
Computers & Fluids 83 (2013) 164–169
Contents lists available at SciVerse ScienceDirect

Computers & Fluids

journal homepage: www.elsevier .com/locate /compfluid
High-order remapping with piece-wise parabolic reconstruction
0045-7930/$ - see front matter � 2012 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.compfluid.2012.06.006

⇑ Corresponding author.
E-mail address: liska@siduri.fjfi.cvut.cz (R. Liska).
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1. Introduction

The Arbitrary Lagrangian Eulerian (ALE) method is an extension
of Lagrangian hydrodynamical methods which allows to overcome
the difficulties connected with moving Lagrangian mesh, which for
some flow patterns, as e.g. shear or vortex flows, becomes distorted
so much that the Lagrangian computation cannot continue. In such
a case (or regularly after some number of Lagrangian time steps)
the ALE method rezones the distorted mesh to a new smoother
one and interpolates the conservative quantities (mass, momen-
tum and energy) from the old mesh to the new one. The interpola-
tion has to be conservative and is called remapping. The remapping
methods [1–3] typically use piece-wise linear (or constant) recon-
struction of the conserved quantities on the old mesh. During the
remapping, the reconstruction is integrated over the new cells to
get remapped quantities on the new mesh. The piece-wise con-
stant reconstruction leads to the first-order remapping, while
piece-wise linear reconstruction is second-order accurate in re-
gions of smooth flow. Here we investigate the usage of piece-wise
quadratic reconstruction for the remapping which should be third-
order accurate.

It is well-known that using standard piece-wise linear reconstruc-
tion works fine in the regions of smooth flow, however produces over-
shoots and undershoots (or even oscillations) when employed for
remapping in the vicinity of discontinuities. These monotonicity
violations are usually treated by applying limiters which effectively
reduce the slopes of linear reconstructions around discontinuities
resulting in monotone remapping. In the remapping context the
monotonicity requirement requests the remapped data to be mono-
tone when the initial data are monotone. Monotonicity of remapping
is usually formulated in terms of bounds preservation and is reason-
ably well understood for piece-wise linear reconstructions. Here we
look into the issue of how to limit piece-wise parabolic reconstruc-
tions, so that remapping results will stay monotone, in bounds, where
we use the standard definition of bounds. We try in the remapping
context several types of limiting of piece-wise parabolic reconstruc-
tion [4–6]. Instead of limiters one can use flux corrected remapping
[7,8] combining low-order and high-order numerical remapping
fluxes in a way satisfying the bounds. An option to correct remapping
results being out of bounds is to use repair techniques [3,2] which
redistributes conservatively the quantities being out of bounds into
the neighboring cells. Remapping with piece-wise quartic reconstruc-
tion, being the extension of the PPM method [6], has been investi-
gated in [9] for ocean modeling.

The rest of the paper is organized as follows. Section 2 contains
general introduction into the remapping in the flux form and defini-
tion of the remapping monotonicity. Different methods for piece-
wise parabolic reconstruction as well as introduction to flux
corrected approach for the remapping are described in Section 3.
In the next section, the order of convergence and bound-preserva-
tion of the methods are verified numerically on a set of cyclic remap-
ping tests for few types of smooth and discontinuous functions.

2. Remapping

In the selected approach the remapping can be divided into two
stages. At the first stage the remapped quantity is reconstructed on
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Fig. 1. Remapping in a single cell. The old computational mesh with nodes xi�1=2

and means ui are in black, the new ones are in red. The reconstructed piece-wise
parabolic function uðxÞ is in blue. The green areas correspond to the numerical
fluxes Fi�1=2. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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the old mesh. At the second stage the reconstructed function is
being integrated over all cells of the new mesh (see Fig. 1). We de-
note the nodes of the old mesh by xi�1=2 and the nodes of the new
mesh by xn

i�1=2. The mean value ui of the conserved quantity uðxÞ in
the old cell ðxi�1=2; xiþ1=2Þ is defined as

ui ¼
1

Dxi

Z xiþ1=2

xi�1=2

uðxÞdx; ð1Þ

where Dxi ¼ xiþ1=2 � xi�1=2 denotes the old cell volume. After the
Lagrangian step one does not know the function uðxÞ. Only the old
means ui and old mesh xi�1=2 are known. The new mesh xn

i�1=2 is con-
structed during the rezone stage (here we assume that the rezoned
nodes xn

i�1=2 do not move outside the neighboring old cells, i.e.
xi�3=2 6 xn

i�1=2 6 xiþ1=2;8i) and the remapping task is to compute
the new means un

i

un
i �

1
Dxn

i

Z xn
iþ1=2

xn
i�1=2

uðxÞdx; ð2Þ

on the new mesh, where Dxn
i ¼ xn

iþ1=2 � xn
i�1=2 is the volume of the

new cell. The quantity u is conservative, so we naturally require
the remapping to be conservative, i.e.X

i

uiDxi ¼
X

i

un
i Dxn

i : ð3Þ

Standard way to proceed is to derive a piece-wise polynomial
reconstruction function uRðxÞ from the old means ui and the old
mesh xi�1=2 (the formula (1) has to be valid for uRðxÞ and all cells
i). The reconstruction function uRðxÞ is then used in (2) to compute
the new means un

i . Now if we define the numerical remapping
fluxes (corresponding to the green areas in Fig. 1) as

Fi�1=2 ¼
R xn

i�1=2
xi�1=2

uR
i ðxÞdx for xn

i�1=2 > xi�1=2

�
R xi�1=2

xn
i�1=2

uR
i�1ðxÞdx for xn

i�1=2 < xi�1=2

8<
: ; ð4Þ

where uR
i ðxÞ stands for the polynomial reconstruction function in

the cell i, then the remapping is given by (see Fig. 1)

un
i Dxn

i ¼ uiDxi þ Fiþ1=2 � Fi�1=2; ð5Þ

and it is conservative. To specify the monotonicity requirement we
first define the bounds for the remapped values

umin
i ¼min ui�1;ui;uiþ1f g; umax

i ¼max ui�1;ui;uiþ1f g: ð6Þ

We say that remapping is in bounds if for all cells i

8i umin
i 6 un

i 6 umax
i : ð7Þ
3. Piece-wise parabolic reconstruction

Inside each cell we choose a parabolic reconstruction
uR
i ðxÞ ¼ ui þ ux

i ðx� xiÞ þ
1
2

uxx
i ðx� xiÞ2;

where xi is the center of cell xi ¼ ðxiþ1=2 þ xi�1=2Þ=2. The unknown
coefficients of this reconstruction ui;ux

i ;u
xx
i have to be computed

from the old means ui�1;ui; uiþ1 on the old mesh. The conservation
in the cell i implies ui ¼ ui � 1

24 uxx
i Dx2

i . The remaining unknown coef-
ficients are computed by the least squares minimization of recon-
struction error Uðux

i ;u
xx
i Þ in the neighboring cells i� 1 and iþ 1,

namely

Uðux
i ;u

xx
i Þ ¼

X
j2fi�1;iþ1g

uj �
1

Dxj

Z xjþ1=2

xj�1=2

uR
i ðxÞdx

 !2

:

This minimization, i.e. solution of the system
@Uðux

i
;uxx

i
Þ

@ux
i
¼ 0;

@Uðux
i
;uxx

i
Þ

@uxx
i
¼ 0 is equivalent to both zero contributions in

the error sum Uðux
i ; u

xx
i Þ in the presented case (parabolic recon-

struction in 1D). Resulting coefficients for the unlimited recon-
struction are

ux
i ¼ 2

ðuiþ1 � uiÞDxi;i�1D2xi;i�1 þ ðui � ui�1ÞDxi;iþ1D2xi;iþ1

Dxi;i�1Dxi;iþ1ðD2xi;i�1 þ D2xi;iþ1Þ
; ð8Þ

uxx
i ¼ 12

ðuiþ1 � uiÞDxi;i�1 � ðui � ui�1ÞDxi;iþ1

Dxi;i�1Dxi;iþ1ðD2xi;i�1 þ D2xi;iþ1Þ
: ð9Þ

where Dxi;i�1 ¼ Dxi�1 þ Dxi;D2xi;i�1 ¼ 2Dxi�1 þ Dxi. The reconstruc-
tion, as well as the complete remapping, is exact for quadratic
function.

Limiting of these unlimited coefficients with respect to standard
limiting of a piece-wise linear reconstruction is described in the
following section.

3.1. Reconstruction coefficients limiting

Minmod (MM) limiter’s extension to piece-wise parabolic
reconstruction [10] is done as a sequential application of minmod
function to the second derivative approximation and then to the
first one, i.e.

muxx
i ¼ minmod uxx

i ;b
ux

iþ1 � ux
i

Dxi;iþ1=2
; b

ux
i � ux

i�1

Dxi;i�1=2

� �
;where b 2 ð1;2Þ:

In our tests we use b ¼ 1:5. If the limiting of second derivative is
not necessary (i.e. muxx

i ¼ uxx
i ), then we set also mux

i ¼ ux
i , otherwise

mux
i ¼minmod ux

i ; b
uiþ1 � ui

Dxi;iþ1=2
;b

ui � ui�1

Dxi;i�1=2

� �
: ð10Þ

Note that standard piece-wise linear MM limited reconstruction
uses this slope (10) everywhere. The final formula for MM limited
parabolic reconstruction is

uMM
i ðxÞ ¼ uiþmux

i ðx� xiÞ þ
1
2

muxx
i ðx� xiÞ2 �

1
12

Dx2
i

� �
: ð11Þ

Kuzmin–Barth–Jespersen [4] (KBJ) limiter is based on the Barth–
Jespersen (BJ) limiter [11] BJ ui�1;ui;uiþ1;ux

i ;Dxi
� �

returning limiting

factor ai ¼ min ai�1=2
i ;aiþ1=2

i

� 	
in the cell i. The limiting factors

ai�1=2
i at two nodes i� 1=2 of the cell i are given by

ai�1=2
i ¼

min 1;
umax

i�1=2
�ui

uu
i;i�1=2

�ui

� �
for uu

i;i�1=2 � ui > 0

1 for uu
i;i�1=2 � ui ¼ 0

min 1;
umin

i�1=2
�ui

uu
i;i�1=2

�ui

� �
for uu

i;i�1=2 � ui < 0

8>>>><
>>>>:

; ð12Þ

where the bounds at the nodes are umin
i�1=2 ¼min ui�1; uið Þ;

umax
i�1=2 ¼max ui�1;uið Þ and the unlimited reconstruction from the cell

i at the nodes are uu
i;i�1=2 ¼ uu

i ðxi�1=2Þ ¼ ui � ux
i Dxi=2; uu

i;iþ1=2 ¼
uu

i ðxiþ1=2Þ ¼ ui þ ux
i Dxi=2. Now the parabolic KBJ limiter is defined as
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axx
i ¼ BJ ux

i�1;u
x
i ;u

x
iþ1;u

xx
i ;Dxi

� �
;

axo
i ¼ BJ ui�1; ui; uiþ1;ux

i ;Dxi
� �

;

ax
i ¼max axo

i ;a
xx
i

� �
;

Buxx
i ¼ axx

i uxx
i ; ð13Þ

Bux
i ¼ ax

i ux
i ;

and the KBJ limited parabolic reconstruction is

uKBJ
i ðxÞ ¼ uiþBux

i ðx� xiÞ þ
1
2

Buxx
i ðx� xiÞ2 �

1
12

Dx2
i

� �
:

The standard piece-wise linear KB limited reconstruction uses
the slope axo

i ux
i .

Nejat–Venkatakrishnan (NV) limiter [5] for piece-wise parabolic
reconstruction is described as

r ¼ 1� tanhðSð/0 � /iÞÞ
2

;

where the constants are set to /0 ¼ 0:8 and S ¼ 20, and /i is the Venk-
atakrishnan smooth limiter [12,13], which is a smooth extension of

the BJ limiter (12) with function minð1; yÞ replaced by y2þ2y
y2þyþ2. The lim-

ited coefficients of the parabolic reconstruction are given by

NV uxx
i ¼ ruxx

i ;
NV ux

i ¼ ð1� rÞ/i þ r½ �ux
i ;

and the NV limited reconstruction is

uNV
i ðxÞ ¼ uiþNV ux

i ðx� xiÞ þ
1
2

NV uxx
i ðx� xiÞ2 �

1
12

Dx2
i

� �
: ð14Þ

The standard piece-wise linear Venkatakrishnan limited recon-
struction uses the slope /iux

i .

3.2. PPM method

This method, referred under abbreviation PPM (Piece-wise
Parabolic Method) [6], presents another way how to find appropri-
ate reconstruction. Instead of searching second- and first-derivative
approximations uxx

i and ux
i at the cell centers, the parabolic interpo-

lant can be described by the values at the left ul
i and right ur

i nodes of
the cell. There is a simple relation between these coefficients

ux
i ¼

ur
i � ul

i

Dxi
;

uxx
i ¼ 12

ður
i þ ul

iÞ=2� ui

Dx2
i

: ð15Þ

The third-order nodal values approximations of ul
i and ur

i are
constructed in a way which guarantees that they satisfy the
bounds (7) from the neighboring cells. Initial guess for ur

i , resp.
ul

iþ1 is given by

uiþ1=2 ¼ ui þ
Dxi

Dxi þ Dxiþ1
ðuiþ1 � uiÞ þ

1
Dxi�1 þ Dxi þ Dxiþ1 þ Dxiþ1

� 2Dxiþ1Dxi

Dxi þ Dxiþ1

Dxi�1 þ Dxi

2Dxi þ Dxiþ1
� Dxiþ2 þ Dxiþ1

2Dxiþ1 þ Dxi

� �
ðuiþ1 � uiÞ




�Dxi
Dxi�1 þ Dxi

2Dxi þ Dxiþ1
duiþ1 þ Dxiþ1

Dxiþ1 þ Dxiþ2

Dxi þ 2Dxiþ1
dui

�
; ð16Þ

where dui is the jump of u in the cell i and is computed as

dui¼
0 if ðuiþ1�uiÞðui�ui�1Þ<0
minðjDxiux

i j;2jðui�ui�1Þj;2jðuiþ1�uiÞjÞ signðDxiux
i Þ otherwise;



;

ð17Þ

and ux
i in previous expression comes from (8). This condition guar-

antees that uiþ1=2 stays in limits of ui and uiþ1 and leads to steeper
representation of shocks [6].
Now one-side values ul
i;u

r
i are initialized as ur

i ¼ ul
iþ1 ¼ uiþ1=2. To

avoid oscillations in the reconstruction additional limiting is
applied. If ður

i � uiÞðui � ul
iÞ 6 0 then ui is local extrema (of the three

values) and we set ur
i ¼ ul

i ¼ ui so that the reconstruction is con-
stant in this cell. Further we require the parabolic reconstruction
to be monotone in each cell. If

ður
i � ul

iÞ ui �
1
2
ður

i þ ul
iÞ

� �
>
ður

i � ul
iÞ

2

6
;

then the monotonicity is violated and we set ul
i ¼ 3ui � 2ur

i and sim-
ilarly if

�ðu
r
i � ul

iÞ
2

6
> ður

i � ul
iÞ ui �

1
2
ður

i þ ul
iÞ

� �
;

then we set ur
i ¼ 3ui � 2ul

i. This gives us the final values of ul
i;u

r
i

which define the coefficients of PPM parabolic reconstruction
(15). Another limiter for PPM, preserving accuracy at smooth extre-
ma, has been proposed in [14] for reconstruction on uniform
meshes.

3.3. Flux corrected approach

Flux corrected remapping is based on FCT (Flux Corrected
Transport) method [15] modified for remapping. Assume we have
low-order (usually donor from piece-wise constant reconstruction)
remapping fluxes FL

iþ1=2 which preserve the bounds (7) and high-
order (here from unlimited piece-wise parabolic reconstruction)
remapping fluxes FH

iþ1=2. The flux corrected (FCT) remapping fluxes
are given as a weighted combination of low-order and high-order
fluxes

FFCT
iþ1=2 ¼ FL

iþ1=2ð1� Ciþ1=2Þ þ Ciþ1=2FH
iþ1=2; ð18Þ

where the weights Ciþ1=2 2 ð0; 1Þ are constructed in a way that guar-
antees that the remapping with the FCT fluxes will stay in bounds.

Here we provide a short description showing how the FCT
weights Ciþ1=2 are computed. In the FCT context it is useful to intro-
duce the numerical fluxes into the cell i from the neighboring cells
i� 1 as

GP
i;iþ1 ¼ FP

iþ1=2; GP
i;i�1 ¼ �FP

i�1=2; for P 2 fL;H; FCTg;

so that the remapping (5) is written as

un;P
i Dxn

i ¼ uiDxi þ
X

k¼i�1

GP
i;k for P 2 fL;H; FCTg:

The FCT remapping can be transformed to

un;FCT
i Dxn

i ¼ un;L
i Dxn

i þ
X

k¼i�1

Ci;kdGi;k;

where dGi;k are the anti-diffusive fluxes dGi;k ¼ GH
i;k � GL

i;k and where
for the FCT weights we use the notation Ci;iþ1 ¼ Ciþ1;i ¼ Ciþ1=2 to sim-
plify the formula. We define the available space in the bounds for
the low-order remapping as

Qmax
i ¼ umax

i Dxn
i � un;L

i Dxn
i P 0; Qmin

i ¼ umin
i Dxn

i � un;L
i Dxn

i 6 0;

and the total anti-diffusive fluxes incoming and outgoing from the
cell i as

Pþi ¼
X

k;dGi;k>0

dGi;k P 0; P�i ¼
X

k;dGi;k<0

dGi;k 6 0:

The FCT weights are now given by

Ciþ1=2 ¼min Qmax
i =Pþi ;Q

min
iþ1 =P�iþ1;1

� 	
; for dGi;iþ1 > 0;

Ciþ1=2 ¼min Qmin
i =P�i ;Q

max
iþ1 =Pþiþ1;1

� 	
; for dGi;iþ1 < 0;



Fig. 2. Computational mesh sequence for 5 cells and 25 pseudo-time steps for
t 2 ð0; 1Þ (a) and for 8 cells and 10 pseudo-time steps for t 2 ð�1=8; 1=8Þ (b).
Horizontal axis corresponds to space axis x and vertical one to pseudo-time t.
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where jdGi;iþ1j > 0 guarantees nonzero Pþ or P� in the denomina-
tors. For zero anti-diffusive flux dGi;iþ1 ¼ 0 the low and high-order
flux are the same and the weight Ciþ1=2 can be arbitrary. For the full
description of the weights computation, including also reasoning
proving that FCT remapping satisfies the bounds, see [7] or [8].
The flux corrected approach is not constructing a reconstruction
on the old mesh, it rather works directly with numerical fluxes,
i.e. using the fluxes (18) in the flux form remapping (5).

4. Numerical tests and results

The remapping methods described in the previous section are
compared on several tests. The tests include cyclic remapping of
several smooth and discontinuous functions.

In the following figures and tables we use these abbreviations for
different remapping methods: donor – remapping with piece-wise
constant reconstruction, pl. – remapping with piece-wise linear
reconstruction, pp. – remapping with piece-wise parabolic
reconstruction, unl. – unlimited reconstruction (either pl. or pp.),
MM – minmod limited pp. reconstruction (11) (with b ¼ 1:5)
BJ – Barth–Jespersen (12) limited pl. reconstruction, KBJ – Kuzmin–
Barth–Jespersen (13) limited pp. reconstruction, NV – Nejat–Venkat-
akrishnan limited pp. reconstruction (14), PPM – pp. reconstruction
by PPM method [6] (see Section 3.2), FCT – Flux Corrected Transport
based (see Section 3.3) remapping using pp. unl. fluxes as high-order
fluxes.

The only piece-wise parabolic reconstruction which always stay
in bounds (i.e. (7) with un

i replaced by uR
i ðxÞ holds for all x in each

cell i) is the PPM reconstruction. For all the other reconstruction
(i.e. pp. unl., pp. MM, pp. KBJ and pp. NV) it is not difficult to pre-
pare an example (as a shock wave) for which the reconstruction in
some cell does not stay in bounds. Having such example one can
prepare a new mesh for which the single remapping will not satisfy
the bounds (7). FCT remapping stays in bounds by its construction.

4.1. Cyclic remapping

Cyclic remapping [1,16] consists in repeated remapping of ini-
tial function given by means ui

0 on a prescribed sequence of
meshes with n nodes fxj

i�1=2; i ¼ 1; . . . ; n; j ¼ 0; . . . ;ntg satisfying at
each pseudo-time step j the condition that the new nodes xj

i�1=2

do not move outside two old neighboring cells, i.e. xj�1
i�3=2 6 xj

i�1=2
6 xj�1

iþ1=2;8i; j. At the j-th step the remapping computes the new
means ui

j from the old means ui
j�1, the old mesh xj�1

iþ1=2 and the
new mesh xj

iþ1=2. We employ the mesh sequence xj
i�1=2 ¼ xðni; tjÞ

on the interval x 2 ð0; 1Þ from Refs. [1,16] where

xðn; tÞ ¼ ð1� aðtÞÞnþ aðtÞn3; aðtÞ ¼ sinð4ptÞ
2

;

0 6 n 6 1; tmin 6 t 6 tmax; ð19Þ

tj ¼ tmin þ
jðtmax � tminÞ

nt
; j ¼ 0; . . . ;nt;

ni ¼
i� 1
n� 1

; i ¼ 1; . . . ;n: ð20Þ

The number of time steps nt for the unitary pseudo-time inter-
val ðtmin; tmaxÞ ¼ ð0; 1Þ is set to nt ¼ 5n to satisfy an analog of the
CFL condition. Two examples of these mesh sequences with a
few cells are presented in Fig. 2.

To compare how much the bounds (7) are violated by different
remapping methods in cyclic remapping we define the bounds
violation error in the j-th time-step as L1 violation

Eb
j ¼

Xn

i¼1

max 0;uj
i�

maxuj�1
i

� 	
Dxj

i þ
Xn

i¼1

max 0;minuj�1
i � uj

i

� 	
Dxj

i;
where maxuj ¼maxfuj
i�1; u

j
i;u

j
iþ1g a minuj ¼minfuj

i�1;u
j
i;u

j
iþ1g. The

bounds violation error for the whole cyclic remapping is then L1

error in pseudo-time

Eb ¼
Xnt

j¼1

Eb
j Dt; ð21Þ

where the pseudo-time step is Dt ¼ ðtmax � tminÞ=nt .
During the cyclic remapping of smooth functions on the unitary

pseudo-time interval t 2 ð0; 1Þ the prescribed mesh movement and
its return to the initial position leads to cancellation of some trun-
cation errors and the piece-wise linear unlimited remapping
method is showing the third-order of accuracy. To avoid this un-
wanted feature we have changed the pseudo-time interval to
t 2 ð�1=8;1=8Þ on which this false super-convergence does not
appear. For this pseudo-time interval we set the number of pseu-
do-time steps to nt ¼ 5

4 n.
For the pseudo-time interval t 2 ð0; 1Þ the cyclic remapping of

smooth functions gives the L1 errors ratio 8.0 for piece-wise linear
unlimited remapping, while for the other methods the results are
close to those presented below for the pseudo-time interval
t 2 ð�1=8;1=8Þ. For discontinuous functions the cyclic remapping
results for the pseudo-time interval t 2 ð0; 1Þ are close to those
for the pseudo-time interval t 2 ð�1=8;1=8Þ for all methods.

4.1.1. Smooth functions
For simple smooth monotone functions without local extrema

as exponential ex the cyclic remapping gives the expected results,
donor shows the first-order convergence, all piece-wise linear
methods are second-order accurate and all piece-wise parabolic
methods are third-order, except pp. NV which is only second-or-
der. All remapping methods stay in bounds in this case.

The situation is more complicated for remapping of smooth
functions with local extrema. In Table 1 we present the conver-
gence results for cyclic remapping of function sinð2pxÞ þ 1. Donor
is first-order, piece-wise linear methods are second-order with pl.
BJ staying in bounds and unlimited pl. violating the bounds. Unlim-
ited, KBJ and MM piece-wise parabolic methods are third-order,
however violate the bounds, while pp. NV is second-order and vio-
lates the bounds. Both pp. PPM and FCT are better than second-or-
der and satisfy the bounds. FCT is slightly more precise than PPM
and both are more precise than pl. BJ. In this case the bounds (7)
are over-restrictive in the vicinity of local extrema and cause the
loss of precision for bounds preserving pl. BJ, pp. PPM and pp.
FCT methods.

We have tested also the cyclic remapping with random mesh
movement [1,16], which results, for the non-monotone smooth
function as sinð2pxÞ þ 1, in slower convergence for most methods.
The ratio of errors on meshes with 256 and 512 nodes is 3.2 for pl.
unl., 3.7 for pl. BJ, around 6 for pp. unl., KBJ and MM, 1.6 (worse
than first-order) for pp. NV and around 5.5 for pp. PPM and FCT



Table 1
Cyclic remapping of sinð2pxÞ þ 1 for pseudo-time t 2 ð�1=8; 1=8Þ on meshes with n ¼ 64;128;256;512 nodes. Columns Ec

n present L1 errors of cyclic remapping on mesh with n
nodes, columns headed by ratios n1=n2 present the ratios of L1 errors on meshes with n1 and n2 nodes and Eb

n columns present the bounds violation errors (21).

Remap 64
128

128
256

256
512 Ec

64 Ec
512 Eb

64 Eb
512

Donor 1.9 2.0 2.0 4:20� 10�2 5:53� 10�3 0 0

pl. unl. 4.1 4.0 4.0 3:99� 10�4 6:11� 10�6 7:0� 10�6 1:4� 10�8

pl. BJ 4.2 4.4 4.4 1:42� 10�3 1:72� 10�5 0 0

pp. unl. 8.0 8.0 8.0 9:66� 10�5 1:91� 10�7 7:0� 10�6 1:4� 10�8

pp. KBJ 7.9 8.0 8.0 9:66� 10�5 1:92� 10�7 7:0� 10�6 1:4� 10�8

pp. MM 7.9 8.0 8.0 9:75� 10�5 1:93� 10�7 7:0� 10�6 1:4� 10�8

pp. NV 3.7 4.0 4.1 4:47� 10�4 7:35� 10�6 5:4� 10�6 1:7� 10�8

pp. PPM 5.3 5.0 5.2 1:04� 10�3 7:52� 10�6 0 0

pp. FCT 5.6 5.6 5.5 4:39� 10�4 2:57� 10�6 0 0

Table 2
Cyclic remapping of single step for pseudo-time t 2 ð�1=8; 1=8Þ n meshes with n ¼ 64;128;256;512 nodes. Columns Ec

n present L1 errors of cyclic remapping on mesh with n
nodes, columns headed by ratios n1=n2 present the ratios of L1 errors on meshes with n1 and n2 nodes and Eb

n columns present the bounds violation errors (21).

Remap 64
128

128
256

256
512 Ec

64 Ec
512 Eb

64 Eb
512

Donor 1.4 1.4 1.4 1:41� 10�1 5:38� 10�2 0 0

pl. unl. 1.5 1.6 1.5 5:03� 10�2 1:32� 10�2 7:7� 10�5 3:5� 10�6

pl. BJ 1.5 1.6 1.6 3:85� 10�2 9:65� 10�3 0 0

pp. unl. 1.6 1.6 1.6 4:97� 10�2 1:19� 10�2 9:1� 10�5 4:0� 10�6

pp. KBJ 1.6 1.6 1.7 5:05� 10�2 1:20� 10�2 6:5� 10�5 3:2� 10�6

pp. MM 1.6 1.6 1.7 4:22� 10�2 9:71� 10�3 2:7� 10�6 1:7� 10�8

pp. NV 1.6 1.6 1.6 4:14� 10�2 1:03� 10�2 3:7� 10�5 1:5� 10�6

pp. PPM 1.7 1.6 1.7 2:45� 10�2 5:32� 10�3 0 0

pp. FCT 1.6 1.6 1.6 3:60� 10�2 8:88� 10�3 0 0
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Fig. 3. Cyclic remapping results of step function for pseudo-time t 2 ð�1=8; 1=8Þ on mesh with 16 nodes for donor, pl. BJ and pp. PPM methods (a) and for all pp. methods
zoomed on the left of the step where bounds violating methods have overshoots (b). Cyclic remapping results of exponential shock for pseudo-time t 2 ð�1=8; 1=8Þ and on
mesh with 64 nodes for donor, pl. BJ and pp. PPM methods (c).

168 J. Velechovský et al. / Computers & Fluids 83 (2013) 164–169
(compare with Table 1 for smooth mesh movement). Note that
bounds preserving pp. PPM and FCT convergence is not slower
compared to smooth mesh movement. Bounds violation error
Eb

512 is of the order 5� 10�9, similar for all bounds violating meth-
ods (pl. unl., pp. unl., KBJ, MM, NV).
4.1.2. Step function
Table 2 and Fig. 3(a) and (b) present results for cyclic remapping

of a step function uðxÞ ¼ 3þ p=2 for x < 1=2 and uðxÞ ¼ 3� p=2 for
x > 1=2 (which is the limit of the function uðxÞ ¼ 3þ arctan
ðcð1=2� xÞÞ for large c; this function has been used in other tests
with moderate values of c) emulating a shock wave. The conver-
gence rate is very similar for all methods, however the errors are
different for various methods. The best is pp. PPM followed by pp.
FCT and pl. BJ. All these three methods stay in bounds. All other
pp. methods (i.e. unl., KBJ, MM and NV) violate the bounds, however
note that bounds violation for pp. MM is much less than that for the
other three bounds violating methods and pp. MM error is very close
to the error of pl. BJ (and further pp. MM is third-order for smooth
function, see Table 1). The bounds violation of pp. MM is not visible
in Fig. 3(b) on mesh with only 16 nodes.

Convergence results of cyclic remapping for step function
with random mesh movement are in all aspects similar to those
presented in Table 2 for smooth mesh movement.

4.1.3. Exponential shock
For the exponential shock test [7,8] the initial profile is given by

uðxÞ ¼ 3q0 exp xF�x0
d

� �
1þ 2gð Þ�5=2 for 0 6 x 6 xF

q0 exp x�x0
d

� �
for xF < x 6 15

(
; ð22Þ



Table 3
Cyclic remapping of exponential shock for pseudo-time t 2 ð�1=8; 1=8Þ on meshes with n ¼ 64;128;256;512 nodes. Columns Ec

n present L1 errors of cyclic remapping on mesh
with n nodes, columns headed by ratios n1=n2 present the ratios of L1 errors on meshes with n1 and n2 nodes and Eb

n columns present the bounds violation errors (21).

Remap 64
128

128
256

256
512 Ec

64 Ec
512 Eb

64 Eb
512

Donor 1.1 1.3 1.4 3:40� 10�1 1:61� 10�1 0 0

lin. unl. 0.9 1.6 1.7 1:11� 10�1 4:35� 10�2 2:8� 10�4 1:6� 10�5

lin. BJ 1:1 1:8 1:8 1:42� 10�1 4:06� 10�2 0 0

pp unl. 1.0 1.6 1.7 1:14� 10�1 3:91� 10�2 2:9� 10�4 1:7� 10�5

pp KBJ 1.0 1.6 1.7 1:15� 10�1 3:93� 10�2 2:2� 10�4 1:6� 10�5

pp MM 1.2 1.8 1.9 1:45� 10�1 3:76� 10�2 9:7� 10�5 9:0� 10�6

pp NV 1:1 1:7 1:9 1:25� 10�1 3:60� 10�2 1:4� 10�4 7:8� 10�6

pp PPM 1.1 1.8 2.1 1:30� 10�1 3:09� 10�2 0 0

pp FCT 1.1 1.7 1.9 1:31� 10�1 3:58� 10�2 0 0

J. Velechovský et al. / Computers & Fluids 83 (2013) 164–169 169
with xF ¼ x0 þ 3=2d log t0=t0ð Þ;g ¼ ðxF � xÞ=d; t0 ¼ 2; x0 ¼ 6;q0 ¼ 1;
d ¼ 4; t0 ¼ 6. The convergence of cyclic remapping for the exponen-
tial shock, presented in Table 3, is similar to the convergence for
step function, only the exponential shock needs finer mesh to start
to converge (errors on under-resolved meshes with 64 and 128
nodes are almost the same) and pp. MM bounds violation errors
are similar to those of the bounds violating pp. methods (unl., KBJ
and NV). Fig. 3c shows results of cyclic remapping of exponential
shock on a mesh with 64 nodes with donor, pl. BJ and pp. PPM
methods.

5. Conclusion

Several high-order remapping methods based on piece-wise
parabolic reconstruction and using different limiting approaches
to preserve bounds (monotonicity) has been presented. The cyclic
remapping of monotone smooth functions by these methods is
third-order accurate. The only two methods preserving bounds
for remapping of discontinuous functions are PPM and FCT meth-
ods. The accuracy of bounds preserving PPM and FCT methods
for cyclic remapping of smooth functions with local extrema de-
creases around extrema due to over-restrictive bounds. One would
need a better bounds in vicinity of local extrema, however it is dif-
ficult to distinguish local extrema of smooth function from local
extrema in numerical oscillations around discontinuities.

We have made preliminary experiments with applying the
remapping with piece-wise parabolic reconstruction in a full 1D
ALE method based on the cell-centered scheme [17] and the results
are promising.

The methods described in Section 3.1 (MM, KBJ, NV) can be gen-
eralized to multiple dimensions, however their results do not stay
in bounds on discontinuities. Generalization of PPM reconstruction
would be very complicated even in 2D on e.g. non-orthogonal
quadrilateral cells. Piece-wise parabolic FCT based remapping
method is easily extensible to multiple dimensions as its numerical
flux construction is local at each interface between two computa-
tional cells [7].
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