

PIC simulations for extreme laser intensities

Martin Jirka FNSPE, Czech Technical University in Prague The Extreme Light Infrastructure ERIC

Introduction

Radiation reaction

Pair production

Bremsstrahlung

Examples

How to turn light into matter? Electron-positron pair creation

Electron-positron pair creation <u>out of the vacuum</u> Schwinger* (Sauter**) limit field required $E_s = \frac{m_e c^2}{e \lambda_c} = 1.3 \times 10^{18} \frac{V}{m}$

How to turn light into matter? Electron-positron pair creation

Electron-positron pair creation out of the vacuum

Schwinger* (Sauter**) limit field required $E_s = \frac{m_e c^2}{e \lambda_c} = 1.3 \times 10^{18} \frac{V}{m}$

• a) In vacuum

- In Schwinger field, spontaneous creation of electron-positron pairs from the nonlinear vacuum is possible.
- Required intensity $\approx 10^{29}$ W/cm²
- But today's record*** is only $\approx 10^{22}$ W/cm²
- Collision of multiple laser beams lowers the threshold

How to turn light into matter? Electron-positron pair creation

Electron-positron pair creation out of the vacuum

Schwinger* (Sauter**) limit field required $E_s = \frac{m_e c^2}{e \lambda_c} = 1.3 \times 10^{18} \frac{V}{m}$

• a) In vacuum

- In Schwinger field, spontaneous creation of electron-positron pairs from the nonlinear vacuum is possible.
- Required intensity $\approx 10^{29} \text{ W/cm}^2$
- But today's record*** is only $\approx 10^{22}$ W/cm²
- Collision of multiple laser beams lowers the threshold

b) In laser-matter interaction

- If Schwinger field is not reachable in the laboratory frame, it will be very close in the boosted frame of highly-accelerated electrons.
- Interaction of a laser with electrons \rightarrow emitted photons interact with laser field \rightarrow photons annihilate, electron-positron pairs are created

Ultra-intense lasers New generation of lasers

Lasers are planning to achieve the intensity $> 10^{23}$ W/cm²

10 PW

ELI-Beamlines (1.5 kJ, 150 fs) ELI-NP (200 J, 20 fs) Vulcan (300 J, 30 fs) APOLLON-10P (150 J, 15 fs) SIOM-10PW (300 J, 30 fs)

100 PW and 200 PW

OMEGA EP OPAL (2 kJ, 20 fs) XCELS (12 beams, 300-400 J, 20-30 fs) GEKKO EXA (2 kJ, 10 fs)

Ultra-intense lasers Why do we need them?

Such powerful lasers will allow studying*:

1) Laboratory astrophysics

Processes that are present in astrophysics environments (e.g. pulsars, active galactic nuclei).

2) Electron-positron pair creation

The lowest threshold process in the photon-photon interaction.

Controls the energy emitted in gamma-ray bursts .

3) New physics

Understanding the mechanism of vacuum breakdown.

Introduction

Radiation reaction

Pair production

Bremsstrahlung

Examples

Radiation reaction Synchrotron-like radiation

Radiation reaction

When a charged particle is accelerated in the strong electromagnetic field, it loses energy by emitting photons.*,**

Synchrotron radiation

- Electromagnetic radiation emitted when a charged particle travels in curved paths.
- Particle moves in a constant external magnetic field.

* J. Larmor, Mathematical, Physical and Engineering Sciences **190**, 205–493 (1897); ** Ya. B. Zel'dovich, Soviet Physics Uspekhi **18**, 79–98 (1975); *** P.A.M. Dirac. Mathematical, Physical and Engineering Sciences **167**, 148–169 (1938);

Radiation reaction

When a charged particle is accelerated in the strong electromagnetic field, it loses energy by emitting photons.*,**

Weak electromagnetic fields

- The radiation reaction force can be neglected.
- The motion of the particle can be described by the Lorentz force $\frac{d \mathbf{p}}{dt} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B})$

^{*} J. Larmor, *Mathematical, Physical and Engineering Sciences* **190**, 205–493 (1897); ** Ya. B. Zel'dovich, *Soviet Physics Uspekhi* **18**, 79–98 (1975); *** P.A.M. Dirac. *Mathematical, Physical and Engineering Sciences* **167**, 148–169 (1938);

Radiation reaction

When a charged particle is accelerated in the strong electromagnetic field, it loses energy by emitting photons.*,**

Weak electromagnetic fields

- The radiation reaction force can be neglected.
- The motion of the particle can be described by the Lorentz force $\frac{d \mathbf{p}}{dt} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B})$

Strong electromagnetic fields

- Laser intensity > 10²² W/cm² (today's record 10²³ W/cm²)
- The radiation reaction force **G** has to be taken into account *** $\frac{d \mathbf{p}}{dt} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B}) + \mathbf{G}$

^{*} J. Larmor, *Mathematical, Physical and Engineering Sciences* **190**, 205–493 (1897); ** Ya. B. Zel'dovich, *Soviet Physics Uspekhi* **18**, 79–98 (1975); *** P.A.M. Dirac. *Mathematical, Physical and Engineering Sciences* **167**, 148–169 (1938);

Radiation reaction

When a charged particle is accelerated in the strong electromagnetic field, it loses energy by emitting photons.^{*,**}

Weak electromagnetic fields

- The radiation reaction force can be neglected.
- The motion of the particle can be described by the Lorentz force $\frac{d \boldsymbol{p}}{dt} = q(\boldsymbol{E} + \boldsymbol{v} \times \boldsymbol{B})$

Strong electromagnetic fields

- Laser intensity > 10²² W/cm²
- The radiation reaction force G

$$\frac{d \boldsymbol{p}}{dt} = q \left(\boldsymbol{E} + \boldsymbol{v} \times \boldsymbol{B} \right) + \boldsymbol{G}$$

Equations of motion with G

Lorentz-Abraham-Dirac

P.A.M. Dirac. Mathematical, Physical and Engineering Sciences 167, 148-169 (1938)

Landau-Lifshitz

L.D. Landau and E.M. Lifshitz. The classical theory of fields. Pergamon Press 1975.

Ford-O'Connell G.W. Ford and R.F. O'Connell, *Phys. Lett. A* **157**, 217–220 (1991)

Mo-Papas

T.C. Mo and C.H. Papas, *Physical Review D* **4**, 3566–357 (1971)

* J. Larmor, Mathematical, Physical and Engineering Sciences 190, 205–493 (1897); ** Ya. B. Zel'dovich, Soviet Physics Uspekhi 18, 79–98 (1975); *** P.A.M. Dirac. Mathematical, Physical and Engineering Sciences **167**, 148–169 (1938);

Radiation reaction

When a charged particle is accelerated in the strong electromagnetic field, it loses energy by emitting photons.*,**

Weak electromagnetic fields

- The radiation reaction force can be neglected.
- The motion of the particle can be described by the Lorentz force $\frac{dp}{dt} = q(E + v \times B)$

Strong electromagnetic fields

- Laser intensity $> 10^{22}$ W/cm²
- The radiation reaction force **G**

$$\frac{d \boldsymbol{p}}{dt} = q(\boldsymbol{E} + \boldsymbol{v} \times \boldsymbol{B}) + \boldsymbol{G}$$

Equations of motion with \boldsymbol{G}

Lorentz-Abraham-Dirac

P.A.M. Dirac. *Mathematical, Physical and Engineering Sciences* **167**, 148–169 (1938)

Landau-Lifshitz

L.D. Landau and E.M. Lifshitz. The classical theory of fields. Pergamon Press, 1975.

$$\mathbf{G} = \frac{2}{3} q \tau_e \gamma (\dot{\mathbf{E}} + \mathbf{v} \times \dot{\mathbf{B}}) - \frac{2}{3} \frac{q}{E_s} \left[\left(\frac{\mathbf{v}}{c} \cdot \mathbf{E} \right) \mathbf{E} - c \mathbf{B} \times (\mathbf{E} + \mathbf{v} \times \mathbf{B}) \right] - \frac{2}{3} \frac{q}{E_s} \gamma^2 \left[(\mathbf{E} + \mathbf{v} \times \mathbf{B})^2 - \left(\frac{\mathbf{v}}{c} \cdot \mathbf{E} \right)^2 \right] \frac{\mathbf{v}}{c} , \tau_e = \frac{r_e}{c}$$

* J. Larmor, *Mathematical, Physical and Engineering Sciences* **190**, 205–493 (1897); ** Ya. B. Zel'dovich, *Soviet Physics Uspekhi* **18**, 79–98 (1975); *** P.A.M. Dirac. *Mathematical, Physical and Engineering Sciences* **167**, 148–169 (1938);

Radiation reaction Particle-in-cell loop

• Lorentz force is replaced by Landau-Lifshitz equation.

$$F_{RR} = \frac{2}{3} q \tau_{e} \gamma (\dot{E} + \mathbf{v} \times \dot{B}) - \frac{2}{3} \frac{q}{E_{s}} \left[\left(\frac{\mathbf{v}}{c} \cdot E \right) E - c \mathbf{B} \times (\mathbf{E} + \mathbf{v} \times \mathbf{B}) \right] - \frac{2}{3} \frac{q}{E_{s}} \gamma^{2} \left[(\mathbf{E} + \mathbf{v} \times \mathbf{B})^{2} - \left(\frac{\mathbf{v}}{c} \cdot E \right)^{2} \right] \frac{\mathbf{v}}{c}$$

$$\frac{d\mathbf{p}}{dt} = \mathbf{F}_{L} + \underbrace{\left[\mathbf{F}_{RR} \right]}_{\text{particle pusher}}$$

$$F_{i} \rightarrow \mathbf{u}_{i} \rightarrow \mathbf{x}_{i}$$
Field interpolation:
force on particles
$$(E, B) \rightarrow F_{i}$$

$$Maxwell's equations:$$

$$\mathbf{u} \text{pdating fields}$$

$$j \rightarrow (E, B)$$

$$\frac{\partial \mathbf{E}}{\partial t} = c\nabla \times \mathbf{E}$$

Fig. 8. Main PIC loop. \mathbf{x}_i , \mathbf{u}_i , \mathbf{F}_i —particle position, generalised velocity $\mathbf{u}_i = \gamma \mathbf{v}_i$ and force acting on the *i*th particle; **j**—total current; **E**, **B** the electric and the magnetic field respectively.

- Radiation reaction Particle-in-cell loop
- **Example**: Electron energy evolution with and without radiation reaction (RR) during the collision with counter-propagating laser pulse

Fig. 4. Particle energy over time in the field of linearly (solid line) and circularly (dashed line) polarised laser pulse.

Radiation reaction **Parameter** χ_e

Characterizes the probability of photon emission by the electron.*

Compares the magnitude of the electric field E in the electron's rest frame to the Schwinger field E_s .

$$\chi_e = \frac{\gamma}{E_s} \sqrt{(\boldsymbol{E} + \boldsymbol{v} \times \boldsymbol{B})^2 - \left(\frac{\boldsymbol{v}}{c} \cdot \boldsymbol{E}\right)^2}$$

Radiation reaction Laser-electron interaction geometry

The parameter χ_e depends on the interaction setup: on mutual orientation of **E** (laser) and **p** (electron).*

Radiation reaction Classical description of emission*

$\operatorname{For}\chi_e \ll 1$

- The emission is a continuous process of losing particle's energy.
- The trajectory of the emitting particle is a smooth function of time.
- Particle motion can be described by the Landau-Lifshitz eq.
- The typical energy of the emitted photon $\hbar \omega_{\gamma} = 0.44 \chi_e \gamma m_e c^2$

Radiation reaction Classical description of emission*

$\operatorname{For}\chi_e \ll 1$

- The emission is a continuous process of losing particle's energy.
- The trajectory of the emitting particle is a smooth function of time.
- Particle motion can be described by the Landau-Lifshitz eq.
- The typical energy of the emitted photon $\hbar \omega_{\gamma} = 0.44 \chi_e \gamma m_e c^2$

What if $\chi_e \approx 1$?

CTU CZECH TECHNICAL UNIVERSITY IN PRAGUE

Radiation reaction Classical description of emission*

$\operatorname{For}\chi_e \ll 1$

- The emission is a continuous process of losing particle's energy.
- The trajectory of the emitting particle is a smooth function of time.
- Particle motion can be described by the Landau-Lifshitz eq.
- The typical energy of the emitted photon $\hbar \omega_{\gamma} = 0.44 \chi_e \gamma m_e c^2$

What if $\chi_e \approx 1$?

- The emitted photon carries out a significant fraction of the electron's energy.
- A recoil experienced by the emitting particle has to be taken into account and can not be neglected.
- Quantum description of radiation reaction is needed.

- For $\chi_e \ge 1$
- The process of emission is probabilistic, and thus the electron motion is stochastic.
- The QED process is simulated using a <u>Monte Carlo algorithm</u>:

- For $\chi_e \ge 1$
- The process of emission is probabilistic, and thus the electron motion is stochastic.
- The QED process is simulated using a <u>Monte Carlo algorithm</u>:
- 1) Probability of emission after an electron traverses the distance of optical depth $\tau_{\rm em}$: $P(t) = 1 e^{-\tau_{em}}$.

- For $\chi_e \ge 1$
- The process of emission is probabilistic, and thus the electron motion is stochastic.
- The QED process is simulated using a <u>Monte Carlo algorithm</u>:
- 1) Probability of emission after an electron traverses the distance of optical depth τ_{em} : $P(t) = 1 e^{-\tau_{em}}$.
- 2) Each electron is assigned an optical depth τ_{em} at which it emits by the following procedure:

- For $\chi_e \ge 1$
- The process of emission is probabilistic, and thus the electron motion is stochastic.
- The QED process is simulated using a <u>Monte Carlo algorithm</u>:
- 1) Probability of emission after an electron traverses the distance of optical depth τ_{em} : $P(t) = 1 e^{-\tau_{em}}$.
- 2) Each electron is assigned an optical depth τ_{em} at which it emits by the following procedure:
 - 1) *P* is assigned pseudo-random value between 0 and 1

- For $\chi_e \ge 1$
- The process of emission is probabilistic, and thus the electron motion is stochastic.
- The QED process is simulated using a <u>Monte Carlo algorithm</u>:
- 1) Probability of emission after an electron traverses the distance of optical depth τ_{em} : $P(t) = 1 e^{-\tau_{em}}$.
- 2) Each electron is assigned an optical depth τ_{em} at which it emits by the following procedure:
 - 1) *P* is assigned pseudo-random value between 0 and 1
 - 2) Equation for P is inverted to yield $au_{\rm em}$

- For $\chi_e \ge 1$
- The process of emission is probabilistic, and thus the electron motion is stochastic.
- The QED process is simulated using a <u>Monte Carlo algorithm</u>:
- 1) Probability of emission after an electron traverses the distance of optical depth τ_{em} : $P(t) = 1 e^{-\tau_{em}}$.
- 2) Each electron is assigned an optical depth τ_{em} at which it emits by the following procedure:
 - 1) *P* is assigned pseudo-random value between 0 and 1
 - 2) Equation for *P* is inverted to yield τ_{em}
 - 3) Optial depth τ evolves according to $\tau(t) = \int g[\chi_e(t')]dt'$

- For $\chi_e \ge 1$
- The process of emission is probabilistic, and thus the electron motion is stochastic.
- The QED process is simulated using a <u>Monte Carlo algorithm</u>:
- 1) Probability of emission after an electron traverses the distance of optical depth τ_{em} : $P(t) = 1 e^{-\tau_{em}}$.
- 2) Each electron is assigned an optical depth τ_{em} at which it emits by the following procedure:
 - 1) *P* is assigned pseudo-random value between 0 and 1
 - 2) Equation for *P* is inverted to yield τ_{em}
 - 3) Optial depth τ evolves according to $\tau(t) = \int g[\chi_e(t')]dt'$
 - 4) Photon emission rates g depends on the local values of the electromagnetic fields and the particle's energy

- For $\chi_e \ge 1$
- The process of emission is probabilistic, and thus the electron motion is stochastic.
- The QED process is simulated using a <u>Monte Carlo algorithm</u>:
- 1) Probability of emission after an electron traverses the distance of optical depth τ_{em} : $P(t) = 1 e^{-\tau_{em}}$.
- 2) Each electron is assigned an optical depth τ_{em} at which it emits by the following procedure:
 - 1) *P* is assigned pseudo-random value between 0 and 1
 - 2) Equation for P is inverted to yield au_{em}
 - 3) Optial depth τ evolves according to $\tau(t) = \int g[\chi_e(t')]dt'$
 - 4) Photon emission rates g depends on the local values of the electromagnetic fields and the particle's energy
 - 5) When $\tau = \tau_{em}$ is met the particle emits

- For $\chi_e \ge 1$
- The process of emission is probabilistic, and thus the electron motion is stochastic.
- The QED process is simulated using a <u>Monte Carlo algorithm</u>:
- 1) Probability of emission after an electron traverses the distance of optical depth τ_{em} : $P(t) = 1 e^{-\tau_{em}}$.
- 2) Each electron is assigned an optical depth τ_{em} at which it emits by the following procedure:
 - 1) *P* is assigned pseudo-random value between 0 and 1
 - 2) Equation for P is inverted to yield au_{em}
 - 3) Optial depth τ evolves according to $\tau(t) = \int g[\chi_e(t')]dt'$
 - 4) Photon emission rates g depends on the local values of the electromagnetic fields and the particle's energy
 - 5) When $\tau = \tau_{em}$ is met the particle emits
 - 6) Emitted photon is added to the simulation

- For $\chi_e \ge 1$
- The process of emission is probabilistic, and thus the electron motion is stochastic.
- The QED process is simulated using a <u>Monte Carlo algorithm</u>:
- 1) Probability of emission after an electron traverses the distance of optical depth τ_{em} : $P(t) = 1 e^{-\tau_{em}}$.
- 2) Each electron is assigned an optical depth τ_{em} at which it emits by the following procedure:
 - 1) *P* is assigned pseudo-random value between 0 and 1
 - 2) Equation for *P* is inverted to yield au_{em}
 - 3) Optial depth τ evolves according to $\tau(t) = \int g[\chi_e(t')]dt'$
 - 4) Photon emission rates g depends on the local values of the electromagnetic fields and the particle's energy
 - 5) When $\tau = \tau_{em}$ is met the particle emits
 - 6) Emitted photon is added to the simulation
 - 7) Photon energy is randomly sampled from photon emission spectra

- For $\chi_e \ge 1$
- The process of emission is probabilistic, and thus the electron motion is stochastic.
- The QED process is simulated using a <u>Monte Carlo algorithm</u>:
- 1) Probability of emission after an electron traverses the distance of optical depth τ_{em} : $P(t) = 1 e^{-\tau_{em}}$.
- 2) Each electron is assigned an optical depth τ_{em} at which it emits by the following procedure:
 - 1) *P* is assigned pseudo-random value between 0 and 1.
 - 2) Equation for *P* is inverted to yield au_{em}
 - 3) Optial depth τ evolves according to $\tau(t) = \int g[\chi_e(t')]dt'$
 - 4) Photon emission rates g depends on the local values of the electromagnetic fields and the particle's energy
 - 5) When $\tau = \tau_{em}$ is met the particle emits
 - 6) Emitted photon is added to the simulation
 - 7) Photon energy is randomly sampled from photon emission spectra.
 - 8) Velocity of the emitting electron is reduced.

Classical vs. quantum regime*

Fig. 4 In the classical picture, radiation reaction is a continuous drag force that arises from the emission of very many photons that individually have vanishingly low energies (left). In the quantum regime, however, the electrons emits a finite number of photons, any or all of which can exert a significant recoil on the electron. The probabilistic nature of emission leads to radically altered electron dynamics, with implications for laser-matter interactions beyond the current intensity frontier. From Blackburn (2015)

Radiation reaction Semiclassical numerical method

- Numerical scheme that can model quantum processes:
 - Particles (electrons, positrons and photons) move classically in between point-like QED interactions
 - The rates and spectra for the individual QED interactions are calculated for the equivalent interaction in a constant, crossed field

Radiation reaction Semiclassical numerical method

- Numerical scheme that can model quantum processes:
 - Particles (electrons, positrons and photons) move classically in between point-like QED interactions
 - The rates and spectra for the individual QED interactions are calculated for the equivalent interaction in a constant, crossed field

Fig. 5 A general strong-field QED interaction, featuring the emission and creation of multiple photons and electron-positron pairs, is simulated 'semiclassically' by breaking it down into a chain of first-order processes (electrons, photons and positrons in blue, orange and red, respectively). Between these pointlike, instantaneous events, the particles follow classical trajectories guided by the Lorentz force:

Radiation reaction Implementation

- Photon emission is considered by including the Monte Carlo algorithm in the PIC as a new step at the end of each PIC loop
- Each particle can only emit once in a time-step Δt
- There is a finite probability, that a particle should emit multiple times over the time step duration.
- Required timestep:

$$\Delta t \ll \frac{5.24 * 137}{2\sqrt{3} m_e c^2 h Max(E/E_s, cB/E_s)}$$

• The constraint for pair creation is an order of magnitude less stringent than that for photon production.

• **Example:** 50 GeV electrons lose energy in the interaction with a counter-propagating laser pulse of intensity 10²⁴ W/cm².*

• **Example:** 50 GeV electrons lose energy in the interaction with a counter-propagating laser pulse of intensity 10²⁴ W/cm².*

The presented approach rests on two approximations:

- The presented approach rests on two approximations:
 - 1) Formation length for photon emission by relativistic electron <u>is</u> <u>much smaller</u> than the length scale over which the background field varies (e.g. laser wavelength)

- The presented approach rests on two approximations:
 - 1) Formation length for photon emission by relativistic electron <u>is</u> <u>much smaller</u> than the length scale over which the background field varies (e.g. laser wavelength)
 - It holds for $a_0 = qE/\omega m_e c \gg 1$, i.e. for strong laser fields (however, low energy photons have larger formation length, corrections needed)
 - The macroscopic laser fields are thus treated as static during the QED interactions
 - This assumption also means that back-reaction effects are neglected
 - However, the emission may be treated as occurring instantaneously

- The presented approach rests on two approximations:
 - 1) Formation length for photon emission by relativistic electron <u>is</u> <u>much smaller</u> than the length scale over which the background field varies (e.g. laser wavelength)
 - It holds for $a_0 = qE/\omega m_e c \gg 1$, i.e. for strong laser fields (however, low energy photons have larger formation length, corrections needed)
 - The macroscopic laser fields are thus treated as static during the QED interactions
 - This assumption also means that back-reaction effects are neglected
 - However, the emission may be treated as occurring instantaneously
 - 2) The laser fields are much weaker than the Schwinger field
 - Satisfied for today's lasers.

- The presented approach rests on two approximations:
 - 1) Formation length for photon emission by relativistic electron <u>is</u> <u>much smaller</u> than the length scale over which the background field varies (e.g. laser wavelength)
 - It holds for $a_0 = qE/\omega m_e c \gg 1$, i.e. for strong laser fields (however, low energy photons have larger formation length, corrections needed)
 - The macroscopic laser fields are thus treated as static during the QED interactions
 - This assumption also means that back-reaction effects are neglected
 - However, the emission may be treated as occurring instantaneously
 - 2) The laser fields are much weaker than the Schwinger field
 - Satisfied for today's lasers.
- Moreover, the perturbative QED theory is valid up to $\chi_e < 1600$

Radiation reaction Summary of the emission model*

Radiation reaction can be considered as a continuous process of losing particle energy (Landau-Lifshitz eq.).**

The emitted photon carries out a significant fraction of the electron's energy, a recoil cannot be neglected.***

Radiation reaction has to be modeled as a step-like quantum proces (the process of emission is probabilistic, and thus the electron motion is stochastic).**

Radiation reaction Summary of the emission model*

 Example: Quantum description causes broadening of the electron spectra. This feature can be used as a signature of QED photon emission in experiments.*

FIGURE 2. Electron energy distribution, 10.5 fs after collision of the electron bunch with the laser pulse, compared to initial distribution using the stochastic, modified classical and classical emission operators.

Radiation reaction Experimental evidence

All-optical setup: electrons are accelerated by the laser.

An energy loss of electron spectrum has been measured after the collision that is correlated with the measured signal of photons.

Introduction

Radiation reaction

Pair production

Bremsstrahlung

Examples

Pair generation is accessible in electron collision with the extreme-intensity lasers:

- 1. Emitted photon interacts with number of laser photons
- 2. They can be converted into a single electron-positron pair

The production of electron-positron pairs in electron-laser interactions. (Courtesy: Mattias Marklund)

Linear process

 Two energetic photons collide (annihilate) and then a new electron and a new positron are created

Linear process

 Two energetic photons collide (annihilate) and then a new electron and a new positron are created

Non-linear (multiphoton) process

- A photon collides (annihilates) with *n* laser photons
- **1. Step:** High-energy electron emits a photon (radiation reaction).

Electron + strong EM field \rightarrow a photon is emitted

Linear process

 Two energetic photons collide (annihilate) and then a new electron and a new positron are created

Non-linear (multiphoton) process

- A photon collides (annihilates) with *n* laser photons
- **1. Step:** High-energy electron emits a photon (radiation reaction).

Electron + strong EM field \rightarrow a photon is emitted

2. Step: Emitted photon creates an electron and positron.

photon + strong EM field \rightarrow B-W electron and B-W positron

Linear process

 Two energetic photons collide (annihilate) and then a new electron and a new positron are created

Non-linear (multiphoton) process

- A photon collides (annihilates) with *n* laser photons
- **1. Step:** High-energy electron emits a photon (radiation reaction).

```
Electron + strong EM field → a photon is emitted
```

2. Step: Emitted photon creates an electron and positron.

```
photon + strong EM field \rightarrow B-W electron and B-W positron
```

Cascade:

B-W electron and B-W positron radiate additional photons.

Characterizes the probability of pair production by the emitted photon. $\ensuremath{^*}$

$$\chi_{\gamma} = \frac{\hbar \omega_{\gamma}}{m_e c^2 E_s} \sqrt{\left(\boldsymbol{E} + \frac{c^2}{\omega_{\gamma}} \boldsymbol{k}_{\gamma} \times \boldsymbol{B} \right)^2 - \left(\frac{c}{\omega_{\gamma}} \boldsymbol{k}_{\gamma} \cdot \boldsymbol{E} \right)^2}$$

Condition for cascade pair production

 $\chi_e, \chi_{\gamma} > 1$

Pair production QED model of pair production*

- Pair creation Is simulated using a <u>Monte Carlo algorithm</u>:
- 1) Probability of pair creation after a photon traverses a distance of optical depth τ_{em} : $P(t) = 1 e^{-\tau_{em}}$.
- 2) Each photon is assigned an optical depth at which it creates an electron-positron pair by the following procedure:
 - 1) *P* is assigned pseudo-random value between 0 and 1
 - 2) Equation for P is then inverted to yield τ_{em}
 - 3) Photon optical depth τ evolves according to $\tau(t) = \int g[\chi_y(t')] dt'$
 - 4) Electron-positron pair production rate g depends⁰ on the local values of the electromagnetic field and the photon's energy
 - 5) When the condition $\tau = \tau_{em}$ is met, the electron-positron pair is created
 - 6) The emitted electron and positron are added to the simulation, photon is removed from the simulation
 - 7) Photon energy is randomly divided between the electron and the positron

Pair production Cascade pair production

- Example:
 - 4 GeV electrons interacts with a laser pulse of intensity 10²³ W/cm² ($\chi_e{=}10$)
 - A huge number of photons, electrons and positrons can be created during in the QED cascade =>computationally demanding

- Merging algorithm
 - It allows to explore problems that would otherwise not be accessible due to memory limitations.

* M. Vranic et al., Comput. Phys. Commun. 191, 65-73 (2015); Source: https://smileipic.github.io/Smilei/Understand/particle_merging.html

- Merging algorithm
 - It allows to explore problems that would otherwise not be accessible due to memory limitations.
 - Resamples dynamically the 6D phase space occupied by particles without distorting substantially the physical description of the system

* M. Vranic et al., Comput. Phys. Commun. 191, 65-73 (2015); Source: https://smileipic.github.io/Smilei/Understand/particle_merging.html

Pair production Particle merging*

- Merging algorithm
 - It allows to explore problems that would otherwise not be accessible due to memory limitations.
 - Resamples dynamically the 6D phase space occupied by particles without distorting substantially the physical description of the system
 - All the particles that are merged together are close in 6D phase space

* M. Vranic et al., Comput. Phys. Commun. 191, 65-73 (2015); Source: https://smileipic.github.io/Smilei/Understand/particle_merging.html

Pair production Particle merging*

- Merging algorithm
 - It allows to explore problems that would otherwise not be accessible due to memory limitations.
 - Resamples dynamically the 6D phase space occupied by particles without distorting substantially the physical description of the system
 - All the particles that are merged together are close in 6D phase space
 - The criteria on which particles are considered "close enough" will depend on the typical length/momentum scales that appear in a specific physical scenario

* M. Vranic et al., Comput. Phys. Commun. 191, 65-73 (2015); Source: https://smileipic.github.io/Smilei/Understand/particle_merging.html

Pair production Particle merging*

- Merging algorithm
 - It allows to explore problems that would otherwise not be accessible due to memory limitations.
 - Resamples dynamically the 6D phase space occupied by particles without distorting substantially the physical description of the system
 - All the particles that are merged together are close in 6D phase space
 - The criteria on which particles are considered "close enough" will depend on the typical length/momentum scales that appear in a specific physical scenario

* M. Vranic et al., Comput. Phys. Commun. 191, 65-73 (2015); Source: https://smileipic.github.io/Smilei/Understand/particle_merging.html

Introduction

Radiation reaction

Pair production

Bremsstrahlung

Examples

Bremsstrahlung emission

- Bremsstrahlung (braking radiation) Photon emission due to the deceleration of a charged particle when deflected by another charged particle (e.g. electron scattering on the ion or nucleus of neutral atom)
- Dominant for solid density targets made of heavy materials for intensity < 10^{22} W/cm²

- Monte-Carlo particle transport simulations
 - Electron propagation treated as a random walk process
 - The trajectories of individual electrons are assumed to be mutually independent
 - Target is treated as a static undisturbed bulk of matter
 - This approach is appropriate for bulk targets

- Monte-Carlo particle transport simulations
 - Electron propagation treated as a random walk process
 - The trajectories of individual electrons are assumed to be mutually independent
 - Target is treated as a static undisturbed bulk of matter
 - This approach is appropriate for bulk targets

• PIC codes

- The assumption that the target is static and undisturbed may be violated due to its significant expansion during the collision with a laser
- Bremsstrahlung emission should be included directly into the PIC loop

- Example of implementation into PIC*
 - Energy transfer to the ion neglected.
 - Electron propagating through background matter undergoes random scattering events according to a probability distribution function P which is determined by the differential cross section σ of the bremsstrahlung interaction mechanism
 - Minimum energy of the emitted photon must be always specified (integral of σ diverges when photon energy goes to 0)

- Example of implementation into PIC*
 - Energy transfer to the ion neglected.
 - Electron propagating through background matter undergoes random scattering events according to a probability distribution function P which is determined by the differential cross section σ of the bremsstrahlung interaction mechanism
 - Minimum energy of the emitted photon must be always specified (integral of σ diverges when photon energy goes to 0)

1) Calculation of the ion density n_i in a given cell

2) For each v_e (el. velocity), it compares a random number $x \in \langle 0,1 \rangle$ to the emission probability $P = n_i v_e \sigma \Delta t$

- Example of implementation into PIC*
 - Energy transfer to the ion neglected.
 - Electron propagating through background matter undergoes random scattering events according to a probability distribution function P which is determined by the differential cross section σ of the bremsstrahlung interaction mechanism
 - Minimum energy of the emitted photon must be always specified (integral of σ diverges when photon energy goes to 0)
 - 1) Calculation of the ion density n_i in a given cell
 - 2) For each v_e (el. velocity), it compares a random number $x \in \langle 0,1 \rangle$ to the emission probability $P = n_i v_e \sigma \Delta t$
 - If *x* < *P* :
 - Photon is created and electron momentum is modified
 - If P > 1 (e.g. because of a long time step):
 - A photon is emitted
 - *P* is lowered by 1 for each, until P < 1

Introduction

Radiation reaction

Pair production

Bremsstrahlung

Examples

Thank you for your attention.