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1. Introduction

The arbitrary Lagrangian Eulerian (ALE) method [1] is widely
used in hydrodynamical fluid flow modeling. It consists of several
Lagrangian steps followed by rezoning and remapping steps.
Rezoning step smooths the Lagrangian mesh to prevent its distor-
tion and remapping performs conservative interpolation of the
conserved quantities from the old Lagrangian mesh to the new re-
zoned one. To minimize interpolation errors one needs to use the
high-order remapping, which however tends to produce over-
shoots or undershoots (i.e. creates new local extrema) in the vicin-
ity of discontinuities. Creation of the new local extrema can be
reduced by using slope limiters during reconstruction phase of
the remapping [2], however this approach in general cannot avoid
new local extrema. To remove the new local extrema one typically
employs some a posterior procedure such as repair [3] which dis-
tributes the excessive conservative quantity into the neighboring
cells.

To avoid this a-posteriori correction we propose a new remap-
ping method, based on the flux corrected transport (FCT) ideas
[4–6], which does not produce new local extrema. The new flux
corrected remap (FCR) is local by definition (one interface at a
time), simple and fast. Its extension to general multidimensional
meshes is easy. The FCT type methods have been applied to system
of Euler equations by either FCT limiting of characteristic variables
[7,8] or by using the same limiter (being the minimum of density
and energy or density and pressure limiters) for all equations
[9,10], which is sometimes called synchronized. By synchronized
ll rights reserved.
we however understand something else. We have three indepen-
dent FCR limiters for conserved mass, momentum and energy
and we choose these limiters in such a way that the remapped
solution satisfies bounds in density, velocity and internal energy
and our FCR solution stays close to the high-order solution. Schär
and Smolarkiewicz [11] apply the synchronized FCT method to
the system of transport equations and we compare our FCR with
remapping based on their method. In the FCR method we guaran-
tee the bounds in density, velocity and specific internal energy
(internal energy per unit mass) by constraining the fluxes of mass,
momentum and total energy. We employ independent flux limit-
ing correction factors for mass, momentum and total energy. From
the bounds we derive the constraints on the correction factors. The
constrained optimization chooses the correction factors satisfying
the constraints which are in some sense optimal, i.e. producing
fluxes close to the high-order fluxes. Compared to the sequential
FCR [12], we apply the bounds simultaneously to treat all quanti-
ties in the system at once, thus we call our method synchronized
FCR (SFCR). The SFCR method has been developed in [13] for mass
and momentum with bounds in density and velocity. Here we
extend it to include also remap of total energy with bounds in
internal energy.
2. Problem statement

The underlying functions describing the fluid at position r are
density q(r), velocity u(r), specific internal energy e(r) and total
energy e(r) = q(e + u2/2). The rezoning phase of the ALE method
constructs from the old Lagrangian mesh X (consisting of cells
Xi) the new rezoned mesh eX (consisting of cells eXi). The volume
Vi, mass mi, momentum li and total energy Ei of the old mesh cells

http://dx.doi.org/10.1016/j.compfluid.2010.11.013
mailto:liska@siduri.fjfi.cvut.cz
http://dx.doi.org/10.1016/j.compfluid.2010.11.013
http://www.sciencedirect.com/science/journal/00457930
http://www.elsevier.com/locate/compfluid


R. Liska et al. / Computers & Fluids 46 (2011) 312–317 313
Xi are given by Vi ¼
R

Xi
dV , mi ¼

R
Xi

qdV , li ¼
R

Xi
qudV ,

Ei ¼
R

Xi
edV , and define the mean values of density, velocity and

internal energy in the old mesh cells Xi as qi ¼ mi=Vi, ui ¼ li=mi,
ei ¼ Ei=mi � u2

i =2.
Now given the mean values of density, velocity and internal en-

ergy on the old mesh, our task is to remap mass m, momentum l
and total energy E to the new cell eXi, i.e. to compute approxima-
tions of

~mi � ~me
i ¼

Z
eX i

qdV ; ~li � ~le
i ¼

Z
eX i

qudV ;

eEi � eEe
i ¼

Z
eX i

q eþ u2

2

� �
dV ;

which would give us the mean values of density, velocity and inter-
nal energy on the new mesh eqi ¼ ~mi=eV i; ~ui ¼ ~li= ~mi; ~ei ¼ eEi= ~mi�
~u2

i =2. The basic requirements for the remapping are conservation,
bounds preservation (weaker notion of monotonicity preservation)
and accuracy. The remapping has to conserve mass, momentum and
total energy, i.e.X

i

~mi ¼
X

j

mj;
X

i

~li ¼
X

j

lj;
X

i

eEi ¼
X

j

Ej:

To avoid creation/amplification of local extrema we require the
remapped values to preserve local bounds in density, velocity and
internal energy, i.e.

qmin
i 6 ~qi 6 qmax

i ; umin
i 6 ~ui 6 umax

i ; emin
i 6 ~ei 6 emax

i ;

where

qmin
i ¼ min

NðXiÞ
qj; umin

i ¼ min
NðXiÞ

uj; emin
i ¼ min

NðXiÞ
ej;

qmax
i ¼max

NðXiÞ
qj; umax

i ¼ max
NðXiÞ

uj; emax
i ¼maxðmax

NðXiÞ
ej; ~eL

i Þ:

The max/min’s are taken over the set NðXiÞ of cells neighboring
the cell Xi, which includes the cell Xi. Typically this set NðXiÞ is
defined as a set of cells which share with the cell Xi at least one
node. The new low-order internal energy ~eL

i ¼ eEL
i = ~mL

i � 1=2
~lL

i = ~mL
i

� �2 (where ~mL
i , ~lL

i , eEL
i are defined by (1) and its analogs for

~lL
i ;
eEL

i ) has to be included to guarantee that the low-order approx-
imation stays in bounds (remapping of the velocity can decrease
the kinetic energy which might lead to the increase of internal
energy). For accuracy we require to remain high-order in smooth
regions, which means that a linear function should be remapped
exactly.

We assume that the rezone stage does not change the connec-
tivity of the mesh and that it produces only small node displace-
ment. Then the problem can be formulated in the flux form

~mi ¼ mi þ
X

k2MðXiÞ
Fm

i;k; ~li ¼ li þ
X

k2MðXiÞ
Fl

i;k;
eEi ¼ Ei þ

X
k2MðXiÞ

FE
i;k

where Fm
k;i ¼ �Fm

i;k, Fl
k;i ¼ �Fl

i;k, FE
k;i ¼ �FE

i;k and the summation now
goes over the set MðXiÞ of cells neighboring the cell Xi excluding
the cell Xi. One can choose MðXiÞ ¼NðXiÞ �Xi or choose MðXiÞ
as a set of cells Xk, k – i which share one side (node in 1D, edge
in 2D, face in 3D) with the cell Xi. The latter is our choice here.
Our task is to find the suitable fluxes Fm

k;i, Fl
k;i, FE

k;i on each interface
(i,k) between cells i and k.

3. Principle of flux corrected remap for mass/density

The basic idea of flux corrected remap follows closely flux cor-
rected transport [4–6]. We have a low-order (donor) and a high-or-
der remap scheme

~mL
i ¼ mi þ

X
k2MðXiÞ

Fm;L
i;k ; ~mH

i ¼ mi þ
X

k2MðXiÞ
Fm;H

i;k ; ð1Þ
where the low-order one preserves bounds. The flux corrected re-
map (FCR) scheme is then given by (for brevity from here further
on we abbreviate the summation over k 2MðXiÞ by summation
over k)

~mFCR
i ¼ mi þ

X
k

Fm;FCR
i;k ; Fm;FCR

i;k ¼ FL
i;k þ Cm

i;k Fm;H
i;k � Fm;L

i;k

� �
and the question is how to choose correction factors 0 6 Cm

i;k 6 1 for
which the remapped values satisfy the bounds. Such correction fac-
tor always exists as the low-order scheme (obtained for Cm

i;k ¼ 0)
preserves the local bounds.

With anti-diffusive fluxes dFm
i;k ¼ Fm;H

i;k � Fm;L
i;k the new mass ob-

tained by FCR can be written as

~mFCR
i ¼ mi þ

X
k

Fm;FCR
i;k ¼ ~mL

i þ
X

k

Cm
i;kdFm

i;k:

The density constraints qmin
i 6 ~qi 6 qmax

i are transformed into
mass constraints mmin

i 6 ~mi 6 mmax
i which can be rewritten using

the anti-diffusive fluxes as

mmin
i � ~mL

i 6
X

k

Cm
i;kdFm

i;k 6 mmax
i � ~mL

i : ð2Þ

The sum in these constraints is split into two parts according to
the sign of the anti-diffusive fluxes, so that the right-hand (max)
inequality is written asX

k

Cm
i;kdFm

i;k ¼
X

dFm
i;k>0

Cm
i;kdFm

i;k þ
X

dFm
i;k<0

Cm
i;kdFm

i;k 6 mmax
i � ~mL

i ¼ Qm;max
i

P 0:

The worst-case scenario is in the case when 8k; dFm
i;k P 0, in

other words the sufficient condition for the upper (max) constraint
isX
dFm

i;k>0

Cm
i;kdFm

i;k 6 Q m;max
i :

Similarly, the sufficient condition for the lower (min) constraint
is

0 P mmin
i � ~mL

i ¼ Q m;min
i 6

X
dFm

i;k<0

Cm
i;kdFm

i;k:

In each cell, we define the incoming and outgoing total anti-dif-
fusive fluxes Pm;þ ¼

P
dFm

i;k>0dFm
i;k P 0, Pm;� ¼

P
dFm

i;k<0dFm
i;k 6 0 and for

nonzero Pm,+, resp. Pm,� the auxiliary values Dm;þ
i ¼ Q m;max

i =Pm;þ
i P

0, Dm;�
i ¼ Q m;min

i =Pm;�
i P 0. Now if Cm

i;k 6 Dm;þ
i for dFm

i;k > 0 and

Cm
i;k 6 Dm;�

i for dFm
i;k < 0 then the mass bounds (2) are satisfied. At

the interface (i,k) we have to apply the sufficient conditions for
bounds in both neighboring cells i and k. So if for dFm

i;k > 0 we

choose Cm;q
i;k ¼minðDm;þ

i ;Dm;�
k ;1Þ and for dFm

i;k < 0 we choose

Cm;q
i;k ¼minðDm;�

i ;Dm;þ
k ;1Þ then the density bounds (2) are satisfied

for any 0 6 Cm
i;k 6 Cm;q

i;k . Note that if Pm;þ
i ¼ 0 or Pm;�

i ¼ 0, then corre-

sponding Dm
i are not used and can remain undefined.

4. Synchronized FCR for density and momentum

Just as for the mass, we define the momentum anti-diffusive
fluxes by dFl

i;k ¼ Fl;H
i;k � Fl;L

i;k . The FCR momentum flux is now given
by Fl;FCR

i;k ¼ Fl;L
i;k þ Cl

i;kdFl
i;k and the new FCR momentum is, as for

the mass,

~lFCR
i ¼ li þ

X
k

Fl;FCR
i;k ¼ ~lL

i þ
X

k

Cl
i;kdFl

i;k:

Note that even when velocity, momentum and its fluxes are
vectors we use the scalar limiting factor Cl

i;k as we do not want to
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affect the vectors’ directions by limiting. The local bounds on
velocity are umin

i 6 ~ui 6 umax
i , where the vector inequalities are ta-

ken component by component. Velocity is a derived quantity and
the velocity bounds umin

i 6 ~li= ~mi 6 umax
i are rewritten as con-

straints on new momentum and mass ~miumin
i 6 ~li 6 ~miumax

i which,
after insertion of fluxes, reads

~mL
i þ

P
k

Cm
i;kdFm

i;k

� �
umin

i 6 ~lL
i þ

P
k

Cl
i;kdFl

i;k

� �
6 ~mL

i þ
P

k
Cm

i;kdFm
i;k

� �
umax

i :

This is a coupled system of linear inequalities with respect to un-
known correction factors Cm

i;k; Cl
i;k at all interfaces (i,k). We want

to stay as close as possible to high-order fluxes, i.e. choose
Cm

i;k; Cl
i;k as close to one as possible. This is a global optimization

problem, to maximize Cm
i;k; Cl

i;k satisfying given linear constraints.
The FCR strategy is used to approximate the global optimization
problem by a sequence of local problems. The synchronized FCR
(SFCR) method, outlined below, keeps inequalities coupled.

The right-hand (max) inequality can be written asX
k

Cl
i;kdFl

i;k � umax
i Cm

i;kdFm
i;k

� �
6 umax

i
~mL

i � ~lL
i ¼ Ql;max

i P 0: ð3Þ

We denote the corrected contribution from the face (i,k) to the
left-hand side of (3) by

Ui;l;max
i;k ¼ Cl

i;kdFl
i;k � umax

i Cm
i;kdFm

i;k

and the corresponding uncorrected quantity by

Wi;l;max
i;k ¼ dFl

i;k � umax
i dFm

i;k;

so that inequality (3) now readsX
k

Ui;l;max
i;k 6 Ql;max

i :

Similarly as for density, we subdivide the sum into two parts
according to the sign of Wi;l;max

i;kX
k;Wi;l;max

i;k
60

Ui;l;max
i;k þ

X
k;Wi;l;max

i;k
>0

Ui;l;max
i;k 6 Ql;max

i

and the sufficient conditions for this inequality areX
k;Wi;l;max

i;k
60

Ui;l;max
i;k 6 0;

X
k;Wi;l;max

i;k
>0

Ui;l;max
i;k 6 Ql;max

i : ð4Þ

The sufficient condition for the first resp. second inequality
from (4) are

Ui;l;max
i;k 6 0 for Wi;l;max

i;k 6 0; ð5Þ

Ui;l;max
i;k 6 Dl;max;þ

i;k Wi;l;max
i;k for Wi;l;max

i;k > 0;

where Dl;max;þ
i;k ¼ Ql;max

i =Pl;max;þ
i and Pl;max;þ

i ¼
P

W>0W
i;l;max
i;k (all

inequalities, arithmetic operations and sums of vectors are taken
component by component). The derived constraints are linear in
the correction factors Cm

i;k; Cl
i;k and local, i.e. they are constraints

on the interface (i,k) which are sufficient for the maximum velocity
bound in the cell i. Similar derivation for the minimum velocity
bound gives another set of constraints. The complete set of con-
straints for interface (i,k) includes constraints derived from both
max/min velocity bounds in both cells i and k sharing the interface
(i,k), the constraints 0 6 Cm

i;k 6 Cm;q
i;k derived in the previous section

from density bounds and the constraints 0 6 Cl
i;k 6 1. The solution
of the complete system of linear inequalities for Cm
i;k and Cl

i;k is a
non-empty (ðCm

i;k;C
l
i;kÞ ¼ ð0;0Þ corresponding to the low-order re-

map always satisfies all the constraints) convex polygon in
ðCm

i;k;C
l
i;kÞ space. Now the task is to find a pair ðCm

i;k;C
l
i;kÞ that is in

some sense optimal, producing a remap close to the high-order
one, i.e. with ðCm

i;k;C
l
i;kÞ close to (1,1). We minimize the functional

f Cm
i;k;C

l
i;k

� �
¼ �Cm

i;k dFm
i;k

��� ��� 1
qi
þ 1

qk

� �
� Cl

i;k dFl
i;k

��� ��� 1
kqiuik þ �

þ 1
kqkukk þ �

� �
; ð6Þ

where � is a small quantity, under the derived constraints on
ðCm

i;k;C
l
i;kÞ. The functional is proportional to the local L1 deviation

of the SFCR remapped density and momentum from the high-order
ones. This minimization is local, i.e. done for each interface (i,k) sep-
arately. The minimum is always in one of the polygon’s vertices, the
polygon is intersection of eight half-planes (given by linear con-
straints), so the minimization in this case is easy. For more details
on synchronized FCR for density and momentum see [13], where
the choice of dimensional factors in a global deviation (the global
analog of (6)) is made to produce a local minimization problem
which is computationally efficient. Sensitivity to the choice of
dimensional factors has not been investigated.
5. Synchronized FCR for density, momentum and energy

Just as for the mass and momentum we first define the total

energy anti-diffusive fluxes by dFE
i;k ¼ FE;H

i;k � FE;L
i;k . The FCR energy

flux is now given by FE;FCR
i;k ¼ FE;L

i;k þ Cl
i;kdFE

i;k and the new FCR total
energy is

eEFCR
i ¼ Ei þ

X
k

FE;FCR
i;k ¼ eEL

i þ
X

k

CE
i;kdFE

i;k:

The local bounds on specific internal energy are emin
i 6 ~ei 6 emax

i

or emin
i 6 eEi= ~mi � ~ui

2=2 6 emax
i . We rewrite the bounds in conserved

quantities and get

~m2
i e

min
i 6 eEi ~mi �

~l2
i

2
6 ~m2

i e
max
i :

The maximum internal energy bound, after insertion of fluxes,
reads

eEL
i þ

X
k

CE
i;kdFE

i;k

 !
~mL

i þ
X

k

Cm
i;kdFm

i;k

 !

� 1
2

~lL
i þ

X
k

Cl
i;kdFl

i;k

 !2

6 emax
i

~mL
i þ

X
k

Cm
i;kdFm

i;k

 !2

: ð7Þ

We rearrange this inequality to get all C
0
s to the left-hand side

X
k

CE
ik dFE

ik
~mL

i þ Cm
ikdFm

ik

� �
þ
X
l–k

Cm
il dFE

ikdFm
il

" #(

� Cl
ik dFl

ik � ~lL
i þ

1
2

Cl
ikdFl

ik

� �
þ 1

2

X
l–k

Cl
il dFl

ik � dFl
il

" #

þCm
ik dFm

ikðeEL
i � emax

i ð2 ~mL
i þ Cm

ikdFm
ikÞÞÞ � emax

i

X
l–k

Cm
il dFm

ikdFm
il

" #)

6 emax
i ð ~mL

i Þ
2 � eEL

i
~mL

i þ
1
2
ð~lL

i Þ
2 ¼ Q E;max

i P 0 ð8Þ

To get a suitable sufficient condition for (8) we increase its left hand
side (the part before 6) by neglecting the negative (or positive as
appropriate according to the sign) parts of the sums over l and set-
ting C�il ¼ 1 in these sums. So the sufficient condition for (8) is
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X
k

CE
ik dFE

ikð ~mL
i þCm

ikdFm
ikÞþ

Xþ
l–k

dFE
ikdFm

il

" #(

�Cl
ik dFl

ik
~lL

i þ
1
2

Cl
ikdFl

ik

� �
þ1

2

X�
l–k

dFl
ikdFl

il

" #

þCm
ik dFm

ikðeEL
i �emax

i ð2 ~mL
i þCm

ik dFm
ikÞÞÞ�emax

i

X�
l–k

dFm
ikdFm

il

" #)
6QE;max

i

ð9Þ

whereXþ
l

xikl ¼
X

xikl>0

xikl;
X�

l

xikl ¼
X

xikl<0

xikl:

We define corrected Ui;E;max
ik and uncorrected Wi;E;max

ik contribu-
tion from face (i,k) to the left-hand side of (9) by

Ui;E;max
ik ðCm

ik ;C
l
ik;C

E
ikÞ ¼ CE

ik dFE
ikð ~mL

i þ Cm
ikdFm

ikÞ þ
Xþ
l–k

dFE
ikdFm

il

" #

� Cl
ik dFl

ikð~lL
i þ

1
2

Cl
ikdFl

ikÞ þ
1
2

X�
l–k

dFl
ikdFl

il

" #
þ Cm

ik dFm
ik
eEL

i � emax
i 2 ~mL

i þ Cm
ikdFm

ik

� �� �
Þ

h
�emax

i

X�
l–k

dFm
ikdFm

il

#
;

Wi;E;max
ik ¼ Ui;E;max

ik ð1;1;1Þ:

Similarly as for velocity constraints we split the sum in the en-
ergy constraint (9) into two parts according to the sign of Wi;E;max

ikX
k;Wi;E;max

ik
60

Ui;E;max
ik þ

X
k;Wi;E;max

ik
>0

Ui;E;max
ik 6 Q E;max

i

and the sufficient conditions for this inequality areX
k;Wi;E;max

i;k
60

Ui;E;max
i;k 6 0;

X
k;Wi;E;max

i;k
>0

Ui;E;max
i;k 6 Q E;max

i : ð10Þ

The sufficient conditions for the first resp. second inequality
from (10) are

Ui;E;max
i;k 6 0 for Wi;E;max

i;k 6 0; ð11Þ

Ui;E;max
ik 6 DE;max;þ

ik Wi;E;max
ik for Wi;E;max

ik > 0;

where DE;max;þ
ik ¼ QE;max

i =PE;max;þ
i and PE;max;þ

i ¼
P

W>0W
i;E;max
i;k (note that

DE;max;þ
ik is needed only when Wi;E;max

ik > 0 which implies that

PE;max;þ
i > 0 and DE;max;þ

ik is well defined). The sufficient conditions
(11) for the maximum energy constraint (7) in the cell i are non-lin-
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Fig. 1. Simple shock with 64 cells after 320 remap
ear constraints in the correction factors ðCm
ik ; C

l
ik; C

E
ikÞ on the interface

(i,k). In a similar way one derives the sufficient conditions for the
minimum energy constraint.

Let us summarize the constraints on the unknown correction fac-
tors ðCm

ik ;C
l
ik;C

E
ikÞ on the interface (i,k). First, to stay between the low-

order and high-order fluxes we require 0 6 Cm
ik 6 1, 0 6 Cl

ik 6 1,
0 6 CE

ik 6 1. Next, from the density bounds we derived in Section 3,
the constraint Cm

ik 6 Cq;m
ik 6 1. Further, we derived two (min/max)

linear constraints (5) in ðCm
ik ; Cl

ikÞ from the velocity bounds in cell i
and we have to apply similar two (min/max) constraints from veloc-
ity bounds in cell k. Finally we have to include two (min/max) non-
linear constraints of type (11) in ðCm

ik ; Cl
ik; CE

ikÞ from energy bounds in
cell i and also two more such constraints from energy bounds in cell
k. Remembering that we want to stay close to the high-order scheme
(i.e. maximize C’s) we first try if ðCm

ik ; Cl
ik; CE

ikÞ ¼ ðC
q;m
ik ;1;1Þ satisfies

all constraints and if it does we use on the interface (i,k) these values
(which is probably the case in smooth regions where we avoid opti-
mization). Otherwise we minimize the local deviation from the
high-order fluxes given by the functional

f ðCm
ik ;C

l
ik;C

E
ikÞ ¼ �Cm

ik dFm
ik

�� �� 1
qi
þ 1

qk

� �
� Cl

ik dFl
ik

�� �� 1
knik þ �

þ 1
knkk þ �

� �
� CE

ik dFE
ik

��� ��� 1
ei
þ 1

ek

� �
;

where ni = qiui and ei ¼ qiðei þ u2
i =2Þ, under all derived constraints

on ðCm
ik ; C

l
ik; C

E
ikÞ. So on each interface (i,k) we get one constrained

minimization problem which gives us the SFCR correction factors.
6. Numerical tests

In this section we present several numerical tests showing the
performance of the developed synchronized FCR for density,
momentum and energy. For the tests we use the 1D cyclic remap-
ping [2] defined by the sequence of meshes generated using the
analytical function

xðn; tÞ ¼ xmin þ xmax � xminð Þ~nðn; tÞ;
~nðn; tÞ ¼ 1� aðtÞ½ �nþ aðtÞn2; ð12Þ

aðtÞ ¼ sinð4ptÞ
2

; 0 6 n 6 1; 0 6 t 6 1:

The mesh node positions fxk
i g are defined as xk

i ¼ xðni; tkÞ ¼
xðði� 1Þ=N; k=kmaxÞ with k = 0, . . . ,kmax corresponding to pseudo-
time steps and i = 1, . . .,N + 1 corresponding to spatial node posi-
tions. Here N is the number of spatial cells and kmax is the total
number of pseudo-time steps. The rate of convergence is tested
by refining the resolution (N,kmax) = (64,320), (128,640),
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(256,1280). The given variables (q,u,e) are initially defined on the
initial uniform mesh. In each pseudo-time step the mesh at tk is
moved to the new position given by the new pseudo-time tk+1

and the variables are remapped to the new mesh. The last mesh
at pseudo-time tkmax is the same as the first initial uniform mesh,
so the exact solution is given by the initial profile and we can com-
pute errors of approximate remap and its convergence rate.

6.1. Simple shock

The first test is a simple shock connecting two constant states.
Initial (and exact final) density, velocity and internal energy pro-
files are given by
Table 1
Convergence tables (L1 errors and their ratios) in density, velocity and internal energy for

Method Resolution L1 error

N kmax q u

Low-order 64 320 0.121 0.2
128 640 0.086 0.1
256 1280 0.061 0.1

High-order 64 320 0.038 0.0
128 640 0.022 0.0
256 1280 0.013 0.0

SFCR 64 320 0.030 0.0
128 640 0.018 0.0
256 1280 0.011 0.0

S&S 64 320 0.035 0.0
128 640 0.023 0.0
256 1280 0.015 0.0
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Fig. 2. Exponential shock with 64 cells after 320 rem

Table 2
Convergence tables (L1 errors and their ratios) in density, velocity and internal energy for cy

Method Resolution L1 error

N kmax q u

Low-order 64 320 0.257 0.3
128 640 0.190 0.2
256 1280 0.163 0.1

High-order 64 320 0.122 0.0
128 640 0.068 0.0
256 1280 0.046 0.0

SFCR 64 320 0.151 0.0
128 640 0.078 0.0
256 1280 0.047 0.0

S&S 64 320 0.213 0.0
128 640 0.134 0.0
256 1280 0.095 0.0
ðq;u; eÞðxÞ ¼
ð4;1;115=126Þ for 0 6 x 6 0:5;
ð1;0;20=63Þ for 0:5 < x 6 1:

	
The final result after 320 cyclic remaps on the mesh (12) with

64 cells is shown in Fig. 1 computed by the low-order , high-order
and SFCR schemes. Clearly the low-order scheme is too diffusive,
the high-order scheme produces overshoots and undershoots
while SFCR scheme does produce neither overshoots nor under-
shoots while keeping the same gradient at the shock as the high-
order scheme. The table of convergence is presented in Table 1
which also includes results by Schär and Smolarkiewicz (S&S)
method [11] for density and velocity (S&S paper does not deal with
internal energy bounds). For the description of S&S remapping and
cyclic remapping of simple shock by low-order, high-order, SFCR and S&S methods.

Err. prev./curr. resol.

e q u e

62 0.158
86 0.112 1.4 1.4 1.4
31 0.080 1.4 1.4 1.4

93 0.064
55 0.038 1.7 1.7 1.7
33 0.023 1.7 1.7 1.7

62 0.036
37 0.022 1.7 1.7 1.7
22 0.013 1.7 1.7 1.7

78 –
49 – 1.5 1.6 –
32 – 1.5 1.5 –
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clic remapping of exponential shock by low-order, high-order, SFCR and S&S methods.

Err. prev./curr. resol.

e q u e

41 0.119
05 0.068 1.4 1.7 1.7
28 0.040 1.2 1.6 1.7

56 0.014
30 0.008 1.8 1.9 1.7
18 0.005 1.5 1.7 1.6

49 0.012
25 0.006 1.9 2.0 2.0
14 0.004 1.7 1.7 1.6

83 –
39 – 1.6 2.1 –
22 – 1.4 1.8 –
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its comparison with SFCR see [13]. The SFCR method produces
smaller errors than both high-order and S&S methods. The SFCR or-
der of convergence is the same as that for the high-order method.

6.2. Exponential shock

The second test is an exponential shock with initial (and exact
final) density, velocity and internal energy profiles given by

ðq;u;eÞðxÞ¼
3q0 exp xF�x0

d

� �
1þ2gð Þ�

5
2;1�g

t d;d
2

t2 ð1þ2gÞ
� �

for 06x6xF ;

q0 exp x�x0
d

� �
;0;0

� �
for xF <x615:

8<:
where xF ¼ x0 þ 3

2 d logðt=t0Þ, g ¼ xF�x
d , t0 ¼ 2; x0 ¼ 6, q0 ¼ 1,

d ¼ 4; t ¼ 6. The final result after 320 cyclic remaps on the mesh
(12) with 64 cells is shown in Fig. 2 computed by the low-order,
high-order and SFCR schemes. The low-order scheme smears the
peak in density completely, the high-order scheme produces under-
shoots in velocity and internal energy while SFCR is free of under-
shoots and overshoots. The table of convergence is presented in
Table 2 which also includes results by the S&S method [11]. SFCR
is better than S&S, it is also better than the high-order method in
velocity and internal energy and only slightly worse than the
high-order method for density (SFCR convergence is better even
for density). The SFCR order of convergence is about the same as
that for the high-order method.

7. Conclusion

We have developed a new optimization-based synchronized
flux corrected remapping of mass/density, momentum/velocity
and specific internal energy to be used in the ALE methods. The
main new results are derivation of a local linear objective function
and new sufficient conditions for preservation of bounds on inter-
nal energy.
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