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Monte Carlo Techniques

Monte Carlo refers to any procedure that 
makes use of random numbers.

Monte Carlo methods are used in:

Simulation of natural phenomena
Simulation of experimental appartus
Numerical analysis

Random Numbers

What is a random number?  Is 3?

No such thing as a single random number.

A sequence of random numbers is a set of 
numbers that have nothing to do with the other 
numbers in the sequence.
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In a uniform distribution of random numbers in 
the range [0,1] , every number has the same 
chance of turning up. 

Note that 0.00001 is just as likely 
as 0.50000

How to generate a sequence of random numbers.

Use some chaotic system. (like balls in a 
barrel - Lotto 6-49).

Use a process that is inherently random:
radioactive decay
thermal noise
cosmic ray arrival

Tables of a few million truely random 
numbers do exist, but this isn’t enough for 
most applications.

Hooking up a random machine to a 
computer is not a good idea. This would 
lead to irreproducable results, making 
debugging difficult.
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Random Number Generation

Pseudo-Random Numbers

These are sequences of numbers generated by 
computer algorithms, usally in a uniform 
distribution in the range [0,1].

To be precise, the alogrithms generate integers 
between 0 and M, and return a real value:

xn = In / M

An early example :

Middle Square (John Von Neumann, 1946)

To generate a sequence of 10 digit integers, 
start with one, and square it amd then take 
the middle 10 digits from the answer as the 
next number in the sequence.

eg. 57721566492=33317792380594909291

so the next number is given by 

The sequence is not random, since each 
number is completely determined from the 
previous. But it appears to be random.
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This algorothm has problems in that the 
sequence will have small numbers lumped 
together, 0 repeats itself, and it can get itself 
into short loops, for example:

61002=37210000
21002=  4410000
41002=16810000
81002=65610000

With more bits, long sequences are possible.
38 bits        750,000 numbers

A more complex algorithm does not 
necessarily lead to a better random sequence. 
It is better to use an algorithm that is well 
understood.
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Linear Conguential Method  (Lehmer, 1948)

In+1 = (a I n + c) mod m

Starting value (seed) = I0

a, c, and m are specially chosen

a, c ≥ 0     and     m > I0, a, c

A poor choice for the constants can lead to very 
poor sequences.

example: a=c=Io=7, m=10

results in the sequence:  
7, 6, 9, 0, 7, 6, 9, 0,...

The choice c=0 leads to a somewhat faster 
algorithm, and can also result in long 
sequences. The method with c=0 is called: 
Multiplicative congruential.
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m should be as large as possible since the period 
can never be longer than m.

One usually chooses m to be near the largest 
integer that can be represented. On a 32 bit 
machine, that is 231 ≈ 2×109.

Choice of modulus,  m

Choice of multiplier,  a

It was proven by M. Greenberger in 1961 
that the sequence will have period m, if and 
only if:

i) c is relatively prime to m;
ii) a-1 is a multiple of p, for every prime

p dividing m;
iii) a-1 is a multiple of 4, if m is a

multiple of 4
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With c=0, one cannot get the full period, but in 
order to get the maximum possible, the 
following should be satisfied:

i) I0 is relatively prime to m
ii) a is a primative element modulo m

It is possible to obtain a period of length m-1, 
but usually the period is around m/4.

RANDU generator

A popular random number generator was 
distributed by IBM in the 1960’s with the 
algorithm:

In+1 = (65539 × In) mod 231

This generator was later found to have a 
serious problem...
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Results from Randu� �D distribution

Random number
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Results from Randu� �D distribution
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Results from Randu� �D distribution
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Problem seen when observed at the right angle�
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The Marsaglia effect

In 1968, Marsaglia published the paper,

Random numbers fall mainly in the planes

(Proc. Acad. Sci. 61, 25) which showed that this 
behaviour is present for any multiplicative 
congruential generator.

For a 32 bit machine, the maximum number of 
hyperplanes in the space of d-dimensions is:

d=  3         2953
d=  4           566
d=  6           120
d=10             41

The RANDU generator had much less than the 
maximum.
The replacement of the multiplier from 65539 to 
69069 improves the performance signifigantly.
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Warning

The authors of Numerical Recipies have 
admitted that the random number 
generators, RAN1 and RAN2 given in the 
first edition, are “at best mediocre”.

In their second edition, these are replaced by 
ran0, ran1, and ran2, which have much 
better properties.

The new routines can also be found in the 
recent edition of Computers in Physics,
(Sept/Oct 1992 edition, page 522).
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One way to improve the behaviour of random 
number generators and to increase their period is 
to modify the algorithm:

In = (a×In-1 + b×In-2) mod m

Which in this case has two initial seeds and can 
have a period greater than m.

RANMAR generator

This generator (available in the CERN library, 
KERNLIB,  requires 103 initial seeds. These 
seeds can be set by a single integer from 1 to 
900,000,000.

Each choice will generate an independat series 
each of period,  ≈ 1043.

This seems to be the ultimate in random 
number generators!
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Warning on the use of Random 
Number generators.

In FORTRAN, random number generators
areusually used called as functions,

x=RAND(IDUM)

Where the arguement, IDUM, is not used. In 
fortran, a function is supposed to be a function 
of only the arguments, and so some compilers 
will try to optimise the code by removing 
multiple calls to random number generators.

For example

x=RAND(IDUM)+RAND(IDUM)

x=2.*RAND(IDUM)

may be changed to
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This can also be a problem when the 
random number generator is called 
inside DO loops.

Solution: 

Fool the optimiser by always changing 
the dummy argument:

But don’t try this if the random number 
generator uses the argument to save the 
seed for the next random number. 
(Numerical Recipies generators, for 
example)!

DO 1 I=1,100
IDUM=IDUM+1
x=RAND(IDUM)
...

1 CONTINUE

Dean Karlen�Carleton University Rev� ��� ���	���



Physics ������ Simulating Radioactive Decay ����

�

�

�

Simulating Radioactive Decay

This is a truly random process� The probability of decay is

constant 	independent of the age of the nuclei
�

The probability that a nucleus undergoes radioactive decay

in time !t is p�

p � �!t 	for �!t� �


Problem�

Consider a system initially having N� unstable nuclei� How

does the number of parent nuclei� N � change with time�

Algorithm�

LOOP from t�� to t� step !t

LOOP over each remaining parent nucleus

Decide if the nucleus decays�

IF�random � � �!t� then

reduce the number of parents by �

ENDIF

END LOOP over nuclei

PLOT or record N vs� t

END LOOP over time

END
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Exercise �

Write a program to implement the preceding algorithm�

Graph the number of remaining nuclei as a function of time

for the following cases�

N� � �� � � �� s��� !t � � s �

N� � �� � � �� s��� !t � � s �

Show the results on both linear and logarithmic scales for

times between  and � seconds� In addition� plot on the

same graphs the expected curve� given�

dN � �N �dt

ie� N � N� e
��t
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Solution to exercise �


The �experimental� results do not perfectly follow the

expected curve� there are statistical  uctuations�

N0=100, α=0.01

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300

N0=5000, α=0.03

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 100 200 300

N0=100, α=0.01

1

10

10 2

0 100 200 300

N0=5000, α=0.03

1

10

10 2

10 3

0 100 200 300

Dean Karlen�Carleton University Rev� ��� ���	���



Physics ������ Poisson Distribution ��	�

�

�

�

Poisson Distribution

The probability of observing a total of n decays in a time

interval T can be worked out as follows�

Assume the number of decays in time T is much less than

the number of parent nuclei� 	ie� assume constant

probability to observe a decay
�

Break up T into m shorter intervals� duration !t�

 t

T

The probability to observe � decay in time !t is�

p � �!t

where � � �N as !t must be small enough so that

�!t� �� The probability of observing n decays in time T

is therefore�

P � pn	�� p
m�n
�
m

n

�
�
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P � pn	�� p
m�n
m�

	m� n
�n�

�

�
�T

m

�n �
�� �T

m

�m�n
m�

	m� n
�n�

In the limit of !t�  	ie� m��
��
�� �T

m

�m
� e��T

�
�� �T

m

��n
� �

m�

	m� n
�
� mn

The result is�

P � �ne���n�

where � � �T � This is known as the Poisson distribution�
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Exercise �

Modify the program written for exercise � to simulate an

experiment that counts the number of decays observed in a

time interval� T �

Allow the experiment to be repeated and histogram the

distribution of the number of decays for the following two

cases�

N� � �� � � �� ��� s��� !t � � s� T � � s

N� � �� � � �� ��� s��� !t � � s� T � � s

In each case show the distribution using � experiments�

Also� overlay the expected Poisson distribution�

Question� Are there limits on the value of !t so that your

program will give reliable results� Explain�
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Solution to Exercise ��

N0=500, alpha=4e-5, T=100
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Properties of the Poisson distribution

Pn �
�n

n�
e�� 	� � �NT 


Mean value�

hni �
�X
n
�

�
n
�n

n�
e��

�

� � e��
�X
n
�

�n��

	n� �
�

� � e��
�X

m
�

�m

m�
� �

Variance�

�� �
�X
n
�

�
	n� �
�

�n

n�
e��

�

�
�X
n
�

�
	n� � �n�� ��


�n

n�
e��

�

Dean Karlen�Carleton University Rev� ��� ���	���



Physics ������ Properties of the Poisson distribution ���

�

�

�

Do each term individually�

�X
n
�

�
n�

�n

n�
e��

�
�

�X
n
�

�
n

�n��

	n� �
�
e��

�
�

�
�X
n
�

�
	n� �


�n

n�
e��

�
�

� 	�� �
�

�X
n
�

�
��n� �n

n�
e��

�
� ����

�X
n
�

�
��

�n

n�
e��

�
� ��

So� �� � �� � �� ��� � �� � � �

Hence if n decays are observed� the � standard deviation

uncertainty is
p
n� 	This is also true for any other variable

that follows the Poisson distribution�
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Many observables follow the Poisson distribution� Anything

whose probability of occurring is constant in time�

For example�

� number of observed events when e�ciency is constant

� number of entries in a histogram bin

Some measurements lead to non�Poisson distributions�

For example�

� number of radioactive decays observed in a �xed time

interval� when there is a signi�cant reduction of parent

nuclei

� number of radioactive decays observed in a �xed time

interval� when there is signi�cant deadtime� 	ie� the

detector is not active for some period after an event is

recorded
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Gaussian �or Normal� Distribution

This is the most important distribution in statistical

analysis�

G	xj�� �
 � �p
�	�

e�
�x����

���

The mean of the distribution is � and the variance is ���

For large �� the Poisson distribution approaches the

Gaussian distribution 	with �� � �
�

The Gaussian distribution is a reasonable approximation of

the Poisson distribution even for � as small as ��
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Comparison of Poisson and Gaussian distributions�
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Binomial Distribution

The binomial distribution describes the results of repeated

experiments which has only two possible outcomes�

Suppose a radioactive source is monitored for a time

interval T � There is a probability p that one or more

disintegrations would be detected in that time interval� If a

total of m intervals were recorded� the probability that n of

them had at least one decay is

P � pn	�� p
m�n
�
m

n

�
�

The mean of this distribution is� np

The variance of this distribution is� np	�� p
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Simulating General Distributions

The simple simulations considered so far� only required a

random number sequence that is uniformly distributed

between  and �� More complicated problems generally

require random numbers generated according to speci�c

distributions�

For example� the radioactive decay of a large number of

nuclei 	say ���
� each with a tiny decay probability� cannot

be simulated using the methods developed so far� It would

be far too ine�cient and require very high numerical

precision�

Instead� a random number generated according to a Poisson

distribution could be used to specify the number of nuclei

that disintigrate in some time T �

Random numbers following some special distributions� like

the Poisson distribution� can be generated using special

purpose algorithms� and e�cient routines can be found in

various numerical libraries�

If a special purpose generator routine is not available� then

use a general purpose method for generating random

numbers according to an arbitrary distribution�
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Rejection Technique

Problem� Generate a series of random numbers� xi� which

follow a distribution function f	x
�

In the rejection technique� a trial value� xtrial is chosen at

random� It is accepted with a probability proportional to

f	xtrial
�

Algorithm�

Choose trial x� given a uniform random number ���

xtrial � xmin � 	xmax � xmin
��

Decide whether to accept the trial value�

if f	xtrial
 � �� fbig then accept

where fbig � f	x
 for all x� xmin � x � xmax� Repeat the

algorithm until a trial value is accepted�
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This algorithm can be visualized as throwing darts�

x x

f

min max

big

f(x)

This procedure also gives an estimate of the integral of f	x
�

I �

Z xmax

xmin

f	x
 dx � naccept
ntrial

fbig	xmax � xmin
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The � standard deviation uncertainty can be derived using

the variance of the binomial distribution�

�Naccept �
p
p	�� p
Ntrial p �

Naccept

Ntrial

�
�I

I

��
�

�
�Naccept

Naccept

��

�
Naccept

Ntrial

�
�� Naccept

Ntrial

�
Ntrial

�

N�
accept

�
�

Naccept
� �

Ntrial

�
�

Ntrial

�
�� p

p

�

So the relative accuracy only improves with N
� �
�

trial
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The rejection algorithm is not e�cient if the distribution

has one or more large peaks 	or poles
�

In this case trial events are seldomly accepted�

x x

f

min max

big

f(x)

In extreme cases� where there is a pole� fbig cannot be

speci�ed� This algorithm doesn�t work when the range of x

is 	�����
� A better algorithm is needed���
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Inversion Technique

This method is only applicable for relatively simple

distribution functions�

� First normalize the distribution function� so that it

becomes a probability distribution function 	PDF
�

� Integrate the PDF analytically from the minimum x to

an aritrary x� This represents the probability of chosing

a value less than x�

� Equate this to a uniform random number� and solve for

x� The resulting x will be distributed according to the

PDF�

In other words� solve the following equation for x� given a

uniform random number� ��

Z x

xmin
f�x� dxZ xmax

xmin
f�x� dx

� �

This method is fully e�cient� since each random number �

gives an x value�
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Examples of the inversion technique

�
 generate x between  and � according to f	x
 � x�
�
� �R x

� x�
�
� dxR �

� x
� �

�

dx � �

�
�x

�
� � �

� generate x according to x � ���

�
 generate x between  and � according to f	x
 � e�x�R x
�
e�x dxR�

� e�x dx
� �

�� e�x � �

� generate x according to x � � ln	�� �


Note that the simple rejection technique would not work for

either of these examples�
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Exercise �

Write a program that generates the value � according to the

distribution function�

f	�
 � 	sin� � � a cos� �
��

in the range  � � � �	�

Compare the rejection technique and the inversion

technique�

� Generate � values for each method using a � ��

and also for a � ���

� Plot the results for each 	� plots
 and overlay the

distribution curve� f	�
� properly normalized�

� Compare the CPU time required for the � runs�
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Solution to Exercise ��
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What if the rejection technique is 
impractical and you can’t invert the 
integral of the distribution function?

Importance Sampling

Replace the distribution function, f(x), by an 
approximate form, f a(x), for which the inversion 
technique can be applied.

Generate trial values for x with the inversion 
technique according to f a(x), and accept the trial 
value with the probability proportional to the 
weight:

w = f(x) / f a(x)

f a(x)

The rejection technique is just the special case 
where f a(x) is chosen to be a constant.
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Example:

Generate x according to f(x) = (1+x)x-1/2

for the range 0 < x < 1.

There is clearly a problem at x near 0. 

f a(x) needs to be chosen so the weights for the 
trial values of x are well behaved,

w = f(x)/f a(x)

Try f a(x) = x -1/2,  then w=1+x

Procedure:

Generate trial x:          x = λ1

2

Decide to accept:        if  (1+x) > λ2 wmax accept

In this case, wmax=2, but in more complicated cases, 
you may need to run the program to find the 
maximum weight generared, and then pick a value a 
little larger, and rerun.
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Note� the integral can be evaluated as before

I �

Z xmax

xmin

f	x
 dx �
naccept
ntrial

wmax Ia

where Ia �
R xmax

xmin
fa	x
 dx�

But the integral can be found more e�ciently 	ie� more

accuratly for the same amount of CPU
� by using the

weights of all trial values�

I �

Z xmax

xmin

f	x
 dx �

Z xmax

xmin

f	x


fa	x

fa	x
 dx

�

Z xmax

xmin

w	x
fa	x
 dx

But�
R x
xmin

fa	x
 dx�Ia � �� so fa	x
dx � Ia d�

I �

Z �

�

w	�
Ia d� � Ia
�

ntrial

X
i

w � Iahwi

And the one standard deviation uncertainty is��
�I

I

��
�

�

ntrial

hw�i � hwi�
hwi�
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Generating random numbers according to the 
Gaussian distribution.

There are  2 ways to handle this special case.

1) Central limit theorem

“The sum of a large number of random numbers 
will approach a Gaussian distribution”

For a uniform istribution from 0 to 1,
the mean value is 1/2

and the variance is

σ2= ⌠
⌡ (x-1/2)2 dx = 1/12

So just add 12 random numbers and subtract 6. 
The mean will be 0 and the variance will be 1.

This algorithm is coded in RG32 in the 
CERN library.
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2) 2 D gaussian
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Multidimensional Simulation

Simulating a distribution in more than 1 
dimension:

If the distribution is separable, the variables are 
uncorrelated, and hence each can be generated 
as before:

For example,   if f(x,y) = g(x) h(y)

then generate x according to g(x) and y 
according to h(y).

Otherwise,  the distributions along each 
dimension needs to be calculated:

Dx(x) = ⌠
⌡ f(x,y) dy

Typically, you will need to choose an 
approximation of the distribution, f a(x,y) so the 
integrals, ⌠

⌡ f a(x,y)dx and ⌠
⌡ f a(x,y)dy are 

invertable. The weights for trial events are given 
by, w = f(x,y) / f a(x,y)  and the integral can be 
evaluated as before, using the weights of all trial 
events. (Event = x and y pair)
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Simulation of Compton Scattering

k

k’

-

θ

The energy of the �nal state photon is given by

k� �
k

� � 	k�m
	�� cos �


The di�erential cross section is�

d�

d�
�

��

�m�

�
k�

k

���
k�

k
�

k

k�
� sin� �

�

O� Klein� Y� Nishina� Z� Physik� ��� ��� 	����


The angular distribution of the photon is�

�	�� �
 d� d� �
��

�m�
���

k�

k

��
�

�
k�

k

�
�
�
k�

k

��
sin� �

�
sin � d� d�

The azimuthal angle� �� can be generated independantly

from �� by simply� � � �	���
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To generate the polar angle� �� an approximation is needed�

Note that for k � m� the cross section is sharply peaked at

small angles� Also� note that k� � k� so the second term is

the dominant term in the cross section formula�

A good approximation to the cross section is�

�a	�� �
 d� d� �
��

�m�

�
k�

k

�
sin � d� d�

�
��

�m�

�
� �

k

m
u

���
du d�

where u � 	�� cos �
�

u is generated according to�

u �
m

k

��
� � �

k

m

���
� �

�

Be careful when k � m� this procedure would not generate

u properly� due to roundo� errors� Similarly� it is much

better to generate u � 	�� cos �
 than cos �� when there is a

pole at � � �
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Exercise 9

Write a Monte Carlo program that generates 
Compton scattering events.
The program should ask for the number of events 
to generate and the photon energy. Show the 
distribution of the scattering angle of the photon 
(compared to the Klein Nishina formula) and give 
the total cross section (ie. use the same program to 
evaluate the integral and its uncertainty) for the 
following four cases:

k=5 keV, k=2 MeV, k=1 GeV, k=1 TeV

in each case generate 10000 events.
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Solution to Exercise ��

angular dist 5 KeV

xsec=6.525+/-0.012 x 10-25 cm**2
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Photon transport in matter

With this program, and others that simulate the 
photoelectric effect, pair production, etc., you 
could produce a program that simulates the 
interaction of photons with matter:

Algorithm:

Break path into small steps:

For each step decide if an interaction takes place 
(given the total cross section for each possible 
interaction).

Simulate the interaction, ie. give photon new 
momentum vector or possibly produce an e+e-

pair, which then would be followed, etc.
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Such programs already exist. For example:

EGS  (SLAC)
GEANT (CERN)

You may use these to simulate photon transport 
in a particular sample you are testing or to 
simulate the response of your detector.

Detector response

It is often sufficient to simulate the general 
properties of your detector: efficiency, resolution, 
bias, offset.

Efficiency

From measurements from well understood 
sources, the effiency  as a function of  energy 
(and maybe position) can be found.
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For example:

E

ε
Once ε is known, 
select events that are 
missed with a 
probabilty of ε:

If  λ>ε then event is 
not observed.

Resolution, offset

Again, these can be 
measured using well 
understood sources:

Eres

Eoffset Emeas - Etrue

Emeas = Etrue + Eres Gλ + Eoffset

Background, noise

Simulate the observed energy distribution 
when no source is present.

Gaussian random number
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