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History of high power lasers
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« Free running — typically 10 us - 1 kW

« Q-switching — gigantic impulse — 10 ns — 100 MW

e Mode locking — short pulse — 10 ps — 100 GW

» Chirped pulse amplification — 20 fs — 1 PW

o Laser electric field = 15t Bohr orbit in H for | = 3.5x10'® W/cm?
 Relativistic electron oscillations for 1A% > 1.35 x101® W/cm? xum?



CPA = Chirped Pulse Amplification (G. Mourou - 1985)

grating

< ‘ L Carrier : ®=0,+ft

the gratings introduce a frequency dependent time delay

> . chirp = a linear frequency sweep, dw/dt= (here <0)
grating
STRETCHER CPA high-power Nd:glass laser system
positive chirp Output pulse minimal length: ~400 fs

T = 1/Av = 1/(2.5 THZ) = 400 fs
100 fs
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Table-top terawatt (T°) CPA lasers

Ti:sapphire (A = 790 nm), Av=100 THz (Av/v=0.1), Pulse FWHM > 5 fs
(typically 30 — 50 fs), Energy 50 mJ , Power 1 TW, Repetition rate 10 Hz

Left — Comet Laser — LLNL, USA; Right — 0.1 TW laser for CTU-FNSPE

« Today 10 TW/10 Hz or 100 TW/1 Hz available (also 1 TW/1 kHz)
* Price = 300 k$, laboratory space 10 m x 5 m

 Focal spot diameter = 10 um, focal spot = 10-° cm?

e Maximum intensity | = P/S =1 TW/ 10° cm? = 10 W/cm?



Ultimate power — PW lasers -15 path — Nd-lasers
long pulse (~600 fs) = big energy (600 J)

| - | A =

One beam of big laser (15t — Nova, LLNL, Compressor for 1 PW - vacuum
1999, CPA oscillator and stretcher, closed 01)  chamber with dielectric gratings
Femtosecond Petawatt upgrade for Gekko X1l ~ 11 5m wide

laser — ILE Osaka, Japan, 2000 10 W =1 PW, <1 pulse/hour
Femtosecond Petawatt upgrade for Vulcan Maximum intensity — 102t W/cm?

Laser — RAL, UK, 2003 Under construction -Omega EP; LIL PW

Fast Ignition of Inertial Confinement Fusion, High Energy Density Matter



PW Ti:Sapphire lasers (2"9 path)

Many (>10) 100 TW Ti:sapphire lasers exist

Short pulse, relatively low energy, much larger repetition
rate, smaller compressor gratings, better focusability

1 PW - typically 30 fs, 30 J, 1 shot/1 minute, 30 cm
compressor grating aperture, room 20 x 10 m

Extensive shielding of interaction chamber necessary
0.5 PW laser at JAERI APRC - 2004

Astra Gemini project at RAL, UK, user facility to be
opened in summer 2007 — 2 synchronized 0.5 PW
beams (<5 million Euro)

Research in interaction physics, electron and ion
acceleration, laser induced nuclear reactions, hard X-ray
source etc.

Many installations at construction start or planned



Application of sub-1 TW lasers
Time-resolved Crystallography

Movie of
Ultrafast X-Ray Diffraction il Atomic Movement

A A B B NN NN NN EEEEEEEEN
:‘. 'L'ﬁ-:‘_\:l. .
4 T o b
Y
i
L il
HE E D NN S S S NN NN EEEEEEEEN




Scheme of x-ray pulse-probe measurement
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Weak laser pulse —
sample excitation

Main laser pulse —
generates X-ray pulse
Incident with variable
delay on sample

K-o emission best —
shortest pulse, high
Intensity, narrow
spectrum

Moderate laser intensities — 10%® — 1017 W/cm? — preferable
higher intensities - fast electron fly longer distance, x-ray pulse longer

First application — Nature 1999, waves on crystal surface, 5 ps/5 um

Best resolution — 250 fs — fast melting (2001)

Reversible changes — using 1 kHz repetition rate laser (Science 2004)



Ultrafast X-ray Diffraction: The Movie
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1D3V PIC + 3D time-resolved Monte Carlo simulations
(J. Limpouch et al., LPB 22 (2004), 147-156)
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K-a versus laser intensity and density scale length
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Optimum laser intensity for K-o. emission
exists for each density scale length L.
The optimum intensity is minimal for L
optimum for resonance absorption and
this point seems to be absolute maximum
of the conversion efficiency

Optimum intensity grows with Z (here Al)
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Simulation cannot reveal experi-
mental decrease of K-o emission for
small L, for heavier elements
maximum at resonance absolute
optimum, integration over focal spot
— the spot emitting K-a. is wider for L
optimum for resonance absorption



Impact of ASE and of ionization
(O. Klimo et al., J. Physique IV 133 (2006), 1181-4)

lon density (crﬁa, log. scale)
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Optical field and collisional ionization added into PIC code
Initial profile for PIC taken from hydrocode Ehybrid simulation

Conditions for experiment in Max-Born (N. Zhavoronkov et al.)

Ti-sapphire 45 fs 5 mJ pulse, spot & 6.7 um, 1017 W/cm?, Cu,
ASE contrast 107 at 1 ns (left ion density evolution, constant 1)



electron density (nc)

Profiles of electron density and Z in PIC
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Profiles of electron density N, and longitudinal electric field
E, (left) and of mean ion charge Z (right), Cu target. Max-
Imum of sin? laser pulse at t =27t is in x=7, angle of
Incidence 25°. PIC starts from Ehydrid profile, T, = 50 eV,
Z,=3.(Z=111s Ar-like copper)



Fast electron spectrum and K-a emission
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Sharp exponential profile (L=0.07 1) leads to K-a emission
near to experimental value, but emission does not
maximize for angle 25°. Long profile (L=0.7 1) leads to
experimental value of optimum angle but it overestimates
K-oo emission, best Ehybrid profile with ionization



Fast electron angular distribution

Orange electrons — from
lonization of 2p shell, I, >
780 eV, field ionization
occurs near to laser
pulse maximum

Red — all other electrons

el BT :
=il Orange electrons have

large angles to the target
normal (red obey classic
angle-energy law)

Angular distribution of fast electrons, Ti target, 65 fs laser
pulse, 5x10%8 W/cm? (a, = 1.52), angle of incidence 45°, Z, = 3,
Too = 1keV, L=0.3 A (with long pedestal L=7A of n_, < ¥ n,
during whole simulation), white lines — 100, 500 and 1000 keV



Fast ions acceleration (nearly always protons)

Titanium foil with
proton-rich dot

Fast ions
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Laser incidence

Electron Blaii-off - = Hot electron
-off ' |asma clowd
Blow-oft cloud plasm @@ .
plasma a8

Target-normal,
quasi-static
elacinic feld

More energetic ions observed at foil rear side, most energy to ions with best
g/m, nearly always protons, difficult to get rid of surface water and hydro-
carbon contamination

Accelerating fields up to 1012 V/m (6 order higher than in conventional
accelerators), Target Normal Sheath Acceleration (TNSA)

Protons of energy up to 60 MeV (like in 100 m long accelerator)

Up to 10*3 protons/per pulse (108 A/lcm?), low emmitance ¢, < 10 mm mrad
F ions up to 100 MeV, Pd ions up to 225 MeV (>2 MeV/nucleon)




Applications of high energy ion beams

Intense source of very short (~1 ps) very energetic ion
beams (mostly protons)

It can heat macroscopic amount of matter to ~10° K
before it can expand — conditions of star interiors

It can probe extreme states of matter before it can dis-
assemble (not possible via accelerators — low current)

Electric fields in laser interactions are now often
measured using laser generated fast protons

Fast ignition of inertial fusion

More applications need monoenergetic ion beams
— Compact MeV accelerators
— lon surgery and other medical applications
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Laser acceleration of quasi-monoenergetic
lon beams (Nature, January 2006, 2 groups)

CR-39 track
detector
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Hegelich et. al., LANL, USA
Nd-laser Trident, 30 TW, 600 fs, 20 J

10 um spot size, 10° W/cm?, 22.5°,
contrast 10° (2 ns before pulse)

Pd-foil 20 um thick heated to 1100 K

Catalytic surface chemistry forms
from hydrocarbon deposits pure
carbon layer (~1 nm thick) on surface

Beam of C>* ions with energy 36 MeV
= 320.5 MeV/nucleon (black curve,
green curve PIC simulation), ~20 % of
total ion energy

Longitudinal emittance <2x10°r eV s

3x10->/shot ions in 3.4 x10-° milisterad
iInput solid angle of Thomson
parabola



Laser acceleration of quasi-monoenergetic
proton beams — structured target
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Schwoerer et.al., Jena University, FRG
Ti-sapphire, ~10 TW, 80 fs, 600 mJ

3x10%° W/cm?, 45°, contrast 108 (0.5 ps
before pulse), spot radius 1.5 um

Ti-foil 5 um thick with PMMA dots thick
0.5 pm. Dots 20 x 20 um with empty
spaces in between

Protons 1.2+0.3 MeV, 108 protons/shot
Inside peak in angle 24 milisterad (input
angle of Thomson spectrometer)

Both online MCP detector and CR-39
detector measure the same spectra

Monoenergetic proton spectra due to
uniform sheath field in the centre and
due to very thin proton-containing layer

When laser focused outside dot — black
spectra - broad

PIC simulations reproduce peak and
predict 170 MeV for 10t W/cm?



X (1)

Laser interactions with mass-limited targets

Mass-limited (MLT) targets (droplets, clusters, foil sections) eliminate
energy spread to many secondary particles

Experiment M. Schnurer, S. Ter-Avetisyan et al.: Laser and Patrticle
Beams 23 (2005) 337 (Max-Born Institute, Berlin, Germany)

2D3V PIC simulations of ion acceleration in laser interaction with water
droplet (4 diameter) — 2x increase of proton energy as compared with foil
of the same thickness (PSikal et al., SPPT 2006, Poster We-64)

1=101° W/cm?, Left — sheath electric field after laser, Right — proton spectra
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Electron acceleration

Many possibilities of electron acceleration

Most common acceleration mechanism — laser wakefield
accelerator

Acceleration by plasma waves in short pulse interaction

Accelerating electric fields — 200 GV/m
compared with 20 MV/m in conventional RF linacs

so 1 minstead 10 km - CERN on a table

Wakefield accelerator

when short pulse propagates in
underdense plasma electrons are
displaced by ponderomotive

force and when laser pulse is
=~ ~ away they oscillate with respect
7 e g 1‘ to ions — plasma wave (called

wakefield) is formed



Experiment — CUOS, Univ. of Michigan, USA, 2000

"'-::.j-i Axial-imaging Side-imaging of
Accelerated Electrons Visible [Inomeei seattaneellight

Laser Beam Blocked

2 inches e *:"..““:;- >
: A ®Pasabolic Mirror
\ _(to focus laser)

Enpyraghf:'jluﬁ.fnlian'l Pelletier, Photo Services, Ann Arbor, MI

Laser pulse — relativistic self-guiding at high intensities
Electron beam — transverse emittance ¢, <0.06 = mm mrad
(1 order better than in best electron guns !)
High number 101° electrons/per bunch, but energy spread 1 — 50 MeV



Monoenergetic electron beams
(Nature 2004, 3 independent groups)

 Bubble wakefield regime (predicted by 3D PIC code VLPL)

« Left — calculated electron density in bubble, Right — measured
(green) and calculated (blue) fast electron spectra

« Laser 1J, 30 fs, 10%® W/cm?, He gas jet, n,=6x1018 cm3, electron
beam divergence 10 mrad, 170+20 MeV, 20 nC in spectral peak
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Other mechanisms - Electron acceleration in vacuum
by laser beams with central intensity minimum
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Transverse and side-on profiles of electron beam
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| aser induced nuclear reactions

Meutronyield at LUL and ATLAS
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 Ultra-short intense neutron source > 108 neutrons/shot,
neutron source intensity 10%° neutrons/(cm? s)
with 10 Hz repetitions frequency 10° neutrons/s continuously
» Positron-active isotope 1C (> 10° atoms/shot) is used as source for PET
» Source of positrons, y-rays, isomers, etc.




Fast ignition (FI) of inertial nuclear fusion (ICF)

Conventional ICF
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By long pulse lasers, it is not difficult to produce DT of 200 g/cm?3 needed

for inertial fusion
But it is difficult to produce high temperature 5 keV needed to ignite DT

fuel (in 1D simulations it works fine)
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