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Part II: Numerical Methods

Topics:
e Linear Algebra
e Interpolation and Extrapolation
e Integration
e Root Finding
e Minimization or Maximization
e Differential Equations
References:

e Numerical Recipes (in Fortran or C) The Art of
Scientific Computing, Second Edition W.H. Press, S.A.
Teukolsky, W.T. Vetterling, B.P. Flannery, Cambridge
University Press, 1992.

e Numerical Methods for Physics, A.L. Garcia, Prentice
Hall, 1994.
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Solving Linear Algebraic Equations'

General Problem

There are N unknowns, z; and M equations,

N
Zaija:j = bz 1= 1, ,M .

=1

If N = M there can be a solution, unless there is row or

column degeneracy (ie. singular).

Numerical solutions to this problem can have additional

problems:

e equations are so close to being singular, that round off

error renders them so and hence the algorithm fails

e equations are close to being singular and N is large that

roundoff errors accumulate and swamp the result
Limits on NNV, if not close to singular:
e 32 bit — N up to around 50

e 64 bit — N up to few hundred (CPU limited)

If coefficients are sparse, the N > 1000 or more can be

handled by special methods.

o /
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/ Common Mistake I \

A common mistake when manipulating matrices, is that

incorrect logical and physical dimensions are passed to a

function:

In Fortran for example, one might set up a general purpose

matrix as follows:

PARAMETER (NP=4,MP=6)
REAL A(NP,MP)

If a particular problem deals with 3 equations with 4
unknowns, the logical size of the matrix is (3,4) whereas the
physical size is (NP, MP). In order for a function to interpret
the matrix properly, it needs to know both the logical and
physical dimensions. Fortran stores the elements of the

matrix as follows:

Physical Memory Logical Array
L |59 (131721 a1 (@12 (a3 |aia| — | —
26 [10]14]18 |22 a1 |G22 |A23|G24 | — [ —
3| 7 11115119 23 a3y a3z (asz|ass| — | —
4 1 8 |12[16]20 |24 N
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Typical Linear Algebra Problems'

e Ax = b where A is a known N x N matrix, and b is a
known vector. The problem is to find the solution

vector, X.
e Given A, find A~! or find det(A).

o If A isan N x M matrix with M < N, find the solution

space.
o If M > N find the “best” result (least squares).
Basic Methods
1. Gauss-Jordan elimination
2. Gaussian elimination with backsubstitution

3. LU decomposition

o /
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Gauss-Jordan Elimination
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Gauss-Jordan Elimination I
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+ an efficient method for inverting A

Method without pivoting
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— 3 times slower than other methods not producing A1

— not recommended as a general purpose method

Perform operations that transform A into the identity
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b/

by

(100 0) [z )
01 0 0 75
00 1 0 75
\0 00 1)\ )

And hence the solutions are, z; = b;.

AY =1

transforms A ~'into the identity,

o

\ b

IY =T =A""1

After continuing this process, one gets the following:

)

Note that the same method could have produced A~*.
That is, replace x by Y and b by the identity matrix:

Then after performing the same operations as above that

/
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What if diagonal element is zero?

If a;; = 0 or another derived diagonal element (such as
as9 — algg% in the example above) is zero, then algorithm
fails.

If instead of being exactly 0, one of these terms is very
small, then the remaining equations can become identical,

in the presence of round off error.
Solution: Pivoting

By interchanging rows (partial pivoting) or both rows and
columns (full pivoting), this problem can be avoided.
To maintain the identity matrix being formed, interchange

rows below and columns to the right.

If rows are interchanged — one must also interchange
corresponding rows in b.

If columns are interchanged — one must also interchange
corresponding rows in x. These rows will have to be

restored to the original order at the end.

How to decide which rows (or columns) to substitute?

Choosing the row with the largest value works quite well.

o
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Implementation

To minimize storage requirements:

e Use b to built up solution. There is no need to have a

separate array.

e Similarly the inverse can be built up in the input

matrix.

The disadvantage with this is that the input matrix and
RHS vector are destroyed by the operation.

Numerical Recipes:
SUBROUTINE gaussj(a,n,np,b,m,mp)

where
a isann X nmatrix in array of physical dimension
np X np
b is an n X mmatrix in array of physical dimension
np X mp
Note that a is replaced by its inverse, and b by its solutions.

o /
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Gaussian Elimination with Backsubstitution
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asy

o

triangular matrix:

a9
aso
aso

)

a9
Q99
Q39

Qyo
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ass

ayq3

ais
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Q33
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Method without pivoting

aiq
as4
as4

agq4

aiq
Aoy
Q34

Ayy

(Gaussian Elimination with Backsubstitution'

This method reduces the number of operations compared
with Gauss-Jordan method (including inverse calculation)

by about 3 (if inverse is not required).

Perform operations that transform A into an upper

CRNN R

X2 b2

T3 bs

v )\ b
CRNN R

v )\t )
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(all ai2 Aas a14\ (5131\ (51\

/ /
0 Q9o Qg3 Uoy L2 2

0 0 azz asy L3 3
\ 0 0 0 dy ) \a ) \ b )

Pivoting is important for this method also.

To solve for x;, backsubstitute:

b,
Iy pr— —
Qyq
1

o / /

r3 = [b3—:1:4a34]
Qg3

Note that both this method and Gauss-Jordan method

require all RHS to be known in advance.

o /
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LU decomposition I

Any matrix A can be decomposed into into the product of a

lower triangular matrix (L) and an upper triangular matrix

(U).
Ax = b
(LUx = b
L(Ux) = b

So solve, Ly = b for y and then solve, Ux =y for x.
These are easily solved for. Once the LU decomposition is

found, one can solve for as many RHS vectors as needed.
How to find L and U?

Crout’s algorithm:
Note that

N
E likurj = aij
k=1

represents N2 equations where there are N? + N unknowns.
Arbitrarily set the terms, ¢;; = 1, to define a unique

solution.

o /
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/

The terms in . and U can be determined as follows:

/

uip = ai
U2 = 0a12
asy asi aq1
621 — 9 631 — 9 641 —
Uil Uil Uil
Ugo = A29 — 521’&12
1 1
U3 = —(ags — la1u12), Ll4o = —(aga — ly1u1o)
U929 U929
U1z = a3
U23 = Q23 — 521’&13
Uzz = Qg3 — 531’11»13 — 532’11»23
th.
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LU decomposition
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of rows 1s eflicient.

Numerical Recipes:

where
np X np

Note that a is replaced by

( Ui U2

621 Uo2
la1 U39
\ li la

o

u;; are available when necessary.

corresponding a;; locations.

U3
U23

Uu33

U4
U24
Usz4

Ug4

e The order above must be followed so the terms ¢;; and

e Fach a;; appears once and only once, when the
corresponding £;; or u;; terms are calculated. In order

to save memory, these terms can be stored in the

e Pivoting is essential here too, but only the interchange

SUBROUTINE ludcmp(a,n,np,indx,d)

a is an n X n matrix in array of physical dimension

indx,d  keep track of rows permuted by pivoting

~
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Once the LU decomposition is found, find solutions using

backsubstitution:
SUBROUTINE lubksb(a,n,np,indx,b)

where

a, indx are the results from the call to ludcmp

b is RHS on input, is solution on output
Note that a and indx are not modified by this routine so

lubksb can be called repeatedly.

To find inverse, solve

(1) (o) (o) (0)

\o/ o) \o) \1)

to find the columns of A~1.

The determinant is easily found,

N
det(A) = H u;;

i=1

o

~
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Iterative Improvement of a Solution'

The algorithms presented above sometimes yield solutions

with precision less than the machine limit (depending on
how close equations are to being singular). Improved

precision can be made by an iterative approach.

Suppose x is the exact solution to
Ax=Db

and the resulting numerical solution is instead x 4+ dx.

Then,
A(x+0x)=b+db

SO,

A(dx) =A(x+x)—Db

and so solve for dx, subtract it from the previous solution to

get an improved solution.

Numerical Recipes:
SUBROUTINE mprove

can be called repeatedly to improve solution (although once

is usually enough)

o /
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/ Singular Value Decomposition' \

If A is an N x N matrix, it can be decomposed

A=UwWV'
where U and V are orthogonal (U™! = UT), and W is

diagonal.

The inverse of A is easily found to be

1
A~ = Vdiag(—)U"
Wj
e If one or more w; is zero, then A is singular.
e If the ratio min(w;)/max(w;j) is less than the machine
precision then the matrix is ill conditioned. In this case

it 1s often better to set such small w; to 0.

Note that if A is singular:

Ax =0 for some subspace of x. The space is called the

nullspace its dimension is called the nullity.

Ax =Db the space of all possible b is called the range and

its dimension is called the rank.
e nullity + rank = N
e nullity = number of zero w;’s

e The columns of U with non-zero w;’s span the range.

\ e The columns of V with zero w;’s span the nullspace. /
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If A is singular or ill-conditioned, a space of vectors may
satisfy Ax = b. If the solution with the smallest |x| is

desired, this can be found by replacing wi by zero for all

w; = 0!
Numerical Recipes:

SUBROUTINE svdcmp(a,m,n,mp,np,w,Vv)
Sparse Linear Systems

Systems with many zero matrix elements can be solved with
special algorithms that save time and/or space (by not

using memory to hold all those zeros).

Tridiagonal systems, for example

(a1 ax 0 0 0 \[a )\ [ b )

as1 aoz asz 0 0 To 2
0 a3z2 aszzs aszs O T3 = | b3

0 0 a43 a4 ags T4

\ 0 0 0 ass ass ) \ a5 ) \bi)

can be LU decomposed much quicker than Crout’s method.
See SUBROUTINE tridiag.

Other forms of sparse matrices have special methods. See

Numerical Recipes for details.

o /
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Exercise 1 I

\Y,

;
\
R, Re

Any resistor divider network can be put in the form:

R

R <

Rs

where

o

1
R;;

=0.

current, apply Kirchoff laws:

5

This network has 5 voltage points, V;. To calculate the total

(1)

/
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Solution:

175 —

15 —

125 —

0 10 20 30 40 50
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Interpolation and Extrapolationl

General Problem

Given a table of values, y(z;), i =1, ..., N, estimate y(z) for

arbitrary .
e graphically: drawing a smooth curve through the points

e different from fitting: tabulated values have no errors.

The curve should go through all points.

e most commonly used curves are polynomials

Methods

1) Determine interpolating function using a set of points
z;,y(x;), then evaluate the function at the point z.

— not recommended...
e inefficient
e roundoff error
e no error estimate

2) Start from y(z;) for z; close to z, and add corrections
from z; further away. Successive corrections should

decrease and the size of the last correction can be used as

an estimate of the error.

Dean Karlen/Carleton University Rev. 1.3 1998/99
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e If interpolation method only uses a set of points x; near
x, the coefficients of the interpolating function change
from one range to another. As a result the interpolating
function can be continuous but will not have continuous

first derivatives.

e If continuous derivatives are important, spline functions
(such as the cubic spline) can be used. These tend to be
more stable than polynomial functions (less prone to

wild oscillations).

e The number of tabulated points used (minus one) is the
order of the interpolation. Increasing the order does
not lead to increased precision. Recommended to not

use order > 5.

e Eixtrapolation is prone to error. Definitely not to be

trusted beyond typical spacing of x; from the last x;.

o /
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Polynomial Interpolation I

Through any set of N points there is a unique polynomial
of order NV — 1 through those points. It is defined by the

Lagrange formula:

N N

Pvoa(z)=> | I ;_—2 Yi

i=1 \j=lj#i

A better method to specify the polynomial is to start with
the order 0 polynomial P; = y(x;). Add corrections from
additional points x; one at a time, each time increasing the
order of the polynomial. Each term can be determined by a

recurrence relation (Neville’s algorithm: see text).

Numerical Recipes:
SUBROUTINE polint(xa,ya,n,x,y,dy)

returns:
y  is the estimate of y(x) given n tabulated entries

in the arrays xa(n), ya(n)

dy is the last correction applied, and can be used as

an error estimate

o /
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Rational Function Interpolation'

Rla) = Ful®) _potpiz .. +pa

Q. (z) g +qix + ... + gV

Numerical Recipes:

SUBROUTINE ratint(xa,ya,n,x,y,dy)

o

/
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Example of Polynomial Interpolation'

Thick blue line is given by

y(z) = erfe(cos(m + log(x 4 4))) 4+ \/erfe(cos )

Solid red points are tabulated values

Black circles and errors show the interpolation:

order=1

24 —

06 —

o /
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Second order improves approximation:

order=2

24

2.2

N

T4

18

16

14

12

0.8

0.6

o /
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24

2.2

18

16

14

12

0.8

0.6

order=5

Fifth order gives bad extrapolations:
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Ninth order has still worse accuracy

order=9

24

2.2

18

16

14

12

0.8

0.6

o /
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Example of Rational Interpolation
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Example of Rational Interpolation'

24

22

18

16

14

12

0.8

0.6

order=2

not well described by rational functions.

Note unusual functional behaviour. The parent function is

ratint

~
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Central values of approximation are better at fourth order.

Large error estimates indicate that last correction was large.

order=4

24

2.2

18

16

14

12

0.8

[y
T ‘ T T ‘ T T ‘ L ‘ L ‘ T

0.6

ratint
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24

2.2

18

16

14

12

0.8

0.6

order=9

Still a poor approximation in some

regions for ninth order:

\‘\\\‘\\\‘\\\‘\\\‘\0\‘\\\‘\\\‘\\\‘\\\‘\

ratint

~
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Cubic Spline Interpolation'

Designed so that the 1%* and 2% order derivatives are

continuous.

Method does not give an error estimate, and cannot be used

for extrapolation.

Algorithm: Begin with a linear interpolation:

j*1

x=fx + (1-f)x
j+1 i

y=fy +(@Qfy
i+1 j

This linear interpolation function has y”” = 0 in the interval

and typically undefined 3"’ at the end points.

o /
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If y!" were known at each of the tabulated points, then a

cubic polynomial could be added that allows the
interpolating function to have y"’ vary linearly from one
tabulated point to the next. This cubic function would have
to be zero at the tabulated points. There is a unique

solution:
y(@) = fyjo1 + (L= fy; + 9y, + hyj

where,

g = SF D+ D g o)
h = %f(f—l)(f—2)(f'3j+1—f’fj)2

The additional terms are clearly zero at the endpoints (f=0,

f=1), and it is easily shown that:

y' = fyi + (1= yj .

One problem: y! are typically not known...

o /
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By requiring the first derivatives be continuous across each
tabulated point z;, j = 2...N — 1, the following relations are

found:

Tj—Tj—1 py Tj+1 — Tj—1 | Tj+1 — Tj
———y,j—1 + Pt Y41

Yitl — Y  Yj — Yj-1
Tjt1 —Tj  Tj— Tj-1

e This gives N — 2 linear equations for N unknowns

— 2 undetermined parameters

e Two ways to specify a unique solution:
1) set vy’ = y%; = 0 (natural spline)

2) specify y] and yy

o /
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Numerical Recipes:

Call the following routine once in order to calculate the

second derivatives at the tabulated points:
SUBROUTINE spline(xa,ya,n,ypl,ypn,y2a)

where
ypl and ypn are to contain the first derivatives at
the endpoints. If they are larger than 10°Y, zero
second derivatives on the boundary are assumed

instead.
y2a is the (returned) array of second derivatives
The following routine may then be called as many times as

desired to calculate the interpolated function for any value

of x.

SUBROUTINE splint(xa,ya,y2a,n,x,y)

Exercise 2:

Use a natural cubic spline to interpolate between tabulated
points for x = 0,1, ...,10 from the function shown on

page 26. Show the results in a table, plot the interpolation

function and compare to the original function.

o /
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Interpolation in 2 or more dimensions'

in a similar fashion:

Bilinear interpolation:

=
+
)
1 _ S 4
o] v4 y3
u T ST +
= vl v2
0o — S T
X
f f f
xla(j) x1 xla(j+1)

y(r1,z2) = (1 —t)(1 —w)yr + (1 — w)y2 + tuys + (1 — t)uyas

This results in a continuous interpolation function but the

gradient is discontinuous at boundaries of each square.

o

To be specific, consider 2D. Higher dimensions are treated

~

/
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Two possible methods to improve on the Bilinear

interpolation:

1) Go to higher order, to improve the accuracy, without
fixing the gradient problem. For example, to include m
points along the x; direction and n points along the x4
direction, perform m 1D interpolations of order n — 1. Then
use the values of these interpolations at zo to do a 1D

interpolation of order m — 1.
Numerical Recipes:
SUBROUTINE polin2(xla,x2a,ya,m,n,x1,x2,y,dy)

2) Go to higher order to impose continuity of the gradient

or higher derivatives...

o /
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o

Bicubic Interpolation

This method requires additional information for all the

tabulated points:

Numerical Recipes:

Bicubic Spline

Use the 1D natural cubic spline interpolation function to

determine the derivatives needed for bicubic interpolation.

Numerical Recipes:

SUBROUTINE splin2(xla,x2a,ya,y2a,m,n,x1,x2,y)

~

dy  dy D%y
851317 851327 85131851327

SUBROUTINE bcucof(y,yl,y2,y12,d1,d2,c)

SUBROUTINE splie2(xla,x2a,ya,m,n,y2a)

/
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Integration of Functions'

Concentrate on 1D integrals: [ = fab f(x)dz

Classical methods
Not recommended, but have been around a long time.

Divide x into equal intervals:
xi=x90+th 1=0,1,....N+1 fi = f(x;)
To evaluate I = f;ONJ’l f(x)dz, can use
e closed formula: I = F(fo, f1,..; fn+1)

e open formula: I = F(fy, fo, ..., fn)

Open formulas are especially useful if the function is poorly

behaved at one or both endpoints of the integral.

Closed Formulas

Trapezoidal rule:

| fayde = b3+ 5]+ O(R £

\is exact for linear functions. /

Dean Karlen/Carleton University Rev. 1.3 1998/99




Physics 75.502 Integration of Functions 41

~

Next higher order formula: Simpson’s Rule

1

e 4 1
[ s e = hG o e Sl 00 1)

is exact for polynomials up to third order.

Extended Closed Formulas
Extended Trapezoidal rule:

/:Sf(:c)d:c _ :Zf(a:)da:—l—/:sf(:c)d:c

= h[%fl + %fz] + h[%fz + %fs] +20(n° f")
[ f@)de = WA R St S+ 5 f
1
+O( )

Note: NO(h*f") = NO((bJ_V—Z)Sf”) = O(%)

Extended Simpson rule:

/waww:=h%h+§b+§k+%hm+§m4

4 1 1
‘|‘§fN—1 + ng] + O(m)

o /
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(k&

xtrapolation Formulas

L1

flz)de = hfi+OMRf)

fe)de = BSf— 5l + O ")

f(z)dz = h[%fl - %fz + %fg] + O(R* ")

Lo

Extended Open Formulas
semi-open:

[ @) de = M3+ fa+ et s+ 06+ Ol5)

open:

1

[ s de =BG otk S+ 5 )+ Ol

Higher order formulas exist which converge as (7 ), (777 )-

See text.

Extended midpoint rule:

N2)

/ 1 f(z)dx = h[f% —I—f% + ...—|—fN+%] —I—O(L

o

Just add the extrapolation formulas to the closed formulas:

)

/
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~

Dean Karlen/Carleton University

/ Elementary Algorithms I

One approach to use is to start with a small value of N and
re-evaluate integral for increasing N. The extended
trapezoidal rule is the easiest to use for this. It is not the
fastest to converge (in terms of N), but has the advantage
that as N is increased, previous results can be used directly

(thus reducing the number of calls to determine f(z)).

L= (- alft 5 hl
~ (b—a)1 Ty + Tp 1
L = ~———=Gl+ /(=) +3h]
~ (b—a)1 3z, + Ty Ty + T
Is = 3 [ifa—'_f(T)—l_f( 5 )
+f(%3xb)+%fb]

The method is then to evaluate I, I, Is, ...
|(Ij+1 — I;)/1| < tolerance.

and stop when

Numerical Recipes:
SUBROUTINE qtrap(func,a,b,s)

where s is the result. The tolerance is set to be 10~% but

should be careful that machine precision doesn’t prevent the

\result from converging.

Rev. 1.3

/
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KI‘o be even more efficient, use the fact that the error in the\

trapezoidal method is even in 1/N:

b
a p
I = /f(a:)d:c:SN+N2+N4+...
a g
I = S
2N‘|‘4N2 + 6N +
You can cancel out the 1/N? error:
1 1 B
I'=-SNy—=5v———+ ...
302N T 3PN 4N4+

and so this formula is accurate to order 1/N*. In fact this is

just the Simpson rule!
Numerical Recipes:
SUBROUTINE gsimp(func,a,b,s)
where s is the result.
Romberg Integration

This is just the extension of the technique of cancelling
successive terms of the error. It is equivalent to an

extrapolation of Sy as h — 0.

Numerical Recipes:
SUBROUTINE qromb(func,a,b,s)

The subroutine uses the trapezoidal rule for N =1,2,4,8, ...

and uses polint to extrapolate to A — 0. This subroutine

\has much faster convergence than qtrap or gqsimp. /
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4 N
Improper Integrals I

If the integrand is poorly behaved at the endpoints, the

extended midpoint rule can be used instead of the
trapezoidal rule, and Romberg integration can again be

performed:

Numerical Recipes:
SUBROUTINE qromo (func,a,b,s,choose)

where choose is a NR subroutine name. midpnt would be

used for an integral poorly behaved at the endpoints.

If the integral has limits a = —o0 or b = oo, make a change

[ ) - / SI(5)d

This is only valid if the range of the integral does not

of variables.

contain z = 0. Otherwise it is necessary to break the
integral into two. The change of variables can be done

analytically, or it could be handled automatically:

call gromo(func,a,b,s,midinf)

o /
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Special cases

Integrands with power law singularities at upper or lower
limits:

fla)~(@—a) 0<y<l
then let ¢ = (z — a)!~7. For v = 1, then

b Vb—a
/f(a:)da::/ o fa+ 12) dt
a 0

Numerical Recipes:
call gromo(func,a,b,s,midsql)

to deal with lower limit inverse square root divergences.
Use gqromo (func,a,b,s,midsqu) to deal with upper limit

inverse square root divergences.

For a integrand that falls off exponentially, the change of
variables: ¢ = —logt gives,

[ rerae= [ pcopn g

call gromo(func,a,b,s,midexp)

o

/
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Gaussian Quadrature I

Methods presented so far involve breaking the range into N

equal intervals, evaluating the integrand at the interval

boundaries, and forming the sum,

N
=) af;
=1

where the weights a; depend on the order of the
calculation. Polynomials of that order or less are handled

exactly by these methods.

Gaussian Quadrature estimates an integral using unequal
intervals. This allows an extended class of integrands to be
treated exactly. For example, a known function W (z) times

a polynomial f(z) is integrated using,

/ W(z) f(z) de = Zw flzi)

which will be exact for a polynomial with order < 2.

o /
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4 N

How are w; and z; determined? Not easy to do.
e look up in tables

e use specific routines

General Idea:

Consider the set of orthogonal polynomials over a function

W(x):

b
(pilps) = [ W(@)pia)py(e) do = audy
For an N-point Gaussian quadrature,

e x,; are the roots of py(z) (all between a and b)

o (Pn—1|pN-1)
T pv—a ()P ()

Recurrance relations can be used to form the orthogonal

polynomials and their roots can be found numerically.

o /
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Gaussian Quadrature
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Multidimensional Integrals I

Difficult for two reasons:

e number of function evaluations for an integral in N

dimensions scales as oY

e the boundary, (an N — 1 dimensional surface) may be

complicated.

As long as high precision is not required, Monte Carlo
integration is usually the easiest to impliment, especially if

the boundary is complicated.

For smooth functions to be integrated over a region with a
simple boundary, repeated one dimensional integration can

be performed:

I = ///f(a:,y,z)d:cdydz
T2 yz(x) ZZ(xvy)
= / daz/ dy/ dz f(z,y, 2)
Ty yl(x) Zl(mvy)
= / H(z)dx

o /
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4 N

H(z) is given by

H(z) = / dy / " e )

(z,y)

Y2
=/ G(z,y) dy
yl

ZZ(xvy)
Glay) = [ Sy ds

1 xay)

where,

The implementation depends on whether the system allows
recursion (subroutine calling itself). The evaluation of I
involves calling a integration routine, say qgaus with H as
the integrand. The evaluation of H and G also involves
calling qgaus. So qgaus calls H which calls gaus which
calls G which calls qgaus.

If recursion is not allowed, then three copies of the qgaus
routine need to be created, each with a unique name so that

each subprogram calls a different version.

o /
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o

/If recursion 1s allowed:

call qgaus(H,x1,x2,s)

SUBROUTINE H(xx)

COMMON /xyz/x,y,z

X=XX

call qgaus(G,yl1(x),y2(x),s)
H=s

return

end

SUBROUTINE G(yy)

COMMON /xyz/x,y,z

Y=Yy

call qgaus(F,z1(x,y),z2(x,y),s)
G=s

return

end

SUBROUTINE F(zz)
COMMON /xyz/x,y,z
Z=ZZ
F=func(x,y,z)
return

end

/
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4 N

Exercise #3

The convolution of an exponential decay and a Gaussian

resolution function is given by:

<t t>2

-t
/ T dt/
2oy T

Evalulate this integral using the Gauss-Laguerre

quadrature, with o = 0, for 7 = 1, o, = 0.5, and
t=-2,—-1.5,...,5.5,6. Use N =5,10,15,20 and compare to

the analytic solution:
1 o2 t) ( t )
t) = —exp| — — — | erfc
ft) = grexp (272 V2 Vo,

Also evalute the double integral,

10

I=[ f(t)dt

for the same choices for N. For this exercise, do not
substitute the analytical solution for f(t), but instead

perform the double integral using qromb and gaulag.

o /
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4 N

Solution

0.5

0.45

04

0.35

0.3

0.25

0.2

0.15

0.1

0.05

O [ ‘ I I | ‘ I I | ‘ I I | ‘ I I | ‘ I ‘ 1 \\ih‘vf ’

-2 -1 0 1 2 3 4 5 6
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-~

or in N dimensions,
f(x)=0

or in other words, N simultaneous

v '\’\. /

Root Finding I

General problem of solving a nonlinear equation:

equations.

The problem is much simpler in 1 dimension, because it is

possible to define a range where a root must exist:

root is present in
thisrange

near each other.

o

X

e, s

It can be difficult to find a bracketed region if two roots are

/
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4 N

In two dimensions root bracketing is not possible. Consider

the system, y(x) = 0, and z(z) = 0. This defines a curve, as
shown below. It is not possible to bracket a region [z, 2]

in which it is known that a root exists.

SNAAWA NS
(T
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/ Bracketing I

A root is bracketed in (a,b) if f(a) and f(b) have opposite

is present:

Numerical Recipes provide two simple bracketing utilities:
SUBROUTINE zbrac(func,x1,x2,succes)

This routine begins with the range (z1,z2) and expands it

until the range brackets a root. If successful, it sets

SUBROUTINE zbrak(func,x1,x2,n,xbl,xb2,nb)

This routine breaks the range (z1,z5) into n intervals and

returns the number nb and the ranges

\On input nb specifies the maximum number sought.

signs. It must contain at least one root, unless a singularity

success=true, and the new range is returned in x1 and x2.

xb1(1:nb),xb2(1:nb) of those intervals that bracket roots.

~

/
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/ Bisection I

Starting from a bracketed range, evaluate the function at

the midpoint of the range. Thus a new bracketed range,
half the size is found. The size of the interval after n 4 1

iterations is |

€En+1 — §€n

and the iterations stop when €, < €, the desired tolerance.

Care must be taken when defining e:

e = 107% not possible for z,,ot = 10%°, and

€/Troot = 107% not good for ;40 near 0.
Properties of bisection method:
e not the most efficient
e guaranteed to work
e does not distinguish singularities from roots
e will find only one root

This method is said to converge linearly, since €,,11 = a¢,,
other methods converge superlinearly:

€nt1 = ale,)™, m > 1.
Numerical Recipes:

FUNCTION rtbis(func,x1,x2,xacc)

returns the root as rtbis once it has been determined to be

Qvithin an interval of +xacc. /
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4 N

False Position and Secant methods

Instead of choosing the middle of the interval, these
methods assume the function is linear in the region of

interest, to decide next point to evaluate.

False position: maintain the bracket

Secant method: use the two most recent points

Numerical Recipes:

FUNCTION rtflsp(func,xl,x2,xacc)
FUNCTION rtsec(func,x1,x2,xacc)

f(x) 2 f(x)

False position method Secant Method

Neither are usually the best choice. Use Ridders’ or Brent’s

/
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4 | 2
Ridders Method I

y
YaT /‘
X1 X3 X2 X
Y3 T
Y1
0 f 1

A linear interpolation of the function in the bracketed range

is given by:

Ir— T

y=1—=flyr+ fuy f=

L2 — I1

Instead, Ridders method uses an exponential interpolation:

y=1-NnQ ' +fyp'~ Q>0

In order to determine (), use the midpoint, f = %:

Jo-Bt signfyz] (v3 — y192)?
Y2

o /
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4 N

The next point x4 is selected to be the root of the

exponential interpolation:

sign [yl - yz]ys

VY3 — Y12

Since the bracket is maintained, it is a robust method, and

Ty = x3+ (T3 — 1)

the convergence is superlinear, m = /2.

Brent Method I

Rather than using a linear interpolation, as in the secant
method, a quadratic interpolation is made. Checks are
made to ensure the method is converging rapidly, and if not,

a bisection step is made. It is thus both robust and fast.

The following four figures compare the convergence of
various one dimensional root finding algorithms. For these
examples, it is seen that the false position method can
sometimes be slow to converge, and the secant method

sometimes fails.

o /
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/

er f((x-4)*5)+x/100+0.9
2 - 2 -
175 —false position method 175 —secant method
15 15
1.25 — 1.25 —
1 .
0.75 — 0.75 —
05 | 05 -
025 - 025 —
0o - 0 - e :
g ; P | S I e I
, 2 3 4 5., 4 2 3 4 5
175~ Ridders method 175 —Brent method
1.25 — 1.25 —
1 1
0.75 — 0.75 —
05 - 05
025 025
0 - 0
S I I B S S T T B
1 2 3 4 5 1 2 3 4 5
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-

~

o

er f((x-4)*5)-x/100+0.9
175 —false position method 175 -secant method
15 [ 15
125 | 125 |
L Lk
0.75 — 0.75 —
0.25 — 0.25 —
0 o
TSRS |, , | N e
1 4 5 1 2 3 4 5
175~ Ridders method 175 - Brent method
15 — 15 —
125 — 125 —
L Lk
0.75 — 0.75 —
0.25 — 0.25 —
0 - | o )
I I A B I R
1 4 5 1 2 3 4 5
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~

er f((x-4)*5)+2* exp(cos(x* 4)/100)+x/100.-1.1
2 b 2 =
175 ~false position method 175 -secant
15 15
125 i— 125 i—
1 e .
075 - 075 -
05 05
025 ; 0.25 ;

o , o ——
t I I N I e I AR
1 2 3 4 5 1 2 3 4 5

2 [ 2 [

175 ~Ridders method 175 - Brent method

15 = 15

125 ; 125 ;
0.75 i— 0.75 %
05 i— 05 ;
0.25 i— 0.25 i—

o
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1 2 3 4 5 1 2 3 4 5
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cos(x* 10-5)/3+erf(x-4)

,  false position method , - secant method
R S S - R S S -
; - Ridders method , - Brent method
05 05
: :
ST B T A

[ERN

2 3 4 5

[E=Y

2 3 4 5

o /
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/ Newton-Raphson Method I

This method requires the calculation of both f(z) and
f'(x). From an initial starting value z it uses the linear

approximation,

fw+0)~ fz)+0 [ (x)

to determine the next point to try, x + 9,

flz+d)=0 = d=—f(z)/f'(z) .

Should the procedure bring you close to a local maximum
or minimum, ¢ can become quite large, causing the
algorithm to fail. It is also possible to get into an infinite
loop. Otherwise the convergence is very fast, as long as

there is no penalty for calculating f'(x).

Numerical Recipes:
FUNCTION rtnewt (funcd,xl1,x2,xacc)

where funcd(x,fn,df) returns the function and its

derivative.

A fail-safe routine, that protects against leaving the
bracketed region and against infinite loops, uses the

bisection method in addition:

\ FUNCTION rtsafe(funcd,xl1,x2,xacc)

~

/
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/ Newton-Raphson and Fractals' \

The Newton-Raphson method can have poor convergence,

depending on the problem and the initial conditions. It is
interesting to determine the set of starting values that will

lead to a particular root.

For example, f(z) = 2> — 1 = 0 will converge for all positive
starting values, but not certain negative values. If one
considers the complex roots as well, there are three roots.

The following contour plot shows |f(z)].

COMMON/PAWC! in memary,

-2 -1. -1 -0. 0

SQRT ((X**3-3F X*Y ¥ 2-1)** 24(3F X¥* 2+ Y -Y ** 3)**2)

Dean Karlen/Carleton University Rev. 1.3 1998/99




Physics 75.502 Newton-Raphson and Fractals 68

The following plot shows the starting points that lead to

each of the roots, three fractals.

o /
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/ Roots of Polynomials' \

e a polynomial of order n has n roots, some may be

complex

e can be a difficult problem for high order polynomials,

especially when two roots are nearby

e when each root is found the order of the polynomial can

be reduced by one order:

Q(z) = P(z)/(x — 1)

You can use poldiv(u,n,v,nv,q,r) to do this division, but
the successive roots can be susceptible to rounding errors.
It is recommended to always polish them up, by using them

as initial guesses with the original function P(x).

Note: you should never evaluate the polynomial,

P(z) =c1 + cox + c3x? + ez’ + szt

as
p = c(1)+c(2)*x+c(3) *x**2+c (4) *x**3+c (5) *x**4
but instead as

p=c(l) + xx(c(2) + xx(c(3) + xx(c(4) + x*xc(5))))

\Which reduces steps and improves precision. /
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4 N

Laguerre’s Method

For polynomials with all real roots this method is
guaranteed to converge to a root for any starting point. It

works well with complex roots, but not guaranteed.
Method:

Assume one root is a distance a from the current guess and
all the other roots are a distance b away. Use P(z), P'(z),
and P"(x) to solve for a, then take (z — a) as the next

guess. Continue process until a becomes small.

Numerical Recipes:
SUBROUTINE laguer(a,m,x,its)

where a and x are complex and

a(l1:m+1) the coeflicients

m the order of the polynomial
X input: starting point, output: solution
its the number of iterations taken

To find all the roots use the driver routine:
SUBROUTINE zroots(a,m,roots,polish)

where polish can be set to .true. if polishing of the roots

1s desired.

o /
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Systems of Nonlinear Equations'

No general methods exist, even for the two dimensional

problem,
fl,y)=0 g(z,y)=0
Each equation defines a set of a prior: unknown number of

separate curves. Where these two sets of curves intersect is

the solution to the problem.

If you have a good enough initial guess, then you can use
the Newton-Raphson method.

N

Fi(x+ 0x) = Z

4 O(6x7)

Neglect the O(6x”) term, set the LHS to zero and solve for
0x, using matrix methods. Use X,cw = Xo1a + 0X as the

next point in the iteration.

Numerical Recipes:
SUBROUTINE mnewt(ntrial,x,n,tolx,tolf)

a maximum of ntrial iterations are made to improve on
the initial estimate of x. Iteration stops if either
Y 6z < tolx or Y |F;| < tolf.

o /
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A more globally convergent technique checks that
[=2_F
i
reduces each time a new 0x is calculated, Otherwise a
smaller step is taken:

Xpew = Xold T AOX  0< A<

Numerical Recipes:

If the derivatives are not known, the following driver

routine can be used instead:
SUBROUTINE newt(x,n,check)

which computes partial derivatives numerically.

o

SUBROUTINE lnsrch(n,xold,fold,g,p,x,f,stpmax

,check,func)

/
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4 N

Exercise 4:

For blackbody radiation, the radiant energy per unit

volume in the wavelength range A to A + d\ is,

8m hc
A)dA = d\
u(}) A% exp(he/AET) — 1

where T is the temperature of the body, ¢ is the speed of
light, A is Planck’s constant, and £ is Boltzmann’s constant.
Show that the wavelength at which u(\) is maximum may
be written as A\jpa.x = ahc/kT, where « is a constant.
Determine the value of a numerically from the resulting

transcendental equation.

o /
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Minimization (Maximization) of Functions'

General problem is to find x that minimizes f(x) with as

few function calls as possible. It is called for in doing

likelihood fits, and optimization problems.

Most programs are designed to find a minimum. To find the

maximum of f(x), simply find the minimum of — f(x).

Types of minima in 1D:

f(x)

x1 x2 X

A is a local minimum. B is the global minimum. C is the
global maximum at the boundary, and so f/(x) # 0 at that

location.

o /
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4 N

Selden Secton S 0

In a similar way as bracketing a root, one can bracket a

minimum with three points if:

a < b <c
fla) > f(b) < [f(c)

then there is a minimum in the range (a,c). The bracketed
range can be reduced by considering a new point x between

b and c:

o /

75
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4 N

Depending on the function, either (b, c) or (a,z) will be the
new bracketed region. This can be continued until region is

smaller than a given tolerance.

Note: the precision of determining location of z,,;, is

it 0( )

Lmin

where € is the machine precision. This follows from the fact

that near the minimum:

1
f(:lf) ~ f(ajmin) + §f”(fcmin) (33 - xmin)z

There is an optimal choice to split the bracketed region:

golden section

o /
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After choosing the next point, the size of the next bracketed
region is either w 4+ z or 1 — w. The optimal strategy would

make these equal:
wH+z=1—-w — z=1-2w

But the original value of w should have been chosen in the
same way, SO
z  1-=2w

= = s
v 1 —w 1 —w v

3—d
= 2f = 0.38197...

This is called the “golden mean” or “golden section”.
Numerical Recipes:

SUBROUTINE mnbrak(ax,bx,cx,fa,fb,fc,func)

This routine begins with the initial points ax and bx and
returns a bracketing set of points, ax,bx,cx (found by
taking successively larger steps downhill). The golden

section search can then be performed:

FUNCTION golden(ax,bx,cx,func,tol,xmin)

\The result is returned in xmin. /
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Parabolic Interpolation and Brent’s Method'

For smooth functions, the behaviour near the minimum is

given by

1
f(ilf) ~ f(ajmin) + §f”(fcmin) (33 - xmin)z

If this information is used, convergence will usually be

faster than the golden section (but not as robust).

Method:

1. Begin with three points to define a parabola.

2. Next point to evaluate is at the minimum of the

parabola.

3. Chose as the next set of three points, the minimum,

and the two points on either side.

4. Repeat.

o /

Dean Karlen/Carleton University Rev. 1.3 1998/99




Physics 75.502 Parabolic Interpolation and Brent’s Method 79
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Since the method is less robust, it needs to be combined

with a more robust one:

Numerical Recipes:
FUNCTION brent(ax,bx,cx,func,tol,xmin)

combines parabolic interpolation and golden section
methods.

FUNCTION dbrent(ax,bx,cx,f,df,tol,xmin)

also uses first derivative as supplied by the user function,
df. Note that f'(z) is only used to decide which interval
(a,b) or (b,c) is used next, on the basis of f/(b).

o /
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Downhill Simplex Method (multidimensions)

“Not the most efficient but simple and robust.”

e “simplex”: an object in N dimensions consisting of the

lines that connect N + 1 points

e non-degenerate simplex: none of the lines are collinear,

so the simplex encloses a finite N dimensional volume

e examples:

2D - triangle 3D - tetrahedron

e If one point is taken as the origin, the N lines from that
point define vectors that span the N dimensional space.

Method:

e Start with an initial guess, Py, and step sizes in each
dimension, e;. This defines a simplex, with the vertices

given by P; = Py + e;.

e Perform a series of steps that expand and contract the

\ simplex in the N dimensions. /
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Simplex transformations:

a)

¢

|
©0e ©

|
®®

b)

¢

©6 6
!

e a) Reflection: The largest function value is moved
through the opposite face of the simplex. The new

point is kept if the function value is reduced.

e b) Reflection and expansion: If the function at the new

point is smallest of all points, expand.

° c) Reflection and contraction: If the function value has

increased, try a smaller step in that direction.

e The simplex eventually encloses a minimum, and the

contracts around it, until the function value within the

simplex is within some tolerance.
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4 N

Numerical Recipes:
SUBROUTINE amoeba(p,y,mp,np,nd,ftol,funk,iter)

input:
p(1:nd+1,1:nd) nd+1 vertices of the initial simplex
y(1:nd+1) values of funk evaluated initial sim-
plex vertices

ftol fractional function tolerance
Location of minimum is returned in p (a contracted

simplex).

o /
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Powell’s Method I

Method:
1. choose a direction

2. find minimum along that direction (using 1D
minimization)
3. repeat
It is important to choose the directions carefully. Unit

vectors in each dimension can be very inefficient in some

cases:

#—

A more efficient approach would be to choose directions

such that minimization along one direction does not affect

the minimization along the other direction. These are

known as “conjugate directions”.

~

/
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Conjugate Directions I

Conjugate directions can be found as long as the function is

quadratic about the minimum. Otherwise the directions
will be only approximately conjugate, but the method

improves the rate of convergence in any case.

If the function is nearly quadratic, then it is a good

approximation to write

flx) = Z |Pf'3z+ Zax oz, p ziz;

1
= c—b-x+ §X°A°X
Hence the gradient of f is approximately,
Vf=A-x—b

The change in the gradient by moving along direction the

direction dx is given by,

5(Vf)=A. éx

o /
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4 N

Suppose that the function is minimized along the direction
u. The condition that u and v be conjugate directions is
that the component of the gradient along the u direction

remain zero when moving along direction v. In other words:
O=u-06(Vf)=u-A-v

Note in 2D, if A is diagonal, the contour ellipses are aligned
with the x and y directions, and the unit vectors along x

and y directions are conjugate.

The challenge is to determine the N conjugate directions.
Then, for quadratic functions, the minimum will be found
exactly after N 1D minimizations. For most functions the

convergence will still be rapid.

o /
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Powell’s Method '

Set the initial set of directions u; to be the basis vectors,

and pick a starting point Py. Repeat the following until the

minimum is attained:
e Minimize sequentially along each direction u;.

e Define a new direction; the vector from P to the last

point.

e Minimize along that direction, take that point as the
new starting point P, and replace one of the original

directions by this new direction.

P, P

For a quadratic function, after IV iterations, all the
directions will be conjugate, and thus the minimum will be
found exactly after N(/N 4+ 1) 1D minimizations.

o /
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4 N

There is a problem with this procedure, in that replacing

the original directions by Py — Py can lead to a set of
directions that are linearly dependent. As a result, only a
subspace of the entire N dimensional space is explored for a

minimuim.

Powell’s Heuristic Method'

Improves on previous method by avoiding the problem
where directions can become linearly dependent, but gives
up property of exact conjugate directions for quadratic
problems. The previous method can always be used to

polish the result from this method.
Method:

Follow same procedure, except instead of always replacing
an original direction, replace the direction that resulted in
the largest decrease in the function. This reduces the chance

of it and Py — Py becoming almost linearly dependent.

o /
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/Exceptions: do not replace any directions if either \

o fr=f(2PNy —Py) > f(Py) then since Py — P seems
to be “played out”; or

e the reduction is not due to a large part on one direction
or f" is large along the direction Py — Py. These

conditions can be checked simultaneously by,

2(fo —2f8 + f)(fo — fn) — Af)? > (fo — fr)> Af

where A f is the magnitude of the largest decrease along

any of the directions.

Numerical Recipes:
SUBROUTINE powell(p,xi,n,np,ftol,iter,fret)
input:
p(1:n) initial starting point
xi(1:n,1:n) initial directions (columns)

ftol fractional function tolerance

The routine finds the minimum of a user supplier function,

\func and it is returned in p. /
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Gradient Methods I

If Vf(x) is easy to calculate, the speed of convergence can
be improved by using both f and Vf.

Steepest descent usage of V f is not a very good algorithm:
e minimize along the direction given by V f(Py)
e move to this new minimum
e repeat

Even for a quadratic function this can lead to many small
steps being taken, because each direction must be

orthogonal to the previous one:

A more efficient method would have the directions be
conjugate to one another:

— Conjugate Gradient Methods

By using the gradients, conjugate directions can be found

much more elegantly than Powell’s method.

o /
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/ e Start at point x. \

e Minimize along steepest descent at x(, giving a new

point x1.

e The next direction d needs to be conjugate to the

previous direction of movement, x; — Xg.
d'A'(Xl—Xo):O
e Fortunately A does not need to be calculated:

Vfx) = A-x—b and so,
d'A'(Xl —X()) = d- (Vf(Xl) —Vf(X())) =0

e The next direction d is some combination of the two

gradient vectors:
d= Vf(Xl) + OéVf(X())
e solve for a, using Vf(x1) - Vf(xg) =0:

(V£ (x1))”
(Vf(x0))"

O =

e Continue the process.
Numerical Recipes:
SUBROUTINE frprmn(p,n,ftol,iter,fret)

where p(1:n) is the starting point, and the user supplies

\the functions func and dfunc. /
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Variable Metric Methods'

Competitive with conjugate gradient method.

Basic idea is that of Newton’s method for finding roots:
Vi(x)=Vf(xo)+ A (x—xg)
At the minimum, V f(Xyi,) = 0, so
Xmin = X0 — A71 - V(%)

The complication, arises in that A is not known, and
instead an evolving approximation for A is used instead.
The method of successive improvements to A is not straight

forward (see text).

Numerical Recipes:
SUBROUTINE dfpmin(p,n,gtol,iter,fret,func,dfunc)

p(1:n) is the starting position. The programs returns once

the magnitude of the gradient is reduced to gtol.

o /
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Linear Programming (Optimization)'

General problem is to maximize:

Z = ap1T + apgo o + ...+ AQoNTN
subject to the N primary constraints,
x1 >0, 29 20, ... any >0

and M additional constraints,

N
Zaigilfg < b;>20 1=1,....m

=1

N

Zajgilfg > b; >0 g=m;+1,....,m1 +mgy
=1

N

Zakgibg = b,>0 k=m;+mo+1,.... M
=1

Problems of this sort are common in accounting where the

concepts of negative dollars, negative widgets, etc. are

meaningless.

o /
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4 N

Starting from N dimensional space, the inequality
constraints define boundary planes, such that the range of
allowed space is constrained within a convex polyhedron.
Each equality constraint reduces the dimensionality of the
polyhedron by one. Since z is a linear function, the

maximum of z must occur at a vertex.

Maximum at
avertex

o /
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There are a total of N + M constraints. The problem of
finding the optimal position is equivalent to finding which
N of the N + M constraints, all treated as equality

constraints, define the position of the vertex.

The brute force method is to try each of the (NX,M>

possibilities, each time solving the set of NV linear equations.
This could take forever for sufficiently complicated

problems.

A more optimal method is to reformulate the problem in
“restricted normal form”, and then apply the simplex

method (not related to the multidimensional minimization

method).
e normal form: only equality constraints appear

o restricted form: each equality constraint has a variable
unique to that constraint and it has a positive

coeflicient

o /
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Simplex method

An example:

z = 2x9 —4x3
subject to the constraints

5131—|—6£C2—£C3 = 2

—35132 —|—4£C3 —|—ZIZ4 = 8

Since there are 4 variables, and only 2 additional
constraints, the solution must have at least two of the

variables being zero.

o First step is to rewrite the constraints so that the

unique variables are on the LHS:
1 = 2-— 65132 -+ I3

Tg = 8—|—3£C2 —45133

e One can easily find a vertex in the 4D space (not

necessarily the best one) by setting x5 = 23 = 0:
—x1 =2, 24=8, 2z=0

e To increase z, it is clear that xo should be increased.

How far can z5 increase while keeping the LHS
variables > 07

o /
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4 N

e There is no problem for x4 since its coeflicient is

positive. (If all coefficients were positive, there would

be no upper limit to z).

e If there are several constraint equations with negative
coefficients, the critical one is the one with the smallest

value:

(constant coefficient) /(coefficient of z2)

e Rewrite the critical constraint equation so that x5 is on

LHS.

1 1 1
%5132:5—6331%—6333

e Rewrite 2z in terms of the RHS variables only.

e Repeat until all the coefficients of expression for z are
< 0. Solution has RHS variables = 0.

To put a general problem into normal form, replace
inequality constraints by adding extra (non-negative)

variables:

1 +2220 23 — 1 +2093—1y1 =3
To+3r3 <4 — x3+3x3+ys =4

At the end, the solutions for y; and ys are ignored.
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4 N

To put into restricted normal form, introduce more

variables:

21 = 3—:131—25132—|—y1

9 = 4—5132—35133—y2
And solve the new problem, maximizing
2= —2 —29 =742+ 325+ 323 —y1 + o

with all z; and z9 constrained to be > 0 as usual. Since the
solution to this problem has z; = z9 = 0, the simplex
procedure will result in z; and z9 becoming RHS variables,
which can be set to zero. This leaves the original problem,

but set up in restricted normal form.

Numerical Recipes subroutine:
simplx(a,m,n,mp,np,ml,m2,m3,icase,izrov,iposv)

The input variables follow the naming convention
introduced above. Note that for internal calculations the
physical dimension of a must be a(mp,np) with mp> m+2
and np> n+1.

icase specifies if a solution is found

iposv(1:M) and izrov(1:N) are pointers to the solution

stored in a (see text).

o /
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o

An analogy is made with freezing:

Algorithms presented so far are of the “quickly cooling”

type: converge to the nearby solution as fast as possible.

Nature has a different approach:

Simulated Annealing Methods'

e slowly cooled systems find the global minimum energy

state (a crystal state for example)

e quickly cooled systems do not, instead they find a local

minimum (an amorphous state)

e The probability that a system at temperature 1" is in a
state of energy E is given by,

p(E) ~ e PIET
e Even at low temperatures there is some chance to be in
a high energy state.

e This allows the system to get out of local energy

minimums (as long as enough time is allowed).

/
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To simulate a thermodynamic system, consider various

etropolis Algorithm

configurations. Define the probability to change from 1 — 2
to be
p = min (1, e_(EZ_El)/kT>

In other words, always take a downhill step, and sometimes

take an uphill step.

Can be applied to non-thermodynamic systems as well. One

needs to define
1. a set of possible configurations
a method to randomly modify the configurations

a function (F) to minimize as the goal of the problem

=

a control parameter (T') and an annealing schedule
(how to lower T').

Example: Traveling Salesman (minimize total trip distance)

1. Number cities, 2 = 1, ..., N, each with coordinate
(xi,y:). A configuration consists of a permutation of
the numbers 1, ..., N which specifies the order that the

cities are visited.

2. Modify the permutation as follows

a) reverse order of 2 adjacent numbers

\ b) move 2 adjacent numbers to random location /
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4 N

3. E =) L;, or some other penalty function could be

included.

4. Set kK = 1 so that
p = min (1, 6_(E2_E1)/T>

and experiment with a few trial values to get the scale
of AE. Choose T' > AF, so initially all configurations
are sampled with little penalty. Do 100N configurations
or 10N successful transitions then reduce T" by 10%.

Repeat until £ no longer decreases substantially.

Numerical Recipes:
SUBROUTINE anneal (x,y,iorder,ncity)

The best route is specified by the array iorder(1:ncity).

o /
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/Example of 100 randomly placed cities: \

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

0 0.2 0.4 0.6 0.8 1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

\\‘\\\\\‘\\\ |

0.2 0.4 0.6 0.8 1

o /
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Simulated Annealing Methods

How the solution was found:

T=0.5 E=39.85

T=0.45 E=38.06

T=0.405 E=39.63

T=0.3645 E=39.17

T=0.328 E=36.48

T=0.2952 E=34.19

T=0.2657 E=37.93

. Val
BN

0\ xf
WS A )
X AN
A S N
A

/ﬁ A R | B
S Q\Waeg N
0 A v \_‘»

v/ aN » oA
h\ﬁf’m‘

%

T=0.0834 E=15.04

T=0.075 E=15.41

T=0.0675 E=14.05

T=0.0608 E=13.02

T=0.0547 E=12.54

T=0.0492 E=11.82

M""l
=4
X

2

T=0.0443 E=10.37

T=0.0399 E=10.09

T=0.0359 E=10.04

T=0.0323 E=9.34

T=0.0291 E=9.26

T=0.0262 E=8.68

T=0.0236 E=8.85

T=0.0212 E=8.51

I

%

G

=

f

T=0.0191 E=8.61 T=0.0172 E=8.47 T=0.0155 E=8.31 T=0.0139 E=8.32 T=0.0125 E=8.3 T=0.0113 E=8.33 T=0.0101 E=8.28 T=0.0091 E=823
T=0.0082 E=8.09 T=0.0074 E=8.07 T=0.0067 E=8.05 T=0.006 E=8.08 T=0.0054 E=8.1 T=0.0048 E=8.05 T=0.0044 E=8.05 T=0.0039 E=8.05

i

(%

(%

K

B
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/ Ordinary Differential Equations' \

Any ODE can be rewritten in terms of a set of first-order

ODE’s. For example,

d’y dy
g2 T Q(f’f)% =r(z)
can be written as two equations,
d
o= @
d
—+a(0)za) = r(a)

The general problem therefore can be written in terms of N

first order equations of the form,

dy;
dx

In order to solve a specific problem, boundary conditions

:fi(xvylw"vyN) Z:177N

need to be specified, usually in the form of initial

conditions, y;(z).

To deal with problems with boundary conditions given at

more than one value of z, see text (two-point boundary

\Value problems). /
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Yn+1 — Yn + hf(a:nvyn) + O(hz)

Eulers method I

Inaccurate and can be unstable: should not be used!

Simplest method of all, just rewrite the differential equation

in terms of finite differences:

d
= = fla,y)
A

~ = [l
Ay = Az f(z,y)

This leads to the recursion relation,

where, y,, = y(z,) and z,, = z,_1 + h.

By specifying the initial conditions, xq, v, the solution is

found as shown below.

~

/
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Runge-Kutta Method I

“Robust, but inefficient and only moderately accurate”

Instead of using the derivative at the start of the interval,
the Runge-Kutta method uses the derivative evaluated at

the midpoint of the interval. This reduces the error in the

method.
y
e
. © .\
Y1 o< h -
| | | | \‘I
X Xy x, X

The algorithm for this method is:

kl — hf(ajnayn)

ks = hf(zn+ =hyn + —k)
2 = In 27yn 21
Yn+1 Yn + k2 + O(hg)

and is called the second order Runge-Kutta formula.

~

/
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/

Most often used is the 4™ order Runge-Kutta formula:
kl h f(ajna yn)
1 1
/{2 hf(ilfn—|— —h,yn—|— —]{1)
2 2
1 1
ks h f(z, + §hwyn'+'§k2)
ka hf(z, + h,yn + ks3)
+ L, + L + L + L, + O(h®)
Yn+1 Yn gL T g2 T gl T i
y
—= K,
1o ’\ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Tkz ,,,,,,,,,,,
Yo o - \ lks
k4
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Adaptive Stepsize Control'

To improve accuracy and efficiency, h should not be kept
constant, but rather vary, according to the nature of the

solution.

e when solution is smoothly changing, h should be large

to improve efficiency

e when solution is rapidly varying, A needs to be small to

ensure reasonable accuracy

Step Doubling

Compare the result of a step of size 2h with that of size h.
The difference in the two results can be used to estimate
the error in the approach. Adjust h to keep the error in a

reasonable range (not too large and not too small).

o /
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Embedded Runge-Kutta formulas

This is another technique to estimate the error, but requires

fewer function calls. The 5" order Runge-Kutta formula

requires 6 function calls, but another combination of the

4th

6 function values gives a order Runge-Kutta formula.

The error estimate A ~ h°. If the desired accuracy for one
step is A then the appropriate size to use for the next step

1S
h _h AO 0.2
T A

If the problem involves a set of ODE’s, then the largest

value of A should be used. Since the errors can accumulate
(all with the same sign), the tolerable error should scale

with the step size, ie Ag = €h Z—Z.
Numerical Recipes supplies the general ODE integrator:

FUNCTION odeint(ystart,nvar,xl,x2,eps,

h1,hmin,nok,nbad,derivs, choose)

User supplies routine derivs (x,y,dydx), which returns
dydx (1:nvar). The starting values, y(z1), are given by
ystart (1:nvar), and x5 is the final point. The
intermediate results are stored in common /path/. The final
argument specifies the stepping routine. Use rkqgs for the
fifth order embedded Runge-Kutta formula.

o /
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/ Modified Midpoint Method'

A large step of size H can be broken into n equal substeps

each of size h:

0 = Yo
z1 = zo+hf(z,2)
zo = zo+2hf(x+h,z)
zg = 21+ 2h f(x + 2h, 29)
Zn = zZn—o+2hf(x+(n—1)h,2,_1)
y
>‘<0 x;+h XOL' 2h X0}+3h x0+}-4h XOL-Sh X

The estimate of the solution at (zg + H) is given by,

1

o= 5 lon + (a1 +h (@ + Hy2)

and the error in this estimate is even in powers of h:

o

ylz+ H) = yn + a1h? + ash?

~

/
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/ Bulirsch-Stoer Method I \

Best method for smooth functions, otherwise use

Runge-Kutta with adaptive step size.
Method:
e Use midpoint method with n = 2,4,6,8, ...

e Extrapolate result y,, for h — 0 using polynomial. The
error estimate from the polynomial extrapolation is

used to decide when n is large enough.

e Reduce H if adequate precision is not attained after

Nyax 1terations

e Increase H if precision is better than that requested.

[\

4 steps °

6 steps o~
extrapolation
toh— 0
‘ X
X X+H

Numerical Recipes routine, odeint, can be used to drive

the Bulirsch-Stoer algorithm by using the routine name,

\bsstep as the last argument. /
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~

A pendulum consists of a bob of mass m connected to a rod

Exercise 5

of natural length L, which acts like a spring with spring
constant k. The pendulum is started from rest in a
horizontal position and let go. Use the Burlisch-Stoer
method with the following set of parameters: m = 0.1 kg,
L=1m, k=6 N/m. Repeat for kK = 1000 N/m. In each
case, plot the radius r, # and total energy as a function of
time, and plot the path of the bob.

The differential equations of motion for this system are:

: k
i—r0* = ——(r—1L)+4gcosf

m
r + 210 = —g sin 6

o /
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4 N

Result for k=7:
k=7
% 16 ; g 1.5 i
2 15 T ok
T o14 -
13 © 0.5 ;
12 F 0
11 -
w -05 —
1 ¢ C
09 1
08 [ -
:\\\\‘\\\\‘\\\\‘\\\\‘ -1'57\\\‘\\\‘\\\‘\\\‘\\\
0 25 5 7.5 10 0 2 4 6 8 10
t t
-4
X 10
= 03 ¢ wois -
0 - W01
- 005 -
'05 j o
C 0
1 0.05
-15 f— 0.1 *
- 015
2 - -
L [ P P -0'2j\\\\‘\\\\‘\\\\‘\\\\‘
1 0 1 0 25 5 7.5 10
X t
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Result for k=7.5:
k=75
T 14 [ g 15
3 - g -
§ 13 [ 1 -
12 F 05
11 |- 0 -
1 -05
09 — 1 -
0.8 ;\ L1 ‘ I ‘ I | ‘ I | ‘ -1'5 ;\ I 1 ‘ [ ‘ [ ‘ [ ‘ [
0 25 5 7.5 10 0 2 4 6 8 10
t t
> 05 : L'.JOX 10 C
O % 02
0 j L
c 015
05 = o1
= 0.05
i 0
15 |-
B -0.05
2 = -
FL | | 01 | | | |
1 0 1 0 2.5 5 7.5 10
X t
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-~

Result for k=1,000,000:

0.99995

0.9999 —

0.99985 —

0 25 5

7.5

10
t

1
[N
T T ‘ T T ‘ T T ‘ T 1T ‘ T T ‘ T 1T

o

k=1000000

15

6(rad)

1

05

0

0.006

0.004

0.002

0

o [TTT T [TT T T[T T[T T T [TTTT
N
N
(o]
(o]
5

0

2.5 5 7.5 10
t
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Partial Differential Equations'

Numerical methods for solving PDE is a vast and complex

subject area. This review only scratches the surface!
PDE’s pose two classes of problems:

Initial Value Problems:

e could be a hyperbolic equation, such as the wave

equation:
*u 5 0%u

o2~ " a2

e or a parabolic equation, such as the diffusion equation:

ou 0 ou
ot ox (Da_>

e given u(x,t = 0), the problem is to find u(z,t).
Boundary Value Problems:

e clliptic equations, such as Laplace’s equation:

0%y N 0%y
or?  0y?

=0

e Given u(x,y) on the boundary, the problem is to find

u(x,y) elsewhere,

o /
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/ Flux-conservative IVP I

A flux conservative initial value problem in 1D:

ou  OF(u)
ot Ox
The 1D wave equation with constant velocity:
Pu 0%
a2 | 9x?

can be rewritten as two first order PDEs of this form:

0s or Or 0s
= VD —

ot oz ot 0z
where s = Ju/0t and r = vOu/0z. Letting,

a= and B =
r 1 0

allows the equation to be written in the form above with u

replaced by the vector a and F'(u) by —vBa.

Instead, consider the scalar form of this equation

ou ou
— = —y—
ot Ox
The analytical solution to this problem is a wave

propagating in the positive x direction:

u= f(z — vt)
\The numerical solution to this problem is not as simple! /
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/ FTCS Method.

The Forward Time Centered Space method...

Put time and space onto a grid:

r; = wxo+jAxr 53=0,1,...,J
t, = to+nAt n=0,1,...N

and denote u(t,,z;) as uy. To solve the advection equation,

ou ou
= —V—

ot ox

write the derivatives as finite differences, the time using

forward Euler differencing, and the space derivative centred:

ou? u?“ — uf O(As
ot At (A)
ou™ u, o —ul

J J+1 J—1 2
— = O(A
ox 2Ax +0(A27)

Then the advection equation becomes,

ntl _ o m v At

u” — n n)

i =Y §ggwﬁ4—“f4

n

Given the initial values, ug for all 7, subsequent values, u}

can be determined by this equation.

In PAW, the formula is easily handled,

sigma u=u+ [c]x*(1ls(u,1)— 1s(u,—1))

o /
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FTCS Method

0.6. Each box represents a new time bin.

advection equation. The following is an example with

Unfortunately the FTCS method is unstable for the
vAt
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4 N
Lax Method I

A simple modification to the FTCS method, improves the

stability of the method. Replace u} by its average,
%(u? 1t u?_l), so the recurrence relation is now
1 v At
n+1 ') ') n n
L — §(Uj+1 + uj—l) - E(uﬁl o uj—l)

This method is stable for ”A—Axt <1, but for ”A—Axt < 1 the

amplitude diminishes. For ”AA; = 1 the solution is exact,
n+l _ n
w; = Uy

Note that the Lax equation can be rewritten as,

n+l  n no o _ .n no_ n n
u oYy (“j+1 ’“j—l) 1 (“j+1 2uj +“j—1>

At oAz D) At

which is the FTCS representation of,
ou  Ju  (Az)® 9u

ot v@az—'_ 2At Oz

The new term is a dissipative term, said to add “numerical

viscosity” to the equation.

o /
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Lax Method

Physics 75.502

Example of a solution to the advection equation using Lax

0.6. Each box represents a new time

VAL
Ax

method, with

bin.
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4 N

Lax-Wendroff Scheme '

To improve the difference equation to second order in time,

consider the Taylor expansion of the solution,
ou 1., (0% 3
The second term is easily represented using the original

PDE, which can be written in a more general form,

Ou  OF(u)

ot ox

where F'(u) = vu for the advection equation. The second

partial derivative can be written,
Pu 0 (OF\_ 0 (0F\ _ 0 (0F
o2 oo\ox/) Oz \ot)  Oxr\Ouodt

_ % (F'(u)g—i)

o /
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Lax-Wendroff Scheme

Physics 75.502

(g — i+ THn) EXE o (1fn - ) Y =
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~

Lax-Wendroff Scheme

Physics 75.502

he method is stable, because of “numerical viscosity” but

€

the solution does not dissapate as rapidly as the Lax

method.

Example of a solution to the advection equation using

VAL

= 0.6. Each box represents

Lax-Wendroff scheme, with

a new time bin.

Ax

g S — e K
= == AT
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Application: Fluid Mechanics in 1DI

A 1D fluid in motion satisfies the continuity equation,

WD _ 0 ot t) vl 1))

where p is the mass density and v the velocity. There are
also equations for the other conserved quantities; the
momentum density and the energy density. An exact

treatment requires that all three be solved simultaneously.

Consider the simplifying assumption that the velocity
depends only on the density. Then,

% = —%(pv(p))

dp dv dp

- (a_x’v(P) + pd_p@_a:>
()
B dpp’vp Oz

dp
= —c(p) B

o /
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Physics 75.502

4 N

The term ¢(p) is the speed at which density waves travel, or

in other words the density is constant along the line with

slope 1/¢(pp):

Density constant
along this

X1

Proof: The time derivative along this line is,

dp dp Opdx

@ o T emar "

de dp [Op
AT il

o /

1998/99

Dean Karlen/Carleton University Rev. 1.3



Physics 75.502 Traffic Simulation 126

/ Traffic Simulation I \

The velocity of automobile traffic is limited to a maximum

and decreases roughly linearly with increasing density,

v(p) =vm(l —p/pm)

In this case,

c(p) = vm(l—2p/pm)
—¢c(0) = vy
= c(pm) = —Um

So the density waves can travel in either direction.
Traffic at a stoplight

The analytical solution to the problem with initial density,

pm T <0
0 x>0

. ..
NN 90D
" <
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KI‘o determine p in the central region, the discontinuous \
initial condition at x = 0 must be considered. If in the
region (—e¢, €) the density varied linearly from p,, to 0, the

solution would be:

Taking the limit € — 0, the solution is given by

)
Pm for z < —v,,t

p(z,t) =< cHx/t) for —v,t <z < vt
0 for T > —v,,t

\

where ¢ (z/t) = p,(1 — 2/(v,,t))/2. Graphically the

solution is given by,

o /
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4 N

Now that the analytic solution is understood, check to see if

the numerical methods reproduce these results:

Use the Lax-Wendroff Scheme, where

Flp) = polp)=pom(l—p/pm)
F'(p) = clp) = vim(l —2p/pm)

Use 100 bins in z, with periodic boundary conditions.
Consider the initial configuration to be a square pulse over
10 bins in . The back edge of the pulse forms a traveling
discontinuity, known as a shock front. Even if the initial

configuration is smooth, the shock front will still appear.

o /
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Traflic Simulation

Physics 75.502

L, pm =1, At/Az = 1:

The result for v,,
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4 N

Shown as a density contour plot:

ume

position

o /
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4 N

A disturbance in light traffic moves forward:

L A A A A A A A ) A E
| | =

L i } ] ] N N ) N

N ) i N N ) N i~ N

IS N N SN T IS (oS Y SN oS oS N
IS NS IO RN SN (SN RIS N IO BV
S S VS SO TS VSN SN N SVASN E A S

e = LI LI IV S E A A pOSl t| on

ume

position
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Diffusive Initial Value Problem.

General form in 1D:
ou 9, ou
o ox (D a_>

where D is a diffusion coefficient, and D > 0. This equation

is of the flux-conservative form with F'(u) = —D0u/0x.

If D is a constant,

ou B D82u

ot 9
can be evaluated with FTCS as,

n+l n n o n n
U u; ) (uj+1 2u; —|—uj_1>

At Ax?

This time FTCS is stable as long as,

2D At
(Az)?

<1

But this can sometimes put a too small upper limit on the

time steps At for some problems.

o /
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The result for

2D At
(Az)?

o

/
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4 N

The result for % =1.2

JAN ’ 7,/’1“%\ ,,f'wx_\, ,,H‘INM'“\.\, ,,f”'NMhI'E A
bl |
77,ﬁvﬂﬂmﬂh ,,wmm‘m‘k .ﬂmm .’l\‘mm}l‘lh _,«n‘[’H }mlﬂw Jl‘ﬂlm “n“""" «dm "\'}‘ﬂu
| |
|

':1 \‘)rn, |
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4 N

To improve the stability, one can use the following

differencing scheme

n+l  _n n+l n n+1
Y Y% _p <uj+1 2u; +“j—1>

At Azx?

where the space derivatives are evaluated at time ¢,,41, and

the method is named backward time. To solve for u?"’l
requires a solution of a set of linear equations. The method

is stable for all choices of At.

Crank-Nicholson scheme

Even better, is to simply average the result from forward
and backward time methods. This gives a a method that is

second order in other time and space and stable for all At.

o /
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/ Boundary Value Problems' \

An example is a problem involving Laplace’s equation,
0%u n 0%u
oxr?  Oy?

=0

Relaxation Methods: Jacobi’s method

Rewrite the problem as a diffusion equation:
du 0%u N 0%u
ot 0z  Oy?

and an initial distribution for u will relax to an equilibrium

solution as t — oo, where 68_1; = 0.

Define u?, = u(x;,ys,tn) with Az = Ay = A. Use FTCS
differencing to get

which is stable if At/A? < 1/4. At the maximum stable
time step this gives,

1
1
= 1 (ISR S ESWE ST VIR ST/ Py

This is just a simple average of the 4 neighbouring points in

U

space. The method is to continue iterations until solution

converges. However, this is usually too slow for most

\problems. /
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4 N

Gauss-Seidel Method

There is a slight improvement in converge if updated values

of u}, are used as they become available,

untl = 1 ( s ntl oy gm ntl )

jl Ty

Successive Overrelaxation

This algorithm converges much more quickly by

overcorrecting the values for u at each iteration,

+1 i’ +1 +1
uiy = (1 —wuj,+ 1 (u?ﬁrl,g + Uity Ul + u?,g_1>
o w =1 1s the Gauss-Seidel method

o 0 < w < 1 underrelaxation

o 1 < w < 2 overrelaxation

The optimal choice of w depends on the problem, and

usually found by trial/error.

o /
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4 N

As an example, the potential within a square cavity where

one side is held at a constant potential, and the others held
at 0, is shown below. The starting point for each method is

potential=0 for all interior points:

n=0 n=10 n=20 n=30
ke
,;ﬂ TE— T
D:I
3
Lo
. -—
n:'
3
w %
;I
x
3
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Part III: Monte Carlo Methods'

Topics:
e Introduction
e Random Number generators
e Special distributions
e General Techniques
e Multidimensional simulation
References:

e The Art of Computer Programming, D.E. Knuth,
Addison-Wesley, vol 2, 1969.

e Monte Carlo Theory and Practice, F'. James, Rep.
Prog. Phys., Vol. 43, 1980, 1145.

e Portable Random Number Generators, W.H. Press,
S.A. Teukolsky, Computers in Physics, Vol. 6, No. 5,
1992, 522.

o

~
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4 N

Monte Carlo Techniques

‘o] Monte Carlo refers to any procedure that
makes use of random numbers.

Monte Carlo methods are used in:
Simulation of natural phenomena

Simulation of experimental appartus
Numerical analysis

Random Numbers

What is arandom number? |Is 37
17~ No such thing as a single random number.
A sequence of random numbersis a set of

numbers that have nothing to do with the other
numbers in the sequence.

o /
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In auniform distribution of random numbersin
therange [0,1] , every number has the same

chance of turning up.

Note that 0.00001 isjust aslikely
as 0.50000

How to generate a sequence of random numbers,

Use some chaotic system. (like ballsin a
barrel - Lotto 6-49).

Use a process that is inherently random:

@ radioactive decay
thermal noise
cosmic ray arrival

Tables of afew million truely random
numbers do exist, but thisisn’t enough for

most applications.
Hooking up arandom machine to a

#g computer is not agood idea. Thiswould
lead to irreproducabl e results, making

debugging difficult.

o

~
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/ Random Number Generation'

Pseudo-Random Numbers

These are sequences of numbers generated by
computer algorithms, usally in auniform
distribution in the range [0,1].

To be precise, the alogrithms generate integers
between 0 and M, and return areal value:

Xn=I1a/M

An early example :
Middle Sguare (John Von Neumann, 1946)
To generate a sequence of 10 digit integers,
start with one, and square it amd then take
the middle 10 digits from the answer as the
next number in the sequence.

eg. 5772156649°=33317792380594909291

So the next number is given by 4

The sequence is not random, since each
number is completely determined from the
previous. But it appears to be random.

o

/
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4 N

This algorothm has problemsin that the
sequence will have small numbers lumped
together, O repeats itself, and it can get itself
Into short loops, for example:

6100°=37210000
2100°= 4410000
4100°=16810000
8100°=65610000

With more bits, long sequences are possible.
38 bits = 750,000 numbers

A more complex algorithm does not
necessarily lead to a better random sequence.

It is better to use an algorithm that is well
understood.

o /
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Linear Conguential Method (Lehmer, 1948)

l...,=(al, +c) modm

Starting value (seed) =1,
a, ¢, and m are specially chosen

ac>0 and m>l,ac

A poor choice for the constants can lead to very
poor sequences.

example: a=c=1 =7, m=10

results in the sequence:
7,6,90,7,6,9,0,..

The choice c=0 |eads to a somewhat faster
algorithm, and can also result in long
sequences. The method with c=0 is called:
Multiplicative congruential.

/
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4 N

3 Choice of modulus, m

m should be as large as possible since the period
can never be longer than m.

One usually chooses m to be near the largest
Integer that can be represented. On a 32 bit
machine, that is 2* = 2x10".

Y< Choice of multiplier, a

It was proven by M. Greenberger in 1961
that the sequence will have period m, if and
only if:

1) cisrelatively primeto m;
1) alisamultiple of p, for every prime
p dividing m;
) alisamultipleof 4,if misa
multiple of 4

o /
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With c=0, one cannot get the full period, but in
order to get the maximum possible, the
following should be satisfied:

1) I, Isrelatively primetom
1) aisaprimative element modulo m

It Is possible to obtain a period of length m-1,
but usually the period is around m/4.

- RANDU generator

A popular random number generator was
distributed by IBM in the 1960’ s with the
algorithm:

| ., = (65539 x| ) mod 2*

This generator was later found to have a
serious problem...

o /
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Results from Randu: 1D distribution

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Random number

500 —

400 —

300 —

200 —

100 —

Looks okay

o /

Dean Karlen/Carleton University Rev. 1.3 1998/99




Physics 75.502 Random Number Generation 148

4 N

Results from Randu: 2D distribution

05
o |
03

02 -

01 —.

Still looks okay
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Results from Randu: 3D distribution

© o o o
N A OO 00O
b b b [ [

Y025 0 1 075 o5 g O

© o o o
N A O O
ol e b e

Problem seen when observed at the right angle!
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The Marsaglia effect

In 1968, Marsaglia published the paper,
Random numbers fall mainly in the planes

(Proc. Acad. Sci. 61, 25) which showed that this
behaviour is present for any multiplicative
congruential generator.

For a 32 bit machine, the maximum number of
hyperplanes in the space of d-dimensionsis:

d= 3 2953
d= 4 566
d= 6 120
d=10 41

The RANDU generator had much less than the
maximum.

The replacement of the multiplier from 65539 to
69069 improves the performance signifigantly.

o
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Warning

‘A

The authors of Numerical Recipies have
admitted that the random number
generators, RAN1 and RANZ2 given in the
first edition, are “at best mediocre”.

In their second edition, these are replaced by
ran0, ranl, and ran2, which have much
better properties.

The new routines can also be found in the
recent edition of Computersin Physics,
(Sept/Oct 1992 edition, page 522).
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One way to improve the behaviour of random
number generators and to increase their period is
to modify the algorithm:

| = (ax| _, + bxl_,) mod m

Which in this case has two initial seeds and can
have a period greater than m.

w RANMAR generator

This generator (available in the CERN library,
KERNLIB, requires 103 initial seeds. These
seeds can be set by asingle integer from 1 to
900,000,000.

Each choice will generate an independat series
each of period, = 10%.

This seems to be the ultimate in random
number generators!

o /
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ﬁ Wearning on the use of Random
Number generators.

In FORTRAN, random number generators
areusually used called as functions,

x=RAND (IDUM)

Where the arguement, IDUM, isnot used. In
fortran, afunction is supposed to be afunction
of only the arguments, and so some compilers
will try to optimise the code by removing
multiple calls to random number generators.

For example
x=RAND (IDUM) +RAND (IDUM)

may be changed to

X=2 .*RAND (IDUM)

~
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This can also be a problem when the
random number generator is called
Inside DO |oops.

Solution:

Fool the optimiser by always changing
the dummy argument:

DO 1 I=1,100
IDUM=IDUM+1
x=RAND (IDUM)

1 CONTINUE

But don't try thisif the random number
generator uses the argument to save the
seed for the next random number.
(Numerical Recipies generators, for
example)!

o /
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/ Simulating Radioactive Decay' \

This is a truly random process: The probability of decay is

constant (independent of the age of the nuclei).

The probability that a nucleus undergoes radioactive decay

in time At is p:

p=aAt (for aAt 1)

Problem:

Consider a system initially having Ny unstable nuclei. How

does the number of parent nuclei, N, change with time?

Algorithm:
LOOP from t=0 to t, step At

LOOP over each remaining parent nucleus
Decide if the nucleus decays:
IF(random # < awAt) then
reduce the number of parents by 1
ENDIF
END LOOP over nuclei
PLOT or record N vs. t
END LOOP over time
END

o /
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Exercise 6

Write a program to implement the preceding algorithm.
Graph the number of remaining nuclei as a function of time

for the following cases:
Ny =100, a=0.01s"1 At=1s ;

Ny = 5000, a=0.03s"1! At=1s

Show the results on both linear and logarithmic scales for
times between 0 and 300 seconds. In addition, plot on the

same graphs the expected curve, given:

dN = —N adt

je. N = Nye ¢

o /
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Solution to exercise 6:

The ’experimental’ results do not perfectly follow the

expected curve; there are statistical fluctuations.

5000 F
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o
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| !
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N,=5000, 0:=0.03

102

10
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o

N,=5000, 0:=0.03
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Poisson Distribution I

The probability of observing a total of n decays in a time

interval T can be worked out as follows:

Assume the number of decays in time 1" is much less than
the number of parent nuclei. (ie. assume constant

probability to observe a decay):

Break up 1" into m shorter intervals, duration At:

The probability to observe 1 decay in time At is:

p=pBAt

where 8 = aN as At must be small enough so that
6 At < 1. The probability of observing n decays in time T’

1s therefore:
. (m
P=p"(1-p)" ( )

n

o

~
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m)!

Po=p"1=p)"" (m —n)!n!

- (%T) (1 - %T)m (m —mfz)!n!

In the limit of At — 0 (ie. m — 00),

m
T —nNn
(1 — ﬁ—) — 1
m
m!
% n
(m-mt "
The result is,
P=u"e " /n!

where = B7'. This is known as the Poisson distribution.

o
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Exercise 7

Modify the program written for exercise 6 to simulate an
experiment that counts the number of decays observed in a

time interval, 1'.

Allow the experiment to be repeated and histogram the
distribution of the number of decays for the following two

cases:
Ny =500, a=4x10"°s"', At=10s, T =100 s

Ny=500, a=2x10"*s"t At=10s, T =100 s

In each case show the distribution using 1000 experiments.

Also, overlay the expected Poisson distribution.

Question: Are there limits on the value of At so that your

program will give reliable results? Explain.

o /

Dean Karlen/Carleton University Rev. 1.3 1998/99




Physics 75.502 Poisson Distribution 161

4 N

Solution to Exercise 7:

320 -

280 \

240 —
200 L

160 [

120

N \
‘N S

1 2 3 4 5 6 7 8 9

80

NO=500, alpha=4e-5, T=100

140 —

¥
2

120 —

100 [ N %

60 —

20 —

| AN

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

NO=500, alpha=2e-4, T=100
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Properties of the Poisson distribution'

Mean value:

Variance:

o

~
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Do each term individually,

o

N 1
— z_% ((n +1) py e
= (u+1)u

(—Qn,u % e “) = —2u°

n=0 ’
> (e ope) =
n=0 n!
So, 0% = p¥ 4 p — 207 + ¥ = pu

Hence if n decays are observed, the 1 standard deviation
uncertainty is 4/n. (This is also true for any other variable

that follows the Poisson distribution.)
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Many observables follow the Poisson distribution: Anything

whose probability of occurring is constant in time.

For example:
e number of observed events when efficiency is constant

e number of entries in a histogram bin

Some measurements lead to non-Poisson distributions:

For example:

e number of radioactive decays observed in a fixed time
interval, when there is a significant reduction of parent

nuclei

e number of radioactive decays observed in a fixed time
interval, when there is significant deadtime. (ie. the
detector is not active for some period after an event is

recorded)

o /
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Gaussian (or Normal) Distribution'

This is the most important distribution in statistical

analysis.
I _=w?

e 202

G(z|p,0) =

2mo

The mean of the distribution is ;& and the variance is o2.

For large u, the Poisson distribution approaches the

Gaussian distribution (with % = p).

The Gaussian distribution is a reasonable approximation of

the Poisson distribution even for p as small as 5.

o /
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Comparison of Poisson and Gaussian distributions:

0.28 —

0.24 —

0.2

0.08

0.04

O

Poisson

Caussian
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Binomial Distribution I

The binomial distribution describes the results of repeated

experiments which has only two possible outcomes.

Suppose a radioactive source is monitored for a time
interval T'. There is a probability p that one or more
disintegrations would be detected in that time interval. If a
total of m intervals were recorded, the probability that n of
them had at least one decay 1is

st (7).

n

The mean of this distribution is: np

The variance of this distribution is: np(1 — p)

o /
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Simulating General Distributions'

The simple simulations considered so far, only required a

random number sequence that is uniformly distributed
between 0 and 1. More complicated problems generally
require random numbers generated according to specific

distributions.

For example, the radioactive decay of a large number of
nuclei (say 10%?), each with a tiny decay probability, cannot
be simulated using the methods developed so far. It would
be far too inefficient and require very high numerical

precision.

Instead, a random number generated according to a Poisson
distribution could be used to specify the number of nuclei

that disintigrate in some time 7.

Random numbers following some special distributions, like
the Poisson distribution, can be generated using special
purpose algorithms, and efficient routines can be found in

various numerical libraries.

If a special purpose generator routine is not available, then
use a general purpose method for generating random

numbers according to an arbitrary distribution.

o /
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Rejection Technique I

Problem: Generate a series of random numbers, x;, which

follow a distribution function f(z).

In the rejection technique, a trial value, ;. 1s chosen at

random. It is accepted with a probability proportional to

f(ajtrial)-

Algorithm:

Choose trial x, given a uniform random number Aq:
Tirial = Tmin T (Tmax — Tmin) A1
Decide whether to accept the trial value:
if f(Ztrial) > A2 foig then accept

where fiio > f(z) for all , zmin < o < 2hax. Repeat the

algorithm until a trial value is accepted.

o /
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This algorithm can be visualized as throwing darts:

A
ng T

=

X min X max
This procedure also gives an estimate of the integral of f(z):

Frmax n
[ = / f({lf) dr ~ —aceept fbig(fvmax - xmin)
T

Ntrial

min

o /
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(

o

ol
I

So the relative accuracy only improves with

The 1 standard deviation uncertainty can be derived using

the variance of the binomial distribution:

Ntrlal

=/p(1-p

accept

)2 o (5Naccept>2
Naccept

o Naccept (1 o Naccept ) N 1

B Ntrial Ntrial frial Ngccept
1 1

B Naccept Ntrial

= 5 (57
Ntrial p

N, .

trlal

~
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The rejection algorithm is not efficient if the distribution

has one or more large peaks (or poles).
In this case trial events are seldomly accepted:

A
ng T

XnM1 anx

In extreme cases, where there is a pole, fi;, cannot be
specified. This algorithm doesn’t work when the range of z

is (—o00,4+00). A better algorithm is needed...

o /
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Inversion Technique I

This method is only applicable for relatively simple

distribution functions:

e First normalize the distribution function, so that it

becomes a probability distribution function (PDF).

e Integrate the PDF analytically from the minimum x to
an aritrary x. This represents the probability of chosing

a value less than z.

e Equate this to a uniform random number, and solve for

x. The resulting x will be distributed according to the
PDF.

In other words, solve the following equation for x, given a

uniform random number, A:

/;in f(x)dx .
/a:max f(x)dx a

Lmin

This method is fully efficient, since each random number A

gives an x value.

o /
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Examples of the inversion technique

N
.o

1) generate z between 0 and 4 according to f(z) =«

Jo
I

1
72 dx

A

dx

1

€T 2

N

T

N|—

= generate x according to z = 4\2

—x.

2) generate x between 0 and oo according to f(z) =e

fox e "dx \
fo e~ * dx
l—e™™ = A
= generate z according to z = —In(1 — )

Note that the simple rejection technique would not work for

either of these examples.

/
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Exercise 8

Write a program that generates the value 6 according to the

distribution function:
f(0) = (sin® 0 + a cos? 0) 1

in the range 0 < 0 < 2.

Compare the rejection technique and the inversion

technique:

e Generate 10000 values for each method using a = 0.5
and also for a = 0.001.

e Plot the results for each (4 plots) and overlay the

distribution curve, f(6), properly normalized.

e Compare the CPU time required for the 4 runs.

o /
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Solution to Exercise 8:

f(0)=(sin’0 + 0.5 cos’0)™"

20
20 -
o Lo o e 1
0 1 2 3 4 5 6
theta
f(0)=(sin’0 + 0.001 cos’0)""'
1800 |-
T
1600 [
1400 I
1200
1000 f}
800 [f
600 |1
. o I !
2 3 4 5 6
theta
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What if the rgjection techniqueis
Impractical and you can’'t invert the
integral of the distribution function?

|mportance Sampling

Replace the distribution function, f(x), by an
approximate form, f {x), for which the inversion
technique can be applied.

Generate trial values for x with the inversion
technique according to f {x), and accept the trial
value with the probability proportional to the

weight:
w =f(X) / f{X)

The rglection technique is just the special case
where f {X) is chosen to be a constant.

/
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Example:

Generate x according to f(x) = (1+x)x ™
for therange 0 <x <1.

Thereisclearly aproblem at x near 0.

f{X) needs to be chosen so the weights for the
trial values of x are well behaved,

w = f(X)/f (X)

Try f{x) =x ™%, then w=1+x

Procedure;

Generatetria x: X=A\

Decide to accept: if (1+x) > A, w,_ . accept

In this case, w,__ =2, but in more complicated cases,
you may need to run the program to find the
maximum weight generared, and then pick avalue a

little larger, and rerun.

o /
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Note: the integral can be evaluated as before

= / fla)do = 2P gy T,

Tmin Ntrial
where [, = f;”fax f(z)dex.
But the integral can be found more efficiently (ie. more

accuratly for the same amount of CPU), by using the

weights of all trial values:

]:/xmaxf(:c) de = /m (@) 0y da

Frmin win (@)
— / w(z)f(z) dx
But, f; fYx)dz/1, = A, so fUx)dx = I, d\
' 1
= / W\, d\ = T, w = I, {w)
0 Ttrial ;

And the one standard deviation uncertainty is,

(5_1)2 L (w?) = (w)?

I B Ntrial <w>2

o /
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Generating random numbers according to the
Gaussian distribution.

There are 2 ways to handle this special case.

1) Central limit theorem

“The sum of alarge number of random numbers
will approach a Gaussian distribution”

For auniform istribution from 0 to 1,
the mean valueis 1/2

and the variance is

o'= | (x-1/2)" dx = 1/12

S0 just add 12 random numbers and subtract 6.
The mean will be 0 and the variance will be 1.

Thisagorithm is coded in RG32 in the
CERN library.

o /
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2) 2 D gaussian

Consider the 2 dimensional Gaussian dist:

f(x,y) dx dy = ™" dx e dy
— e-(x +y9)/2 dX dy

let r=x"+y" and O=tan’ y/x
then, dx dy =rdrd6
f(r,0) dr d6 = e " r dr d®
Let u=r/2 thendu=rdr
f(u,0) du d6 = e" du d6

Soc?enerate u between 0 and < according to e
and 6 between 0 and 2r (uniformly):

u=- Iog(1 A,)
r=(2u) "
O=2mA,

X = r cos(0)

y = r sin(0)

This is coded in the CERN library function,
RANNOR, but a method 5 times faster is
available in NORRAN.

o
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Multidimensional Simulation.

Simulating a distribution in more than 1
dimension:

If the distribution is separable, the variables are
uncorrelated, and hence each can be generated

as before:

For example, if f(x,y) = g(x) h(y)

then generate x according to g(x) and y
according to h(y).

Otherwise, the distributions along each
dimension needs to be cal cul ated:

¥ max
D)= [, toxy) dy

Typically, you will need to choose an
approximation of the distribution, f{x,y) so the
integrals, | f{x,y)dx and | f{x,y)dy are
Invertable. The weights for trial events are given
by, w = f(x,y) / f{x,y) and theintegral can be
evaluated as before, using the weights of al trial
events. (Event =x and y pair)
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imulation of Compton Scattering

The energy of the final state photon is given by

k

K= 1+ (k/m)(1 — cos0)

The differential cross section 1is:

do o (KN [(K k .,
9 2 \%) kT o

O. Klein, Y. Nishina, Z. Physik, 52, 853 (1929)

The angular distribution of the photon is:

042

o(0,¢)df dg = o x

K\® (K K\ o0\
((?> +(E) —(?> sin 9) sin 0 df d¢

The azimuthal angle, ¢, can be generated independantly
\from 0, by simply: ¢ = 27w \.

~
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To generate the polar angle, #, an approximation is needed.
Note that for k£ > m, the cross section is sharply peaked at
small angles. Also, note that k' < k, so the second term is

the dominant term in the cross section formula.

A good approximation to the cross section is,

o [k
o(0,0)d0dd — ﬁ(?> sin 0 df de

o k

—1

where u = (1 — cos ).

u is generated according to:
AN

(1 + 2—) —1
m

Be careful when £ < m; this procedure would not generate

m
U= —

k

u properly, due to roundoff errors. Similarly, it is much
better to generate u = (1 — cos#) than cos 6, when there is a

pole at 6 = 0.

o /
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Write a Monte Carlo program that generates
Compton scattering events.

The program should ask for the number of events
to generate and the photon energy. Show the
distribution of the scattering angle of the photon
(compared to the Klein Nishinaformula) and give
the total cross section (ie. use the same program to
evaluate the integral and its uncertainty) for the
following four cases:

k=5 keV, k=2 MeV, k=1 GeV, k=1 TeV

In each case generate 10000 events.
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Solution to Exercise 9:

xsec=6.525+/-0.012 x 10-25 cm**2

160 [
140 [
120

100 [

60 [
0 -

20 [

e b e b e b e b e e b v e e By
0 0.4 0.8 12 16 2 24 2.8

angular dist 5 KeV

xsec=1.117+/-0.001 x 10-27 cm**2

1200
1000
800

600

200

angular dist 1 GeV
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Photon transport in matter

With this program, and others that simulate the
photoel ectric effect, pair production, etc., you
could produce a program that ssimulates the
Interaction of photons with matter:

Algorithm:

Break path into small steps:

For each step decide if an interaction takes place
(given the total cross section for each possible
Interaction).

Simulate the interaction, ie. give photon new
momentum vector or possibly produce an e'e
pair, which then would be followed, etc.
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Such programs already exist. For example:

EGS (SLAC)
GEANT (CERN)

You may use these to simulate photon transport
In aparticular sample you are testing or to
simulate the response of your detector.

Detector response

It is often sufficient to simulate the general
properties of your detector: efficiency, resolution,
bias, offset.

Efficiency

From measurements from well understood
sources, the effiency asafunction of energy
(and maybe position) can be found.
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For example:

A Once ¢ is known,
select events that are
€ missed with a
probabilty of e:

> If A>¢ theneventis
E not observed.

Resolution, offset

Again, these can be
measured using well E
understood sources:

< ‘ >
EOffSEt Emeas - Etrue
E - Etrue + Eres Gx + Eoffset

meas
$_ Gaussian random number

Background, noise

Simulate the observed energy distribution
when no source is present.

o
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Part IV: Statistics for Physicists'

Experimental M easurements and
Uncertainties.

The result of an experiment that measures a
parameter, X, isusually given by:

X=axo

alisthe most probable value

o specifies the uncertainty in the
measurement (sometimes called
the error)

The probability distribution of the measurement

Is usually assumed to be a Gaussian distribution.

Hence the total probability that the true values
lies within the range (a-c, ato) is 68%.

Thisiscalled inverse probability by
mathematicians. Physicists use theterm
probability for both direct and inverse
probability.
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721 Random and systematic uncertainties

Random (statistical) uncertainty:

due to the inherent randomness of the
process being measured.

Systematic uncertainty:

due to the uncertainty in the behavior of
the experimental apparatus

Example:

A measurement of the activity of aradioactive
source: Count the number, N, of signalsin a
detector covering the solid angle €2, with
efficiency €, over aperiod of time T.

Statistical uncertainty: uncertainty in the N. For
large N, the probabil igy distribution follows a
Gaussian witho =N **

Systematic uncertainty: T, Q, and € are not
known with perfect precision.

o
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Genera comments:

* Two measurements often suffer common
systematics, whereas never share statistical
error, hence one often treats statistical and
systematic errors separately.

o Itisusualy difficult to characterise the one
standard deviation systematic uncertainty.

* Most experiments are designed so that the

systematic uncertainty is smaller than the
statistical uncertainty.

Determining systematic uncertainties

If an “off-the-shelf” instrument is used, the
manufacture may quote an uncertainty based on
the precision observed for many copies of their
Instrument.

Otherwise, some calibration of the instrument
can be done to a precision limited by a statistical
Process.

o

/

Dean Karlen/Carleton University Rev. 1.3

1998/99



Dean Karlen/Carleton University Rev. 1.3 1998/99



Physics 75.502 Part IV: Statistics for Physicists 193

4 N

Central limit theorem

If X are a set of n Independent variables of mean
u and variance c°, then for large n:

y=2x/n

will tend to a Gaussian with mean = 1 and
variance = ¢°/n

Thisistrue even if x. come from dlstrlbutlons
with different means . and variance ¢,”;

Inthiscase mean = Xu/n andvariance = Xc.’/n

o /
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Combining errors: general case

X and y are measurements of parameters with true values

oy Hy thena

d B,

If the measurement of x and y is based on n measurements,

the variance of f over those measurements is,

o} = %Z(f(afi,yi)—f(ﬂxaﬂy))z

1 | , (OF\°
- (ajz_:ux) (8_513> +

1 | , (OF\°
- i(yz—uy) (a—y> +
2 af of
" i (xi—ﬂx)(yi—ﬂy)a—xa—y
Of\? Of\? of 0
= o? (8_:];) —|—0§ (8_£> —|—2COV(£IS,y)a—:];a—g];
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The generalisation to m dimensions, where

f=flz1,29,...;xy) is:

Jy; Iy,
Z Z oz, &cjb a

a=1 b=1

o

=1 j3=1
where, Vj; =< (z; — Z;)(z; — &;) > is the error matrix.
To change from variables x1, s, ..., z,, to
Y1,Y2, ..., Yn the error matrix for the y variables is
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Example: Gaussianin2 D

If X and y are two uncorrelated variables, then
the probability distribution P(x,y) isjust the
product P(x)P(y). In the case of Gaussian

distributions centred on the origin:

PO.y)=(2ro,0,)" exp(-(xIo, +yc,)2))

The contour of constant probability inthex 'y
planeis an elipse whose axes are aligned with

thex andy axis:

Example, contour at probability reduced by ™

A

il R
S

2

/
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To introduce a correlation, rotate the variables:

Then

P(z',y) = 2nopo,) (1 - pz)_l/2 X

cap(—( (0% + /0% — 2p'y (G ))/(2(1 — )
where p = V1, /(040,) is the correlation coefficient

lp| < 1; and p = 0 corresponds to no correlation

tan2¢ = 2po, 0, /(05 — 0.))

o /
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Exercise 10

Generate 1000 events of uncorrelated (x,y) values, each

given by a Gaussian distribution with
pey =1, 0, =2, pu,=2, o,=0.5

Show a scatter plot of the data. Calculate the error matrix,
V', and p and ¢ for this data set. Consider the function
f(z,y) = bx + 8y. Evaluate the variance of this function
directly using the data set, and also by using the equation

using the error matrix.

Now rotate the same events by ¢ = 30° (about the center of

the distribution, not the origin), and repeat the above

exercises.

10 10

8 — 8

6 — 6 —

4 - 4 -

2 2

0 0

2 b 2 =

4 - 4 -

6 - 6

8 8 =

0 Bl by g0 B by b
-10 5 0 5 10 -10 5 0 5 10

Uncorrelated Correlated
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Confidence intervals

f()

If 6 is aparameter we wish to determine from
a sample of n measurements,

X;, X, ... X, We form an estimator,

t = t(X,X,...,X).

tiIsarandom variable. That is, if the
experiment was repeated severa times, we
would find the the value of t would follow
some distribution function, f(t):

A

L,

t

It [* f()dt=y, then P(t.<6<t)=y
t,

Some say “ The probability that the true
value, 0, iswithin therange [t,t,] iSYy.”

Not really!

/
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The distribution of the true value, 6, isadelta
function at t=6. (ie. 6 is not arandom variable).
Hence the probability that the true value is within
therange [t t] is1if t <0<t andis O otherwise.

Proper interpretation of P(t.<06<t,)=yisthat if you
have alarge number of samples of sizen (ie. the
experiment is repeated many times) then t <0<t,
for 100y % of the experiments.

Example: Gaussian distribution

L i1s an unknown gquantity, X is ameasurement of L
It isarandom variable that has a normal
distribution about a mean value u, with variance ¢*

Then, z=(x-w)/c isarandom variable distributed
according to the unit Gaussian, G, ,,(2)

Then, for example,
P(-2 < (x-w/o < 2) = J,2 Gy, (2) dz = 0.954
which states the probability of |(X-w)/c|<2is95.4%

o /
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The expression can be rewritten as:

P(x-20 < u £ x+206) = 0.954
which apparently treats u as arandom variable
and [x-20,x+2c] asafixed interval.

| nstead:

[X-26,X+2G] isarandom interval, and the
statement says that the probability the interval
contains i is 0.9%4.

Gaussian confidence intervals (1D)

Theintegral | = |, G,,,(2) dz is given below:

C I

1 0.683
1.5 0.866
1.64 0.900
1.96 0.950
2.0 0.955
2.58 0.990
3.0 0.997

o /
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What if some measurements arein anon
physical region? (eg. m,’<0).

Classical approach

To determine a confidence interval, proceed as
before:

™ G(mPdm? =y

The probability of theinterval [-eo,m "] to
contain the true m,”is .

Quote result as m,<(m,’)™ at 100y % confidence
level.

One usually chooses y to be large enough so that
m,>0!.

Note that a precise experiment and an imprecise
one with a statistical fluctuation can give the
same limit!
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Classical Approach
Classical Approach 95% C.L.
004 —
0.035 -
0.03 -
0025 -
0.02 -
0.015 -
: o
001 - oo
TS
00% RO
oo
RS
. ‘ LR ‘
-600 -400 -200 0 200 400 600
m; (ev?)
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Bayesian approach

Multiply the result of the experiment, L(x|6), by
the prior belief function, Q(6),

where Q(6)=0 in the unphysical region,

In order to obtain the posterior density function,

R(x|6)=L(x|6)Q(6)

The particle data group suggests this method
with Q(0) taken as a constant in the physical
region. and R(x|6) is normalised so that

] R(x|6) dx =1

Thisisaconservative approach In that the
probablllty that the range [0,m,] contains the true
m’is> 7.

But it is not possible to combine the results of
experiments that just quote a mass mterval and
confidence level. It is better to quote m* and G, -.

See F.James, M .Roos, Phys.Rev.D44, 299 (1991)

o
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Bayesian Approach

Bayesian Approach 95% C.L.

006 —

005 —

004 —

003 —

002 -

001 —
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Estimation of parameters

General Problem:

Given n observations, x;, one wants to describe
the underlying (or parent) distribution. The form
of the parent distribution may be known but may
have a number of unknown parameters, 6. Then
observations should be used to determine the
parameters, 0,, as accurately as possible.

Definitions:;

estimator: afunction, t, of the observations used to
determine the unknown parameter ©.

estimate: the resulting value of the estimator, 0

o /
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Properties of good estimators.

A good estimator must have the
following properties:.

 should not deviate from true
parameter value in the limit of large n

e accuracy should improve with larger n

|n addition:

* should be centered around true parameter
value for al n (For example, X~ = 2x./(n-30)
does not satisfy this criterion.)

 should exhaust all the information in the
data x.

e should have the minimum possible
variance (For example, the mean has a
smaller variance than the median.)

 should be robust so as not to be sensitive
to background or outliers

o /
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Maximum Likelihood M ethod

It isvery powerful and general method of

@P Parameter estimation when the functional form

of the parent distribution is known.

For large samples the maximum likelihood

&3 (ML) estimators are normally distributed,

hence the variances of the estimates are easy to
determine.

Even for small samples, the ML estimators

3 possess most of the “good” properties.

Likelihood function

Given n measurements, x,, of a quantity with
probability density function f(x|0)

X max

(ie. ] .~ f(x|0) dx = 1for all 0)
Then, L(x,X,,...,x,|0) =11 f(x,0)

Each x. could also denote a set of measurements,
and 0 could be a set of parameters.
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The estimate 6 is that value which maximises L

Since L and InL attain their maximum values at
the same point, one usually usesInL, since sums
are easier to work with than products:

InL =% In(f(x/0))

Normally, the point of maximum likelihood is
found numerically.

Simple example: Gaussian parent distribution

If the parent distribution of x, is G(u,o,”) then,
L(x|u,0,) = IT (2r) o "exp(—(x—1)’/26.°)

To estimate |,

alnL/ou |, = a/ou Z(-In(2nc?)/2 — (x—w)7267) |, =0

0, (X~ )o’=0 =l =X (x/c”) /X (Vs

so the ML estimator of the population mean, is the
weighted mean.

o /
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Properties of Maximium Likelihood estimators

Invariant under parameter transformation

The choice of parameterisation is arbitrary:
If 6 isthe parameter, dL/00 |; =0

If instead some function of 6 is used, t(6)
dL/d6|; = (dL/dt dt/dB)|; =0 = dL/dt |, =0

Consistent

estimators conver ge on true parameter

Unbiased

sometimes biased for finite samples. Note: 0
may be unbiased but t(6) may be biased.

Efficient

If asufficient estimator exists, the ML
method produces it, and this will give the
minimum attainable variance.

le. You can’tdo better than this.
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Variance of ML estimates:

—

L(Z,0) = L(z1, .y 2|01, ..01) = [ [ £(21,0)

If the estimates can be written as functions of z;, then the

error matrix for 6 is
Vil0) = [ (=006, - 0,)(2.0)d

which could be found without using any data.

If only a single parameter (and sufficient)

A A YA
- (22
002 0—i

Note: this is easily shown for normally distributed

X~ ex _(Q_é)2
£ p( 2V(é)>

9%1In L 1

002 V(é)

estimates:

o /
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Example: variance of the weighted mean

DY Y-
= =n 1
2ie1 32

?

| a

)

Recall the log likelihood function is

—~| 1
InL = Z [—5 In(2707) —

=1

DN | —
N
&
Q0
=

Then, the variance is,

In the case where 0; = 0, Ay =0/y/n

For multiparameter large sample estimates,
% 0%In L
Vile) = (-5
J 891893 -*:5*

- )7 (@) )

o

—1
02 1n£>_1 1
V 1) = — = —_—
" ( Op p=fi (E 012)
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Graphical determination of
the ML estimateand error.

This method can be used for 1 or 2 parameters
when the ML estimate and variance cannot be

found analytically.

One parameter

Plot InL as a function of 6 and read off
the value of 9 at the position where L
ISsthe largest.

C

= SOMetimes there is more than one peak.
W= Take the highest one.

@ Uncertainty is deduced from the positions
where In L isreduced by an amount 1/2

Note that for a Gaussian LF,
InL=InL, —(6—6)¥2V(6)
30,
INL(6+V(6)*) =InL,—~1/2

o /
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The formula,
InL® +V(6)?)=InL_-1/2

even applies for a non-Gaussian likelihood
function.

Proof:

Change variables to g(6), which produces a
Gaussian distribution. L isinvariant under
parameter transformations.

If the likelihood function is asymmetric (typically
the case for small sample size) then an
asymmetric interval about the most likely value
may result. In this case the measured result
usually quoted as:

1.23 702

for example.
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Examples of Likelihood distributions
Central Values and 1 ¢ intervals are shown:
—<0.035 - —~0.035 -
=] N Q C
e} = o) L
S 003 [ /N S 003 [
= : [ = :
0.025 |- | 0025
0.02 F \ 002 /
- - /
0015 |- / \ 0015
= / \\ = /
001 [ / \ 001 /
L / \ [ /
C // \ C /
0005 [~ / \ 0.005
O;k%‘\\\\\‘\\\\#\u\\ O:_A/\\‘\\\\\\‘\‘\\\
0 2 4 6 8 10 0 2 4 6 8 10
Saushian Non-Gaussian
g 3 o 3F
=] E | <} =
—g -35 E / § -35 -
=} = S H —
E 4 = / \E/ 4 =
45 — / \ 45 £ /
- / \ - /
5= \ 5=/
r / \ o /
55 - | \ -55 |- /’
C ’r" \ C
-6 \ 6 /
65 | \ 65 | \
-7:\”‘\\‘\\\\\‘\\\\‘\\\ _7:\/“\‘\\\\\\‘\‘\\\
0 2 4 6 8 10 0 2 4 6 8 10
Gaussian (In) Non-Gaussian (In)
Dean Karlen/Carleton University Rev. 1.3

1998/99



Physics 75.502

Maximum Likelihood Method

217

-~

o

Two par ameters

Given L(x|6,,6,), plot contours of constant
likelihood in the 6,,6, plane.

Often there may be more than one maximum, if
oneisn’'t much lamger than all the rest, then an
additional (different) experiment may be needed to
decide which of the peaks to take.

To find the uncertainty, plot the contour with In L
=InL_,—1/2 and look at the projection of the
contour on the 2 axes.

correct method Incorrect method

62 N N
0,
0,+A8,
0, <f/ ///////>

8,-A8, .
A _ A A A A, e -
0,-A0, 0, 0,+A0, 1 (4]

1
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Using the correct method, the uncertainties do
not depend on the correlation of the variables:

A=
6,40, &/

520 b b64a O

For atwo dimensional Gaussian LF, the probability
that the range (6,—-A06,,0, +A6,) contains 6, is still
0.683.

The probability that the ellipses of constant
InL=InL__- acontainsthetrue point 6, and 6., is
given in the following table:

a o Y
05 1 0.393
20 2 0.865
45 3 0.989
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If the LF contours are very irregular so that a
transformation to a 2D Gaussian is not possible,
or If the contour consists of more than one
closed curve, it is probably better to show the
LF contour directly, instead of quoting any
Intervals.

If there are 3 or more parameters, larger samples
are necessary to have the LF to be Gaussian.

A general maximisation (minimisation) program
will be necessary to find the estimate and the
uncertainties.

A good program widely used in HEP is MINUIT,
In the CERN library.

Theroutines, BRENT and POWELL, from
Numerical Recipies can be used for ssmple
problems.
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Generalized Likeihood function

If the total number of events expected isa
function of 6, v=v(0), and n events are observed,
then

L(n,x|6) = P(n,v)L(x|0)

where P(n,v)=v"e"/n! is the Poisson distriubtion.

In problems where the shape of f(x|0) is of
primary interest, this modification will gain little
In the precision of 6 .

Using likelihood on binned data

If the sample is very large, and f(x|0) is complex,
computation can be reduced by grouping the mmple
into bins, and write L as the product of the
probability of finding n entriesin each bin i
(multinomial distribution)

L(n,N,,...,n |8)=n!TI(n!)"p"

p, is the probability for bini: p, = J,,f(x|6)dx
Since L depends on 6 only through p,, find
maximum of L through InL = Znlnp,(6).
Rather obvious when you look at it!
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There will be some loss of information by
binning the data, but as long as the variation in f
across each bin is small, there should be no
great lossin precision of 6 .

Using weighted events

Recall that if the efficiency, €<1, then you need to
correct each event by the weight, w=1/¢.. Then
InL(X|0) = X w, In f(x|0)

Combining results from two experiments

Suppose two independent experiments designed to
measure the same parameter 0, result in two
measurements x and y. If L(x|e) and L(y|[6) are
approximately Gaussian, then just use the weighted
average.

Otherwise, use the product of the likelihood
functions:

L(x,y|6) = L11,(x|0)I1T,(x|6)=L(x|8)L(y[6)

o
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Exercise 11

Consider an experiment that is set up to measure the

lifetime of an unstable nucleus, N, using the chain reaction,
A— Nev , N — Xp

The creation and decay of N is signaled by the electron and

proton.

The lifetime of each N, which follows the p.d.f, f = %e‘t/T,

is measured from the time between observing the electron

and proton with a resolution of o;.

The expected probability density function is the convolution

of the exponential decay and the Gaussian resolution:

<t t>2

f(t|r, o¢)

/ V2roy T
1 (0? t) . ( oy t )

= —eX —5 — — | eric —
TP g V2r Vo,

o /
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Exercise 11 (continued)

Generate 200 events with 7 = 1 s and 0,=0.5 s. (Use the
inversion technique followed by a Gaussian smearing.) Use
the maximum likelihood method to find 7 and the
uncertainty, o;. Plot the likelihood function, and the
resulting p.d.f. for the measured times compared to a

histogram containing the data.

Automate the ML procedure so as to be able to repeat this
exercise 100 times, and plot the distribution of (7 — 7) /0
for your 100 experiments and show that it follows a unit

Gaussian.

For 1 data sample, assume that ¢; is unknown, and show a

contour plot in the 7, 0; plane with constant likelihood,

InL =InL.x — 1
2

o
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Solution to Exercise 11:

24 — [
20 —

16 —

12 -

observed times

Exercise 6: Negative log likelihood

700
600 |~

500

300

e b b b T e e b b b v b as
0 0.25 0.5 0.75 1 125 15 175 2

278
277 ;
276 ;
275 ;

274 |

2713 |
08 08 09 095 1 105 11 115 12 125
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Exercise 6: 100 repititions
2

L X 0.5869
Constant 8,239 £ 1.248
[T - Mean —0.9613E—-01+ 0.9596E-01
Sigma 0.8618 + 0.9673E-01
10 —
8 - F—L j
6 U
4 =
2 =
0 L ol b b e [N L
-4 -3 -2 -1 0 1 2 3 4
residual/error
Exercise 6
0.68
0.64

0.6

0.56

0.52

0.48

0.44

04

0.36

0.32

0.85 0.9 0.95 1 1.05 11 115 12

o
[T TT T T

Log likelihood (sigmat vstau)
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TheLeast Squares Method

The most frequently used method, but has no
genera optimal properties to recommend it.

For problems where the parameter dependence
Islinear, the Least Squares (L S) method
produces unbiased estimators of minimum
variance.

Method

At observational points x,,...,X, We measure
experimental valuesof y,,...,y,. Thetrue
functional form is defined by L parameters,
f.=1(0,..0)

To find the parameter estimates, 0.,,...,0,,
minimise X*=Xw,(y-f)’, wherew. is the weight
that expresses the accuracy of y..

If constant accuracy, w.=1,

if accuracy for y, given by o, w=1/

If y. represents a Poisson distributed random
number, w=1/f. (or sometimes w=1/y,).

o /
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If the observations are correlated then,

X* = El ]:21 (y-FIV, ()

The x, values are assumed to have no uncertainty
associated with them.

If y. are Gaussian distributed then LS is equivalent
to the ML method.

If In addition, the observables are linear functions

of the parameters, then X2, will follow the y°
distribution.

v* distribution

If x, (i=1,...,N) are distributed accordinzg to the
Gaussian with mean ., and variance ¢;*, the
quantity, x’=X(x-w,) /o has the p.d.f. given by,

f(leN) — 2—N/2F—1(N/Z)XZ(N/Z-l)e-XZ/Z O S XZ SOO

where N is called the number of degrees of
freedom.

o /
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Properties of the y? distribution

e If ry has the distribution, f(x?|N), then rx, + ry, will
have the distribution, f(x*|N1 + Na).

e The maximum of f(x?|N) occurs at N — 2 (and at 0 for
N =1).

e The mean is N and the variance is 2N

e For large N, it approaches the Gaussian distribution.

04 —

035 |
03 |
0.25: |
02 H-| |
0.15
01 }f‘

0.05 (-
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umulative y? distribution

X2
F(xZ|N) = FORN)dX? =1 -«
0

The p.d.f. of F' is uniform over [0, 1] (of course!).

The following graph shows a = 1 — F(x?2), for various N

1

10

10
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Linear Least Squares Model

If the observables are linear functions of the
unknown parameters and the weights are
Independent of the parameters, thenthe LS
method has an exact solution that can be written
In closed form. The estimates are unique,
unbiased and have the minimum variance.

Example: Unweighted straight line fit

Data p0| ntS: (X11y1)1 (X21y2)1"'1(XN’yN)
model: f, =0, + X0,

minimise X” to find the estimates:

é z"Xiz Zyi B inyi 2X
N 2x° - (Zx.)’

é = N inyi - 2X Zyi
N Zx*- (Zx.)°

o /
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The N measured quantities are given by vy, the expectations
by fvvhich depend on the L parameters, 5; fi = Aiby.

eneral Weighted Linear Case

For example, f; =601 4+ x;65 + :13@293
If the error matrix for ¢ is given by V', minimise
X2 = (7 A0)TV (7~ A0)

which has the solution for the estimates and error matrix,

A
—

0= ATV ATV V(0) = (ATv Ay

Polynomial fitting

For high order polynomials (> 6), roundoff errors may cause
serious numerical inaccuracies. It is better to use
orthogonal polynomials, since the error matrix is diagonal

and easy to invert.

Take as a model,
L
fi=) &lwi)we
/=1

where &, are orthogonal over the observables,
N
Z En(i)ée(zi) = O
=1

o /
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Degrees of Freedom

If y; are Gaussian distributed with true mean »; and

variance o7, then

=1
follows a x? distribution with N degrees of freedom.

But n; are unknown. If we instead use 7); (the result from
the LS minimisation to a linear model with L independant

parameters), then

N Ui — 2
) A
Xmin — § : ( @ . @>
; g
1=1
is distributed according to the x? distribution with N — L

degrees of freedom.

This can been proven by showing that for a linear model,

X2. can be expressed as a sum of (N — L) independant
terms each being the square of a Gaussian distributed

variable.

o
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Non-linear Least Squares Model

e one cannot write down a closed form solution; must find

minimum by numerical methods

2

min

unknown distribution, but for large N approachs the y?

e usually produces biassed estimates and X . follows an

distribution.

Estimate of o2 in the linear model

Recall solution of linear model:
0= (ATVrA) T ATV g

so to determine the estimates, V' needs only be known to a
multiplicative factor. That is, writing V(¢) = r*V,.(¢), only
V, needs to be known, and r is some unknown constant.

But in order to determine the variance of the estimates,

V(g) = (ATV=1A)71 V has to be known absolutely.
Since X2

2. follows f(x?|N — L), one can estimate the value

of 72 from the data using,

r’ = Q?nm/(N - L)

with V replaced by V)., and where L is

the number of parameters in the linear model.

o /
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Goodness of Fit
Since X2

min

follows a known (x?) distribution (for a linear
model with Gaussian distributed observables), the value of

X2

>. obtained in a particular case is a measure of the

agreement between the fitted quantities n and the

measurements y.

A larger X2

., corresponds to a poorer agreement. The

probability of obtaining a value of X2. or larger is

min
00

Pag, = [ FOCIN) & =1 F(X2, V) =a

where F' is the cumulative distribution.

PX2

min

has a uniform distribution over [0,1].

e If in a series of similar minimisations, Pyx2 1is

min

non-uniform, then the model or the data (or both) may

be flawed.
o If PX2

min

peaks at low (high) probability, the
measurement uncertainties may have been over-

(under-) estimated

o If large value of Py> is due to one of the

min

measurements, should examine that measurement in
detail.

o /
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Application of L S method to binned data

If the datais split into N bins, with n, entriesin
bini, and p,(e) IS the probability of an event to
populate bini,

then the expected number of eventsin each binis
given by,

f.=np wheren= iNglni

If the number of binsislarge enough, the error
matrix is diagonal and the LS method reduces to
minimising

X* = % (ni'fi)Z/Gi2 = Ei (ni_fi)zlfi
which can be done numerically.

Sometimes o,” is approximated by n,, but the
estimates 6 found this way are more sensitive to
statistical fluctuations. (For large sample sizes the
two choices give the same result.)

Since 1 degree of freedom has been lost due to the
normalisation condition, =n=n, X . would follow

f(x’IN-1-L) if the model consisted of L
Independent parameters.

~

/
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Choice of binning

Two common choices:

e equal width
o equal probability

Must not choose the binning in order to try to
make X2, assmall as possble' In this case X®
would no Ionger follow the * distribution.

It IS necessary to have several entriesin each
bin, so that (n-f)/f."* approximates a unit
Gaussian. It Is customary to require a
minimum expectation of 5 entries per bin. The
bins that contain less than this number can be
Ignored or combined to make larger binsin
the less probable regions.

o /
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Using LS method with biased data samples

Some data samples may not reflect the true
underlying distribution because of unequal
detection efficiency for each event.

The best method to deal with thisisto modify
the theoretical model to account for the
detection efficiency. Then no modification of
the least squares minimisation is necessary. If
thisis not possible, then you can do either:

1) Modify n.: If the detection efficiency for event |
Inbiniise,, then

11

and minimise, X*=X", (n/-f)/f
2) Modify f: f/=f D, whereD=n"X ¢,
and minimise X* =%, (n-f/)/f/

These alternatives work reasonably well when the
variation of the weightsis small. Otherwise the

(For example, by including large weight events, the
estimated variances can actually increase.)

o

uncertainty of the estimates will not be well defined.

/
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Linear LS estimation with linear constraints

Often it turns out that the true values, 1 , are
related through algebraic constraint equations.
The observations, y , do not strickly satisfy these
contraints, but one wishes to form estimates, 7j
that do. The variance of these estimates should be
smaller than if the constraints were not taken into
account.

Two methods exist: elimination and Lagrange

multipliers.

Example: 3 angles of atriangle

Elimination:

model has 2 parameters, 1n,, 1, and minimise:

Xz(ﬂl,ﬂz) - (yl_nl)2/612 "2_ (yg'nz)zlgzz +
(ys'(n'nl'nz)) /63

o

/
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L agrange multipliers

To solve this problem with Lagrange multipliers,
minimise the distribution:

X*(M.MMe) = 2 (ym) 7o, + 2MEn,-n)

In generdl, if BO-b =0 represents K constraint
equations (B isa KxL matrix) then minimise,

X3(0,1)=(y -A8Y V(y-A0)+21."(BO -b)

The solution to thisis given by,
6 C'c-C'B'V; (BC'c- b)

and

o /
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Confidence interval s from the LS method.

When the theoretical modd islinear in the
parameters, we are able to write down the
solutionsfor § and V(6). The  expression for
X? can be rewritten as:

X*(6) = X,., + (6- 6) V(0)(6 - 0)

One can also write a Taylor expansion about the
minimum, by comparison with the above, yeilds
the estimate

V,(0) =2 (9°X°/06,00))"

The confidence intervals are then given by the
region within the “éellipse”

Xz(é)) - szin + a

1 and 2 parameter case:

a vy (@pa) v(2par)
1>  0.683 0.393
2 0.954 0.865
¥ 0997 0.989

/
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Hypothesis Testing

Instead of estimating an unknown parameter, the
results of an experiment may be used to decide

whether the theoretical model (with no unknown
parameters) is acceptable, given the observations.

Example: Suppose amodel estimates the lifetime of the
nucleus in Exercise 11 to be t,. Is the data compatable with
the model ?

Notation: H, : t=t, (null hypothesis)
H, | 1#1,

Thisis an example of a parametric test which follows the
idea of confidence intervals. Examples of non-parametric
tests: is the underlying distribution consistent with the
model ? (thisisanswered by goodness-of-fit tests); are the
two experimental distributions of the same form ? (can be
studied with distribution-free tests.)

Typically, the hypothesis cannot be proven true or false, but
one can determine the probability of obtaining the observed
result, assuming the hypothesis was true.

Hypothesis testing may also be part of the data analysis, for
example to decide if each event isdueto signal or
background process.

/
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General concepts and terms

Suppose two hypotheses imply two different
choices of the parameter 6:

H, : 6=0,
H, : 6=0, (simplehypothesis)
or
H, : 6>06, (composite hypothesis)

Assuming H, istrue, we can define aregion, R,
from the complete sample space W, such that the

probability that xe R is o, a preassigned number
(usualy o<<1)

R isthergection (or critical) region for H,
W-R isthe acceptance region for H,

o Isthesignifigance or size of test

X, Isthecritial value that separates R:

N

f(x]60)

o b -

Dean Karlen/Carleton University Rev. 1.3

1998/99



Physics 75.502 Hypothesis Testing 243

4 N

o, if x> X, wergject hypothesisH,, and
otherwise accept it. It isclear that in 1000 % of
all decisions, H, will be rgjected when in fact it
should have been accepted. Thismistake is called
aTypel error (or error of the first kind). A Typell
error occurs when H, is accepted, when in fact it

was false.:
A
f(x|0,)
X, X
A
f(x[6,)
B 18 >
X X

1-B isthe power of the test, the probability of
rgiecting H, when it is false.

We wish to choose X, so that the number of Type
| and Type Il errors are as small as possible.

o /
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Neyman-Pear son test

Thisis amethod to choose x_, when both H, and
H, are ssimple hypotheses. (ie. 6 can take only two
possible values, 6, or 0,).

o= J, f(x|6,) dx
1-B = . f(x]6,) dx

f(x|6,)
5 f f(§|eo) f(x]6,) dx

Given o, we want to find the region R which
maximises 1-3. To do this take the region in which

f(x[9,)
f(X[6,)
Isthe largest. That is define R as the set of points
satisfying
f(x|6,)
fxioy X
where k is determined from .

If the experiment consists of a series of
measurements X , replace f by L(X [0)=I1f(x;|6)

/
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Likelihood ratio test for composite hypotheses

Denote the total parameter space: €2

H, places some contraints on some of the
parameters iefcm (@ Isasubspace of €2).
Given the observationsx_, formthe
likelihood function, L = iHlf(Xile)

If the maximum of L in overall spaceis L(fz )
and in the subspace ® is L(® ) then the
likelihood ratio is,

_ L)
L)

0<A<1

If A= 1thenitislikely that H, istrue and
If A= Othenitisunlikely that H, istrue. So define
acritical regionfor A: 0 <A <A,

where 0. = J,* g(AH,) dA

If g is not known but the distribution of some
function of A is known, then take

y(A)
o=, h(ylH,) dy

If the sample islarge, we can use the asymptotic
behavoir for likelithood ratios. If H |mposesr
constraints then -2 In A is distributed as a Y’
distribution with r degrees of freedom.

~
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Exercise 12

Apply the likelihood ratio test to the hypothetical
experiment defined in exercise 11. Suppose G, is
unknown and we want to test the hypothesis that
T=T,~1S.

H, : T=1, H,:T#7,

Q isgivenby 0<1<eo , 0<0, <o
® isgiven by T=1,, 0<0, <o

Define A = L(o )/L(Q)

Show the distribution of -2 In A (for the 100
repititions of the experiment) and compare thisto
the y* distribution with 1 degree of freedom.

Note: InA =InL(®) - In L(f)) iseasier to
compute than A.

What is the rgjection region if the size of the test
(o) isto be 10%? How many trials of your 100
experiments fail thistest?
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Solution to Exercise 12

Exercise 12

35

30

25

20

15

10

O I ‘ I N ‘ | I — ‘ | |
1 2 3 4 5 6 7 8

o

-2 In likelihood ratio

o /
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Parametric tests for Gaussian variables

If X, are measurements from a Gaussian

distribution, G
hypothesis:

Hot 1=y

the alternativeis,

» We may want to test the

(w,0%)

(U1, IS some number)

H, g

If 6 isknown, then form the variable,
<x>=2x/n andif H,istrue,
d=(<x>-u,)/(c/~Vn) would follow the standard
Gaussian G,,,. Would likely reject H, if d>>1
or d<<-1, 50 define the rejection reglon

<€

A

al2

>

If ¢ isalso unknown, then (<x>-,)/(s/\Vn)
follows the student-t distribution.

~
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/Comparison of means: 2 Gaussian \
distributions

Suppose & and ¥y represent n and m measurements

and G(

distributed according to G respectively.

fs037) Hy03)

If 0,0, are known

r and y have distributions: G, G SO

oo fn) Gluy.o2 fm)s

the variable
(Z —7) — (e — 1ty)

\/ag/n—l—ag/m

will be distributed according to the standard

Gaussian, G (g ). To test if pu, = u, use

(= 9)/\/o%/n+02/m

and proceed as before.

If 0,0, are unknown but equal

Use d = (Z — §)/+/s2/n + s2/m where

2

and d follows the student t-distribution with n+m-2

\degrees of freedom. /
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If 0,0, are unknown

If the sample size is large enough, the variable

d= (3 —g)/y/s2/n+s2/m

will follow the standard Gaussian, G(y,). For

example if two experiments quote the results =z + Az

and and y &+ Ay, then use

T —y
V(Az)? 4+ (Ay)?

to test if they are compatable.

To compare several experimental results: z;, Ax;

If the hypothesis:

Ho ' 1 =pa=ps...

is true, then

>y (2= 7)’
X* = -

; Az?
(where Z is the weighted average) should follow the
x? distribution for N — 1 degrees of freedom. The
cumulative y? distribution can be used to calculate

the rejection region.

o /
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Sgnificance of signal above background

For example, suppose a spectrum from an x-ray
source was seen to be:

|sthe effect at E, real or just a statistical fluctuation?

We can ask;

What is the probability that a statistical
fluctuation of the background could produce an
effect as large (or larger) than the one observed at

thevalue E,?

What is the probability to observe such a
fluctuation at any position?

/
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ANSWErS.

N = total number of countsin [E_E,]
B = total amount of background in [E_E,]

Hypothesiss H,: N=B

Assume B and V(B) are known (theory or
sidebands). N is distributed according to Poisson
distribution, so under assumption at N=B,
V(N)=N=B

then, V(N-B) =V(N) +V(B) =B + V(B)

If N islarge, approximate Poisson by Gaussian,
then use

d = (N-B)/(V(N-B))*? = (N-B)/(B +V(B))**
which follows G,

S0, P(AE=E) =], Gy, (x) o

IS the probability that an statistical fluctuation is
produced at |east as large as the one observed. It
IS common to quote d as the number of standard
deviations of the effect.

o /
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If we consider bumps extending over k bins, and
the total number of binsis n, then the central
value of abump could be located in (n-k+1)
different binsin the plot.

The probability to observe a fluctuation of at
least d standard deviations anywhere in the
histogram is:

P(d)=1-(1-P(d; E=E))™"
For large d,
P(d) = (n-k+1) P(d; E=E,)

(In HER, typically 56 signifigance is necessary
to claim the observation of a new resonance.)

o /
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Goodness of Fit Tests

Given measurements, X,,...,X., following an
unknown distribution f(x) and if f(x) isa
specified distribution, we may want to test the
hypothesis,

Hy: 1(x) =1o(x)

Asusual we form atest statistic of known
distribution and define rejection and acceptance
regions with probabilities o. and 1-o1, assuming
H, istrue.

Pearson’ sy” test

* exact for large samples only
» data are binned into N exclusive bins
* the hypothesis under test:

Ho: P=Pn P=Pa - PP

where %1 p =1

o

/
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To test whether the observed number of entriesin
each bin is compatible with the predicted
number, form the variable,

X* =2 (n-np)'mp’ = Enifng’) - n

when H, istrue, X* approximately follows the y°
distribution with N-1 degrees of freedom. (As
long as np’, is large enough so Poisson is
approximately Gaussian.)

o If H, isfalse, then X*,_ will take on larger
values, so define the rgjection region to be at the
largest values of X°.

» Remarks about the choice of binning in section
on Least squares fitting apply here.

o If the data were used to determine L linear
parameters of the model, the X* would follow
distribution with N-1-L degrees of freedom (if
the determination was done with the same
binning and found using LS or ML).

e If unbinned ML used to determine parameters,
X* no longer strictly % (N-1-L), but it is
bounded by ¢*(N-1) and ¢*(N-1-L). If N>>L,
thereislittle difference.

~
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. Kolmogorov - Smirnov test

 avoids binning of data

» superior to Pearson’ sy” for small samples
Given n observations of X, form an ordered
sample, ascending in magnitude: x,, X,, ..., X

The cumulative distribution is defined by

n

/

0 X <X,
S(X)= 193 iI/In X <x<x+1
1 X=X
A
S(X)
1-
0) | >
Xl Xn
Dean Karlen/Carleton University Rev. 1.3

1998/99



Physics 75.502 Goodness of Fit Tests

257

-~

Compare this to the expected cumulative
distribution, Fy(x):

Form the quantity, D, = max |S(X) - F,(X)|

If F,(x) is completely specified (ie. no

parameters deduced from the data), then D, Is

Large n limit:
P(D,<zNn)=1-2%(-1)"e™

whichisvalid for n> 80.

For n>100, the following table can be used to
define regection region:

P(D,<d)=1-o :

o 0.20 0.10 0.05 0.01

Independent of F,(X) = D, isdistribution free.

d | 1.07~n 1.22A\n 1.36/\n 1.63~n

o
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fip Exercise13

(2)

(b)

Apply (a) Pearson’sy” and (b) Kolmogorov -
Smirnov tests to the experimental samples
produced in exercise 11.

Compare the observed time distribution to the
model witht =15, 6,=0.5s. Todo this, make5
one-second bins starti ng at t=-1 s. Show the X*
distribution for the 100 repititions and compare to
the approprlatex distribution. What isthe
rejection region for atest of size (o) of 10% ?
How many of your 100 experiments fail this?

Compare the cumulative distribution with the model
fort=1s, 6,=0.5s Show the D, distribution for

your data. How many experiments fail atest of
size 0=10%"7
Hint: The cumulative distribution is given by:

F () = [_f(t.o)
=3 (erfe(; ) -

—oefe (g —50))

/
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Solution to Exercise 13

12

10

4 T\

O\\\‘\\\‘\\\‘\\\\\\\\\\\ =
0 2 4 6 8 10 12 14 16

¥~ test

SRR RS
-

Kolmogorov-Smirnov test

0.02 0.04 006 008 0.1 0.12 0.14 0.16 0.18 0.2

o /

Dean Karlen/Carleton University Rev. 1.3 1998/99

S T




Physics 75.502 Goodness of Fit Tests

260

-~

Test of | ndependence

Are two different properties measured in an
experiment correlated? The hypothesis under
test is then:

Hy, - T(xy) =1.(x) 1.(y)

can again beused. Thistimebinin 2 D:
the#inbini of X, binjofy, n, _Z n,

X
n,
nZn

If true probability is given by p;, then
H, : p;=p.p, forali,j

So form the variable,
X* = D) (n,-n.n./n)°/(n.n,/n)
—n{ZZn I(nn) -1

(I-D(F1)

o

Then X* follows x° distribution with # of d.o.f:
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Given two sets of measurements, (x1, ..., 2, ) and

un test for comparing 2 samples

(Y1, -y Ym ), where n < 'm, we wish to test the hypothesis,
Ho = folz) = fy(y)

To do this, make an ordered list of the combined sample, for
example
L1 L2 Y1 T3 Y2 Y3 T4 Ts

and count the number of runs (groups of elements from the
same set of measurements). If H is true, there should be a
large number of runs. To find the probability to find r runs
for two random samples from the same distribution is a
problem in combinatorics,
(o) G5

(")

n

(Goma) (oz) + G20 ()

p(r=2k) = 2

r even

p(r =2k —1) <n+m> , 1 odd
The distribution has the mean and variance,
2nm 2nm(2nm — n — m)
p = 1 Vir) =
. n—l—m+ () (n+m)?2(n+m—1)

and for large n,m (n,m > 10), d = (r — u,.)//V(r)
Qpproximafcely follows the standard Gaussian, G g 1). /
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Run test to supplement Pearson’s y* test

Recall that X? is insensitive to the sign of (n; — np?). An
additional test comes from considering the sign of this
quantity in subsequent bins and counting the number of
runs. In the case where no parameters of the model have
been determined from the data, the run test and the y?
tests are independent, and so they can be combined into a
simple test, and the quantity v = —2(In P2 + Inp(r)) will
follow x? with 4 d.o.f.

Proof: Suppose x is uniformly distributed in [0, 1], consider

u= —2lnz. To work out its distribution function:
glu)du = f(x)dz (f(z)=1)
d:lf 1 _ 14
S

This is the x? distribution function for 2 degrees of

freedom.

Given z1 and zo which are both uniformly distributed in
[0, 1], the variable u,

u=—-2(Inz; +Inzs)

will follow a x? distribution with 4 degrees of freedom.

o /
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A simulated data sample is shown below along with a

xample of Run test with y* test

distribution function that was not used to generate the data
sample. There are 20 bins shown, and the distribution
function was normalized to match the number of events in

the data sample.

60

50

40

30

20

10

O\\\\‘\\\\‘\\\\‘\\\\
0 0.5 1 15 2

The value of X? for this distribution is 25.2, for 19 d.o.f.,
resulting in P,» = 0.16, which alone gives little reason to
suspect the model. There are 7 bins with negative

(n; — np?) and 13 positive bins, with only 5 runs in the
signs, so that p(r = 5) = 0.0074 is reason to reject the
hypothesis.

The combination u = —2(In P\2 + Inp(r)) = 13.5

\corresponds to probability ~ 0.009. /
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References for Statistics

1. Probability and Statistics in Particle Physics, A. G.
Frodesen, O. Skjeggestad, H. Tgfte, Columbia
University Press, 1978.

2. Statistical Methods in Experimental Physics, W. T.
Eadie, D. Drijard, F. E. James, M. Roos, B. Sadoulet,
North Holland, 1971.

3. Statistics for Nuclear and Particle Physicists, L. Lyons,
Cambridge University Press, 1986. (Very elementary.)

4. Probability, Statistics, and Monte Carlo, in Review of
Particle Properties, Phys. Rev. D50 Part I (1994)
1271-1284.
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poldiv, 69 Conﬁdence %nterval, 200
polin2, 38 confidence intervals from LS, 240
polint, 24 conjugate directions, 84
powell, 87 conjugate gradient methods, 89
qromb, 44 consistent estimator, 211
qromo, 45 continui.ty equation, 124
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Gauss-Jordan elimination, 5
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Marsaglia effect, 150

matrix problems, 2
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normal distribution, 165
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Romberg integration, 44

root finding, 55
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singular value decomposition, 17
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