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Different methods for MC fusion plasma study
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NBI

heating
RF

heating

Plasma heating (~MeV, 1 – 100 cm, 

10-4 – 1 s) 

• NBI codes (MC)

• RF heating and current drive (MC, 

Maxw. S, RayT., GK) 

Plasma core (> 1 keV, 1-100 cm, 10-3 – 1 s)

• MHD (transport/equilibrium)

• Gyrokinetic (GK)

• Runaway Electron transport 

Plasma-surface interaction (< 

1eV, nm, 10-14 s – 1 year) 

• Monte Carlo (MC)

• Molecular dynamics

• Other methods for studying 

arcing, surface morphology, 

neutron irradiation damage, 

…

SOL (1-100 eV, 1-100 mm, 10-5 – 10-2 s)

• (gyro-)Fluid

• Gyrokinetic

• Full kinetic

• Monte Carlo
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Outline
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➢ Introduction

➢ Different models

• Monte Carlo models for neutral particles 

Questions

• Impurity transport codes

• Particle-in Cell (PIC codes)

Questions

• Drift- and Gyro-kinetic

Questions

• Fluid (static and turbulence)

Questions

• Plasma Magnetohydrodynamics (MHD)

Questions

➢ On next lectures
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Plasma wall interactions in MCFP
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S. Brezinsek, 

30th EFPW, 2023
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For each problem one has to answer the following quetions

• Which model is is applicable

• What are the limitations of this model

Divertor

D

D2
CD+

2

C+Divertor D+
2

C+

D

D2
C

Outer wall

Plasma and heat source

SOL modelling
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• Main ions (typically): H+, D+, T+

• Neutral particles recycled from PFC: H, D, T 

• Low energy fusion products: He+i

• Intristic impurity: W, C, F, O2, ... (PFC material, „parasitic“ leaks, ets)

• Seeded impurity: Ne, Ar, N, ...

• Dust particles: 1 ~ 100 µ 

SOL content

Main processes
• Parallel transport

• Classical cross-field transport: diffusion, drifts

• Anomalous transport: turbulent, intermittent 

transport (blobs, ELMs) 

• Atomic and molecular processes (AM)

• Plasma-surface interactions (PSI)
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The SOL is extremely anisotropic!

Next generation machines (DEMO and fusion reactors) 

boundary plasma can be unmagnetized

SOL content and related physical processes    
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SOL models (i): kinetic codes 
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First principle model –

kinetic equation
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Particle-particle (PP) codes:

Number of operations to be performed on

N particles scales as N2.

First simulations: Buneman 1959,

Dowson 1962. Simulation of 103 1D

particles with direct resolution of

Coulomb’s interaction.

Today1 ~ 108 particles (MD modelling)

Too expensive for plasma simulations
8 particles – 57 interactions 

Direct simulation of particles 

[1] Jia, et al., 10.1109/SC41405.2020.00009

Other possible options

➢ Direct solution of the

Boltzmann equation

➢ Particle codes with Monte

carlo collisions
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PP can be excluded for

neutral, impurity and

plasma particle modelling

in MCFP

https://doi.org/10.1109/SC41405.2020.00009
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100 meshes per dimention for r and V

Monte Carlo particle codes

1. Move particles

2. Calculate collision probability

3. Collide particles, i.e. calculate after-collision velocities

4. Boundary conditions and sources (absorption, emission, ionization, etc.)

kji VrtVrt 


,,,, →

Kinetic solvers for neutral particles 

( ) ( ) ( )unuttP  =−−= ,exp1

Too large number!
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Size of thew array of unknowns each time step 102(D+V), 

for 3D3V 1012

r V=

KE solver (probably!) can be

excluded for neutral and impurity

particle modelling in MCFP



Collisions via Monte Carlo (MC) model
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ii. Null collision method

1. Calculation of shortest collision time

2. Analyzing for collision after

3. Colliding these particles.
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, [0,1]col

R
t R


= − 

i. Direct simulation MC

1. Calculation of average time between collisions

2. Colliding particle after tcol time.
, , ctr V
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ln
col

R
t


= −
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colt (e.g. EIRENE)
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iii. Non-counter based model 

Ntotal

Nmax

1.Calculation of maximum number of

collided particles

2.Analyzing for collision only Nmax

particles.

3.Colliding the selected particles.

( ) tottot NtPNN = maxmax

(e.g. BIT-N)



Example of MC neutral particle codes
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EIRENE1

EIRENE mesh for AUG2. Atomic density profiles fro EIRENE2.

1[http://www.eirene.de] 2[D. Reiter et al., FST 2005]

Limitation (of any MC)

For acceptable statistics very 

large number of simulation 

particles is required → heavy 

simulations

Questions?

See the lecture 7 by F. Jaulmes/D. Tskhakaya



Impurity modelling
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Simulation geometry of ERO (ERO-2)

( )
1
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V
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dV e
E V B F

dt m m

=

= +  +
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Nonlinear Monte Carlo (PIC models, e.g. BIT-N)

models including nonlinear interactions of impurity, neutral and plasma particles

Advantage: full kinetic treatment

Limitations: numerically very expensive, exact cross-sections are required

Linear Monte Carlo (e.g. ERO)

Impurity particles interact with fluid/MHD plasma and wall

Advantage: relatively fast, Maxwell-averaged rate coefficients , R= <u>

Limitations: still slower than fluid models, depends on plasma

background (to be provided)

Two type of ions

• Main ions: H, D, T, He, ...

• Impurity ions, with much lower concentration

Impurity ions can pollute and cool down core and SOL plasmas

Can be used for entire tokamak modelling!



Example of MC impurity transport codes
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Be radiation profiles from experiment and ERO 

modelling [J. Romazanov et al., Phys. Scr. 2017]

Main and impurity particle profiles in the JET divertor plasma from 

BIT1 simulations [D. Tskhakaya, WP-PWIE 2023]



Kinetic modelling of the SOL plasmas
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1D case fe(x, V, µ), µ= V||/V , analytic solution1

 ( ) ( ) wallinFK StStSttVrf
V

BVE
m

e

r
V

t
++=












++




+




,,








( )
( )

2
21

1
2

ei
e e e

e

xe
V f f f

x m x V V

 
  

  

    −   
+ + = − 

      

( ) ( )





−==

0

2

0

7

0
3

2
, dvvgT

x

Vn
qdvvgTT qe

ee

T
xTe



( ) ( ) ( )

( )
,

1

2
exp4

22

,,,,,

2

2

2

2
4

22/3

0

0

x

T

TV

V

V

V

V

V

V

n
f

ffVxfVxfVxf

e

eTTTTei

Me












−








−







−
=

+






Used for low dimensional problems

Required resolution > V/5VT

[1] Chodura CPP 1992



PIC models of the plasma edge
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Particle
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Examples of full PIC + MC codes 
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1D3V (BIT1) and 3D3V (BIT3) electrostatic PIC + Monte Carlo 

✓ Non-counter based MC model

fast, no limits on collision types 

✓ Natural sorting

Optimal use of the cache hit, easy space decomposition, no 

limitation* on system size

✓ Dressed cross section model

Non-coronal approximation for high density plasmas

✓ Physics based Poisson solver 

accurate, fast and highly scallable[1]

Specific for MCFP modelling

See the lecture 3 by D. Tskhakaya



On full PIC + MC models
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Questions?

Advantage

• Fully kinetic, compromises

• Easy to treat plasma-wall interactions

• Massive parallelization is straightforward

Limitation

• Requires extremely heavy simulation

• Numerical oscillations can lead to incorrect

results (and crashes). Energy conservation

diagnostic should be used

• Hard to find necessary collision cross-sections



Drift kinetic models
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Advantage

• faster than Gyro-kinetic,

• Nonlinear drift-Fokker-Planck collision

operator exists

• Can be used for core and edge plasmas

Limitations:

• still requires heavy simulation,

• all finite gyro-radius effects are neglected



Gyro-kinetic models
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[1] Lee, Phys. Fluids  1983 

[2] Dubin et al., Phys. Fluids, 1983.
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[1] Villard, et al., Plas. Phys. Cont. Fus. , 2013

Gyro-kinetic simulation of ITER plasmas1

Advantage

• golden compromise between the simulation

speed and physics model

• finite gyro-radius effects are accounted

• Used for core and edge plasmas

Limitation

• requires heavy simulation,

• hard to implement collisions: majority use linear

FP models, no interaction with other particles

except ion + electron

• Could not „touch“ the wall

• Limited resolution (i.e. Number of V meshes)

Gyro-kinetic models (ii)

Questions?



Fluid models of the plasma edge
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Examples of SOL fluid codes
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Particle conservation equation in SOLPS-ITER code

The hx,y and g define the 

metric coefficients of the 

curvilinear coordinate system
SOLPS-ITER grid for COMPASS tokamak

[K. Hromasova, et al., EPS 2021]

SOLPS-ITER, EDGE2D, UEDGE, SOLEDGE, CORDIV, EMC3, SOLF1D



„Static“ edge plasma fluid codes
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Advantage

• fast

• Can model complex geometries

• Requires rate coefficients for atomic and PSI physics

Limitation

• Kinetic effects are neglected, or added ad hoc

• Neutrals are usually treated via separate (kinetic) MC codes

• Hard to treat multy-ion plasmas (there are new developments – Zhdanov‘s model)

• Slow time convergence

See the lecture 8 by I. Borodkina



Fluid turbulence codes
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GBS –drift-reduced fluid code1

[1] Ricci et al., PPCF (2012)

See the lecture by P. Macha

Advantage

• Optimized for time-dependent problems

• Massively parallel

• Used for entire tokamak modeling

Limitation

• Reduced fluid equations

• Can model complex geometries



Fluid turbulence code GBS (ii)
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From J. Horacek‘s lecture

1024 CPUs  4 months

Used for core and edge

plasmas

Questions?



MHD model
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If we are interested in plasma motion as a single fluid → Magnetohydrodynamics (MHD)
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MHD model (ii)
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Low frequencies

See the lecture 9 by A. Casolary/F. Jaulmes/P. Macha



Outline of the next lectures on MCFP
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1. Feb 13 Introduction to modeling of laser-produced plasmas  (LPP)– Limpouch

2. Feb 20 Introduction to different numerical methods used in Magnetic Confinement Fusion Plasmas (MCFP) - Tskhakaya

3. Feb 27 PIC for MCFP - Tskhakaya

4. Mar 6 Particle methods for LPP- Klimo

5. Mar 13 PIC simulations for extreme laser intensities – Jirka

6. Mar 20 Monte-Carlo methods for LPP- Klimo

7. Mar 27 MC modelling; examples used for plasma edge and for the NBI (Neutral Beam Injection) modelling - Tskhakaya, Jaulmes

8. Apr 3 Static fluid and Magnetohydrodynamics modelling of the MCFP – Borodkina, Jaulmes

9. Apr 17 Fluid transport modelling of the plasma core and edge - Jaulmes,  Casolari, Mácha

10. Apr 24 Fluid simulations for LPP – Kuchařík

11. May 15 Atomic physics simulations  – Limpouch

12. May 22 Machine learning methods - Seidl, Tomes



Introduction to Neutral Beam Injection (NBI) in 

tokamaks: fast ions modelling [F. Jaulmes]
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➢ What is the NBI [Neutral Beam Injector]

➢ Modelling particle orbits in tokamaks

➢ Overview of power deposition [COMPASS-U]

➢ Measurements & Modelling of fast neutrals 

generation in COMPASS

Top view

Beam duct



Fluid modelling of the SOL (SOLPS-ITER) 

[I. Borodkina]
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The SOLPS plasma boundary code package is dedicated to simulations of plasmas in the edge 

region of fusion devices: 

• a 2D multi-fluid plasma (ions and electrons) transport code, B2

• and the 3D kinetic Monte Carlo neutral transport code EIRENE (accurate capture of neutral 

transport, account for the detailed wall interactions (pumping, fuelling) and wall geometry)

• Maintained by ITER Organization at git.iter.org

• SOLSP-ITER successor SOLPS4.3 has been the main workhorse for the ITER divertor design 

studies since 20+ years 

Eirene 

grid

B2 

grid

ITER divertor

R.A. Pitts, et al, NME 2019

SOLPS-ITER grid (B2 and Eirene) 

for the COMPASS Upgrade tokamak 

developed in the IPP Prague
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Introduction to the MHD modelling [F. Jaulmes]
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➢ Safety factor profile in tokamaks

➢ Phenomenological description of MHD, the internal

kink and the sawtooth crash

➢ Energy principle and derivation of linear growth rate

➢ Simplified poloidal mapping of the reconnecting

magnetic flux & simplified Reconnection rate

modelling [if time]

Sawtooth crash



Introduction to turbulence in tokamaks  

[F. Jaulmes]
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[P. Beyer, LPIIM]

Understanding micro-turbulence 

in a tokamak plasma

➢ Principles of magnetic confinement and 

limitations of pressure gradients: particle and 

heat transport

➢ Derivation of numerical drift wave turbulence 

model in the edge of confined plasma

➢ Illustration: Edge Localized Modes



Introduction to gyro-fluid turbulence 

in tokamaks [A. Casolari]            
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➢ Small-scale structures formation in turbulence

(energy cascade, vortices)

➢ From single particle to fluid models

➢ From gyrokinetics to gyrofluid equations

➢ Gyro-Landau fluid (GLF) models



Turbulence modelling of the SOL [P. Macha]

20.02.2023Tskhakaya

An example of density 

fluctuations during pre-quasi-

stationary phase in GBS code.

Perpendicular momentum: Kinetic 

equation

Density 

equation

Temperature 

equation

From simple 2D to complex 3D model

● from simple 2D model to 

complex 3D model

● Braginskii equations

● boundary conditions

● numerical implementation

● used schemes and solvers

● simulation results

● comparison with experiment

● advantages ╳ disadvantages
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Python, GPU and Machine Learning
[J. Seidl and M. Tomes]
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Covered topics

- Python for scientific computing and data science

- Speed up your simulations with GPU

- Autograd - automatic differentiation of computations

- What are Artificial Neural Networks (NN)

- Implicit representation of functions with NN

- Physics Informed Neural Networks - solving PDEs using NN



Bayesian Statistics   [J. Seidl and M. Tomes]
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- Probabilistic Programming Languages
- based on ML frameworks
- utilise autograd, GPU speedups

- Natural way of problem solving:
- What are the best parameters given a model and a priori knowledge?

- Universal uncertainty propagation
- Optimisation algorithms: Hamiltonian samplers, NUTS
- Monte-Carlo Markov-Chain sampling

No U-Turn Sampler

Bayesian Statistics


