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Many hydrodynamical problems involve shear flows along material interfaces. If the materials move
along each other but are tied to a single Lagrangian computational mesh without any sliding treatment,
severe mesh distortions appear which can eventually cause the failure of the simulation. This problem is
usually treated by introducing the sliding line framework into the Lagrangian code. In this paper, we
revise the 2D approach described in the article E.J. Caramana, The implementation of slide lines as a
combined force and velocity boundary condition, Journal of Computational Physics 228 (2009), and suggest
two enhancements – interpolated interaction instead of a simple one-to-one interaction described in the
previous article, and a numerical surface tension model improving the stability of the interface. Both
improvements stabilize the slide line and lead to more realistic results, as shown on selected numerical
examples.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

In realistic physical simulations, people often face problems of
shear flows at material interfaces. If the materials move along each
other but are tied to a single computational mesh without any slid-
ing treatment, severe distortions appear which can eventually
cause the failure of the simulation. A typical example is the motion
of a laser produced plasma in a deforming channel [1], or a shear
flows in a high-velocity impact problem [2]. One option to solve
this problem is the introduction of a slide line environment into
the Lagrangian code.

The demand for a slide line treatment arose when first realistic
Lagrangian simulations became attractive. Generally, all sliding
algorithms can be classified into two groups [3,4]. The first group,
in which the overall forces between the sides of the slide line are
computed, includes popular methods of Lagrangian multipliers
[5,6] or the penalty method [7]. We focus here on the second type
of methods, where quantities are mapped across the slide line and
the nodes are treated in a similar manner as the internal nodes. The
introduction of slide lines is an old but fruitful idea that dates back
to Wilkins [8] as a chapter in a book (reproduced in Chapter 5 of
Wilkins [9]). In this approach, the interaction of both sides of the
slide line is explicitly calculated, and their inter-penetration is pre-
vented by an explicit put-back-on step. This approach is very pop-
ular and is used for slide line treatment in many hydrodynamic
codes. There exist many modifications of this approach, see for
example [10–12]. For an overview of the slide line algorithms see
the specialized report [13] or the classical more general paper [4].

Another possibility to treat sliding lines in a compatible stag-
gered Lagrangian code [14] is a special type of boundary condition
for nodal forces and velocities. Suppose that there exist two differ-
ent meshes interacting with each other through a common sliding
line, one of them is specified as the master side defining the slide
line shape, while the other – slave – side follows the slide line. We
keep the main idea of Caramana [15] and incorporate the contact
forces for the nodes on the slide line, representing the forces due
to the pressure gradient across the interface. The second main ingre-
dient of the sliding line treatment is the correction preventing the
inter-penetration of two sides. This is the main difference between
the two approaches. In [9], the inter-penetration is prevented by an
explicit put-back-on step in which the slave nodes are artificially
moved back onto the master slide line edges. Instead of this artificial
nodal motion, the velocity correction is used [15]. The correction is
simpler and compatible with the rest of the Lagrangian solver.

In this paper, we focus on the sliding mechanism in the purely
hydrodyamic situation. We describe the method from Ref. [15]
with details, some of which are eluded in the original paper. In
[15], the nodes on the slide line exclusively interact with one mesh
node from the other side of the slide line, and this interaction can
cause severe distortions of the interface. We suggest here the
improvement in which the interaction is performed in an interpo-
lated sense. Moreover, as the shear flow (sliding) is present here,
the original method can result in interface disturbances due to
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4 M. Kuchařík et al. / Computers & Fluids 83 (2013) 3–14
evolving (real or numerical) Kelvin–Helmholtz instabilities. To sta-
bilize the interface, we suggest here a type of numerical surface
tension model preventing the instability to appear. We skip all is-
sues related to void opening or closing, which may be very impor-
tant for the practical computations, however this topic will be
treated in future investigations.

The rest of the paper is organized as follows. In Section 2, we
briefly describe the staggered Lagrangian hydrodynamics which
we use to derive and test the slide line framework. In Section 3,
the slide line treatment from Ref. [15] is reviewed and explained
in detail. In Section 4, we suggest the interpolated interaction,
changing the communication between the nodes on both sides of
the slide line from one-to-one to interpolated. In Section 5, another
improvement is suggested, the numerical surface tension, elimi-
nating evolution of the Kelvin–Helmholtz instability due to the
shear flow along the interface. The behavior of the improved meth-
od and its comparison with the original method on selected
numerical tests is performed in Section 6. Finally, the whole paper
is concluded in Section 7.

2. Staggered Lagrangian hydrodynamics

In the Lagrangian framework, the gas dynamics equations can
be written in the following form,

q
d
dt

1
q

� �
�r �~v ¼ 0; ð1Þ

q
d
dt
~v þrP ¼~0; ð2Þ

q
d
dt

eþ Pr �~v ¼ 0; ð3Þ

where q is the fluid density, ~v is the velocity, e the specific internal
energy, and d

dt denotes the total Lagrangian time derivative. The first
equation expresses the volume conservation equation, whereas the
second and third ones are the momentum and total energy
conservation equations. Volume conservation equation is often re-
ferred to as the Geometric Conservation Law (GCL). The previous
system is supplemented by a thermodynamics closure (equation
of state – EOS), P ¼ Pðq; eÞ. Often, the ideal gas equation of state is
used, p ¼ ðc� 1Þqe, where c is the ratio of specific heats. The last
equations are the trajectory equations

d~x
dt
¼ ~v ~xðtÞ; tð Þ; ð4Þ

expressing the Lagrangian motion of any point located at position~x.
We use a staggered placement of variables in which position

and velocity are defined at mesh nodes while thermodynamic vari-
ables (density, pressure, energy) are located at cell centers. We de-
note the computational zone (cell) by the symbol z, mesh points
(nodes) are denoted by the symbol p. Following the compatible dis-
cretization from Ref. [14], the mass of zone z is connected with the
mass of the adjacent point p by the notion of the subzonal masses,
mzp,

mz ¼
X

p2PðzÞ
mzp; mp ¼

X
z2ZðpÞ

mzp; ð5Þ

where PðzÞ stands for the set of points in zone z, and ZðpÞ stands for
the set of zones adjacent to point p. The subzones are assumed to be
Lagrangian entities, which implies that the subzonal masses are ini-
tialized at the beginning of the simulation, mzp ¼ qzpVzp and remain
constant in time, implying that cell and nodal masses remain con-
stant either.

The discrete trajectory equation for mesh nodes can be written
as
d~xp

dt
¼ ~vp; ð6Þ

which together with the assumption of constant cell mass guaran-
tees satisfaction of the GCL Eq. (1). The momentum Eq. (2) can be
written in the semi-discrete form for a particular mesh point p,

mp
d~vp

dt
¼~Fp; ð7Þ

where the Newton force is computed by evaluating the pressure
gradient in the dual cell Xp corresponding to node p (union of subz-
ones adjacent to p),

~Fp ¼ �
Z

Xp

~rPdV ¼ �
X

z2ZðpÞ

Z
Xzp

~rPdV ¼
X

z2ZðpÞ

~Fzp; ð8Þ

where the subzonal forces ~Fzp are evaluated by transforming the
volume integrals to boundary integrals using the Green divergence
theorem. Finally, following [14], the semi-discrete form of the en-
ergy Eq. (3) can be written as

mz
dez

dt
¼ �

X
p2PðzÞ

~Fzp �~vp; ð9Þ

which is derived from the total energy conservation on a cell-by-
cell basis. This approach is supplemented by additional forces rep-
resenting artificial viscosity [16] and anti-hourglass mechanism
[17], stabilizing the solution and preventing the simulation from
failure. The update of fluid specific internal energy and velocity
come from the finite difference discretization of Eqs. (7) and (9),
new nodal positions from Eq. (6), new fluid density is obtained by
dividing the constant cell mass by the new cell volume, and new
pressure from the EOS. For a full description of the compatible
Lagrangian scheme including more details, such as timestep control
of predictor–corrector time integration scheme, see [14,16,17].

3. Slide line treatment

Quoting Caramana [15]: ‘‘Slide lines (2D) and surfaces (3D) are a
way to treat interfaces in Lagrangian hydrocodes that allow differ-
ent materials or regions to move relative to each other without the
grid distortion that would otherwise terminate these calculations
quickly.’’ The presence of fluid instabilities is often, if not always,
a cause of failure for Lagrangian codes. The idea of slide lines comes
from Ref. [8], and was reproduced in Chapter 5 of Wilkins [9]. By all
means most of slide line treatments follow this original work of
Wilkins as pointed by Caramana [15]. Slide line is an important
feature although it is quite rarely described.

Any method treating slide lines in a Lagrangian hydrocode must
ideally respect some general requirements. On the first hand some
requirements are related to the properties of the physical underly-
ing system and the Lagrangian numerical scheme used to solve it.
As instance conservation of mass, momentum and total energy
obeyed by the physical system and the numerical scheme must
be also preserved by the specific slide line treatment. The normal
acceleration between two materials being continuous, the slide
line treatment is required to preserve such continuity. In addition
the slide line treatment must not destabilize steady solutions (as
instance homogeneous fluids with constant pressure and velocity
field). Over and above ideal situations must be perfectly dealt with
independently of the possibly different mesh sizes across the slide
line. More precisely fake slide lines must have an ignorable impact,
straight slide line must remain so in pure sliding situations. On the
other hand some requirements are related to the physics involved
at the slide line. As instance two materials sliding on each other
never inter-penetrate, consequently the slide line treatment
should also obey this principle. Furthermore the resulting contact



Fig. 2. (a) Definition of edge outer normals ~Np�1=2, nodal unit normals ĉp , and
nodal characteristic lengths ap . (b) Projection of contact forces ~gp to the normal
direction ap .
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force between two sliding materials must only act in the normal
direction to the slide line. In addition, in the frictionless case, the
tangential net force due to the contact must be zero.

Developing a slide line algorithm demands to, exactly or
approximately, fulfill these requirements. The technique devel-
oped in [15] and described in Section 3.1 first determines scaled
contact forces normal to the slide line. Apart from momentum con-
servation (for non-ideal cases) and inter-penetration problem the
technique fulfills the previous requirements. Contact forces are
determined by trying to perfectly deal with ideal situations. Then,
to ensure that no penetration occurs, the point velocity on one side
of the slide line is further corrected in Section 3.2. Unfortunately,
doing so, the technique slightly losses total energy conservation.
Nonetheless such energy discrepancy is used to assess the mean-
ingfulness of the computation, see Section 3.3.

3.1. Contact forces

The first task is to determine the contact force for the ideal sit-
uation as shown in Fig. 1 where a computational mesh is split in
two parts separated by a single slide line splitting each point on
the slide line into two half-points p and p0. Here the design princi-
ple consists of exactly retrieving the momentum Eq. (7) for one
point when the slide line splits (7) in two equations for two half-
points,

mp
d~vp

dt
¼~Fp þ~gp; mp0

d~vp0

dt
¼~Fp0 þ~gp0 ; ð10Þ

where ~Fp and ~Fp0 represent the sum of subzonal forces from lower/
upper subzones attached to the half-points and their sum is equal to
the original total nodal force, and similarly with the masses of the
half-points mp and mp0 . Moreover, ~gp=~gp0 represent the contact
forces acting on the lower/upper half-point from the opposite side
of the slide line. When we assume that p and p0 coincide and have
the same mass and geometry, the separate Eq. (10) have to sum
to the original Eq. (7) which implies ~gp0 ¼ �~gp. After substituting
this back to (10) and assuming the same acceleration for both
half-points, the contact forces become

~gp ¼ �~gp0 ¼
mp
~Fp0 �mp0

~Fp

mp þmp0
: ð11Þ

Let us move to a less ideal situation shown in Fig. 2a where both
sides of the slide line remain straight, however, the cell aspect ra-
tios are different. In this case one defines the outer normals for
each edge on a slide line, ~N, which have the normal directions,
and their size is defined by the length of the edge. The nodal outer
normal is defined (as suggested in [15]) by the average of the adja-
cent edge normals,
p

pm
p

p’
p’m

mp

Fig. 1. (a) One point in a mesh separated in its lower (red) and upper (blue) part by
imaginary slide line (black line). One particular point p is shown with its dual cell
containing the corresponding nodal volume/mass mp (gray rectangle). (b) Point
separated to two half-points p and p0 , belonging to different sides of the slide line.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
~Np ¼ ~Np�1
2
þ ~Npþ1

2

� �.
2; ð12Þ

where p� 1=2 and pþ 1=2 denote the left and right edges in the
slide line with respect to point p. The characteristic size ap of node
p is defined as ap ¼ k~Npk which corresponds to the length between
the edge centers of the two adjacent edges. The nodal unit normal is
defined as ĉp ¼ ~Np=ap.

Because two upper cells sharing one single node p0 interact with
possibly more than two lower cells we need to ‘‘impedance’’ match
the force interactions across the slide line. (In other words an inter-
action area ap0 of point p0 must be matched by an approximately
equal area of interaction from the opposite side no matter how
many points p from this opposite side contribute.)

When p and p0 coincide as in Fig. 2a it is somewhat enlightening
to consider the ‘‘meta-cell’’ constituted of some part of the upper
cells sharing point p0 and the lower cells associated to the interac-
tion area ap. In this meta-cell the mass of point p � p0 is approxi-
mately given by mp þmp0

ap

ap0
because, if one assumes that mp0=ap0

represents the density of the mass along lower boundary cells, then
mp0

ap

ap0
does represent the approximate mass related to the interac-

tion area ap. In the same way the acceleration of p � p0 in the

meta-cell may be approximated by ~Fp þ~Fp0
ap

ap0

� �.
mp þmp0

ap

ap0

� �
.

The half-sided momentum equations are given by

mp
d~vp

dt
¼~Fp þ~Gp; mp0

d~vp0

dt
¼~Fp0 þ~Gp0 ; ð13Þ

where ~Gp ¼ ~gp � ĉp
� �

ĉp and ~Gp0 ¼ ~gp0 � ĉp0
� �

ĉp0 are the normal compo-
nent of the contact forces. The contact force is then defined as the
normal component of the acceleration of the point in the meta-cell,
that is to say ~Gp force is determined as the solution of

d~vp

dt
� ĉp ¼

~Fp þ~Gp

mp
� ĉp �

~Fp þ~Fp0
ap

ap0

mp þmp0
ap

ap0

� ĉp; ð14Þ

leading to ~gp � ĉp ¼
mp ~Fp0 �ĉpð Þ�mp0

~Fp �ĉpð Þ
ap0mpþapmp0

ap. We further approximate the

projected force by the projection to the normal from the opposite

side, ~Fp0 � ĉp � �~Fp0 � ĉp0 to get

~gp � ĉp � �
mp

~Fp0 � ĉp0

� �
þmp0

~Fp � ĉp

� �
ap0mp þ apmp0

ap: ð15Þ

As a consequence ~Gp (and ~Gp0 following the same logic) is deter-
mined by
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~Gp ¼ ~gp � ĉp
� �

ĉp � �
mp

~Fp0 � ĉp0

� �
þmp0

~Fp � ĉp

� �
ap0mp þ apmp0

apĉp; ð16Þ

~Gp0 ¼ ~gp0 � ĉp0
� �

ĉp0 � �
mp0

~Fp � ĉp

� �
þmp

~Fp0 � ĉp0

� �
apmp0 þ ap0mp

ap0 ĉp0 : ð17Þ

Both formulas are the same up to a prime sign again. The pro-
jection is demonstrated in Fig. 2b. When the points p and p0 do
not coincide then the meta-cell construction is only an approxima-
tion, so are the point mass and its acceleration.

By construction two of the previously listed requirements,
namely the contact force acting only in the normal direction and
the frictionless requirement, are obeyed. Moreover the normal
acceleration between the two materials is continuous because
1

mp
ð~Fp þ~GpÞ � ĉp ¼ � 1

mp0
ð~Fp0 þ~Gp0 Þ � ĉp0 . While the momentum con-

servation is not ensured to round-off error for non-ideal situations
it is still conserved to truncation error when summed over all of
the points of the slide line.1 On the other hand total energy conser-
vation is preserved because the slide line treatment is so far ex-
pressed as contact forces which are further participating in the
internal energy update (9) relying on the compatible construction
of the numerical scheme. Furthermore we have obtained equations
(16) and (17) by requiring the slide line algorithm to retrieve ideal
situations; Areas a are used to scale the G quantities so that we ob-
tain the ‘‘exact’’ result given by (11) in the limit of exactly the same
number of aligned grid points on both sides of the slide line. Lastly
we can verify that the slide line treatment maintains a constant pres-
sure even when non-uniform meshes are used, see also the numer-
ical experiments on pure sliding situations in Section 6.1.

Unfortunately the slide line treatment does not prevent the two
sides to inter-penetrate. The contact force is constructed to avoid
such an unlikely situation to occur, however, there is no intrinsic
mechanism that can prevent it. The next section presents the
velocity correction technique [15] to prevent inter-penetration.

3.2. Velocity correction preventing inter-penetration

Up to now, the slide line has been treated in a symmetric man-
ner concerning the upper and lower sides. However, classical treat-
ment of slide line defines a ‘‘master’’ and ‘‘slave’’ side. In general,
the materials on both sides dictate such dichotomy. Without loss
of generality, let us assume that the lower (red2) side in our figures
is declared as slave. Because inter-penetration can occur the slave
side of the slide line is forced to follow the master side – the so-
called ‘‘put-back-on step’’ puts back any point from the slave side
onto the master side [9].

The last ingredient proposed by Caramana [15] relates to this
put-back-on step. In fact, the solution of the inter-penetration prob-
lem is recast into a velocity boundary condition. More precisely, the
update of velocity of slide points coming from (13) is given by

~vnþ1;y
p ¼ ~vn

p þ
Dt
mp

~Fp þ~Gp

� �
; ~vnþ1;y

p0 ¼ ~vn
p0 þ

Dt
mp0

~Fp0 þ~Gp0

� �
: ð18Þ

The final master velocity is not modified, i.e. ~vnþ1
p0 ¼ ~v

nþ1;y
p0 , while

the slave velocity is altered to

~vnþ1
p ¼ ~vnþ1;y

p þ ~vnþ1;y
p0 þ~vn

p0

� �
� ĉp0

h i
ĉp0

� ~vnþ1;y
p þ~vn

p

� �
� ĉp0

h i
ĉp0 ; ð19Þ
1 Indeed let us remark that in the case the normals are collinear and opposite,
ĉp ¼ �ĉp0 , the sum of~Gp=ap and ~Gp0 =ap0 (make the force intensive with respect to a’s) is
identically zero. With the normals being different there is again an error at truncation
level because of the curvature along the slide line.

2 For interpretation of color in Figs. 1–14, the reader is referred to the web version
of this article.
which guarantees that the projection of the time centered velocities
~vnþ1=2

p0 ¼ ð~vnþ1
p0 þ~vn

p0 Þ=2, ~vnþ1=2
p ¼ ð~vnþ1

p þ~vn
pÞ=2 on the normal ĉp0

coincide, i.e. ~vnþ1=2
p0 � ĉp0 ¼ ~vnþ1=2

p � ĉp0 . In words, this slave velocity
correction removes the excessive velocity in the direction of inter-
penetration (slide line normal) from the final velocity. Conse-
quently, this correction prevents the slave node to move in this
direction more than the corresponding master node does. This cor-
rection is weaker than the explicit put-back-on step [9] and does
not bring so strong disturbance into the compatible Lagrangian
schemes. While this velocity correction provides a way to fulfill
the inter-penetration requirement it also affects the energy conser-
vation as this small correction is not recast into the compatible
formulation.

3.3. Energy discrepancy

In the context of a compatible Lagrangian scheme and away
from boundary conditions the total energy is conserved up to ma-
chine precision. During one time step Dt ¼ tnþ1 � tn, internal en-
ergy in zone z changes as

mzðenþ1
z � en

z Þ ¼ �
X

p2PðzÞ

~Fz
p � D~rp; ð20Þ

where D~rp ¼ Dt ~vnþ1
p þ~vn

p

� �.
2 represents nodal motion during the

time step. Kinetic energy in point p changes as

1
2

mp ~vnþ1
p

� �2
� ~vn

p

� �2
� �

: ð21Þ

Due to compatibility of the scheme, both energy changes
summed over the entire mesh should be the same. However, the
presence of a slide line may interfere with this equilibrium. The
sliding forces are naturally treated by the energy update of the
compatible scheme, but the velocity correction can introduce some
discrepancy in the energy conservation. In [15] the author presents
a way to measure this discrepancy. The work done by the slide line
on a time step Dt upon a point p of the slide line is computed as

DWn;nþ1
p ¼ 1

2
mp ð~vnþ1

p Þ2 � ð~vn
pÞ

2
� �� 	

�
X

z2ZðpÞ

~Fz
p � D~rp

" #
; ð22Þ

where the internal energy change was transformed from a sum over
cells to a sum over nodes. By construction of the compatible
scheme, the total energy E is conserved, but the work done by the
slide line remains so that

Enþ1 � En ¼
X

p in slide line

DWn;nþ1
p : ð23Þ

To compute the overall energy discrepancy during the entire
simulation, one can accumulate over time,

Enþ1 � E0 ¼
Xnþ1

i¼1

X
p in slide line

DWi�1;i
p : ð24Þ

This last equation represents the total energy discrepancy
brought into the simulation due to the velocity correction of the
slide line treatment.

4. Interpolated interaction

The approach [15] described in the previous section employs
the standard point-to-point interaction where the pressure forces
~F, velocities ~v , characteristic lengths ap, and the outer normals ĉ
on the opposite side of the slide line are simply taken from the
nearest opposite point. This approach works reasonably well and
it is the best choice from the parallelization point of view, however,
it can lead to staircase-shape of the slide line when different aspect



p

p’

p

e p
p’

R
L

p’

Fig. 3. (a) Point-to-point interaction where many points (p) can interact with one point from the opposite side (p0). (b) Interpolated interaction where points interact with
edge ep , its left and right points denoted by p0L and p0R respectively.
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ratios are present on each side of the slide line, so the original ap-
proach is unlikely to be suitable for problems with high local cur-
vature. This is caused by interaction of several points with a
particular point from the opposite side, causing the set of points
behaving similarly, while the very next point interacting with a
neighboring point from the other side behaves in a significantly
different way, as shown in Fig. 3a. Therefore, we suggest here the
interpolated interaction, where all the mentioned quantities from
the opposite side of the slide line are interpolated from the adja-
cent point values. For completeness, let us note that the interpo-
lated interaction is used in practice in various numerical codes,
however, not many details are available in open literature. For
example, in [5,18], the authors treat the interaction of contact
nodes with an edge from the other side in the context of Lagrang-
ian multipliers. In [19], the authors accumulate portions of nodal
quantities (such as mass) from several opposite-side nodes. In
[20], the nodal quantities are distributed to the opposite-side
nodes using weighting by mass fractions. And finally in [11], the
authors interpolate scalar quantities and normals of vector quanti-
ties while projecting the vector components to the normal direc-
tion. Similarly, in the approach suggested here, all quantities are
interpolated along the edge, however, each component of vector
quantities is interpolated separately.

In the point-to-point interaction, a closest point p0 from the
opposite side has to be determined for any point p on a slide line.
In the interpolated interaction, an edge ep belonging to the oppo-
site side of the slide line and interacting with p has to be deter-
mined. Let us note that we reuse the information about the
closest point p0, and ep is always one of the slide line edges con-
nected to p0. The relative position of p on ep is found by the stan-
dard projection formula

aep
p ¼max 0;min 1;aep ;y

p

� �� �
; ð25Þ

aep ;y
p ¼

ðxp � xp0L
Þðxp0R

� xp0L
Þ þ ðyp � yp0

L
Þðyp0

R
� yp0

L
Þ

kp0R � p0LVert
; ð26Þ

where p0L and p0R denote the left and right vertexes of ep. This situa-
tion is shown in Fig. 3b. The interpolation of, for example, mass is
then performed by a linear function

mp0 ¼ mp0L
þ aep

p ðmp0R
�mp0L

Þ; ð27Þ

so the value is different for each node interacting with ep and
smoothly changes from mp0L

to mp0R
along the edge, making the inter-

action more continuous.
Similarly, as shown in (27) for nodal mass, the remaining nodal

quantities from the opposite side of the slide line are interpolated
in the same way, using the same pre-computed aep

p parameters.
These are: nodal mass mp0 , characteristic length ap0 , nodal normals
ĉp0 , and nodal force ~Fp0 in contact force (16), the same quantities
with p subscript instead of p0 in contact force (17), and normals
ĉp0 and velocities ~vnþ1;y

p0 and ~vn
p0 in the slave velocity update (19).

The vector quantities are interpolated component by component,
while the interpolated normals are re-normalized to be unit vec-
tors again. This approach leads to a significant improvement of
the staircase-shape problem, see Figs. 8a and 11b.

5. Numerical surface tension

In many tests containing sliding, we can observe the evolution
of the Kelvin–Helmholtz instability caused by the shear of different
density fluids along each other which can eventually cause the fail-
ure of the simulation. This situation can be caused by real physics
or wrong model, which is the case for example for gasses, where
the disturbance of the interface can be the consequence of the
missing model for fluid mixing. In simulations of solids, this prob-
lem is typically avoided by introducing a model for material stress/
strain, such as [19,21], which causes the material to behave more
rigidly; the instability modes are suppressed. We have decided to
adopt the technology of numerical surface tension for interface sta-
bilization which is most adequate for description of behavior of liq-
uids. In the formulation of slide line treatment using the
Lagrangian multipliers or the penalty method, one can stabilize
the interface by an inherited stabilization parameter [7]. Alterna-
tive surface stabilization techniques involve for example the vis-
cous interface dumping described in [22].

In our approach, we incorporate the surface tension effect in the
form of tension forces in a similar manner, as described in [23]. Let
us emphasize here that (contrary to [23]) these forces in our ap-
proach do not represent real physical surface tension, it is only a
numerical technique for stabilization of a slide line.

The numerical surface tension force acting from zone z on point
p, is constructed as

~FNST
zp ¼ sprzpjpĉp; ð28Þ

where the sign sp defines the orientation of the force, rzp represents
the pressure gradient in the interface normal direction, jp repre-
sents the local curvature of the slide line, and the nodal unit normal
ĉp defines the direction of the surface tension force. Due to ĉp term,
the numerical surface tension force only acts in the direction nor-
mal to the slide line, no tangential component exists. ~FNST

zp can be
incorporated into the subzonal pressure forces ~Fzp, and have to be
included through this force into the slide line contact forces ~Gp.

The orientation of the numerical surface tension force is defined
as

sp ¼
�1 for ap 2 h0;pÞ
þ1 for ap 2 hp;2pi



; ð29Þ

where ap stands for the internal angle spanned by the slide line
edges attached to p. If the slide line is locally convex from one side,
the internal angle is acute, therefore sp < 0, and the node is pulled
inside the mesh. In the opposite situation, in case of locally concave
mesh from one side of the slide line, ap is obtuse, so sp is positive,
and the node is pushed outside of the mesh. In both cases, the direc-
tion leads to straightening of the slide line segment. Let us also
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Fig. 4. Part of the mesh attached to a slide line approximated by a Bezier curve.
Enumeration of slide line points shown.
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present an alternative definition of sp, avoiding discontinuity in the
situation of the straight angle,

sp ¼ tanhðCðap � pÞÞ: ð30Þ

Here, the constant C defines the width of the transition region. Let
us note that this definition of sp is smoother, and moreover, sp � 0
for ap � p what makes the whole numerical surface tension
machinery more robust.

The term rzp represents the pressure gradient in the vicinity of
the slide line. As the pressure force ~Fzp is computed using (8), the
pressure gradient can be approximated by it. As we are only inter-
ested in the size of the pressure gradient in the direction normal to
the slide line, which can be computed as

rzp � rpzp ¼ ~Fzp � ĉp

��� ���: ð31Þ

The last term which we need to define is the local curvature of
the slide line jp. We compute the curvature in point p as the max-
imum curvature of a Bezier curve defined by p and its two neigh-
bors in the slide line, as shown in Fig. 4. The Bezier curve is
described by the following parametric formula

xðtÞ ¼ ð1� tÞ2x1 þ 2tð1� tÞx2 þ t2x3; ð32Þ
yðtÞ ¼ ð1� tÞ2y1 þ 2tð1� tÞy2 þ t2y3; ð33Þ

where x1;2;3 and y1;2;3 are the coordinates of the nodes as enumer-
ated in Fig. 4, and where the parameter t 2 h0;1i. The curvature is
defined by the standard formula

jpðtÞ ¼
j x0y00 � y0x00 jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x02 þ y02
� �3

q ; ð34Þ

where the 0 symbol represents the derivative with respect to t, and
can be computed analytically. The maximum curvature jp ¼
maxt2h0;1ijpðtÞ is found by the golden section search.

In certain configurations (typically when slide line edges of very
different lengths are connected to p), this approach can produce
excessive numerical surface tension force due to possibly un-
bounded value of curvature jp. To fix this problem, we have
adopted the following limiting approach. If the numerical surface
tension force ~FNST

zp is too big compared to the hydrodynamic pres-
sure force ~Fzp, we perform limiting to a certain amount of ~Fzp,

~FNST;lim
zp ¼ b

k~Fzpk
k~FNST

zp k
~FNST

zp : ð35Þ

In practical simulations, we use 10% of the pressure force, i.e.
b ¼ 1=10. Next to it, in practical calculations, one may want to
incorporate a switch which enables the numerical surface tension
force only if sp changes its sign in the neighborhood of p. This
avoids the straightening of the slide line in smooth regions, while
it still prevents its pathologic zigzagging.

Let us note that the numerical surface tension mechanism can
change physics in the vicinity of the interfaces by straightening
the material interface. This straightening eliminates the develop-
ment of instabilities on the interface, which may or may not be
desirable. The usage of this mechanism therefore depends on a
particular simulation. For problems containing pure sliding of
materials along each other, the numerical surface tension mecha-
nism helps to stabilize the interface and increases robustness of
the calculation. On the other hand, for simulations of instabilities,
the numerical surface tension mechanism can eliminate the
growth of the instability completely, so this mechanism is not suit-
able at all. In general, this mechanism should be used only as little
as possible to avoid excessive interface straightening.
6. Numerical examples

In this section, we present several numerical examples to dem-
onstrate the behavior of the original method and its comparison
with the improved method combining the interpolated interaction
and the numerical surface tension.
6.1. Pure sliding

The first numerical example is a sanity check testing the robust-
ness of the methods and their ability to maintain straight material
interface. The h0; 2i2 computational domain is split in the middle
by a vertical slide line into two different non-uniform computa-
tional meshes, with different mesh resolution in each quadrant of
the domain [24]. The initial meshes are shown in Fig. 5a. All fluid
quantities are constant in the entire domain except the vertical
velocity which is þ0:02 in the left mesh and �0:02 in the right
mesh. The final time is t ¼ 10.

All methods keep the straight slide line exactly, no violation oc-
curs, as shown in Fig. 5b. This is confirmed by the DW energy dis-
crepancy which is zero up to machine accuracy for all methods.
Due to non-equidistant nature of the meshes, this test checks the
infrastructure of the slide line framework, especially the mecha-
nism of scaling the contact forces to the segment size across the
interface by the parameter ap.
6.2. Saltzman-like piston

Another sanity check is inspired by the standard Saltzman pis-
ton problem, however, a standard uniform orthogonal mesh is used
instead of the skewed Saltzman mesh. The whole h0; 1i � h0; 0:1i
domain is covered by a 100� 10 mesh which is split in the middle
of the domain by a horizontal or vertical slide line, as shown in
Fig. 6a and b. The fluid has a unit density and zero (in practice,
10�8 is used) pressure, and it is static except the left boundary
which is moving with unit velocity representing a piston com-
pressing the fluid. The value of c ¼ 5=3 is used everywhere, the fi-
nal time is t ¼ 0:98. The whole problem is rotated by a non-trivial
angle p=6 to avoid interference with the axes directions. (The non-
rotated problem produced perfect results for all methods and is
consequently skipped.)

Interesting parts of the final computational meshes are shown
in Fig. 6c and d. No difference among the methods can be visually
observed, so only images for the interpolated interaction with the
numerical surface tension are presented. As we can see, the 1D nat-
ure of the problem is preserved perfectly in both cases for all meth-
ods. For the horizontal slide line test, no discrepancy occurs at all,
the DW energy discrepancy is zero up to machine accuracy for all
methods. In case of vertical slide line, small discrepancy appears
for all methods (DW � 10�9), and a small oscillation in density
shows up close to the slide line. This is caused by the shock wave
passing the interface and consequent velocity correction, which
did not appear in case of horizontal slide line as no velocity correc-
tion was performed due to normal direction of the slide line and
the shock wave. However, the 1D symmetry as well as the shock
wave velocity is not affected.
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6.3. Sliding rings

In this section, we describe a problem in which an inner low-
density ring slides along an outer heavier ring. This problem is sim-
ilar to the pure sliding test presented in Section 6.1, however, this
is not just a sanity check any more as real hydrodynamic effects
take place here due to the centrifugal forces. Both initial meshes
contain 100� 20 computational cells. The outer mesh uniformly
spans from �p=4 to 5=4p in the angular direction and from 2 to
3 in the radial direction. The inner mesh spans from 0 to p=2 in
the angular direction and from 1 to 2 in the radial direction, so
there is a 1=3 aspect ratio between the meshes. The initial meshes
are shown in Fig. 7. Both meshes contain initially uniform unit
pressure, the inner (slave) mesh with uniform unit density slides
by a unit angular velocity along the static outer (master) ring with
density 104. The simulation stops at time 0:65, just before the ori-
ginal method fails.

The results of the simulations are shown in Fig. 8. The original
method provides significantly worse results when compared with
the improved method what is caused by the staircase-shape prob-
lem due to a different aspect ratio of the meshes, as described in
Section 4. This problem propagates though the computational
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mesh and can be seen as strong disturbances in the mesh and also
in the density (and other quantities) profiles. The interpolated
interaction helps significantly and the simulation can continue.
As the slide line shape is maintained smooth in this case, the
numerical surface tension does not change the behavior signifi-
cantly due to low curvature term jp in formula (28).

Note a significant inter-penetration in the original method,
which is eliminated by the interpolated interaction. As for the en-
ergy discrepancy due to velocity correction, it is of the order of
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Fig. 8. Zoom to the interesting part along the slide line for the sliding rings problem (asp
the original approach and the improved method with interpolated interaction and surfa
10�3 for the original method, and one order of magnitude lower
for the improved methods. Clearly, this problem demonstrates
the ability of the interpolated interaction mechanism to suppress
the staircase shape problem and stabilize the interface.
6.4. Explosion with sliding

In this section, we demonstrate the behavior of the methods on
a more complex test coming from Ref. [15], representing a realistic
problem including a shock wave along the slide line, a shock wave
in the direction normal to the slide line, and sliding at the same
time. The computational domain h0; 1i � h0; 0:5i is divided by a
horizontal slide line into two static uniform meshes of 100� 25
cells. The lower (slave) mesh has a unit density, pressure is 20 in
cells left from x ¼ 0:05, and 2=3� 10�8 right from it. This high
pressure generates a shock wave moving to the right. The upper
(master) mesh has density 10 and pressure 2=3� 10�8 everywhere.
The value of c ¼ 5=3 is used in the entire domain. The initial con-
figuration is shown in Fig. 9a. The simulation is stopped at time
t ¼ 0:4.

Fig. 9b presents the simulation performed on a single computa-
tional mesh without a slide line. Note a significant mesh distortion
along the material interface due to shear flow, causing high
numerical error and eventually degeneracy of the computational
time-step. The results of the simulations with a slide line are shown
in Fig. 10. All methods provide better results than the one-mesh ap-
proach, the meshes slide along each other, and the horizontally
moving shock wave is nicely captured as no mesh distortion is pres-
ent. The vertically-moving shock waves from the original method
and the improved method are almost identical in the density pic-
tures, when numerical surface tension is added, it is slightly flatter.
The void region in the left part of the mesh is bigger for the original
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approach, it is reduced by interpolated interaction, and almost elim-
inated by adding the numerical surface tension. The density profile
of the original method is almost identical with the profile presented
in [15].

When looking at the mesh segments along the slide line in the
post-shock region for the original method, one can see the develop-
ment of serious disturbances due to the staircase-shape problem
again. This problem is significantly reduced by switching to the
interpolated interaction again (Fig. 10b and c). As for the energy dis-
crepancy, it is comparable for all methods for this problem,
DW ¼ 8:8� 10�3 for the original method, it drops to DW ¼ 7:1�
10�3 for the interpolated interaction, and increases slightly to
DW ¼ 7:5� 10�3 when numerical surface tension is added.

6.5. Bullet in channel

This test is inspired by real physical experiments, dealing with
ablative acceleration of dense plasma in a channel [25], which
were performed at the Prague Asterix Laser System (PALS). The
initial mesh is shown in Fig.11a. The h0; 2i � h0; 10i computational
domain is split by a vertical slide line. The right (master) part is
covered by a initially static uniform mesh of 20� 100 cells with
density equal to 10 and pressure 1, representing the channel
boundary. The left (slave) part of the domain represents the inside
of the channel. It is divided into three parts: the uppermost air (5
cells between y ¼ 9 and y ¼ 10), the bullet (90 cells between y ¼ 8
and y ¼ 9), and air (5 cells between y ¼ 0 and y ¼ 8). The density is
1 in the heavy bullet and 0:1 in the air. The air is initially static, the
bullet moves down with the velocity 7. The value of c ¼ 5=3 is used
in the entire domain. The simulation stops at time t ¼ 1:17, just be-
fore the original approach fails.

Due to the bullet motion, the lower air is compressed, the pres-
sure here is increased, and the slide line deforms due to the devel-
oped pressure gradient. This problem involves a strong difference
in aspect ratios across the slide line, which drives the staircase-
shape problem very strongly.

Fig. 11b–d presents the situation in a very early stage of the
simulation at t ¼ 0:1. The original method suffers from severe dis-
tortions. We can clearly identify sets of points from the master side
interacting with the particular points on the slave side. On the
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other hand, the interpolated interaction demonstrates reasonable
shift of the master nodes along the edges of the slave boundary.
At this early stage of the simulation, the numerical surface tension
does not have any significant influence as the shape of the slide
line is still smooth.

Fig. 12 presents the density field in the entire domain at the fi-
nal time t ¼ 1:17, as well as the part of the meshes close to the
slide line. The largest voids between the meshes appear in the case
of the original method, but the global picture (bullet shape, shock
wave position, etc.) is the same for all methods. Looking at the
mesh part along the slide line, one can notice the significant in-
ter-penetration when the original method is used, which is re-
duced by the interpolated interaction and almost eliminated by
adding the numerical surface tension. The DW energy discrepancy
is comparable for all methods.
6.6. Sedov explosion with an interface

In this section, we demonstrate the symmetry violations
introduced by the slide line machinery for an initially symmetric
problem. This problem resembles the standard Sedov point explo-
sion problem on polar computational mesh. The initial mesh covers
the radius r 2 h1=100; 1:1i and the angular interval is h 2 h0; p=2i.
Small radius around the origin prevents the degenerate points to
appear. The computational mesh is split by a slide line at
r ¼ 1=2, where the outer mesh acts as its master side. Both meshes
have 20 computational cells in the radial direction. The outer mesh
contains 100 cells while the inner mesh has only 31 cells in the
angular direction, so the nodes do not coincide at the slide line.
The entire domain contains unit-density zero-pressure gas (in
practice, p ¼ 10�10 is used) with c ¼ 1:4, except the innermost ring
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of cells where the value of p ¼ 114:359 is used. This value is found
to exactly correspond to the standard version of the Sedov problem
presented for example in [26]. The final time of the simulation is
t ¼ 1.

When this problem is solved on a single mesh without any slide
line, the solution preserves its symmetry up to machine accuracy.
We measure the non-symmetry as the ratio of the angular
momentum and the total momentum. The solutions when a slide
line is present is shown in Fig. 13. As we can see, small decrease
in the density value is visible at the slide line (around r ¼ 0:9 in
Fig. 13) for all slide line treatments. Let us note this dip is not pres-
ent for single mesh simulation and probably originates from the
energy discrepancy due to velocity correction at the slide line.
However when meshes with termination lines or hanging nodes
are employed, the preservation of symmetry becomes tricky [27]
especially when nodes on both sides do not coincide as in our case.
Even visually, we can observe some non-symmetry of the solution
between the slide line and the shock front, especially for the origi-
nal approach. The relative momentum in the angular direction is
4:008� 10�4 for the original approach, 3:230� 10�4 for the inter-
polated interaction, and 3:223� 10�4 for the interpolated interac-
tion with the surface tension. The DW energy discrepancy is
comparable for all methods. Let us note that for this problem,
the surface tension switch mentioned in Section 5, which disables
the tension in smooth regions was used. Without this switch, the
surface tension force tries to make the slide line straight and sym-
metry of the problem is violated significantly.

6.7. Rayleigh–Taylor instability with sliding

In this section, we want to analyze the influence of the slide line
treatment on the growth rate of the Rayleigh–Taylor instability
problem [28] against the theoretical rate. The initial configuration
is exactly adopted from Ref. [28]. This simulation is performed on a
single 100� 600 mesh without any slide line, and also on two
100� 300 meshes separated by a slide line. The upper mesh
containing the high density fluid acts as master in these
calculations.

In Fig. 14, we present the growth rates of the instability and
their comparison with the analytic rate [28] during the linear
phase of the instability growth. First of all, we can see that the sim-
ulation without the slide line follows almost exactly the analytic
curve until t ¼ 0:6. After that, the shear along the fluid interface
decelerates the growth due to interface nodes belonging to both
fluids and stick to each other. This problem is improved by intro-
ducing a slide line separating the fluids, so the interface nodes
are freely moving along the interface, without further restrictions
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from the opposite side. At time t ¼ 1:3, the growth rates in the
calculations with the slide line exceed the single mesh results, bet-
ter corresponding to the theoretical growth and the results from
Ref. [28].

We can see that the results of the original method almost coin-
cide with the results of the interpolated interaction. Let us note
that the result with numerical surface tension is omitted here as
it is not appropriate for this kind of problem. The numerical surface
tension mechanism is designed to stabilize the interface and elim-
inate the instability, so the instability amplitude decreases instead
of increasing according to theory.
7. Conclusions

We have reviewed the slide line treatment from Ref. [15] in the
staggered Lagrangian framework. On the selected numerical exam-
ples, we have demonstrated some pathologies of this method in
the case of different aspect ratios of the computational meshes.
This problem can be described as staircase-shape due to similar
interaction of several mesh nodes from the finer side of the slide
line with a particular node in the coarser side, and just next to
them, another set of points interacting with a neighboring node
in the coarser side. We describe the technique of interpolated
interaction which eliminates this problem.

A second problem is the development of Kelvin–Helmholtz
instability in the vicinity of the slide line due to a shear flow in this
region. We suggest here a numerical surface tension formulation
which suppresses this problem and stabilizes the slide line by mak-
ing it more rigid. This technique is however devoted to cure hydro-
dynamical instability. Obviously if such instabilities must be kept
or if more advanced material strength model is used then this tech-
nique should not be employed.

On selected numerical examples, we demonstrate the advanta-
ges of the improved methods by comparison with the original ap-
proach. We show here that the interpolated interaction provides a
much more regular shape of the slide line than the original meth-
od. It is also demonstrated that the numerical surface tension pro-
cess does not affect the slide line shape when it is reasonably
smooth, but starts to stabilize it when perturbations appear. In
all tests shown here, the improved method provides better results
than the original method [15].
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