For comparison with other CAS choose from: Axiom Derive Macsyma Maple Reduce
Solve[ x ^8 - 8x^7 + 34x^6 - 92x^5 + 175x^4 - 236x^3 +
226x^2 - 140x + 46 == 0 ]
4 - Sqrt[16 - 8 (5 - Sqrt[-3 - 4 Sqrt[3]])]
{{x -> -------------------------------------------},
4
4 + Sqrt[16 - 8 (5 - Sqrt[-3 - 4 Sqrt[3]])]
{x -> -------------------------------------------},
4
4 - Sqrt[16 - 8 (5 + Sqrt[-3 - 4 Sqrt[3]])]
{x -> -------------------------------------------},
4
4 + Sqrt[16 - 8 (5 + Sqrt[-3 - 4 Sqrt[3]])]
{x -> -------------------------------------------},
4
4 - Sqrt[16 - 8 (5 - Sqrt[-3 + 4 Sqrt[3]])]
{x -> -------------------------------------------},
4
4 + Sqrt[16 - 8 (5 - Sqrt[-3 + 4 Sqrt[3]])]
{x -> -------------------------------------------},
4
4 - Sqrt[16 - 8 (5 + Sqrt[-3 + 4 Sqrt[3]])]
{x -> -------------------------------------------},
4
4 + Sqrt[16 - 8 (5 + Sqrt[-3 + 4 Sqrt[3]])]
{x -> -------------------------------------------}}
4
Solve[ Log[ ArcCos[ ArcSin[x ^(2/3)-b]- 1]]+ 2 == 0, x ]
3 2 -2
{{x -> -Sqrt[b + 3 b Sin[1 + Cos[E ]] +
-2 2 -2 3
3 b Sin[1 + Cos[E ]] + Sin[1 + Cos[E ]] ]},
3 2 -2
{x -> Sqrt[b + 3 b Sin[1 + Cos[E ]] +
-2 2 -2 3
3 b Sin[1 + Cos[E ]] + Sin[1 + Cos[E ]] ]}}
Simplify[%]
1 2 3
{{x -> -Sqrt[(b + Sin[2 Cos[----] ]) ]},
2
2 E
1 2 3
{x -> Sqrt[(b + Sin[2 Cos[----] ]) ]}}
2
2 E