Rutherford scattering

- binary elastic collision of 2 charged particles
- we want to find the scattering angle

Analytically solvable problem of motion in a central force field with potential $U(r)$
Total energy in laboratory coordinate system

$$
E=1 / 2 m_{1} v_{1}^{2}+\frac{1}{2} m_{2} v_{2}^{2}+U\left(\left|\vec{r}_{1}-\vec{r}_{2}\right|\right)
$$

Energy in center of mass coordinate system (těžištová soustava)

$$
\begin{aligned}
& \vec{R}_{c}=\frac{m_{1} \vec{n}_{1}+m_{2} \vec{n}_{2}}{m_{1}+m_{2}} \quad \vec{V}_{c}=\frac{m_{1} \vec{v}_{1}+m_{2} \vec{v}_{2}}{m_{1}+m_{2}} \quad M_{c}=m_{1}+m_{2} \\
& \vec{V}_{1}= \vec{V}_{c}-m_{1}+m_{2} \\
& m_{2}-\vec{v}_{2}-\vec{v}_{1} \\
& m_{1}+m_{2}
\end{aligned} \vec{m}_{2}=\vec{n}_{2}-\vec{n}_{1}
$$

Angular momentum (moment hybnosti)

Problem may be transformed to scattering of particle of mass μ on a static scattering center

Energy conservation

$$
\frac{1}{2} \mu v_{0}^{2}=\frac{1}{2} \mu\left[\dot{r}^{2}+r^{2} \dot{\varphi}^{2}\right]+U(n)
$$

Conservation of angular momentum

$$
\begin{aligned}
& \mu b v_{0}=\mu r^{2} \varphi=\mu r^{2} \varphi \\
& U=\frac{c}{n} \quad c=\frac{q_{1} q_{2}}{41 b_{0}} \\
& \varphi^{\prime}=\frac{b v_{0}}{r^{2}} \quad \dot{r}= \pm v_{0} \int_{1-\frac{b^{2}}{r^{2}}-\frac{2 C}{\mu v_{0}^{2} n}}
\end{aligned}
$$

Then

$$
\frac{d \varphi}{d n}=\frac{b}{i} \geq \frac{b}{p^{2} \sqrt{1-\frac{b^{2}}{r^{2}}-\frac{2 c}{\mu r_{0}^{2} n}}}
$$

In the beginning r decreases $(-)$, then it grows (+)
b_{0} - Landau length $-b_{0}=\mathrm{C} /\left(\mu \mathrm{v}_{0}{ }^{2}\right)$
Substitution

$$
\begin{aligned}
& S=\frac{b}{r}+\frac{b_{0}}{b} \quad d s=-\frac{b d n}{r^{2}} \quad S_{0}^{2}=1+\frac{b_{0}^{2}}{b^{2}} \\
& \theta=\pi-2 \int_{b_{0} / b} \frac{d s}{\sqrt{s_{0}^{2}-s^{2}}}=\pi+2 \int_{b_{0} / 0}^{b_{0}} \\
& \theta=\pi-2 \arccos \frac{s}{s_{0}} \\
& \theta \frac{b_{0} / b}{\sqrt{1+b_{0}^{2} / b^{2}}}=2 \operatorname{arcly} \frac{b_{0}}{b}
\end{aligned}
$$

For $b=b_{0}$ angle $\theta=\pi / 2\left(90^{\circ}\right)$

Differential cross section

$\mathrm{d} \sigma$ - number of particles that scatter on 1 target particle to spherical angle $\mathrm{d} \Omega$ during time unit divided by flux density of incident particles

$\theta=f(b)$
$d \Omega=2 n \sin \theta d \theta$
$d b=2 n b d b$

$$
\left|\frac{d b}{d \Omega}\right|=\frac{b}{\sin \theta}\left|\frac{d b}{d \theta}\right|
$$

$$
b=b_{0} / \operatorname{tg} \frac{\theta}{2}
$$

$$
\left|\frac{d b}{d \Omega}\right|=\frac{b_{\theta}^{2}}{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2} \cdot \operatorname{tg} \frac{\theta}{2} \operatorname{tg}^{2} \frac{\theta}{2} 2 \cos ^{2} \frac{\theta}{2}}=\frac{b_{0}^{2}}{4 \sin ^{4} \frac{\theta}{2}}
$$

For collision $\mathrm{e}^{-} \mathrm{i}^{+}$

$$
\left|\frac{d B}{d \Omega}\right|=\left(\frac{2 e^{2}}{8 n \varepsilon_{0} \mu v_{0}^{2}}\right)^{2} \frac{1}{\sin ^{4} \frac{\theta}{2}} \cong\left(\frac{2 e^{2}}{8 n \varepsilon_{0} m_{e} v_{0}^{2}}\right)^{2} \frac{1}{\sin ^{4} \frac{\theta}{2}}
$$

Big for small θ, small for high velocity v_{0} Total cross section

$$
\begin{aligned}
& b=\int_{0}^{n}\left|\frac{d b^{\prime}}{d \Omega}\right| d \Omega=22 \int_{0}^{n}\left|\frac{d b}{d \Omega}\right| \operatorname{tin} \theta \theta \theta=\left(\theta=\text { latch }\left(\frac{b}{b}\right)\right. \\
& b=2 n \int_{0}^{\infty} b d b=R \lambda_{D}^{2}
\end{aligned}
$$

Total cross section diverges, but Coulomb potential not valid for $b>\lambda_{\text {De }}$, thus $\infty \rightarrow \lambda_{\text {De }}$

However, we need cross section for some physical quantity, most often momentum (σ_{H}) (or energy)

$$
b_{H e i}=\frac{2^{2} e^{4}}{4 a \varepsilon_{0}^{2} m_{e}^{2} \nu^{4}} \ln \Lambda
$$

In Λ - Coulomb logarithm
electron mean free path
collision frequency

$$
l_{v_{p}}^{a}=\left(o_{\text {ma }} v_{i}\right)^{-1} v_{1} r^{4}
$$

For calculation of cross section for energy exchange one needs to transform scattering results from center of mass coordinates to laboratory coordinates Quantum description more accurate

$$
\begin{aligned}
& b_{M}=A_{2} \int_{(1-\cos \theta) / \frac{d \theta}{d a} / \sin \theta d \theta=}(1 \theta \\
& =\frac{a b_{0}^{2}}{2} \int_{\theta_{\text {nim }}}^{\theta_{\text {in }}}(1-\cos \theta) \frac{\sin \theta d \theta}{\sin \frac{4 \theta}{2}}=\left\{\begin{array}{l}
\psi=1-\cos \theta \\
\sin \theta d \theta=d \psi \\
\psi=2 \sin \frac{2}{2}
\end{array}\right. \\
& =2 n b_{0}^{2} \int^{2} \frac{d \psi}{\psi}=d \pi b_{0}^{2} \ln \frac{2}{2 \operatorname{lic} \frac{\theta_{m i}}{2}}= \\
& =2 n b_{0}^{2} h_{c}\left(1+\frac{1}{2 \sin ^{2}} \frac{\theta_{m m_{2}}}{2}\right)=22 b_{0} h_{m}\left(1+\frac{10^{2}}{b_{0}^{2}}\right)= \\
& z \operatorname{lo}_{2} b_{0}^{2} \underbrace{\sqrt{1+\frac{\lambda_{0}^{2}}{b_{0}^{2}}}}_{1}
\end{aligned}
$$

