Thomas-Fermi model

Simple approximate mode for calculation of EoS and mean ion charge in strongly coupled plasma

 R_0 – radius of ion sphere (Wigner-Seitz radius)

Debye screening takes place inside ion sphere

Poisson equation for potential inside ion sphere + Fermi-Dirac distribution for electron density (Integral of electron charge over sphere = - charge of nucleus)

Boundary condition

1 - Ko

op =0 $4 \oint(n) = \frac{e n_e(n)}{\epsilon_0} - \frac{e Z_{mec} \delta(t)}{\epsilon_0}$ $h_e(n) = \frac{8n}{b^3} \int \frac{p_e^2 dp_e}{exp E(-\mu - e \phi(n) + \epsilon_0) / k_B T_e] + 1}{12}$ $\varepsilon_e = \frac{p_e^2}{2m_e}$ $X = \frac{\varepsilon_e}{k_B T_e}$ $\Rightarrow n_e(h) = \frac{4n(2m_ek_BT_e)^{3/2}}{b^3} \int \frac{1}{exp[x - (\mu \tau ep(h))]k_g t_e} \frac{1}{t_1}$ Znue = 42 Sne(n) rdr -> defines μ

Usually one sets $\Phi(R_0) = 0$ (the choice influences μ) Mean ion charge can be calculated $- n_e(R_0)$ contains only free electrons \Rightarrow

 $Z = \frac{4nR_0^3}{2} n_e(R_0)$

One can also calculate parameters of state

8 n (2me) 3/2 (4BE pe = pe Ro

Kinetic energy of electrons

Potential energy

e

Total energy per unit mass

For comparison with other approaches – energy of complete ionization of atom must be added

Conceptually simple approach, but it needs complicated numerical calculations

 \exists many various amendments of the method

TF is predecessor of modern "density functional" methods

Universal EoS

e.g. QEOS – approximate EOS that connects various limits (models), so that it can describe solid matter + strongly coupled plasmas + weakly coupled plasmas Table EoS – e.g. SESAME (developed and managed by Los Alamos) – data for low Z materials

are in principle accessible