For comparison with other CAS choose from: Axiom Derive Macsyma Maple Reduce
Solve[ x
^
8 - 8x^
7 + 34x^
6 - 92x^
5 + 175x^
4 - 236x^
3 +
226x^
2 - 140x + 46 == 0 ]
4 - Sqrt[16 - 8 (5 - Sqrt[-3 - 4 Sqrt[3]])] {{x -> -------------------------------------------}, 4 4 + Sqrt[16 - 8 (5 - Sqrt[-3 - 4 Sqrt[3]])] {x -> -------------------------------------------}, 4 4 - Sqrt[16 - 8 (5 + Sqrt[-3 - 4 Sqrt[3]])] {x -> -------------------------------------------}, 4 4 + Sqrt[16 - 8 (5 + Sqrt[-3 - 4 Sqrt[3]])] {x -> -------------------------------------------}, 4 4 - Sqrt[16 - 8 (5 - Sqrt[-3 + 4 Sqrt[3]])] {x -> -------------------------------------------}, 4 4 + Sqrt[16 - 8 (5 - Sqrt[-3 + 4 Sqrt[3]])] {x -> -------------------------------------------}, 4 4 - Sqrt[16 - 8 (5 + Sqrt[-3 + 4 Sqrt[3]])] {x -> -------------------------------------------}, 4 4 + Sqrt[16 - 8 (5 + Sqrt[-3 + 4 Sqrt[3]])] {x -> -------------------------------------------}} 4
Solve[ Log[ ArcCos[ ArcSin[x
^
(2/3)-b]- 1]]+ 2 == 0, x ]
3 2 -2 {{x -> -Sqrt[b + 3 b Sin[1 + Cos[E ]] + -2 2 -2 3 3 b Sin[1 + Cos[E ]] + Sin[1 + Cos[E ]] ]}, 3 2 -2 {x -> Sqrt[b + 3 b Sin[1 + Cos[E ]] + -2 2 -2 3 3 b Sin[1 + Cos[E ]] + Sin[1 + Cos[E ]] ]}}
Simplify[%]
1 2 3 {{x -> -Sqrt[(b + Sin[2 Cos[----] ]) ]}, 2 2 E 1 2 3 {x -> Sqrt[(b + Sin[2 Cos[----] ]) ]}} 2 2 E