IPP INSTITUTE OF PLASMA PHYSICS OF THE CZECH ACADEMY OF SCIENCES

Introduction to different numerical methods used in Magnetic Confinement Fusion Plasmas

D. Tskhakaya

Institute of Plasma Physics of the Czech Academy of Sciences, Prague, Czech Republic

Different methods for MC fusion plasma study

COMPASS INSTITUTE OF PLASMA PHYSICS ASCR

• (gyro-)Fluid

- Gyrokinetic
- Full kinetic
- Monte Carlo

Plasma core (> 1 keV, 1-100 cm, 10⁻³ – 1 s)

- MHD (transport/equilibrium)
- Gyrokinetic (GK)
- Runaway Electron transport

Plasma-surface interaction (< 1eV, nm, 10⁻¹⁴ s – 1 year)

- Monte Carlo (MC)
- Molecular dynamics
- Other methods for studying arcing, surface morphology, neutron irradiation damage,

Plasma heating (~MeV, 1 – 100 cm, $10^{-4} - 1$ s)

• NBI codes (MC)

. . .

 RF heating and current drive (MC, Maxw. S, RayT., GK)

Tskhakaya

- > Introduction
- Different models
 - Monte Carlo models for neutral particles

Questions

- Impurity transport codes
- Particle-in Cell (PIC codes)

Questions

• Drift- and Gyro-kinetic

Questions

• Fluid (static and turbulence)

Questions

- Plasma Magnetohydrodynamics (MHD) Questions
- ➢ On next lectures

Plasma wall interactions in MCFP

confined plasma

S. Brezinsek, 30th EFPW, 2023

SOL modelling

For each problem one has to answer the following quetions

- Which model is is applicable
- What are the limitations of this model

COMPASS SOL content and related physical processes

- Main ions (typically):
- H+, D+, T+
- Neutral particles recycled from PFC: H, D, T
- Low energy fusion products:
 He⁺ⁱ
- Intristic impurity:
- Seeded impurity:
- Dust particles:

W, C, F, O₂, ... (PFC material, "parasitic" leaks, ets)

SOL content

- Ne, Ar, N, ...
 - $1 \sim 100 \,\mu$

Main processes

- Parallel transport
- Classical cross-field transport: diffusion, drifts
- Anomalous transport: turbulent, intermittent transport (blobs, ELMs)
- Atomic and molecular processes (AM)
- Plasma-surface interactions (PSI)

 $\partial_{\parallel} \sim 0.01 \div 10^4 \quad m^{-1}$ $\partial_r \sim 10^2 \div 10^3 \quad m^{-1}$

The SOL is extremely anisotropic!

Next generation machines (DEMO and fusion reactors) boundary plasma can be unmagnetized

Tskhakaya

SOL models (i): kinetic codes

First principle model – kinetic equation

$$\left(\frac{\partial}{\partial t} + \vec{V}\frac{\partial}{\partial \vec{r}} + \frac{\vec{F}}{m}\frac{\partial}{\partial \vec{V}}\right)f\left(\vec{r},\vec{V},t\right) = St$$

Neutral particles \vec{F}

$$\vec{F} = 0, \quad St = St_B + St_{in}$$

$$\begin{split} St_{B} &= \int u\sigma \Big(f_{a} \left(\vec{V}_{a} \right) f_{b} \left(\vec{V}_{b} \right) - f_{a} \left(\vec{V}_{a} \right) f_{b} \left(\vec{V}_{b} \right) \Big) d\vec{V}_{a} d\vec{V}_{b} ,\\ St_{in} &= St_{in}^{+} - St_{in}^{-} \end{split}$$

Plasma and impurity particles

$$\vec{F} = e\left(\vec{E} + \left[\vec{V} \times \vec{B}\right]\right), \quad St = St_{FK} + St_{in} + S_{wall}$$
$$St_{FP}^{a} = -\frac{\partial}{\partial \vec{V}} \sum_{b} \vec{A}(f_{b}) f_{a}(\vec{r}, \vec{V}, t) + \frac{\partial^{2}}{\partial \vec{V} \partial \vec{V}} \sum_{b} \vec{D}(f_{b}) f_{a}(\vec{r}, \vec{V}, t)$$
$$S_{wall} = S_{wall}^{+} - S_{wall}^{-}$$

Dust particles

$$\vec{F} = e\left(\vec{E} + \left[\vec{V} \times \vec{B}\right]\right) + \vec{g} + \vec{R}, \quad St = St_{dust-plasma}$$

\vec{E} and \vec{B} from Maxwell's system, or Ohms law (for *E*)

$$\nabla E = \frac{1}{\varepsilon_0} \rho , \quad \nabla B = 0$$
$$\nabla \times E = -\frac{\partial B}{\partial t}$$
$$\nabla \times B = \mu_0 j + \mu_0 \varepsilon_0 \frac{\partial E}{\partial t}$$

$$\begin{split} \Omega_{e}\tau_{e} >> 1 \\ E = \frac{j_{\parallel}}{\sigma_{\parallel}} + \frac{j_{\perp}}{\sigma_{\perp}} - V \times B + \\ \frac{1}{en_{e}} \left(j \times B - \nabla p_{e} - 0.71n_{e} \nabla T_{e} \right) \end{split}$$

Direct simulation of particles

Particle-particle (PP) codes:

Number of operations to be performed on N particles scales as N^2 .

First simulations: *Buneman* 1959, *Dowson* 1962. Simulation of 10³ 1D particles with direct resolution of Coulomb's interaction.

Today¹ ~ 10⁸ particles (MD modelling)

Too expensive for plasma simulations

Other possible options

- Direct solution of the Boltzmann equation
- Particle codes with Monte carlo collisions

PP can be excluded for neutral, impurity and plasma particle modelling in MCFP

[1] Jia, et al., <u>10.1109/SC41405.2020.00009</u>

Kinetic solvers for neutral particles

$$\left(\frac{\partial}{\partial t} + \vec{V}\frac{\partial}{\partial \vec{r}}\right)f\left(\vec{r},\vec{V},t\right) = St_B + St_{in} + St_{wall}$$

$$\begin{split} St_h &= \int u \sigma_h \left(f\left(\vec{V_a}'\right) f\left(\vec{V_b}'\right) - f\left(\vec{V_a}\right) f\left(\vec{V_b}\right) \right) d\vec{V_a} d\vec{V_b} \ , \\ h &= B, \ in \ (inelastic) \end{split}$$

Monte Carlo particle codes

- 1. Move particles
- 2. Calculate collision probability $P(t) = 1 \exp(-\upsilon t), \quad \upsilon = nu\sigma(u)$

 $\dot{\vec{r}} = \vec{V}$

- 3. Collide particles, i.e. calculate after-collision velocities
- 4. Boundary conditions and sources (absorption, emission, ionization, etc.)

$$t, \vec{r}, \vec{V} \rightarrow t_i, \vec{r}_{\vec{j}}, \vec{V}_{\vec{k}}$$

100 meshes per dimention for r and V

Size of thew array of unknowns each time step 10^{2(D+V)}, for 3D3V 10¹²

Too large number!

KE solver (probably!) can be excluded for neutral and impurity particle modelling in MCFP

Collisions via Monte Carlo (MC) model

 $v = nu\sigma(u)$

i. Direct simulation MC

- 1. Calculation of average time between collisions
- 2. Colliding particle after t_{col} time.

ii. Null collision method

- 1. Calculation of shortest collision time $t_{col}^{\min} = -\frac{\ln R}{\nu_{\max}}$
- 2. Analyzing for collision after t_{col}^{\min}

Collision event

iii. Non-counter based model

1.Calculation of maximum number of collided particles

$$N_{\max} = N_{tot} P_{\max}(t) << N_{tot}$$

2.Analyzing for collision **only** *N*_{max} particles.

3.Colliding the selected particles.

(e.g. EIRENE)

Example of MC neutral particle codes

EIRENE¹

EIRENE mesh for AUG².

Atomic density profiles fro EIRENE².

Limitation (of any MC)

For acceptable statistics very large number of simulation particles is required → heavy simulations

Questions?

¹[http://www.eirene.de]

²[D. Reiter et al., FST 2005]

See the lecture 7 by F. Jaulmes/D. Tskhakaya

Tskhakaya

Impurity modelling

Two type of ions

- Main ions: H, D, T, He, ...
- Impurity ions, with much lower concentration
 Impurity ions can pollute and cool down core and SOL plasmas

Linear Monte Carlo (e.g. ERO)

Impurity particles interact with fluid/MHD plasma and wall Advantage: relatively fast, Maxwell-averaged rate coefficients , R= <uσ> Limitations: still slower than fluid models, depends on plasma background (to be provided)

Nonlinear Monte Carlo (PIC models, e.g. BIT-N)

models including nonlinear interactions of impurity, neutral and plasma particles Advantage: full kinetic treatment

Limitations: numerically very expensive, exact cross-sections are required

Can be used for entire tokamak modelling!

$$\frac{d\vec{r}}{dt} = \vec{V}$$
$$\frac{d\vec{V}}{dt} = \frac{e}{m} \left(\vec{E} + \vec{V} \times \vec{B}\right) + \frac{1}{m}\vec{F}$$

Tskhakaya

Example of MC impurity transport codes

Be radiation profiles from experiment and ERO modelling [J. Romazanov et al., Phys. Scr. 2017]

Main and impurity particle profiles in the JET divertor plasma from BIT1 simulations [D. Tskhakaya, WP-PWIE 2023]

Kinetic modelling of the SOL plasmas

$$\left(\frac{\partial}{\partial t} + \vec{V}\frac{\partial}{\partial \vec{r}} + \frac{e}{m}\left(\vec{E} + \left[\vec{V} \times \vec{B}\right]\right)\frac{\partial}{\partial \vec{V}}\right)f\left(\vec{r}, \vec{V}, t\right) = St_{FK} + St_{in} + St_{walk}$$

1D case $f_e(x, V, \mu)$, $\mu = V_{\parallel}/V$, analytic solution¹

 $\mu V \frac{\partial}{\partial x} f_e + \frac{e}{m_e} \frac{\partial \phi(x)}{\partial x} \left(\mu \frac{\partial}{\partial V} + \frac{1 - \mu^2}{V} \frac{\partial}{\partial \mu} \right) f_e = \frac{v_{ei}}{2} \frac{\partial}{\partial \mu} \left(1 - \mu^2 \right) \frac{\partial}{\partial \mu} f_e$

 $f_e(x,\mu,V) \approx f_M(x,V) + \mu \delta f(x,V), \quad \left| \delta f \right| \ll f_0$ $\delta f = \frac{-n_0}{v_{ei}(2\pi)^{3/2} V_T^2} \left(\frac{V}{V_T} \right)^4 \left(\frac{V^2}{2V_T^2} - 4 \right) \exp \left(-\frac{V^2}{2V_T^2} \right) \frac{1}{T_e} \frac{\partial T_e}{\partial x},$ \bigcup

$$T = T_e \int_0^\infty g_T(v) dv, \quad q_x = -\frac{2^7}{3\pi} \frac{n_0 V_T^2}{v_{ee}} \frac{\partial}{\partial x} T_e \int_0^\infty g_q(v) dv$$

[1] Chodura CPP 1992

PIC models of the plasma edge

$$\nabla E = \frac{1}{\varepsilon_0} \rho , \quad \nabla B = 0$$
$$\nabla \times E = -\frac{\partial B}{\partial t}$$
$$\nabla \times B = \mu_0 j + \mu_0 \varepsilon_0 \frac{\partial E}{\partial t}$$

Different weighting schemes

Tskhakaya

Examples of full PIC + MC codes

1D3V (BIT1) and 3D3V (BIT3) electrostatic PIC + Monte Carlo

✓ Physics based Poisson solver accurate, fast and highly scallable^[1]

See the lecture 3 by D. Tskhakaya

On full PIC + MC models

Advantage

- Fully kinetic, compromises
- Easy to treat plasma-wall interactions
- Massive parallelization is straightforward

Limitation

- Requires extremely heavy simulation
- Numerical oscillations can lead to incorrect results (and crashes). Energy conservation diagnostic should be used
- Hard to find necessary collision cross-sections

Questions?

Drift kinetic models

$$\left(\frac{\partial}{\partial t} + \vec{V}\frac{\partial}{\partial \vec{r}} + \frac{e}{m}\left(\vec{E} + \left[\vec{V}\times\vec{B}\right]\right)\frac{\partial}{\partial \vec{V}}\right)f_a\left(\vec{r},\vec{V},t\right) = St^a_{FK} + St^a_{in} + St^a_{walk}$$

$$\left(\frac{\partial}{\partial t} + \vec{V}_{\parallel} + \vec{V}_{ExB} \frac{\partial}{\partial \vec{r}} + \frac{e}{m} E_{\parallel} \frac{\partial}{\partial V_{\parallel}}\right) f_a(\vec{r}, V_{\parallel}, t) = St_{DK}^a$$

+ Field equations (e.g.): $\Delta \varphi = -\frac{\rho}{\varepsilon_0}, \ \vec{E} = -\frac{\partial}{\partial \vec{r}} \varphi$

Advantage

- faster than Gyro-kinetic,
- Nonlinear drift-Fokker-Planck collision operator exists
- Can be used for core and edge plasmas

Limitations:

- still requires heavy simulation,
- all finite gyro-radius effects are neglected

Gyro-kinetic models

$$\vec{r} = \vec{R} + \cos(\Omega t)\vec{\rho}, \qquad \rho = \frac{V_T}{\Omega} <<1,^{1,2}$$
$$\left(\frac{\partial}{\partial t} + \dot{\vec{R}}\frac{\partial}{\partial \vec{R}} + \dot{V}_{\parallel}\frac{\partial}{\partial V_{\parallel}}\right)f_a(\vec{R}, V_{\parallel}, \mu, t) = St^a_{FK, linear}$$

$$\dot{\vec{R}} = V_{\parallel}\vec{b} + \vec{\overline{E}} \times \vec{b} / B + \vec{b} \times \left(\frac{V_{\parallel}^2}{\Omega} \frac{\partial}{\partial R_{\parallel}} \vec{b} + \frac{\mu}{q} \frac{\partial}{\partial \vec{R}} \ln B\right)$$
$$\dot{V}_{\parallel} = \left(\frac{q}{m}\vec{E} - \mu \frac{\partial}{\partial \vec{R}}B\right) \cdot \left(\vec{b} + \frac{V_{\parallel}}{\Omega}\vec{b} \times \frac{\partial}{\partial R_{\parallel}}\vec{b}\right)$$
$$\mu = \frac{mV_{\perp}^2}{2B}, \quad \vec{\overline{E}} = \oint \vec{E}(\vec{r}) d\theta / 2\pi$$

[1] Lee, Phys. Fluids 1983[2] Dubin et al., Phys. Fluids, 1983.

+ Field equations (simplified):

$$\Delta \varphi - \frac{\chi}{\lambda_D^2} (\varphi - \tilde{\varphi}) = -\frac{1}{\varepsilon_0} (\tilde{n}_i - n_e)$$

$$\tilde{n}_i(\vec{r}) = \int f_i(\vec{R}) \delta(\vec{R} - \vec{r} + \rho) B d\vec{R} d\theta dV_{\parallel} d\mu \neq n_i(\vec{r})$$

$$\tilde{\varphi}(\vec{r}) \neq \varphi(\vec{r})$$

Tskhakaya

Gyro-kinetic models (ii)

Advantage

- golden compromise between the simulation speed and physics model
- finite gyro-radius effects are accounted
- Used for core and edge plasmas

Limitation

- requires heavy simulation,
- hard to implement collisions: majority use linear FP models, no interaction with other particles except ion + electron
- Could not "touch" the wall
- Limited resolution (i.e. Number of V meshes)

Gyro-kinetic simulation of ITER plasmas¹

Questions?

[1] Villard, et al., Plas. Phys. Cont. Fus. , 2013

Fluid models of the plasma edge

$$\begin{pmatrix} \frac{\partial}{\partial t} + \vec{V} \frac{\partial}{\partial \vec{r}} + \frac{e}{m} \left(\vec{E} + \left[\vec{V} \times \vec{B} \right] \right) \frac{\partial}{\partial \vec{V}} \right) f\left(\vec{r}, \vec{V}, t \right) = St_{FK} + St_{in} + St_{wall} + \text{field equations } (\vec{E}, \vec{B})$$

$$\times \int_{\vec{V}} \vec{V}^m d\vec{V}^{[1]} + \int_{\vec{V}} \vec{V}^m d\vec{V}^{[1]} + \int_{\vec{V}} \vec{V}^m d\vec{V}^{[1]} + \int_{\vec{V}} \vec{V}^m d\vec{V}^{[1]} + \int_{\vec{V}} \vec{V}^m d\vec{V}^m d\vec{V$$

[1] Braginskii, Rev. Plasma Phys., 1965

Examples of SOL fluid codes

SOLPS-ITER, EDGE2D, UEDGE, SOLEDGE, CORDIV, EMC3, SOLF1D

Particle conservation equation in SOLPS-ITER code

$$\frac{\partial n}{\partial t} + \frac{1}{\sqrt{g}} \frac{\partial}{\partial x} \left(\frac{\sqrt{g}}{h_x} n \left(b_x V_{\parallel} + b_z V_{\perp}^{(0)} \right) \right) + \frac{1}{\sqrt{g}} \frac{\partial}{\partial y} \left(\frac{\sqrt{g}}{h_y} n V_y^{(0)} \right) = S^n ,$$

$$V_{\perp}^{(0)} = V_{\perp}^{(a)} + V_{\perp}^{(in)} + V_{\perp}^{(vis)} + V_{\perp}^{(s)} + \widetilde{V}_{\perp}^{(dia)} ,$$

$$V_{y}^{(0)} = V_{y}^{(a)} + V_{y}^{(in)} + V_{y}^{(vis)} + V_{y}^{(s)} + \widetilde{V}_{y}^{(dia)} ,$$

$$\begin{split} \widetilde{V}_{\perp}^{(dia)} &= \frac{T_i B_z}{e b_z} \; \frac{\partial}{h_y \; \partial y} \left(\frac{1}{B^2} \right) \;, \\ \widetilde{V}_y^{(dia)} &= -\frac{T_i B_z}{e} \; \frac{\partial}{h_x \; \partial x} \left(\frac{1}{B^2} \right) \;. \end{split}$$

The $h_{x,y}$ and g define the metric coefficients of the curvilinear coordinate system

SOLPS-ITER grid for COMPASS tokamak [K. Hromasova, et al., EPS 2021]

"Static" edge plasma fluid codes

Advantage

- fast
- Can model complex geometries
- Requires rate coefficients for atomic and PSI physics

Limitation

- Kinetic effects are neglected, or added ad hoc
- Neutrals are usually treated via separate (kinetic) MC codes
- Hard to treat multy-ion plasmas (there are new developments Zhdanov's model)
- Slow time convergence

See the lecture 8 by I. Borodkina

Fluid turbulence codes

GBS –drift-reduced fluid code1

$$\begin{split} \frac{\partial n}{\partial t} &= -\frac{\rho_{\star}^{-1}}{B} [\phi, n] + \frac{2}{B} [C(p_{\theta}) - nC(\phi)] - \nabla_{\parallel} (nv_{\parallel \theta}) + S_{n} \\ \frac{\partial \nabla_{\perp}^{2} \phi}{\partial t} &= -\frac{\rho_{\star}^{-1}}{B} [\phi, \nabla_{\perp}^{2} \phi] - v_{\parallel i} \nabla_{\parallel} \nabla_{\perp}^{2} \phi + \frac{B^{2}}{n} \nabla_{\parallel} j_{\parallel} + \frac{2B}{n} C(p) \\ \frac{\partial v_{\parallel \theta}}{\partial t} &= -\frac{\rho_{\star}^{-1}}{B} [\phi, v_{\parallel \theta}] - v_{\parallel \theta} \nabla_{\parallel} v_{\parallel \theta} \\ &+ \frac{m_{i}}{m_{\theta}} \left(\nu \frac{j_{\parallel}}{n} + \nabla_{\parallel} \phi - \frac{1}{n} \nabla_{\parallel} p_{\theta} - 0.71 \nabla_{\parallel} T_{\theta} \right) + \frac{4}{3n} \frac{m_{i}}{m_{\theta}} \eta_{0,\theta} \nabla_{\parallel}^{2} v_{\parallel \theta} \\ \frac{\partial v_{\parallel i}}{\partial t} &= -\frac{\rho_{\star}^{-1}}{B} [\phi, v_{\parallel i}] - v_{\parallel i} \nabla_{\parallel} v_{\parallel i} - \frac{1}{n} \nabla_{\parallel} p + \frac{4}{3n} \eta_{0,i} \nabla_{\parallel}^{2} v_{\parallel i} \\ \frac{\partial T_{\theta}}{\partial t} &= -\frac{\rho_{\star}^{-1}}{B} [\phi, T_{\theta}] - v_{\parallel \theta} \nabla_{\parallel} T_{\theta} + \frac{4}{3} \frac{T_{\theta}}{B} \left[\frac{1}{n} C(p_{\theta}) + \frac{5}{2} C(T_{\theta}) - C(\phi) \right] \\ &+ \frac{2}{3} T_{\theta} \left[0.71 \nabla_{\parallel} j_{\parallel} - \nabla_{\parallel} v_{\parallel \theta} \right] + \chi_{\parallel, \theta} \nabla_{\parallel}^{2} T_{\theta} + S_{T_{\theta}} \\ \frac{\partial T_{i}}{\partial t} &= -\frac{\rho_{\star}^{-1}}{B} [\phi, T_{i}] - v_{\parallel i} \nabla_{\parallel} T_{i} + \frac{4}{3} \frac{T_{i}}{B} \left[C(T_{\theta}) + \frac{T_{\theta}}{n} C(n) - C(\phi) \right] \\ &+ \frac{2}{3} T_{i} \left(v_{\parallel i} - v_{\parallel e} \right) \frac{\nabla_{\parallel} n}{n} - \frac{2}{3} T_{i} \nabla_{\parallel} v_{\parallel e} - \frac{10}{3} \frac{T_{i}}{B} C(T_{i}) + \chi_{\parallel, i} \nabla_{\parallel}^{2} T_{i} \\ \left[\phi, f \right] &= \mathbf{b} \cdot (\nabla \phi \times \nabla f), \quad C(f) = B/2 (\nabla \times \mathbf{b}/B) \cdot \nabla f, \quad \rho_{\star} = \rho_{s0}/R_{0} \end{split}$$

Advantage

- Optimized for time-dependent problems
- Massively parallel
- Used for entire tokamak modeling

Limitation

- Reduced fluid equations
- Can model complex geometries

See the lecture by P. Macha

[1] Ricci et al., PPCF (2012)

Fluid turbulence code GBS (ii)

► GBS simulation run with: $\rho_*^{-1} \sim 900, \chi_{\parallel e,i} = 1, \nu = 0.25, \nabla B$ drift points upwards

1024 CPUs 4 months

MHD model

If we are interested in plasma motion as a single fluid \rightarrow Magnetohydrodynamics (MHD)

 γ – adiabatic coefficient

MHD model (ii)

Full set of equations

$$\frac{\partial}{\partial t}n + \vec{\nabla}n\vec{V} = 0, \qquad E + V \times B = \eta J$$

$$\rho\left(\frac{\partial}{\partial t}\vec{V} + \vec{V}\vec{\nabla}\vec{V}\right) = \vec{J} \times \vec{B} - \vec{\nabla}p \qquad \nabla \times E = -\frac{\partial B}{\partial t}$$
Low frequencies
$$\frac{d}{dt}\frac{p}{\rho^{\gamma}} = 0 \qquad \nabla \times B = \mu_0 j + \mu_0 \varepsilon_0 \frac{\partial E}{\partial t}$$

See the lecture 9 by A. Casolary/F. Jaulmes/P. Macha

Outline of the next lectures on MCFP

- 1. Feb 13 Introduction to modeling of laser-produced plasmas (LPP)- Limpouch
- 2. Feb 20 Introduction to different numerical methods used in Magnetic Confinement Fusion Plasmas (MCFP) Tskhakaya
- 3. Feb 27 PIC for MCFP Tskhakaya
- 4. Mar 6 Particle methods for LPP- Klimo
- 5. Mar 13 PIC simulations for extreme laser intensities Jirka
- 6. Mar 20 Monte-Carlo methods for LPP- Klimo
- 7. Mar 27 MC modelling; examples used for plasma edge and for the NBI (Neutral Beam Injection) modelling Tskhakaya, Jaulmes
- 8. Apr 3 Static fluid and Magnetohydrodynamics modelling of the MCFP Borodkina, Jaulmes
- 9. Apr 17 Fluid transport modelling of the plasma core and edge Jaulmes, Casolari, Mácha
- 10. Apr 24 Fluid simulations for LPP Kuchařík
- 11. May 15 Atomic physics simulations Limpouch
- 12. May 22 Machine learning methods Seidl, Tomes

Introduction to Neutral Beam Injection (NBI) in tokamaks: fast ions modelling [F. Jaulmes]

- > What is the NBI [Neutral Beam Injector]
- > Modelling particle orbits in tokamaks
- > Overview of power deposition [COMPASS-U]
- Measurements & Modelling of fast neutrals generation in COMPASS

Fluid modelling of the SOL (SOLPS-ITER)

[I. Borodkina]

- The SOLPS plasma boundary code package is dedicated to simulations of plasmas in the edge region of fusion devices:
 - <u>a 2D multi-fluid plasma (ions and electrons) transport code</u>, B2
 - and <u>the 3D kinetic Monte Carlo neutral transport code EIRENE</u> (accurate capture of neutral transport, account for the detailed wall interactions (pumping, fuelling) and wall geometry)
- Maintained by ITER Organization at git.iter.org
- SOLSP-ITER successor SOLPS4.3 has been the main workhorse for the ITER divertor design studies since 20+ years

SOLPS-ITER grid (B2 and Eirene) for the COMPASS Upgrade tokamak developed in the IPP Prague

- > Safety factor profile in tokamaks
- Phenomenological description of MHD, the internal kink and the sawtooth crash
- > Energy principle and derivation of linear growth rate
- Simplified poloidal mapping of the reconnecting magnetic flux & simplified Reconnection rate modelling [if time]

Sawtooth crash

Introduction to turbulence in tokamaks

[F. Jaulmes]

Understanding micro-turbulence in a tokamak plasma

- Principles of magnetic confinement and limitations of pressure gradients: particle and heat transport
- Derivation of numerical drift wave turbulence model in the edge of confined plasma
- Illustration: Edge Localized Modes

[P. Beyer, LPIIM]

: IPP

Introduction to gyro-fluid turbulence in tokamaks [A. Casolari]

- Small-scale structures formation in turbulence (energy cascade, vortices)
- From single particle to fluid models
- From gyrokinetics to gyrofluid equations
- Gyro-Landau fluid (GLF) models

Turbulence modelling of the SOL [P. Macha]

advantages X disadvantages

From simple 2D to complex 3D model

stationary phase in GBS code.

Tskhakaya

COMPASS INSTITUTE OF PLASMA PHYSICS ASCR

Python, GPU and Machine Learning [J. Seidl and M. Tomes]

Covered topics

- Python for scientific computing and data science
- Speed up your simulations with GPU
- Autograd automatic differentiation of computations
- What are Artificial Neural Networks (NN)
- Implicit representation of functions with NN
- Physics Informed Neural Networks solving PDEs using NN

Bayesian Statistics [J. Seidl and M. Tomes]

- Probabilistic Programming Languages
 - based on ML frameworks
 - utilise autograd, GPU speedups
- Natural way of problem solving:
 - What are the best parameters given a model and a priori knowledg
- Universal uncertainty propagation
- Optimisation algorithms: Hamiltonian samplers, NUTS
- Monte-Carlo Markov-Chain sampling

Bayesian Statistics

Tskhakaya