# MC modelling used in Plasma Edge Modelling 

D. Tskhakaya<br>Institute of Plasma Physics of the Czech Academy of Sciences, Prague, Czech Republic

## Coulomb collisions in PIC codes

## Motivation

1. Classical PIC simulates only macro fields and neglects particle collisions.
2. Inside grid cells the interaction between particles deviates from the Coulomb law

PIC

$$
\left(\frac{\partial}{\partial t}+\vec{V} \frac{\partial}{\partial \vec{r}}+\frac{\vec{F}}{m} \frac{\partial}{\partial \vec{V}}\right) f(\vec{r}, \vec{V}, t) \approx 0
$$

We need $\left(\frac{\partial}{\partial t}+\vec{V} \frac{\partial}{\partial \vec{r}}+\frac{\vec{F}}{m} \frac{\partial}{\partial \vec{V}}\right) f(\vec{r}, \vec{V}, t)=S t$
Reminder $\quad v_{\text {Coulumb }} \sim \frac{n}{T^{3 / 2}}$


Interaction force between two particles inside the grid cell

## :\% IPP

## Coulomb collision models

## Linear model [2]

## Nonlinear model

## Maxwell-distribution

 Chandrasekhar coefficients Force acting on particleCalculation of Rothembluth potentials [3] Force acting on parificle

Requires extremely large number of particles

Binary collision model [4]

1. Choosing colliding pares
2. Colliding the particles


Binary collisions conserving momentum and energy

## Binary collision model

Choosing of colliding pares
1.


3a.


Particle sorting
$\Delta r_{\text {PIC }} \sim \lambda_{\text {Debye }}$

All particles are collided too expensive
$\downarrow$
Cumulative binary collision operator [5] applicable for relatively uniform plasmas

## Questions?



## General principle of MC model

Deterministic model of particle motion

$$
\begin{aligned}
& \frac{d}{d t} \vec{r}_{i}=\vec{V}_{i}, \quad \frac{d}{d t} \vec{V}_{i}=\frac{1}{m} \vec{F}_{i}, \\
& \vec{F}=\vec{F}_{a v . \text { field }}+\vec{F}_{\text {collisions }}
\end{aligned}
$$

Deterministic + stochastic model of particle motion

$$
\begin{aligned}
& \frac{d}{d t} \vec{r}_{i}=\vec{V}_{i}, \quad \frac{d}{d t} \vec{V}_{i}^{\prime}=\frac{1}{m} \vec{F}_{a v . f i e l d}^{i} \\
& \vec{V}_{i}{ }^{\prime} \stackrel{\begin{array}{c}
\text { Stochastic, } \\
\text { colision }
\end{array}}{\rightarrow} \vec{V}_{i}
\end{aligned}
$$

Collision event
$P(t)$
$P(t)=1-\exp (-\nu t)$
$v=n u \sigma(u)$

$\binom{\vec{V}_{1}}{\vec{V}_{2}} \Rightarrow\binom{\vec{V}_{1}^{\prime}}{\vec{V}_{2}^{\prime}} \quad \begin{aligned} & \text { Equations conserving } \\ & \text { momentum and energy }\end{aligned}$

Different ways of choosing the collision partners*

1. Counter based models
2. Non-counter based models: direct simulation MC (DSMC)

## Counter based models

$$
\begin{aligned}
& P(t)=1-\exp (-v t) \\
& v=n u \sigma(u)
\end{aligned}
$$

1. Calculation of average time between collisions

$$
t_{c o l}=-\frac{\ln R}{v}, \quad R \in[0,1]
$$

For each particle one has to calculate and curry an additional parameter $t_{\text {col }}$

Too expensive!
2. Colliding particle after $t_{\text {col }}$ time.


## Null collision method [6]

1. Calculation of shortest possible collision time

$$
t_{c o l}^{\min }=-\frac{\ln R}{v_{\max }}
$$

$t_{c o l}^{\min }$ is same for any particle of the given type - less expensive!
2. Analyzing for collision after $t_{\text {col }}^{\text {min }}$
3. Colliding these particles if $\quad R^{\prime} \leq \frac{P}{P_{\max }}=\frac{1-\exp (-v t)}{1-\exp \left(-v_{\max } t\right)} \approx \frac{v}{v_{\max }}$

What if different collision types can take place?
[6] H.R. Skullerud, J. Phys. D., 1, 1968

## Different collision types

## Collision types ${ }^{[7]}$ <br> $\mathrm{N}_{\text {collided }} \rightarrow \mathrm{M}_{\text {products }}$

- $2 \rightarrow 2$ - elastic, excitation, charge-exchange, ...
- $2 \rightarrow 1$ - recombination (radiative)

$$
\text { If } R^{\prime} \leq \frac{v_{1}}{v_{\max }} \text {, then collision } 1 \text { takes place }
$$

- $2 \rightarrow 3$ - dissociation, ionization
- $2 \rightarrow 4$ - double ionization, dissociative ionization
- $3 \rightarrow 2$ - recombination (three-body)

$$
t_{c o l}^{\min }=-\frac{\ln R}{v_{\max }}, \quad v=\sum v_{i}
$$

$$
\text { If } R^{\prime} \leq \frac{v_{1}+v_{2}}{v_{\max }} \text {, then collision } 2 \text { takes place }
$$

Frequently used in SOL simulating Linear MC codes (e.g. EIRENE)

Linear MC codes: target particles are not followed, but represent a background with given density, temperature and EDF

## EIRENE basics

EIRENE-NGM iterative scheme with the CFD codes [8]: NGM - Neutral Gas Module; CFD - computational fluid dynamics; CRM - collisional-radiative model

[8] https://www.eirene.de/Basics/basics.html

## Questions?

COMPASS

## Non-counter based models (DSMC)

## Particles are sorted into the grid cells


> Parameters in different cells are statistically independent
ii. Calculation of aftercollision velocities

## Binary collision model


particle number, energy and momentum are conserved

Ccomenss

Charge exchange: $\quad D+D^{+} \rightarrow D^{+}+D \quad\binom{\vec{V}_{1}}{\vec{V}_{2}} \Rightarrow\binom{\vec{V}_{2}}{\vec{V}_{1}} \quad \sigma(E)$

## Elastic:

$$
e+D \rightarrow e+D
$$

$$
\vec{U}=\vec{V}_{1}-\vec{V}_{2} \quad \vec{U}^{\prime}=\hat{\mathbf{O}}(\theta) \vec{U}
$$

$$
\vec{U}^{\prime} F\binom{\vec{V}_{1}}{\vec{V}_{2}} \Rightarrow\binom{\vec{V}_{1}^{\prime}}{\vec{V}_{2}^{\prime}} \quad \sigma(E, \theta)
$$

Excitation:

$$
e+D \rightarrow e+D^{(n)}
$$

$$
\vec{U}=\vec{V}_{1}-\vec{V}_{2} \quad \vec{U}^{\prime}=\hat{\mathbf{O}}(\theta) \vec{U}
$$

$$
\vec{V}_{1} \rightarrow \vec{V}_{1}^{\prime}=\vec{V}_{1}=\sqrt{1-\frac{E_{t h}}{E_{0}}}
$$

Ionization:

$$
e+D \rightarrow 2 e+D^{+} \quad \sigma\left(E, \theta, E_{1}, \theta_{1}\right)
$$

$$
\vec{U}^{\prime} F\binom{\vec{V}_{1}^{\prime}}{\vec{V}_{2}} \Rightarrow\binom{\vec{V}_{1}{ }^{\prime}}{\vec{V}_{2}^{\prime}} \quad \sigma(E, \theta, n)
$$

Double ionization: $\quad e+N e \rightarrow 3 e+N e_{n}^{++} \quad \sigma\left(E, \theta, E_{1}, \theta_{1}, E_{2}, \theta_{2}, n\right)$

