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Partial differential equations (PDEs)
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1st era - analytical theory and analytical solutions (mid 18th century)
○ partial differential equations (PDEs) become core of the physics
○ focused on describing world by PDEs, on analytical theory and analytical solutions of PDEs

○ 1746/7 - d’Alembert’s solution to 1D wave equation followed by many others
○ many solution methods: Fourier, Laplace transforms, Sturm-Liouville theory, Green’s functions, …
○ most focus on linear operators (tractable)

2nd era - computational approximations (mid 20th century)
○ finite difference, finite element, spectral techniques, …
○ rise of high-performance computing (HPC)
○ but solutions to real-world strongly nonlinear, complex, high-dimensional PDE systems often still very demanding

3rd era - machine learning and optimization methods - starting now!



● building surrogate models
○ replace classical simulation or experiment that transforms f: Inputs → Output

with a fast surrogate model f’: Inputs → Outputs

● solving inverse problems
○ solve PDE with known data given elsewhere than at initial or boundary conditions, i.e. f-1: Outputs → Inputs

○ e.g. Physics Informed Neural Networks (PINNs) or differentiable physics

● improving traditional numerical methods
○ in terms of speed and/or accuracy

● coarse-grained simulations
○ fast/inaccurate coarse-grained simulation + correction by a model or real data

● learning (simplified) governing equations from data or complex simulations
○ e.g. SINDy, PDE-FIND

● finding suitable coordinate systems for non-linear PDEs and reduced representations

● non-linear operator learning

● …

Examples of emerging techniques
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today we’ll very briefly 
touch these parts

for references see e.g. reviews: [1] https://physicsbaseddeeplearning.org [2] Brunton, Kutz (2023), [3] Ramsundar (2021)

https://physicsbaseddeeplearning.org
https://arxiv.org/pdf/2303.17078.pdf
https://arxiv.org/abs/2109.07573
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Today’s topics
- Python for scientific computing and data science
- Speed up your simulations with GPU
- Automatic differentiation of computations
- What are Artificial Neural Networks (NN)
- Differentiable physics - solving inverse problems
- Implicit representation of functions with NN
- Physics Informed Neural Networks - solving PDEs using NN



Choosing programming language
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Typical problem of scientific computing: solving (a system of) partial differential equations such as

Steps:
● decide on the methods that will be used to solve the problem

● decide which programming language to use

Most of the high-performance codes in the fusion community are written in C/C++/Fortran, but is it still the best way?

- :( complex, steep learning curve, slow to develop  - :) simple and rapid development, powerful feature-rich libraries
- :) realtime  - :( not suitable for hard real time
- :) fast (if you know what you are doing)  - :| typically (but not always) somewhat slower

+ some data “fixing” the solution

C/C++/Fortran/… high-level languages (e.g. Python)



Cost of a simulation
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- :( complex, steep learning curve, slow to develop  - :) simple and rapid development, powerful feature-rich libraries
- :) realtime  - :( not suitable for real time
- :) faster (if you know what you are doing)  - :| typically (but not always) somewhat slower

while it’s not easy to simplify the low-level languages, the performance gap is gradually being closed by dedicated python libraries and 
new high-level languages like Julia or Mojo that are specifically designed for high-performance computations  

C/C++/Fortran/… high-level languages (Python)

… and this (1), (3) at 
the same timewe need this (2) …

(1)                       (2)                                   (3)

often hidden / neglected
    ⇒ limits code usability, manpower costs, 
       introduces mistakes & wrong results

often: performance cost < development & usability cost

simulation cost = costdevelopment + costrun performance + costusage 

complexity

https://julialang.org/
https://www.modular.com/mojo


Python techniques to speed-up the code
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● vectorization (numpy, scipy, …)

● optimized algorithms and data structures (scipy, pandas, xarray, NetworkX, JAX, …)

● just-in-time (JIT) compilation (numba, JAX, …)

● parallelization (Dask, JAX, …)

● hardware acceleration with GPU/TPU (JAX, PyTorch, CuPy, …)

● distributed computations (Dask, JAX, Apache Spark, …)

● use Cython, Julia, Mojo, …

● write C/Fortran extension or use existing C/Fortran code under the hood

still high-level programming
+
large ecosystem - no need to DIY
(faster, safer)

different high-level language

use low-level language when you need it,
do the rest at high-level

Thanks to all this, Python is a language #1 for data science (incl. machine learning and AI) 
and its significance in technical computations steadily grows



Python techniques to speed-up the code
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● vectorization (numpy, scipy, …)

● optimized algorithms and data structures (scipy, pandas, xarray, NetworkX, JAX, …)

● just-in-time (JIT) compilation (numba, JAX, …)

● parallelization (Dask, JAX, …)

● hardware acceleration with GPU/TPU (JAX, PyTorch, CuPy, …)

● distributed computations (Dask, JAX, Apache Spark, …)

● use Cython, Julia, Mojo, …

● write C/Fortran extension or use existing C/Fortran code under the hood

still high-level programming
+
large ecosystem - no need to DIY
(faster, safer)

different high-level language

use low-level language when you need it,
do the rest at high-level

Thanks to all this, Python is a language #1 for data science (incl. machine learning and AI) 
and its significance in technical computations steadily grows

see next slides



Just-in-time compilation
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● C/C++/Fortran are compiled languages 
- explicit compilation step to machine code run ahead of execution
- compilation to machine code includes optimizations that boost performance in general + for a specific hardware target
- statically typed → optimization ahead of time often possible

● Python is an interpreted language 
- code (converted to bytecode) executed by python interpreter at runtime using Python Virtual Machine; line by line - slow
- dynamically typed → optimizations often not possible

● Just-in-time (JIT) compilation - a golden middle way
- used by interpreted languages

- block of code (e.g. function) is compiled to machine code at runtime at the time of first use

- run-time overhead during the first execution of the code (x caching), but then performance on par with compiled languages
- the input types and data shapes are known at runtime → performance optimization possible

code compile run
compiled

code interpret 
line 1

interpret 
line 2

…

code compile 
f(int, int)

run 
f(int, int)

run 
f(int, int)

compile 
f(int, float)

run 
f(int, float) …



JIT in Python (an example)
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JAX
● developed by Google
● numpy-like interface + re-implementation of many numerical algorithms from scipy 
● growing ecosystem of numerical and ML libraries
● based on TensorFlow’s XLA (Accelerated Linear Algebra) compiler 
● hardware acceleration (GPU/TPU) out of the box
● automatic differentiation capabilities

● JAX has some specifics (e.g. specific treatment of conditions and loops), but in general as simple as:

# JAX

import jax

@jax.jit

def central_difference(f):

   return (f[2:, :] - f[:-2, :]) / 2

# numpy

def central_difference(f):

   return  (f[2:, :] - f[:-2, :]) / 2

optimize and run 
at GPU/TPU (if 

available)



JIT speed-up
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100x speed-up w/ GPU at the cost of a single line of code! 😍

GPUs can easily run out of memory for large arrays 😧

GPU may have overhead ⇒ pays-off only for larger arrays

would 32-bit precision be sufficient for your application?

JIT can be comparable to C++ code

Note: this is a simple example, different problems may scale somewhat differently

inefficient number of OMP threads in C++

current WIP project at IPP (J. Seidl, P. Macha): 
porting fluid plasma turbulence models to GPU w/ JAX

💥



Automatic differentiation (AD)
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AD is a technique for computing function derivatives efficiently and accurately (no discretization) by applying 

the chain rule:    ∂(g ∘ f)/∂x|x = ∂g / ∂f|f(x)  *  ∂f / ∂x|x

AD works on functions that are (arbitrarily deep) composition of functions with known derivatives, e.g.: 

(or its generalisation for multivariate functions)

∂w5/∂xk = ∂(w4 + w3)/∂xk = ∂w4/∂xk + ∂w3/∂xk

∂w4/∂xk = ∂sin(x1)/∂xk = cos(x1) ∂x1/∂xk ∂w3/∂xk =∂(x1 * x2)/∂xk= x1 ∂x2/∂xk + x2 ∂x1/∂xk

∂f/∂xk = ∂w5 /∂xk AD represents function as a call-graph of 
elementary functions whose derivatives 
(Jacobians) are analytically known

sin(x1) + x1 * x2
 



AD modes
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- # multiplications:  |y|∙|a|∙|b| + |y|∙|b|∙|x|
- backward mode better when |x| > |y| (# inputs > # outputs)

- 2 passes: forward (function values) & backward (gradients)
⇒ memory intensive

Ex: optimization; neural networks
- many features on input (e.g. image pixels; x > 1) and only scalar 

loss (y=1) at output

 forward mode         reverse mode

- # multiplications: |x|∙|a|∙ |b| + |x|∙|b|∙|y|                                    
- forward mode better when |y| > |x|  (# outputs > # inputs)

- single forward pass evaluating function values & gradients

- Ex: sensitivity analysis of a simulation
   - few simulation input parameters, many outputs on large grid

equation images taken from stackexchange 

multiplication of Jacobians

Jacobian matrix sizes:

https://math.stackexchange.com/questions/2195377/reverse-mode-differentiation-vs-forward-mode-differentiation-where-are-the-be


Automatic differentiation in SOLPS-ITER
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[Carli (2022)]

● SOLPS = workhorse of tokamak edge transport modelling
- complicated long-running code (days-weeks)
- lots of free input parameters
- radial transport described by diffusion coefficients (free par.)

● AD: optimization of diffusion coefficients 
to match exp. profiles or simplified turbulent model

3000 SOLPS-ITER steps L δD∂L/∂D

AD through 
SOLPS-ITER

exp.data
SOLPS
SOLPS uncertainty

fit to exp ne profile at midplaneloss L: weighted MSE of discrepancy from exp data

model-exp 
discrepancy

update value 
of D

let the simulation converge

https://onlinelibrary.wiley.com/doi/abs/10.1002/ctpp.202100184


Differentiable Numerical Simulations
(Differentiable Physics)
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differentiable physics: differentiable phys. models and methods that can compute gradients of outputs wrt inputs and parameters



Neural networks (NN)
Feedforward (FF) Neural Network: y = σi( Wi ∙ σi-1 (Wi-1 ∙ σi-2 ( … ∙ σ1(W1 ∙ x + b1)...)))
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x … input feature vector
y … network output
Wi … weight matrix (learnable parameters!)
σi … nonlinear activation function

- e.g. ReLU(x) = (x if x > 0 else 0)
tanh(x)
…

Universal approximation theorem: 
any continuous function can be approximated arbitrarily well by a neural network with at least 1 hidden layer and finite number of weights

Automatic differentiation can be used to compute ∂y/∂Wi and ∂y/∂x



Gradient Descent
Feedforward (FF) Neural Network fNN(x, W): y = σi( Wi ∙ σi-1 (Wi-1 ∙ σi-1 ( … ∙ σ1(W1 ∙ x)...)))

Data {(xk, yk)} : values of an unknown function f(x) sampled at points xk

Task: Find values of the weights Wi such that fNN(x; W) will represent the unknown function f(x) as good as possible
 as good as possible ←→ value of a scalar loss function L(fNN(xk; W), yk) is minimal

Method: (Stochastic) Gradient Descent
1. Evaluate yk = fNN(xk) at some or all xk

2. Compute ∂L / ∂ wij using reverse mode of AD (backpropagation)

3. Update values of wij in the direction of best improvement 
wij → wij - learning_rate ∙ ∂L / ∂ wij 

4. Repeat until L is sufficiently small or stops decreasing
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Convolutional NN (CNN)
Replace matrix multiplication in FF NN by discrete convolution (applied on n-dimensional data)
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application 
of the kernel

y = σi( ki ∗ σi-1 (ki-1 ∗ σi-1 ( … ∗ σ1(k1 ∗ x)...)))

variant of NN suitable for gridded data with correlated neighbors
- images, simulation grids, …

convolution easily parallelizable ⇒ fast at GPU

kernel ki w/ 
learnable 
weights new value
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Example 1 - hybrid method for solving Poisson equation

Δφ = ω

Poisson equation is a key equation in most high-temperature plasma turbulence simulations. 



Poisson equation - classical approach
Poisson equation: Δφ = ω
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Laplace stencil:

∂2/∂y2

∂2/∂x2

invert

and φ = D-1ω

direct inversion typically done for small D, iterative methods for large D
- LU decomposition, Cholesky decomposition, conjugate gradient (CG), …

-D =

or use iterative solver:

known

… φ11
… φ12
… φ13
…
…
… φnn-2
… φnn-1
… φnn

CGstep(D, ωij, φ
0

ij)

φ0
ij

φij

… CGstep(D, ωij, φ
k
ij)

to be 
computed

guess or 
all zeros

classical approach: 



Poisson equation as an optimization problem
Poisson equation: Δφ = ω
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Laplace stencil:

∂2/∂y2

∂2/∂x2

Reformulate as an optimization problem (in this form inefficient!)

1. randomly initialize solution φ
2. apply convolution with Laplace stencil on φ

→ find ω to which the current φ corresponds

3. compute scalar loss: L = ∑ij(ω’ij - ωij)
2 + α ∑BC(φ’BC - φBC)2

4. compute gradients ∂L/∂φ’ij

5. optimize the values of φ’ij, e.g by gradient descent, to find φ’ij that will minimize L:  φ’ij → φ’ij - learning_rate ∙ ∂L/∂φ’ij
 

6. go to (2) and repeat

φ’ ω’ φ’ ω’
kernel =
Δ stencil

kernel =
Δ stencil



Poisson equation as an optimization problem
Poisson equation: Δφ = ω
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Laplace stencil:

∂2/∂y2

∂2/∂x2

Reformulate as an optimization problem (in this form inefficient!)

L = ∑ij(ω’ij - ωij)
2 + α ∑BC(φ’BC - φBC)

reconstruction boundary/initial 
conditions on φ

finds only single solution to single ω at a time; GD optimization inefficient

φij

Rconv(φij; ωij)

∂R/∂φδφij

lossloss

ω’ij



Poisson equation - CNN model of D-1

Poisson equation: Δφ = ω
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Laplace stencil:

∂2/∂y2

∂2/∂x2

Find a CNN model of D-1:

ω

fCNN                          ; θ

φ’

convolution w/
Laplace stencil

ω’

L = ∑ij(ω’ij - ωij)
2 + α ∑BC(φ’BC - φBC)

now optimization of parameters θ of the model fCNN using backpropagation (AD)

finds a transformation fCNN(ω, θ), representing Δ-1, i.e. the whole class of solutions

new step (D-1) compute gradients as before…

;

D-1

fCNN(ωij; θ)

ωij φ’ij

supervised
φ’kl =  φknown,kl

∂f/∂θδθ

Rconv(φij; ωij)

∂R/∂φ

residual
R = 0

+

ω’ij



Initialize classical solver with CNN model of D-1

Poisson equation - CNN model of D-1 + iterative solver
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Poisson equation: Δφ = ω

1. train fCNN as a proxy of D-1 (see prev. slide)

ω

fCNN                          ; θ

φ’

- good initial guess speeds up convergence of the solver
2. use φ’ as an initial state for a CG iterative solver computing ω = D-1φ

Note: fCNN can be trained separately or together with the attached solver
why to use the method: performance increase

fCNN(ωij; θ)

ωij φ’ij

supervised
φ’’kl =  
φknown,kl

∂f/∂θδθ

R(φij; ωij)

∂R/∂φ

residual
R = 0

CGstep CGstep…

φ’’ij

∂CG/∂φ +∂CG/∂φ…

ω’ij

hybrid method combining NN and classical solver



Poisson equation - model of D-1 + iterative solver
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Poisson equation: Δφ = ω

Δφ = ∇p;    fCNN → CG solver

w/o fCNN

fCNN 
variants

[ https://github.com/tum-pbs/CG-Solver-in-the-Loop ]

zero guess → fCNN: ~60 iterations (30%) less to reach given precision

Initialize classical solver with CNN model of D-1

why to use the method: performance increase

https://github.com/tum-pbs/CG-Solver-in-the-Loop


Poisson equation - CNN model of D-1
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Example fCNN architecture for Δp = ∇u in 3D:
[Tompson 2017]

U-net architecture allows long-distance interactions

fine-scales

large-scales

mid-scales

http://proceedings.mlr.press/v70/tompson17a/tompson17a.pdf


ω’ij

Graphical representation
1. classical iterative solver:
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2. direct optimization:

3. NN model of D-1 4. hybrid method - NN model of D-1 + iterative optimizer

differentiable operator PDE residual neural network

ωij

meshed 
quantitygradients

fCNN(ωij; θ)

ωij φ’ij

supervised
φ’kl =  φknown,kl

∂f/∂θδθ

Rconv(φij; ωij)

∂R/∂φ

residual
R = 0

+

supervised
φ’kl =  φknown,kl

D-1
D-1

CGstep(D, ωij, φ
0

ij)

φ0
ij

φij

… CGstep(D, ωij, φ
k
ij)

fCNN(ωij; θ)

ωij φ’ij

supervised
φ’’kl =  
φknown,kl

∂f/∂θδθ

R(φij; ωij)

∂R/∂φ

residual
R = 0

CGstep CGstep…

φ’’ij

∂CG/∂φ +∂CG/∂φ…

ω’ij

φij

Rconv(φij; ωij)

∂R/∂φδφij

residual
R = 0

ω’ij
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Example 2 - flexible method for solving Poisson equation

Δφ = ω

Poisson equation is a key equation in most high-temperature plasma turbulence simulations. 



Implicit representation of data by NN
● NNs are typically used as models of data transforming functions
● but NN can be used also as a model of the data itselves / data generating func (implicit representation of the data)

○ implicit = representation of data structure and relations is hidden in the parameters of the NN

○ simplest case: no PDE, just known data

○ PINN: similar principle, but the NN output is also constrained by the PDE

29

spatial 
coordinates

image color 
at point (x, y) fitting NN 

weights to 
represent 
the data

random initialization 50 epochs 500 epochs

…

(check e.g. this notebook or [Sitzman 2020])

known data

https://colab.research.google.com/github/vsitzmann/siren/blob/master/explore_siren.ipynb
https://www.vincentsitzmann.com/siren/


Poisson equation - Physics Informed Neural Network (PINN)
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Find a NN for φ that solves the Poisson equation:

similar to fitting the image (known values of φ at BC), but now adding 
constraints on the output, given by PDE

Poisson equation: Δφ = ω

mesh-free Cinf solution with exact derivatives to single ω at a time; simple use, but often slow/poor convergence

a∑BC(φ’BC - φBC)2

∑i∂
2f(xi, yi; θ)/∂x2

∑i∂
2f(xi, yi; θ)/∂y2

Loss = residual of PDE + a ∙ distance from data

Q: think what happens when the data are 
not consistent with the PDE and what is the 
role of factor a 

f(x; θ)x

∂f/∂θδθ

∂nf/∂xi
m

∂(∂nf/∂xi
m)/∂θ

residual

+

φ

supervised (BC, IC, …)
φ = φknown

∂(∂nf/∂xi
m)/∂θ

∂nf/∂xi
m

now exact derivatives mesh-free ⇒ anywhere

[Raissi 2019]

https://www.sciencedirect.com/science/article/pii/S0021999118307125
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Example 3 - flexible method for solving time-dependent problem



Time-dependent PDE - PINN
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Burgers equation: ut + uux - βuxx = 0

∑i∂f(xi, yi; θ)/∂t

∑if∂f/∂x - β∂2f/∂x2

a ∑data(ud’ - ud)2

handles shocks out of the box

this is a forward problem, but the known points 
can be anywhere (inverse problem)

Full PDE solution implicitly represented by a differentiable NN

[Raissi (2019)]

why to use the method: easy to use, flexiblewith a good library, basically all you need to do is just to define the PDE to solve:

def loss(x, u, params):

    pde = diff(u, ‘t’) + u * diff(u, ‘x’) - params['beta'] * diff(u, (‘x’, ‘x’))

    return pde(x) ** 2                                                         .

combining or extending PDEs is simple

https://www.sciencedirect.com/science/article/pii/S0021999118307125


Time-dependent PDE - PINN
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Burgers equation: ut + uux - βuxx = 0

∑i∂f(xi, yi; θ)/∂t

∑if∂f/∂x - β∂2f/∂x2

a ∑data(ud’ - ud)2

Assume the data are measured at different times → looking for value of β that is consistent with the data

[Raissi (2019)]

why to use the method: easy to use, flexible

modification: identification of parameter β from data

β

just treat β as an optimized parameter, i.e.
compute ∂L/∂β and optimize jointly with θ

x
x
x
x
x
x
x
x

extra data that fix 
value of β

https://www.sciencedirect.com/science/article/pii/S0021999118307125
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Example 4 - hybrid method for solving time-dependent problem



Time-dependent PDE - standard numerical schemes
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PDE: u(t, x) = N[u(t, x); θPDE]

Standard forward solve: iterative application of an operator P that moves the solution in time u(t, x) → u(t + dt, x)

u(t, x) = P∘P∘P∘P∘P∘P….∘P(u0(x); θPDE)

E.g.: Euler scheme:  P: u(t, x; θPDE) → u(t+dt, x; θPDE) = u(t, x; θPDE) + dt ∙ N[u(t, x); θPDE]   

With AD, the time-shift operator can be made differentiable to (back) propagate gradients through temporal evolution

● ∂(u(t1) - udata(t1))
2/∂ u(t2) allows finding solution u(t2) in any time t2 

● ∂(u(t1) - udata(t1))
2/∂ θPDE allows identification of the value of unknown PDE parameters θPDE from the measured data

[Raissi (2019)]

https://www.sciencedirect.com/science/article/pii/S0021999118307125


Time-dependent PDE - inverse problem
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Burgers equation: ut + uux - βuxx = 0

Task: from known data at arbitrary time uknown(t1, x) infer initial conditions in time t0 that generated them:

[Raissi (2019)]

Note: the larger the |t1 - t0|, the harder the optimization (vanishing gradients)

random → u0

while L large:
    ut = P∘P∘…∘P(u0)

    L = ∑(ut-uknown)2

    u0 → u0 - lr ∙ ∂L /∂u0

u0

supervised
u’(t)kl =  u(t),kl

δu0

P(u(0)) P(u(t-dt))…

u’(t)

∂P/∂u…∂P/∂u

https://www.sciencedirect.com/science/article/pii/S0021999118307125


Time-dependent PDE - mesh free
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Burgers equation: ut + uux - βuxx = 0

Task: from known data uknown(t1, x) infer initial conditions in time t0 that generated them:

[Raissi (2019)]

Note: the larger the |t1 - t0|, the harder the optimization (vanishing gradients)

random → u0
random → θ

while L large:
    ut = P∘P∘…∘P(fNN(x; θ))

    L = ∑(ut-uknown)2

    u0 → u0 - lr ∙ ∂L /∂u0
    θ → θ - lr ∙ ∂L /∂θ

modification: generate u0 by mesh-free NN

u0

supervised
u’(t)kl =  u(t),kl

δθ

P(u(0)) P(u(t-dt))…

u’(t)

+∂P/∂u…∂P/∂u

f(x; θ)x u0(x)

eval at 
mesh

∂f/∂θ

https://www.sciencedirect.com/science/article/pii/S0021999118307125


Time-dependent PDE
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Burgers equation: ut + uux - βuxx = 0

Task: from known data uknown(t1, x) infer initial conditions in time t0 that generated them for any plausible value of β:

[Raissi (2019)]

Note: the larger the |t1 - t0|, the harder the optimization (vanishing gradients)

random → u0
random → θ

while L large:
    random → β
    ut = P∘P∘…∘P(fNN(x, β; θ))

    L = ∑(ut-uknown)2

    u0 → u0 - lr ∙ ∂L /∂u0
    θ → θ - lr ∙ ∂L /∂θ

modification: find dependence of u0 on β

u0

supervised
u’(t)kl =  u(t),kl

δθ

P(u(0), β) P(u(t-dt), β)…

u’(t)

+∂P/∂u…

f(x, β; θ)
x
β u0(x)

eval at 
mesh

∂P/∂u∂f/∂θ

https://www.sciencedirect.com/science/article/pii/S0021999118307125


Hybrid forward solver
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PDE: u(t, x) = N[u(t, x); θ]

Task: improve accuracy of a standard integration scheme

modification: alternate time shift operator and solution correction by NN

u0

δθ, (δu0)

P(u(0)) f(u(t-dt); θ)…

u(k∙dt)

∂f/∂θ, ∂f/∂u…∂P/∂u

u’(dt)

f(u(dt); θ)

u(dt)

P(u(dt))

u’(2dt)

f(u(2dt);θ)

u(2dt)

loss

∂f/∂θ, ∂f/∂u∂P/∂u∂f/∂θ, ∂f/∂u

● Each time step is predicted by classical method and corrected (e.g. conservation laws) by NN

● Since NN acts as a correction of u’, often better: u = u’ + fNN(u’, θ)
● f is a single NN receiving feedback from multiple time steps why to use the method: improved precision

loss loss



Coarse-grained simulations
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[Bjoern (2022)]

● fCNN correction step can learn to implicitly up-sample the solution 
⇒ the main simulation can run spatially or temporarily under-resolved ⇒ speedup

● how: perform high-resolution simulation (DNS) + train hybrid solver on a coarse-grained grid / approximate equations
■ use supervised L2 loss against the high-resolution ground truth  

+ additional losses capturing differences in important quantities (energy spectrum, strain, mean flow, …)
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https://arxiv.org/abs/2202.06988


Summary
● Differentiable physics can improve standard methods of solving PDEs in terms of accuracy, speed and flexibility

○ slowly penetrating into high-temperature fusion plasma simulations
○ many schemes and applications how to combine NN and classical methods are possible, we touched just a few:

 

●

●  

●
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fCNN(ωij; θ)ωij φ’ij

∂f/∂θδθ

R(φij; ωij)

∂R/∂φ

CGstep CGstep
… φ’’ij

∂CG/∂φ +∂CG/∂φ…

ω’ij

NN model of D-1 + iterative optimizer for speed-up

f(x; θ)x

∂f/∂θδθ

∂nf/∂xi
m

∂(∂nf/∂xi
m)/∂θ+

φ

∂(∂nf/∂xi
m)/∂θ

∂nf/∂xi
m

PINN for simplicity, flexibility and getting mesh-free, but typically slow

u0

δθ, 
(δu0)

P(u(0)) f(u(t-dt); θ)… u(k∙dt)

∂f/∂θ…∂P/∂u

u’(dt) f(u(dt); θ) u(dt) P(u(dt)) u’(2dt) f(u(2dt);θ) u(2dt)

∂f/∂θ∂P/∂u∂f/∂θ

hybrid solver for precision and 
speed-up (coarse-graining)+ +



Hybrid operators
Pros:

- leverages and improves existing efficient numerical 
solvers and discretizations

- efficient

- good control of solution precision

Cons:
- more complicated implementation

- needs discretization

- needs deeper understanding of the solved problem
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Physics Informed Neural Networks
Pros:

- simple flexible formulation, ease of use
- simple to combine multiple PDEs

(e.g. grad-shafranov equilibrium + braginskii 
transport in SOL)

- exact analytical derivatives via AD
- mesh-free

Cons:
- expensive evaluation
- incompatible with existing numerical methods
- poor control of solution precision 

- depends on the capacity of NN to 
represent it and proper convergence



Backup slides
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Poisson equation - spline solution
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Find a spline representation of φ that solves the Poisson equation:

spline Sk(x; θ): piecewise n-D polynomial with parametric continuity Ck-1

AD can compute exact spline derivatives

Poisson equation: Δφ = ω

φ = Sk(x, y; θrandom)

1. randomly initialize spline parameters θ 2. AD: 2nd derivatives at random points

∂2Sk(x, y; θ)/∂x2; 
∂2Sk(x, y; θ)/∂y2

3. Exact residual loss

L(x, y, θ) = ∑[∂2Sk(x, y; θ)/∂x2 +  ∂2Sk(x, y; θ)/∂y2 - ω(x, y)]
+ α ∑BC(φ’BC - φBC)

4. optimize, e.g by gradient descent, to find θ that will minimize L, i.e. fit the spline to the PDE

finds single Ck-1 continuous solution with exact derivatives to single ω at a time 

Sk(x; θ)x

∂f/∂θδθ

∂nf/∂xi
m

∂(∂nf/∂xi
m)/∂θ

residual
R = 0

+

φ

supervised (BC, IC, …)
φ = φknown

∂(∂nf/∂xi
m)/∂θ

∂nf/∂xi
m

φij

Rconv(φij; ωij)

∂R/∂φδφij

residual
ω’ij

exact 
derivatives

(typically not used but may help with understanding the principle of Physics Informed Neural Networks)


