For comparison with other CAS choose from: Derive Macsyma Maple Mathematica Reduce
xx:= matrix([[a11, a12], [a21, a22]])
+a11 a12+ | | +a21 a22+ Type: Matrix Polynomial Integeryy:= matrix([[y1], [y2]])
+y1+ | | +y2+ Type: Matrix Polynomial Integerdeterminant xx
a11 a22 - a12 a21 Type: Polynomial Integerzz:= inverse(xx)*yy
+- a12 y2 + a22 y1+ |-----------------| |a11 a22 - a12 a21| | | | a11 y2 - a21 y1 | |-----------------| +a11 a22 - a12 a21+ Type: Matrix Fraction Polynomial Integerinverse(xx)**2
[ 2 a22 + a12 a21 [--------------------------------------, 2 2 2 2 a11 a22 - 2a11 a12 a21 a22 + a12 a21 - a12 a22 - a11 a12 --------------------------------------] 2 2 2 2 a11 a22 - 2a11 a12 a21 a22 + a12 a21 , - a21 a22 - a11 a21 [--------------------------------------, 2 2 2 2 a11 a22 - 2a11 a12 a21 a22 + a12 a21 2 a12 a21 + a11 --------------------------------------] 2 2 2 2 a11 a22 - 2a11 a12 a21 a22 + a12 a21 ] Type: Matrix Fraction Polynomial Integerv := matrix([[2, -1, 1], [0, 1, 1], [-1, 1, 1]])
+ 2 - 1 1+ | | | 0 1 1| | | +- 1 1 1+ Type: Matrix Integereigenvectors v
+0+ +1+ | | | | [[eigval= 2,eigmult= 1,eigvec= [|1|]],[eigval= 1,eigmult= 2,eigvec= [|1|]]] | | | | +1+ +0+ Type: List Union(Record(algrel: Fraction Polynomial Integer,algmult: Integer,algvec: List Matrix Fraction Polynomial Integer),Record(eigval: Fraction Polynomial Integer,eigmult: Integer,eigvec: List Matrix Fraction Polynomial Integer))