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Motivation  

 Water window absorption contrast 2.3-4.4 nm (284-

543 eV) 

  Relative transparency of water allows  

       investigation of biomolecules, cells and proteins 

  Possibility to study thick (∼10 µm) objects 

Feasibility of  using 2nd transitions row elements as possible candidates for 

• Water window sources  

• Next generation lithography (6.X nm). 

• Lower laser intensities (and electron temperatures of 150 to 300 eV) 

• Optimum matching of spectral output - multilayer mirrors. 

3 



Introduction  
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Plasma temperature depends on laser  

intensity (Φ) and wavelength(λ),  Te(eV)  (λ2 Φ)3/5 

 

Laser produced plasma (LPPs) expansion  

velocity ≈106-107 cms-1  

 

Critical electron density, depends on  

 laser wavelength nec (cm-3) =1021/ λ2[micron]  

High power laser intensity focused onto a solid targets in vacuum forms a  

• Short lived high temperature,  

• High density plasma 

Spectroscopy of LPPs provide detail information on  

• The transitions and electronic structure of highly ionized atoms,  

• Allow source optimization.  
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SXR Studied  
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    XUV spectra of 2nd transition row elements: identification  

 of 3d-4p and 3d-4f transition arrays 

Spectrometer 
Vacuum chamber 
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Experimental setup at University College Dublin   



Laser Parameters  

Parameter                                            ns laser                                  ps laser  

 

Model                                                 Contiuum surelite              EKSPLA  

Maximum pulse energy (mJ)               ≈ 600                                ≈  227 

Pulse length (ns)                                    ≈ 7                                   ≈ 0.17 

Maximum power density (W/cm2)      ≈ 2.2×1012                         ≈ 3.4×1013 

Spectrometer  

Parameter 

 

Spectrometer                                   flat-field grazing-incidence  

Grooves                                           1200 per mm/variable line space grating                              

Spectral resolution                         ≈ 0.02 nm     

Wavelength uncertainty                 ≈ 0.005 nm 
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      XUV spectra of 2nd transition row elements: identification  

 of 3d-4p and 3d-4f transition arrays 

 

 

• Emission spectra of 6 elements from 

170 ps and 7 ns Nd:YAG laser pulses. 

 

• Spectra are normalized to the highest  

intensity. 
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Theoretical Calculations 

• The Cowan code models atomic spectra based on the superposition 

of configurations method, developed by Robert D. Cowan. 

• The code numerically calculates radial wave functions in order to 

determine the transitions set by the user. 

• The Schrodinger equation is then solved using the calculated wave 

functions, which outputs a set of oscillator strengths as a function of 

wavelength. 

• The term energies, electrostatic, spin-orbit and exchange parameters 

can be scaled as an aid to interpreting the experimental spectrum. 

• Calculated spectra using the Cowan code - Y, Nb, Mo, Ru, Rh and 

Pd : Water window source & BEUV source. 
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Calculated and experimental yttrium  

spectra with ions 

The experimental spectrum of yttrium (blue) with synthetic spectra obtained from Cowan 

code calculations. 
(R. Lokasani et al,  J. Phys. B 48 (2015), 245009)  
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Unresolved transition arrays (UTA) Statistics 

• UTA has too many lines to identify individual transitions. 

• Energy levels and spectral distributions can be parameterized statistically in 

terms of moments of the array (Bauche,and Bauche- Arnoult, Phys. Scripta T40,(1992), 58)  

• The general nth moment for transitions between configurations a and b is 

given by 

𝜇𝑛 𝑎 − 𝑏 =
 [|<𝑚′|𝐻|𝑚′>−<𝑚|𝐻|𝑚>]𝑛    <𝑚 𝐷|𝑚′>|2 ]
𝑚,𝑚′

  
𝑚𝑚′

<𝑚 𝐷 𝑚′ >|2
 

 

      where D is the electric dipole operator and sum runs over all states m, m’  

      of configurations a and b respectively 

• First moment μ1 gives the average value of the weighted mean wavelength 

of the UTA. Width is 𝜎 = 𝜇2 − (𝜇1)
2 1/2
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                                  niobium UTA Table 

Weighted mean 

wavelengths, widths 

UTA observed range, 

observed wavelength 

peak from experimental 

spectra  
(R. Lokasani et al.  J. Phys. B 48 

(2015), 245009)  

 

 

Ion Stage Transition μ1 (nm) Width (nm) 

UTA 

Peak (nm) 

Observed UTA 

range (nm) 

Previously identified 

spectral range (nm) 

Nb XIII 3d
10

 4s - 3d
9
 4s 4p 5.86 0.119 5.93 5.5-6.4 5.7-6.5 

[24,22,25,23]
 

3d
10

 4s - 3d
9
 4s 4f 4.02 0.019 4.03 4-4.2 

 
Nb XIV 

 

3d
10

 - 3d
9
 4p 5.6 0.02 5.65 5.5-5.72 5.5-5.75

[26,24,21,22,25]
 

3d
10

 - 3d
9
 4f 3.91 0.017 3.92 3.92-4.1 3.9-4.5 

[26,24,21]
 

Nb XV 

 

3p
6
 3d

9
 – 3d

8
 4p 5.14 0.069 5.13 4.8-5.4 4.8-5.4 

[24,28,27,21]
 

3p
6
 3d

9
 – 3d

8
 4f 3.62 0.037 3.63 3.5-3.84 

 
3p

6
 3d

9
 - 3p

5
 3d

10
 7.58 0.289 

  
7.3-8.1

[27,29,30,21,24]
 

Nb XVI 

 

3p
6
 3d

8
 – 3d

7
 4p 4.71 0.077 4.7 4.5-5 4.49-4.9

[33,24]
 

3p
6
 3d

8
 – 3d

7
 4f 3.21 0.752 3.37 3.25-3.6 3.2-3.5

[24]
 

3p
6
 3d

8
-3p

5
 3d

9
 7.5 0.445 

  
6.8-8.7

[31]
 

Nb XVII 

 

3p
6
 3d

7
 – 3d

6
 4p 4.33 0.076 4.35 4.1-4.6 4.1-4.5

[24]
 

3p
6
 3d

7
 – 3d

6
 4f 3.1 0.042 3.16 3-3.3 

 
3p

6
 3d

7
- 3p

5
 3d

8
 7.5 0.539 

  
6.9-8.75

[34]
 

Nb XVIII 

 

3p
6
 3d

6
 – 3d

5
 4p 4 0.07 4 3.9-4.2 

 
3p

6
 3d

6
 – 3d

5
 4f 2.98 0.04 2.98 2.9-3.15 

 
3p

6
 3d

6
- 3p

5
 3d

7
 7.5 0.599 

   

Nb XIX 

 

3p
6
 3d

5
 – 3d

4
 4p 3.71 0.062 3.72 3.55-3.91 

 
3p

6
 3d

5
 – 3d

4
 4f 2.82 0.037 2.82 2.7-2.91 

 
3p

6
 3d

5
- 3p

5
 3d

6
 7.47 0.636 

   

Nb XX 

 

3p
6
 3d

4
 – 3d

3
 4p 3.46 0.052 3.44 3.3-3.6 

 
3p

6
 3d

4
 – 3d

3
 4f 2.68 0.033 2.68 2.6-2.75 

 
3p

6
 3d

4
- 3p

5
3d

5
 7.47 0.651 

   

Nb XXI 

 

3p
6
 3d

3
 – 3d

2
 4p 3.23 0.042 3.22 3.12-3.33 

 
3p

6
 3d

3
 – 3d

2
 4f 2.55 0.028 2.56 2.5-2.64 

 
3p

6
 3d

3 
- 3p

5
 3d

4
 7.49 0.643 

   

Nb XXII 

 

3p
6
 3d

2
 – 3d

1
 4p 3.02 0.029 3.03 2.9-3.13 

 
3p

6
 3d

2
 – 3d

1
 4f 2.44 0.022 2.44 2.4-2.6 

 
3p

6
 3d

2 
- 3p

5
 3d

3
 7.52 0.61 

   

Nb XXIII 

 

3p
6
 3d –4p 2.84 0.01 2.84 2.7-2.9 

 
3p

6
 3d –4f 2.33 0.007 2.34 2.2-2.3 

 
3p

6
3d-3p

5
3d

2
 7.57 0.54 

  
7.2-8.12

[35]
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20-40um spot size 

Thick ness 150nm 

Material Wavelength(nm) Reflectivity (%) Observed UTA Peak 

Cr/V 2.42 9   

Cr/Ti 2.73 17   

TiO2/ZnO 2.74 29 Mo XIX (3d-4f) 

Ru XVIII (3d-4f ) 

Cr/Sc 3.12 32   

Cr/Sc 3.14 21   

Cr/Sc B4C 3.15 32.1 Mo XXI (3d-4p) 

Pd XX (3d-4p) 

Cr/Sc 3.35 10 Y XVII (3d-4f) 

Cr/Sc 3.37 5.5 Y XXI (3d-4p) 

Nb XVI (3d-4f) 

Peak wavelength and percentage reflectivity of different multilayer mirrors  

matched to UTA peaks from the present experimental data. (R. Lokasani et al,  J. Phys. B 48 (2015), 

245009)  

        

Multilayer mirrors matched with present 

experimental data 
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femtosecond LPPs from 2nd row transition elements  

Parameter                                            fs laser  

Maximum pulse energy (mJ)              ≈ 10                                 

Pulse length (fs)                                  ≈  65   

Laser                                                   Titanium-Sapphire laser 

Wavelength                                         805 nm 

Energy used in the experiment (mJ)     4.5 

                               

Laser parameters  

Schematic diagram of the experimental apparatus. 
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femtosecond LPPs from 2nd row transition  

elements  
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• Emission spectra of Y, Zr, Nb, Mo, Ru, Rh and 

Pd from plasmas produced by a femtosecond 

Titanium-Sapphire laser with a pulse width 65fs.  

(R. Lokasani et al,  J. Phys. B 50 (2017),)  



femtosecond LPPs from 2nd row transition  

elements  

The experimental spectrum of Rh (blue) with synthetic spectra obtained from Cowan 

code calculations. 
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Rh spectra with satellites and with out satellites  

• The measured emission spectrum (blue) from a Rh  target with spectra calculated by the 

Cowan code with satellites (red solid lines) and without satellites (black dashed lines).  

• Included satellites were 3dn-14s-3dn-24s4f.  

  (R. Lokasani et al.  J. Phys. B 50 (2017), )  
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Mean wavelengths and UTA widths (in nm) of  

3d-4f transitions  
Ion stage  Calculated 

mean 

wavelength 

(FAC)  

Calculated  

UTA width  

(FAC)  

Calculated 

mean 

wavelength 

(Cowan) 

Calculated  

UTA width  

  (Cowan)  

Measured 

in present 

experiment  

 Measured 

in 

experiment 

[1]  

    Ruthenium 3d-4f transitions    

Ru XVII  2.94  0.015  2.91[1]  0.01  2.92  2.92  

Ru XVIII  2.76  0.025  2.74[1]  0.028  2.74  2.74  

Ru XIX  2.60  0.029  2.59[1]  0.029  2.59  2.59  

Ru XX  2.47  0.029  2.46[1]  0.029  2.46  2.46  

Ru XXI  2.34  0.028  2.34  0.028  2.35  -  

Ru XXII  2.24  0.026  2.23  0.026  2.24  -  

Ru XXIII  2.14  0.023  2.13  0.024  2.14  -  

    Rhodium 3d-4f transitions    

Rh XVIII  2.69  0.014  2.67[1]  0.013  2.69  2.68  

Rh XIX  2.53  0.023  2.52[1]  0.025  2.52  2.53  

Rh XX   2.40  0.026  2.39[1]  0.026  2.39  2.39  

Rh XXI   2.29  0.026  2.27  0.026  2.26  -  

Rh XXII  2.18  0.025  2.17  0.026  2.17  -  

Rh XXIII  2.08  0.024  2.07  0.024  2.08  -  

    Palladium 3d-4f transitions    

Pd XIX  2.48  0.013  2.46[1]  0.013  2.46  2.47  

Pd XX  2.35  0.021  2.33[1]  0.022  2.34  2.34  

Pd XXI  2.23  0.023  2.21  0.023  2.21  -  

Pd XXII  2.12  0.024  2.11  0.024  2.1  -  

Pd XXIII  2.03  0.023  2.02  0.023  2.01  -  

• Mean wavelengths and UTA widths (in nm) of 3d-4f transitions in Ru, Rh and Pd ions 

calculated with the FAC and Cowan codes.  
(1) (R. Lokasani et al.  J. Phys. B 48 (2015), 245009)  
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Conclusions  

• Identified 3d-4p, 3d-4f and 3p-3d transitions in 6 elements from LPP 

spectra. 

• UTA statistical approach was applied for isoelectronic series of all 

elements. 

• The focus was on Δn=1 3d–4p and 3d–4f transitions, which are more 

intense in the LPPs created with ps pulses and appear at shorter 

wavelengths. 

• Transitions in Mo indicate that it might be particularly suitable for use with 

TiO2/ZnO and Cr/Sc B4C MLMs with reflectance peaks at 2.74 and 3.15 

nm, respectively. 

• Transitions from higher ionization states are clearly demonstrated in the 

spectra emitted from Ru, Rh and Pd targets heated by the femtosecond 

laser.  

• The use of low to moderate energy fs lasers as potential high brightness 

sources for XUV metrology, is a topic worthy of further study.                                               
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