on
them, where left and right values on each node are evaluated. Also the coefficient A is
discretized in the same manner. Using the waves formulas (27), the relations connect-
ing values A and V on the opposing sides of the cells are derived [11]. Another set of
relations is obtained from the application of interface conditions on the mesh nodes,
i.e. continuity of transverse components of E and H. Together the relations form a
complete system of equations for A and V provided that their respective values are
known at least at some point. This piece of information is supplied by two boundary
conditions in 1D (or initial conditions from the point of view of ordinary differential
equations for A and V ). The first one is the value of A on the right boundary of the
absorption area zmax, where A(zmax) is equal to the intensity of the laser beam Ilaser,
because the definition of A coincides with the Poynting vector (29) in vacuum. The
second restriction is applied on V , which is supposed to vanish at some point referred
to as zmin. The procedure to estimate the position of zmin is based on proper calcu-
lation of the penetration depth δpen behind the critical plane at zc. This leads to the
requirement implicitly defining zmin:

ω0

2πc

∫ zc

zmin

Im
√
ε̂ > Czmin

, (30)
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where Czmin
is an arbitrary constant set to Czmin

= 4 in all presented simulations. The
left boundary condition is then V (zmin) = 0. The global layout is depicted in Figure 2.

zmin zC zmax

intensity

incident wave

reflected wave
A=IlaserV=0

Figure 2: A schematic representation of the spatial configuration in SME algorithm.

The algorithm proceeds as follows: values of V are calculated from zmin node
by node until zmax is reached. In contrast, A is propagated from zmax in the opposite
direction. When all values of A and V are computed, Poynting vector Sz is finally
calculated from the values according to (29). Its divergence div~S = ∂Sz/∂z appearing
in the electron energy equation (5) is then calculated using central finite difference,
that is:

(div~S)j+1/2 = (Sz)j+1 − (Sz)j
zj+1 − zj

, (31)

using the index notation of section 1.
Some remarks to the algorithm should be given. Firstly, despite that some sim-

plifications were assumed, the algorithm still remains highly accurate and reconstructs
complete EM field, so it outperforms the "absorption on critical density" algorithm or
often used WKB approximation [26]. Secondly, it is completely self-consistent unlike
the other two algorithms and thus it does not need any other relations than a model of
permittivity ε̂ and does not end up in vicinity of the critical density like WKB and "ab-
sorption on critical density", that have to be supplied by the total reflectivity/efficiency
coefficient.

Because of the wave nature of the algorithm, it can also model stationary waves
in front of the critical plane originating from interference of the incident and reflected
wave. To demonstrate this phenomena, following profiles of quantities were used in a
solely laser absorption simulation:

ne(z) = ne0 + (neNC
− ne0)

exp(−10 z−z0
zNC
−z0 )− 1

exp(−10)− 1 , (32)

Te(z) = Ti(z) = T0 + (TNC
− T0)

exp(−10 z−z0
zNC
−z0 )− 1

exp(−10)− 1 . (33)

Quantities Te and Ti are electron and ion temperatures respectively. The following
parameters has been set:

z0 = 0 µm , zNC
= zmax = 5 µm , ne0 = 6nc , neNC

= 0.2nc ,
T0 = 10 eV , TNC

= 100 eV , Z = 13 , A = 27 ,
(34)
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where z0 and zNC
are boundaries of the computational domain. Intensity of the incident

laser beam was set Ilaser = 1 (in relative units due to linearity of the absorption
mechanism). Vacuum wavelength of the laser was λ0 = 1.04 µm in correspondence to
the numerical simulations in section 6 (the base frequency is taken here). The resulting
profiles of quantities are plotted in Figure 3 for different number of equidistantly placed
computational cells NC .
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Figure 3: Comparison of laser absorption for different number of computational cells
NC .

The stationary waves formation is clearly visible there. However, some peaks
are undersampled for lower number of cells and some disappear totally. Especially for
the lowest number of cells, the curve of intensity seems to be smooth and one may
be mistakenly convinced of its validity assuming operation of the algorithm in a limit
of small waves with respect to computational cells. Unfortunately, this is not true
and the algorithm can completely fail, because each wave must be sufficiently sampled
due to wave nature of the algorithm. As closer investigation of the plot reveals, total
reflectivity of the medium changes with the number of cells. Moreover, it is altered by
the movement of the mesh during the simulation.

This phenomenon was imitated by displacing all inner mesh nodes up to one
half of their mutual distance, i.e. 1/2(zNC

− z0)/NC . Resulting dependence of total
reflectivity on the displacement is shown in Figure 4. The reflectivity clearly depend on
the displacement and this effect increases for more severe undersampling. Besides that,
there is visible dependency on the size of the computational cells. The algorithm clearly
converges to a single solution for high NC , but relatively slowly. These dependencies
lead to creation of artificial spatial frequencies and other negative effects generally
known as aliasing.
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Figure 4: Dependence of total reflectivity on displacement of the computational nodes
(maximal displacement was 1/2(zNC

− z0)/NC , full image was obtained by periodical
prolongation of the curves).

2.1.1 Mesh refinement

In order to minimize the artefacts recognised in the previous section, which in some
cases overgrow real profiles, the following fix was developed. It consists of linear recon-
struction or interpolation of the temperature (electron and ion), density and ionization
profiles onto a sub-mesh and consequent laser absorption on it. Finally, computed
values are projected on the original computational mesh and used instead of the di-
rectly calculated ones. This approach is computationally significantly less expensive
than refining the main mesh. However, the dependence on cell size and position of
computational nodes is not removed completely.

The piecewise linear reconstruction/interpolation has been chosen for both sim-
ulation codes, providing convenient results together with reliability and reasonable
computational costs. Interpolation method is used for the 2D simulation code PALE2
as described in section 2.2. On the other hand, reconstruction method is preferred
in case of the code PETE, where higher intensities occur and Arbitrary Lagrangian–
Eulerian method (ALE) is not available to smooth the computational mesh [4, 3, 19].
Under these conditions, the reconstruction is more reliable as discussed below.

Equidistant refinement is applied in both codes in the absorption area 〈zmin, zmax〉.
In case of 1D code PETE, a reasonable criterion based on Nyquist–Shannon sampling
theorem is made (the notation of discretized functions follows section 1):

λ0/Re
√
ε̂j+1/2/(xj+1 − xj) ≥ CSME > 2 . (35)

The value of the constant CSME is then chosen with respect to balance of computational
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costs and performance of the algorithm. The constant was typically set to CSME = 10,
since spatial variation of ε̂ is not taken into account in the formula and the most of
the computational time is usually spent on non-local transport algorithm presented in
section 5.

Mesh refinement for SME algorithm was proposed in [11]. Central quantity f is
approximated by a piecewise linear function as:

funlimj+1/2 (x) = fj+1/2 +
(
∂f

∂x

)unlim
j+1/2

(x− xj+1/2) . (36)

Term
(
∂f/∂x

)unlim is an approximation of the spatial derivative using central difference:(
∂f

∂x

)unlim
j+1/2

= fj+3/2 − fj−1/2

xj+3/2 − xj−1/2
. (37)

The piecewise linear function constructed this way clearly keeps the integral value
over each cell same as the original piecewise constant function (i.e.

∫ xj+1
xj

funlimj+1/2 (x) dx =
fj+1/2(xj+1− xj)). This property is extraordinarily beneficial in regions of steep gradi-
ents, where position of the gradient is approximately kept in place. When used in the
context of laser absorption, if this condition is not met it can lead to a deformation of
the intensity distribution and total reflectivity as shown in Figure 5.
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Figure 5: A typical effect of the intensity profile deformation occurring with the inter-
polation method compared to the reconstruction method in simulation code PETE.

However, the reconstructed function can create new local extrema. This phe-
nomenon can lead to creation of numerical instabilities in the simulations. In order to
avoid this behaviour, the approximation of the derivative needs to be limited. Barth–
Jespersen limiter is employed in this case [27]. The limited approximation of the
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derivative then takes the form:(
∂f

∂x

)
j+1/2

= ΦBJ
j+1/2

(
∂f

∂x

)unlim
j+1/2

, (38)

where ΦBJ
j+1/2 = min{ΦBJ

j+1/2,j,ΦBJ
j+1/2,j+1}. The nodal limiters are defined as follows:

ΦBJ
j+1/2,j =



min
(

1, fmax
j+1/2−fj+1/2

funlim
j+1/2 (xj)−fj+1/2

)
funlimj+1/2 (xj)− fj+1/2 > 0

min
(

1, fmin
j+1/2−fj+1/2

funlim
j+1/2 (xj)−fj+1/2

)
funlimj+1/2 (xj)− fj+1/2 < 0

1 funlimj+1/2 (xj)− fj+1/2 = 0

. (39)

Terms fmaxj+1/2 and fminj+1/2 are given for each computational cell as:

fminj+1/2 = min{fj−1/2, fj+1/2, fj+3/2} , fmaxj+1/2 = max{fj−1/2, fj+1/2, fj+3/2} . (40)

The limiter ensures that local extrema fmaxj+1/2 and fminj+1/2 are not exceeded by
the reconstructed function inside the particular cell j + 1/2. The limited approxima-
tion of the derivative (38) then replaces the "unlimited" one in (36) and the limited
reconstruction of the function is obtained finally.

2.1.2 Refinement on the finite elements

The mesh refinement algorithms presented so far are based on the staggered spatial
discretization used for the hydrodynamical scheme in section 1. However, simulation
code PETE includes the non-local transport model presented in section 5, that has the
numerical scheme constructed with finite element method (FEM). One of the quanti-
ties discretized on the finite elements is electron temperature, that naturally also plays
major role in the laser absorption, since the refraction index n̂ is strongly dependent on
it according to (16) and section 3.2. The idea of further mesh refinement is to utilize
these degrees of freedom of the finite elements to refine the mesh, because increasing of
the spatial order of the elements is computationally significantly less expensive than in-
creasing the number of cells of the main mesh. Unlike the reconstruction/interpolation
methods, the degrees of freedom of the finite elements actually contain additional in-
formation about the temperature profile and gradients of hydrodynamical quantities
are not smeared when the spatial order is increased.

However, the laser absorption algorithm can still operate only on the basis of
piecewise constant functions and thus a projection method must be constructed. Fol-
lowing the notation of section 5.2, the spatial basis of electron temperatures is denoted
as ξ and the discrete representation of electron temperatures inside the element as Te.
The segments of the refined mesh inside the elements are denoted as V ∆

j and their
number is equal to the number of degrees of freedom of the element NTe from the rea-
sons explained later. The segments are equidistantly spaced, but eventually different
approach can be used instead. The piecewise constant approximated temperatures are
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written as T∆
e .

The key property of the projection is the conservation on each segment j:∫
V ∆

j

Te dx ≈
∫
V ∆

j

(T∆
e )j dx = (T∆

e )j
∥∥∥V ∆

j

∥∥∥ =
∑
l

(Te)l
∫
V ∆

j

ξl dx =
∫
V ∆

j

ξT ·Te dx . (41)

Dividing the equation by the segment volume
∥∥∥V ∆

j

∥∥∥, the projection matrix P is obtained:

(T∆
e )j =


∫
V ∆

j
ξl dx∥∥∥V ∆
j

∥∥∥

jl

(Te)l = Pjl(Te)l . (42)

The projection matrix must be calculated using numerical integration in gen-
eral, but it is invariant to cell scaling in 1D and thus it is normally calculated only
at the beginning of the simulation, lowering the computational costs this way. Using
the relation (42), discrete temperatures on the segments are determined and the laser
absorption algorithm with optional reconstruction and further mesh refinement is per-
formed. The Poynting vector divergences are computed and the process of projection
on refined mesh must be reversed. Since the absorbed power of the laser is supposed
to remain unchanged, conservative projection is preferred even in the reverse direc-
tion. Moreover, consistency of the projections shall be maintained. Hence, the inverse
projection is used:

div S = P−1 · div S∆ , (43)

where div S and div S∆ represent the discretized ∇ · ~S term in the FEM scheme
and in the laser absorption algorithm respectively. The projection matrix must be
rectangular in order to has the inverse and this criterion enforces the same number
of the segments and degrees of freedom as stated before. Regularity is then evident
from the construction of the matrix (42). Finally, it must be noted that differential
absorption within the computational cells leads to discontinuities of temperatures under
some circumstances, even though the Discontinuous Galerkin Finite Elements (DG
FEM) converge in the mean values. This problem is addressed later in the section
about stabilisation of the method (5.2.1).

2.2 Extension to two dimensions
The algorithm based on SME presented in section 2.1 is directly implemented in the
1D simulation code PETE. However, it cannot be directly extended into 2D, because
the full stationary solution of Maxwell’s equations poses an extremely computationally
expensive task there. Simpler approaches are usually preferred like the "absorption on
critical density" algorithm, but it inherits the disadvantages of 1D version mentioned
in the introduction. Another feasible solution are the ray–tracing algorithms, which
simplify the task by means of geometrical optics. Propagation and reflection of finite
number of rays is computed resulting in a final laser absorption estimation. Algo-
rithms of this kind are being developed at the Department of Physical Electronics [28],
but they are not able to smoothly reproduce the gradients of intensity under certain
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circumstances.
Hence, a different approach is followed instead. It is directly based on the SME

algorithm presented in section 2.1, but only 1D description is used, assuming that the
rays impinge the target perpendicularly. This condition has a limited validity, because
tightly focused lasers cannot be simulated this way and an effect of the mechanism of
resonance absorption is underestimated. On the other hand, the simulations with wider
laser focus have usually only slightly deformed profile of the critical plane (see section 6)
and the incident rays are almost perpendicular. The cornerstone of the method based
on 1D SME is a global mapping algorithm that maps the necessary quantities for
the 1D laser absorption algorithm from the main computational mesh on an auxiliary
mesh. This algorithm with originally piecewise constant interpolation of the quantities
was developed in the previous work [13]. Here, the algorithm is extended to use a
bilinear interpolation on the main mesh to improve the spatial resolution within the
laser absorption scheme. However, the functions on the auxiliary mesh remain piecewise
constant in order to maintain consistency with the SME algorithm.

The first step of the algorithm is construction of the auxiliary mesh that is sim-
ilarly to section 2.1 denser than the main mesh in order to sample sufficiently the
stationary laser waves. More precisely, the algorithm requires the following properties
of the mesh:

1. the auxiliary mesh must fully cover the main mesh,

2. it is rectangular,

3. there can be no more than one mesh node of the main mesh in each cell of the
auxiliary mesh.

Especially the last point is difficult to satisfy within the mesh generator. The algorithm
basically averages the positions of the main mesh nodes and the last condition is checked
additionally. The ratio of the number of auxiliary cells per approximately one main
cell is fixed (referred to as the refinement factors later). However, the number of
auxiliary mesh cells can reach enormous number of several millions of computational
cells. Although the computational costs related to the auxiliary cells are minimal
compared to the main mesh cells, an effort is made to minimize their number.

One optimization is to generate the mesh only in the absorption area. Following
the notation of section 2.1, the minimal value of zmin given by (30) is determined on
the whole 2D mesh in terms of cell indices and then the main mesh is "cut" along the
minimal index. The mesh generator then operates on a mesh with a decreased number
of the cells.

Another improvement of the algorithm is reduction of the number of cells in a
corona. Unlike the previous technique, this one is performed within the 1D SME laser
absorption algorithm itself. The cells of the auxiliary mesh are checked from the top,
whether they satisfy the sampling condition (35). The procedure lowers the upper
limit of the absorption area zmax, until the first cell satisfying the condition is reached.
Provided that the real part of refraction index n is approximately monotone along the
z axis as well as the sizes of computational cells, a continuous domain is obtained by
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the process. It must be noted that the reflection coefficient V is not calculated on the
new boundary from the Fresnel equations with vacuum on the top side, but rather the
reflection coefficient is set V = 1, because the corona is continuing there in fact. This is
a reasonable condition and the transition between the vacuum condition and this one
is negligible, because the quantities are only slowly varying at the end of the corona
and the refraction index is naturally close to n̂ ≈ 1.

Figure 6: Detail of divergence of the Poynting vector and full image of laser intensity
computed by the algorithm on the refined computational mesh with ≈ 3 · 106 cells (the
refinement factors are 10 in axial and 5 in radial direction). The plot is taken from
the 2D simulation performed in section 6 at time t = 300 ps. The Lagrangian mesh is
outlined by the black lines and also the critical plane highlighted by the white dashed
line.

The main difference between the piecewise bilinear and constant version of the
algorithm is that the bilinear interpolation method uses the dual mesh, i.e. the mesh
composed of cell centres of the main mesh. The reason for this is that the interpolation
method is supposed to be consistent with the original functions at the cell centres (or
rather cell centroids, i.e. geometrical centres). Hence, there appears another difficulty,
because the upper boundary in the simulation is formed by the top nodes and edges
of the main mesh. In order to follow exactly identical boundary, an additional layer of
cells must be added to the dual mesh.

After the generation of the mesh, the algorithm proceeds similarly to the orig-
inal version described in the previous work [13]. Parallelization of the code is ben-
eficial even in this case, utilizing several processor cores for computation of the in-
tersections of the main and the auxiliary cells. In addition to the computation of
the volumes of the created intersections, there is incorporated another step in the
algorithm, that calculates the centroids of the intersections. The procedure is very
similar to the computation of the volumes ‖V ∧‖ =

∫
V ∧ 1 dx dy of the intersections (in

Cartesian coordinates x, y and analogously in cylindrical coordinates), but integrals∫
V ∧ x dx dy and

∫
V ∧ y dx dy are calculated instead. The integrals are additive in the

integration domain and thus contributions of all parts of the decomposed intersection
area into primitives are summed together similarly to the volumes and the centroids
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~x∧c = (x∧c , y∧c ) = (
∫
V ∧ x dx dy/

∫
V ∧ 1 dx dy,

∫
V ∧ y dx dy/

∫
V ∧ 1 dx dy) are obtained. Due

to simplicity and similarity with the computation of the volumes, the full procedure is
not detailed here.

The main difference of both methods resides in the interpolation and the map-
ping of the quantities. In the case of the piecewise constant interpolation, the values
of mapped quantities on the intersections of the main and auxiliary mesh are directly
determined by the value on the main mesh cell, in which the intersection is located.
However, the situation is more complicated for the bilinear interpolation. The interpo-
lated function on the main mesh f = f(~x) is projected onto each of the intersections
V ∧ by the point value at its centroid ~x∧c . This projection is close to the mean value
projection and both are identical for linear functions (f ′ denotes the first derivative,
provided that it exists on V ∧):
∫
V ∧
f(~x) d~x ≈

∫
V ∧
f(~xc) + f ′(~xc)(~x− ~xc) d~x =

= (f(~xc)− f ′(~xc)~xc)
∥∥∥V ∧∥∥∥+ f ′(~xc)

∫
V ∧
~x d~x = f(~xc)

∥∥∥V ∧∥∥∥ . (44)

Hence, the projection is in a good agreement with the bilinear interpolation, that
degenerates into a linear interpolation along each of the edges of the cell. Since the
gradients of mapped quantities usually correlate with the shape of the Lagrangian mesh
and also taking into account that the auxiliary cells are several times smaller than the
cells of the dual mesh, the projection is highly accurate even in the interior of the cells
with respect to integral values.

In order to evaluate f(~x∧c ), the vector in parametric space of bilinear planes (~α, ~β)
(~α = (α0, α1, α2, α3)T , ~β = (β0, β1, β2, β3)T ) is determined at the beginning of the
mapping. The area of the cell can be described using logical coordinates (ζ, η), ζ, η ∈
〈0, 1〉 as:

x = α0 + α1ζ + α2η + α3ζη , (45)
y = β0 + β1ζ + β2η + β3ζη . (46)

Ordering the nodes ~x0, ~x1, ~x2, ~x3 counter-clockwise and requiring that the nodes corre-
spond to the logical coordinates (0, 0), (1, 0), (1, 1), (0, 1) respectively, the linear system
for the parameters ~α, ~β is obtained:

1 0 0 0
1 1 0 0
1 1 1 1
1 0 1 0




α0 β0

α1 β1

α2 β2

α3 β3

 =


~xT0

~xT1

~xT2

~xT3

 . (47)

27



After inverting the system, the parameters are explicitly given as:
1 0 0 0
−1 1 0 0
−1 0 0 1

1 −1 1 −1




~xT0

~xT1

~xT2

~xT3

 =


α0 β0

α1 β1

α2 β2

α3 β3

 . (48)

When the plane is parametrized, points (x, y) can be transformed to logical co-
ordinates (ζ, η). The system (45), (46) is formally rewritten into the more convenient
form:  α1 α2

β1 β2


 ζ

η

 =

 x− α0 − α3ζη

y − β0 − β3ζη

 . (49)

The quadratic system can degenerate into many distinct forms and not all cases are
discussed here for brevity of the text, but one can find broader analysis for example in
[29]. The most important division is whether the coefficients α3 or β3 are zero. When
both coefficients are zero, then the system becomes purely linear. It must be noted that
an appropriate tolerance in this condition is used due to finite precision of computation.
If only one of the coefficients is (near-)zero, then there is only one quadratic equation
and the next step is skipped. In the most general case, both coefficients are non-zero
and the system is reduced as follows: α1β3 − β1α3 α2β3 − β2α3

α1β3 + β1α3 α2β3 + β2α3


 ζ

η

 =

 (x− α0)β3 − (y − β0)α3

(x− α0)β3 + (y − β0)α3 − 2α3β3ζη

 .

(50)
This system is formed of only one quadratic equation and one linear equation and it is
symmetrical in ~α, ~β. The notation is united with the degenerated form, where α3 or β3
was (near-)zero, by assigning the elements on the left hand side to a11 . . . a22, constant
terms on the right hand side to b1, b2 and the quadratic coefficient to d. Relative
positions are x̄ = x− α0 and ȳ = y − β0.

Assuming that the linear part of the system (50) has a solution, the substitution
into the quadratic equation is made and the quadratic equation for ζ or η is obtained:

(−a11d)ζ2 + (+a21a12 − a22a11 + db1)ζ + (a22b1 − a12b2) = 0 , (51)
(−a12d)η2 + (−a21a12 + a22a11 + db1)η + (a21b1 − a11b2) = 0 . (52)

In this form, the determinant of the matrix of the left hand side of (50) appears in
the central part. This is unfortunate, because nearly degenerated systems have small
values of β3 or α3 and consequently d. Hence, the equations is rewritten as:

(−α1β3 + β1α3)ζ2 + (−α1β2 + α2β1 + x̄β3 − ȳα3)ζ + (x̄β2 − ȳα2) = 0 , (53)
(−α2β3 + β2α3)η2 + (+α1β2 − α2β1 + x̄β3 − ȳα3)η + (x̄β1 − ȳα1) = 0 . (54)
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One may observe that these equations hold even in the degenerated cases, where β3 or
α3 are (near-)zero, and only the determinant of the original system (49) appears in the
central part. One of the quadratic equations is then solved and the value of the other
variable is obtained from the linear equation. Both procedures are mathematically
equivalent, but the quadratic equation with larger discriminant is preferred numerically.

Also solution of a given quadratic equation must be treated carefully from the
numerical point of view. The coordinate system within this procedure is translated
to (α0, β0), normalized to (α1, β2) and rotated by 45 degrees in order to minimize the
number of degenerated cases, because the Lagrangian mesh is very often close to a
rectangular mesh. Vieta’s formulas are used to calculate one of the roots [30] and also
Newton’s method is eventually employed to increase the precision of the found root.

When the logical coordinates (ζ, η) has been calculated, the values of the inter-
polated function f = f(x, y) = f̄(ζ, η) are given as follows [18]:

f̄(ζ, η) = f0(1− ζ)(1− η) + f1ζ(1− η) + f2ζη + f3(1− ζ)η , (55)

where the values f0 . . . f3 are the known values at the nodes ~x0 . . . ~x3.
The final values of the mapped quantities in the auxiliary cells are then calculated

as the volume-weighted average of all values inside the intersections with the dual mesh.
The inverse process then uses a weighted average too, but the contribution of given
node of the dual mesh to equation (55) are taken into account in addition to the
volumes.

2.2.1 Test problem

A test problem was designed to verify the properties of the interpolation methods pre-
sented in section 2.2. The function f test(x, y) = sin

(√
x2 + y2

)
is interpolated by the

piecewise constant and piecewise bilinear methods on randomly perturbed (maximally
half of the inter-node distance) equidistant rectangular meshes with the same number
of nodes along each axis Nx = Ny. Cartesian geometry was used in both cases and
the automatically generated auxiliary mesh had the ratio of the number of cells to the
number of cells of the main mesh N r along each axis. The original rectangular mesh
was 〈0, 5π/4〉 × 〈0, 5π/4〉. An example is depicted in Figure 7. The grid functions on
the main mesh were obtained by point projection at the centroids of respective cells.

In order to estimate the error of the interpolation, discrete L1 and L2 errors were
calculated from the discrepancies of the values of the interpolated function f(x, y) and
the analytical function f test(x, y) at the centroids (xajl

c , y
ajl
c ) of the auxiliary cells ajl

with the volumes ‖V ajl‖:∥∥∥f test − f∥∥∥a
L1

=
∑
jl

∣∣∣f test(xajl
c , yajl

c )− f(xajl
c , yajl

c )
∣∣∣‖V ajl‖ , (56)

∥∥∥f test − f∥∥∥a
L2

=
√√√√∑

jl

∣∣∣f test(xajl
c , y

ajl
c )− f(xajl

c , y
ajl
c )

∣∣∣2‖V ajl‖ . (57)

Series of numerical experiments were performed comparing the interpolation
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Figure 7: Interpolated function sin
(√

x2 + y2
)
on randomly perturbed rectangular

mesh with the number of nodes Nx = Ny = 10. The piecewise constant interpolation
method was used on the left and the piecewise bilinear interpolation method is on the
right. The main mesh is plotted by a full line and centroids of the intersections with
the auxiliary mesh are represented by points. The ratio of the number of auxiliary cells
to the main cells was N r = 5 in both axes.

methods, where the number of nodes of the main mesh varied and also different values
of the ratio N r were used. The resulting L1 and L2 errors are plotted in Figure 8 and
Figure 9 respectively. In order to obtain each of the points, 10 randomly perturbed
main meshes were generated and the mean values are taken. The standard deviation
was at least one order of magnitude lower than the nominal value in all cases.
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L 1
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r

Nr = 5 const.
Nr = 10 const.
Nr = 5 bilin.
Nr = 10 bilin.

Figure 8: L1 error of the interpolation methods (const. – piecewise constant, bilin.
– piecewise bilinear) in the test problem versus the number of nodes of the main
computational mesh along each axis Nx = Ny. The ratio of the number of auxiliary
cells to the number of cells of the main mesh along each axis is denoted as N r.
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The results show superiority of the piecewise bilinear method compared to the
piecewise constant interpolation method. The piecewise constant interpolation achieves
only the first order convergence in L1 norm and approximately one half in L2 norm, but
it must be noted that the total number of cells of the main mesh isNc = (Nx−1)(Ny−1)
and this method cannot utilize them effectively. The spatial analysis of the errors
reveals that the errors are approximately increasing toward the symmetry axis of the
first quadrant as can be predicted, because the sizes of the cells along the gradient of the
function f test effectively increases and the method losses the accuracy rapidly. On the
other hand, the piecewise bilinear interpolation reaches the second order of convergence
in L1 and also L2 errors. Moreover, the absolute values of errors are lower in all cases
compared to the piecewise constant interpolation and also the spatial distribution of
the errors is more homogeneous.
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Figure 9: L2 error of the interpolation methods (const. – piecewise constant, bilin.
– piecewise bilinear) in the test problem versus the number of nodes of the main
computational mesh along each axis Nx = Ny. The ratio of the number of auxiliary
cells to the number of cells of the main mesh along each axis is denoted as N r.
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3 Physical closure
The physical closure is a necessary part of the simulation code. In the case of hydrody-
namical simulations, it includes the equation of state that provides enclosing relations
for the conservation laws (1), (2), (5), (6) in order to obtain self-consistent model that
can be solved numerically. It relates thermodynamic state variables with appropriate
potentials and other derived quantities. The primary quantity of the interest here is
the pressure that appears in the equation of momentum (2) and energy (3), (4). Also
heat capacities are of a great importance for the temperature based models in section
4, 5. Used equations of state are shortly described in section 3.1.

Another part of the closure model are relations for the transport coefficients and
temperature relaxation coefficients as well as other quantities derived from collision
frequency. We prefer a global model of ion and electron collision frequencies most of
the time, that are then consistently used for the calculation of the previously mentioned
coefficients. The model of electron collision frequency is presented in section 3.2. Later,
the relations for electron–ion exchange coefficients are introduced in section 3.3. Heat
conductivity coefficient is then derived in 3.4 for electrons. The extinction coefficient of
electrons used in the non-local transport model (see section 5) are presented in section
3.5. Similarly, description of ion collision frequency is given in section 3.6 and it is
followed by inference of ion heat conductivity coefficient in section 3.7. Finally, the
extinction coefficient of ions are presented in section 3.8.

3.1 Equations of state
In the simulation code PALE2, there are four different equations of state available, ideal
gas, SESAME, QEOS and BADGER. Simulation code PETE is designed similarly,
providing SESAME, BADGER and eventually FEOS equations of state.

SESAME is a representative of tabulated equations of state. It in fact consists
of vast number of discrete data points obtained experimentally in the Los Alamos
National Laboratory[31, 32, 33]. These values are then interpolated in temperatures
and densities.

The quotidian equation of state (QEOS) is historically one of the most popular
analytical models used for hydrodynamic simulations. Conceptually, the equation of
state consists of three parts integrated into the single model by the expression for
Helmholtz free energy [34]:

Ftot(ρ, Te, Ti) = Fi(ρ, Ti) + Fe(ρ, Te) + Fb(ρ, Te) (58)

The electron contribution Fe is primarily based on the Thomas–Fermi theory for elec-
trons [35]. The term Fb represents the semi-empirical bonding corrections [36] that
effectively lower the total pressure at solid densities and give correct values of bulk
modulus. The ion fluid represented by Fi term is described by liquid and solid scaling
laws and by the Cowan model [37].

Later, the model was implemented in the library MPQeos [38]. It was then further
extended in FEOS package, where proper treatment of mixtures has been added, cold
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curve has been improved and also liquid–vapour phase coexistence area is calculated
rigorously [39].

Finally, BADGER is a feature rich library offering various models for construc-
tion of the equation of state [40]. The ion equation of state is based on QEOS, but
scaled binding energies (SBE) model is used instead of the empirical fitting constants.
Electron ionization model has been separated from the electron equation of state in the
library and three different models are available. The classical Thomas–Fermi model
is one of the options, where electrons are treated as a continuum surrounding a nu-
cleus. In contrast, there are also Screened Hydrogenic with l-splitting (SHM) and also
individual electron accounting (IEM) models, that treat electrons discretely as a part
of the quantum system of atom. The electron equation of state takes into account
free electrons as well as bound electrons, which are classically neglected. Coulomb
interaction and charge screening are then calculated between all species.

In practice, the equations of state are tabulated and interpolated to accelerate
the computation [41]. Although QEOS, BADGER and FEOS are analytical models,
direct calculations are computationally demanding, especially in 2D.

3.2 Electron collision frequency
Collision frequencies are one of the most important parts of the closure of the numerical
scheme. Electron–ion collision frequency first appeared in the definition of ε̂ (16), that
is a cornerstone of the laser absorption model. Later in section 3.4, it also determines
the diffusion coefficients for the heat diffusion scheme introduced in section 4. Likewise,
it governs the electron–ion energy exchange rate coefficients presented in section 3.3,
which effectively drive heating of ions during the ablation process. However, notion
of momentum loss collision frequency and energy loss collision frequency must be
distinguished. The first one describes momentum transfer during scattering of particles
and the latter one models transfer of energy along the trajectory of a given particle.
In order to clarify the description, quantities related to energy transfer are denoted by
ε in upper index in following sections.

For purposes of the hydrodynamical scheme, a global model of collision frequency
is needed. It must cover wide range of temperatures from room temperature to ap-
proximately ∼ 10keV. Moreover, densities ranging from a solid to a corona must
be included. In the limit of ideal plasma, classical Spitzer–Härm approximation of
electron–ion momentum loss collision frequency holds [14]:

νSH = 4
3
√

2π Z e4mene
(mekBTe)3/2 ln Λ , (59)

where ln Λ symbolically represents Coulomb logarithm. Classically defined in plasma
as ln Λ = ln bmax/bmin, the logarithm declines to near-zero values for low temperatures
(∼ 10 eV) and the whole theory fails in this area (bmax ≈ bmin). In order to prevent
this behaviour and provide at least partially physically relevant predictions, Coulomb
logarithm has been extended in work of Lee and More [42]. The modified form of the
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Coulomb logarithm can be written as follows:

ln Λ = max(2, ln
√

1 + (bmax/bmin)2) , (60)

bmax =

√
kBT/me

max(ωpe, ω0) , (61)

bmin = max
(
Ze2

kBT
,

~√
mekBT

)
. (62)

The maximum impact parameter bmax is derived from the Debye screening length
vTe/ωpe including the effect of high frequency laser EM field ω0 & ωpe, where vTe =√
kTe/me is thermal velocity of electrons. Minimal impact parameter bmin originates

from the larger of the classical normal angle deflection limit or de Broglie wavelength
~/(mevTe).

In the case of momentum transfer, collision frequency is usually dominated by
electron–ion collisions, especially for high-Z materials. This can be read from a linear
Z-dependence of νSH (59). The electron–electron momentum loss collision frequency is
approximated for high temperatures by the formula (in CGS units with temperatures
in eV)[43]:

νel-el = 7.7 · 10−6 ne

T
3/2
e

ln Λee [s−1] , (63)

with Coulomb logarithm for electron–electron collisions given as:

ln Λee = max
(
10, 23.5− ln(n1/2

e T−5/4
e )− (10−5 + (lnTe − 2)2/16)1/2

)
. (64)

Unlike electron–ion collision frequency (59), there is no additional dependence on Z in
(63).

Collisions between electrons are then well approximated in the model by the
correction factor g(Z) [44]:

ν̃SH = g(Z)νSH = 1.0 + 0.24Z
0.24(Z + 0.24)νSH . (65)

The modified collision frequency ν̃SH then approaches for high temperatures approxi-
mately the sum of νSH and νel-el as can be noticed in Figure 10. The difference of both
functions for low temperatures is mainly caused by the different Coulomb logarithms
for electron–ion and electron–electron collisions.

Electron–electron collisions are contributing even for cold material, where the
dependence ∼ T 2

e is known, but these effects are mainly of the interest for ultra-short
laser pulses [45], because electron–phonon interaction (described below) prevails for
higher temperatures [46].

For temperatures approximately under Fermi temperature that is defined as
TF = (3π2ne~3)2/3/(2mekB), plasma no longer consists of free electrons and electron
degeneracy must be taken into account. Typical values of Fermi temperature are about
∼ 1− 10 eV for metals and the value is 11.7 eV for Aluminium for example [47]. More-
over, electron–phonon interaction is participating, when ion temperature is under the
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Figure 10: Momentum loss collision frequency as function of temperature (T = Te = Ti)
obtained from different models. Aluminium with density of solid (% = 2.7 g/cm3) is
considered with mean ionization Z = 2.5. The fitting constants are taken from section
3.4.

melting point. Electrons are being scattered by phonons, i.e. lattice vibrations quanta.
According to [22], collision frequency in the limit of a cold solid is:

νel-phonon = 2kS
e2kBTi
~2vF

, (66)

where vF denotes Fermi velocity vF = ~ 3
√

3π2ne/me. The multiplicative empirical
constant kS allows adapting the model to experimental data (see below). It should be
also noted that the linear dependency of the collision frequency on temperature for low
temperatures is macroscopically meaningful, because it results in a constant thermal
conductivity coefficient as it is shown in section 3.4.

The previous two collisional frequencies νSH and νel-phonon, both valid for different
range of temperatures, are then interpolated on the whole range by a harmonic mean:

ν−1
KS = ν−1

SH + ν−1
el-phonon . (67)

One may observe that the model maintains the same limits (see Figure 11), because
νel-phonon diverges for high temperatures and thus νSH dominates and vice versa. How-
ever, the model overestimates collision frequencies for intermediate temperatures. This
issue has been addressed in [22] by a plausible criterion:

νKS < ve/r0 = ve

(
3
4πni

)1/3

, (68)
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where ve =
√
v2
F + kBTe/me is the characteristic velocity of electrons, which approaches

Fermi velocity vF for low temperatures and thermal velocity kBTe/me in a hot plasma.
The expression (68) states essentially that the mean free path given by ve/νKS is not
allowed to be shorter than the typical inter-atomic distance in the medium r0. The
resulting model as well as the criterion are depicted in Figure 11.

Only electron–ion or electron–phonon interactions were considered for laser ab-
sorption by Inverse Bremsstrahlung in section 2. However, electron–electron correction
can be applied for the purposes of heat conduction by using ν̃SH (65) instead of νSH
in the definition of νKS (67). The modified collision frequency is denoted by ν̃KS. The
application of the criterion (68) then can be justified by the fact that the classical the-
ory of elastic electron–electron collisions does not hold for the region of temperatures
near the Fermi temperature.

In order to obtain the value of kS mainly for optical purposes, one can utilise
bulk reflectivity of the material. Reflectivity coefficient (for normal incidence) is given
by:

R =
∣∣∣∣∣ n̂− 1
n̂+ 1

∣∣∣∣∣
2

. (69)

The complex refraction index n̂ is evaluated from (16). This procedure brings for
example the value kS = 9.4 for Aluminium in the visible range [22]. For comparison,
the value for Copper is kS .= 435 with the parameters λ0 = 2πc/ω0 = 0.266 µm,
Z = 4.4, A = 63.5, % = 8.94 g/cm3, R = 0.34, T = 0.0258 eV [48, 47].
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Figure 11: Collisional frequency as function of temperature (T = Te = Ti) obtained
from different models. Aluminium with density of solid (% = 2.7 g/cm3) is considered
with mean ionization Z = 2.5 and wavelength of the laser irradiation λ0 = 1.05 µm.

The preceding paragraph shows that the value of kS significantly varies for differ-
ent materials and parameters. Values of a few hundreds are usual, which rises questions
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about validity of the model. Another issue is the sharp cut-off by in fact ad hoc cri-
terion or weak dependence on the laser wavelength. These points have been addressed
later in the model based on Drude–Sommerfeld theory [26, 49]. Ion temperature de-
pendence has been completely removed from the model and ions are assumed to be
static. However, the linear dependency on temperature, in this case electron temper-
ature, in solids remains and it is attributed to properly treated electron degeneracy
instead of electron–phonon scattering. Modifications to Coulomb scattering are made
for slow electrons with velocities v satisfying Ze2/(~v) ≥ 1 [50]. The model then allows
to properly estimate the collision frequency depending on both, electron temperature
Te and laser wave angular frequency ω0. Furthermore, the model covers warm dense
matter (WDM) regime, where (~vTe/(Ze2))(mev

2
Te/(~ω0)) = mev

3
Te/(Ze2ω) < 1 and of

course Spitzer regime, where the opposite holds. However, ~ω0/(mev
2
Te) < 1 holds for

most of the time, because only the (near-)visible range laser wavelengths are considered
here. The interpolated formula takes the form:

νDS = 2
√

2π Ze4ne

m
1/2
e (kBTe)3/2

ln
1 + kDS

1.32√
2π

kBTe

(m1/2
e Ze2 max(ω0, ωpe))2/3

F (Te, ~ω0) .

(70)
The Fermi factor F (Te, ~ω0) is obtained from exact averaging over the Fermi–Dirac
distribution (denoted by 〈·〉):

F (Te, ~ω) =
√
π

2

〈
vTe
v

〉
= 3

(
vTe
vF

)3

ln


1 + exp

(
µ

kBTe

)

1 + exp
(
µ− ~ω
kBTe

)


1

1− exp
(
− ~ω
kBTe

) .

(71)
The chemical potential µ is approximated by the formula:

µ

kBTe
= −3

2 ln Θ + ln 4
3
√
π

+ CAΘ−(Cb+1) + CBΘ−(Cb+1)/2

1 + CAΘ−Cb
, (72)

where Θ = Te/TF and the constants are CA = 0.25054, CB = 0.072 and Cb = 0.858 [51].
One may prove that the collision frequency approaches the Spitzer–Härm formula

for νSH in the limit of high temperatures (Te → ∞). This is also clearly visible in
Figure 11. On the other hand, it violates the linear dependency on temperature in cold
solids that we intended to maintain. This is however only the case of high frequency
laser field and the collision frequency that appears in the permittivity ε̂ according to
(16). When slow transport phenomena are considered like heat diffusion, substituted
frequency is set ω0 = 0 and the linear dependency is restored again (see Figure 12).
This is implied by Pauli blocking incorporated by the term F (Te, ~ω0) that effectively
lowers the number of electrons available for scattering in highly degenerate plasma.

We also introduce electron–electron correction of heat conduction by the factor
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g(Z) similarly to (65):

ν̃DS = 2
√

2πg(Z) Ze4ne

m
1/2
e (kBTe)3/2

ln
1 + kDS

g(Z)
1.32√

2π
kBTe

(m1/2
e Ze2 max(ω0, ωpe))2/3

F (Te, ~ω0) .

(73)
It does not alter the linear regime for low temperatures and only Spitzer regime is
affected. Unlike ν̃KS, the transition between the region of intermediate temperatures
and Spitzer regime is smooth, but even the range between ≈ 100÷ 1000 eV is slightly
deviated from ν̃SH . This consequently impacts temperature profiles in corona for low
intensity lasers as it has been observed in section 6.

Constant kDS appearing in (70) is purely empirical and it serves for fitting the
model to experimental data. The same procedure used for estimating the value of kS
can be utilised here, but the recommended value kDS = 1 by the authors is usually
sufficient, because of the robustness of the model. It can be observed in Figure 11
that the νDS curve crosses the νKS curve near the room temperature and thus it gives
similar values of reflectivity coefficient there.
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Figure 12: Drude–Sommerfeld collision frequency model plotted as a function of
electron temperature Te and photon energy ~ω. Aluminium with density of solid
(% = 2.7 g/cm3) is considered with mean ionization Z = 2.5

Different situation can occur for other metals, which deviate from the underlying
free electron model. Empirical correction is then suggested by [52] in (71). There
is an extra factor appearing in front of ~ω/(kBTe) that will be denoted as C1

DS. By
comparison with experimental data, the paper proves that the appropriate value for
Gold is C1

DS = 5. Other verified values are not known to us and we preferred original
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value C1
DS = 1, since the effect of this constant for nanosecond laser pulses is usually

negligible.
Another factor C2

DS will be introduced later in the section about heat conductivity
coefficient 3.4. The constant multiplies the dimensionless factor Θ. This modification
can be seen as a correction of the model for chemical potential µ (72) that cannot
cover wide range of materials without any corrections. It must be noted that none of
the corrections alter the investigated limit cases of the collision frequency model, i.e.
linearity of dependence of νDS on temperature for a cold solid and the Spitzer regime
for a hot plasma.

Simulation code PETE has been designed modularly, so it allows switching of
various collision frequency models. However, presented results for PALE2 use well-
established model νKS for laser absorption and heat diffusion or classical Spitzer–Härm
model ν̃SH limited for low temperatures is used for heat diffusion instead. Therefore,
a comparison of results achieved with different collision frequency models is given in
section 6 for the simulation code PETE.

3.3 Energy exchange coefficients
The energy exchange coefficients Gei and Gie are used in section 4 for electron–ion
temperature relaxation mechanism. The coefficients are defined as follows:

Gei = ρ

(
∂εe
∂Te

)
ρ

νεei , (74)

Gie = ρ

(
∂εi
∂Ti

)
ρ

νεie , (75)

where νεei and νεie are electron–ion and ion–electron energy loss collision frequency
respectively. In order follow the philosophy of a single global collision frequency model,
these collision frequencies are derived from the electron–ion momentum loss collision
frequency by the formula [22]:

νεie/Z = νεei = 2me

mi

νei = 2me

Amu

νei . (76)

The electron–ion momentum loss collision frequency νei is then taken from one the
models presented in section 3.2, i.e. νSH , νKS or νDS. The introduced factor 2me/mi

originates from mechanics of the collisions, where energy transfer between the species
is highly ineffective due to their significantly different masses. This phenomena leads
to almost independent equilibration of electrons and ions assuming that νεei � νεee ≈
νee. This justifies the construction of the computational scheme, because assumption
νεei
−1 � ∆t� νεee

−1 is supposed to hold for hydrodynamical simulations, where ∆t is a
typical time length of a computational step. Hence, single species are assumed to be in
local thermal equilibrium (LTE), but two-temperature model is used, where electrons
and ions have separate temperatures.

The fitting constants for the models of collision frequency are obtained from the
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characteristic cold ion heating time τi = mi/(2meνei). This constant can be determined
experimentally from pump-probe experiments and it has usually values about ∼ 10 ps.
For example, it has value τi ≈ 20 ps for Aluminium [22].

Total energy conservativity of electron and ion energy equations (5), (6) enforces
the symmetrical form of the energy exchange terms and of the coefficients as well, i.e.
Gei = Gie. Unfortunately, this symmetry is not fulfilled when a general equation of
state is used for calculation of the specific heats (∂εe/∂Te)ρ and (∂εi/∂Ti)ρ. Therefore,
ideal gas definitions are taken instead:

Gei = Zρ

Amu

kBν
ε
ei = 2Zρ

(Amu)2mekBνei = ρ

Amu

kBν
ε
ie = Gie . (77)

These relations then satisfy the symmetry condition of the exchange coefficients
for any electron–ion momentum loss collision frequency model. However, the model is
very approximative, but since we are interested mainly into nanosecond laser pulses,
an exact description of electron–ion coupling is not needed for the initial phases of the
simulation as show the results in section 6.

3.4 Electron heat conductivity coefficient
Electronic heat diffusion must be enclosed by a proper model of heat conductivity co-
efficient. We decided to formulate it in a consistent manner using one central model
of collision frequency introduced in section 3.2. However, different values of the appro-
priate fitting constants are taken as described below.

The simplest presented model consists of Spitzer–Härm formula [14] corrected
by the electron–electron collisions factor [44] and limited by the heat conductivity
coefficient of the cold solid κsolid:

κ̃SH = max(κsolid, κSH) , (78)

κSH = κ0
nek

2
BTe

meν̃SH
. (79)

The constant κ0 has a weak dependence on ionization and values for different Z were
tabulated [53]. However, considering validity of the formula only in the high tempera-
ture region, where the plasma is fully ionised, the maximal value κ0 = 13.6 is usually
taken.

In order to generalise the model for lower temperatures, Wiedemann–Franz law
is supposed to apply there. It attributes heat conduction in metals to electron trans-
port phenomena giving rise to the relation between heat conductivity coefficient and
electrical conductivity: κ ∼ σT . Based on this relation, the same dependence on tem-
perature and collision frequency is obtained as before. Finally, the general formula for
heat conductivity coefficient can be written as [9]:

κ = κ0
nek

2
BTe

meν̃e
= κ0

nek
3/2
B√
me

λ̃e
√
Te , (80)

40



where ν̃e is the total electron momentum loss collision frequency and λ̃e denotes the
electron momentum loss mean free path. The collision frequency ν̃e refers to one of the
models introduced in section 3.2, i.e. ν̃SH , ν̃KS or ν̃DS. The respective heat conduction
coefficients are then denoted by the same lower index: κSH , κKS or κDS.

All models of heat conductivity coefficient are plotted in Figure 13. The require-
ment on consistency of the models with κsolid for low temperatures determines the
unknown fitting constants kKS and C2

DS. This condition yields for solid Aluminium
with heat conductivity coefficient κsolid = 2.76 ·1011 erg/s/cm/eV [54] values kKS = 5.7
and C2

DS = 7.12. Procedure for automated calculation of these constants was directly
integrated into the simulation code PETE, where only the value of κsolid is taken as a
input parameter. It should be noted that complicated full inversion of the expression
for ν̃DS (73) is not needed, because the Fermi factor F (Te, ~ω = 0) given by (71) is
approaching a simple dependence ∼ T 3/2 in the limit of low temperatures. The loga-
rithm in (73) can be expanded into a Taylor series in the temperature argument and
one finally obtains the dependence ν̃DS ∼ Te for low temperatures that can be readily
inverted.

The rest of the constants are set C1
DS = 1 and kDS = 1, because high frequency

electrical field is not present here (ω0 = 0) and consistency with the Spitzer formula
(79) is assumed.

It is worth noting that the formula (80) can be simplified significantly for one-
temperature model (Te = Ti = T ) and the global collision frequency model ν̃KS (67).
Under these conditions it can be rewritten as:

κKS = max(κlim, κsolid + κSH) . (81)

The symbol κlim stands for the limiting criterion derived from (68) by substituting into
(80):

κlim = κ0
ner0k

2
BT

meve
. (82)

The resulting formula is conveniently simple and does not need the determination of
fitting constant kKS. It has been also implemented in this form in simulation code
PALE2.

All models are compared in Figure 13. The limit of constant heat conductivity
coefficient for low temperatures (< 1 eV) can be seen. On the other hand, the models
are approaching Spitzer formula (79) for high temperatures (> 100 eV), that states
the classical ∼ T 5/2

e temperature dependence in a hot plasma. The models however
differ for intermediate temperatures (1 ÷ 100 eV), where Drude-Sommerfeld model
gives smoothest transition between the limiting cases. However, the simplest formula
κ̃SH (the maximum of κSH and κsolid curves) significantly underestimates the values of
heat conductivity coefficient in this region compared to the other two models. Since
the model based on Drude-Sommerfeld theory was developed specifically for WDM
(Warm Dense Matter) regime and verified by measurements on FLASH/DESY [49], it
is supposed to be more accurate there. However, νKS is remarkably close to νDS for
most of the time. Hence, it poses a feasible compromise due to its simplicity.
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Figure 13: Dependence of heat conductivity coefficient on temperature obtained from
different models of total electron collision frequency. Aluminium with density of solid
(% = 2.7 g/cm3) is considered with mean ionization Z = 2.5.

3.5 Electron extinction coefficients
A crucial parameter for the non-local transport model presented in section 5 is the
electron extinction coefficient ke. The coefficient ke is defined as [9]:

k−1
e = 128

3π λ
ε
e
.= 13.6λεe , (83)

where λεe refers to electron energy loss mean free path. For the purposes of the non-
local transport model, it is the characteristic distance travelled by an electron along its
trajectory s before it loses its microscopical kinetic energy εe by collisions with ions:

dεe
ds = − εe

λεe
. (84)

Energy loss collision frequency can be approximated for fast electrons by the
formula [43] (in CGS units with temperatures in eV):

νεNRL = 4.2 · 10−9 niZ
2

A(εe/kB)3/2 ln Λ [s−1] . (85)

Approximating the velocity of electrons by the thermal velocity vTe, final expres-
sion for the electron mean free path λεe is obtained:

λεe = vTe
νεNRL

= 5.9 · 10−9 A2T 2
e

ρZ2 ln Λ [cm] . (86)
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Note that νNRL is almost identical with any of the previous models for energy
loss collision frequency νεei (76) in Spitzer regime, when thermal energy of electrons was
substituted εe = kBTe/2.

Validity of (86) is questionable for lower temperatures (. 100 eV) as discussed
for νSH (59) before. However, resulting values calculated from (86) for conditions of
solid material are of the order ∼ Å. Values approximately of the same order are known
for the mean free path of low energy electrons in solids [55]. Models for calculation of it
from material parameters are also available [56]. Unfortunately, mean free path in solids
is strongly dependent on energy of incoming particles. This piece of information is not
included in the presented model of non-local transport model in section 5, since only
energy intensity of electron flux is used as primary quantity. Only kinetic codes solving
the full Vlasov–Fokker–Planck equation are capable of fully determining momentum
and energies of transported species [1, 57]. On the other hand, multi-group BGK
transport, that can split the energy spectrum into several separate transport groups,
poses a feasible solution of this problem and it is one of the possible topics of future
research.

3.6 Ion collision frequency
Since non-local transport of ions is considered in the model as well as ion heat diffusion,
appropriate models of collision frequencies are introduced in this section.

In order to maintain consistency of ion–electron momentum loss collision fre-
quency νie with the electron–ion collision frequency models presented in section 3.2,
a conversion formula is used. Because total momentum is conserved during the scat-
tering, relation peνei = piνie must hold, where pe and pi are electron and ion momen-
tum respectively. Thus, the conversion factor is obtained assuming quasi-neutrality
(ne = Zni) in the form:

νie = pe
pi
νei = neme

nimi

νei = Z
me

mi

νei . (87)

Another contributing phenomena is the ion–ion scattering and the corresponding
ion–ion momentum loss collision frequency νii. It is approximated for fast ions by [43]
(in CGS units with temperatures in eV):

νii = 1.8 · 10−7 niZ
4

A1/2T
3/2
i

ln Λii [s−1] , (88)

where the ion–ion Coulomb logarithm ln Λii is given by:

ln Λii = max
(

10, 23− ln
(

2
√

2n1/2
i Z3T

−3/2
i

))
. (89)

However, validity of these formulas breaks down for low temperatures and the
collision frequency is reaching extreme values. In order to limit the collision frequency
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to reasonable values, the plausible criterion similar to one used for νKS (68) is applied:

νii < vT i/r0 = vT i

(
3
4πni

)1/3

, (90)

where vT i =
√
kBTi/mi is the ion thermal velocity. It states that collisions cannot

occur on distances shorter than the characteristic inter-atomic distance r0. This crude
approximation is justified later by discussion of ion heat conductivity coefficient in
section 3.7, where the momentum loss collision frequency νii is utilised.
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Figure 14: Momentum loss collisional frequency as function of temperature (T = Te =
Ti). Aluminium with density of solid (% = 2.7 g/cm3) is considered with mean ion-
ization Z = 2.5. Drude–Sommerfeld model was used for calculation of νie (see section
3.2).

Both collision frequencies are depicted in Figure 14. It can be concluded that
νii dominates over νie mainly due to strong ∼ Z4 dependence in (88). Therefore, νie
contribution to the total ion momentum loss collision frequency νi = νii + νie can be
neglected for most of the materials, especially when Te dependence of νie is taken into
account (assuming Te > Ti). However, electrons are known to contribute significantly
for higher energies of incoming ion species leading to the well-known Bethe formula [58].
Unfortunately, the energies of incoming species are not known as discussed in section
3.5 and hence only collision frequencies for local temperature are taken, which maintain
the diffusion limit of the transport.

3.7 Ion heat conductivity coefficient
In order to fully enclose the two-temperature heat transfer model described in section 4,
ion heat conductivity coefficients are supplemented in addition to electron coefficients
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introduced in section 3.4. Similar formula to (80) is applied [9]:

κi = κ0
nik

2
BTi

miνi
, (91)

where νi is taken from section 3.6.
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Figure 15: Dependence of the ion heat conductivity coefficient κi on temperature
(T = Te = Ti) compared to selected models of electron heat conductivity coefficient
from section 3.4. Aluminium with density of solid (% = 2.7 g/cm3) is considered with
mean ionization Z = 2.5.

Resulting heat conductivity coefficient is compared to electron ones in Figure 15.
Ion coefficients show to be several orders of magnitude lower than electron one for all
temperatures and this effect is even stronger, when taking into account that electron
temperatures are typically higher than ion temperatures in plasma. Similar situation
occurs in metals, where equilibrium temperature T = Te = Ti may be considered at
the beginning, but heat conduction is strongly dominated by electrons. One should not
speak of ion, but rather lattice heat conduction there, because ions are integrated into
a lattice structure in metals and also phonon scattering must be taken into account.
However, it can be typically neglected completely due to small magnitude [45]. This
also justifies the procedure for determination of the fitting constants for collision fre-
quency models that attributed all heat conductivity in solids to electrons as described
in section 3.4. On the other hand, the model for κi gives approximately valid results
even in metals, because the values of the lattice conductivity coefficients several orders
of magnitude lower than κsolid are known [59].

45



3.8 Ion extinction coefficient
Since non-local transport of hot ions is also included in the model, ion extinction coef-
ficients must be supplied. Consistently with section 3.5, the ion extinction coefficient
ki is defined as [9]:

k−1
i = 128

3π λ
ε
i
.= 13.6λεi , (92)

where λεi denotes ion energy loss mean free path in this context.
The formula for ion–ion energy loss collision frequency is given by (in CGS units

with temperatures in eV) [43]:

νεii = 1.8 · 10−7 niZ
4

A1/2εi/kB

(εi/kB)−1/2 − 2.2T−1/2
i exp

(
− εi
kBTi

) ln Λii [s−1] , (93)

where εi denotes microscopical kinetic energy of the colliding ion.
When velocity of ions is approximated by respective thermal velocity vT i and

thermal energy εi = kBTi/2 is substituted into (93), final expression for ion energy loss
mean free path is obtained in the form:

λεi = vT i
νεii

= 5.7 · 10−11 AT 2
i

ρZ4 ln Λii

[cm] . (94)

Note that the values of λεi are extremely small for low temperatures and transport
of ions is effectively disallowed there. The model of non-local transport presented in
section 5 assumes free ions and is built from the classical kinetic theory [9]. None
of these assumptions holds for low temperatures, where ions are strongly correlated
or bounded in a lattice structure. On the other hand, one may think of high energy
ions coming from hotter regions that penetrate significantly deeper into the material.
Unfortunately, the number of such particles together with their energies are pieces of
information that are not included in the transport model. The only available quantity
is the total energy intensity of ion flux. Following the discussion in section 3.5, the
limit of diffusion transport is maintained and thus only local thermal energies are taken
into account.
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4 Heat diffusion
Heat diffusion is a classical method of treatment of heat transport phenomena occurring
in a medium. Historically, it is used widely in hydrodynamical codes [60]. However,
it is well justified only when Knudsen number Kn = λ/L is sufficiently small, where
λ denotes mean free path of particles and L is a characteristic distance of a certain
phenomena in the medium [61, 62]. In the context of heat transfer, the definition L =
T/|∇T | can be used, describing the spatial magnitude of temperature perturbations.
Unfortunately, the necessary condition Kn � 1 is not usually met in a conduction
zone or a corona for example, where λ can reach & 1 mm range according to section
3.5. For this reasons, flux limiters are necessary, that limit overestimated heat fluxes
there. Several types of flux limiters are introduced in section 4.3.

The heat diffusion equation can be derived from a general energy conservation
law applied on heat transfer:

ρ
∂ε

∂t
+∇ · ~W = 0 , (95)

where ε = ε(t, ~x) is the specific internal energy and ~W = ~W (t, ~x) refers to the heat
flux. The whole phenomena is assumed to be isochoric and thus ∂ρ/∂t is set zero.

Fourier’s law of heat conduction is then taken for the determination of the heat
fluxes:

~W = −κ∇T . (96)

The symbol κ denotes the heat conductivity coefficient here. From the physical point
of view, the law essentially states that the fluxes are instantaneously and completely
locally responding on a change of temperature. Both of these statements have a limited
validity. In the case of ultra-short laser pulses, the temporal dependence is questionable,
because of finite relaxation times, and equation (96) is replaced for example by a
hyperbolic conservation equation [63]. However, only non-locality of the heat transfer is
of the interest for longer pulses and hence a scheme for non-local transport is presented
in section 5.

When substituting (96) into (95), the final form of the heat diffusion equation is
obtained:

ρ

(
∂ε

∂T

)
ρ

∂T

∂t
= ∇ · (κ∇T ) + fs , (97)

where the added term fs = fs(t, ~x) denotes an arbitrary explicitly given (heat) source
function introduced for generalisation of the formulation.

The resulting equation (97) is a parabolic partial differential equation, when
the coefficient κ as well as a = ρ(∂ε/∂T )ρ are positive and uniformly lower bounded
functions of (t, ~x). Unfortunately, both of these coefficients are temperature dependent,
making the equation non-linear. For example in plasma, strong dependence κ ∼ T 5/2 is
typical (see section 3.4). Therefore, non-linear transformation of (95) and (96) is used
as described in section 4.1. This procedure effectively removes the strong non-linearity
of κ, but a still remains non-linear. Plausible assumption is then made that a is only
weakly varying function of temperature. This requirement is for example fully met for
ideal gas equation of state, where the specific heat (∂ε/∂T )ρ is constant. Nevertheless,
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the fully conservative form of heat transfer comprising of equation (95) and (96) is
preferred whenever it is possible. Also the semi-implicit numerical scheme for heat
diffusion introduced in section 4.2 is based on this formulation of the heat transfer
equation.

Only the general form of heat diffusion equation has been discussed so far. When
applied on the two-temperature model of plasma, the energy equations for electrons
and ions are following:

ρ
∂εe
∂t

= ∇ · (κe∇Te) +Gei(Ti − Te) + fe , (98)

ρ
∂εi
∂t

= ∇ · (κi∇Ti) +Gie(Te − Ti) + fi . (99)

These equations are derived from the general form of the diffusion equation (97), but
the terms responsible for electron–ion energy exchange were added. When ignoring
all other terms on the right hand sides of (98) and (99) for the moment, the terms
Gei(Ti − Te) and Gie(Te − Ti) lead to temperature relaxation between electrons and
ions and drive the system towards local equilibrium, i.e. Te = Ti. In order to satisfy
energy conservation of the equations, the sum of ρ∂εe

∂t
+ ρ∂εi

∂t
integrated over the whole

domain V must be zero, when setting sources fe = fi ≡ 0 and applying adiabatic
boundary conditions, i.e. ~W |∂V ≡ 0. Utilizing Gauss theorem, only the energy ex-
change terms remain. In order to satisfy the energy conservation for any solution in
temperatures, the coefficients of energy exchange must be equal, i.e. Gei = Gie. This
requirement was further discussed in section 3.3 and symmetrizes the equations (98)
and (99). Unfortunately, non-linearity appears even in these terms, since both coef-
ficients depend on temperatures. However, the energy exchange terms are supposed
to be quantitatively small compared to the other terms, because energy loss collision
frequency is typically very small in a hot plasma (see sections 3.2 and 3.3).

The electron heat conductivity coefficient κe is taken from one of the models pre-
sented in section 3.4 and ion heat conductivity coefficient κi are calculated according to
section 3.7. The heat conductivity coefficients as well as the specific heats (∂εe/∂Te)ρ
and (∂εi/∂Ti)ρ and the energy exchange coefficients are (after the non-linear transfor-
mation) frozen, i.e. set constant throughout the time step similarly to section 5.

4.1 Non-linear transformation
In order to remove the non-linearity in the heat conductivity coefficient of the general
diffusion equation (97), a non-linear transformation is applied. The key parameter is
the nominal order of temperature dependency of κ denoted as p. In the case of plasma
simulations, it has value p = 5/2, since the Spitzer regime is dominating here (see
sections 3.4 and 3.7). Non-linear transformation is then performed in temperature as
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follows [64]:

θ = T p+1 , (100)

κ̄ = κ

p+ 1θ
− p

p+1 = κ

p+ 1T
−p , (101)

ā = a

p+ 1θ
− p

p+1 = a

p+ 1T
−p . (102)

This allows to rewrite the system of equations (95) and (96) in the form:

ā
∂θ

∂t
+∇ · ~W = 0 , (103)

~W = −κ̄∇θ . (104)

The resulting system of equations (103) and (104) has completely analogical form
as the original system (95), (96). However, κ̄ is free of the nominal power dependency.
On the other hand, a slight additional non-linearity was brought into the coefficient
ā, but conservation of the scheme is not threatened, because the diffusion scheme
presented in section 4.2 gives values of heat fluxes, that were not transformed, and
conservative update of ε through equation (95) can be used.

Different situation occurs when one applies the transformation on the two-temperature
system (98), (99). It essentially breaks the symmetry of the system jeopardizing the
convergence. Hence, application of the non-linear transformation on the energy ex-
change terms is discouraged.

4.2 Semi-implicit diffusion scheme
A semi-implicit diffusion scheme of the second order in space and time was derived
in the previous work [13]. It is based on the mimetic operators approach [65], where
discrete operators are introduced, that take over some of the properties of their contin-
uous analogues. A brief description of the scheme is given here. It must be noted that
the scheme is derived for the general heat diffusion equation (97) or rather the system
of equations of heat transfer (95),(96), because the specific electron and ion equations
(98), (99) are taking exactly the same form except the energy exchange terms, that are
discussed separately in section 4.4.

As discussed in the introduction, the fully conservative form of heat transfer is
preferred comprising of the equations (95),(96). In order to derive a self-consistent
system of equations, the temperature T and the heat flux ~W are chosen as the primary
variables. Since the temperature will be eliminated later and only fluxes will remain,
the conservation will not perish. The system of governing equations is following:

a
∂T

∂t
+∇ · ~W = fs , (105)

~W = −κ∇T . (106)

This can be also seen as a decomposition of the original second order partial differential
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equation (97) into a system of first order partial differential equations.
The system (105), (106) has completely identical form as the transformed system

(105), (106) (except the source function fs, but it is not affected by the transformation).
This fact is utilised in the simulation code and the diffusion solver does not need to
distinguish between the two forms and the preceding non-linear transformation can
be easily removed from the computation sequence. Hence, the two forms are not
distinguished even in the text for brevity of the description and we always refer to
the system (105), (106), even thought the non-linear transformation was used for all
numerical simulations presented in section 6.

The system of equations (105), (106) is solved on the domain V with a Lipschitz
boundary, where the boundary conditions of the Neumann type (from the point of view
of the diffusion equation (97)) are assumed in the form:

− ~W · ~n
∣∣∣
∂V

= ψW , (107)

where ~n denotes the outer normal and ψW = ψW (t, ~x) is a smooth function on the
boundary ∂V . However, the adiabatic boundary condition was usually used for the
simulations of laser plasma simulations in section 6, i.e. ψW ≡ 0.

Semi-implicit time discretization of the system (105), (106) and the boundary
condition is performed as follows:

a
T n+1 − T n

∆t +∇ · ~W n+1/2 = fn+1/2
s , (108)

~W n+1/2 = −κ∇T n+1/2 , (109)
− ~W n+1/2 · ~n

∣∣∣
∂V

= ψ
n+1/2
W . (110)

The discrete time levels are denoted by the integer in upper index, where n refers
to the current time level and ∆t is the length of the computational step. The half-
integer values are abbreviations of fn+1/2

s = 1
2(fns + fn+1

s ), T n+1/2 = 1
2(T n + T n+1) and

ψ
n+1/2
W = ψW (tn + 1

2∆t). For simplicity, the coefficients a and κ are written without
upper indices, because they are taken constant during the time step as mentioned in
the introduction, so strictly speaking a = an and κ = κn in the context of discretized
equations.

The next step is the definition of abstract operators that unify the equations
(108–110) into the form:

D ~W n+1/2 + ΩT n+1 = F n+1/2 , (111)
~W n+1/2 −GT n+1/2 = 0 , (112)

where we call D generalised divergence operator, G generalised gradient operator and
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finally Ω generalised mass operator. The function of the right hand side F is defined as:

F n+1/2 =


fn+1/2
s + ΩT n on V

ψ
n+1/2
W on ∂V

. (113)

Similarly, the operators are defined as follows:

GT = −κ∇T , (114)

D ~W =


∇ · ~W on V

− ~W · ~n on ∂V
, (115)

ΩT =


(a/∆t)T on V

0 on ∂V
. (116)

All linear operators are defined for functions of spatial coordinates on closure of V ,
where we omitted the temporal dependence, because it appears in the equations (111),
(112) only parametrically, since the time discretization has been already performed.
However, the coefficients a, κ and ∆t are assumed to be given on the current time
level.

The appropriate function spaces must be mentioned for completeness. Hilbert
spaces H and ~H of scalar and vector valued smooth functions of spatial coordinate on
the closure of domain V respectively are used, where the inner products are defined as
(u, v ∈ H and ~U, ~V ∈ ~H):

(u, v)H =
∫
V
u v dV +

∮
∂V
u v dS , (117)

(~U, ~V ) ~H =
∫
V

1
κ
~U · ~V dV . (118)

The cornerstone of the method of mimetic operators is the definition of the pri-
mary operator and inference of all other operators consistently from it. In this case,
the primary operator is said to be the divergence operator D [65].

Utilizing Gauss theorem (
∫
V ∇ · ~U dV =

∮
∂V

~U ·~n dS) and the definitions of inner
products (117), (118) and as well the definitions of operators D and G (115), (114), a
useful relation between the operators can be derived:

(D~U, u)H = (~U,Gu) ~H . (119)

It states that G = D∗, meaning that G is the adjoint operator to D in appropriate
inner products.

We now proceed by elimination of the temperature T n+1 from the equations (111),
(112) inside the domain V , where the inverse of Ω exists, since it is positive definite
there. The resulting equation for fluxes then can be written as (I is the identity
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operator): (
I + 1

2GΩ−1D

)
~W n+1/2 = 1

2GΩ−1F n+1/2 + 1
2GT

n . (120)

The next step in the inference of the scheme is the spatial discretization of the
continuous operators and finally of the equation (120). We do not give full definitions
of the spatially discretized operators here and we point the readers to the previous work
[13], where detailed description of 1D discretization was made, including a comparison
of two possible variants, or to the original paper [65], where 2D case is discussed.
However, it must be noted that the spatial discretization is staggered consistently with
the hydrodynamic scheme described in section 5. This means that the heat fluxes from
Hilbert space ~H are projected onto the boundaries of computational cells unlike the
temperatures from Hilbert space H that are projected into the computational cells.

Two families of inner products are distinguished for spatial discretization. These
are natural inner products denoted as (u, v)HC and (~U, ~V )HL for scalar and vector
grid functions respectively. The key feature is that both of them are consistent with
their respective inner products (117), (118). Another family are formal inner products
written as [u, v]HC and [~U, ~V ]HL. These inner products are useful for the construction
of the matrix of the scheme, because they are free of geometry related coefficients and
also they separate function values on each of the grid points.

In order to relate both types of inner products, conversion operators are intro-
duced. They are formally defined by the implicit relations:

(u, v)HC = [Mu, v]HC , (121)
(~U, ~V )HL = [L~U, ~V ]HL . (122)

However, they can be expressed explicitly using the definitions of the natural and
formal inner products [13, 65].

Finally, the primary operator must be discretized. In this case, the primary
operator is the divergence operator D as mentioned earlier. Its discrete analogue D is
defined as a central finite difference approximation of it.

Keeping in mind the relation G = D∗, the similar relation G = D∗ for discrete
operators in natural inner products is required. The discrete gradient operator G is
then implicitly given by:

(D~U, u)HC = (~U,D∗u)HL (123)

and in formal inner products:

[D~U,Mu]HC = [~U,LD∗u]HL . (124)

Utilizing the adjoint operator D~ to D in formal inner products, (124) can be
rewritten as:

[~U,D~Mu]HC = [~U,LD∗u]HL . (125)

This yields the important relation D~M = LD∗. Hence, the discrete gradient operator
G is explicitly given by:

G = D∗ = L−1D~M . (126)
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It can shown that the conversion operator L is positive definite and banded by
definition [13, 65]. Therefore, its inverse exists, but it may not be banded any more.
This pose a severe issue for the simulation code, because inversion of a full matrix is
computationally expensive operation in general. This is addressed later by using the
compound LG instead of only plain operator G.

The abstract operator Ω must be formally also discretized, but since it leads by
point projection to only a discrete operator with a diagonal matrix, the same notation
Ω is used for it too.

Finally, the system of equations (111), (112) can be formally discretized as follows:

D ~W n+1/2 + ΩT n+1 = Fn+1/2 , (127)
~W n+1/2 − GT n+1/2 = 0 , (128)

where F refers to the point projection of the function of the right hand side F .
Temperatures can be eliminated from the system similarly to the equation (120)

resulting in the heat flux equation:(
I + 1

2GΩ−1D
)
~W n+1 = 1

2GΩ−1F + 1
2GT

n . (129)

As proposed earlier, the discrete operator G cannot be used alone, because the
matrix on the left hand side of (129) is not banded in general. Multiplying both sides
by operator L and applying property (126), the equation is taking form:(

L+ 1
2D

~MΩ−1D
)
~W n+1 = 1

2D
~MΩ−1F + 1

2D
~MT n . (130)

It must be noted that the equation (130) holds only inside the domain V , where
the inverse operator Ω−1 exists, because the Neumann type boundary condition was
used. Hence, the right hand side can be simplified using the definition of F (113) and
point projected function fs:(

L+ 1
2D

~MΩ−1D
)
~W n+1/2 = 1

2D
~MΩ−1fn+1/2

s +D~MT n . (131)

The discrete heat fluxes ~W n+1/2 on the boundary of V are then determined by
the boundary condition (110) applied on the appropriate grid functions.

The final matrix of the semi-implicit scheme (131) is positive definite and also
banded [65]. Moreover, it is tridiagonal in 1D [13]. This allows to employ very effective
solvers for this linear system. Thomas algorithm is used in 1D and conjugate gradient
method (CG) [66] preconditioned by alternating–direction implicit (ADI) method is
used in 2D [67].

Finally, the update of temperatures can be performed based on the equation
(127):

T n+1 = T n + Ω−1fn+1/2
s − Ω−1D ~W n+1/2 . (132)
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However, this approach is discouraged, since energy conservation is not guaranteed due
to a weak dependence of coefficient a and consequently Ω on temperature. Therefore,
the update through the equation of energy conservation (95) is preferred:

εn+1 = εn + ∆t
ρ
fn+1/2
s − ∆t

ρ
D ~W n+1/2 . (133)

The grid function of density ρ does not change during the step, since the phenomena
is assumed to be isochoric and thus the time level index was omitted.

4.3 Heat flux limiter
Heat flux limiters are a necessary part of the heat diffusion scheme, because diffusion
approximation is usually made even beyond the domain of validity as mentioned in
the introduction. Normally, this leads to overestimations of heat fluxes in the medium.
Subsequent heat flux limiting methods then limit the heat flux directly or indirectly in
order to approach reasonable values. Free-streaming heat flux is usually taken as the
reference one:

W fs
e = nevTekBTe = kB

mu

√
kB
me

Z

A
ρT 3/2

e , (134)

W fs
i = nivTikBTi = kB

mu

√
kB
mu

A−3/2ρT
3/2
i . (135)

Only a portion of W fs is taken as the maximal value of heat flux Wmax =
fmaxW fs, where the type of the specie was omitted, because the limiting methods
are identical. The constant fmax can be used for adjustment of the values to empirical
or theoretical predictions [60, 68, 69]. The value fmax = 0.05 was used for the simula-
tions in section 6, but also a comparison of results with different values is made there.
However, the constant cannot fully reflect the non-locality of the transport and whole
method is only approximative as discussed in the introduction.

The most straight-forward method of flux limiting is to directly limit the values
of heat flux by the formula of type min(

∣∣∣ ~W ∣∣∣ ,Wmax). Unfortunately, the values of heat
flux are then almost solely driven by the value of Wmax in corona, since (unlimited)
heat fluxes strongly exceed the limit Wmax in a large area as can be concluded from
the simulations in section 6. Moreover, the situation is more complicated in staggered
discretization (see section 1), becauseWmax is naturally a central quantity by definition.
Therefore, we define nodal heat flux fraction in 1D first of all:

f limj =



∣∣∣ ~Wj

∣∣∣
Wmax
j−1/2

~Wj · ~z0 > 0∣∣∣ ~Wj

∣∣∣
Wmax
j+1/2

~Wj+1 · ~z0 < 0
, (136)

where ~z0 is the unit vector along the z axis. The formula has upwind nature in order
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to stabilise the heat flux limiting methods, that is found to be absolutely necessary
when strong limiting is applied.

The simple direct cut-off heat flux limiter then can be formally written as:

~W cutoff
j = min

1, 1
f limj

 ~Wj . (137)

However, the sharp threshold value in the limiter may cause non-physical behaviour
and create artefacts in the simulation (see section 6). Therefore, the heat flux limiter
is used mainly as a reference. The heat flux limiter based on harmonic mean, which we
refer to as direct harmonic mean heat flux limiter, smoothly limits the heat flux and
hence is preferred in this case:

~W harm
j = 1

1 + f limj
~Wj . (138)

In order to maintain the behaviour of the diffusion transport, flux limiters based
on heat conductivity coefficient reduction are applied instead, because the dependence
on the gradient of temperature is preserved.

First of all, the central heat flux fraction must be introduced:

f limj+1/2 = max


∣∣∣ ~Wj

∣∣∣
Wmax
j

,

∣∣∣ ~Wj+1

∣∣∣
Wmax
j+1

 , (139)

where the nodal heat flux limit is taken as Wmax
j = min(Wmax

j−1/2,W
max
j+1/2),

The harmonic mean heat flux limiter then gives modified heat conductivity coef-
ficients as follows:

κharmj+1/2 = 1
1 + f limj+1/2

κj+1/2 . (140)

Another possible construction of heat flux limiter is referred to as the rescaling
heat flux limiter here:

κrescalej+1/2 = min
1, 1

f limj+1/2

κj+1/2 . (141)

This version of flux limiter is also present in the 2D simulation code PALE2 unlike the
other forms, that are only implemented in the 1D code PETE.

However, it can be observed that the two heat flux limiters (140) and (141) are
highly similar and also the simulations in section 6 support it. An advantage and
also a disadvantage, depending on the point of view, of both of them is that they do
not prohibitively limit heat fluxes and the fluxes can still reach extremely high values
locally. The heat flux fraction (139) then does not fully reflect the action of the heat
flux limiter on the heat fluxes. Moreover, strong heat fluxes can affect the spatial
profiles of quantities significantly. On the other hand, the behaviour remains fully
diffusive, because the coefficients κ are theoretically arbitrary in the definition of the
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general diffusion equation (97) as opposed to the heat fluxes ~W that are defined by
(96).

4.4 Electron–ion temperature relaxation
Electron–ion temperature relaxation has not been discussed so far, even though it plays
a key role in the simulation of laser plasma, because ions are heated exclusively from
electrons in the model (see section 5). Two different approaches are discussed here,
even though only one of them is actually used. The starting point for both of them are
the equation (105), (106) formulated for two-temperature system according to (98),
(99):

ae
∂Te
∂t

+∇ · ~We = fe +Gei(Ti − Te) , (142)
~We = −κe∇Te , (143)

ai
∂Ti
∂t

+∇ · ~Wi = fi +Gie(Te − Ti) , (144)
~Wi = −κi∇Ti . (145)

Proceeding similarly to section 4.2, the system of partial differential equations is
discretized in time and abstract operators are introduced for both species (Gei = Gie

operators are zero on ∂V ):

De
~W n+1/2
e + ΩeT

n+1
e = F n+1/2

e +Gei(T n+1
i − T n+1

e ) , (146)
~W n+1/2
e −GeT

n+1/2
e = 0 , (147)

Di
~W
n+1/2
i + ΩiT

n+1
i = F

n+1/2
i +Gie(T n+1

e − T n+1
i ) , (148)

~W
n+1/2
i −GiT

n+1/2
i = 0 . (149)

Unlike section 4.2, the temperatures cannot be eliminated from the system and
also definitions of Hilbert spaces for the heat fluxes are different for electrons and ions
(see the definition of inner products (118)). Therefore, the heat fluxes are eliminated
instead: (

1
2DeGe + Ωe +Gei

)
T n+1
e = F n+1/2

e +GeiT
n+1
i − 1

2DeGeT
n
e , (150)(

1
2DiGi + Ωi +Gie

)
T n+1
i = F

n+1/2
i +GieT

n+1
e − 1

2DiGiT
n
i . (151)

The operators of the left hand side are later denoted as
(
Ãe +Gei

)
and

(
Ãi +Gie

)
for simplification of notation in the text. Both operators Ãe and Ãi possesses positive
properties, they are self-adjoint and positive, because DeGe = DeD

∗
e = G∗eGe (and

analogously for ions) according to (119). It must be also noted that functional spaces of
electron and ion temperatures are identical according to the definition (117). Moreover,
the inverse of Gei = Gie exists inside the domain V . These facts allow to eliminate one
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of the temperatures in each equation:

(
ÃiG

−1
ei Ãe + Ãe + Ãi

)
T n+1
e = ÃiG

−1
ei

(
F n+1/2
e − 1

2DeGeT
n
e

)
+
(
F
n+1/2
i − 1

2DiGiT
n
i

)
,

(152)(
ÃeG

−1
ie Ãi + Ãi + Ãe

)
T n+1
i = ÃeG

−1
ie

(
F
n+1/2
i − 1

2DiGiT
n
i

)
+
(
F n+1/2
e − 1

2DeGeT
n
e

)
.

(153)

The Neumann type boundary conditions (107) need special treatment, because
heat fluxes were completely removed from the system. However, this problem is fully
revealed only after spatial discretization. The spatial discretization then follows section
4.2. One possibility is then to revert the elimination of heat fluxes on the boundary,
where heat fluxes are determined by the boundary condition. Another possibility is to
solve a larger linear system containing also auxiliary temperatures beyond the bound-
ary, which are given by equations (147) and (149) (or rather their discrete analogues).
Note that multiplication of these auxiliary equations by discrete operator L is also
beneficial here.

The linear system (152), (153) represents the final form of the scheme in terms of
abstract operators. The operators of the left hand side are positive definite, but when
spatially discretized, they do not lead to operators with banded matrices in general.
Inversions of full matrices are then needed and this approach becomes computationally
expensive. Moreover, the scheme is not energy conservative, since it is temperature
based unlike the original scheme from section 4.2. These disadvantages prevail over
the advantages and different approach is used instead.

The second approach is based on the operator splitting method [16, 15], where
the temporal evolution of temperature or specific internal energy according to (98),
(99) is split into two parts. The first one is diffusive and solved by the semi-implicit
scheme introduced in section 4.2 and the other one is solely describing electron–ion
energy exchange:

ae
∂Te
∂t

= Gei(Ti − Te) , (154)

ai
∂Ti
∂t

= Gie(Te − Ti) . (155)

The numerical scheme is then based on the explicit analytical solution of the
equations (154), (155) [64]. The coefficients ae, ai are assumed to be constant during
the time step, because non-linearity of ε(T ) relation is assumed to be weak. One then
observes that the sum of the equations is exactly zero and thus Erelax = aeTe + aiTi is
an invariant. Inserting the invariant into both equations, the system of two ordinary
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differential equations is obtained:

aei
dTe
dt = −GeiTe +Gei

Erelax

ae + ai
, (156)

aei
dTi
dt = −GieTi +Gie

Erelax

ae + ai
, (157)

where total heat capacity was introduced as aei = 1/(1/ae + 1/ai).
The equations (156) and (157) can be solved analytically, giving rise to the ex-

pressions for temperatures:

aeT
n+1
e = Erelax

1 + ai

ae

+ aei(T ne − T ni ) exp
(
−Gei

aei
∆t
)
, (158)

aiT
n+1
i = Erelax

1 + ae

ai

+ aei(T ni − T ne ) exp
(
−Gie

aei
∆t
)
. (159)

However, the scheme is still not energy conservative, because of the non-linear
nature of dependency of internal energy on temperature. Therefore, the scheme must
be rather formulated in terms of increments of εe and εi. In order to obtain this form,
aeT

n
e and aiT

n
i terms are subtracted from (158) and (159) respectively and specific

internal energies are reintroduced:

ρ(εn+1
e − εne ) = aei(T ni − T ne )

1− exp
(
−Gei

aei
∆t
) , (160)

ρ(εn+1
i − εni ) = aei(T ne − T ni )

1− exp
(
−Gie

aei
∆t
) . (161)

The resulting scheme is conveniently simple and clearly energy conservative. It
should be also noted that the Taylor polynomial of the first order of the exponentials in
(160), (161) gives directly the explicit scheme for temperature relaxation. This scheme
then can be seen as an extended version of it for arbitrarily long time steps as long as
the non-linearity of ε does not play the main role in convergence.

The computational sequence then comprises of the update of temperatures by the
diffusion scheme producing temperatures on an intermediate time level. The temper-
ature scheme follows, starting from the intermediate time level and ending on the new
time level. The key assumption for the operator splitting is that the two phenomena
are not tightly coupled, but this is not usually the case for heat transport and el–ion
temperature relaxation. Otherwise, the fully implicit approach in temperatures for the
non-local transport scheme introduced in section 5 is also available, but no significant
differences between both approaches were observed in section 6.
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5 Non-local transport model
Following the discussion in section 4, the diffusion approximation of heat transfer is
not sufficient to describe complex transport phenomena in plasma. The main concerns
about validity of the model are rising from the fact that the mean free paths of the
transported species highly exceed the spatial scales of temperature perturbations and
this leads to overestimations of heat fluxes. This problem was addressed by application
of additional heat flux limiters in section 4.3, that crudely limit the heat fluxes to phys-
ically meaningful values. Indications of non-locality of the transport were recognised
several decades ago [60] and various models of non-local transport have been devel-
oped since then [70, 71, 72]. The main focus of the still ongoing research is pointed on
transport of hot electrons in plasma, because electrons hold most of the energy of the
plasma [22] and hot electrons are produced by laser–plasma interaction [51]. However,
there are three main transport regimes that must be distinguished by the Knudsen
number Kn.

As described in section 3.5, the mean free path of electrons can overgrow the
spatial scale of a corona. On the other hand, no steep gradients in densities nor
temperatures are present. Nevertheless, the Knudsen number of electrons becomes
Kne > 10. The plasma is typically hot in corona (& 100 eV) and under-critical for the
laser wave and with densities several orders of magnitude lower than the density of solid
material. The electrons in this zone can easily pass through, so the regime is referred
to as the free streaming regime. The thermal diffusion itself manifestly overestimates
the heat exchange and (near) saturation of temperature is observed. Heat fluxes or
consequently heat conductivity coefficients are strongly driven by heat flux limiters as
concluded in section 4.3. The proper non-local electron transport model presented in
section 5.1 usually does not reproduce this phenomena, because of the transparency of
the area, and the evolution of the system is typically closer to adiabatic expansion as
predicted theoretically and experimentally [73].

The second regime describes so called conduction zone, where density declines
rapidly in a rarefaction wave and transport phenomena drive the ablation of the ma-
terial. The Knudsen number has moderate values 0.001 < Kne < 10 there. The
non-local transport is very effective in this area, because hot electrons created near the
critical plane can penetrate the upstream and heat the material. Diffusion approxima-
tion leads to creation of non-linear heat waves [22], but there are significant differences
of both approaches as shown in the simulation results in section 6.

The last, but not least important regime is characteristic by low values of Knudsen
number Kne < 0.001. This is typically the case of solid material or moderate shock
waves. The medium is opaque for electrons and they are stopped on short distances as
discussed in section 3.5. The expansion in small parameter of distribution function is
possible using Chapman–Enskog method [74] and the regime is approximately diffusive.
Classical thermal diffusion is able to describe the transport in this area, but even
non-local transport model described in section 5.1 maintains the diffusive limit of the
transport for small mean free path and hence it is possible to describe the transport
within it, provided that an appropriate closure model is supplied for calculation of the
mean free path. However, stronger shock waves can cause pre-heating of the material by
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non-local transport, that cannot be precisely described by classical thermal diffusion,
but we do not investigate this effect in details in this text and further improvements
of the physical model may be needed to properly describe this phenomena.

Historically, the non-local nature of the transport was addressed by models based
on spatial convolution of the heat fluxes. This approach was pioneered by the work
of Luciani, Mora and Virmount (LMV) [70, 75], where a convolution over the classical
Spitzer-Härm heat fluxes (see section 4) was applied. Even though that the model
solved the ubiquitous problem of flux limiting in heat diffusion simulations (see sec-
tion 4.3) and was able to estimate the pre-heating of the material, the model must be
supplied by an ad-hoc parameter residing in the convolution kernel. Fitting of proper
Fokker–Planck (FP) simulations is then necessary and reliability of the model in hy-
drodynamical codes is questionable. Later, the mentioned problems were addressed in
the model of Albritton, Williams, Bernstein and Swartz (AWBS) [71], where the con-
volution kernel is derived from a solution of a simplified form of the FP equation. The
LMV convolution kernel was further improved by adding electric field in [76] and other
improved versions of the methods appeared [77]. However, numerical issues inherently
included in the LMV/AWBS models were revealed [78]. Consequently, several models
removing this deficiency were proposed later [79, 80]. Furthermore, several theoretical
models were derived from simplified Fokker–Planck equation [81, 82, 83] later followed
by simulation codes solving the non-local closure in Fourier space [84, 85].

Another drawback of the classical convolution based approach originates from
the inability to extend the models to more dimensions. An innovative model was
presented by Schurtz, Nicolai and Busquet (SNB) [72], that can be solved in multi-
dimensions. The basic form of the model originates from solution of the simplified
Boltzmann equation proposed by Bhatnagar, Gross and Krook (BGK) [86]. However,
its extensions were developed to include self-consistent electric and magnetic fields [87].

Although the convolution based models became very popular due to their imple-
mentation simplicity, they are inherently based on the Chapman–Enskog small param-
eter expansion method [74], that is the foundation of the Spitzer-Härm heat conduction
model [14].

Problems of anisotropy of the transport was recognised and models based on
angular moments of simplified Boltzmann equation were proposed later [88, 89, 90, 91].

A completely different approach was proposed relatively recently, where a simpli-
fied kinetic model of non-local transport is incorporated into a hydrodynamical simula-
tion [92]. Due to long time scales typical for hydrodynamics, a stationary BGK kinetic
equation is solved. The BGK operator was then further improved and theoretically
validated in [93, 94].

Based on this approach, a first-principal method was developed in [9], that relies
on numerical solution of BGK Boltzmann transport equation for photons, electrons
and ions. This text continues the development and implementation of this transport
closure into the simulation code PETE as described in section 5.1. The advantages
of this model include proper description of angular distributions, where Legendre or
small parameter expansions are not made. Instead, dimensionality of the problem is
increased by additional solid angle of propagation of transported species. Hence, almost
full phase space is formed, but averaging over the energy spectrum is performed and also
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the time scales remain on the level of hydrodynamics making the model viable closure
of the hydrodynamic simulations. However, numerical solution of the linear kinetic
equation necessarily increases the computational costs of the simulations, but high
order finite element scheme presented in section 5.2 is employed to handle numerically
the transport phenomena with remarkable effectiveness.

Only electron species has been discussed so far, but similar division with respect
to Knudsen number can be applied on other particles like ions. The contribution of
ion thermal diffusion was insignificant, because of small values of the heat conductiv-
ity coefficient compared to the electron one (see section 3.7). Similarly, the non-local
transport of ion species is typically weaker than the electron transport due to high
extinction coefficient according to section 3.8. However, the two transport mechanisms
are not directly comparable, since the electron and ion temperatures approximately
coincide in a solid and the conduction zone, but not in a corona. The electron temper-
ature is typically several orders of magnitude higher than the ion temperature at the
same point in space. This effect together with the fact that the ion collision frequency
decreases with temperature causes that ions does not fully reach the free-streaming
limit. However, non-local ion heat transport is usually neglected in hydrodynamical
codes and literature about modelling of this phenomena is rather scarce, but theoretical
studies based on Fokker–Planck equation exist [95, 96]. The state-of-art ion transport
model is presented here together with other transport mechanisms.

Finally, radiation transport is one of the most important parts of the simulation.
Together with the hydrodynamical description of plasma, it forms the specific research
area of radiation hydrodynamics [62, 97, 98]. In particular, radiation transport is very
important even for laser–target simulations. Unlike electrons or ions, radiation is not
governed by the charge conservation law. From the numerical point of view, the reflec-
tive boundary conditions are not enforced. Hence, radiation freely escapes the corona
leading to the radiation cooling effect [99]. It is known that radiation transport is
dominant for high-Z materials, that produce strong X-ray radiation, which cools the
plasma on one hand. On the other hand, it is transported into the upstream of the
laser ablation wave, through the conduction zone and finally reaching the rarefaction
wave. It is absorbed and eventually re-emitted there. In some cases, the transport
is sufficiently strong to cause the formation of so called double ablation front struc-
ture, where an ablation front similar to the laser ablation one is growing within the
rarefaction wave [100, 101].

All three transport mechanisms, i.e. electron, ion and radiation transport, are
all described in a similar manner as shown in section 5.1. All together, the model
essentially poses a closure of the two-temperature single fluid hydrodynamical scheme
presented in section 1. Eventually, the diffusion scheme is employed, but due to im-
plicit nature of both schemes, operator splitting technique is used in order to connect
them together similarly to section 4.4. The temporal discretization is solved this way,
but the spatial discretization does not match in general, because the finite element
(FEM) scheme allows arbitrary spatial order of the temperature elements. Therefore,
the mean value projection is applied on electron and ion temperatures. The discretized
temperatures on the finite elements then enter the hydrodynamical scheme in this form
and the reverse process, when the temperatures from the hydrodynamical scheme up-
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date the non-local scheme quantities, is solved consistently by uniform incrementation.
This treatment is usually sufficient from the practical point of view, but a consistent
high-order approach, that would utilize additional degrees of freedom in temperatures
within the hydrodynamical scheme, is one of the possible topics of future research.

5.1 BGK non-local transport model
Section 1 introduced the equations of laser plasma hydrodynamics (1), (2), (5), (6),
but the closure for non-local heat fluxes of electrons ~qe, ions ~qi and radiation ~qR has not
been given yet. The aim of this section is to give a description of the BGK non-local
transport model [9], which provides these terms and closes the system of equations.

The primary physical quantity used in the non-local transport model are radiation
specific intensity IνR = IνR(t, ~x, ~n, ν), electron specific intensity I|~v|e = I|~v|e (t, ~x, ~n,|~v|) and
ion specific intensity I

|~v|
i = I

|~v|
i (t, ~x, ~n,|~v|) given for particles at time t, position ~x in

direction given by the unit vector ~n with frequency ν or non-relativistic velocity ~v.
In fact, the specific intensities can be seen as an infinitesimal amount of energy dE
transported by the species with frequencies in the interval (ν, ν + dν) or velocities in
(|~v| ,|~v| + d|~v|) in the time interval dt, across the oriented surface element d~S into the
solid angle dω around the direction ~n:

dER = IνR(t, ~x, ~n, ν)~n · d~S dω dt dν , (162)
dEe = I|~v|e (t, ~x, ~n,|~v|)~n · d~S dω dt d|~v| , (163)
dEi = I

|~v|
i (t, ~x, ~n,|~v|)~n · d~S dω dt d|~v| . (164)

Equivalently, the specific intensities can be derived from their respective particle
distributions fR(t, ~x, ~n, ν), fe(t, ~x, ~n,|~v|) and fi(t, ~x, ~n,|~v|) in the phase space of spatial
coordinates ~x and momentum ~p as follows ((~x, ~p) = (~x, ~n,|~v|)):

IνR(t, ~x, ~n, ν)
hνc

= fR(t, ~x, ~p) d~x d~p = h3ν2

c3 fR(t, ~x, ~n, ν) d~x dω dν , (165)

I|~v|e (t, ~x, ~n, ν)
|~v| me

2 |~v|
2 = fe(t, ~x, ~p) d~x d~p = |~v|2 fe(t, ~x, ~n,|~v|) d~x dω d|~v| , (166)

I
|~v|
i (t, ~x, ~n, ν)
|~v| mi

2 |~v|
2 = fi(t, ~x, ~p) d~x d~p = |~v|2 fi(t, ~x, ~n,|~v|) d~x dω d|~v| . (167)

This expressions explain the relation of the specific intensities to the classical kinetic
theory and the second moment of the distributions in electron/ion velocities and the
first moment in photon frequencies. As can be observed, all species are treated com-
pletely equally from the theoretical point of view and this fact allows construction of a
single versatile numerical scheme. The equations for the specific intensities of electrons
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and ions are then derived from the BGK kinetic equations [9]:

∂fe
∂t

+ ~v · ∇~xfe + qe
me

~E · ∇~v = ni
ne

∂Z

∂t
Se + ν

|~v|
ei (S|~v|e − fe) + ν|~v|σe

(f̄e − fe) , (168)

∂fi
∂t

+ ~v · ∇~xfi + qi
mi

~E · ∇~v = ν
|~v|
ii (S|~v|i − fi) , (169)

where electric field ~E, electron and ion source functions S|~v|e and S
|~v|
i , electron–ion

scattering collision frequency ν|~v|ei , electron–electron scattering collision frequency ν|~v|σe
,

ion–ion scattering collision frequency ν
|~v|
ii , electron and ion charges qe, qi have been

added. The symbol f̄e represents in this context angular mean of the distribution fe,
i.e. f̄e = 1

4π
∫

4π fe dω. Substituting the specific intensity definitions (165–167) into
(168), (169), the equations of transport expressed in terms of specific intensities are
obtained in similar form to the radiation transport equation:

1
c

∂IνR
∂t

+ ~n · ∇~xIνR = kνR(IνSR
− IνR) + σνR(ĪνR − IνR) , (170)

1
|~v|

∂I|~v|e
∂t

+ ~n · ∇~xI|~v|e = qe
me

~n · ~E(5|~v|−1 I|~v|e ) + 1
|~v|

ni
ne

∂Z

∂t
I
|~v|
Se

+

+ k|~v|e (I|~v|Se
− I|~v|e ) + σ|~v|e (Ī|~v|e − I|~v|e ) , (171)

1
|~v|

∂I
|~v|
i

∂t
+ ~n · ∇~xI|~v|i = qi

mi

~n · ~E(5|~v|−1 I
|~v|
i ) + k

|~v|
i (I|~v|Si

− I|~v|i ) , (172)

where the opacity kνR, extinction coefficients for electrons k|~v|e and ions k|~v|i were in-
troduced, that are related to the collision frequencies as k|~v|e = ν

|~v|
ei /|~v|, k

|~v|
i = ν

|~v|
ii /|~v|.

Similarly, the scattering coefficients for radiation σνR and electrons σ|~v|e = ν|~v|ee/|~v| were
added. Moreover, there are the specific intensity source functions for radiation IνSR

,
electrons I|~v|Se

and ions I|~v|Si
. The angular mean of the specific intensity of radiation is ĪνR

and electrons Ī|~v|e .
The equations (170–172) present a kinetic problem in the full phase spaces (~x, ~n, ν)

and (~x, ~n,|~v|) respectively and hence the equations have 7 dimensions in general. So-
lution of the full 7D kinetic equations is enormously computationally expensive and is
typically performed only for specific tasks in specialised kinetic codes [1, 57]. However,
time scales of hydrodynamical codes are usually considerably larger than time scales of
dynamics of the transported species ∆t� L/c, ∆t� L/vTe, ∆t� 1/ωpe, ∆t� L/vT i,
∆t � 1/ωpi, where L is a typical spatial scale, and stationary approximation is then
sufficient. At this point, it must be stressed that mainly super-thermal species con-
tribute to the energy transport, weakening the given requirements [61]. Moreover,
the full spectra of the species are simplified to one energy group approximation and
isotropic scattering is neglected in 1D, because non-diffusive radiation transport regime
is of the main interest [62, 102]. When stationary electric fields are not taken into ac-
count consistently with the quasi-neutrality closure of hydrodynamics, the equations
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are then reduced to the conveniently simple form:

~n · ∇IR = kR(ISR
− IR) , (173)

~n · ∇Ie = ke(ISe − Ie) , (174)
~n · ∇Ii = ki(ISi

− Ii) , (175)

where IR, Ie and Ii are total intensities defined as:

IR(t, ~x, ~n) =
∫ ∞

0
IνR(t, ~x, ~n, ν) dν , (176)

Ie(t, ~x, ~n) =
∫ ∞

0
I|~v|e (t, ~x, ~n,|~v|) d|~v| , (177)

Ii(t, ~x, ~n) =
∫ ∞

0
I|~v|e (t, ~x, ~n,|~v|) d|~v| . (178)

The other terms kR, ke, ki, ISR
, ISe , ISi

were obtained by proper averaging of their spec-
tral analogues kνR, k|~v|e , k

|~v|
i , I

ν
SR
, I
|~v|
Se
, I
|~v|
Si

respectively. However, the full inference of the
transport model from the Boltzmann equation with BGK collision operator and radi-
ation transport equation is out of the scope of this text and can be found in [9].

The equations (173–175) then present only a 3D problem for the specific inten-
sities in 1D hydrodynamical approximation, because the time coordinate is included
only parametrically in the equations. However, it must be noticed that all terms on the
right hand side are temperature dependent and hence the temporal domain appears
within the coupling with the hydrodynamic system through the equations of energy
(5), (6), that are solved implicitly in temperatures according to section 5.2.

The mean Planck opacities kR are calculated from scaling laws according to [103]
and are not detailed here. Although, the mean extinction coefficients were introduced
for electrons in section 3.5 and for ions in section 3.8. The intensity source function for
radiation originate from the gray body approximation governed by Stefan–Boltzmann
law σT 4

R, where the temperature of radiation is set TR = Te. Maxwell–Boltzmann dis-
tributions are assumed to be the source functions of electrons and ions with respective
temperatures. The intensity source functions are then defined as follows:

ISR
= σ

π
T 4
e , (179)

ISe = ne

√
2

√
me

(
kB
π

)3/2

T 3/2
e , (180)

ISi
= ni

√
2

√
mi

(
kB
π

)3/2

T
3/2
i . (181)

Finally, the non-local heat fluxes defining the closure of the laser plasma hydro-
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dynamical model presented in section 1 are defined as:

~qR =
∫

4π
~nIR dω , (182)

~qe =
∫

4π
~nIe dω , (183)

~qi =
∫

4π
~nIi dω . (184)

The fluxes are substituted in this form into the equations (5), (6) and complete equa-
tions of conservation of energy for non-local transport hydrodynamics are obtained:

ρ
∂εe
∂t

= −pe∇ · ~u+Gei(Ti − Te)−
∫

4π
~n · ∇(Ie + IR) dω −∇ · ~S , (185)

ρ
∂εi
∂t

= −pi∇ · ~u+Gie(Te − Ti)−
∫

4π
~n · ∇Ii dω . (186)

However, several remarks considering this procedure must be given. The reasonable
assumptions c � ~u, |~v| � |~u| were made for the transported species and hence there
are no convective terms originating from the transition between the laboratory and the
fluid related frame. In other words, the functions of non-local transport in Eulerian
coordinates are identified with their Lagrangian analogues.

Another note regards the fact that only energy equations are modified by the non-
local transport model, but other moments of the distribution functions are not coupled
with the equations of two-temperature hydrodynamics (1–4). This simplification fol-
lows the approximation of non-viscous fluid and stability considerations together with
conservation properties of the scheme. Also the radiation pressure is usually signifi-
cantly lower than the thermal pressure in hydrodynamic simulations [22]. However, it
can be observed that the equations (185), (186) are fully energy conservative thanks
to the formulation of the transport in terms of the specific intensities, that is one of
the important advantages of the model.

In order to conclude this section, it must be noted that the BGK model, de-
spite its simplicity, allows integration of larger number of terms into the hydrodynamic
equations as proposed in [9], but their physical justification, implementation and ap-
propriate physical closure models are one of the possible topics of the future research.
One of the perspective approaches is the multi-group transport, that separates the
transported species into different energy groups, increasing the accuracy of the av-
eraged transport coefficients, that can be eventually obtained from the atomic codes
[104, 105].

5.2 Finite element scheme
The previous section (5.1) introduced the BGK non-local transport model making the
closure of the equations of non-local laser plasma hydrodynamics (1), (2) and (185),
(186). This section aims to derive appropriate numerical scheme for solution of the
transport model utilizing the Finite Element Method (FEM) [106, 107]. The beneficial
property of this approach is the possibility of application of arbitrarily high order
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elements thanks to the abstract nature of the description. In particular, Discontinuous
Galerkin finite elements are employed, that provide a feasible option for solution of
advection problems [108, 109] and computational efficiency [110]. The implementation
in the simulation code PETE uses highly scalable MFEM library [111].

In order to summarize the governing system of equations that are solved nu-
merically, it must be recalled that solely hydrodynamical part of the equations (1–4)
is solved explicitly. Diffusion and electron–ion heat exchange are eventually solved
separately due to operator splitting technique as discussed in section 1.1. The laser
absorption acts as an explicit energy source, but it can be integrated together with
the hydrodynamical part or in the finite element scheme according to section 2.1.2.
Hence, the term ∇ · ~S appears later in the construction as an explicit term. Similarly
to the diffusion scheme, the non-local transport numerical scheme is also incorporated
by application of the operator splitting method, solving the modified equations (185)
and (186):

ρ

(
∂εe
∂Te

)
ρ

(
∂Te
∂t

)
split

= Gei(Ti − Te)−
∫

4π
~n · ∇(Ie + IR) dω −∇ · ~S , (187)

ρ

(
∂εi
∂Ti

)
ρ

(
∂Ti
∂t

)
split

= Gie(Te − Ti)−
∫

4π
~n · ∇Ii dω . (188)

In this form, the system of equations is still incomplete and the proper non-local closure
model must be provided. Thanks to the unified treatment of the transported species,
the equations for specific intensities (173–175) can be rewritten into the general form
of transport equation for purposes of numerical solution:

~n · ∇I = kI(S − I) , (189)

where the specific intensity I can be identified with one of the intensities IR, Ie or Ii.
The general source function S replaces ISR

, ISe or ISi
and kI stand for kR, ke or ki.

Together, the equations (187–189) formulate the non-local transport coupled
problem, coupling the local evolution of temperature with fluxes of transported species.
Mathematically, the problem consists of the closed system of differential equations non-
linear in temperatures, since the coefficients (∂εe/∂Te)ρ, (∂εi/∂Ti)ρ, Gei = Gie, κ and
the source function S are all non-linear functions of temperature(s) in general. Plausi-
ble simplification is then made similarly to the section 4 and the specific heats and the
electron–ion energy exchange coefficients are assumed "frozen", i.e. constant through-
out the computational time step. In addition, the extinction coefficient kI is also taken
constant in order to maintain linearity of equation (189) in terms of the unknowns of
the system. The transport equation (189) is then linearised in temperature as follows:

~n · ∇I = SAT + Sb − kII , (190)

where the temperature T corresponds to electron or ion temperature depending on
the transported specie. The newly introduced coefficients SA and Sb are also assumed
constant during the time step. The equations (187), (188) and (190) then represent a
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linear system in the temperatures Te, Ti and the specific intensities IR, Ie and Ii.
The linear non-local transport coupled problem is solved by the Discontinuous

Galerkin Bhatnagar–Gross–Krook Transport and Temperatures Scheme (DG–BGK&TS)
[9]. The discretization is performed in the temporal domain ∆t, the spatial domain
Ω~x and the propagation directions domain Ω~n. The methods for transport of particles
using discretization in directions are generally known as discrete–ordinate methods or
SN methods [97, 112, 110]. Another attribute that is usually given to this methods
is short-characteristics methods, because the propagation is solved always locally be-
tween adjacent computational cells. The full inference of the scheme is out of scope of
this text and can be found in [9], but a brief overview of it is given in order to show
additional ion transport terms as well as the newly added laser absorption term and
the temperature stabilization presented in section 5.2.1.

First of all, the proper domains for solution of the system must be defined. The
temperature equations (187), (188) are solved on the global domain Ωt,~x = ∆t× Ω~x.
In contrast, the transport equations (190) are solved on the higher dimensional domain
Ωt,~x,~n = ∆t×Ω~x×Ω~n, that also includes the angular domain. The spatial discretization
then divides the spatial domain Ω~x into finite elements domains Ωe

~x and the correspond-
ing multi-dimensional domains are denoted similarly as Ωe

t,~x, Ωe
t,~x,~n. All the element

spatial domains are assumed to have Lipschitz boundary Γ with the normal ~nΓ.
The Sobolev functional spaces H1 with zero and first derivative in the Hilbert

space L2 are defined on these domains. In particular, it is the global space HI and
element space He

I for the test and trial functions of the specific intensities I, the space
HTe and He

Te
for the electron temperatures functions and the space HTi

and He
Ti

for
the ion temperatures functions.

Application of Galerkin variational principal on the equations non-local transport
coupled problem (187), (188), (190) yields:∫

Ωt,~x,~n

Ψ
(
~n · ∇I + kII − (SAT + Sb)

)
dΩt,~x,~n = 0 ∀Ψ ∈ HI , (191)

∫
Ωt,~x

Ξ
(
ae

dTe
dt −Gei(Ti − Te) +

∫
4π
~n · ∇(Ie + IR) dω

)
dΩt,~x =

=
∫

Ωt,~x

Ξ
(
−∇ · ~S

)
dΩt,~x ∀Ξ ∈ HTe , (192)

∫
Ωt,~x

Ξ̃
(
ai

dTi
dt −Gie(Te − Ti) +

∫
4π
~n · ∇Ii dω

)
dΩt,~x = 0 ∀Ξ̃ ∈ HTi

, (193)

where the coefficients ae = ρ(∂εe/∂Te)ρ and ai = ρ(∂εi/∂Ti)ρ were introduced similarly
to section 4. The time derivatives are written as ordinary derivatives, because the
dependence on spatial coordinate appears in temperatures only parametrically in this
mixed formulation.

The transport equation (191) is then rewritten into discontinuous Galerkin vari-
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ational form on each of the elements:∫
Ωe

t,~x,~n

Ψ
(
~n · ∇I + kII − (SAT + Sb)

)
dΩe

t,~x,~n =

=
∫

∆t

∫
Ω~n

∫
Γ~n·~nΓ<0

Ψ
(
(I − Ĩ)~n · ~nΓ

)
dΓ dΩ~n dt ∀Ψ ∈ He

I , (194)

where upwind numerical fluxes are applied on the right hand side, inducing integration
only over the part of the boundary Γ, where ~n · ~nΓ < 0 holds, i.e. the inflow of the
numerical flux into the cell. The intensity Ĩ then represents the intensity of the adjacent
element.

The temperature equations (192), (193) are also rewritten to variational form on
the separate elements Ωe

t,~x, but remain formally identical following the mixed formula-
tion. The construction of the scheme then becomes clear, the transport equation (194)
performs the non-local coupling between the temperature evolution equations on single
elements. For given temperature, the transport equation (190) is completely time-less,
forming an ordinary differential equation on the global spatial domain Ω~x. Hence,
explicit upwind scheme can be employed. In contrast, the temperature evolution equa-
tions are solved completely locally on the domain Ωe

t,~x using an implicit scheme in
temperatures. However, the key feature of the DG–BGK&TS scheme resides in the
local inclusion of the transport equation (194) into the local implicit scheme as will be
shown later.

The whole transport model is implemented the 1D hydrodynamical simulation
code PETE, but the scheme can be analogously extended to more dimensions. In 1D
slab geometry, that is used in PETE, the equations (187), (188), (190) take the form:

cos(φ) ∂I
∂z

= −kII + SAT + Sb , (195)

ae
dTe
dt +GeiTe +

∫ 2π

0

∫ π

0
cos(φ) ∂Ie + IR

∂z
sin(φ) dφ dθ = GeiTi −

∂Sz
∂z

, (196)

ai
dTi
dt +GieTi +

∫ 2π

0

∫ π

0
cos(φ) ∂Ii

∂z
sin(φ) dφ dθ = GieTe , (197)

where φ is the azimuthal angle and θ is the polar angle in the spherical coordinates
(φ, θ) ∈ 〈0, π〉 × 〈0, 2π〉 corresponding to the direction of propagation ~n.

In order to proceed, the discrete functional basis must be defined. In particular,
polynomial bases of given order are utilized in code PETE, but the general formulation
of the problem allows even different choices of bases. The bases are ωt, ωθ, ωφ for
temporal domain, polar and azimuthal domain. It must be noted that these basis are
global, i.e. identical for all spatial elements. In contrast, the bases for spatial domain
Ωe
~x are different for each element and discretized quantity. There is basis ψ for the

specific intensities, ξ for the electron temperatures and ξ̃ for the ion temperatures.
The interpolation bases are then produced as combinations of these bases:

Ψ = ωt ⊗ ωθ ⊗ ωφ ⊗ ψ , Ξ = ωt ⊗ ξ , Ξ̃ = ωt ⊗ ξ̃ . (198)
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The quantities appearing in (195–197) are discretized on the finite elements using the
newly defined interpolations bases as follows:

IR/e/i(t, ~x, ~n(θ, φ)) = ΨT (t, θ, φ, ~x) · IR/e/i , Te(t, ~x) = ΞT ·Te , (199)
Ti(t, ~x) = Ξ̃T ·Ti ,

∂Sz

∂z
(t, ~x) = ΞT · div S . (200)

It must be noted that the laser power deposition term is written symbolically as ∂Sz

∂z

following the formulation of equation (196). The intensity discretization is identical
for all specific intensities IR, Ie and Ii.

Substitution of the discretized functions (200) back into the equations (195–197)
in variational form analogues to (192–194) yields the discrete variational form in 1D
slab geometry:

∫
∆t

∫ 2π

0

∫ π

0

∫
∆z

Ψ⊗

(cos(φ) ∂ΨT

∂z
kIΨT

)
IR/e − SR/eA ΞT ·Te − SR/eb

 dz sin(φ) dφ dθ dt =

=
∫

∆t

∫ 2π

0

∫ π

0

∫
Γ~n·~nΓ<0

Ψ⊗
[(

ΨT · IR/e −ΨT · ĨR/e
)

cos(φ)nΓz

]
dΓz sin(φ) dφ dθ dt ,

(201)

∫
∆t

∫ 2π

0

∫ π

0

∫
∆z

Ψ⊗

(cos(φ) ∂ΨT

∂z
kIΨT

)
Ii − SiAΞ̃T ·Ti − Sib

 dz sin(φ) dφ dθ dt =

=
∫

∆t

∫ 2π

0

∫ π

0

∫
Γ~n·~nΓ<0

Ψ⊗
[(

ΨT · Ii −ΨT · Ĩi
)

cos(φ)nΓz

]
dΓz sin(φ) dφ dθ dt . (202)

In 1D, the normal nΓz of the element boundary Γ reduces to only two scalar values
(nΓz = ±1) depending on the orientation of the space. Consequently, the integration
over the inflow part of the boundary Γ~n·~nΓ<0 poses only selection of the left or right
node in 1D. The coefficients SA and Sb were specialised for each of the transported
specie in the equations. The temperature evolution equations follows:

∫
∆t

∫
∆z

Ξ⊗

(ae dΞT

dt +GeiΞT

)
·Te+

+
(∫ 2π

0

∫ π

0
cos(φ) ∂ΨT

∂z
sin(φ) dφ dθ

)
· (IR + Ie)

 dz dt =

=
∫

∆t

∫
∆z

Ξ⊗
[
GeiΞ̃T ·Ti −ΞT · div S

]
dz dt , (203)
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∫
∆t

∫
∆z

Ξ̃⊗


ai dΞ̃T

dt +GieΞ̃T

 ·Ti+

+
(∫ 2π

0

∫ π

0
cos(φ) ∂ΨT

∂z
sin(φ) dφ dθ

)
· Ii

 dz dt =

=
∫

∆t

∫
∆z

Ξ̃⊗
[
GieΞT ·Te

]
dz dt . (204)

Together, the equations (201–204) form a complete linear system of equations
for discrete specific intensities IR, Ie, Ii and temperatures Te and Ti. It is worth to
recall that the term div S is explicit and does not increase the number of unknowns.
For fully discrete form of the system, we point the reader to [9], where all discrete
matrices are properly constructed, and the inference of discrete form of the newly
added terms for ion transport and laser absorption is analogous to construction of other
terms. However, the key aspects of the discrete scheme must be mentioned. The DG–
BGK&Ts scheme allows various time discretizations, but fully implicit, i.e. backward
Euler, discretization is normally used. It offers high stability and low computational
costs, because the scheme can be expressed only in terms of the discrete functions
on the new time level n + 1 (following the notation of the previous sections) and the
quantities on the old time level n are explicitly known and can be directly substituted.
This procedure effectively lowers the dimensions of the system and hence saves the
computational resources.

The innovative idea behind the scheme is that the transport equations (201), (202)
are locally substituted into the temperature evolution equations (203), (204) after the
full discretization, where the discrete intensity is expressed in the form I = AT + b
with a particular matrix A and vector b [9, 113, 114]. A complete system of linear
equations for temperatures is then formed and solved locally. The discrete analogues of
transport equations (201), (202) provide the non-local coupling between the elements
on the global domain Ω~x.

Specifically in 1D slab geometry, the situation is very simple, the Dirichlet bound-
ary condition on zero intensity I(z0) ≡ 0 is applied in a cold solid, where no transport
takes place. From the point of view of the ordinary differential equations in intensities
formed by the transport equations with fixed temperatures (201), (202), the condition
presents an initial condition. The spatial domain is then swept from z0 to the opposite
boundary zNz . During the sweep, the intensities inside the elements as well as the
temperatures are (re)calculated on the time level n + 1. When the vacuum boundary
zNz is reached, reflective boundary condition is activated for electrons and ions, but
zero source intensity for radiation as mentioned in the introduction of section 5, and
a new sweep in opposite direction can start. This procedure is repeated several times
until satisfactory convergence is reached. The relative change of internal energy is
taken as the measure of the convergence in this case. The whole spatial configuration
is depicted in Figure 16. However, it is worth to note that the situation becomes more
complex when the spatial dimensions of the simulation are increased and finding proper
ordering becomes non-trivial [115].
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Figure 16: A schematic visualization of the computational sequence in 1D slab geom-
etry.

5.2.1 Stabilised DG method

The numerical scheme presented in the previous section (5.2) is usually highly stable,
but the coupling of the non-local transport scheme with the hydrodynamical scheme is
performed through the mean values as mentioned in the introduction. This approach
is sometimes not sufficient, especially, when the laser absorption is included in the
model through the term div S. The degrees of freedom of the electron temperature
Te remain distorted after passing through the absorption area, where the elements
undergo strong non-uniform heating. Even though the convergence in mean value
is preserved and a corona is not usually of the main interest in the simulations, it
is beneficial to stabilise the method. This problem is common to many DG schemes
and hence the technique of stabilised discontinuous elements (SDG) has been developed
[106, 107, 116]. In fact, it resides in introduction of additional terms including artificial
diffusion. Here, we propose more physical setting, where classical thermal diffusion is
used locally instead. Similarly to the section about heat diffusion (4), the diffusion
operator of type ∇ · (κSH∇Te) is considered. In variational form, the following holds
after the Gauss theorem is applied:∫

Ωt,~x

Ξ(∇ · (κSH∇Te)) dΩt,~x =
∫

∆t

∫
Γ
κSHΞ(~nΓ · ∇Te) dΓ dt−

∫
Ωt,~x

κSH∇Ξ · ∇Te dΩt,~x .

(205)
However, only the symmetrical part of the right hand side is used in order to eliminate
linear functions from the kernel of the operator, because correction of slope of linear
functions is also intended. Consequently, the term of corresponding to the diffusion is
added to the left hand side of (203):

αSDGκSH
∂Ξ
∂z
⊗ ∂ΞT

∂z
, (206)

where αSDG is a constant typically chosen αSDG � 1 in order to preserve behaviour
mainly driven by the transport equation.

Several remarks must be made. The mean value on the elements is preserved as
can be observed for example by the assignment Ξ← 1 in (205) without the asymmet-

71



rical term on the right hand side. That is in agreement with the fact that the method
is meant only as a correction that should not perturb the convergence in mean values.
The Spitzer-Härm heat conductivity defined in section 3.4 is applied to effectively allow
the application of the correction only in hot plasma, because the coefficient is close to
zero for low temperatures. The non-linearity of the heat conduction in temperature is
also advantageous here for the same reason. However, the diffusion acts only in the
interior of the elements, where distortion of values of temperature degrees of freedom
may occur and the DG elements admit discontinuity of temperatures on the boundaries
of the elements. The proposed term effectively solves this problem, but fine tuning of
the multiplicative constant αSDG is sometimes required depending on the given prob-
lem. A fully high-order scheme including the hydrodynamical part poses an elegant
alternative and it is one of the possible topics of future research as mentioned in the
introduction of section 5.
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6 Numerical simulations
This section presents the results of the numerical simulations performed with the 1D
simulation codes PETE and 2D code PALE2. An extensive comparison is made be-
tween different physical models and numerical methods in order to show various aspects
of the methods. It includes the classical thermal diffusion model reviewed in section
4, that is present in both codes, and also the state-of-art non-local transport model
for radiation, electrons and ions described in section 5, that is specific for code PETE.
Moreover 1D and 2D simulations were performed to show the effects of higher dimen-
sional treatment of the problem. Finally, the results are validated by a comparison
with literature.

In order to achieve full comparability of the results, a single experimental scenario
from [117] has been chosen. The authors present results of numerical experiments for
pre-pulse of 100 TW LULI laser system, that are supported by measured values of
partial ionization. The calculations of detailed distributions of ion species and resulting
average ionizations were obtained by postprocessing of the results of hydrodynamical
simulations. Moreover, the achieved results with the simulation code CHIVAS are
discussed with respect to the other codes, MULTI [118] and FILM [119]. It must be
stressed that the codes CHIVAS and MULTI have incorporated radiation transport
model, making them ideal candidates for full comparison with our radiation transport
model. However, the hydrodynamical codes are also enhanced by atomic physics codes
that are not integrated in the codes PETE and PALE2, but the results with several
equations of state are compared here instead.

The pre-plasma was created in the experiment by irradiation of an aluminium
target by 600 ps long laser pulse with wavelength λ0 = 0.53 µm. The temporal profile
is approximated by a Gaussian pulse with peak intensity Ilaser = 5 ·1013 W/cm2, where
the temporal width (FWHM) of the pulse is taken as one half of the full length, i.e.
tFWHM = 300 ps. The maximum peak offset is equally set toffset = 300 ps. The spatial
profile of the pulse is not fully detailed in the paper and only 1D simulations were
performed there. Therefore, a Gaussian spatial pulse shape is used here for simplicity
and the spot diameter (FWHM) is set dFWHM = 280 µm in according to the paper.

The geometry of the computational mesh was also unified in all simulations in
order to attain maximal comparability. The 1D simulations used single geometrical
mesh spreading from z0 = −100 µm to zNz = 0 µm with Nz = 300 cells and geometrical
factor Cg = 0.97. The geometrical factor of the mesh increases its density in the
ablation area, setting the volume ratio of each two consequent computational cells:

zj = z0 + (zNz − z0)
Cj
g − 1

CNz
g − 1 j ∈ {1, . . . , Nz − 1} . (207)

The orders of polynomial bases were set: 2nd for electron temperatures, 0th for
ion temperatures, 3rd for specific intensities and the azimuthal angle φ and 0th for
the polar angle θ. The selection of the values follows the considerations that electron
dynamics is the more dramatic than dynamics of ions as can be observed later. The
intensities form numerical fluxes in the mixed formulation (195–197) and the order
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of the polynomials is lowered by the divergence operator in the contribution to the
energy equations. Hence, the order of the intensity polynomials is increased by one
to maintain compatibility of the bases. Finally, the polar angle variation is eliminated
totally following the 1D symmetry in code PETE, i.e. polar isotropy of the transport.

The 2D simulation code PALE2 has been configured to use cylindrical geometry
with the computational mesh 〈r0, rNr〉 × 〈z0, zNz〉 = 〈0, 500〉 × 〈−50, 0〉 in microns.
The number of cells was Nr = 80 in radial direction and Nz = 140 in axial, where
geometrical factors were set 0.95 and 1.03 respectively. The indirect ALE method was
used with the Eulerian part (consisting of mesh rezoning and remapping of all quantities
from the Lagrangian to the rezoned mesh) performed after each 25 Lagrangian time
steps. This approach maintains sufficiently regular computational mesh for the laser
absorption algorithm. Rezoning boundary condition was set to apply mirroring of
the nodes on the central axis r = 0 and the outer surface r = rNr , allowing free
sliding of the of the mesh in z axis. In contrast, the top and bottom boundaries used
convex combination of 0.2 rezoned position and 0.8 Lagrangian positions of the nodes
to keep the evolution maximally physically realistic, but allow minor smoothing to
avoid creation of non-convex cells. Rezoning itself used Winslow smoothing of the
computational mesh [120, 121].

Both codes used primarily interpolated QEOS equation of state to improve the
comparability of the results, although QEOS is not normally available in PETE, but
the interpolation tables were manually transferred between the codes. Other equations
of state were also tested, but QEOS offers remarkable reliability from the point of
view of hydrodynamical simulations, because it smoothly models an extensive range of
densities and temperatures and also the results are in reasonable agreement with the
reference profiles as shown on the following pages.

6.1 1D simulations
The first set of plots in Figure 17 compares the results computed by the 1D simulation
code PETE with non-local transport of electrons and ions and classical heat diffusion
approximation with the reference data from [117]. Several key aspects distinguishing
both approaches can be clearly observed there. The non-local transport leads to higher
temperatures in the corona, because the heat fluxes are significantly lower mainly in
the early phases of the simulation as shown in Figure 18. The energy is not equally
strongly transferred from the vicinity of critical plane, where most of the laser energy
is deposited, to the cold material of the target. This flux inhibition leads to decreasing
of the ablation rate and recession rate of the surface and consequently to lower coronal
densities. On the other hand, the diffusion launches non-linear heatwave at the begin-
ning of the simulation, heating the upstream of the laser ablation wave significantly
more effectively. However, the heat flux is enormous and its non-physically large value
must be strongly penalized by the heat flux limiter as will be discussed later. Also
the diffusion maintain high values of the heat flux in the most of the corona lead-
ing to temperature saturation unlike the non-local transport model, that shows more
rapid decrease of the temperatures in corona. An interesting observation can be made
that the non-local transport allows penetration of (nearly) solid material unlike the
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Figure 17: The density and temperature profiles at different times according to the
reference [117] (reference), obtained from simulations with heat diffusion of electrons
and ions with radiation transport (diffusion) and non-local transport of electrons and
ions also with radiation transport (non-local).

heat diffusion that mainly acts in the expanded matter. This effect originates directly
from the non-local nature of the transport, where the diffusion approximation by the
dependence only on the local gradient of temperature is not sufficient.

The ion temperatures behave oppositely to the electron ones. The reason of
this phenomena can be explained mostly by the typical decreasing dependency of the
electron–ion collision frequencies as shown in section 3. Ion temperature is driven by
the exchange of energy with electrons, because the energy equation of ions (5) is mostly
dominated by this source term in corona, since the pressure declines rapidly there and
ion heat transfer is conservative and hence does not act as a source in the global sense.
However, ions do not redistribute the energy even locally by the diffusion or the non-
local transport. The values of ion heat flux are minuscule compared to the electron
ones. The ineffectiveness of the transport mainly due to prohibitively small values of
the mean free path also leads to deformations of the profiles of the heat flux. Ions
are not able to converge to a self-similar solution in the form of non-linear heatwave,
because of the strong coupling with electrons and insufficient heat transport.

From the quantitative point of view, the most important transport mechanism is
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Figure 18: The energy fluxes at different times of the simulations with full thermal
diffusion (diffusion), electron non-local transport and ion diffusion (el. non-local) and
fully non-local transport (non-local). All simulations were performed with active ra-
diation transport. Note that laser energy flux is not oriented unlike the rest of the
fluxes, since its orientation towards the target does not change. Also the simulations
el. non-local and non-local differs only gently and the profiles are almost identical in
most plots.

the radiation transport. The radiation flux easily reaches more than one third of the
absorbed laser intensity, although the Aluminium can be considered only moderate-
Z material and not high-Z material, that are known to be especially strong emitters
of thermal radiation [99]. The radiation crosses the conduction zone and it is ab-
sorbed there, but re-emission of the radiation follows. Hence, the mechanism smoothly
deposits energy in the colder matter, altering the hydrodynamical expansion in the
process and deforming the density profiles consequently. This phenomenon is known
as double ablation front [100, 101]. Its most apparent effect is that slope of the density
profile is flattened to some degree in the conduction zone, i.e. approximately between
the laser ablation front and head of the rarefaction wave. In contrast, the radiation
transport unlike the other transport mechanisms maintains enormous outward point-
ing energy fluxes in corona leading to strong radiation cooling effect. The confined
energy in the system is dissipated rapidly. When the laser intensity lowers after the
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maximum at 300 ps, the proportion of the radiation flux to the absorbed laser intensity
increases leading to alteration of the energy balance in the plasma. Moreover, it can
be noticed that the corona is almost totally transparent for the radiation and hence
the radiation temperature is close to complete saturation there. Emission of radiation
takes place there due to high electron temperatures, but the radiation freely crosses
the area, because the opacity drops there for the same reason.

The laser absorption is strongly affected by the chosen transport model and hence
the differences between the resulting profiles are even more pronounced. This effect
occurs, because the reflectivity of the critical plane is closely connected with the gra-
dients of the thermodynamic quantities in the vicinity of the critical plane as can be
seen in the definition of complex permittivity (16).

The comparison with the reference data in Figure 17 reveals that the shape of
the density and temperature profiles better suits the simulations performed with the
diffusion model. The positions of the shock wave are almost identical for example and
the densities in the corona at early times almost coincide. That is in an agreement with
the fact that thermal diffusion was also used in the paper [117]. However, application
of the diffusion approximation is mostly not physically justified, because the electron
Knudsen number is about ≈ 102 in the corona as shown in Figure 19. Also the values in
the conduction zone are only moderate and cannot be considered fully sufficient for the
diffusion. From this point of view, our non-local transport model is superior, because
the restriction on the value of the Knudsen number is not present and the model is
supposed to work in the diffusion regime as well as in the non-local transport regime.
The discussion of the differences of the non-local transport model and the diffusion
model then also holds for the reference profiles almost fully.

More questions arise about the radiation transport model, that is most likely
responsible for the rapid decrease of the temperatures in the later phases of the simu-
lation. In the discussion in the paper [117], the authors also claim that other numerical
codes reached even higher temperature in the late times of the simulation. That con-
traindicates the observed behaviour in our results that the electron temperature falls
rapidly, even though they were comparable at earlier times. Moreover, the transport
forms the double ablation front structure very early in our case. On the other hand,
our radiation transport is fully non-local and the radiation diffusion codes may behave
worse, because the radiation Knudsen number grows to the values & 1 near the critical
density as shown in Figure 19. However, the details about the used model are not
present in the paper. One of the deficiencies of code PETE is usage of only Planck
opacities approximated by the scaling laws. Usage of Rosseland opacities is more ap-
propriate for the conduction zone with low Knudsen numbers [62] and also the validity
of the scaling laws is limited and must be taken with a grain of salt. A revision of the
radiation transport model is a prospect for future work.

The ion Knudsen number shows that ion transport regime does not reach fully
free streaming limit even in the corona. Hence, the diffusion transport is well-justified.
Nevertheless, the non-local ion transport model is also applicable, but heat flux in-
hibition is significant also in this case as discussed earlier. The by-product of the
evaluation of the Knudsen numbers is that it reveals minor deformations of the tem-
peratures, when the full non-local transport model is employed. The ion transport is
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Figure 19: The Knudsen numbers of transported species and laser energy volumetric
deposition rate at different times of the simulations with full thermal diffusion (diffu-
sion), electron non-local transport and ion diffusion (el. non-local) and fully non-local
transport (non-local). All simulations were performed with active radiation transport.
Note that the simulations el. non-local and non-local differs only gently and the profiles
are almost identical in most plots.

negligible with heat fluxes∼ 108 W/cm2 and is not able to smooth even small variations
in temperature. The origin of the perturbations may not be even physical, but rather
numerical and hence the diffusion model is preferred from the point of view of the
stability of the simulation. The parabolic nature of the diffusion equations guarantees
that local extremes cannot appear and entropy is monotonously increasing. However,
overall effect of the ion heat transfer is minimal under given conditions.

The laser energy absorption profiles in Figure 19 explain the absorption by inverse
Bremsstrahlung more clearly, where most of the power is absorbed in the vicinity of the
critical density. However, it can be observed that the absorption algorithm described
in section 2 gives not negligible values of absorbed energy even about 40 wavelengths
from the critical density in some cases. One may also notice that the resulting profiles
are very smooth, even though the stationary waves are typically forming during the
absorption as shown in the section dedicated to the laser absorption (2). The waves
are present also in this case, but the spatial scale of the hydrodynamical simulation is
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considerably larger than the the laser wavelength λ0 and therefore point projection is
not used for the transition from the refined mesh on the main mesh (see section 2.1.1),
but linear regression of the Poynting vector (laser energy flux) is made in the range of
a single wavelength instead. This way only a small redistribution of energy takes place,
but absorption is still globally conservative. The temporal evolution shows that the
critical plane recedes after the peak intensity is reached, because the hydrodynamical
balance causes prolongation of the rarefaction wave area as can be noticed from the
density profiles in Figure 17. Another interesting phenomenon is that heat diffusion
does not only smooths the temperature profile as shown before, but also the refraction
profiles and consequently the laser absorption profile. This effect is sufficiently strong
to almost totally smear out the absorption profile in the late phases of the simulation.
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Figure 20: The temperatures and heat flux fractions (defined in section 4.3) at different
times of the simulations with full thermal diffusion and radiation transport plotted for
different heat limiter coefficients fmax.

In the previous discussion, heat flux limiting technique was mentioned in the
context of the heat diffusion model, but a quantitative study of their effect on the sim-
ulation has not been made. The set of simulations presented in Figure 20 is dedicated
to this purpose. The value of the heat flux limiter fmax = 0.05 has been used for all
simulations performed so far and hence the corresponding profiles of other quantities
can be found in the figures (17–19). The increased fmax allows higher values of heat
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fluxes in fact, that lead to stronger diffusion of temperature. The temperature gradient
in the vicinity of the critical plane is lower, because the thermal diffusion very effec-
tively transports the energy to from the maximum laser absorption are further into
upstream of the laser ablation front. In addition, the electron heat flux fraction shows
that the conduction is almost unlimited except narrow area near the critical plane and
hence total temperature saturation in the corona is unavoidable. Contrary, the lower
value of fmax rises the the temperature gradient near the critical plane and leads to
strong application of the flux limiter, where the flux fraction reaches even the second
order of magnitude. In addition, flux limiter reduces the fluxes also in the corona,
because of the density dependence of the W fs

e in the definition (134), and the electron
temperature starts falling down consequently. The ion temperatures are also shown,
but their profile approximatively follows the behaviour of the electron temperature,
because the ion heat transport is only subtle. Moreover, their heat fluxes are strongly
limited by the heat flux limiter, because the flux fraction is about the fifth order of
the magnitude. This effect is in agreement with the non-local transport model, where
the directly computed values of fluxes were naturally extremely small as shown in Fig-
ure 18. The reasons for this behaviour can be seen in prohibitively small values of W fs

i

defined in (135) and large temperature gradients driven by electron dynamics and not
ionic. However, it must be concluded that the chosen value fmax = 0.05 is in a good
agreement with both simulations, the reference one and also the one with non-local
transport, likewise the theoretical studies [68, 69].

Besides the value of the heat flux limiter coefficient, the flux limiting method
itself plays a major role in the limiting and several different constructions were made
in section 4.3. We divide the flux limiters to "direct", that modify the computed heat
fluxes, and "indirect", that change the heat conductivities and the heat conduction
step must be repeated. This classification is supported by the Figure 21, where both
families of the limiters can be clearly distinguished based on their behaviour. It must
be noted that the limiter κrescale has been used so far and hence the complementary
profiles can be found on the previous pages. The temperature profiles are very close to
each other for all limiters, but the direct limiters exhibit peculiar effect near the critical
plane. It originates from their basic construction (137), (138), because the strong direct
limiting of the fluxes leads to their replacement by the free streaming flux W fs in fact.
However, W fs is a function of the local temperature and not the temperature gradient
as the original fluxes given by (96). Hence, the governing equation (95) is not parabolic
any longer and becomes rather hyperbolic. In other words, the diffusion behaviour is
eliminated locally and expected properties of the diffusion transport are not guaranteed.
In this case, the local extreme is created even though it normally cannot be produced
with diffusion. The flux limiting is strongly one-sided near the critical plane as can be
seen from the flux fraction, causing significant imbalance on the laser ablation front. We
find this behaviour highly non-physical and the indirect limiters are preferred instead.
The difference between the indirect limiters is mostly insignificant. The harmonic
mean flux limiter given by (140) reduces the heat conductivity coefficient smoothly
unlike the rescale limiter, that sharply attenuates it only in the regions of excessive
heat fluxes. Both approaches are feasible, but the harmonic mean limiter essentially
performs almost identically as the rescale limiter, but with lower effective value of
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Figure 21: The temperatures and heat flux fractions (defined in section 4.3) at different
times of the simulations with full thermal diffusion, radiation transport and different
heat limiter methods (denoted by the term which they act on).

the heat flux coefficient. From this point of view, the rescale limiter behaves more
predictably and hence it is used primarily.

The simulation results depend also on the employed electron–ion collision fre-
quency model described in section 3.2. The models νKS and νDS are compared in
Figure 22. It can be concluded that the overall differences are marginal, especially in
the later phases of the simulation. The selection of the model of collision frequency
affects mainly the initial phase, where the laser is absorbed in cold material, but its
significance decreases later, because most of the plasma dynamics occurs in the Spitzer
limit, that is satisfied by both models (see section 3.2). However, the temperature
decreases in the conduction zone and the discrepancies between the models appear in
the plot of the collision frequency at the late times of the simulation, but the system
mainly undergoes only spatial expansion there and thus the effect of them is mini-
mal. An interesting observation is that the ion temperature varies most visibly of the
presented quantities and the difference of about 50 eV at some points may not be
negligible for accurate simulations. The reason of this behaviour is that the ion tem-
peratures are mostly governed by the electron ones and the heat exchange coefficients
defined in section 3.3, but both quantities are affected by the collision frequency model.
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Figure 22: The electron densities, temperatures and the electron–ion momentum loss
collision frequency at different times of the simulations with full thermal diffusion,
radiation transport and different collision frequency models from the section 3.2.

Non-linearity of the system then causes that even relatively small changes in collision
frequencies influence the ion temperatures considerably. However, it must be noted
that ions confine less energy than electrons in plasma [22] and hence the effect is still
insignificant from the global point of view of evolution of the system.

In the last but not least set of simulations, results with different equations of
state are compared. The plots in Figure 23 show major differences between the sim-
ulation results. Although the equations of state (EOS) were only briefly overviewed
in section 3.1 and full analysis of internal functioning of them is out of scope of this
text, the significant effects on the results were observed and hence a practical compar-
ison is made here. At the first sight, mainly the electron and ion temperatures vary
remarkably with different EOSes. SESAME gives highest electron temperatures and
that partially explains the low ion temperatures in the corona. However, this is not
the only reason why the ion temperatures are lowest of the EOSes, because also the
ion heat capacities are highest of them, decreasing the ion temperatures even further.
In contrast, BADGER is nearly identical with QEOS in the corona most of the time,
because BADGER is actually based on QEOS for electrons (see section 3.1). However,
it vastly differs in the conduction zone and the shock wave, where peculiar behaviour
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Figure 23: The mass densities and electron, ion and radiation temperatures at different
times of the simulations with full thermal diffusion, radiation transport and different
equations of state.

is observed. The position of the head of the shock is far from the other EOSes and
likewise the reference data. The shock actually breaks down non-physically and one
part of the shock counter-propagates in the late phases of the simulation. This makes
BADGER practically unusable, despite its rich features. In contrast, SESAME and
QEOS are both in a good agreement with the reference data from the point of view of
the shock propagation. Nevertheless, the difference between SESAME density profiles
and the profiles of other EOSes and the reference data increases toward the vacuum
boundary. The radiation temperature confirms the statements above, but it is less
sensitive to the shape of the electron temperature profile in the corona due to full
saturation. To close this section, it can be concluded that QEOS provides best profiles
of all compared equations of state and the results achieved with it are in a reasonable
tolerance with the reference data [117].
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6.2 2D simulations
In addition to the 1D simulations, two dimensional simulations in cylindrical geom-
etry were performed to determine the effect of higher dimensional treatment on the
numerical experiment and also confirm the feasibility of the proposed laser absorption
algorithm in section 2.2. Therefore, 2D simulations with code PALE2 were made with
the configuration described in the introduction of this section. However, it must be
noted that PALE2 does not posses the radiation transport model nor the non-local
transport model presented in section 5. Extension of this model to more dimensions
and coupling with the hydrodynamical code is one of the possible topics of future re-
search. Nevertheless, the simulations without radiation transport and only classical
heat diffusion and also in one-temperature approximation give better insight into the
mechanisms of the whole ablation process.
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Figure 24: A comparison of density, electron temperatures, axial hydrodynamical fluxes
and heat fluxes obtained from the reference data from [117], 1D two-temperature sim-
ulation with full thermal diffusion without the radiation transport in the code PETE
and 2D one-temperature simulation with heat diffusion in PALE2 plotted at the central
axis r = 0. (The profiles from 2D simulation at t = 1100 ps are not present, because
the simulation ended before this time.)

The set of plots in Figure 24 compares the 1D approximation of the problem
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with full 2D simulation in cylindrical geometry that actually approximates fully 3D
configuration due to the axial symmetry (assuming normal incidence of the laser). Both
codes used interpolated QEOS equation of state similarly to the previous section. It
must be stressed that the interpolation technique is necessary in this case, because the
2D simulation with 80×140 = 11200 computational cell and direct evaluation/inversion
of EOS takes even weeks of computation.

Overall, it can be observed that the simulations are very close to the reference
[117], even though the radiation transport was not present in them. This supports
the idea that the numerical experiment in the reference is more driven by the thermal
diffusion. However, double ablation front structure appears in the later phases of the
simulation, indicating the importance of the radiation transport there.

In addition, it can be read from the simulations that the two-temperature dy-
namics have negligible effect on the global evolution of the simulation under given
conditions. This is a consequence of close temperatures in the conduction zone and
energetic dominance of the electrons in the corona during the nanosecond laser pulses.

Figure 25: The spatial profiles of mass density, temperature, hydrostatic pressure and
laser intensity within the 2D simulation in cylindrical geometry at time t = 300 ps.

The results also show that full spatial expansion of the plasma lowers the temper-
atures and only slightly the density profiles, but position of the shock remains almost
unchanged due to large laser spot size and consequent low spatial divergence of the
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shock. Its velocity follows the hydrodynamical balance in front of the critical plane
that remain preserved, because of the short distance between the critical plane and
the target surface. However, the corona dynamics differs more visibly, the electron
temperatures are lower as well as the axial energy fluxes.

The lower coronal temperatures compared to the 1D simulation are caused by the
radial hydrodynamical flux (~qh = (pe + pi)~u) during the spatial expansion and also the
radial heat fluxes. Both of them are induced by the radial gradients of the quantities
and primarily the radial gradient of the laser intensity as shown in Figure 25. The
closer analysis of the fluxes in Figure 26 shows that the conduction dominates over
the convection in early times of the simulation, but both of them are oriented from
the central symmetry axis, contributing on the reduction of the temperatures along
it. However, the radial fluxes are predictably largest around the Gaussian RMS width
rσ = dFWHM/(2

√
2 ln 2) .= 118.9 µm, where the Gaussian beam has highest spatial

gradient. The profiles of axial fluxes follow the variation of the quantities in the radial
direction and qualitatively resembles the 1D simulation as confirmed along the central
axis in Figure 24. This holds as long as the spatial divergence is not dominating the
simulation.

Figure 26: The spatial profiles of heat and hydrodynamical energy fluxes within the
2D simulation in cylindrical geometry at time t = 300 ps.

In order to extend the discussion of the higher dimensional treatment on the
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simulation results, the plots of quantities at later time are also given in Figure 27.
The expansion progressed even further there and it must be remarked that it is not
possible to perform the simulation without application of ALE method that makes
indispensable part of the code, because it visibly regularizes the mesh in the corona and
maintains it sufficiently dense for the laser absorption algorithm described in section
2.2. Artificial anisotropic diffusion is introduced by the method, because each rezoning
and remapping step mixes the quantities to some degree [122]. Thus, the evolution of
the system may not be fully physically realistic in the outer regions, where temperatures
are low, but curvature of the mesh is extreme. However, high accuracy of the simulation
is maintained in most of the area and regularity of the mesh supports the numerical
precision of the simulation.

Figure 27: The spatial profiles of mass density, temperature, hydrostatic pressure and
laser intensity within the 2D simulation in cylindrical geometry at time t = 800 ps.

From the physical point of view, an interesting phenomena occurs. The radial
fluxes were dominated by heat conduction in the previous case, but their amplitude
switches over in the meantime and the radial hydrodynamical fluxes are higher now
as shown in Figure 28. This follows dispersion of the steep gradients of the quantities
and releasing of the confined internal energy by hydrodynamical expansion. In addi-
tion, the maximal fluxes are driven away from the central axis, because they are not
directly imprinted by the energy sources any longer. The magnitude of laser deposition
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has decreased considerably, almost 3 orders of magnitude in particular. Instead, the
inertia of the system plays the role in this case and the evolution continues the started
hydrodynamic expansion.

The axial energy fluxes in Figure 28 further diverge from the 1D profiles, because
the expansion of the corona is not negligible. Instead, they approximately follow the
quiver of quantity gradients. The axial hydrodynamical flux also dominates over the
heat flux, pushing the corona away from the target surface. In contrast, the heat flux
mainly disperses the gradient of the temperature near the critical plane and also causes
almost complete saturation of the temperature in the corona.

Figure 28: The spatial profiles of heat and hydrodynamical energy fluxes within the
2D simulation in cylindrical geometry at time t = 800 ps.
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Conclusions
Laser–target interaction is a complex process involving many physical phenomena.
Hydrodynamical approach is one of the most popular, describing the plasma as a fluid
governed by the laws of hydrodynamics. Other physical processes are then incorporated
within the closure model of the resulting system of partial differential equations and
various numerical methods are employed to solve it computationally.

The plasma dynamics is primarily driven by laser energy deposition in this case,
showing the necessity of a proper laser absorption algorithm. In context of this work,
the 1D algorithm based on solution of the stationary Maxwell’s equations has been
studied and numerically treated to increase robustness and reliability of the method.
A technique to utilize the high-order finite element discretization of the thermodynamic
quantities (see below) was also proposed and implemented. Moreover, the development
of the laser absorption algorithm application in two dimensions continued from the
previous work and the bilinear interpolation was added to the mesh refining algorithm,
increasing the order of convergence of the method remarkably.

Physical closure relations are also presenting indispensable part of the simula-
tion, whenever physical accuracy is concerned. The equations of state form closure of
ideal hydrodynamics, but also provide important thermodynamic quantities to other
parts of the model. Hence, the used equations of state were briefly reviewed and
practically compared. In addition to them, collision frequency related expressions are
constituting the physical closure. The idea of a single central collision frequency was
followed, wherever it was possible. Several sophisticated models were integrated and
compared, because the classical Spitzer–Härm formula is not sufficient to describe the
low temperatures regime.

The diffusion approximation of the heat transfer is traditionally used in the con-
text of hydrodynamical simulation codes. The physical and numerical aspects of this
approach were discussed. The semi-implicit diffusion scheme, developed in the pre-
vious work, was applied on the two-temperature model and further extended to in-
corporate the electron–ion temperature relaxation. Nevertheless, certain theoretical
considerations led to improvement and implementation of a separate fully conservative
electron–ion energy exchange numerical scheme. In addition, several heat flux limiting
techniques were implemented and their effect on the simulation results was shown as
well as the importance of a proper selection heat flux coefficient values.

The analysis of the physical conditions during the laser ablation reveals that
application of the diffusion approximation is not usually properly justified. The electron
mean free path is significantly larger then the typical temperature gradient scales and
hence non-locality of the transport must be taken into account. The novel approach
based on numerical solution of a reduced kinetic equation, that was introduced in [9],
has been followed. In particular, the development of the 1D hydrodynamical simulation
code PETE containing this model continued. The ion heat transport was added and the
discontinuous Galerkin finite elements scheme was also extended by the high resolution
laser absorption as mentioned above. However, the ion transport contribution was
found to be less important most often for (near) nanosecond laser pulses.

Finally, 2D simulations were performed in the simulation code PALE2 and the
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effect of the full spatial expansion was analysed. The 2D laser absorption algorithm
viability was verified in the process. Furthermore, the effect of radiation transport was
determined comparatively, but deeper revision of the model presents a possible topic
of future research. Also the results revealed that the two-temperature model is mostly
comparable with the one-temperature model for longer laser pulses.

Overall, good agreement of the simulation results in 1D and 2D and the reference
data taken from literature was found. Moreover, the authors of the reference paper
verified their results by an experiment and hence our simulations can be also considered
well-founded. In order to summarize, all points of the assignment were fulfilled.
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