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Part II
 Numerical Methods

Topics�

� Linear Algebra

� Interpolation and Extrapolation

� Integration

� Root Finding

� Minimization or Maximization

� Di�erential Equations

References�

� Numerical Recipes �in Fortran or C� The Art of

Scienti�c Computing� Second Edition W�H� Press� S�A�

Teukolsky� W�T� Vetterling� B�P� Flannery� Cambridge

University Press� �����

� Numerical Methods for Physics� A�L� Garcia� Prentice

Hall� �����

Dean Karlen�Carleton University Rev� ��� ���	���



Physics ������ Solving Linear Algebraic Equations ��

�

�

�

Solving Linear Algebraic Equations

General Problem

There are N unknowns� xj and M equations�

NX
j
�

aijxj � bi i � �� ����M �

If N �M there can be a solution� unless there is row or

column degeneracy 	ie� singular
�

Numerical solutions to this problem can have additional

problems�

� equations are so close to being singular� that round o�

error renders them so and hence the algorithm fails

� equations are close to being singular and N is large that

roundo� errors accumulate and swamp the result

Limits on N � if not close to singular�

� �� bit � N up to around �

� �� bit � N up to few hundred 	CPU limited


If coe�cients are sparse� the N � � or more can be

handled by special methods�
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Common Mistake

A common mistake when manipulating matrices� is that

incorrect logical and physical dimensions are passed to a

function�

In Fortran for example� one might set up a general purpose

matrix as follows�

PARAMETER �NP���MP���

REAL A�NP�MP�

If a particular problem deals with � equations with �

unknowns� the logical size of the matrix is 	���
 whereas the

physical size is 	NP� MP
� In order for a function to interpret

the matrix properly� it needs to know both the logical and

physical dimensions� Fortran stores the elements of the

matrix as follows�

Physical Memory

� � � �� �� ��

� � � �� �� ��

� � �� �� �� ��

� � �� �� � �� �

Logical Array

a�� a�� a�� a�� � �

a�� a�� a�� a�� � �

a�� a�� a�� a�� � �

� � � � � �
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Typical Linear Algebra Problems

� Ax � b where A is a known N �N matrix� and b is a

known vector� The problem is to �nd the solution

vector� x�

� Given A� �nd A�� or �nd det	A
�

� If A is an N �M matrix with M � N � �nd the solution

space�

� If M � N �nd the �best� result 	least squares
�

Basic Methods

�� Gauss�Jordan elimination

�� Gaussian elimination with backsubstitution

�� LU decomposition
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Gauss�Jordan Elimination

� an e�cient method for inverting A

� � times slower than other methods not producing A��

� not recommended as a general purpose method

Method without pivoting

Perform operations that transform A into the identity

matrix��
BBBBB�

a�� a�� a�� a��

a�� a�� a�� a��

a�� a�� a�� a��

a�� a�� a�� a��

�
CCCCCA

�
BBBBB�

x�

x�

x�

x�

�
CCCCCA �

�
BBBBB�

b�

b�

b�

b�

�
CCCCCA

�
BBBBB�

� a��
a��

a��
a��

a��
a��

a�� a�� a�� a��

a�� a�� a�� a��

a�� a�� a�� a��

�
CCCCCA

�
BBBBB�

x�

x�

x�

x�

�
CCCCCA �

�
BBBBB�

b�
a��

b�

b�

b�

�
CCCCCA
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After continuing this process� one gets the following��
BBBBB�

�   

 �  

  � 

   �

�
CCCCCA

�
BBBBB�

x�

x�

x�

x�

�
CCCCCA �

�
BBBBB�

b��
b��
b��
b��

�
CCCCCA

And hence the solutions are� xi � b�i�

Note that the same method could have produced A���
That is� replace x by Y and b by the identity matrix�

AY � I

Then after performing the same operations as above that

transforms A��into the identity�

IY � I� � A��
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What if diagonal element is zero�

If a�� �  or another derived diagonal element 	such as

a�� � a��
a��
a��

in the example above
 is zero� then algorithm

fails�

If instead of being exactly � one of these terms is very

small� then the remaining equations can become identical�

in the presence of round o� error�

Solution
 Pivoting

By interchanging rows 	partial pivoting
 or both rows and

columns 	full pivoting
� this problem can be avoided�

To maintain the identity matrix being formed� interchange

rows below and columns to the right�

If rows are interchanged � one must also interchange

corresponding rows in b�

If columns are interchanged � one must also interchange

corresponding rows in x� These rows will have to be

restored to the original order at the end�

How to decide which rows 	or columns
 to substitute�

Choosing the row with the largest value works quite well�
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Implementation

To minimize storage requirements�

� Use b to built up solution� There is no need to have a

separate array�

� Similarly the inverse can be built up in the input

matrix�

The disadvantage with this is that the input matrix and

RHS vector are destroyed by the operation�

Numerical Recipes�

SUBROUTINE gaussj�a�n�np�b�m�mp�

where

a is an n � n matrix in array of physical dimension

np � np

b is an n � m matrix in array of physical dimension

np � mp

Note that a is replaced by its inverse� and b by its solutions�
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Gaussian Elimination with Backsubstitution

This method reduces the number of operations compared

with Gauss�Jordan method 	including inverse calculation


by about � 	if inverse is not required
�

Method without pivoting

Perform operations that transform A into an upper

triangular matrix��
BBBBB�

a�� a�� a�� a��

a�� a�� a�� a��

a�� a�� a�� a��

a�� a�� a�� a��

�
CCCCCA

�
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x�

x�

x�

x�

�
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�
BBBBB�

b�

b�

b�

b�

�
CCCCCA

�
BBBBB�

a�� a�� a�� a��

 a��� a��� a���
 a��� a��� a���

 a��� a��� a���

�
CCCCCA

�
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x�

x�

x�

x�

�
CCCCCA �

�
BBBBB�

b�

b��
b��

b��

�
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Dean Karlen�Carleton University Rev� ��� ���	���



Physics ������ Gaussian Elimination with Backsubstitution ���

�

�

�

�
BBBBB�

a�� a�� a�� a��

 a��� a��� a���
  a��� a���
   a���

�
CCCCCA

�
BBBBB�

x�

x�

x�

x�

�
CCCCCA �

�
BBBBB�

b�

b��
b��
b��

�
CCCCCA

Pivoting is important for this method also�

To solve for xi� backsubstitute�

x� �
b��
a���

x� �
�

a���
�b�� � x�a

�
���

Note that both this method and Gauss�Jordan method

require all RHS to be known in advance�
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LU decomposition

Any matrix A can be decomposed into into the product of a

lower triangular matrix 	L
 and an upper triangular matrix

	U
�

Ax � b

	LU
x � b

L	Ux
 � b

So solve� Ly � b for y and then solve� Ux � y for x�

These are easily solved for� Once the LU decomposition is

found� one can solve for as many RHS vectors as needed�

How to �nd L and U�

Crout�s algorithm�

Note that
NX
k
�

�ikukj � aij

represents N� equations where there are N� �N unknowns�

Arbitrarily set the terms� �ii � �� to de�ne a unique

solution�
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BBBBB�

�   

��� �  

��� ��� � 

��� ��� ��� �

�
CCCCCA

�
BBBBB�

u�� u�� u�� u��

 u�� u�� u��

  u�� u��

   u��

�
CCCCCA

�

�
BBBBB�

a�� a�� a�� a��

a�� a�� a�� a��

a�� a�� a�� a��

a�� a�� a�� a��

�
CCCCCA

The terms in L and U can be determined as follows�

u�� � a��

u�� � a��

��� �
a��
u��

� ��� �
a��
u��

� ��� �
a��
u��

u�� � a�� � ���u��

��� �
�

u��
	a�� � ���u��
� ��� �

�

u��
	a�� � ���u��


u�� � a��

u�� � a�� � ���u��

u�� � a�� � ���u�� � ���u��

etc�
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� The order above must be followed so the terms �ij and

uij are available when necessary�

� Each aij appears once and only once� when the

corresponding �ij or uij terms are calculated� In order

to save memory� these terms can be stored in the

corresponding aij locations�

� Pivoting is essential here too� but only the interchange

of rows is e�cient�

Numerical Recipes�

SUBROUTINE ludcmp�a�n�np�indx�d�

where

a is an n � n matrix in array of physical dimension

np � np

indx�d keep track of rows permuted by pivoting

Note that a is replaced by�
BBBBB�

u�� u�� u�� u��

��� u�� u�� u��

��� ��� u�� u��

��� ��� ��� u��

�
CCCCCA
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Once the LU decomposition is found� �nd solutions using

backsubstitution�

SUBROUTINE lubksb�a�n�np�indx�b�

where

a� indx are the results from the call to ludcmp

b is RHS on input� is solution on output

Note that a and indx are not modi�ed by this routine so

lubksb can be called repeatedly�

To �nd inverse� solve

Ax �

�
BBBBB�

�







�
CCCCCA �

�
BBBBB�



�





�
CCCCCA �

�
BBBBB�





�



�
CCCCCA �

�
BBBBB�







�

�
CCCCCA �

to �nd the columns of A���

The determinant is easily found�

det	A
 �
NY
i
�

uii
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Iterative Improvement of a Solution

The algorithms presented above sometimes yield solutions

with precision less than the machine limit 	depending on

how close equations are to being singular
� Improved

precision can be made by an iterative approach�

Suppose x is the exact solution to

Ax � b

and the resulting numerical solution is instead x� �x�

Then�

A	x� �x
 � b� �b

so�

A	�x
 � A	x� �x
� b

and so solve for �x� subtract it from the previous solution to

get an improved solution�

Numerical Recipes�

SUBROUTINE mprove

can be called repeatedly to improve solution 	although once

is usually enough
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Singular Value Decomposition

If A is an N �N matrix� it can be decomposed

A � UWVT

where U and V are orthogonal 	U�� � UT
� and W is

diagonal�

The inverse of A is easily found to be

A�� � V diag	
�

wj

UT

� If one or more wj is zero� then A is singular�

� If the ratio min	wj
�max	wj
 is less than the machine

precision then the matrix is ill conditioned� In this case

it is often better to set such small wj to �

Note that if A is singular�

Ax � � for some subspace of x� The space is called the

nullspace its dimension is called the nullity�

Ax � b the space of all possible b is called the range and

its dimension is called the rank�

� nullity � rank � N

� nullity � number of zero wi�s

� The columns of U with non�zero wi�s span the range�

� The columns of V with zero wi�s span the nullspace�

Dean Karlen�Carleton University Rev� ��� ���	���



Physics ������ Singular Value Decomposition �	�

�

�

�

If A is singular or ill�conditioned� a space of vectors may

satisfy Ax � b� If the solution with the smallest jxj is
desired� this can be found by replacing �

wj
by zero for all

wj � �

Numerical Recipes�

SUBROUTINE svdcmp�a�m�n�mp�np�w�v�

Sparse Linear Systems

Systems with many zero matrix elements can be solved with

special algorithms that save time and�or space 	by not

using memory to hold all those zeros
�

Tridiagonal systems� for example�
BBBBBBBB�

a�� a��   

a�� a�� a��  

 a�� a�� a�� 

  a�� a�� a��

   a�� a��

�
CCCCCCCCA

�
BBBBBBBB�

x�

x�

x�

x�

x�

�
CCCCCCCCA

�

�
BBBBBBBB�

b�

b�

b�

b�

b�

�
CCCCCCCCA

can be LU decomposed much quicker than Crout�s method�

See SUBROUTINE tridiag�

Other forms of sparse matrices have special methods� See

Numerical Recipes for details�
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Exercise �

Any resistor divider network can be put in the form�

V

V

V

V

V

V

1

2

3

4

5

R

R

R

R

R

R

R

R

R R

12

15

14

13 23

24

25

34

35 45

This network has � voltage points� Vi� To calculate the total

current� apply Kircho� laws�

I �
�X
i
�

	V� � Vi

�

R�i
	�


 �
�X
i
�

	V� � Vi

�

R�i

 �
�X
i
�

	V� � Vi

�

R�i

 �
�X
i
�

	V� � Vi

�

R�i

where �
Rii

��
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Solution�

1

1.25

1.5

1.75

2

0 10 20 30 40 50
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Interpolation and Extrapolation

General Problem

Given a table of values� y	xi
� i � �� ���� N � estimate y	x
 for

arbitrary x�

� graphically� drawing a smooth curve through the points

� di�erent from �tting� tabulated values have no errors�

The curve should go through all points�

� most commonly used curves are polynomials

Methods

�
 Determine interpolating function using a set of points

xi� y	xi
� then evaluate the function at the point x�

� not recommended���

� ine�cient

� roundo� error

� no error estimate

�
 Start from y	xi
 for xi close to x� and add corrections

from xj further away� Successive corrections should

decrease and the size of the last correction can be used as

an estimate of the error�
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� If interpolation method only uses a set of points xi near

x� the coe�cients of the interpolating function change

from one range to another� As a result the interpolating

function can be continuous but will not have continuous

�rst derivatives�

� If continuous derivatives are important� spline functions

	such as the cubic spline
 can be used� These tend to be

more stable than polynomial functions 	less prone to

wild oscillations
�

� The number of tabulated points used 	minus one
 is the

order of the interpolation� Increasing the order does

not lead to increased precision� Recommended to not

use order � ��

� Extrapolation is prone to error� De�nitely not to be

trusted beyond typical spacing of xi from the last xi�
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Polynomial Interpolation

Through any set of N points there is a unique polynomial

of order N � � through those points� It is de�ned by the

Lagrange formula�

PN��	x
 �
NX
i
�

�
� NY
j
��j �
i

x� xj
xi � xj

�
A yi

A better method to specify the polynomial is to start with

the order  polynomial Pi � y	xi
� Add corrections from

additional points xj one at a time� each time increasing the

order of the polynomial� Each term can be determined by a

recurrence relation 	Neville�s algorithm� see text
�

Numerical Recipes�

SUBROUTINE polint�xa�ya�n�x�y�dy�

returns�

y is the estimate of y	x
 given n tabulated entries

in the arrays xa�n�� ya�n�

dy is the last correction applied� and can be used as

an error estimate
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Rational Function Interpolation

Some functions are better approximated by ratios of

polynomials�

R	x
 �
P�	x


Q�	x

�

p� � p�x� ���� p�x
�

q� � q�x� ���� q�x�

� this form can model poles 	zeros of denominators


� R	x
 goes through N points� where N � �� � � �

� Similar recurrence relation has been developed to

determine p� and q� for the case where�

� � � � 	N � �
�� for N odd� or

�� � � � � N�� for N even

Numerical Recipes�

SUBROUTINE ratint�xa�ya�n�x�y�dy�
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Example of Polynomial Interpolation

Thick blue line is given by

y	x
 � erfc	cos		 � log	x� �


 �
p
erfc	cosx


Solid red points are tabulated values

Black circles and errors show the interpolation�

polint
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Second order improves approximation�

polint
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Fifth order gives bad extrapolations�

polint
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Ninth order has still worse accuracy

polint
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Example of Rational Interpolation

Note unusual functional behaviour� The parent function is

not well described by rational functions�

ratint
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Central values of approximation are better at fourth order�

Large error estimates indicate that last correction was large�

ratint
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Still a poor approximation in some regions for ninth order�

ratint

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 2 4 6 8 10

order=9

Dean Karlen�Carleton University Rev� ��� ���	���



Physics ������ Cubic Spline Interpolation ���

�

�

�

Cubic Spline Interpolation

Designed so that the �st and �nd order derivatives are

continuous�

Method does not give an error estimate� and cannot be used

for extrapolation�

Algorithm� Begin with a linear interpolation�

x x x

y

y

y

j j+1

j+1

j

0 1f

x = f x    + (1-f) x

y = f y     + (1-f) y

j+1  j

j+1 j

This linear interpolation function has y�� �  in the interval

and typically unde�ned y�� at the end points�
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If y��i were known at each of the tabulated points� then a

cubic polynomial could be added that allows the

interpolating function to have y�� vary linearly from one

tabulated point to the next� This cubic function would have

to be zero at the tabulated points� There is a unique

solution�

y	x
 � fyj�� � 	�� f
yj � gy��j�l � hy��j

where�

g �
�

�
f	f � �
	f � �
	xj�� � xj


�

h �
�

�
f	f � �
	f � �
	xj�� � xj


�

The additional terms are clearly zero at the endpoints 	f��

f��
� and it is easily shown that�

y�� � fy��j�� � 	�� f
y��j �

One problem� y��i are typically not known���

Dean Karlen�Carleton University Rev� ��� ���	���



Physics ������ Cubic Spline Interpolation ���

�

�

�

By requiring the �rst derivatives be continuous across each

tabulated point xj� j � ����N � �� the following relations are

found�

xj � xj��

�
y
��

j�� �
xj�� � xj��

�
y
��

j �
xj�� � xj

�
y
��

j��

�
yj�� � yj

xj�� � xj

�

yj � yj��

xj � xj��

� This gives N � � linear equations for N unknowns

� � undetermined parameters

� Two ways to specify a unique solution�

�
 set y��� � y��N �  	natural spline


�
 specify y�� and y�N
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Numerical Recipes�

Call the following routine once in order to calculate the

second derivatives at the tabulated points�

SUBROUTINE spline�xa�ya�n�yp��ypn�y�a�

where

yp� and ypn are to contain the �rst derivatives at

the endpoints� If they are larger than ���� zero

second derivatives on the boundary are assumed

instead�

y�a is the 	returned
 array of second derivatives

The following routine may then be called as many times as

desired to calculate the interpolated function for any value

of x�

SUBROUTINE splint�xa�ya�y�a�n�x�y�

Exercise ��

Use a natural cubic spline to interpolate between tabulated

points for x � � �� ���� � from the function shown on

page ��� Show the results in a table� plot the interpolation

function and compare to the original function�

Dean Karlen�Carleton University Rev� ��� ���	���



Physics ������ Interpolation in � or more dimensions ���

�

�

�

Interpolation in � or more dimensions

To be speci�c� consider �D� Higher dimensions are treated

in a similar fashion�

Bilinear interpolation�

x1a(j) x1 x1a(j+1)

0 t 1

0

u

1

x
2
a
(
k
)

x
2

x
2
a
(
k
+
1
)

y1 y2

y3y4

y�x�� x�� � ��� t���� u�y� � t��� u�y� � tuy� � ��� t�uy�

This results in a continuous interpolation function but the

gradient is discontinuous at boundaries of each square�
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Two possible methods to improve on the Bilinear

interpolation�

�
 Go to higher order� to improve the accuracy� without

�xing the gradient problem� For example� to include m

points along the x� direction and n points along the x�
direction� perform m �D interpolations of order n� �� Then

use the values of these interpolations at x� to do a �D

interpolation of order m� ��

Numerical Recipes�

SUBROUTINE polin��x�a�x�a�ya�m�n�x��x��y�dy�

�
 Go to higher order to impose continuity of the gradient

or higher derivatives���
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Bicubic Interpolation

This method requires additional information for all the

tabulated points�


y


x�
�


y


x�
�


�y


x�
x�
�

Numerical Recipes�

SUBROUTINE bcucof�y�y��y��y���d��d��c�

Bicubic Spline

Use the �D natural cubic spline interpolation function to

determine the derivatives needed for bicubic interpolation�

Numerical Recipes�

SUBROUTINE splie��x�a�x�a�ya�m�n�y�a�

SUBROUTINE splin��x�a�x�a�ya�y�a�m�n�x��x��y�
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Integration of Functions

Concentrate on �D integrals� I �
R b
a f	x
 dx

Classical methods

Not recommended� but have been around a long time�

Divide x into equal intervals�

xi � x� � i h i � � �� ���� N � � fi � f	xi


To evaluate I �
R xN��

x�
f	x
 dx� can use

� closed formula� I � F 	f�� f�� ���� fN��


� open formula� I � F 	f�� f�� ���� fN 


Open formulas are especially useful if the function is poorly

behaved at one or both endpoints of the integral�

Closed Formulas

Trapezoidal rule�Z x�

x�

f	x
 dx � h�
�

�
f� �

�

�
f�� �O	h� f ��


is exact for linear functions�
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Next higher order formula� Simpson�s RuleZ x�

x�

f	x
 dx � h�
�

�
f� �

�

�
f� �

�

�
f�� �O	h� f ���


is exact for polynomials up to third order�

Extended Closed Formulas

Extended Trapezoidal rule�Z x�

x�

f	x
 dx �

Z x�

x�

f	x
 dx�

Z x�

x�

f	x
dx

� h�
�

�
f� �

�

�
f�� � h�

�

�
f� �

�

�
f�� � �O	h� f ��
Z xN

x�

f	x
 dx � h�
�

�
f� � f� � f� � ���� fN�� �

�

�
fN �

�O	 �

N�



Note� NO	h�f ��
 � NO	 �b�a��N� f ��
 � O	 �
N� 


Extended Simpson rule�Z xN

x�

f	x
 dx � h�
�

�
f� �

�

�
f� �

�

�
f� �

�

�
f�����

�

�
fN��

�
�

�
fN�� �

�

�
fN � �O	 �

N�
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Extrapolation Formulas

Z x�

x�

f	x
 dx � h f� �O	h�f �
Z x�

x�

f	x
 dx � h�
�

�
f� � �

�
f�� �O	h�f ��
Z x�

x�

f	x
 dx � h�
��

��
f� � ��

��
f� �

�

��
f�� �O	h�f ���


Extended Open Formulas
Just add the extrapolation formulas to the closed formulas�

semi�open�Z xN

x�

f	x
 dx � h�
�

�
f� � f� � ���� fN�� �

�

�
fN � �O	 �

N�



open�Z xN��

x�

f	x
 dx � h�
�

�
f� � f� � ���� fN�� �

�

�
fN � �O	 �

N�



Higher order formulas exist which converge as 	 �
N� 
� 	

�
N� 
�

See text�

Extended midpoint rule�Z xN��

x�

f	x
 dx � h�f �
�
� f �

�
� ���� fN� �

�
� �O	 �

N�
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Elementary Algorithms

One approach to use is to start with a small value of N and

re�evaluate integral for increasing N � The extended

trapezoidal rule is the easiest to use for this� It is not the

fastest to converge 	in terms of N
� but has the advantage

that as N is increased� previous results can be used directly

	thus reducing the number of calls to determine f	x

�

ie�

I� � 	b� a
�
�

�
fa �

�

�
fb�

I� �
	b� a


�
�
�

�
fa � f	

xa � xb
�


 �
�

�
fb�

I� �
	b� a


�
�
�

�
fa � f	

�xa � xb
�


 � f	
xa � xb

�



�f	
xa � �xb

�

 �

�

�
fb�

The method is then to evaluate I�� I�� I�� ��� and stop when

j	Ij�� � Ij
�Ijj � tolerance�

Numerical Recipes�

SUBROUTINE qtrap�func�a�b�s�

where s is the result� The tolerance is set to be �� but
should be careful that machine precision doesn�t prevent the

result from converging�
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To be even more e�cient� use the fact that the error in the

trapezoidal method is even in ��N �

I �

Z b

a

f	x
 dx � SN �
�

N�
�

�

N�
� ���

I � S�N �
�

�N�
�

�

��N�
� ���

You can cancel out the ��N� error�

I �
�

�
S�N � �

�
SN � �

�N�
� ���

and so this formula is accurate to order ��N�� In fact this is

just the Simpson rule�

Numerical Recipes�

SUBROUTINE qsimp�func�a�b�s�

where s is the result�

Romberg Integration
This is just the extension of the technique of cancelling

successive terms of the error� It is equivalent to an

extrapolation of SN as h� �

Numerical Recipes�

SUBROUTINE qromb�func�a�b�s�

The subroutine uses the trapezoidal rule for N � �� �� �� �� ���

and uses polint to extrapolate to h� � This subroutine

has much faster convergence than qtrap or qsimp�
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Improper Integrals

If the integrand is poorly behaved at the endpoints� the

extended midpoint rule can be used instead of the

trapezoidal rule� and Romberg integration can again be

performed�

Numerical Recipes�

SUBROUTINE qromo�func�a�b�s�choose�

where choose is a NR subroutine name� midpnt would be

used for an integral poorly behaved at the endpoints�

If the integral has limits a � �� or b ��� make a change

of variables� Z b

a

f	x
 dx �

Z �
b

�
a

�

t�
f	
�

t

 dt

This is only valid if the range of the integral does not

contain x � � Otherwise it is necessary to break the

integral into two� The change of variables can be done

analytically� or it could be handled automatically�

call qromo�func�a�b�s�midinf�
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Special cases

Integrands with power law singularities at upper or lower

limits�

f	x
 � 	x� a
��  �  � �

then let t � 	x� a
���� For  � �
� � thenZ b

a

f	x
 dx �

Z p
b�a

�

�t f	a� t�
 dt

Numerical Recipes�

call qromo�func�a�b�s�midsql�

to deal with lower limit inverse square root divergences�

Use qromo�func�a�b�s�midsqu� to deal with upper limit

inverse square root divergences�

For a integrand that falls o� exponentially� the change of

variables� x � � log t gives�

Z �

a

f	x
 dx �

Z e�a

�

f	� log t

dt

t

call qromo�func�a�b�s�midexp�
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Gaussian Quadrature

Methods presented so far involve breaking the range into N

equal intervals� evaluating the integrand at the interval

boundaries� and forming the sum�

I �
NX
i
�

�i fi

where the weights �i depend on the order of the

calculation� Polynomials of that order or less are handled

exactly by these methods�

Gaussian Quadrature estimates an integral using unequal

intervals� This allows an extended class of integrands to be

treated exactly� For example� a known function W 	x
 times

a polynomial f	x
 is integrated using�

Z b

a

W 	x
 f	x
 dx �
NX
i
�

wi f	xi


which will be exact for a polynomial with order � �N �
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How are wi and xi determined� Not easy to do�

� look up in tables

� use speci�c routines

General Idea�

Consider the set of orthogonal polynomials over a function

W 	x
�

hpijpji �
Z b

a

W 	x
 pi	x
 pj	x
 dx � �i�ij

For an N �point Gaussian quadrature�

� xi are the roots of pN 	x
 	all between a and b


wj �
hpN��jpN��i

pN��	xj
p�N 	xj


Recurrance relations can be used to form the orthogonal

polynomials and their roots can be found numerically�
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Multidimensional Integrals

Di�cult for two reasons�

� number of function evaluations for an integral in N

dimensions scales as �N

� the boundary� 	an N � � dimensional surface
 may be

complicated�

As long as high precision is not required� Monte Carlo

integration is usually the easiest to impliment� especially if

the boundary is complicated�

For smooth functions to be integrated over a region with a

simple boundary� repeated one dimensional integration can

be performed�

I �

Z Z Z
f	x� y� z
 dx dy dz

�

Z x�

x�

dx

Z y��x�

y��x�

dy

Z z��x�y�

z��x�y�

dz f	x� y� z


�

Z x�

x�

H	x
dx
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H	x
 is given by

H	x
 �

Z y��x�

y��x�

dy

Z z��x�y�

z��x�y�

dz f	x� y� z


�

Z y��x�

y��x�

G	x� y
 dy

where�

G	x� y
 �

Z z��x�y�

z��x�y�

f	x� y� z
 dz

The implementation depends on whether the system allows

recursion 	subroutine calling itself
� The evaluation of I

involves calling a integration routine� say qgaus with H as

the integrand� The evaluation of H and G also involves

calling qgaus� So qgaus calls H which calls gaus which

calls G which calls qgaus�

If recursion is not allowed� then three copies of the qgaus

routine need to be created� each with a unique name so that

each subprogram calls a di�erent version�
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If recursion is allowed�

call qgaus�H�x��x��s�

SUBROUTINE H�xx�

COMMON �xyz�x�y�z

x�xx

call qgaus�G�y��x��y��x��s�

H�s

return

end

SUBROUTINE G�yy�

COMMON �xyz�x�y�z

y�yy

call qgaus�F�z��x�y��z��x�y��s�

G�s

return

end

SUBROUTINE F�zz�

COMMON �xyz�x�y�z

z�zz

F�func�x�y�z�

return

end

Dean Karlen�Carleton University Rev� ��� ���	���



Physics ������ Multidimensional Integrals ���

�

�

�

Exercise �

The convolution of an exponential decay and a Gaussian

resolution function is given by�

f	t
 �

Z �

�

e
� �t�t���

���
tp

�	�t

e� t�

�

�
dt�

Evalulate this integral using the Gauss�Laguerre

quadrature� with � � � for � � �� �t � ��� and

t � �������� ���� ���� �� Use N � �� �� ��� � and compare to

the analytic solution�

f	t
 �
�

��
exp

�
��t
���

� t

�

�
erfc

�
�tp
��
� tp

��t

�

Also evalute the double integral�

I �

Z ��

��
f	t
 dt

for the same choices for N � For this exercise� do not

substitute the analytical solution for f	t
� but instead

perform the double integral using qromb and gaulag�
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Solution
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Root Finding

General problem of solving a nonlinear equation�

g	x
 � h	x


g	x
� h	x
 � 

f	x
 � 

or in N dimensions�

f	x
 � 

or in other words� N simultaneous equations�

The problem is much simpler in � dimension� because it is

possible to de�ne a range where a root must exist�

x

f(x) root is present in

this range 

It can be di�cult to �nd a bracketed region if two roots are

near each other�
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�

�

�

In two dimensions root bracketing is not possible� Consider

the system� y	x
 � � and z	x
 � � This de�nes a curve� as

shown below� It is not possible to bracket a region �x�� x��

in which it is known that a root exists�

x

z

y

y

z
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Bracketing

A root is bracketed in 	a� b
 if f	a
 and f	b
 have opposite

signs� It must contain at least one root� unless a singularity

is present�

a ba b

Numerical Recipes provide two simple bracketing utilities�

SUBROUTINE zbrac�func�x��x��succes�

This routine begins with the range 	x�� x�
 and expands it

until the range brackets a root� If successful� it sets

success�true� and the new range is returned in x� and x��

SUBROUTINE zbrak�func�x��x��n�xb��xb��nb�

This routine breaks the range 	x�� x�
 into n intervals and

returns the number nb and the ranges

xb���	nb��xb���	nb� of those intervals that bracket roots�

On input nb speci�es the maximum number sought�
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Bisection

Starting from a bracketed range� evaluate the function at

the midpoint of the range� Thus a new bracketed range�

half the size is found� The size of the interval after n� �

iterations is

�n�� �
�

�
�n

and the iterations stop when �n � �� the desired tolerance�

Care must be taken when de�ning ��

� � �� not possible for xroot � ���� and

��xroot � �� not good for xroot near �

Properties of bisection method�

� not the most e�cient

� guaranteed to work

� does not distinguish singularities from roots

� will �nd only one root

This method is said to converge linearly� since �n�� � ��n�

other methods converge superlinearly�

�n�� � �	�n

m� m � ��

Numerical Recipes�

FUNCTION rtbis�func�x��x��xacc�

returns the root as rtbis once it has been determined to be

within an interval of �xacc�
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False Position and Secant methods

Instead of choosing the middle of the interval� these

methods assume the function is linear in the region of

interest� to decide next point to evaluate�

False position� maintain the bracket

Secant method� use the two most recent points

Numerical Recipes�

FUNCTION rtflsp�func�x��x��xacc�

FUNCTION rtsec�func�x��x��xacc�

x

f(x)

x

f(x)

False position method Secant Method

1

2

3

1

2

3

4

4

Neither are usually the best choice� Use Ridders� or Brent�s

method instead�
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Ridders Method

x

y

y

y

y

x x x1 23

1

2

3

0 f 1

A linear interpolation of the function in the bracketed range

is given by�

y � 	�� f
 y� � f y� f �
x� x�
x� � x�

Instead� Ridders method uses an exponential interpolation�

y � 	�� f
 y�Q
�f � f y�Q

��f Q � 

In order to determine Q� use the midpoint� f � �
� �

p
Q �

y� � sign�y��	y�� � y�y�

�
�

y�
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The next point x� is selected to be the root of the

exponential interpolation�

x� � x� � 	x� � x�

sign�y� � y��y�p

y�� � y�y�

Since the bracket is maintained� it is a robust method� and

the convergence is superlinear� m �
p
��

Brent Method

Rather than using a linear interpolation� as in the secant

method� a quadratic interpolation is made� Checks are

made to ensure the method is converging rapidly� and if not�

a bisection step is made� It is thus both robust and fast�

The following four �gures compare the convergence of

various one dimensional root �nding algorithms� For these

examples� it is seen that the false position method can

sometimes be slow to converge� and the secant method

sometimes fails�
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Newton�Raphson Method

This method requires the calculation of both f	x
 and

f �	x
� From an initial starting value x it uses the linear

approximation�

f	x� �
 � f	x
 � � f �	x


to determine the next point to try� x� ��

f	x� �
 �  � � � �f	x
�f �	x
 �

Should the procedure bring you close to a local maximum

or minimum� � can become quite large� causing the

algorithm to fail� It is also possible to get into an in�nite

loop� Otherwise the convergence is very fast� as long as

there is no penalty for calculating f �	x
�

Numerical Recipes�

FUNCTION rtnewt�funcd�x��x��xacc�

where funcd�x�fn�df� returns the function and its

derivative�

A fail�safe routine� that protects against leaving the

bracketed region and against in�nite loops� uses the

bisection method in addition�

FUNCTION rtsafe�funcd�x��x��xacc�
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Newton�Raphson and Fractals

The Newton�Raphson method can have poor convergence�

depending on the problem and the initial conditions� It is

interesting to determine the set of starting values that will

lead to a particular root�

For example� f	z
 � z� � � �  will converge for all positive

starting values� but not certain negative values� If one

considers the complex roots as well� there are three roots�

The following contour plot shows jf	z
j�

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

COMMON /PAWC/ in memory

SQRT((X**3-3*X*Y**2-1)**2+(3*X**2*Y-Y**3)**2)
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�

�

The following plot shows the starting points that lead to

each of the roots� three fractals�

-2
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-0.5

0

0.5

1

1.5
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Roots of Polynomials

� a polynomial of order n has n roots� some may be

complex

� can be a di�cult problem for high order polynomials�

especially when two roots are nearby

� when each root is found the order of the polynomial can

be reduced by one order�

Q	x
 � P 	x
�	x� r


You can use poldiv�u�n�v�nv�q�r� to do this division� but

the successive roots can be susceptible to rounding errors�

It is recommended to always polish them up� by using them

as initial guesses with the original function P 	x
�

Note� you should never evaluate the polynomial�

P 	x
 � c� � c�x� c�x
� � c�x

� � c�x
�

as

p � c���
c����x
c����x���
c����x���
c���x���

but instead as

p � c��� 
 x��c��� 
 x��c��� 
 x��c��� 
 x�c�����

which reduces steps and improves precision�
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Laguerre�s Method

For polynomials with all real roots this method is

guaranteed to converge to a root for any starting point� It

works well with complex roots� but not guaranteed�

Method�

Assume one root is a distance a from the current guess and

all the other roots are a distance b away� Use P 	x
� P �	x
�
and P ��	x
 to solve for a� then take 	x� a
 as the next

guess� Continue process until a becomes small�

Numerical Recipes�

SUBROUTINE laguer�a�m�x�its�

where a and x are complex and

a��	m
�� the coe�cients

m the order of the polynomial

x input� starting point� output� solution

its the number of iterations taken

To �nd all the roots use the driver routine�

SUBROUTINE zroots�a�m�roots�polish�

where polish can be set to �true� if polishing of the roots

is desired�
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Systems of Nonlinear Equations

No general methods exist� even for the two dimensional

problem�

f	x� y
 �  g	x� y
 �  �

Each equation de�nes a set of a priori unknown number of

separate curves� Where these two sets of curves intersect is

the solution to the problem�

If you have a good enough initial guess� then you can use

the Newton�Raphson method�

Fi	x� �x
 � Fi	x
 �
NX
j
�


Fi

xj

�xj �O	�x�


Neglect the O	�x�
 term� set the LHS to zero and solve for

�x� using matrix methods� Use xnew � xold � �x as the

next point in the iteration�

Numerical Recipes�

SUBROUTINE mnewt�ntrial�x�n�tolx�tolf�

a maximum of ntrial iterations are made to improve on

the initial estimate of x� Iteration stops if eitherP j�xij � tolx or
P jFij � tolf�
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A more globally convergent technique checks that

f �
X
i

F �
i

reduces each time a new �x is calculated� Otherwise a

smaller step is taken�

xnew � xold � � �x � � � � �

Numerical Recipes�

SUBROUTINE lnsrch�n�xold�fold�g�p�x�f�stpmax

�check�func�

If the derivatives are not known� the following driver

routine can be used instead�

SUBROUTINE newt�x�n�check�

which computes partial derivatives numerically�
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Exercise ��

For blackbody radiation� the radiant energy per unit

volume in the wavelength range � to �� d� is�

u	�
 d� �
�	

��
hc

exp	hc��kT 
� �
d�

where T is the temperature of the body� c is the speed of

light� h is Planck�s constant� and k is Boltzmann�s constant�

Show that the wavelength at which u	�
 is maximum may

be written as �max � �hc�kT � where � is a constant�

Determine the value of � numerically from the resulting

transcendental equation�
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Minimization �Maximization� of Functions

General problem is to �nd x that minimizes f	x
 with as

few function calls as possible� It is called for in doing

likelihood �ts� and optimization problems�

Most programs are designed to �nd a minimum� To �nd the

maximum of f	x
� simply �nd the minimum of �f	x
�
Types of minima in �D�

A

B

C

x1 x2 x

f(x)

A is a local minimum� B is the global minimum� C is the

global maximum at the boundary� and so f �	x
 ��  at that

location�
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Golden Section Search in �D

In a similar way as bracketing a root� one can bracket a

minimum with three points if�

a � b � c

f	a
 � f	b
 � f	c


then there is a minimum in the range 	a� c
� The bracketed

range can be reduced by considering a new point x between

b and c�

a b cx

a b cx
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Depending on the function� either 	b� c
 or 	a� x
 will be the

new bracketed region� This can be continued until region is

smaller than a given tolerance�

Note� the precision of determining location of xmin is

�xmin
xmin

� O	p�


where � is the machine precision� This follows from the fact

that near the minimum�

f	x
 � f	xmin
 �
�

�
f ��	xmin
 	x� xmin


�

There is an optimal choice to split the bracketed region�

golden section
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a

b
x

c

b
x

c

0 w w+z 1 0 w 1

After choosing the next point� the size of the next bracketed

region is either w � z or �� w� The optimal strategy would

make these equal�

w � z � �� w � z � �� �w

But the original value of w should have been chosen in the

same way� so

w �
z

�� w
�

�� �w

�� w
� w �

��p�
�

� ���������

This is called the �golden mean� or �golden section��

Numerical Recipes�

SUBROUTINE mnbrak�ax�bx�cx�fa�fb�fc�func�

This routine begins with the initial points ax and bx and

returns a bracketing set of points� ax�bx�cx 	found by

taking successively larger steps downhill
� The golden

section search can then be performed�

FUNCTION golden�ax�bx�cx�func�tol�xmin�

The result is returned in xmin�
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Parabolic Interpolation and Brent�s Method

For smooth functions� the behaviour near the minimum is

given by

f	x
 � f	xmin
 �
�

�
f ��	xmin
 	x� xmin


�

If this information is used� convergence will usually be

faster than the golden section 	but not as robust
�

Method�

�� Begin with three points to de�ne a parabola�

�� Next point to evaluate is at the minimum of the

parabola�

�� Chose as the next set of three points� the minimum�

and the two points on either side�

�� Repeat�
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Since the method is less robust� it needs to be combined

with a more robust one�

Numerical Recipes�

FUNCTION brent�ax�bx�cx�func�tol�xmin�

combines parabolic interpolation and golden section

methods�

FUNCTION dbrent�ax�bx�cx�f�df�tol�xmin�

also uses �rst derivative as supplied by the user function�

df� Note that f �	x
 is only used to decide which interval

	a� b
 or 	b� c
 is used next� on the basis of f �	b
�
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Downhill Simplex Method �multidimensions�

�Not the most e�cient but simple and robust��

� �simplex�� an object in N dimensions consisting of the

lines that connect N � � points

� non�degenerate simplex� none of the lines are collinear�

so the simplex encloses a �nite N dimensional volume

� examples�

2D - triangle 3D - tetrahedron

� If one point is taken as the origin� the N lines from that

point de�ne vectors that span the N dimensional space�

Method�

� Start with an initial guess� P�� and step sizes in each

dimension� ei� This de�nes a simplex� with the vertices

given by Pi � P� � ei�

� Perform a series of steps that expand and contract the

simplex in the N dimensions�
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Simplex transformations�

a)

b)

c)

� a
 Re ection� The largest function value is moved

through the opposite face of the simplex� The new

point is kept if the function value is reduced�

� b
 Re ection and expansion� If the function at the new

point is smallest of all points� expand�

� c
 Re ection and contraction� If the function value has

increased� try a smaller step in that direction�

� The simplex eventually encloses a minimum� and the

contracts around it� until the function value within the

simplex is within some tolerance�
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Numerical Recipes�

SUBROUTINE amoeba�p�y�mp�np�nd�ftol�funk�iter�

input�

p��	nd
���	nd� nd
� vertices of the initial simplex

y��	nd
�� values of funk evaluated initial sim�

plex vertices

ftol fractional function tolerance

Location of minimum is returned in p 	a contracted

simplex
�
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Powell�s Method

Method�

�� choose a direction

�� �nd minimum along that direction 	using �D

minimization


�� repeat

It is important to choose the directions carefully� Unit

vectors in each dimension can be very ine�cient in some

cases�

x

y

A more e�cient approach would be to choose directions

such that minimization along one direction does not a�ect

the minimization along the other direction� These are

known as �conjugate directions��
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Conjugate Directions

Conjugate directions can be found as long as the function is

quadratic about the minimum� Otherwise the directions

will be only approximately conjugate� but the method

improves the rate of convergence in any case�

If the function is nearly quadratic� then it is a good

approximation to write

f	x
 � f	P
 �
X
i


f


xi
jP xi �

�

�

X
i�j


�f


xi 
xj
jP xixj

� c� b 	 x� �

�
x 	A 	 x

Hence the gradient of f is approximately�

rf � A 	 x� b

The change in the gradient by moving along direction the

direction �x is given by�

�	rf
 � A 	 �x
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Suppose that the function is minimized along the direction

u� The condition that u and v be conjugate directions is

that the component of the gradient along the u direction

remain zero when moving along direction v� In other words�

 � u 	 �	rf
 � u 	A 	 v

Note in �D� if A is diagonal� the contour ellipses are aligned

with the x and y directions� and the unit vectors along x

and y directions are conjugate�

The challenge is to determine the N conjugate directions�

Then� for quadratic functions� the minimum will be found

exactly after N �D minimizations� For most functions the

convergence will still be rapid�
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Powell�s Method

Set the initial set of directions ui to be the basis vectors�

and pick a starting point P�� Repeat the following until the

minimum is attained�

� Minimize sequentially along each direction ui�

� De�ne a new direction� the vector from P� to the last

point�

� Minimize along that direction� take that point as the

new starting point P�� and replace one of the original

directions by this new direction�

P P

PP

0 1

2

P

P

P

P

0

1

2

0

0

For a quadratic function� after N iterations� all the

directions will be conjugate� and thus the minimum will be

found exactly after N	N � �
 �D minimizations�
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There is a problem with this procedure� in that replacing

the original directions by PN �P� can lead to a set of

directions that are linearly dependent� As a result� only a

subspace of the entire N dimensional space is explored for a

minimum�

Powell�s Heuristic Method

Improves on previous method by avoiding the problem

where directions can become linearly dependent� but gives

up property of exact conjugate directions for quadratic

problems� The previous method can always be used to

polish the result from this method�

Method�

Follow same procedure� except instead of always replacing

an original direction� replace the direction that resulted in

the largest decrease in the function� This reduces the chance

of it and PN �P� becoming almost linearly dependent�
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Exceptions� do not replace any directions if either

� fE 
 f	�PN �P�
 � f	P�
 then since PN �P� seems

to be �played out�� or

� the reduction is not due to a large part on one direction

or f �� is large along the direction PN �P�� These

conditions can be checked simultaneously by�

�	f� � �fN � fE
�	f� � fN 
�!f �� � 	f� � fE

�!f

where !f is the magnitude of the largest decrease along

any of the directions�

P P

P P

0 1

N E

Numerical Recipes�

SUBROUTINE powell�p�xi�n�np�ftol�iter�fret�

input�

p��	n� initial starting point

xi��	n��	n� initial directions 	columns


ftol fractional function tolerance

The routine �nds the minimum of a user supplier function�

func and it is returned in p�
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Gradient Methods

If rf	x
 is easy to calculate� the speed of convergence can

be improved by using both f and rf �
Steepest descent usage of rf is not a very good algorithm�

� minimize along the direction given by rf	P�


� move to this new minimum

� repeat

Even for a quadratic function this can lead to many small

steps being taken� because each direction must be

orthogonal to the previous one�

A more e�cient method would have the directions be

conjugate to one another�

� Conjugate Gradient Methods

By using the gradients� conjugate directions can be found

much more elegantly than Powell�s method�
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� Start at point x��

� Minimize along steepest descent at x�� giving a new

point x��

� The next direction d needs to be conjugate to the

previous direction of movement� x� � x��

d 	A 	 	x� � x�
 � 

� Fortunately A does not need to be calculated�

rf	x
 � A 	 x� b and so�

d 	A		x� � x�
 � d 	 	rf	x�
�rf	x�

 � 

� The next direction d is some combination of the two

gradient vectors�

d � rf	x�
 � �rf	x�


� solve for �� using rf	x�
 	 rf	x�
 � �

� �
	rf	x�

�
	rf	x�

�

� Continue the process�

Numerical Recipes�

SUBROUTINE frprmn�p�n�ftol�iter�fret�

where p��	n� is the starting point� and the user supplies

the functions func and dfunc�
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Variable Metric Methods

Competitive with conjugate gradient method�

Basic idea is that of Newton�s method for �nding roots�

rf	x
 � rf	x�
 �A 	 	x� x�


At the minimum� rf	xmin
 � � so

xmin � x� �A�� 	 rf	x�


The complication� arises in that A is not known� and

instead an evolving approximation for A is used instead�

The method of successive improvements to A is not straight

forward 	see text
�

Numerical Recipes�

SUBROUTINE dfpmin�p�n�gtol�iter�fret�func�dfunc�

p��	n� is the starting position� The programs returns once

the magnitude of the gradient is reduced to gtol�
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Linear Programming �Optimization�

General problem is to maximize�

z � a��x� � a��x� � ���� a�NxN

subject to the N primary constraints�

x� � � x� � � ��� xN � 

and M additional constraints�

NX
�
�

ai�x� � bi �  i � �� ����m�

NX
�
�

aj�x� � bj �  j � m� � �� ����m� �m�

NX
�
�

ak�x� � bk �  k � m� �m� � �� ����M

Problems of this sort are common in accounting where the

concepts of negative dollars� negative widgets� etc� are

meaningless�
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Starting from N dimensional space� the inequality

constraints de�ne boundary planes� such that the range of

allowed space is constrained within a convex polyhedron�

Each equality constraint reduces the dimensionality of the

polyhedron by one� Since z is a linear function� the

maximum of z must occur at a vertex�

Maximum at
   a vertex

x

x

x

1

2

3
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There are a total of N �M constraints� The problem of

�nding the optimal position is equivalent to �nding which

N of the N �M constraints� all treated as equality

constraints� de�ne the position of the vertex�

The brute force method is to try each of the
�
N�M
N

�
possibilities� each time solving the set of N linear equations�

This could take forever for su�ciently complicated

problems�

A more optimal method is to reformulate the problem in

�restricted normal form�� and then apply the simplex

method 	not related to the multidimensional minimization

method
�

� normal form� only equality constraints appear

� restricted form� each equality constraint has a variable

unique to that constraint and it has a positive

coe�cient
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Simplex method

An example�

z � �x� � �x�

subject to the constraints

x� � �x� � x� � �

��x� � �x� � x� � �

Since there are � variables� and only � additional

constraints� the solution must have at least two of the

variables being zero�

� First step is to rewrite the constraints so that the

unique variables are on the LHS�

x� � �� �x� � x�

x� � � � �x� � �x�

� One can easily �nd a vertex in the �D space 	not

necessarily the best one
 by setting x� � x� � �

� x� � �� x� � �� z � 

� To increase z� it is clear that x� should be increased�

How far can x� increase while keeping the LHS

variables � �
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� There is no problem for x� since its coe�cient is

positive� 	If all coe�cients were positive� there would

be no upper limit to z
�

� If there are several constraint equations with negative

coe�cients� the critical one is the one with the smallest

value�

	constant coe�cient
�	coe�cient of x�


� Rewrite the critical constraint equation so that x� is on

LHS�

� x� �
�

�
� �

�
x� �

�

�
x�

� Rewrite z in terms of the RHS variables only�

� Repeat until all the coe�cients of expression for z are

� � Solution has RHS variables � �

To put a general problem into normal form� replace

inequality constraints by adding extra 	non�negative


variables�

x� � �x� � � � x� � �x� � y� � �

x� � �x� � � � x� � �x� � y� � �

At the end� the solutions for y� and y� are ignored�
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To put into restricted normal form� introduce more

variables�

z� � �� x� � �x� � y�

z� � �� x� � �x� � y�

And solve the new problem� maximizing

z� � �z� � z� � �� � x� � �x� � �x� � y� � y�

with all z� and z� constrained to be �  as usual� Since the

solution to this problem has z� � z� � � the simplex

procedure will result in z� and z� becoming RHS variables�

which can be set to zero� This leaves the original problem�

but set up in restricted normal form�

Numerical Recipes subroutine�

simplx�a�m�n�mp�np�m��m��m��icase�izrov�iposv�

The input variables follow the naming convention

introduced above� Note that for internal calculations the

physical dimension of a must be a�mp�np� with mp� m
�

and np� n
��

icase speci�es if a solution is found

iposv��	M� and izrov��	N� are pointers to the solution

stored in a 	see text
�
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Simulated Annealing Methods

An analogy is made with freezing�

� slowly cooled systems �nd the global minimum energy

state 	a crystal state for example


� quickly cooled systems do not� instead they �nd a local

minimum 	an amorphous state


Algorithms presented so far are of the �quickly cooling�

type� converge to the nearby solution as fast as possible�

Nature has a di�erent approach�

� The probability that a system at temperature T is in a

state of energy E is given by�

p	E
  e�E�kT

� Even at low temperatures there is some chance to be in

a high energy state�

� This allows the system to get out of local energy

minimums 	as long as enough time is allowed
�
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Metropolis Algorithm
To simulate a thermodynamic system� consider various

con�gurations� De�ne the probability to change from �� �

to be

p � min
�
�� e��E��E���kT

�
In other words� always take a downhill step� and sometimes

take an uphill step�

Can be applied to non�thermodynamic systems as well� One

needs to de�ne

�� a set of possible con�gurations

�� a method to randomly modify the con�gurations

�� a function 	E
 to minimize as the goal of the problem

�� a control parameter 	T 
 and an annealing schedule

	how to lower T 
�

Example� Traveling Salesman 	minimize total trip distance


�� Number cities� i � �� ���� N � each with coordinate

	xi� yi
� A con�guration consists of a permutation of

the numbers �� ���� N which speci�es the order that the

cities are visited�

�� Modify the permutation as follows

a
 reverse order of � adjacent numbers

b
 move � adjacent numbers to random location
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�� E �
P

Li� or some other penalty function could be

included�

�� Set k � � so that

p � min
�
�� e��E��E���T

�
and experiment with a few trial values to get the scale

of !E� Choose T � !E� so initially all con�gurations

are sampled with little penalty� Do �N con�gurations

or �N successful transitions then reduce T by �"�

Repeat until E no longer decreases substantially�

Numerical Recipes�

SUBROUTINE anneal�x�y�iorder�ncity�

The best route is speci�ed by the array iorder��	ncity��
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Example of � randomly placed cities�

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Dean Karlen�Carleton University Rev� ��� ���	���



Physics ������ Simulated Annealing Methods ����

�

�

�

How the solution was found�

Τ=0.5  Ε=39.85 Τ=0.45  Ε=38.06 Τ=0.405  Ε=39.63 Τ=0.3645  Ε=39.17 Τ=0.328  Ε=36.48 Τ=0.2952  Ε=34.19 Τ=0.2657  Ε=37.93

Τ=0.2391  Ε=29.68 Τ=0.2152  Ε=34.1 Τ=0.1937  Ε=29.49 Τ=0.1743  Ε=27.72 Τ=0.1569  Ε=23.78 Τ=0.1412  Ε=24.61 Τ=0.1271  Ε=18.73 Τ=0.1144  Ε=20.7

Τ=0.1029  Ε=17.79 Τ=0.0927  Ε=17.23 Τ=0.0834  Ε=15.04 Τ=0.075  Ε=15.41 Τ=0.0675  Ε=14.05 Τ=0.0608  Ε=13.02 Τ=0.0547  Ε=12.54 Τ=0.0492  Ε=11.82

Τ=0.0443  Ε=10.37 Τ=0.0399  Ε=10.09 Τ=0.0359  Ε=10.04 Τ=0.0323  Ε=9.34 Τ=0.0291  Ε=9.26 Τ=0.0262  Ε=8.68 Τ=0.0236  Ε=8.85 Τ=0.0212  Ε=8.51

Τ=0.0191  Ε=8.61 Τ=0.0172  Ε=8.47 Τ=0.0155  Ε=8.31 Τ=0.0139  Ε=8.32 Τ=0.0125  Ε=8.3 Τ=0.0113  Ε=8.33 Τ=0.0101  Ε=8.28 Τ=0.0091  Ε=8.23

Τ=0.0082  Ε=8.09 Τ=0.0074  Ε=8.07 Τ=0.0067  Ε=8.05 Τ=0.006  Ε=8.08 Τ=0.0054  Ε=8.1 Τ=0.0048  Ε=8.05 Τ=0.0044  Ε=8.05 Τ=0.0039  Ε=8.05
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Ordinary Di�erential Equations

Any ODE can be rewritten in terms of a set of �rst�order

ODE�s� For example�

d�y

dx�
� q	x


dy

dx
� r	x


can be written as two equations�

dy

dx
� z	x


dz

dx
� q	x
 z	x
 � r	x
 �

The general problem therefore can be written in terms of N

�rst order equations of the form�

dyi
dx

� fi	x� y�� ���� yN 
 i � �� ���� N �

In order to solve a speci�c problem� boundary conditions

need to be speci�ed� usually in the form of initial

conditions� yi	x�
�

To deal with problems with boundary conditions given at

more than one value of x� see text 	two�point boundary

value problems
�
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Eulers method

Inaccurate and can be unstable� should not be used�

Simplest method of all� just rewrite the di�erential equation

in terms of �nite di�erences�

dy

dx
� f	x� y


!y

!x
� f	x� y


!y � !x f	x� y


This leads to the recursion relation�

yn�� � yn � h f	xn� yn
 �O	h�


where� yn � y	xn
 and xn � xn�� � h�

By specifying the initial conditions� x�� y�� the solution is

found as shown below�

x x x x

y

x

y

0 1 2 3

0 h
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Runge�Kutta Method

�Robust� but ine�cient and only moderately accurate�

Instead of using the derivative at the start of the interval�

the Runge�Kutta method uses the derivative evaluated at

the midpoint of the interval� This reduces the error in the

method�

x x

y

x

y

0

0

x

h

1 2

The algorithm for this method is�

k� � h f	xn� yn


k� � h f	xn �
�

�
h� yn �

�

�
k�


yn�� � yn � k� �O	h�


and is called the second order Runge�Kutta formula�
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Most often used is the �th order Runge�Kutta formula�

k� � h f	xn� yn


k� � h f	xn �
�

�
h� yn �

�

�
k�


k� � h f	xn �
�

�
h� yn �

�

�
k�


k� � h f	xn � h� yn � k�


yn�� � yn �
�

�
k� �

�

�
k� �

�

�
k� �

�

�
k� �O	h�


xx x

y

y

k

k

0 1

0

1

4

k2

k3
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Adaptive Stepsize Control

To improve accuracy and e�ciency� h should not be kept

constant� but rather vary� according to the nature of the

solution�

� when solution is smoothly changing� h should be large

to improve e�ciency

� when solution is rapidly varying� h needs to be small to

ensure reasonable accuracy

Step Doubling

Compare the result of a step of size �h with that of size h�

The di�erence in the two results can be used to estimate

the error in the approach� Adjust h to keep the error in a

reasonable range 	not too large and not too small
�
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Embedded Runge�Kutta formulas

This is another technique to estimate the error� but requires

fewer function calls� The �th order Runge�Kutta formula

requires � function calls� but another combination of the

� function values gives a �th order Runge�Kutta formula�

The error estimate !  h�� If the desired accuracy for one

step is !� then the appropriate size to use for the next step

is

h� � h

				!�

!

				
�	�

If the problem involves a set of ODE�s� then the largest

value of ! should be used� Since the errors can accumulate

	all with the same sign
� the tolerable error should scale

with the step size� ie !� � � h dy
dx �

Numerical Recipes supplies the general ODE integrator�

FUNCTION odeint�ystart�nvar�x��x��eps�

h��hmin�nok�nbad�derivs�choose�

User supplies routine derivs�x�y�dydx�� which returns

dydx��	nvar�� The starting values� y	x�
� are given by

ystart��	nvar�� and x� is the �nal point� The

intermediate results are stored in common �path�� The �nal

argument speci�es the stepping routine� Use rkqs for the

�fth order embedded Runge�Kutta formula�
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Modi�ed Midpoint Method

A large step of size H can be broken into n equal substeps

each of size h�

z� � y�

z� � z� � h f	x� z�


z� � z� � �h f	x� h� z�


z� � z� � �h f	x� �h� z�


zn � zn�� � �h f	x� 	n� �
h� zn��


x x  + h x  + 2h x  + 3h x  + 4h x  + 5h

y

y

x
0 0 0 0 0 0

0

z
z

z
z

z

z
0

1
2

3

4

5

The estimate of the solution at 	x� �H
 is given by�

yn �
�

�
�zn � 	zn�� � h f	x�H� zn

�

and the error in this estimate is even in powers of h�

y	x�H
 � yn � ��h
� � ��h

�
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Bulirsch�Stoer Method

Best method for smooth functions� otherwise use

Runge�Kutta with adaptive step size�

Method�

� Use midpoint method with n � �� �� �� �� ���

� Extrapolate result yn for h�  using polynomial� The

error estimate from the polynomial extrapolation is

used to decide when n is large enough�

� Reduce H if adequate precision is not attained after

nmax iterations

� Increase H if precision is better than that requested�

x x + H
x

2 steps

4 steps

6 steps

extrapolation
to h      0

y

Numerical Recipes routine� odeint� can be used to drive

the Bulirsch�Stoer algorithm by using the routine name�

bsstep as the last argument�
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Exercise �

A pendulum consists of a bob of mass m connected to a rod

of natural length L� which acts like a spring with spring

constant k� The pendulum is started from rest in a

horizontal position and let go� Use the Burlisch�Stoer

method with the following set of parameters� m � �� kg�

L � � m� k � � N�m� Repeat for k � � N�m� In each

case� plot the radius r� � and total energy as a function of

time� and plot the path of the bob�

x

y

r

m

The di�erential equations of motion for this system are�

#r � r $�� � � k

m
	r � L
 � g cos �

r#� � � $r $� � �g sin �
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Result for k���
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Result for k�����
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Result for k�����
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Partial Di�erential Equations

Numerical methods for solving PDE is a vast and complex

subject area� This review only scratches the surface�

PDE�s pose two classes of problems�

Initial Value Problems�

� could be a hyperbolic equation� such as the wave

equation�

�u


t�
� v�


�u


x�

� or a parabolic equation� such as the di�usion equation�


u


t
�





x

�
D

u


x

�

� given u	x� t � 
� the problem is to �nd u	x� t
�

Boundary Value Problems�

� elliptic equations� such as Laplace�s equation�


�u


x�
�

�u


y�
� 

� Given u	x� y
 on the boundary� the problem is to �nd

u	x� y
 elsewhere�
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Flux�conservative IVP

A  ux conservative initial value problem in �D�


u


t
� �
F 	u



x

The �D wave equation with constant velocity�


�u


t�
� v�


�u


x�

can be rewritten as two �rst order PDEs of this form�


s


t
� v


r


x


r


t
� v


s


x

where s 
 
u�
t and r 
 v
u�
x� Letting�

a �

�
� s

r

�
A and B �

�
�  �

� 

�
A

allows the equation to be written in the form above with u

replaced by the vector a and F 	u
 by �vBa�
Instead� consider the scalar form of this equation


u


t
� �v 
u


x

The analytical solution to this problem is a wave

propagating in the positive x direction�

u � f	x� vt


The numerical solution to this problem is not as simple�
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FTCS Method

The Forward Time Centered Space method���

Put time and space onto a grid�

xj � x� � j!x j � � �� ���� J

tn � t� � n!t n � � �� ���� N

and denote u	tn� xj
 as u
n
j � To solve the advection equation�


u


t
� �v 
u


x

write the derivatives as �nite di�erences� the time using

forward Euler di�erencing� and the space derivative centred�


unj

t

�
un��j � unj

!t
�O	!t



unj

x

�
unj�� � unj��

�!x
�O	!x�


Then the advection equation becomes�

un��j � unj �
v!t

�!x
	unj�� � unj��
 �

Given the initial values� u�j for all j� subsequent values� u
n
j

can be determined by this equation�

In PAW� the formula is easily handled�

sigma u � u� �c� � 	ls	u� �
� ls	u���
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Unfortunately the FTCS method is unstable for the

advection equation� The following is an example with
v�t
�x � ��� Each box represents a new time bin�
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Lax Method

A simple modi�cation to the FTCS method� improves the

stability of the method� Replace unj by its average�
�
�	u

n
j�� � unj��
� so the recurrence relation is now

un��j �
�

�
	unj�� � unj��
�

v!t

�!x
	unj�� � unj��
 �

This method is stable for v�t
�x � �� but for v�t

�x � � the

amplitude diminishes� For v�t
�x � � the solution is exact�

un��j � unj��

Note that the Lax equation can be rewritten as�

un��j � unj
!t

� �v
�
unj�� � unj��

�!x

�
�
�

�

�
unj�� � �unj � unj��

!t

�

which is the FTCS representation of�


u


t
� �v 
u


x
�

	!x
�

�!t


�u


x�
�

The new term is a dissipative term� said to add �numerical

viscosity� to the equation�
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Example of a solution to the advection equation using Lax

method� with v�t
�x � ��� Each box represents a new time

bin�
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Lax�Wendro� Scheme

To improve the di�erence equation to second order in time�

consider the Taylor expansion of the solution�

u	x� t�!t
 � u	x� t
 � !t

�

u


t

�
�
�

�
!t�

�

�u


t�

�
�O	!t�


The second term is easily represented using the original

PDE� which can be written in a more general form�


u


t
� �
F 	u



x

where F 	u
 � vu for the advection equation� The second

partial derivative can be written�


�u


t�
� � 



t

�

F


x

�
� � 



x

�

F


t

�
� � 



x

�

F


u


u


t

�

�




x

�
F �	u



F


x

�
�
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�T
h
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�

u
n
�
�

j

�

u
n j
�

!
t

�!
x

	F
	u
n j
�
�


�
F
	u
n j
�
�




�

!
t�

�!
x
�

� F
� 	
u
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�
� �
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�
�


�
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�
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�
� �
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�
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�
�




�
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�
� �

�
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n j
�
�
�
u
n j

�
��

F
or
th
e
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ve
ct
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n
eq
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n
th
is
si
m
p
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�
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to

u
n
�
�

j

�
u
n j
�

v
!
t

�!
x

	u
n j
�
�
�
u
n j
�
�


�

v
�
!
t�

�!
x
�
	u
n j
�
�
�
u
n j
�
�
�
�u
n j


�
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The method is stable� because of �numerical viscosity� but

the solution does not dissapate as rapidly as the Lax

method�

Example of a solution to the advection equation using

Lax�Wendro� scheme� with v�t
�x � ��� Each box represents

a new time bin�
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Application� Fluid Mechanics in �D

A �D  uid in motion satis�es the continuity equation�


�	x� t



t
� � 



x
f�	x� t
 v	x� t
g

where � is the mass density and v the velocity� There are

also equations for the other conserved quantities� the

momentum density and the energy density� An exact

treatment requires that all three be solved simultaneously�

Consider the simplifying assumption that the velocity

depends only on the density� Then�


�


t
� � 



x
	� v	�



� �
�

�


x
v	�
 � �

dv

d�


�


x

�

� �
�
d

d�
� v	�


�

�


x

� �c	�

�

x

�
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The term c	�
 is the speed at which density waves travel� or

in other words the density is constant along the line with

slope ��c	��
�

t

xx1

Density constant
along this
line

Proof� The time derivative along this line is�

d�

dt
�


�


t
�

�


x

dx

dt
� 

� dx

dt
� �
�


t




�


x
� c	��
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Tra	c Simulation

The velocity of automobile tra�c is limited to a maximum

and decreases roughly linearly with increasing density�

v	�
 � vm	�� ���m
 �

In this case�

c	�
 � vm	�� ����m


� c	
 � vm

� c	�m
 � �vm
So the density waves can travel in either direction�

Tra�c at a stoplight
The analytical solution to the problem with initial density�

�	x� t � 
 �

��
 �m x � 

 x � 

contains the following regions�

ρ = 0ρ = ρm

x

t

Dean Karlen�Carleton University Rev� ��� ���	���



Physics ������ Tra�c Simulation ����

�

�

�

To determine � in the central region� the discontinuous

initial condition at x �  must be considered� If in the

region 	��� �
 the density varied linearly from �m to � the

solution would be�

−ε ε x

t

ρ = ρ  ρ = 0m

Taking the limit �� � the solution is given by

�	x� t
 �

����
��

�m for x � �vmt
c��	x�t
 for �vmt � x � vmt

 for x � �vmt
where c��	x�t
 � �m	�� x�	vmt

��� Graphically the

solution is given by�

m

x

ρ = ρ

t

ρ = 0
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Now that the analytic solution is understood� check to see if

the numerical methods reproduce these results�

Use the Lax�Wendro� Scheme� where

F 	�
 � � v	�
 � � vm	�� ���m


F �	�
 � c	�
 � vm	�� ����m


Use � bins in x� with periodic boundary conditions�

Consider the initial con�guration to be a square pulse over

� bins in x� The back edge of the pulse forms a traveling

discontinuity� known as a shock front� Even if the initial

con�guration is smooth� the shock front will still appear�
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The result for vm � �� �m � �� !t�!x � ��
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Shown as a density contour plot�

position

tim
e
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A disturbance in light tra�c moves forward�

position

tim
e

A disturbance in heavy tra�c moves backward�

position

tim
e
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Di�usive Initial Value Problem

General form in �D�


u


t
�





x

�
D

u


x

�

where D is a di�usion coe�cient� and D � � This equation

is of the  ux�conservative form with F 	u
 � �D
u�
x�
If D is a constant�


u


t
� D


�u


x�

can be evaluated with FTCS as�

un��j � unj
!t

� D

�
unj�� � �unj � unj��

!x�

�
�

This time FTCS is stable as long as�

�D!t

	!x
�
� �

But this can sometimes put a too small upper limit on the

time steps !t for some problems�
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The result for �D�t
��x�� � �
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The result for �D�t
��x�� � ���
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To improve the stability� one can use the following

di�erencing scheme

un��j � unj
!t

� D

�
un��j�� � �unj � un��j��

!x�

�

where the space derivatives are evaluated at time tn��� and

the method is named backward time� To solve for un��j

requires a solution of a set of linear equations� The method

is stable for all choices of !t�

Crank�Nicholson scheme

Even better� is to simply average the result from forward

and backward time methods� This gives a a method that is

second order in other time and space and stable for all !t�
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Boundary Value Problems

An example is a problem involving Laplace�s equation�


�u


x�
�

�u


y�
� 

Relaxation Methods
 Jacobi�s method
Rewrite the problem as a di�usion equation�


u


t
�


�u


x�
�

�u


y�

and an initial distribution for u will relax to an equilibrium

solution as t��� where 
u

t � �

De�ne unj�� � u	xj� y�� tn
 with !x � !y � !� Use FTCS

di�erencing to get

un��j�� � unj�� �
!t

!�

�
unj���� � unj���� � unj���� � unj���� � �unj��

�
which is stable if !t�!� � ���� At the maximum stable

time step this gives�

un��j�� �
�

�

�
unj���� � unj���� � unj���� � unj����

�
�

This is just a simple average of the � neighbouring points in

space� The method is to continue iterations until solution

converges� However� this is usually too slow for most

problems�
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Gauss�Seidel Method

There is a slight improvement in converge if updated values

of unj�� are used as they become available�

un��j�� �
�

�

�
unj���� � un��j���� � unj���� � un��j����

�
�

Successive Overrelaxation

This algorithm converges much more quickly by

overcorrecting the values for u at each iteration�

un��j�� � 	���
unj���
�

�

�
unj���� � un��j���� � unj���� � un��j����

�
�

� � � � is the Gauss�Seidel method

�  � � � � underrelaxation

� � � � � � overrelaxation

The optimal choice of � depends on the problem� and

usually found by trial�error�
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As an example� the potential within a square cavity where

one side is held at a constant potential� and the others held

at � is shown below� The starting point for each method is

potential� for all interior points�

Ja
co

bi

n=0 n=10 n=20 n=30

SO
R

_w
=

1
SO

R
_w

=
1.

5
SO

R
_w

=
1.

8
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Part III� Monte Carlo Methods

Topics�

� Introduction

� Random Number generators

� Special distributions

� General Techniques

� Multidimensional simulation
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Monte Carlo Techniques

Monte Carlo refers to any procedure that 
makes use of random numbers.

Monte Carlo methods are used in:

Simulation of natural phenomena
Simulation of experimental appartus
Numerical analysis

Random Numbers

What is a random number?  Is 3?

No such thing as a single random number.

A sequence of random numbers is a set of 
numbers that have nothing to do with the other 
numbers in the sequence.

Dean Karlen�Carleton University Rev� ��� ���	���



Physics ������ Part III� Monte Carlo Methods ����

�

�

�

In a uniform distribution of random numbers in 
the range [0,1] , every number has the same 
chance of turning up. 

Note that 0.00001 is just as likely 
as 0.50000

How to generate a sequence of random numbers.

Use some chaotic system. (like balls in a 
barrel - Lotto 6-49).

Use a process that is inherently random:
radioactive decay
thermal noise
cosmic ray arrival

Tables of a few million truely random 
numbers do exist, but this isn’t enough for 
most applications.

Hooking up a random machine to a 
computer is not a good idea. This would 
lead to irreproducable results, making 
debugging difficult.
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Random Number Generation

Pseudo-Random Numbers

These are sequences of numbers generated by 
computer algorithms, usally in a uniform 
distribution in the range [0,1].

To be precise, the alogrithms generate integers 
between 0 and M, and return a real value:

xn = In / M

An early example :

Middle Square (John Von Neumann, 1946)

To generate a sequence of 10 digit integers, 
start with one, and square it amd then take 
the middle 10 digits from the answer as the 
next number in the sequence.

eg. 57721566492=33317792380594909291

so the next number is given by 

The sequence is not random, since each 
number is completely determined from the 
previous. But it appears to be random.
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This algorothm has problems in that the 
sequence will have small numbers lumped 
together, 0 repeats itself, and it can get itself 
into short loops, for example:

61002=37210000
21002=  4410000
41002=16810000
81002=65610000

With more bits, long sequences are possible.
38 bits        750,000 numbers

A more complex algorithm does not 
necessarily lead to a better random sequence. 
It is better to use an algorithm that is well 
understood.
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Linear Conguential Method  (Lehmer, 1948)

In+1 = (a I n + c) mod m

Starting value (seed) = I0

a, c, and m are specially chosen

a, c ≥ 0     and     m > I0, a, c

A poor choice for the constants can lead to very 
poor sequences.

example: a=c=Io=7, m=10

results in the sequence:  
7, 6, 9, 0, 7, 6, 9, 0,...

The choice c=0 leads to a somewhat faster 
algorithm, and can also result in long 
sequences. The method with c=0 is called: 
Multiplicative congruential.
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m should be as large as possible since the period 
can never be longer than m.

One usually chooses m to be near the largest 
integer that can be represented. On a 32 bit 
machine, that is 231 ≈ 2×109.

Choice of modulus,  m

Choice of multiplier,  a

It was proven by M. Greenberger in 1961 
that the sequence will have period m, if and 
only if:

i) c is relatively prime to m;
ii) a-1 is a multiple of p, for every prime

p dividing m;
iii) a-1 is a multiple of 4, if m is a

multiple of 4
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With c=0, one cannot get the full period, but in 
order to get the maximum possible, the 
following should be satisfied:

i) I0 is relatively prime to m
ii) a is a primative element modulo m

It is possible to obtain a period of length m-1, 
but usually the period is around m/4.

RANDU generator

A popular random number generator was 
distributed by IBM in the 1960’s with the 
algorithm:

In+1 = (65539 × In) mod 231

This generator was later found to have a 
serious problem...
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Results from Randu� �D distribution

Random number
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Results from Randu� �D distribution
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Results from Randu� �D distribution
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Problem seen when observed at the right angle�
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The Marsaglia effect

In 1968, Marsaglia published the paper,

Random numbers fall mainly in the planes

(Proc. Acad. Sci. 61, 25) which showed that this 
behaviour is present for any multiplicative 
congruential generator.

For a 32 bit machine, the maximum number of 
hyperplanes in the space of d-dimensions is:

d=  3         2953
d=  4           566
d=  6           120
d=10             41

The RANDU generator had much less than the 
maximum.
The replacement of the multiplier from 65539 to 
69069 improves the performance signifigantly.
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Warning

The authors of Numerical Recipies have 
admitted that the random number 
generators, RAN1 and RAN2 given in the 
first edition, are “at best mediocre”.

In their second edition, these are replaced by 
ran0, ran1, and ran2, which have much 
better properties.

The new routines can also be found in the 
recent edition of Computers in Physics,
(Sept/Oct 1992 edition, page 522).
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One way to improve the behaviour of random 
number generators and to increase their period is 
to modify the algorithm:

In = (a×In-1 + b×In-2) mod m

Which in this case has two initial seeds and can 
have a period greater than m.

RANMAR generator

This generator (available in the CERN library, 
KERNLIB,  requires 103 initial seeds. These 
seeds can be set by a single integer from 1 to 
900,000,000.

Each choice will generate an independat series 
each of period,  ≈ 1043.

This seems to be the ultimate in random 
number generators!
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Warning on the use of Random 
Number generators.

In FORTRAN, random number generators
areusually used called as functions,

x=RAND(IDUM)

Where the arguement, IDUM, is not used. In 
fortran, a function is supposed to be a function 
of only the arguments, and so some compilers 
will try to optimise the code by removing 
multiple calls to random number generators.

For example

x=RAND(IDUM)+RAND(IDUM)

x=2.*RAND(IDUM)

may be changed to
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This can also be a problem when the 
random number generator is called 
inside DO loops.

Solution: 

Fool the optimiser by always changing 
the dummy argument:

But don’t try this if the random number 
generator uses the argument to save the 
seed for the next random number. 
(Numerical Recipies generators, for 
example)!

DO 1 I=1,100
IDUM=IDUM+1
x=RAND(IDUM)
...

1 CONTINUE
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Simulating Radioactive Decay

This is a truly random process� The probability of decay is

constant 	independent of the age of the nuclei
�

The probability that a nucleus undergoes radioactive decay

in time !t is p�

p � �!t 	for �!t� �


Problem�

Consider a system initially having N� unstable nuclei� How

does the number of parent nuclei� N � change with time�

Algorithm�

LOOP from t�� to t� step !t

LOOP over each remaining parent nucleus

Decide if the nucleus decays�

IF�random � � �!t� then

reduce the number of parents by �

ENDIF

END LOOP over nuclei

PLOT or record N vs� t

END LOOP over time

END
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Exercise �

Write a program to implement the preceding algorithm�

Graph the number of remaining nuclei as a function of time

for the following cases�

N� � �� � � �� s��� !t � � s �

N� � �� � � �� s��� !t � � s �

Show the results on both linear and logarithmic scales for

times between  and � seconds� In addition� plot on the

same graphs the expected curve� given�

dN � �N �dt

ie� N � N� e
��t
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Solution to exercise �


The �experimental� results do not perfectly follow the

expected curve� there are statistical  uctuations�

N0=100, α=0.01
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Poisson Distribution

The probability of observing a total of n decays in a time

interval T can be worked out as follows�

Assume the number of decays in time T is much less than

the number of parent nuclei� 	ie� assume constant

probability to observe a decay
�

Break up T into m shorter intervals� duration !t�

 t

T

The probability to observe � decay in time !t is�

p � �!t

where � � �N as !t must be small enough so that

�!t� �� The probability of observing n decays in time T

is therefore�

P � pn	�� p
m�n
�
m

n

�
�
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P � pn	�� p
m�n
m�

	m� n
�n�

�

�
�T

m

�n �
�� �T

m

�m�n
m�

	m� n
�n�

In the limit of !t�  	ie� m��
��
�� �T

m

�m
� e��T

�
�� �T

m

��n
� �

m�

	m� n
�
� mn

The result is�

P � �ne���n�

where � � �T � This is known as the Poisson distribution�
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Exercise �

Modify the program written for exercise � to simulate an

experiment that counts the number of decays observed in a

time interval� T �

Allow the experiment to be repeated and histogram the

distribution of the number of decays for the following two

cases�

N� � �� � � �� ��� s��� !t � � s� T � � s

N� � �� � � �� ��� s��� !t � � s� T � � s

In each case show the distribution using � experiments�

Also� overlay the expected Poisson distribution�

Question� Are there limits on the value of !t so that your

program will give reliable results� Explain�
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Solution to Exercise ��
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0

40

80

120

160

200

240

280

320

0 1 2 3 4 5 6 7 8 9

N0=500, alpha=2e-4, T=100

0

20

40

60

80

100

120

140

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

Dean Karlen�Carleton University Rev� ��� ���	���



Physics ������ Properties of the Poisson distribution ���

�

�

�

Properties of the Poisson distribution

Pn �
�n

n�
e�� 	� � �NT 


Mean value�

hni �
�X
n
�

�
n
�n

n�
e��

�

� � e��
�X
n
�

�n��

	n� �
�

� � e��
�X

m
�

�m

m�
� �

Variance�

�� �
�X
n
�

�
	n� �
�

�n

n�
e��

�

�
�X
n
�

�
	n� � �n�� ��


�n

n�
e��

�
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Do each term individually�

�X
n
�

�
n�

�n

n�
e��

�
�

�X
n
�

�
n

�n��

	n� �
�
e��

�
�

�
�X
n
�

�
	n� �


�n

n�
e��

�
�

� 	�� �
�

�X
n
�

�
��n� �n

n�
e��

�
� ����

�X
n
�

�
��

�n

n�
e��

�
� ��

So� �� � �� � �� ��� � �� � � �

Hence if n decays are observed� the � standard deviation

uncertainty is
p
n� 	This is also true for any other variable

that follows the Poisson distribution�
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Many observables follow the Poisson distribution� Anything

whose probability of occurring is constant in time�

For example�

� number of observed events when e�ciency is constant

� number of entries in a histogram bin

Some measurements lead to non�Poisson distributions�

For example�

� number of radioactive decays observed in a �xed time

interval� when there is a signi�cant reduction of parent

nuclei

� number of radioactive decays observed in a �xed time

interval� when there is signi�cant deadtime� 	ie� the

detector is not active for some period after an event is

recorded
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Gaussian �or Normal� Distribution

This is the most important distribution in statistical

analysis�

G	xj�� �
 � �p
�	�

e�
�x����

���

The mean of the distribution is � and the variance is ���

For large �� the Poisson distribution approaches the

Gaussian distribution 	with �� � �
�

The Gaussian distribution is a reasonable approximation of

the Poisson distribution even for � as small as ��
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Comparison of Poisson and Gaussian distributions�
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Binomial Distribution

The binomial distribution describes the results of repeated

experiments which has only two possible outcomes�

Suppose a radioactive source is monitored for a time

interval T � There is a probability p that one or more

disintegrations would be detected in that time interval� If a

total of m intervals were recorded� the probability that n of

them had at least one decay is

P � pn	�� p
m�n
�
m

n

�
�

The mean of this distribution is� np

The variance of this distribution is� np	�� p
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Simulating General Distributions

The simple simulations considered so far� only required a

random number sequence that is uniformly distributed

between  and �� More complicated problems generally

require random numbers generated according to speci�c

distributions�

For example� the radioactive decay of a large number of

nuclei 	say ���
� each with a tiny decay probability� cannot

be simulated using the methods developed so far� It would

be far too ine�cient and require very high numerical

precision�

Instead� a random number generated according to a Poisson

distribution could be used to specify the number of nuclei

that disintigrate in some time T �

Random numbers following some special distributions� like

the Poisson distribution� can be generated using special

purpose algorithms� and e�cient routines can be found in

various numerical libraries�

If a special purpose generator routine is not available� then

use a general purpose method for generating random

numbers according to an arbitrary distribution�
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Rejection Technique

Problem� Generate a series of random numbers� xi� which

follow a distribution function f	x
�

In the rejection technique� a trial value� xtrial is chosen at

random� It is accepted with a probability proportional to

f	xtrial
�

Algorithm�

Choose trial x� given a uniform random number ���

xtrial � xmin � 	xmax � xmin
��

Decide whether to accept the trial value�

if f	xtrial
 � �� fbig then accept

where fbig � f	x
 for all x� xmin � x � xmax� Repeat the

algorithm until a trial value is accepted�
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This algorithm can be visualized as throwing darts�

x x

f

min max

big

f(x)

This procedure also gives an estimate of the integral of f	x
�

I �

Z xmax

xmin

f	x
 dx � naccept
ntrial

fbig	xmax � xmin
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The � standard deviation uncertainty can be derived using

the variance of the binomial distribution�

�Naccept �
p
p	�� p
Ntrial p �

Naccept

Ntrial

�
�I

I

��
�

�
�Naccept

Naccept

��

�
Naccept

Ntrial

�
�� Naccept

Ntrial

�
Ntrial

�

N�
accept

�
�

Naccept
� �

Ntrial

�
�

Ntrial

�
�� p

p

�

So the relative accuracy only improves with N
� �
�

trial
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The rejection algorithm is not e�cient if the distribution

has one or more large peaks 	or poles
�

In this case trial events are seldomly accepted�

x x

f

min max

big

f(x)

In extreme cases� where there is a pole� fbig cannot be

speci�ed� This algorithm doesn�t work when the range of x

is 	�����
� A better algorithm is needed���

Dean Karlen�Carleton University Rev� ��� ���	���



Physics ������ Inversion Technique ����

�

�

�

Inversion Technique

This method is only applicable for relatively simple

distribution functions�

� First normalize the distribution function� so that it

becomes a probability distribution function 	PDF
�

� Integrate the PDF analytically from the minimum x to

an aritrary x� This represents the probability of chosing

a value less than x�

� Equate this to a uniform random number� and solve for

x� The resulting x will be distributed according to the

PDF�

In other words� solve the following equation for x� given a

uniform random number� ��

Z x

xmin
f�x� dxZ xmax

xmin
f�x� dx

� �

This method is fully e�cient� since each random number �

gives an x value�

Dean Karlen�Carleton University Rev� ��� ���	���



Physics ������ Inversion Technique ����

�

�

�

Examples of the inversion technique

�
 generate x between  and � according to f	x
 � x�
�
� �R x

� x�
�
� dxR �

� x
� �

�

dx � �

�
�x

�
� � �

� generate x according to x � ���

�
 generate x between  and � according to f	x
 � e�x�R x
�
e�x dxR�

� e�x dx
� �

�� e�x � �

� generate x according to x � � ln	�� �


Note that the simple rejection technique would not work for

either of these examples�
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Exercise �

Write a program that generates the value � according to the

distribution function�

f	�
 � 	sin� � � a cos� �
��

in the range  � � � �	�

Compare the rejection technique and the inversion

technique�

� Generate � values for each method using a � ��

and also for a � ���

� Plot the results for each 	� plots
 and overlay the

distribution curve� f	�
� properly normalized�

� Compare the CPU time required for the � runs�
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Solution to Exercise ��
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What if the rejection technique is 
impractical and you can’t invert the 
integral of the distribution function?

Importance Sampling

Replace the distribution function, f(x), by an 
approximate form, f a(x), for which the inversion 
technique can be applied.

Generate trial values for x with the inversion 
technique according to f a(x), and accept the trial 
value with the probability proportional to the 
weight:

w = f(x) / f a(x)

f a(x)

The rejection technique is just the special case 
where f a(x) is chosen to be a constant.
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Example:

Generate x according to f(x) = (1+x)x-1/2

for the range 0 < x < 1.

There is clearly a problem at x near 0. 

f a(x) needs to be chosen so the weights for the 
trial values of x are well behaved,

w = f(x)/f a(x)

Try f a(x) = x -1/2,  then w=1+x

Procedure:

Generate trial x:          x = λ1

2

Decide to accept:        if  (1+x) > λ2 wmax accept

In this case, wmax=2, but in more complicated cases, 
you may need to run the program to find the 
maximum weight generared, and then pick a value a 
little larger, and rerun.
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Note� the integral can be evaluated as before

I �

Z xmax

xmin

f	x
 dx �
naccept
ntrial

wmax Ia

where Ia �
R xmax

xmin
fa	x
 dx�

But the integral can be found more e�ciently 	ie� more

accuratly for the same amount of CPU
� by using the

weights of all trial values�

I �

Z xmax

xmin

f	x
 dx �

Z xmax

xmin

f	x


fa	x

fa	x
 dx

�

Z xmax

xmin

w	x
fa	x
 dx

But�
R x
xmin

fa	x
 dx�Ia � �� so fa	x
dx � Ia d�

I �

Z �

�

w	�
Ia d� � Ia
�

ntrial

X
i

w � Iahwi

And the one standard deviation uncertainty is��
�I

I

��
�

�

ntrial

hw�i � hwi�
hwi�
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Generating random numbers according to the 
Gaussian distribution.

There are  2 ways to handle this special case.

1) Central limit theorem

“The sum of a large number of random numbers 
will approach a Gaussian distribution”

For a uniform istribution from 0 to 1,
the mean value is 1/2

and the variance is

σ2= ⌠
⌡ (x-1/2)2 dx = 1/12

So just add 12 random numbers and subtract 6. 
The mean will be 0 and the variance will be 1.

This algorithm is coded in RG32 in the 
CERN library.
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2) 2 D gaussian
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Multidimensional Simulation

Simulating a distribution in more than 1 
dimension:

If the distribution is separable, the variables are 
uncorrelated, and hence each can be generated 
as before:

For example,   if f(x,y) = g(x) h(y)

then generate x according to g(x) and y 
according to h(y).

Otherwise,  the distributions along each 
dimension needs to be calculated:

Dx(x) = ⌠
⌡ f(x,y) dy

Typically, you will need to choose an 
approximation of the distribution, f a(x,y) so the 
integrals, ⌠

⌡ f a(x,y)dx and ⌠
⌡ f a(x,y)dy are 

invertable. The weights for trial events are given 
by, w = f(x,y) / f a(x,y)  and the integral can be 
evaluated as before, using the weights of all trial 
events. (Event = x and y pair)
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Simulation of Compton Scattering

k

k’

-

θ

The energy of the �nal state photon is given by

k� �
k

� � 	k�m
	�� cos �


The di�erential cross section is�

d�

d�
�

��

�m�

�
k�

k

���
k�

k
�

k

k�
� sin� �

�

O� Klein� Y� Nishina� Z� Physik� ��� ��� 	����


The angular distribution of the photon is�

�	�� �
 d� d� �
��

�m�
���

k�

k

��
�

�
k�

k

�
�
�
k�

k

��
sin� �

�
sin � d� d�

The azimuthal angle� �� can be generated independantly

from �� by simply� � � �	���
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To generate the polar angle� �� an approximation is needed�

Note that for k � m� the cross section is sharply peaked at

small angles� Also� note that k� � k� so the second term is

the dominant term in the cross section formula�

A good approximation to the cross section is�

�a	�� �
 d� d� �
��

�m�

�
k�

k

�
sin � d� d�

�
��

�m�

�
� �

k

m
u

���
du d�

where u � 	�� cos �
�

u is generated according to�

u �
m

k

��
� � �

k

m

���
� �

�

Be careful when k � m� this procedure would not generate

u properly� due to roundo� errors� Similarly� it is much

better to generate u � 	�� cos �
 than cos �� when there is a

pole at � � �
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Exercise 9

Write a Monte Carlo program that generates 
Compton scattering events.
The program should ask for the number of events 
to generate and the photon energy. Show the 
distribution of the scattering angle of the photon 
(compared to the Klein Nishina formula) and give 
the total cross section (ie. use the same program to 
evaluate the integral and its uncertainty) for the 
following four cases:

k=5 keV, k=2 MeV, k=1 GeV, k=1 TeV

in each case generate 10000 events.
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Solution to Exercise ��

angular dist 5 KeV
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Photon transport in matter

With this program, and others that simulate the 
photoelectric effect, pair production, etc., you 
could produce a program that simulates the 
interaction of photons with matter:

Algorithm:

Break path into small steps:

For each step decide if an interaction takes place 
(given the total cross section for each possible 
interaction).

Simulate the interaction, ie. give photon new 
momentum vector or possibly produce an e+e-

pair, which then would be followed, etc.
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Such programs already exist. For example:

EGS  (SLAC)
GEANT (CERN)

You may use these to simulate photon transport 
in a particular sample you are testing or to 
simulate the response of your detector.

Detector response

It is often sufficient to simulate the general 
properties of your detector: efficiency, resolution, 
bias, offset.

Efficiency

From measurements from well understood 
sources, the effiency  as a function of  energy 
(and maybe position) can be found.
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For example:

E

ε
Once ε is known, 
select events that are 
missed with a 
probabilty of ε:

If  λ>ε then event is 
not observed.

Resolution, offset

Again, these can be 
measured using well 
understood sources:

Eres

Eoffset Emeas - Etrue

Emeas = Etrue + Eres Gλ + Eoffset

Background, noise

Simulate the observed energy distribution 
when no source is present.

Gaussian random number
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Part IV� Statistics for Physicists

Experimental Measurements and 
Uncertainties.

The result of an experiment that measures a 
parameter, x, is usually given by:

x = a σ

a is the most probable value
σ specifies the uncertainty in the

measurement (sometimes called
the error)

The probability distribution of the measurement 
is usually assumed to be a Gaussian distribution. 
Hence the total probability that the true values 
lies within the range (a-σ, a+σ) is 68%.

This is called inverse probability by 
mathematicians. Physicists use the term 
probability for both direct and inverse 
probability.
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Random and systematic uncertainties

Random (statistical) uncertainty: 

due to the inherent randomness of the 
process being measured.

Systematic uncertainty:

due to the uncertainty in the behavior of
the experimental apparatus

Example:

A measurement of the activity of a radioactive 
source: Count the number, N, of signals in a 
detector covering the solid angle Ω, with 
efficiency ε, over a period of time T.

Statistical uncertainty: uncertainty in the N. For 
large N, the probability distribution follows a 
Gaussian with σ = N 1/2

Systematic uncertainty: T, Ω, and ε are not 
known with perfect precision.
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General comments:

•  Two measurements often suffer common
systematics, whereas never share statistical
error, hence one often treats statistical and
systematic errors separately.

•  It is usually difficult to characterise the one
standard deviation uncertainty.

•  Most experiments are designed so that the
systematic uncertainty is smaller than the
statistical uncertainty. 

systematic

Determining systematic uncertainties

If an “off-the-shelf” instrument is used, the 
manufacture may quote an uncertainty based on 
the precision observed for many copies of their 
instrument.

Otherwise, some calibration of the instrument 
can be done to a precision limited by a statistical 
process.
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Central limit theorem

If xi are a set of n independent variables of mean 
µ and variance σ2, then for large n:

y = Σxi / n

will tend to a Gaussian with mean = µ and 
variance = σ2/n

This is true even if xi come from distributions 
with different means µi and variance σi

2:

In this case   mean = Σµi/n   and variance = Σσi

2/n
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Combining errors
 general case

x and y are measurements of parameters with true values

�x� �y then�

f	x� y
 � f	�x� �y
 � 	x� �x


f


x
� 	y � �y



f


y

If the measurement of x and y is based on n measurements�

the variance of f over those measurements is�

��f �
�

n

X
i

	f	xi� yi
� f	�x� �y


�

�
�

n

X
i

	xi � �x

�

�

f


x

��
�

�

n

X
i

	yi � �y

�

�

f


y

��
�

�

n

X
i

	xi � �x
	yi � �y


f


x


f


y

� ��x

�

f


x

��
� ��y

�

f


y

��
� �cov	x� y



f


x


f


y
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The generalisation to m dimensions� where

f � f	x�� x�� ���� xm
 is�

��f �
mX
i
�

mX
j
�


f


xi


f


xj
Vij

where� Vij �� 	xi � %xi
	xj � %xj
 � is the error matrix�

To change from variables x�� x�� ���� xm to

y�� y�� ���� yn the error matrix for the y variables is

V y
ij �

mX
a
�

mX
b
�


yi

xa


yj

xb

V x
ab
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Example: Gaussian in 2 D

If x and y are two uncorrelated variables, then 
the probability distribution P(x,y) is just the 
product P(x)P(y). In the case of Gaussian 
distributions centred on the origin:

P(x,y)=(2πσxσy)
-1 exp(-(x2/σx

2+y2/σy

2)/2))

The contour of constant probability in the x y 
plane is an ellipse whose axes are aligned with 
the x and y axis:

Example, contour at probability reduced by e-1/2

σy

σx
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To introduce a correlation, rotate the variables:

x
y

x’

y’

φ

σx’

σy’

Then

P 	x�� y�
 � 	�	�x��y�

��	�� ��
���� �

exp	�	x�����x� � y�����y� � ��x�y��	�x��y�

�	�	�� ��




where � � Vx�y��	�x��y�
 is the correlation coe�cient

j�j � �� and � �  corresponds to no correlation

tan �� � ���x��y��	�
�
x� � ��y�
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Exercise ��

Generate � events of uncorrelated 	x�y
 values� each

given by a Gaussian distribution with

�x � �� �x � �� �y � �� �y � ��

Show a scatter plot of the data� Calculate the error matrix�

V � and � and � for this data set� Consider the function

f	x� y
 � �x� �y� Evaluate the variance of this function

directly using the data set� and also by using the equation

using the error matrix�

Now rotate the same events by � � �� 	about the center of
the distribution� not the origin
� and repeat the above

exercises�
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Confidence intervals

If θ is a parameter we wish to determine from 
a sample of n measurements, 
x1, x2, ... xn, we form an estimator, 
t = t(x1,x2,...,xn).

t is a random variable. That is, if the 
experiment was repeated several times, we 
would find the the value of t would follow 
some distribution function, f(t):

ta
tb

f(t)

If  ⌡
⌠
ta

tb f(t)dt=γ, then P(ta≤θ≤tb)=γ

Some say “The probability that the true 
value, θ, is within the range [ta,tb] is γ.”

Not really!
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The distribution of the true value, θ, is a delta 
function at t=θ. (ie. θ is not a random variable). 
Hence the probability that the true value is within 
the range [ta,tb] is 1 if ta≤θ≤tb and is 0 otherwise.

Proper interpretation of P(ta≤θ≤tb)=γ is that if you 
have a large number of samples of size n (ie. the 
experiment is repeated many times) then ta≤θ≤tb

for 100γ % of the experiments.

Example: Gaussian distribution

µ is an unknown quantity, x is a measurement of µ: 
it is a random variable that has a normal 
distribution about a mean value µ, with variance σ2

Then, z=(x-µ)/σ is a random variable distributed 
according to the unit Gaussian, G(0,1)(z)

Then, for example, 

P(-2 ≤ (x-µ)/σ ≤ 2) = ∫-2

2 G(0,1)(z) dz = 0.954

which states the probability of  |(x-µ)/σ|<2 is 95.4%
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The expression can be rewritten as:
P(x-2σ ≤ µ ≤ x+2σ) = 0.954

which apparently treats µ as a random variable 
and [x-2σ,x+2σ] as a fixed interval.

Instead:

[x-2σ,x+2σ] is a random interval, and the 
statement says that the probability the interval 
contains µ is 0.954.

Gaussian confidence intervals (1D)

c         I

1       0.683
1.5    0.866
1.64  0.900
1.96  0.950
2.0    0.955
2.58  0.990
3.0    0.997

The integral I = ∫−c

c

G(0,1)(z) dz is given below:
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What if some measurements are in a non 
physical region? (eg. mν

2<0).

Classical approach

To determine a confidence interval, proceed as 
before:

∫−∞

mγ
2

G(m2)dm2 = γ

The probability of the interval [−∞,mγ
2] to 

contain the true mν
2 is γ.

Quote result as mν<(mγ
2)-1/2 at 100γ % confidence 

level.
One usually chooses γ to be large enough so that 
mγ

2>0!.

Note that a precise experiment and an imprecise 
one with a statistical fluctuation can give the 
same limit!
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Classical Approach

mν
2 (eV2)

Classical Approach 95% C.L.
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Bayesian approach

Multiply the result of the experiment, L(x|θ), by 
the prior belief function, Q(θ),
where Q(θ)=0 in the unphysical region,
in order to obtain the posterior density function,

R(x|θ)=L(x|θ)Q(θ)

The particle data group suggests this method 
with Q(θ) taken as a constant in the physical 
region. and R(x|θ) is normalised so that

∫ R(x|θ) dx =1

This is a conservative approach, in that the 
probability that the range [0,mγ

2] contains the true 
mν

2 is > γ.

But it is not possible to combine the results of 
experiments that just quote a mass interval and 
confidence level. It is better to quote m2 and σm

2.

See F.James, M.Roos, Phys.Rev.D44, 299 (1991)
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Bayesian Approach

mν
2 (eV2)

Bayesian Approach 95% C.L.
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Estimation of parameters

General Problem:

Given n observations, xi, one wants to describe 
the underlying (or parent) distribution. The form 
of the parent distribution may be known but may 
have a number of unknown parameters, θj. The n 
observations should be used to determine the 
parameters, θj, as accurately as possible.

Definitions:

estimator: a function, t, of the observations used to 
determine the unknown parameter θ.

estimate: the resulting value of the estimator, θ
∧
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Properties of good estimators.

A good estimator must have the 
following properties:

• should not deviate from true 
parameter value in the limit of large n

• accuracy should improve with larger n

In addition:

• should be centered around true parameter 
value for all n (For example, x´ = Σxi/(n-30) 
does not satisfy this criterion.)

• should exhaust all the information in the 
data xi

• should have the minimum possible 
variance (For example, the mean has a 
smaller variance than the median.)

• should be robust so as not to be sensitive 
to background or outliers
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Maximum Likelihood Method

It is very powerful and general method of 
parameter estimation when the functional form 
of the parent distribution is known.

For large samples the maximum likelihood 
(ML) estimators are normally distributed, 
hence the variances of the estimates are easy to 
determine.

Even for small samples, the ML estimators 
possess most of the “good” properties.

Likelihood function

Given n measurements, xi, of a quantity with 
probability density function f(x|θ)

(ie. ∫x min

x max

f(x|θ) dx = 1 for all θ)

Then,  L(x1,x2,...,xn|θ) ≡ Π f(xi,θ)

Each xi could also denote a set of  measurements, 
and θ could be a set of parameters.
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The estimate θ
∧

is that value which maximises L

Since L and lnL attain their maximum values at 
the same point, one usually uses lnL, since sums 
are easier to work with than products:

lnL = Σ
i=1

n

ln( f(xi|θ))

Normally, the point of maximum likelihood is 
found numerically.

Simple example: Gaussian parent distribution

If the parent distribution of xi is G(µ,σi

2) then,

L(xi|µ,σi) = Π (2π)-1/2σi

-1exp(−(xi−µ)2/2σi

2)

To estimate µ,

∂lnL/∂µ |µ̂ = ∂/∂µ Σ(−ln(2πσi

2)/2 − (xi−µ)2/2σi

2) |µ̂ = 0

so,  Σ(xi−µ̂ )/σi

2 = 0    ⇒ µ̂ = Σ (xi/σi

2) / Σ (1/σi

2)

so the ML estimator of the population mean, is the 
weighted mean.
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Properties of Maximium Likelihood estimators

Invariant under parameter transformation

The choice of parameterisation is arbitrary:

if θ is the parameter,  ∂L/∂θ |θ∧ = 0

If instead some function of θ is used, t(θ)

∂L/∂θ|θ∧ = (∂L/∂t ∂t/∂θ)|θ∧ = 0  ⇒ ∂L/∂t |θ∧ = 0

Consistent

estimators converge on true parameter 

Unbiased

sometimes biased for finite samples. Note: θ
∧

may be unbiased but t(θ)
∧

may be biased.

Efficient

if a sufficient estimator exists, the ML 
method produces it, and this will give the 
minimum attainable variance.
ie. You can’tdo better than this.
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Variance of ML estimates


L	�x� ��
 � L	x�� ���� xnj��� ����k
 �
nY
i

f	xi� ��


If the estimates can be written as functions of xi� then the

error matrix for &� is

Vij	
&��
 �

Z
�

	&�i � �i
	&�j � �j
L	�x� ��
d�x

which could be found without using any data�

If only a single parameter 	and su�cient


V 	&�
 �

��
� lnL

��

���
�
��

Note� this is easily shown for normally distributed

estimates�

L � exp

�
� 	� � &�
�

�V 	&�


�


� lnL

��

� � �

V 	&�
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Example� variance of the weighted mean

&� �

Pn
i
�

xi
�
iPn

i
�
�
�
i

Recall the log likelihood function is

lnL �
nX
i
�

�
��

�
ln	�	��i 
�

�

�

�
xi � �

�i

���

Then� the variance is�

V 	&�
 �

�
�
� lnL


��

���
�
��

�

�
nX
i
�

�

��i

���

In the case where �i � �� !� � ��
p
n

For multiparameter large sample estimates�

V ��ij 	
&��
 �

�
�
� lnL

�i
�j

�
��


���

� n

Z
�

�

f

�

f


�i

��

f


�j

�
d�x
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Graphical determination of 
the ML estimate and error.

This method can be used for 1 or 2 parameters 
when the ML estimate and variance cannot be 
found analytically.

One parameter

Plot lnL as a function of θ and read off 
the value of θ

∧
at the position where L

is the largest.

Sometimes there is more than one peak. 
Take the highest one.

Uncertainty is deduced from the positions 
where ln L is reduced by an amount 1/2

Note that for a Gaussian LF, 

ln L = ln Lmax − (θ − θ
∧

)2/2V(θ
∧
)

so, 

ln L(θ
∧

+V(θ
∧

)1/2) = ln Lmax−1/2
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The formula,   

ln L(θ
∧

+V(θ
∧

)1/2) =ln Lmax−1/2

even applies for a non-Gaussian likelihood 
function.

Proof:

Change variables to g(θ), which produces a 
Gaussian distribution. L is invariant under 
parameter transformations.

If the likelihood function is asymmetric (typically 
the case for small sample size) then an 
asymmetric interval about the most likely value 
may result. In this case the measured result 
usually quoted as:

1.23 + 0.12

− 0.09

for example.
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Examples of Likelihood distributions

Central Values and � � intervals are shown�
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Two parameters

Given L(x|θ1,θ2), plot contours of constant 
likelihood in the θ1,θ2 plane.

Often there may be more than one maximum, if 
one isn’t much larger than all the rest, then an 
additional (different) experiment may be needed to 
decide which of the peaks to take.

To find the uncertainty, plot the contour with ln L
= ln Lmax−1/2 and look at the projection of the 
contour on the 2 axes.

θ1

θ2

θ
∧

1 −∆θ
∧

1 θ
∧

1 +∆θ
∧

1

θ
∧

2 −∆θ
∧

2

θ
∧

2 +∆θ
∧

2

θ
∧

1

θ
∧

2

θ1

θ2

correct method incorrect method
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θ1

θ2

θ
∧

1 −∆θ
∧

1 θ
∧

1 +∆θ
∧

1

θ
∧

2 −∆θ
∧

2

θ
∧

2 +∆θ
∧

2

θ
∧

1

θ
∧

2

Using the correct method, the uncertainties do 
not depend on the correlation of the variables:

For a two dimensional Gaussian LF, the probability 
that the range (θ

∧

1 −∆θ
∧

1 ,θ
∧

1 +∆θ
∧

1 ) contains θ1 is still 
0.683.

The probability that the ellipses of constant
ln L=ln Lmax- a contains the true point θ1 and θ2, is 
given in the following table:

σ           γ

0.5     1        0.393
2.0     2        0.865
4.5     3        0.989
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If the LF contours are very irregular so that a 
transformation to a 2D Gaussian is not possible, 
or if the contour consists of more than one 
closed curve, it is probably better to show the 
LF contour directly, instead of quoting any 
intervals.

If there are 3 or more parameters, larger samples 
are necessary to have the LF to be Gaussian.

A general maximisation (minimisation) program 
will be necessary to find the estimate and the 
uncertainties.

A good program widely used in HEP is MINUIT, 
in the CERN library.

The routines, BRENT and POWELL, from 
Numerical Recipies can be used for simple 
problems.

Dean Karlen�Carleton University Rev� ��� ���	���



Physics ������ Maximum Likelihood Method ����

�

�

�

Generalized Likelihood function

If the total number of events expected is a 
function of θ, ν=ν(θ), and events are observed, 
then

where is the Poisson distriubtion.

In problems where the shape of f(x|θ) is of 
primary interest, this modification will gain little 
in the precision of θ

∧
.

n

L(n,x|θ) = P(n,ν)L(x|θ)

P(n,ν)=νne−ν/n!

Using likelihood on binned data

If the sample is very large, and f(x|θ) is complex, 
computation can be reduced by grouping the sample 
into bins, and write L as the product of the 
probability of finding n entries in each bin i 
(multinomial distribution)

L(n1,n2,...,nm|θ)=n!Π(ni!)
-1pi

ni

pi is the probability for bin i: pi = ∫∆xi
f(x|θ)dx

Since L depends on θ only through pi, find 
maximum of L through lnL = Σnilnpi(θ).
Rather obvious when you look at it!
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There will be some loss of information by 
binning the data, but as long as the variation in f 
across each bin is small, there should be no 
great loss in precision of θ

∧
.

Using weighted events

Recall that if the efficiency, εi<1, then you need to 
correct each event by the weight, wi=1/εi. Then

lnL(x|θ) = Σ wi ln f(xi|θ)

Combining results from two experiments

Suppose two independent experiments designed to 
measure the same parameter θ, result in two 
measurements x and y. If L(x|θ) and L(y|θ) are 
approximately Gaussian, then just use the weighted 
average. 

Otherwise, use the product of the likelihood 
functions:

L(x,y|θ) = Π
i

f1(xi|θ)Π
j

f2(xj|θ)=L(x|θ)L(y|θ)
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Exercise ��

Consider an experiment that is set up to measure the

lifetime of an unstable nucleus� N� using the chain reaction�

A� Ne%� � N � Xp

The creation and decay of N is signaled by the electron and

proton�

The lifetime of each N� which follows the p�d�f� f � �
� e
�t�� �

is measured from the time between observing the electron

and proton with a resolution of �t�

The expected probability density function is the convolution

of the exponential decay and the Gaussian resolution�

f	tj�� �t
 �
Z �

�

e
� �t�t���

���
tp

�	�t

e�
t�

�

�
dt�

�
�

��
exp

�
��t
���

� t

�

�
erfc

�
�tp
��
� tp

��t

�
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Exercise �� �continued�

Generate � events with � � � s and �t��� s� 	Use the

inversion technique followed by a Gaussian smearing�
 Use

the maximum likelihood method to �nd &� and the

uncertainty� ��� � Plot the likelihood function� and the

resulting p�d�f� for the measured times compared to a

histogram containing the data�

Automate the ML procedure so as to be able to repeat this

exercise � times� and plot the distribution of 	&� � �
����
for your � experiments and show that it follows a unit

Gaussian�

For � data sample� assume that �t is unknown� and show a

contour plot in the �� �t plane with constant likelihood�

lnL � lnLmax � �

�
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Solution to Exercise ���

observed times
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24
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Exercise 6: Negative log likelihood
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Exercise 6: Negative log likelihood
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residual/error

Exercise 6: 100 repititions
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Log likelihood (sigma t vs tau)

Exercise 6
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The Least Squares Method

The most frequently used method, but has no 
general optimal properties to recommend it.

For problems where the parameter dependence 
is linear, the Least Squares (LS) method 
produces unbiased estimators of minimum 
variance.

Method

At observational points x1,...,xN we measure 
experimental values of y1,...,yN. The true 
functional form is defined by L parameters,  
fi = fi(θ1,...,θL)

To find the parameter estimates, θ1,...,θL, 
minimise X2=Σwi(yi-fi)

2, where wi is the weight 
that expresses the accuracy of yi.

If constant accuracy, wi=1;
if accuracy for yi given by σi, wi=1/σi

2;
if yi represents a Poisson distributed random 
number, wi=1/fi (or sometimes wi=1/yi).
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If the observations are correlated then,

X2 = Σ
i=1

N

Σ
j=1

N

(yi-fi)Vij

-1(yj-fj)

The xi values are assumed to have no uncertainty 
associated with them.

If yi are Gaussian distributed then LS is equivalent 
to the ML method.

If in addition, the observables are linear functions 
of the parameters, then X2

min will follow the χ2

distribution.

χ2 distribution

If xi (i=1,...,N) are distributed according to the 
Gaussian with mean µi and variance σi

2, the 
quantity, χ2≡Σ(xi-µi)

2/σi

2 has the p.d.f. given by,

f(χ2|N) = 2-N/2Γ-1(N/2)χ2(N/2-1)e-χ2/2 0 ≤ χ2 ≤∞

where N is called the number of degrees of 
freedom.
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Properties of the �� distribution

� If rN has the distribution� f	��jN
� then rN� � rN� will

have the distribution� f	��jN� �N�
�

� The maximum of f	��jN
 occurs at N � � 	and at  for

N � �
�

� The mean is N and the variance is �N

� For large N � it approaches the Gaussian distribution�
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Cumulative �� distribution

F 	���jN
 �

Z ���

�

f	��jN
 d�� � �� �

The p�d�f� of F is uniform over �� �� 	of course�
�

The following graph shows � � �� F 	���
� for various N
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Linear Least Squares Model

If the observables are linear functions of the 
unknown parameters and the weights are 
independent of the parameters, then the LS 
method has an exact solution that can be written 
in closed form. The estimates are unique, 
unbiased and have the minimum variance.

Example: Unweighted straight line fit

Data points: (x1,y1), (x2,y2),...,(xN,yN)

model: fi = θ1 + xiθ2

minimise X2 to find the estimates:

Σxi

2 Σyi - Σxiyi Σxi

N Σxiyi - Σxi Σyi

N Σxi

2 - (Σxi)
2

N Σxi

2 - (Σxi)
2

θ
∧

1 =

θ
∧
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General Weighted Linear Case
The N measured quantities are given by �y� the expectations

by �f which depend on the L parameters� ��� fi � Ai����

For example� fi � �� � xi�� � x�i ��

If the error matrix for �y is given by V � minimise

X� � 	�y �A��
TV ��	�y �A��


which has the solution for the estimates and error matrix�

&�� � 	ATV ��A
��ATV ���y V 	
&��
 � 	ATV ��A
��

Polynomial �tting

For high order polynomials 	� �
� roundo� errors may cause

serious numerical inaccuracies� It is better to use

orthogonal polynomials� since the error matrix is diagonal

and easy to invert�

Take as a model�

fi �
LX
�
�

��	xi
��

where �� are orthogonal over the observables�

NX
i
�

�k	xi
��	xi
 � �k�

Dean Karlen�Carleton University Rev� ��� ���	���



Physics ������ Least Squares Method ����

�

�

�

Degrees of Freedom

If yi are Gaussian distributed with true mean �i and

variance ��i � then

X� �
NX
i
�

�
yi � �i
�i

��

follows a �� distribution with N degrees of freedom�

But �i are unknown� If we instead use &�i 	the result from

the LS minimisation to a linear model with L independant

parameters
� then

X�
min �

NX
i
�

�
yi � &�i
�i

��

is distributed according to the �� distribution with N � L

degrees of freedom�

This can been proven by showing that for a linear model�

X�
min can be expressed as a sum of 	N � L
 independant

terms each being the square of a Gaussian distributed

variable�
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Non�linear Least Squares Model

� one cannot write down a closed form solution� must �nd

minimum by numerical methods

� usually produces biassed estimates and X�
min follows an

unknown distribution� but for large N approachs the ��

distribution�

Estimate of �� in the linear model

Recall solution of linear model�

&�� � 	ATV ��A
��ATV ���y

so to determine the estimates� V needs only be known to a

multiplicative factor� That is� writing V 	�y
 � r�Vr	�y
� only

Vr needs to be known� and r is some unknown constant�

But in order to determine the variance of the estimates�

V 	
&��
 � 	ATV ��A
��� V has to be known absolutely�

Since X�
min follows f	��jN � L
� one can estimate the value

of r� from the data using�

r� � Q�
min�	N � L


where� Q�
min is X�

min with V replaced by Vr� and where L is

the number of parameters in the linear model�
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Goodness of Fit

Since X�
min follows a known 	��
 distribution 	for a linear

model with Gaussian distributed observables
� the value of

X�
min obtained in a particular case is a measure of the

agreement between the �tted quantities &� and the

measurements y�

A larger X�
min corresponds to a poorer agreement� The

probability of obtaining a value of X�
min or larger is

PX�
min

�

Z �

X�
min

f	��jN
 d�� � �� F 	X�
minjN
 � �

where F is the cumulative distribution�

PX�
min

has a uniform distribution over �����

� If in a series of similar minimisations� PX�
min

is

non�uniform� then the model or the data 	or both
 may

be  awed�

� If PX�
min

peaks at low 	high
 probability� the

measurement uncertainties may have been over�

	under�
 estimated

� If large value of PX�
min

is due to one of the

measurements� should examine that measurement in

detail�
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Application of LS method to binned data

If the data is split into N bins, with ni entries in 
bin i, and pi(θ

→
) is the probability of an event to 

populate bin i,
then the expected number of events in each bin is 
given by, 

fi = n pi where n = Σ
i=1

N

ni

If the number of bins is large enough, the error 
matrix is diagonal and the LS method reduces to 
minimising

X2 = Σ
i=1

N

(ni-fi)
2/σi

2 ≈ Σ
i=1

N

(ni-fi)
2/fi

which can be done numerically.

Sometimes σi

2 is approximated by ni, but the 
estimates θ

∧
found this way are more sensitive to 

statistical fluctuations. (For large sample sizes the 
two choices give the same result.)

Since 1 degree of freedom has been lost due to the 
normalisation condition, Σni=n, X2

min would follow 
f(χ2|N-1-L) if the model consisted of L 
independent parameters.
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Choice of binning

Two common choices:

• equal width
• equal probability

Must not choose the binning in order to try to 
make X2

min as small as possible! In this case X2

min

would no longer follow the χ2 distribution.

It is necessary to have several entries in each 
bin, so that (ni-fi)/fi

1/2 approximates a unit 
Gaussian. It is customary to require a 
minimum expectation of 5 entries per bin. The 
bins that contain less than this number can be 
ignored or combined to make larger bins in 
the less probable regions.
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Using LS method with biased data samples

Some data samples may not reflect the true 
underlying distribution because of unequal 
detection efficiency for each event. 

The best method to deal with this is to modify 
the theoretical model to account for the 
detection efficiency. Then no modification of 
the least squares minimisation is necessary. If 
this is not possible, then you can do either:

1) Modify ni: If the detection efficiency for event j 
in bin i is εij, then 

ni′ = Σ
j=1

N

1/εij

and minimise, X2 = Σi=1

N (ni′-fi)
2/fi

2) Modify fi:   fi′ = fi Di where Di=ni

-1Σj=1

N εij

and minimise X2 = Σi=1

N (ni-fi′)
2/fi′

These alternatives work reasonably well when the 
variation of the weights is small. Otherwise the 
uncertainty of the estimates will not be well defined. 
(For example, by including large weight events, the 
estimated variances can actually increase.)

Dean Karlen�Carleton University Rev� ��� ���	���



Physics ������ Least Squares Method ��	�

�

�

�

Linear LS estimation with linear constraints

Often it turns out that the true values, η→ , are 
related through algebraic constraint equations. 
The observations, y→ , do not strickly satisfy these 
contraints, but one wishes to form estimates, η→

∧
, 

that do. The variance of these estimates should be 
smaller than if the constraints were not taken into 
account.

Two methods exist: elimination and Lagrange 

multipliers.

Example: 3 angles of a triangle

Elimination: 

model has 2 parameters, η1, η2 and minimise:

X2(η1,η2) = (y1-η1)
2/σ1

2 + (y2-η2)
2/σ2

2 +
(y3-(π-η1-η2))

2/σ3

2
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Lagrange multipliers

To solve this problem with Lagrange multipliers, 
minimise the distribution:

X2(η1,η2,η3,λ) = Σ
i=1

3

(yi-ηi)
2/σi

2 + 2λ(Σ
i=1

3

ηi-π)

In general, if Bθ
→

- b
→

= 0 represents K constraint 
equations (B is a K×L matrix) then minimise,

X2(θ
→
,λ

→
)=(y

→
-Aθ

→
)T V-1(y

→
-Aθ

→
)+2λ

→T(Bθ
→

-b
→
)

The solution to this is given by,

θ
∧→

= C-1c
→

- C-1 BT VB
-1 (BC-1c→ - b

→
)

and 

V(θ
∧→

)=C-1 - (BC-1)T VB

-1 (BC-1)

where    C ≡ AT V-1 A
c→ ≡ AT V-1 y→

VB≡ B C-1 BT
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Confidence intervals from the LS method.

When the theoretical model is linear in the 
parameters, we are able to write down the 
solutions for θ

∧→
and V(θ

∧→
). The expression for 

X2 can be rewritten as:

X2(θ
→
) = X2

min + (θ
→

- θ
∧→

)T V -1(θ
∧→

)(θ
→

- θ
∧→

)

The confidence intervals are then given by the 
region within the “ellipse”

X2(θ
→
) = X2

min + a

One can also write a Taylor expansion about the 
minimum, by comparison with the above, yeilds 
the estimate

Vij(θ
∧→

) = 2 ( ∂2X2/∂θi∂θj)
-1

1 and 2 parameter case:

a       γ (1 par)    γ (2 par) 

12 0.683           0.393
22 0.954           0.865
32 0.997           0.989
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Hypothesis Testing

Instead of estimating an unknown parameter, the 
results of an experiment may be used to decide 
whether the theoretical model (with no unknown 
parameters) is acceptable, given the observations.

Example: Suppose a model estimates the lifetime of the 
nucleus in Exercise 11 to be τ0. Is the data compatable with 
the model?

Notation:        H0 :   τ=τ0 (null hypothesis)
H1 :   τ≠τ0

This is an example of a parametric test which follows the 
idea of confidence intervals. Examples of non-parametric
tests: is the underlying distribution consistent with the 
model ? (this is answered by goodness-of-fit tests); are the 
two experimental distributions of the same form ? (can be 
studied with distribution-free tests.)

Typically, the hypothesis cannot be proven true or false, but 
one can determine the probability of obtaining the observed 
result, assuming the hypothesis was true.

Hypothesis testing may also be part of the data analysis, for 
example to decide if each event is due to signal or 
background process.
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General concepts and terms

Suppose two hypotheses imply two different 
choices of the parameter θ:

H0 :  θ = θ0

H1 :  θ = θ1 (simple hypothesis)
or

H1 : θ > θ1 (composite hypothesis)

Assuming H0 is true, we can define a region, R, 
from the complete sample space W, such that the 
probability that x∈R is α, a preassigned number 
(usually α<<1)

R      is the rejection (or critical) region for H0

W-R is the acceptance region for H0

α is the signifigance or size of test
xc is the critial value that separates R:

R
W-R

f(x|θ0)

xc x
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f(x|θ0)

f(x|θ1)

xc

xc

x

x

So, if xobs > xc, we reject hypothesis H0, and 
otherwise accept it. It is clear that in 100α % of 
all decisions, H0 will be rejected when in fact it 
should have been accepted. This mistake is called 
a Type I error (or error of the first kind). A Type II
error occurs when H0 is accepted, when in fact it 
was false.:

1-α
α

β
1-β

1-β is the power of the test, the probability of 
rejecting H0 when it is false.
We wish to choose xc so that the number of Type 
I and Type II errors are as small as possible.
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Given α, we want to find the region R which 
maximises 1-β. To do this take the region in which

is the largest. That is define R as the set of points 
satisfying

where k is determined from α.

If the experiment consists of a series of 
measurements x→ , replace f by L(x→ |θ)=Π

i
f(xi|θ)

> k

Neyman-Pearson test

This is a method to choose xc, when both H0 and 
H1 are simple hypotheses. (ie. θ can take only two 
possible values, θ0 or θ1).

α= ∫R f(x|θ0) dx

1-β = ∫R f(x|θ1) dx

= ∫R f(x|θ0) dx
f(x|θ1)
f(x|θ0)

f(x|θ1)
f(x|θ0)

f(x|θ1)
f(x|θ0)
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Likelihood ratio test for composite hypotheses

Denote the total parameter space: Ω
H0 places some contraints on some of the 
parameters, ie. θ

→
∈ ω (ω is a subspace of Ω).

Given the observations x
→

,  form the 
likelihood function, L = Π

i=1

n
f(xi|θ

→
)

If the maximum of L in overall space is L(Ω
∧

) 
and in the subspace ω is L(ω∧ ) then the 
likelihood ratio is,

λ ≡ 0 ≤ λ ≤ 1L(ω∧ )
L(Ω

∧
)

If λ≈ 1 then it is likely that H0 is true and
if λ≈ 0 then it is unlikely that H0 is true. So define 
a critical region for λ: 0 < λ < λa:

where α = ∫0

λ
a

g(λ|H0) dλ

If g is not known but the distribution of some 
function of λ is known, then take

α = ∫y(0)

y(λa)

h(y|H0) dy

If the sample is large, we can use the asymptotic 
behavoir for likelihood ratios: If H0 imposes r 
constraints then  -2 ln λ is distributed as a χ2

distribution with r degrees of freedom.
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Exercise 12

Apply the likelihood ratio test to the hypothetical 
experiment defined in exercise 11. Suppose σt is 
unknown and we want to test the hypothesis that 
τ=τ0=1s.

H0 :   τ = τ0 H1 : τ ≠ τ0

Ω is given by    0 < τ < ∞ ,  0 < σt < ∞
ω is given by         τ = τ0 ,  0 < σt < ∞

Define λ = L(ω
∧

)/L(Ω
∧

)

Show the distribution of  -2 ln λ (for the 100 
repititions of the experiment) and compare this to 
the χ2 distribution with 1 degree of freedom.

Note:  ln λ = ln L(ω∧ ) - ln L(Ω
∧

) is easier to 
compute than λ.

What is the rejection region if the size of the test 
(α) is to be 10%? How many trials of your 100 
experiments fail this test?
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Solution to Exercise ��

-2 ln likelihood ratio

Exercise 12
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Parametric tests for Gaussian variables

If xi are measurements from a Gaussian 
distribution, G(µ,σ2) we may want to test the 
hypothesis:

H0 :  µ = µ0 (µ0 is some number)

the alternative is,     H1 :  µ≠ µ0

If σ is known, then form the variable, 
<x> = Σxi/n  and if H0 is true, 
d=(<x>-µ0)/(σ/√n) would follow the standard 
Gaussian G(0,1). Would likely reject H0 if d>>1 
or d<<-1,  so define the rejection region:

a/2a/2

If σ is also unknown, then (<x>-µ0)/(s/√n) 
follows the student-t distribution.
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Comparison of means
 � Gaussian
distributions

Suppose �x and �y represent n and m measurements

distributed according to G��x��x�
and G��y ��y�

respectively�

If �x� �y are known

%x and %y have distributions� G��x��x�n�
G��y��y�m�� so

the variable
	%x� %y
� 	�x � �y
q

��x�n� ��y�m

will be distributed according to the standard

Gaussian� G������ To test if �x � �y use

	%x� %y
�
q
��x�n� ��y�m

and proceed as before�

If �x� �y are unknown but equal

Use d � 	%x� %y
�
p
s��n� s��m where

s� �
�

n�m� �

�X
i

	xi � %x
� �
X
i

	yi � %y
�

��

and d follows the student t�distribution with n�m��

degrees of freedom�
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If �x� �y are unknown

If the sample size is large enough� the variable

d � 	%x� %y
�
q
s�x�n� s�y�m

will follow the standard Gaussian� G������ For

example if two experiments quote the results x�!x

and and y �!y� then use

x� yp
	!x
� � 	!y
�

to test if they are compatable�

To compare several experimental results� xi� !xi

If the hypothesis�

H� � �� � �� � �����

is true� then

X� �
NX
i
�

	xi � %x
�

!x�i

�where %x is the weighted average	 should follow the

�� distribution for N � � degrees of freedom� The

cumulative �� distribution can be used to calculate

the rejection region�

Dean Karlen�Carleton University Rev� ��� ���	���



Physics ������ Hypothesis Testing ����

�

�

�

Significance of signal above background

For example, suppose a spectrum from an x-ray 
source was seen to be:

E0

EbEa

Is the effect at E0 real or just a statistical fluctuation?

We can ask:

What is the probability that a statistical 
fluctuation of the background could produce an 
effect as large (or larger) than the one observed at 
the value E0?

What is the probability to observe such a 
fluctuation at any position?
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Answers:

N = total number of counts in [Ea,Eb]
B = total amount of background in [Ea,Eb]

Hypothesis: H0 : N = B

Assume B and V(B) are known (theory or
sidebands). N is distributed according to Poisson
distribution, so under assumption at N=B,
V(N) = N = B
then, V(N-B) = V(N) + V(B) = B + V(B)
If N is large, approximate Poisson by Gaussian,
then use

d = (N-B)/(V(N-B))1/2 ≈ (N-B
∧
)/(B

∧
+V(B

∧
))1/2

which follows G(0,1)

So, P(d;E=E0) = ∫d

∞

G(0,1)(x) dx

is the probability that an statistical fluctuation is
produced at least as large as the one observed. It
is common to quote d as the number of standard
deviations of the effect.
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If we consider bumps extending over k bins, and
the total number of bins is n, then the central
value of a bump could be located in (n-k+1)
different bins in the plot.

The probability to observe a fluctuation of at
least d standard deviations anywhere in the
histogram is:

P(d) = 1 - ( 1 - P(d; E=E0))
n-k+1

For large d,

P(d) ≈ (n-k+1) P(d; E=E0)

(In HEP, typically 5σ signifigance is necessary
to claim the observation of a new resonance.)
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Goodness of Fit Tests

Given measurements, x1,...,xn, following an 
unknown distribution f(x) and if f0(x) is a 
specified distribution, we may want to test the 
hypothesis,

H0 :     f(x) = f0(x)

As usual we form a test statistic of known 
distribution and define rejection and acceptance 
regions with probabilities α and 1-α, assuming 
H0 is true.

Pearson’s χ2 test

• exact for large samples only
• data are binned into N exclusive bins
• the hypothesis under test:

H0 :   p1=p0

1,   p2=p0

2,   ....   pN=p0

N

where Σ
i=1

N

p0

i = 1
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To test whether the observed number of entries in 
each bin is compatible with the predicted 
number, form the variable,

X2 = Σ
i=1

N

(ni-np0

i)
2/np0

i = (Σ
i=1

N

ni

2/np0

i) - n

when H0 is true, X2 approximately follows the χ2

distribution with N-1 degrees of freedom. (As 
long as np0

i is large enough so Poisson is 
approximately Gaussian.)

• If H0 is false, then X2

obs will take on larger 
values, so define the rejection region to be at the 
largest values of X2.

• Remarks about the choice of binning in section 
on Least squares fitting apply here.

• If the data were used to determine L linear 
parameters of the model, the X2 would follow χ2

distribution with N-1-L degrees of freedom (if 
the determination was done with the same 
binning and found using LS or ML).

• If unbinned ML used to determine parameters, 
X2 no longer strictly χ2 (N-1-L), but it is 
bounded by χ2(N-1) and χ2(N-1-L). If N>>L, 
there is little difference.
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Kolmogorov - Smirnov test

• avoids binning of data

• superior to Pearson’s χ2 for small samples

Given n observations of x, form an ordered 
sample, ascending in magnitude: x1, x2, ..., xn

The cumulative distribution is defined by

⎧ 0                x < x1

Sn(x) =  ⎨ i/n      xi ≤ x < xi+1
⎩ 1                x ≥ xn

x1 xn

Sn(x)

1

0
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Compare this to the expected cumulative
distribution, F0(x):

Form the quantity, Dn = max |Sn(x) - F0(x)|

If F0(x) is completely specified (ie. no
parameters deduced from the data), then Dn is
independent of F0(x) ⇒ Dn is distribution free.

Large n limit:

P(Dn ≤ z/√n) = 1 - 2 Σ
r=1

∞
(-1)r-1 e -2r2z2

which is valid for n ≥ 80.

For n≥100, the following table can be used to
define rejection region:

P(Dn ≤ dα)=1-α :

α 0.20 0.10 0.05 0.01

dα 1.07/√n 1.22/√n 1.36/√n 1.63/√n
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Exercise 13

Apply (a) Pearson’s χ2 and (b) Kolmogorov - 
Smirnov tests to the experimental samples 
produced in exercise 11.

Compare the observed time distribution to the 
model with τ = 1 s, σt = 0.5 s. To do this, make 5 
one-second bins starting at t=-1 s. Show the X2

distribution for the 100 repititions and compare to 
the appropriate χ2 distribution. What is the 
rejection region for a test of size (α) of 10% ? 
How many of your 100 experiments fail this?

Compare the cumulative distribution with the model 
for τ = 1 s, σt = 0.5 s. Show the Dn distribution for 
your data. How many experiments fail a test of
size α=10%?

The cumulative distribution is given by:

F0(t) =  ∫-∞

t

f(t|τ,σt)
=   (erfc(      ) − exp(      − ) erfc (      − ) )

Hint:

1
2

-t

√2 σ t

σt

√2 τ
σt

2

2 τ2

t
τ

t

√2 σt
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Solution to Exercise ��

0

2

4

6

8

10

12

0 2 4 6 8 10 12 14 16

χ2 test

0

1

2

3

4

5

6

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Kolmogorov-Smirnov test
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Test of  Independence

Are two different properties measured in an 
experiment correlated? The hypothesis under 
test is then:

H0 :    f(x,y) = f1(x) f2(y)

χ2 can again be used. This time bin in 2 D:
nij ≡ the # in bin i of x, bin j of y , ni• ≡ Σ

j
nij ,  

n•j ≡ Σ
i

nij

If true probability is given by pij, then
H0 :   pij = pi• p•j for all i,j

So form the variable,

X2 = Σ
i
Σ

j
(nij-ni•n•j/n)2/(ni•n•j/n)

=n{Σ
i
Σ

j
nij

2/(ni•n•j) - 1}

Then X2 follows χ2 distribution with # of d.o.f:
(I-1)(J-1)
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Run test for comparing � samples
Given two sets of measurements� 	x�� ���� xn
 and

	y�� ���� ym
� where n � m� we wish to test the hypothesis�

H� � fx	x
 � fy	y


To do this� make an ordered list of the combined sample� for

example

x� x� y� x� y� y� x� x�

and count the number of runs 	groups of elements from the

same set of measurements
� If H� is true� there should be a

large number of runs� To �nd the probability to �nd r runs

for two random samples from the same distribution is a

problem in combinatorics�

p	r � �k
 � �

�
n��
k��
��

m��
k��
�

�
n�m
n

� � r even

p	r � �k � �
 �

�
n��
k��
��

m��
k��
�
�
�
n��
k��
��

m��
k��
�

�
n�m
n

� � r odd

The distribution has the mean and variance�

�r �
�nm

n�m
� � V 	r
 �

�nm	�nm� n�m


	n�m
�	n�m� �


and for large n�m 	n�m � �
� d � 	r � �r
�
p
V 	r


approximately follows the standard Gaussian� G������
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Run test to supplement Pearson�s �� test

Recall that X� is insensitive to the sign of 	ni � np�i 
� An

additional test comes from considering the sign of this

quantity in subsequent bins and counting the number of

runs� In the case where no parameters of the model have

been determined from the data� the run test and the ��

tests are independent� and so they can be combined into a

simple test� and the quantity u � ��	lnP�� � ln p	r

 will

follow �� with � d�o�f�

Proof� Suppose x is uniformly distributed in �� ��� consider

u � �� lnx� To work out its distribution function�

g	u
 du � f	x
 dx 	f	x
 � �


g	u
 �

				dxdu
				 � �

�
e�

�
�u

This is the �� distribution function for � degrees of

freedom�

Given x� and x� which are both uniformly distributed in

�� ��� the variable u�

u � �� 	lnx� � lnx�


will follow a �� distribution with � degrees of freedom�
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Example of Run test with �� test
A simulated data sample is shown below along with a

distribution function that was not used to generate the data

sample� There are � bins shown� and the distribution

function was normalized to match the number of events in

the data sample�

0

10

20

30

40

50

60

0 0.5 1 1.5 2

The value of X� for this distribution is ����� for �� d�o�f��

resulting in P�� � ���� which alone gives little reason to

suspect the model� There are � bins with negative

	ni � np�i 
 and �� positive bins� with only � runs in the

signs� so that p	r � �
 � ��� is reason to reject the

hypothesis�

The combination u � ��	lnP�� � ln p	r

 � ����

corresponds to probability � ���

Dean Karlen�Carleton University Rev� ��� ���	���



Physics ������ Goodness of Fit Tests ���

�

�

�

References for Statistics

�� Probability and Statistics in Particle Physics� A� G�

Frodesen� O� Skjeggestad� H� T'fte� Columbia

University Press� �����

�� Statistical Methods in Experimental Physics� W� T�

Eadie� D� Drijard� F� E� James� M� Roos� B� Sadoulet�

North Holland� �����

�� Statistics for Nuclear and Particle Physicists� L� Lyons�

Cambridge University Press� ����� 	Very elementary�


�� Probability� Statistics� and Monte Carlo� in Review of

Particle Properties� Phys� Rev� D� Part I 	����


����������
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