INSTITUTE OF PLASMA PHYSICS OF THE CZECH ACADEMY OF SCIENCES

INTRODUCTION TO NEUTRAL BEAM INJECTION (NBI) IN TOKAMAKS: NBI MODELLING

Institute of Plasma Physics of the CAS, Prague, Czech Republic

FABIEN JAULMES

Overview of this lecture

- What is the NBI [Neutral Beam Injector]
- Modelling particle orbits in tokamaks
- Coulomb Collisions and slowing down distribution
- Application: modelling of fast neutrons generation in COMPASS Upgrade

INTRODUCTION TO NBI

NBI IN SUPPORT OF TOKAMAK PLASMA

Tokamak plasma heating

Tokamak plasma current drive

NBI: AUXILIARY HEATING

Neutral beam injection:

- Fast neutrals injected (10-1000 keV) into tokamak (no interaction with tokamak magnetic field)
- **Ionized** by collisions with plasma particles
- Fast ions slow down by Coulomb collision and transfer their energy to plasma particles

Positive ions based beam \rightarrow accelerated positive molecular ions (D_2^+ , D_3^+ , D_2O^+) \rightarrow fractional energies (E/2, E/3, E/10)

08.09.2021

08.09.2021

PHOTO OF COMPASS INJECTORS

Overview of the dimensions of the NBI 0 in COMPASS\ [top view]

25.04.2023

NBIOIN THE COMPASS TOKAMAK

F. Jaulmes et al 2022 PPCF 64 125001

COMPASS EXTERNALLY HEATED PLASMA

New 1 MW NBI-0 in COMPASS allowed easier access to ELMy H-mode [higher confinement mode]

25.04.2023

NBI IN EXPERIMENTS

	NBIO	0
NBIO current I _{beam}	≤ 22 A	\leq
	(-> power ~1MW)	(->
NBIO acc. Voltage U _{beam}	≤ 80 keV (70 keV in experiments)	≤ 1
NBIO pulse duration	$\leq 1s$	\leq
Tangency radius	0.55m	0.

COMPASS NB INJECTORS

	NBIO	0
NBIO current I _{beam}	≤ 22 A	\leq
	(-> power ~1MW)	(->
NBIO acc. Voltage U _{beam}	≤ 80 keV (70 keV in	
	experiments)	
NBIO pulse duration	$\leq 1s$	\leq
Tangency radius	0.55m	0.

Table 2. Neutralization efficiencies \mathcal{N}_{eff} , including dissociation of the molecular ions, of the ions originating from the source and resulting power fractions $\mathcal{P}_{\text{frac}}$ after the neutralizer for the nominal energies of 58 keV (#21760), 66 keV (#21787) and 80 keV.

	$\mathcal{E}_0 =$	$\mathcal{E}_0 = 58 \mathrm{keV}$		66 keV	$\mathcal{E}_0 = 80 \mathrm{keV}$		
	$\mathcal{N}_{\mathrm{eff}}$	$\mathcal{P}_{ ext{frac}}$	$\mathcal{N}_{\mathrm{eff}}$	$\mathcal{P}_{ ext{frac}}$	$\mathcal{N}_{\mathrm{eff}}$	$\mathcal{P}_{\mathrm{frac}}$	
D^+	0.72	0.38	0.68	0.37	0.61	0.35	
D_2^+	1.74	0.51	1.71	0.51	1.64	0.52	
D_3^+	2.71	0.09	2.69	0.1	2.6	0.1	
D_2O^+	1.8	0.02	1.8	0.02	1.8	0.02	
Overall	0.76	1.0	0.73	1.0	0.7	1.0	

COMPASS NB INJECTORS

Id NBIs (NBI1 + NBI2)

12 A >power 400 kW) 40 keV

0.3 s

.55m

Beam duct

Overview of this lecture

- What is the NBI [Neutral Beam Injector]
- Modelling particle orbits in tokamaks
- Coulomb Collisions and slowing down distribution
- Application: modelling of fast neutrons generation in COMPASS Upgrade

INTRODUCTION TO TOKAMAKS

Toroidal device: COMPASS Upgrade

P. Vondracek et al. Fusion Engineering and Design 169 (2018) 112490

> COMPASS Upgrade, B_t=5T **Prague 8, Czech Republic**

25.04.2023

COMPASS UPGRADE MAGNETIC FIELD

 A toroidal field is created by juxtaposing coils in a circle so that their fields add up to build a circular "toroidal" field

Magnetic confinement

- Charged particles "follow" magnetic field lines
- Their motion is ruled by the Lorentz force

25.04.2023

MAGNETIC CONFINEMENT: ORBITS

Gyrating motion is called « Larmor orbit »

Magnetic confinement

- Charged particles "follow" magnetic field lines
- Their motion is ruled by the Lorentz force

25.04.2023

MAGNETIC CONFINEMENT: ORBITS

Gyrating motion is called « Larmor orbit » -----> 6-17 mm COMPASS-U 80keV, 4.3T

Guiding center approximation:

$$\frac{\mathrm{d}\mathbf{X}_{\mathbf{gc}}}{\mathrm{d}t} = \mathbf{v}_{\parallel} + \mathbf{v}_{\mathbf{E}} + \frac{2\mathcal{E}_{kin} - \mu B}{(Z_{i}e)B^{2}} \left(\mathbf{b} \times \nabla B\right) + \frac{1}{\omega_{ci}} \left(\mathbf{b} \times \frac{\mathrm{d}\mathbf{v}_{\mathbf{E}}}{\mathrm{d}t}\right)$$

Full-orbit description

$$\frac{\mathrm{d}^2 \mathbf{x}}{\mathrm{d}t^2} = \frac{Z_i e}{m} \left[\mathbf{E} + \mathbf{v} \times \mathbf{B} \right]$$

Tokamak cylindrical coordinates (R,Z,φ)

MAGNETIC CONFINEMENT: ORBITS

Modelling of fast ion trajectories in electromagnetic fields

Υ

Guiding center trajectories of fast alphas in JET

 $\frac{\mathrm{d}^2 \mathbf{x}}{\mathrm{d}t^2} = \frac{Z_i e}{m} \left[\mathbf{E} + \mathbf{v} \times \mathbf{B} \right]$ Leap-frog algorithm

Implementation (leap-frog): first velocity estimation

[simplified here by neglecting Larmor orbit correction]

$$\mathbf{v}_{N+\frac{1}{2}} = \mathbf{v}_{N-\frac{1}{2}} + \frac{Z_{i}e}{m} \left[\mathbf{E}_{N} + \mathbf{v}_{N} \times \mathbf{B}_{N} \right] \Delta t$$

$$= \mathbf{v}_{N-\frac{1}{2}} + \frac{Z_{i}e}{m} \left[\mathbf{E}_{N} + \frac{\mathbf{v}_{N-\frac{1}{2}} + \mathbf{v}_{N+\frac{1}{2}}}{2} \times \mathbf{B}_{N} \right] \Delta t$$

$$\mathbf{v}_{N+\frac{1}{2}} - \mathbf{v}_{N-\frac{1}{2}} = f_{\epsilon} \left[2\frac{\mathbf{E}}{B} + (\mathbf{v}_{N+\frac{1}{2}} + \mathbf{v}_{N-\frac{1}{2}}) \times \mathbf{b} \right]$$

$$\mathbf{v}_{+} = \mathbf{v}_{N+\frac{1}{2}} - f_{\epsilon} \frac{\mathbf{E}}{B}$$

$$\mathbf{v}_{-} = \mathbf{v}_{N-\frac{1}{2}} + f_{\epsilon} \frac{\mathbf{E}}{B}$$

$$\mathbf{v}_{+} - \mathbf{V}_{-} = f_{\epsilon} \left[f_{\epsilon} \right]$$

25.04.2023

IONIZED PARTICLES TRAJECTORIES

The Boris integration algorithm $c\frac{\Delta t}{2}$ $\mathbf{b} = \frac{\mathbf{B}}{B}$ Vector product matrix: $\mathbb{X}_b = \frac{1}{B} \begin{pmatrix} 0 & B_{\varphi} & -B_Z \\ B_{\varphi} & 0 & B_R \\ B_{\varphi} & -R_D & 0 \end{pmatrix}$ \mathbf{v}_{-}) × \mathbf{b}] $\begin{bmatrix} b \end{bmatrix} \mathbf{V}_{-}$ $\begin{bmatrix} b \end{bmatrix} \mathbf{V}_{-}$ $\begin{bmatrix} \mathbf{I} - \mathbf{R}\mathcal{U} \end{bmatrix}^{-1} = \frac{1}{\det(\mathbf{I} - \mathbf{R}\mathcal{U})} \begin{pmatrix} 1 + \mathcal{U}^2 b_x^2 & \mathcal{U}b_z + \mathcal{U}^2 b_x b_y & -\mathcal{U}b_y + \mathcal{U}^2 b_x b_z \\ -\mathcal{U}b_z + \mathcal{U}^2 b_x b_y & 1 + \mathcal{U}^2 b_y^2 & \mathcal{U}b_x + \mathcal{U}^2 b_y b_z \\ \mathcal{U}b_y + \mathcal{U}^2 b_x b_z & -\mathcal{U}b_x + \mathcal{U}^2 b_y b_z & 1 + \mathcal{U}^2 b_z^2 \end{pmatrix}$ $\mathbf{u} \otimes \mathbf{v} = \mathbf{u} \mathbf{v}^{\mathsf{T}}$ $\mathbf{b} \mathbf{b}^{\mathsf{T}} = (\mathbf{b} \cdot \mathbf{v}) \mathbf{b}$

$$\mathbf{v}_{N+\frac{1}{2}} - \mathbf{v}_{N-\frac{1}{2}} = f_{\epsilon} \left[2\frac{\mathbf{E}}{B} + (\mathbf{v}_{N+\frac{1}{2}} + \mathbf{v}_{N-\frac{1}{2}}) \times \mathbf{b} \right] \qquad f_{\epsilon} = \frac{Z_{i}eB\Delta t}{m-2} = \omega_{\epsilon}^{-1}$$

$$\mathbf{v}_{+} = \mathbf{v}_{N+\frac{1}{2}} - f_{\epsilon}\frac{\mathbf{E}}{B} \qquad \left[\mathbf{v}_{+} - \mathbf{v}_{-} = f_{\epsilon} \left[(\mathbf{v}_{+} + \mathbf{v}_{+}) \right] \right] \\ \mathbf{v}_{+} = \mathbf{v}_{N-\frac{1}{2}} + f_{\epsilon}\frac{\mathbf{E}}{B} \qquad \left[\mathbb{I} - f_{\epsilon}\mathbb{X}_{b} \right] \mathbf{v}_{+} = \left[\mathbb{I} + f_{\epsilon}\mathbb{X}_{b} \right]$$

$$\mathbf{v}_{+} = \left[\mathbb{I} - f_{\epsilon}\mathbb{X}_{b} \right]^{-1} \left[\mathbb{I} + f_{\epsilon}\mathbb{X}_{b} \right]$$

25.04.2023

IONIZED PARTICLES TRAJECTORIES

$$\mathbf{v}_{N+\frac{1}{2}} - \mathbf{v}_{N-\frac{1}{2}} = f_{\epsilon} \left[2\frac{\mathbf{E}}{B} + (\mathbf{v}_{N+\frac{1}{2}} + \mathbf{v}_{N-\frac{1}{2}}) \times \mathbf{b} \right] \qquad f_{\epsilon} = \frac{Z_{\ell}eB\Delta t}{m-2} = \omega_{\epsilon}\frac{\Delta t}{2} \qquad \mathbf{b} = \frac{\mathbf{B}}{B}$$

$$\mathbf{v}_{+} = \mathbf{v}_{N+\frac{1}{2}} - f_{\epsilon}\frac{\mathbf{E}}{B} \qquad \left[\mathbf{v}_{+} - \mathbf{v}_{-} = f_{\epsilon} \left[(\mathbf{v}_{+} + \mathbf{v}_{-}) \times \mathbf{b} \right] \right] \\ \mathbf{v}_{-} = \mathbf{v}_{N-\frac{1}{2}} + f_{\epsilon}\frac{\mathbf{E}}{B} \qquad \left[\mathbb{I} - f_{\epsilon}\mathbb{X}_{b} \right] \mathbf{v}_{+} = \left[\mathbb{I} + f_{\epsilon}\mathbb{X}_{b} \right] \mathbf{v}_{-} \\ \mathbf{v}_{+} = \left[\mathbb{I} - f_{\epsilon}\mathbb{X}_{b} \right]^{-1} \left[\mathbb{I} + f_{\epsilon}\mathbb{X}_{b} \right] \mathbf{v}_{-} \\ \mathbf{v}_{+} = \left[\mathbb{I} - f_{\epsilon}\mathbb{X}_{b} \right]^{-1} = \left[\mathbb{I} + f_{\epsilon}^{2}\mathbf{b}\mathbf{b}^{\top} + f_{\epsilon}\mathbb{X}_{b} \right] / (1 + f_{\epsilon}^{2}) \\ \mathbf{v}_{+} = \frac{1}{1 + f_{\epsilon}^{2}} \left[\mathbb{I} + f_{\epsilon}^{2}\mathbf{b}\mathbf{b}^{\top} + f_{\epsilon}\mathbb{X}_{b} \right] \left[\mathbb{I} + f_{\epsilon}\mathbb{X}_{b} \right] \mathbf{v}_{-}$$

25.04.2023

IONIZED PARTICLES TRAJECTORIES

25.04.2023

IONIZED PARTICLES TRAJECTORIES

Neglecting terms of order f³

V_

$$\mathbf{v}_{N+\frac{1}{2}} - \mathbf{v}_{N-\frac{1}{2}} = f_{\epsilon} \left[2\frac{\mathbf{E}}{B} + (\mathbf{v}_{N+\frac{1}{2}} + \mathbf{v}_{N-\frac{1}{2}}) \times \mathbf{b} \right] \qquad f_{\epsilon} = \frac{Z_{i}eB\Delta t}{m-2} = \omega_{\epsilon}$$

$$\mathbf{v}_{+} = \mathbf{v}_{N+\frac{1}{2}} - f_{\epsilon}\frac{\mathbf{E}}{B} \qquad \left[\mathbf{V}_{+} - \mathbf{V}_{-} = f_{\epsilon} \left[(\mathbf{V}_{+} + \mathbf{V}_{+}) \right] \right] \\ \mathbf{v}_{-} = \mathbf{v}_{N-\frac{1}{2}} + f_{\epsilon}\frac{\mathbf{E}}{B} \qquad \left[\mathbf{V}_{+} - \mathbf{V}_{-} = f_{\epsilon} \left[(\mathbf{V}_{+} + \mathbf{V}_{+}) \right] \right] \\ \mathbf{v}_{+} \simeq \left[\mathbb{I} + \frac{2f_{\epsilon}}{1 + f_{\epsilon}^{2}} \left(\mathbb{X}_{b} - f_{\epsilon}\mathbb{I} \right] \right] \\ \mathbf{v}_{+} \simeq \left[\mathbb{I} + \frac{2f_{\epsilon}}{1 + f_{\epsilon}^{2}} \mathbb{M} \right] \\ \mathbf{v}_{+} \simeq \left[\mathbb{I} + \frac{2f_{\epsilon}}{1 + f_{\epsilon}^{2}} \mathbb{M} \right]$$

25.04.2023

IONIZED PARTICLES TRAJECTORIES

This is the evolution of velocity in the referential given by unit vectors at †=N

The Boris integration algorithm

Boris algorithm: **Evolving position** In cylindrical coordinates means we need to move the coordinate system at each time step!

IONIZED PARTICLES TRAJECTORIES

$$X_{N+1} = R_N + \tilde{v}_{X_{N+1/2}} \Delta t \qquad \qquad R_{N+1} = \sqrt{X_{N+1}^2 + Y_{N+1}^2}$$
$$Y_{N+1} = \tilde{v}_{\varphi_{N+1/2}} \Delta t \qquad \qquad \varphi_{N+1} = \varphi_N + \alpha$$
$$\alpha = \arcsin\left(\frac{Y_{N+1}}{P_N}\right)$$

$$v_{R_{N+1/2}} = \cos(\alpha) \tilde{v}_{R_{N+1/2}} + \sin(\alpha) \tilde{v}_{\varphi_{N+1/2}}$$
$$v_{\varphi_{N+1/2}} = -\sin(\alpha) \tilde{v}_{R_{N+1/2}} + \cos(\alpha) \tilde{v}_{\varphi_{N+1/2}}$$

Rotation of angle α to express the vector velocity in the new coordinates

F. Jaulmes et al 2021 Nucl. Fusion 61 046012

 $\overline{R_{N+1}}$

Performances of integration scheme

Precision strongly depends on the quality of the underlying map for the poloidal flux ψ

When there are no collisions, 3D fields or Electric field, p_{ϕ} is conserved

Trajectories of 80keV ions deposited in the mid-plane with map $\psi(R,Z) \sim 1200x2400$

25.04.2023

IONIZED PARTICLES TRAJECTORIES

we define the canonical linear momentum as:

 $\mathbf{P} = m\mathbf{v} + Z_i e\mathbf{A},$

 $\frac{1}{Z_i e} \frac{\mathrm{d}\mathbf{P}}{\mathrm{d}t} = \nabla(\mathbf{v} \cdot \mathbf{A} - \Phi)$

 $\frac{1}{Z_i e} \frac{\mathrm{d} p_{\varphi}}{\mathrm{d} t} = \frac{\partial A_R}{\partial \varphi} v_R + \frac{\partial A_Z}{\partial \varphi} v_Z + \frac{\partial A_{\varphi}}{\partial \varphi} v_{\varphi} - \frac{\partial \Phi}{\partial \varphi}.$

 $p_{\varphi} = m_f R v_{\varphi} - (Z_f e)(\psi_0 + \psi_1)$

p_{ω} is the toroidal canonical angular momentum

F. Jaulmes et al 2021 Nucl. Fusion 61 046012

Performances of integration scheme

Precision strongly depends on the quality of the underlying map for the poloidal flux ψ Of course decreasing time step size can influence the precision, down to some value when the grid precision dominates

 $\delta t = 10^{-9} s$

$$\delta p_{\phi} = 8*10^{-4}$$

 $\delta E_{kin} = 4*10^{-8} \text{ eV}$

 $\delta p_{\phi} = 2*10^{-4}$ $\delta E_{kin} = 7*10^{-8} \text{ eV}$

25.04.2023

IONIZED PARTICLES TRAJECTORIES

2 ms simulations of collisionless trajectories [80 keV ions]

Cumulated error of ~10⁻⁵ / ms on p_{ϕ}

 $\delta p_{\phi} = 2*10^{-5}$ $\delta E_{kin} = 14*10^{-8} \text{ eV}$

 $\delta p_{\phi} = 4*10^{-5}$ $\delta E_{kin} = 11*10^{-8} eV$

The Boris integration algorithm

Boris algorithm: Adjusting time step to match the cyclotron frequency [optional]

Inaccuracy arising on long simulations due to the Larmor orbit?

$\mathbf{v}_{+} - \mathbf{v}_{-} = f_{\epsilon} \left[(\mathbf{v}_{+} + \mathbf{v}_{-}) \times \mathbf{b} \right]$

This rotation β is given by the equation:

$$\frac{|\mathbf{v}_{+}^{\perp} - \mathbf{v}_{-}^{\perp}|}{|\mathbf{v}_{+}^{\perp} - \mathbf{v}_{-}^{\perp}|} = |\tan(\beta/2)| = f_{\epsilon}$$

 $\beta \text{ should be } \omega_c \Delta t$, $\longrightarrow f_{\epsilon} = \tan\left(\frac{Z_i e B \Delta t}{m 2}\right) = \tan\left(\omega_c \frac{\Delta t}{2}\right)$

IONIZED PARTICLES TRAJECTORIES

The Boris integration algorithm

Boris algorithm: Adjusting time step to match the cyclotron frequency [optional]

$$f_{\epsilon} = \frac{Z_i e B \Delta t}{m \ 2} = \omega_c \frac{\Delta t}{2} \quad \longrightarrow \quad f_{\epsilon} = \tan\left(\frac{Z_i e B \Delta t}{m \ 2}\right) = \tan\left(\frac{\Delta t}{2}\right) \qquad \delta$$

With Larmor orbit correction

25.04.2023

IONIZED PARTICLES TRAJECTORIES

$\delta t = 0.5 \ 10^{-9} \ s$

Without Larmor orbit correction

F. Jaulmes et al 2021 Nucl. Fusion 61 046012

Overview of this lecture

- What is the NBI [Neutral Beam Injector]
- Modelling particle orbits in tokamaks
- Coulomb Collisions and slowing down distribution
- Application: modelling of fast neutrons generation in COMPASS Upgrade

IONIZED PARTICLES TRAJECTORIES

Coulomb collisions: principles

25.04.2023

Fast ion collisions: NBI D ion against thermal electrons and ions (D):

[PP&FE – J. Freidberg pp. 201-203]

See : https://ocw.mit.edu/courses/nuclear-engineering/22-611j-introduction-to-plasma-physics-ifall-2006/readings/chap3.pdf

Overall loss: fast beam D against background e and i

$$v_{be} \simeq \left(\frac{1}{4\pi} \frac{e^4 n_e}{\epsilon_0^2 m_D m_e} \ln \Lambda\right) \frac{1}{v_b^3 + 1.33 v_{\text{the}}^3}$$
$$v_{bi} \simeq \left(\frac{1}{2\pi} \frac{e^4 n_i}{\epsilon_0^2 m_D^2} \ln \Lambda\right) \frac{1}{v_b^3 + 1.33 v_{\text{th}i}^3}$$
momentum

$$v_{be} \simeq \left(\frac{1}{4\pi} \frac{e^4 n_e}{\epsilon_0^2 m_D m_e} \ln \Lambda\right) \frac{1}{v_b^3 + 1.33 v_{\text{the}}^3}$$

$$v_{bi} \simeq \left(\frac{1}{4\pi} \frac{e^4 n_i}{\epsilon_0^2 m_D^2} \ln \Lambda\right) \frac{1}{v_b^3 + 1.33 v_{\text{th}i}^3}$$

$$\text{Fermion of velocity}$$

$$\text{Equaling loss rates on e and i:}$$

$$v_c^3 \simeq 1.33 \frac{n_i}{n_e} \frac{m_e}{m_D} v_{\text{th}e}^3$$

$$\mathcal{E}_c \simeq \left(1.33 \frac{n_i}{n_e}\right)^{2/3} \left(\frac{m_D}{m_e}\right)^{1/3} T_e \simeq 18.66 T_e$$

25.04.2023

FASTIONS & COULOMB COLLISIONS

Over-simplified view of things: we need to account for

- random distributions
- pitch angle scattering

Stochastization of the losses: variance in velocity norm

Fokker-Planck equation: collision term

$$\frac{\partial f}{\partial t} + \boldsymbol{v} \cdot \frac{\partial f}{\partial \boldsymbol{x}} + \frac{e_J}{m_J} (\boldsymbol{E} + \boldsymbol{v} \times \boldsymbol{B}) \cdot \frac{\partial f}{\partial \boldsymbol{v}} = \left(\frac{\partial f}{\partial t}\right)_{\rm c}$$

Tokamaks, 3rd edition J. Wesson

$$\left(\frac{\partial f}{\partial f}\right)_{c} = \frac{f(\boldsymbol{x}, \boldsymbol{v}, t + \Delta t) - f(\boldsymbol{x}, \boldsymbol{v}, t)}{\Delta t}.$$

$$\left(\frac{\partial f}{\partial t}\right)_{c} = -\sum_{\alpha} \frac{\partial}{\partial v_{\alpha}} (\langle \Delta v_{\alpha} \rangle f) + \frac{1}{2} \sum_{\alpha,\beta} \frac{\partial^{2}}{\partial v_{\alpha} \partial v_{\beta}} (\langle \Delta v_{\alpha} \Delta v_{\beta} \rangle f).$$

The quantity (Δv_{α}) is called the coefficient of dynamic friction and $\langle \Delta v_{\alpha} \Delta v_{\beta} \rangle$ the diffusion tensor.

Averaging on gyrophase Φ

The *drift kinetic equation* is an equation for the gyro-averaged distribution function

$$\bar{f} = \frac{1}{2\pi} \int f \, \mathrm{d}\phi,$$

$$\frac{\partial \bar{f}}{\partial t} + \mathbf{v}_{\mathrm{g}} \cdot \nabla \bar{f} + \left[e_{J} E \cdot \mathbf{v}_{g} + \mu \frac{\partial B}{\partial t} \right] \frac{\partial \bar{f}}{\partial K} = \left(\frac{\partial \bar{f}}{\partial t} \right)_{\mathrm{c}},$$

$$\mathbf{v}_{\mathrm{g}} = v_{\mathrm{H}} \mathbf{b} + \frac{E \times B}{B^{2}} + \frac{v_{\mathrm{H}}^{2} \mathbf{b} \times (\mathbf{b} \cdot \nabla) \mathbf{b} + \mu \mathbf{b} \times \nabla B}{\omega_{cJ}}$$

where $\boldsymbol{b} = \boldsymbol{B}/|\boldsymbol{B}|$ and $\omega_{c_1} = e_1 \boldsymbol{B}/m_1$.

$$\begin{aligned} \operatorname{nd} \qquad \left(\frac{\partial f}{\partial t}\right)_{c} &= \sum_{J} \frac{e^{2} Z^{2} Z_{J}^{2} \ln \Lambda}{8\pi \varepsilon_{0}^{2} m} \\ &\times \frac{\partial}{\partial v_{\alpha}} \int \left(\frac{f_{J}(\boldsymbol{v}_{J})}{m} \frac{\partial f(\boldsymbol{v})}{\partial v_{\beta}} - \frac{f(\boldsymbol{v})}{m_{J}} \frac{\partial f_{J}(\boldsymbol{v}_{J})}{\partial v_{J\beta}}\right) u_{\alpha\beta} \, \mathrm{d}\boldsymbol{v}_{J} \end{aligned}$$

where $\frac{u^2\delta_{\alpha\beta}-u_{\alpha}u_{\beta}}{3}$ $u = v - v_{\perp}$ and

Stochastization of the losses: variance in velocity norm

We admit: Fokker Plank equation for fast ion $v_i < v < v_e$

$$\frac{\partial f}{\partial t}\Big|_{c} = \frac{1}{\tau_{s}v^{2}}\frac{\partial}{\partial v}\left(v^{3}+v_{c}^{3}\right)f + \frac{1}{\tau_{s}v^{2}}\frac{\partial}{\partial v}\left(\frac{v^{2}T_{e}}{m_{b}}+\frac{v_{c}^{3}T_{i}}{m_{b}v}\right)\frac{\partial f}{\partial v} + \frac{v_{ii}}{2}\frac{\partial}{\partial\zeta}\left(1-\zeta^{2}\right)\frac{\partial}{\partial\zeta}f,$$

$$= \frac{1}{\tau_{\rm s}v^2} \frac{\partial}{\partial v} [(v^3 + v_{\rm c}^3)f] + \frac{\beta}{\tau_{\rm s}} \frac{v_{\rm c}^3}{v^3} \frac{\partial}{\partial \xi} (1 - \xi^2) \frac{\partial f}{\partial \xi} + \frac{1}{\tau_{\rm s}v^2} \frac{\partial}{\partial v} \left[\left(\frac{T_{\rm e}}{m_{\rm fi}} v^2 + \frac{T_{\rm i}}{m_{\rm fi}} \frac{v_{\rm c}^3}{v} \right) \frac{\partial f}{\partial v} \right]$$

$$\tau_{\rm s} = 6.32 \cdot 10^8 \cdot \frac{A_{\rm fi}}{Z_{\rm fi}^2 \ln \Lambda_{\rm e}} \cdot \frac{(T_{\rm e} \,[{\rm eV}])^{3/2}}{n_{\rm e} \,[{\rm cm}^{-3}]} \,\,{\rm s} \qquad \qquad \tau_{\rm s} = (1/\nu_{be})_{\rm v=0}$$

$$v_{\rm c} = 5.33 \cdot 10^4 \cdot \sqrt{T_{\rm e} \,[{\rm eV}]} \cdot \left\langle \frac{Z_i^2}{A_i} \right\rangle^{1/3} \,\mathrm{m/s}$$

$$\beta = \frac{\left\langle Z_i^2 \right\rangle}{2\left\langle \frac{Z_i^2}{A_i} \right\rangle A_{\rm fi}}, \quad \left\langle \frac{Z_i^2}{A_i} \right\rangle = \frac{\sum_i n_i (Z_i^2 / A_i) \ln \Lambda_i}{n_{\rm e} \ln \Lambda_{\rm e}}, \quad \left\langle Z_i^2 \right\rangle = \frac{\sum_i n_i Z_i^2 \ln \Lambda_i}{n_{\rm e} \ln \Lambda_{\rm e}}$$

25.04.2023

FASTIONS & COULOMB COLLISIONS

Taking
$$f = \delta(v - v_0) \,\delta(\zeta - \zeta_0)$$

$$v' = v_0 - \delta t \left[\frac{v_0}{\tau_s} \left(1 - 2T_e / m_b v_0^2 \right) + \frac{v_c^3}{v_0^2 \tau_s} \left(1 + T_i / m_b v_0^2 \right) \right]$$

Evolution of norm of velocity during δt

New Techniques for Calculating Heat and Particle Source Rates due to Neutral Beam Injection in Axisymmetric Tokamaks, R.J. Goldston et al., J. Comp. Phys. 43 (1981) 61

Stochastization of the losses: variance in velocity norm

Fokker Plank equation for fast ion $v_i < v < v_e$

$$\begin{aligned} v' &= v_0 - \delta t \left[\frac{v_0}{\tau_s} \left(1 - 2T_e/m_b v_0^2 \right) + \frac{v_c^3}{v_0^2 \tau_s} \left(1 + T_i/m_b v_0^2 \right) \right], \\ \left\langle \Delta v^2 \right\rangle &= \left\langle (v' - v)^2 \right\rangle = \left\langle (v')^2 + v^2 - 2vv' \right\rangle = \left\langle (v')^2 + v^2 - 2v(v + \delta t \langle \partial v \rangle \langle \partial v \rangle \langle \partial v \rangle \rangle \right\rangle \\ \left\langle \Delta v^2 \right\rangle &= \left\langle (v')^2 - v^2 - 2v(\delta t \langle \partial v / \partial t \rangle) \right\rangle \\ \left\langle \Delta v^2 \right\rangle &= \delta t \left(\left\langle \partial v^2 / \partial t \right\rangle - 2v \langle \partial v / \partial t \rangle \right) \end{aligned}$$

$$\left\langle \frac{\partial v^2}{\partial t} \right\rangle = \frac{\int (\frac{\partial f}{\partial t})_c v^4 dv d\xi}{\int f v^2 dv d\xi} \quad \text{and} \quad \left\langle \frac{\partial v}{\partial t} \right\rangle = \frac{\int (\frac{\partial f}{\partial t})_c v^3 dv d\xi}{\int f v^2 dv d\xi}$$

$$\frac{\partial f}{\partial t}\Big|_{c} = \frac{1}{\tau_{s}v^{2}}\frac{\partial}{\partial v}\left(v^{3}+v_{c}^{3}\right)f + \frac{1}{\tau_{s}v^{2}}\frac{\partial}{\partial v}\left(\frac{v^{2}T_{e}}{m_{b}}+\frac{v_{c}^{3}T_{i}}{m_{b}v}\right)\frac{\partial f}{\partial v}$$

25.04.2023

FASTIONS & COULOMB COLLISIONS

New Techniques for Calculating Heat and Particle Source Rates due to Neutral Beam Injection in Axisymmetric Tokamaks, R.J. Goldston et al., J. Comp. Phys. 43 (1981) 61

 $\langle \partial t \rangle \rangle$

Taking
$$f = \delta(v - v_0) \, \delta(\zeta - \zeta_0)$$
, we arrive at

$$\langle \partial v / \partial t \rangle = -\frac{v}{\tau_s} (1 - 2T_e / m_b v^2) - \frac{v_c^3}{v^2 \tau_s} (1 + T_i / m_b v^2)$$

$$\left\langle \Delta v^2 \right\rangle = \frac{2\Delta t}{\tau_s} \left(\frac{T_e}{m_D} + \frac{v_C^3}{v^3} \frac{T_i}{m_D} \right) \qquad \tau_s = (1/v_{be})_{v=1}$$

The standard deviation will scale as square root of this. For consistency, we use the critical energy related to "norm" of velocity" loss rates, not momentum loss rates.

=0

Pitch angle scattering

Diffusion in the perpendicular plane (often called σ_{90} or σ):

See: https://ocw.mit.edu/courses/nuclear-engineering/22-611j-introduction-to-plasma-physics-i-fall-2006/readings/chap3.pdf

J.D. Callen. Draft Material for Fundamentals of Plasma Physics book, 2006. homepages.cae.wisc.edu/~callen/chap2.pdf.

25.04.2023

FASTIONS & COULOMB COLLISIONS

. Jaulmes et al 2021 Nucl. Fusion 61 046012

Full-orbit simulations with the EBdyna code allow to obtain description of NBI in space and velocity space

F. Jaulmes et al 2021 Nucl. Fusion 61 046012

Scenario	Bt [T]	lp [MA]	n _e τ _e [10 ²⁰ m ⁻³] [ms]		Ecrit [keV]	n _{0,wall} [10 ¹⁸ m ⁻³
#24300	4.3	1.2	1.9	83	40	2.6

Slowing down distribution of the 80 keV NBI

$$\tau_s = \frac{m_f}{m_e} \frac{1}{3\nu_e} \ln \left[1 + \left(\frac{\mathcal{E}_0}{\mathcal{E}_{\text{crit}}}\right)^{3/2} \right] \text{ with } \mathcal{E}_{\text{crit}} \simeq 18.6T_e$$

F. Jaulmes et al 2021 Nucl. Fusion 61 046012

25.04.2023

FASTIONS & COULOMB COLLISIONS

EBdyna CU24300 for 1MW NBI $@R_{+}=0.6m$

Full-orbit simulations with the EBdyna code allow to obtain description of NBI in space and velocity space

F. Jaulmes et al 2021 Nucl. Fusion 61 046012

Scenario	Bt [T]	lp [MA]	n _e [10 ²⁰ m ⁻³]	τ _e Ecrit [ms] [keV]		n _{0,wall} [10 ¹⁸ m ⁻³
#24300	4.3	1.2	1.9	83	40	2.6

$$\delta\Omega = \mathcal{N}(1,1)\frac{\pi}{2}\sqrt{(\delta t)\nu_{\perp i}}$$

FASTIONS & COULOMB COLLISIONS

EBdyna CU24300 for 1MW NBI $@R_{+}=0.6m$

Overview of this lecture

- What is the NBI [Neutral Beam Injector]
- Modelling particle orbits in tokamaks
- Coulomb Collisions and slowing down distribution
- Application: modelling of fast neutrons generation in COMPASS Upgrade

F. Jaulmes et al.: Journal of Fusion Energy volume 41, Article number: 16 (2022)

FASTIONS & COULOMB COLLISIONS

25.04.2023

NEUTRON DIAGNOSTICS IN THE EXPERIMENTAL HALL

NEUTRON YIELD: BEAM -> TARGET (H.-S. BOSCH AND G.M. HALE 1992 NUCL. FUSION 32 611)

Throughout this paper, E denotes the energy available in the CM frame. For a particle A with mass m_A striking a stationary particle B, the simple relation $E_A = E (m_A + m_B)/m_B$ holds.

25.04.2023

MODELLING OF COMPASS-U NEUTRON EMISSION

(2i)
$${}^{2}_{1}D + {}^{2}_{1}D \rightarrow {}^{3}_{1}T$$
 (1.01 MeV) + p⁺ (3.02 MeV)
(2ii) $\rightarrow {}^{3}_{2}He$ (0.82 MeV) + n⁰ (2.45 MeV)

$$d\mathbf{R}/d\mathbf{V} = \frac{\mathbf{n}_{i}\mathbf{n}_{j}}{1+\delta_{ij}} \langle \sigma \mathbf{v} \rangle$$
(10)

where n_i , n_j are the particle densities and δ_{ij} is the Kronecker symbol. With $f(\vec{v}_i)$ the velocity distribution of a particle and g the relative velocity $(\vec{g} = \vec{v}_i - \vec{v}_i)$, we obtain

$$\langle \sigma \mathbf{v} \rangle = \int \int \mathbf{f}(\vec{\mathbf{v}}_i) \ \mathbf{f}(\vec{\mathbf{v}}_j) \ \sigma(|\mathbf{g}|) \ |\mathbf{g}| \ d\vec{\mathbf{v}}_i \ d\vec{\mathbf{v}}_j$$
(11)

 $\sigma = \frac{S(\mathcal{E}_{\text{com}})}{\exp(B_q/\sqrt{\mathcal{E}_{\text{com}}})} \text{ in mb } (10^{-28} \text{m}^2) \text{ with } B_g = 31.3970 \sqrt{\text{keV}}$

NEUTRON YIELD:

 $\sigma = \frac{S(\mathcal{E}_{\text{com}})}{\exp(B_q/\sqrt{\mathcal{E}_{\text{com}}})} \text{ in mb } (10^{-28} \text{m}^2) \text{ with } B_g = 31.3970 \sqrt{\text{keV}}$

$$\mathcal{E}_{\rm com} = \mathcal{E}_{\rm rel}/2 = m_D v_{\rm rel}^2/4$$

Neutron rate yielded by a single fast ion marker:

$$R = n_D \sigma v_{\rm rel}$$

Isotropy of th neutron emis

MODELLING OF COMPASS-U NEUTRON EMISSION

(2i)
$${}^{2}_{1}D + {}^{2}_{1}D \rightarrow {}^{3}_{1}T$$
 (1.01 MeV) + p⁺ (3.02 MeV)
(2ii) $\rightarrow {}^{3}_{2}He$ (0.82 MeV) + n⁰ (2.45 MeV)

Emitted neutron parameters:

$$\mathbf{v_n} = \mathbf{v_{com}} + \mathbf{u_n}$$

$$\langle \mathcal{E}_n \rangle \simeq 2.45 \,\mathrm{Me|V} \text{ with } |\mathbf{u_n}| \simeq 2.165 \cdot 10^7 \mathrm{m/s}.$$

$$u_{nX} = |\mathbf{u_n}| \cos \left(\arcsin(\chi) \right) \cos(\alpha)$$

$$u_{nY} = |\mathbf{u_n}| \cos \left(\arcsin(\chi) \right) \sin(\alpha)$$

$$u_{nZ} = |\mathbf{u_n}|(\chi)$$

STRATEGIES FOR 3 EDGE TRANSPORT BARRIERS TYPES

Thanks to scaling laws we recover the same type of profiles as was observed in ALCATOR C-mod

Scenario	β _Ν [%]	n _e [10 ²⁰ m ⁻³]	τ _e [ms]	P _{ped} [kPa]	v* _{ped}	n _{0,wall} [10 ¹⁸ m ⁻³]
#5400	1.24	2.04	83	77	0.3	3.5
#45400	1.3	3	135	62	1.2	8.6
#34300	0.9	1	39	15	0.3	0.7

$$\tau_s = \frac{m_f}{m_e} \frac{1}{3\nu_e} \ln \left[1 + \left(\frac{\mathcal{E}_0}{\mathcal{E}_{\text{crit}}}\right)^{3/2} \right] \text{ with } \mathcal{E}_{\text{crit}} \simeq 18.6T_e$$

25.04.2023

TRANSPORT SIMULATIONS

Full-orbit simulations with the EBdyna code allow to obtain description of neutrons in space and velocity space

Scenario	EBdyna neutrons Thermal [10 ¹⁴ s ⁻¹]	EBdyna neutrons Beam-Plasma [10 ¹⁴ s ⁻¹]	EBdyna neutrons Beam-Beam [10 ¹⁴ s ⁻¹]	EBdyna neutrons Total [10 ¹⁴ s ⁻¹]	METIS neutrons Total [10 ¹⁴ s ⁻¹]
#5400	2.2	9.9	0.8	12.9	13.7
#45400	1.8	6.1	0.2	8.1	9.0
#34300	0.2	4.1	2.3	6.6	7.9

25.04.2023

NDD NEUTRON MARKERS IN COMPASS UPGRADE

EBdyna for 3-4MW NBI $@R_t=0.6m$

Full-orbit simulations with the EBdyna code allow to obtain description of NBI in space and velocity space

25.04.2023

NDD NEUTRON MARKERS IN COMPASS UPGRADE

Full-orbit simulations with Ebdyna (ex: CU#5400): generates 4.2M steady state neutron markers (BB+BP)

25.04.2023

Detailed map of the neutron source is obtained from simulation : can design synthetic diagnostics for neutron camera

25.04.2023

Overview of neutron generation with EBdyna

- Full kinetic neutron calculations implemented in EBdyna
- Neutron fluxes & spectra in EBdyna in good agreement with theoretical formula and METIS calculations
- Large amount of neutron markers allow to derive approximate statistics for neutron flux on poloidal distribution of neutron source

MODELLING OF COMPASS-U NEUTRON EMISSION

diagnostics and measured neutron spectra: importance of absolute calibration to avoid bias due to

Summary & outlook

- NBI is a large device used to heat up both electrons and ions in tokamaks. Its main parameters are the tangency radius and the injection energy.
- Modelling particle orbits in tokamaks: the Boris algorithm can be implemented in a fast collisionless orbit solver in toroidal geometry. Typical required time step are of order 10⁻⁹ s for NBI ions.
- Coulomb Collisions simplified operators can be added on top of the collisionless solver in order to give a representation of slowing down and pitch angle scattering. Obtaining steady state requires simulations of order 10-1500 ms: can become challenging computationally.
- The full distribution of fast ions has many application: modelling of fast neutrals generation in COMPASS Upgrade (fast ions diagnostics). It can also be used for MHD studies.
- Further, modelling of NBI duct losses [see extra slides!] F. Jaulmes et al 2022 PPCF 64 125001

THANK YOU FORYOUR ATTENTION

OF THE CZECH ACADEMY OF SCIENCES

FABIEN JAULMES

Overview of the dimensions of the NBI 0 in COMPASS [side view]

25.04.2023

NBIOIN THE COMPASS TOKAMAK

F. Jaulmes et al 2022 PPCF 64 125001

f_{neut}... neutralization efficiency f_{pass} ... passing fraction f_{ion} ... ionization efficiency f_{heat} ... heating efficiency

08.09.2021

NBI POWERS

 $P_{ion} = U_{beam}I_{beam}$ power of accelerated ions P_{tot}..... total power produced in the neutrals P_{AUX}.... Auxiliary heating power entering the tokamak P_{fi} Power in the formed fast ions P_{heat}.... power heating the bulk plasma

Pitch angle scattering

Diffusion in the perpendicular plane (often called σ_{90} or σ) is different than momentum! $\sigma_{12} = \frac{2m_2}{m_1 + m_2} \nu_{12}$

Momentum loss rate

$$\sigma_{be} = \frac{2m_e}{m_D + m_e} v_{be} \simeq 0 \qquad \sigma_{bi} = \frac{2m_D}{m_D + m_D} v_{bi} = v_{bi}$$

See: <u>https://ocw.mit.edu/courses/nuclear-engineering/22-611j-introduction-to-</u> plasma-physics-i-fall-2006/readings/chap3.pdf

Simple scatter using systematic deviation:

$$\delta\Omega = \frac{\pi}{2}\sqrt{(\delta t)\sigma_{bi}}$$

Random walk in 3D

FASTIONS & COULOMB COLLISIONS

Benchmark with NuBeam code:

Beam duct modelling

- Modelling of fast neutrals generation in COMPASS
 - Ray-tracing of fast neutrals generation
 - Calculation of position of ionized neutral markers
 - Full orbit calculation of ion trajectory in 3D field

INTRODUCTION TO TOKAMAKS

Overview of the dimensions of the NBI 0 in COMPASS\ [top view]

25.04.2023

NBIOIN THE COMPASS TOKAMAK

F. Jaulmes et al 2022 PPCF 64 125001

25.04.2023

NBIOIN THE COMPASS TOKAMAK

Ray-tracing of fast neutrals

F. Jaulmes et al 2022 PPCF 64 125001

Fast neutrals & duct walls

Goes to plasma

25.04.2023

NBIOIN THE COMPASS TOKAMAK

Hits duct wall

Ionizations of fast neutrals

Re-ionized

But the duct contains residual neutral gas! ~ 10¹⁸ m-⁻³

25.04.2023

NBIOIN THE COMPASS TOKAMAK

Re-ionized

25.04.2023

NBIOIN THE COMPASS TOKAMAK

Ionizations of fast neutrals

25.04.2023

NBIOIN THE COMPASS TOKAMAK

Ionizations of fast neutrals

$$\begin{aligned} \frac{h}{dt} &= -\mathcal{P}_n n_0 \sigma(\mathcal{E}) \\ &= \exp\left(-\int n_0 \sigma(\mathcal{E}) dl\right) \\ \mathcal{P}_i - \mathcal{R} &= 0; \\ I &= I_0 \left(\exp\left(-Ln_0 \sigma_i\right) \\ \text{(uniform density)} \right) \end{aligned}$$

Experimental measurements of NBI duct heating in COMPASS

25.04.2023

NBIOIN THE COMPASS TOKAMAK

F. Jaulmes et al 2022 PPCF 64 125001

Experimental measurements of NBI duct heating in COMPASS

25.04.2023

			B_t	$\mathcal{E}_{ ext{inj}}$	$P_{\rm grid}$	$P_{\rm eff_{NBI}}$	Δt
ΔT [C]			[T]	[keV]	[MW]	[MW]	[ms]
	- 40	21759	1.5	53	0.8	0.63	130
		21760	1.5	58	1.0	0.77	230
	- 35	21761	1.5	58	1.0	0.77	230
		21762	1.5	59	1.0	0.77	180
	- 30	21763	1.5	58	1.0	0.76	190
		21765	1.5	59	1.0	0.76	220
	25	21766	1.5	59	1.0	0.76	170
		21767	1.5	58	1.0	0.75	230
	- 20	21783	1.15	65	1.3	0.96	60
		21786	1.15	66	1.4	1.0	60
	- 15	21787	1.15	66	1.4	1.03	120
		21789	1.15	66	1.4	0.99	90
	10	21790	1.15	66	1.4	1.03	120
	10	21796	1.15	55	0.7	0.55	100
	_	21802	1.15	55	1.0	0.75	120
ТСНАТ ТСНГ	5	21804	1.38	60	1.0	0.75	110
10#4		21812	1.38	62	1.0	0.75	100
-50 0 50							

TC pos angle (clockwise left to right)

F. Jaulmes et al 2022 PPCF 64 125001

Experimental measurements of NBI duct heating in COMPASS

Strong localization along the duct suggests the influence of magnetic field dominates: fast ion losses dominate the power losses!

-100

			B_t	$\mathcal{E}_{ ext{inj}}$	$P_{\rm grid}$	$P_{\rm eff_{NBI}}$	Δt
ΔT [C]			[T]	[keV]	[MW]	[MW]	[ms]
	- 40	21759	1.5	53	0.8	0.63	130
		21760	1.5	58	1.0	0.77	230
	- 35	21761	1.5	58	1.0	0.77	230
		21762	1.5	59	1.0	0.77	180
	- 30	21763	1.5	58	1.0	0.76	190
		21765	1.5	59	1.0	0.76	220
	25	21766	1.5	59	1.0	0.76	170
		21767	1.5	58	1.0	0.75	230
	- 20	21783	1.15	65	1.3	0.96	60
		21786	1.15	66	1.4	1.0	60
	- 15	21787	1.15	66	1.4	1.03	120
		21789	1.15	66	1.4	0.99	90
	10	21790	1.15	66	1.4	1.03	120
	10	21796	1.15	55	0.7	0.55	100
	_	21802	1.15	55	1.0	0.75	120
ТСНАТ ТСНГ	5	21804	1.38	60	1.0	0.75	110
10#4		21812	1.38	62	1.0	0.75	100
-50 0 50							

TC pos angle (clockwise left to right)

F. Jaulmes et al 2022 PPCF 64 125001

Modelling motions of fast ions inside the NBI duct

25.04.2023

NBIOIN THE COMPASS TOKAMAK

F. Jaulmes et al 2022 PPCF 64 125001

 \mathcal{P}_n

25.04.2023

NBIOIN THE COMPASS TOKAMAK

Trajectories of fast ions

