

Fluid Simulations for Laser-Produced Plasmas

Milan Kuchařík ${ }^{\dagger}$

${ }^{\dagger}$ Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, Praha 1, 115 19, Czech Republic
milan.kucharik@fjfi.cvut.cz, http://kfe.fjfi.cvut.cz/~kucharik
D12MMVP
Prague, April 24, 2023

Overview

- Hydrodynamic simulations.
- Euler equations in Eulerian and Lagrangian frameworks.
- Arbitrary Lagrangian-Eulerian (ALE) methods.
- Staggered compatible Lagrangian scheme.
- Mesh rezoning techniques.
- Quantity remapping.
- Physical models for LPP.
- Examples of hydrodynamic ALE simulations.
- Conclusions.

Hydrodynamic (fluid) simulations

- Hydrodynamics $=$ dynamics of fluids.
- Description of fluid by a set of (hyperbolic) PDEs, solution by tools of Computational Fluid Dynamics (CFD).
- Fluid properties represented by macroscopic quantities - density, velocity, pressure, specific internal energy, . . .
- Discretization:

- Transformation of system of PDEs for $\rho(\vec{x}, t)$ to system of algebraic equations for ρ_{c}^{n}.

Euler equations

- Simplest approximation - Euler equations.
- System of hyperbolic PDEs representing conservation of mass, momentum, and total energy:

$$
\begin{align*}
\rho_{t}+\operatorname{div}(\rho \vec{w}) & =0 \tag{1}\\
(\rho \vec{w})_{t}+\operatorname{div}\left(\rho \vec{w}^{2}\right)+\overrightarrow{\operatorname{grad}} p & =0 \tag{2}\\
E_{t}+\operatorname{div}(\vec{w}(E+p)) & =0 \tag{3}
\end{align*}
$$

- Here: ρ - density, \vec{w} - velocity, p - pressure, $E=\rho \varepsilon+\frac{1}{2} \rho|\vec{w}|^{2}$ - total energy density, $\varepsilon-$ specific internal energy.
- More unknowns than equations - system enclosed by equation of state (EOS): $p=\mathcal{P}(\rho, \varepsilon)$. Ideal gas $-p=(\gamma-1) \rho \varepsilon$, where $\gamma-$ gas constant (ratio of its specific heats).
- General fluid (plasma) - complicated (non-linear) EOSes, often tabulated.

Transformation from Eulerian to Lagrangian framework

- Transforming system to moving (Lagrangian) reference frame.
- Example - conservation of mass in 1D: $\rho_{t}+(\rho u)_{x}=0$, expanding derivative: $\rho_{t}+u \rho_{x}+\rho u_{x}=0$.
- This can be written as $\frac{D \rho}{D t}+\rho u_{x}=0$, where $\frac{D}{D t}=\frac{\partial}{\partial t}+\frac{\partial x}{\partial t} \frac{\partial}{\partial x}=\frac{\partial}{\partial t}+u \frac{\partial}{\partial x}$ is the Lagrangian (total, material) derivative.
- In multiD: $\frac{D}{D t}=\frac{\partial}{\partial t}+\vec{w} \cdot \nabla$.
- Similarly for the whole system:

$$
\begin{align*}
\frac{D \rho}{D t}+\rho \nabla \cdot \vec{w} & =0 \tag{4}\\
\rho \frac{D \vec{w}}{D t}+\nabla p & =\overrightarrow{0} \tag{5}\\
\rho \frac{D \varepsilon}{D t}+p \nabla \cdot \vec{w} & =0 \tag{6}
\end{align*}
$$

Lagrangian motion

- Motion of Lagrangian particles described by an ODE: $\frac{D \vec{x}}{D t}=\vec{w}$, typically defines motion of mesh nodes.
- Location of velocity w :
- in mesh cells \rightarrow cell-centered methods: all quantities located at the same place, need to use approximate Riemann solver at each node to define its velocity;
- in mesh nodes \rightarrow staggered methods: mesh motion directly defined, different location of thermodynamic $\left(\rho_{c}, p_{c}, \varepsilon_{c}\right)$ and kinematic $\left(\vec{w}_{n}\right)$ quantities.
- Computational cells considered to be Lagrangian particles: no mass flux between cells \Rightarrow density given by cell shape (volume), no need to solve mass equation.

Euler equation - notes

- Eulerian form - usually for conservative quantities, Lagrangian form - usually for primitive quantities, equivalent.
- Inter-connected system of PDEs \rightarrow cannot be solved analytically (except for few special cases) \Rightarrow numerical methods.
- Remains to define IC $\left(\rho(\vec{x}, t=0)=\rho_{0}(\vec{x})\right)$ and BC (wall, free, periodic, physics dependent, . . .) - can be most difficult.

Eulerian vs. Lagrangian methods

- Eulerian methods:
- Fixed computational mesh, not changing in time.
- Fluid moves between mesh cells in the form of mass fluxes.
- Simpler methods, easier to analyze.
- Problem: Not suitable for highly-volume-changing problems - typical in laser/plasma simulations, where strong material compressions and expansions occur.
- Lagrangian methods:
- Computational mesh moves naturally with the fluid.
- No mass fluxes, constant masses in cells.
- Optimal for strongly changing domains.
- Problem: Due to mesh motion, mesh can degenerate - non-convex, selfintersecting, or completely inverted cells \rightarrow increase of numerical error or simulation failure.

Arbitrary Lagrangian-Eulerian (ALE) methods

- Combination of both approaches - mesh following the fluid motion + guarantee its validity ${ }^{[1]}$.
- Recently very popular, present in many hydrodynamic laser/plasma codes.
- 2 types: direct vs. indirect ALE.
- Direct ALE methods:
- Separate fluid and mesh velocities.
- More complicated equations - formulation of fluid flow on differently moving mesh \rightarrow convective term representing mass flux.
- Filtering dangerous velocity components (shear flow, vortexes) out from the velocity field.

Indirect ALE methods

- Explicit separation of 3 steps:
- 1) Lagrangian step $=$ solver of PDEs, evolution of fluid quantities and mesh in time;
- 2) Rezoning $=$ untangling and smoothing of computational mesh, increasing its geometric quality;
- 3) Remap $=$ conservative interpolation of all quantities from Lagrangian to rezoned mesh.
- Rezone + remap $=$ Eulerian part of the ALE algorithm (fluxes).
- Different strategies for triggering rezone/remap on (degeneracy, Eulerian, counter, ...)

Example: Sedov blast wave

Euler

FACULTY OF

ALE20

$$
\begin{aligned}
& \text { lla, } \\
& K \ll \square \ggg \rightarrow+
\end{aligned}
$$

Step 1: Lagrangian solver

- Solving the system of Euler equations in Lagrangian form:

$$
\begin{align*}
\frac{D \rho}{D t} & =-\rho \nabla \cdot \vec{w} \tag{7}\\
\rho \frac{D \vec{w}}{D t} & =-\nabla p \tag{8}\\
\rho \frac{D \varepsilon}{D t} & =-p \nabla \cdot \vec{w} \tag{9}
\end{align*}
$$

with ODE for motion of mesh nodes

$$
\begin{equation*}
\frac{D \vec{x}}{D t}=\vec{w} \tag{10}
\end{equation*}
$$

and equation of state

$$
\begin{equation*}
p=\mathcal{P}(\rho, \varepsilon) \tag{11}
\end{equation*}
$$

- Compatible Lagrangian scheme in staggered discretization (mimetic or support operators method) ${ }^{[1]}$.

Step 1: Lagrangian solver

- Conservation of mass (7) - constant cell mass $m_{c} \Rightarrow$ automatically satisfied.
- Integration of momentum equation (8) over dual (nodal) volume V_{n},

$$
\begin{equation*}
m_{n}\left(\frac{D \vec{w}}{D t}\right)_{n}=\int_{V_{n}} \rho \frac{D \vec{w}}{D t} d V=-\int_{V_{n}} \nabla p d V \equiv \vec{F}_{n}^{p} \tag{12}
\end{equation*}
$$

- Forces on the right hand side can be written as

$$
\begin{equation*}
\vec{F}_{n}^{p}=\sum_{c \in C(n)} \vec{F}_{c, n}^{p} \tag{13}
\end{equation*}
$$

where $\vec{F}_{c, n}^{p}$ is force from cell c to node n due to pressure in c, can be computed from cell pressures and cell geometry.

- Left hand size - approximation of velocity derivative by finite difference:

$$
\begin{equation*}
\left.\frac{D \vec{w}}{D t}\right|_{n} \approx \frac{\vec{w}_{n}^{n+1}-\vec{w}_{n}^{t^{n}}}{\Delta t} \Rightarrow \quad \vec{w}_{n}^{t^{n+1}}=\vec{w}_{n}^{t^{n}}+\frac{\Delta t}{m_{n}} \vec{F}_{n}^{p} \tag{14}
\end{equation*}
$$

Step 1: Lagrangian solver

- Motion of computational mesh nodes from (10) - again finite difference

$$
\begin{equation*}
\vec{x}_{n}^{t^{n+1}}=\vec{x}_{n}^{t^{n}}+\Delta t \vec{w}_{n}^{*^{*}} . \tag{15}
\end{equation*}
$$

- Computation of new cell volumes $V_{c}^{t^{n+1}}$ from cell geometry.
- Update of cell densities

$$
\begin{equation*}
\rho_{c}^{t^{n+1}}=m_{c} / V_{c}^{t^{n+1}} . \tag{16}
\end{equation*}
$$

- Total energy: internal + kinetic:

$$
\begin{equation*}
E=\sum_{\forall c} m_{c} \varepsilon_{c}+\sum_{\forall n} \frac{1}{2} m_{n}\left\|\vec{w}_{n}\right\|^{2}=\sum_{\forall c}\left(m_{c} \varepsilon_{c}+\sum_{n \in N(c)} \frac{1}{2} m_{c, n}\left\|\vec{w}_{n}\right\|^{2}\right) \tag{17}
\end{equation*}
$$

where

$$
\begin{equation*}
m_{c}=\sum_{n \in N(c)} m_{c, n}, \quad m_{n}=\sum_{c \in C(n)} m_{c, n} \tag{18}
\end{equation*}
$$

Step 1: Lagrangian solver

- Conservation $\Longrightarrow \partial E / \partial t=0$, true if in each cell: $\partial E_{c} / \partial t=0$,

$$
\begin{equation*}
m_{c} \frac{\partial \varepsilon_{c}}{\partial t}=-\sum_{n \in N(c)} m_{c, n}\left\|\vec{w}_{n}\right\| \frac{\partial\left\|\vec{w}_{n}\right\|}{\partial t} \equiv W_{c} \tag{19}
\end{equation*}
$$

- Substitution for velocity derivative from (12) \Rightarrow

$$
\begin{equation*}
m_{c} \frac{\partial \varepsilon_{c}}{\partial t}=W_{c}, \text { where } \quad W_{c}=-\sum_{n \in N(c)} \frac{m_{c, n}}{m_{n}} \vec{w}_{n} \cdot \vec{F}_{c, n}^{p} \tag{20}
\end{equation*}
$$

- $W_{c}=$ released/removed heat in cell c due to its compression/expansion, can be explicitly computed.
- Energy update by central difference again,

$$
\begin{equation*}
\varepsilon_{c}^{t^{n+1}}=\varepsilon_{c}^{t^{n}}+\frac{\Delta t}{m_{c}} W_{c} \tag{21}
\end{equation*}
$$

- Due to this construction: exact energy conservation up to machine precision.

Step 1: Lagrangian solver

- Remaining only pressure update - from EOS (11),

$$
\begin{equation*}
p_{c}^{t^{n+1}}=\mathcal{P}\left(\rho_{c}^{t^{n+1}}, \varepsilon_{c}^{t^{n+1}}\right) . \tag{22}
\end{equation*}
$$

- Resulting scheme conservative in mass, momentum, and total energy.
- Usually used in two-step (predictor-corrector) form - prediction of pressure and velocity to $t^{n+1 / 2} \rightarrow$ second order of accuracy.
- Next to pressure forces, other forces can be added:
- Viscosity forces $\vec{F}_{c, n}^{q}$ - stabilization of the scheme (elimination of oscillations) at shocks, several models ${ }^{[1,2]}$.
- Subzonal-pressure forces $\vec{F}_{c, n}^{d p}$ - finer pressure discretization, reducing unwanted mesh degeneracies (hourglass) ${ }^{[3]}$.
- Other forces due to physical modes, such as gravity forces, . . .

Step 2: Mesh rezoning

- Mesh rezoning $=$ mesh untangling (making it valid) and smoothing (increasing its geometric quality).
- To avoid excessive diffusion of the solution in the following remapping step - move only nodes needed to move, and as little as possible.

Step 2: Mesh rezoning

- Many rezoning methods.
- In realistic computations - efficient methods (3D), e.g. Laplace or Winslow.
- Laplace: new positions as weighted average,

$$
\begin{equation*}
\tilde{\vec{x}}_{i, j}=\sum_{k, l=-1,1} w_{i+k, j+l} \vec{x}_{i+k, j+l}, \text { where } \sum_{k, l=-1,1} w_{i+k, j+l}=1 . \tag{23}
\end{equation*}
$$

- Winslow ${ }^{[1]}$: based on solving of elliptic PDEs in logical directions,

$$
\begin{array}{r}
\tilde{\vec{x}}_{i, j}=\frac{1}{2\left(\alpha^{k}+\gamma^{k}\right)}\left(\alpha^{k}\left(\vec{x}_{i, j+1}+\vec{x}_{i, j-1}\right)+\gamma^{k}\left(\vec{x}_{i+1, j}+\vec{x}_{i-1, j}\right)\right. \tag{24}\\
\left.-\frac{1}{2} \beta^{k}\left(\vec{x}_{i+1, j+1}-\vec{x}_{i-1, j+1}+\vec{x}_{i-1, j-1}-\vec{x}_{i+1, j-1}\right)\right)
\end{array}
$$

where coefficients $\alpha=x_{\xi}^{2}+y_{\xi}^{2}, \beta=x_{\xi} x_{\eta}+y_{\xi} y_{\eta}, \gamma=x_{\eta}^{2}+y_{\eta}^{2}$, and where (ξ, η) are the logical coordinates.

- More advanced methods - eg. CN minimization, RJM ${ }^{[2]}$. For untangling modified CN minimization, feasible set ${ }^{[3]}$.
[1] Winslow: LLNL Report, 1963.
[2] Knupp, Margolin, Shashkov: JCP, 2002.
[3] Berndt, Kucharik, Shashkov: PCS, 2010.

Step 3: Quantity remapping

- Remap $=$ conservative interpolation of all fluid quantities from old (Lagrangian) computational mesh to new (rezoned) one.
- Given: values of given quantity (e.g. density ρ_{c}) in the cell centroid $\vec{x}_{c}=\frac{1}{V_{c}} \int_{c} \vec{x} d V, V_{c}=\int_{c} 1 d V$.
- Understood as mean values of unknown underlying density function $\rho(\vec{x})$:

$$
\begin{equation*}
m_{c}=\int_{c} \rho(\vec{x}) d V, \quad \rho_{c}=m_{c} / V_{c} \tag{25}
\end{equation*}
$$

- Goal: compute new masses

$$
\begin{equation*}
m_{\tilde{c}} \approx \int_{\tilde{c}} \rho(\vec{x}) d V \tag{26}
\end{equation*}
$$

and mean values $\rho_{\tilde{c}}=m_{\tilde{c}} / V_{\tilde{c}}$ in the rezoned cells \tilde{c}.

Step 3: Quantity remapping

- Requirements:
- Conservation: $\sum_{c} m_{c}=\sum_{\tilde{c}} m_{\tilde{c}}$. Solving conservation laws, do not want to spoil it.
- Accuracy: $\rho_{\tilde{c}} \approx \rho(\tilde{c})$. Mean value should be close to the function value in the cell centroid.
- Linearity-preservation: $\rho(\vec{x})$ linear $\Rightarrow \rho_{\tilde{c}}=\rho\left(\vec{x}_{\tilde{c}}\right)$. Implies second order of convergence.
- Consistency (continuity): $c=\tilde{c} \Rightarrow \rho_{c}=\rho_{\tilde{c}}$. Do not want to change value is cell did not change.
- Bound-preservation: $\rho_{c}^{\min } \leq \rho_{\tilde{c}} \leq \rho_{c}^{\max }$, where $\rho_{c}^{\min }=\min _{c^{\prime} \in C(c)} \rho_{c^{\prime}}$. Only interpolation \Rightarrow do not want to create new extrema.

Step 3: Quantity remapping - Reconstruction

- First phase - piece-wise linear reconstruction of density function (2D):

$$
\begin{equation*}
\left.\rho(x, y)\right|_{c} \approx \rho_{c}(x, y)=\rho_{c}+\left(\frac{\partial \rho}{\partial x}\right)_{c}\left(x-x_{c}\right)+\left(\frac{\partial \rho}{\partial y}\right)_{c}\left(y-y_{c}\right) \tag{27}
\end{equation*}
$$

- Slopes $(\partial \rho / \partial x)_{c},(\partial \rho / \partial y)_{c}$:
- Integral average over super-cell: $(\partial \rho / \partial x)_{c} \approx \frac{1}{V_{S_{c}}} \int_{S_{c}}(\partial \rho / \partial x) d V$.
- Minimization (LS) of error functional: $(\partial \rho / \partial x)_{c} \approx \arg \min \Phi(\partial \rho / \partial x, \partial \rho / \partial x)$, $\Phi(\partial \rho / \partial x, \partial \rho / \partial x)=\sum_{c^{\prime} \in C(c)}\left\|\left.\rho\left(\vec{x}_{c^{\prime}}\right)\right|_{c}-\rho_{c^{\prime}}\right\|^{2}$.

- Other possibilities.

Step 3: Quantity remapping - Reconstruction

- Usually with limiter, e.g. Barth-Jespersen ${ }^{[1]}$:

$$
(\partial \rho / \partial x)_{c}=\Psi_{c}(\partial \rho / \partial x)_{c}^{\text {unlim }}, \text { where } \Psi_{c}=\min _{c^{\prime} \in C(c)} \Psi_{c, n}, \text { and }
$$

$$
\Psi_{c, n}=\left[\begin{array}{cl}
\min \left(1, \frac{\rho_{c}^{\max }-\rho_{c}}{\rho_{\rho}^{\text {unim }}(n)-\rho_{c}}\right) & \text { for } \rho_{c}^{\text {unlim }}(n)-\rho_{c}>0 \\
\min \left(1, \frac{\rho_{\mathrm{min}}^{\min }-\rho_{c}}{\rho_{c}^{\text {unim }}(n)-\rho_{c}}\right) & \text { for } \rho_{c}^{\mathrm{unlim}}(n)-\rho_{c}<0 \\
1 & \text { for } \rho_{c}^{\text {unlim }}(n)-\rho_{c}=0
\end{array}\right.
$$

Step 3: Quantity remapping - Exact integration

- Most natural method based on cell intersections: $m_{\tilde{c}}=\int_{\tilde{c}} \rho(\vec{x}) d V=\sum_{\forall c^{\prime}} \int_{\tilde{c} \cap c^{\prime}} \rho(\vec{x}) d V \approx \sum_{\forall c^{\prime}} \int_{\tilde{c} \cap c^{\prime}} \rho_{c^{\prime}}(\vec{x}) d V$.
- General geometry \Rightarrow global remap.
- Conservation obvious, limiter \Rightarrow local extrema.
- Same topology \Rightarrow can be formulated in flux form ${ }^{[1]}$:

$$
m_{\tilde{c}}=m_{c}+\sum_{c^{\prime} \in C(c)} F_{c^{\prime} \rightarrow c^{\prime}}^{m} F_{c^{\prime} \rightarrow \underset{\tilde{c} \cap c^{\prime}}{m}=\int_{c^{\prime}}(\vec{x}) d V-\int_{\tilde{c}^{\prime} \cap c} \rho_{c}(\vec{x}) d V ~ . ~} .
$$

- Flux form \Rightarrow conservation guaranteed \Rightarrow more freedom in flux construction.
- Problems: computationally expensive, robustness, 3D.

Step 3: Quantity remapping - Approximate integration

- Flux approximated using swept regions ${ }^{[1]}$:
$m_{\tilde{c}}=m_{c}+\sum_{e \in \mathcal{E}(c)} F_{e}^{m}$, where $F_{e}^{m}=\int_{\Omega_{e}} \rho_{c^{*}}(\vec{x}) d V, c^{*}=c / c^{\prime}$.
- No intersections needed \Rightarrow less computationally expensive, robustness.
- Problem: in certain parts of new cells (corner flux, rotating edge), approximation from wrong cell is used \Rightarrow
 local bound violation.
- Several options for fixing this:
- A-posteriori mass redistribution (repair) ${ }^{[2]}$;
- Flux Corrected Transport (FCT) ${ }^{[3]}$;
- Multi-dimensional Optimal Order Detection (MOOD) $)^{[4]}$;
- Difficult generalization for multi-material case.

Remap of all fluid quantities

- Up to now - only remap of ρ, m.
- Remap of $\varepsilon-$ similar as density.
- Pressure - usually computed from EOS, but can be remapped too.
- Remap of \vec{w} - simple in cell-centered methods (same manner), more complicated in staggered discretization.
- Kinetic energy computed from remapped velocities - non-linear \rightarrow violation of kinetic energy conservation \Rightarrow wrong shock speeds, wrong plateau height,
- Typically treated by energy fix ${ }^{[1]}$: remap kinetic energy independently and distribute its discrepancy to internal energy.
- Several options for velocity remap.

Remap of all fluid quantities

- Double-fine mesh ${ }^{[1]}$.
- Simplest way:
$-\mu_{c, n}=m_{c, n} u_{n}$,
- remap $\mu_{c, n} \rightarrow \mu_{\tilde{c}, \tilde{n}}$,
$-u_{\tilde{n}}=\sum_{c^{\prime} \in C(n)} \mu_{\tilde{c}^{\prime}, \tilde{n}} / m_{\tilde{n}}$.
[1] Loubere, Shashkov: JCP, 2005.
[2] Kucharik, Shashkov: JCP, 2014.
ENGINEERING
CTU IN PRAGUE
[3] Hirt, Amsden: LANL Report, 1973.

- Inter-nodal fluxes ${ }^{[2]}$.
- Interpolation of $F_{n^{\prime} \rightarrow n}^{m}$ from $\forall F_{c^{\prime} \rightarrow c^{\prime}}^{m} \mu$ flux: other quantities. $F_{n^{\prime} \rightarrow n}^{\mu}=u_{n^{\prime} \rightarrow n}^{\mathrm{rec}} F_{n^{\prime} \rightarrow n}^{m}$.
- $u_{\tilde{n}}=\frac{\mu_{n}+\sum_{n^{\prime} \in N(n)} F_{n^{\prime} \rightarrow n}^{\mu}}{m_{\tilde{n}}}$.

- Remap on dual cells ${ }^{[3]}$.
- The rest same as for

Multi-material ALE

- Lagrangian simulation - different materials in different cells, remain there for the whole simulation.
- ALE \Rightarrow mixing unavoidable \Rightarrow numerical interface diffusion, useless EOS, . . .
- Solution: multi-material ALE.

- Concentrations \times splitting of cell c to polygons c_{k} representing particular materials k, thermodynamic quantities separately for each material.
- Additional: material quantities - relative volume (volume fraction) $\alpha_{c, k}$, eventually approximate material position (centroid) $\vec{x}_{c, k}$.
- Splitting of c to $c_{k}=$ material reconstruction ${ }^{[1]}$: Volume of Fluid (VOF) $)^{[2]}$, Moment of Fluid (MOF) ${ }^{[3]}$, . .

Multi-material ALE - Differences

- In Lagrangian step - additional model for material interaction (closure model) defining interface motion \rightarrow evolution of $\alpha_{c, k}$.
- In rezone - no difference. Methods minimizing rezone at material interfaces.
- In remap - generalization of exact integration \rightarrow instead of intersection with original cell c, so intersections with all its material polygons $c_{k}{ }^{[1]}$.
- Next to remap of standard fluid quantities, remap of $\alpha_{c, k}$ and $\vec{x}_{c, k}$.
- Reconstruction/remap of velocity vector must be performed in a consistent way, otherwise can lead to conservation violation due to non-linearity of kinetic energy ${ }^{[2]}$, or symmetry violation of velocity field ${ }^{[3]}$.

Physical aspects - Model

- Laser plasma - simplest approximation by modification of energy equation:

$$
\begin{align*}
\frac{d \rho}{d t} & =-\rho \nabla \cdot \vec{w} \tag{28}\\
\rho \frac{d \vec{w}}{d t} & =-\nabla p \tag{29}\\
\rho \frac{d \varepsilon}{d t} & =-p \nabla \cdot \vec{w}+\nabla \cdot(\kappa \nabla T)-\nabla \cdot \vec{I} \tag{30}
\end{align*}
$$

where T is temperature, κ is heat conductivity coefficient, and \vec{I} is laser beam intensity profile.

Physical aspects - Laser absorption

- Simple model of laser absorption on the critical surface ${ }^{[1]}$.
- Laser radiating from upwards $-\vec{I}=\left(0,-I_{z}(t, r)\right)$, Gaussian profile.
- On each edge - projection of intensity to the normal direction \vec{I}_{e}.
- Interpolation of nodal density from neighbors.
- Density in all cell nodes sub- or supercritical $\Rightarrow(D \vec{I})_{c}=0$.
- Mixed $\Rightarrow \quad(D \vec{I})_{c}=\frac{1}{V_{c}} \sum_{e \in \delta c} L^{s}(e) \vec{I}_{e}$,
$L^{s}(e)$ - subcritical edge length, \vec{I}_{e} - projected intensity along edge.

- Equation of absorption: $\rho \frac{d \varepsilon}{d t}+p \nabla \cdot \vec{w}=-C_{A} \nabla \cdot \vec{I}, C_{A}$ - coefficient.

Physical aspects - Laser absorption

- Problems $-C_{A}$ needed from user + full absorption in one cell leading to series of "cell explosions".
- Several more advanced models.
- Raytracing ${ }^{[1]}$ - explicit tracking of each single ray in the domain, including its refractions on the cell boundaries.
- Wave-based models employing stationary solution of Maxwell equations ${ }^{[2]}$.

Physical aspects - Heat conductivity

- Represented by parabolic term in the energy equation.
- Separated by operator splitting to the form $\rho \varepsilon_{t}=\nabla \cdot(\kappa \nabla T)$, transformed to temperatures $T_{t}=\frac{1}{\rho \varepsilon_{T}} \nabla \cdot(\kappa \nabla T)$.
- Solving using support operators method ${ }^{[1]}$.
- Temperature derivative of energy ε_{T} computed numerically.
- Classical Spitzer-Harm heat conductivity coefficient

$$
\begin{equation*}
\kappa=20\left(\frac{2}{\pi}\right)^{3 / 2} \frac{k^{7 / 2}}{\sqrt{m_{e}} e^{4}} \delta_{e e} \frac{T^{5 / 2}}{Z \ln \Lambda} \tag{31}
\end{equation*}
$$

corrected by electron-electron collision term $\delta_{\text {ee }}=0.095 \frac{Z+0.24}{1+0.24 Z}$, where k is Boltzmann constant, m_{e} is the electron mass unit, e is the electron charge, Z is the plasma mean ion charge, and $\ln \Lambda$ is the Coulomb logarithm.

Physical aspects - Heat conductivity

- Green/Gauss theorems express integral properties of operators:
- Generalized gradient
- Extended divergence

$$
\begin{aligned}
& \vec{W}=\vec{G} T=-\kappa \nabla T \\
& \vec{D} \vec{W}=\left[\begin{array}{ccc}
\nabla \vec{W} & \text { in } & V \\
-(\vec{W}, \vec{n}) & \text { on } & \partial V
\end{array}\right.
\end{aligned}
$$

- Mimetic discrete operators G, D have the same discrete integral properties, namely gradient is adjoint of divergence $G=D^{*}$.
- Fully implicit scheme in time $\left(T^{n+1}-T^{n}\right) / \Delta t+D G T^{n+1}=0$.
- Explicit not suitable: CFL \Rightarrow many steps per 1 Lagrangian step.
- Matrix of global system is symmetric and positive definite - conjugate gradient method.
- Exact on piecewise linear solutions, otherwise it is second order accurate in space. Works well on bad quality meshes, allows discontinuous diffusion coefficient.

Physical aspects - Heat flux limiter

- Standard methods can provide higher heat flux \vec{W} than physically feasible need to limit it.
- Compare sizes of heat fluxes with local free stream limit $W^{\text {lim }}=f^{\max } \frac{k}{m_{u}} \sqrt{\frac{k}{m_{e}}} \frac{Z \rho}{A} T^{3 / 2}$, where the coefficient $f^{\max } \in(0.05,0.3)$ (between 5% and 30% of the physical limit).
- Compute values $c=\frac{W^{\text {lim }}}{|\vec{W}|}$, and renormalize the conductivity coefficient $\tilde{\kappa}=c \kappa$ in each cell.
- The conductivity equation is then solved for the second time with new $\tilde{\kappa}$, ensuring the limit is not exceeded.
- Need to solve the global system twice \rightarrow new temperatures/energies more realistic.

Physical aspects - EOS

- EOS crucial, strongly affects realistic simulations.
- Ideal gas for simple fluid test, reasonably valid in low-density corona.
- Realistic EOSes - significantly more computationally expensive, often tabulated.
- Quotidian EOS (QEOS) ${ }^{[1]}$ for real plasma - Thomas-Fermi theory for electrons and Cowan model for ions.
- Sesame EOS ${ }^{[2]}$ - tables of measured values + several material theories providing interpolation techniques.
- Various modifications - such as Badger or FEOS.
- HerEOS ${ }^{[3]}$ - library for Hermite interpolation of tabulated data.

Physical aspects - ALE in cylindrical geometry

- Many laser-related processes are cylindrically symmetrical, 2D code with cylindrical geometry well approximates 3D reality.
- Switching to cylindrical geometry $=$ adding r factor into all integrals different volumes, centroids.
- Lagrangian solver - adding r factor leads to Control Volume scheme: integration mainly in forces.
- Mesh rezoning - no change, done as in Cartesian case.
- Remap: r arises during integration.

Physical aspects - Others

- Many other models can be needed/usefull:
- Two-temperature model - separate electron/ion temperatures \rightarrow two energy equations + heat exchange term. More realistic for non-ideal plasma.
- Phase transition model - taking into account latent heat of melting and evaporation, important for interaction with solid targets.
- Non-local energy transport - represents long-distance transfer of energy due to material radiation.
- Most of described methods implemented in Prague ALE (PALE) code Fortran, 2D Cartesian/cylindrical geometry, staggered ALE, realistic EOSes, laser absorption, heat conductivity + limiter, two-temperature model, . . .
- Simulations of laser/target interactions, experiments at PALS or ELI.

Fluid examples: 1D Sod problem

Fluid examples: Rayleigh-Taylor instability 100×600 mesh, MM, Eulerian regime ${ }^{[1]}$.

$T=0$

$T=5$

$T=10$

$T=20$

Fluid examples: Triple point problem

- Interfaces among three

- Higher pressure generates shock, different properties of right materials \Rightarrow vortex.
- Eulerian run, thin filaments.

Fluid examples: Jet through a hole in a wall

- Hole in a wall ${ }^{[1]}$ (inactive cells), larger left pressure \Rightarrow jet.
- Deformation of cells around the hole, ALE simulation failure.
- Feasible-set mesh untangling \Rightarrow increased robustness.

Laser examples: Disc impact

- Simulation inspired by experiments on PALS system ${ }^{[1]}$.
- Laser evaporates disc target, acceleration to tens/hundreds $\mathrm{km} / \mathrm{s}^{[2]}$.
- Impact to massive target.
- Melting and evaporation of material, crater formation.

Laser examples: Disc impact $\mathbf{- 1)}$ ablative acceleration

- Geometrical computational mesh, in disc only.
- Laser absorption, material evaporation upwards.
- Massive part of the disc accelerated downward due to ablation (momentum conservation).

Laser examples: Disc impact -1) ablative acceleration

Laser examples: Disc impact - 2) interpolation

Laser examples: Disc impact - 3) impact, crater

- Comparison of Lagrangian and ALE simulation short after computation starts, Lagrangian fails.
- ALE does not influence the result too much (slight shock diffusion), but mesh improved significantly.
- Impossible to finish simulation without ALE.

Laser examples: Disc impact - 3) impact, crater

- After impact - material compression, increase of temperature.
- Inside target: circular shock wave spreading from impact, melting and evaporation of target.
- Corona (plasma plume) spreading outside.

1 ns

Laser examples: Disc impact - 3) impact, crater

- Crater formation - liquid/gas phase interface.
- Mesh remains smooth, the simulation can continue further.
- Comparison of crates sizes to experimental values - reasonable agreement ${ }^{[1]}$

Laser examples: LICPA scheme

- Laser induced cavity pressure acceleration ${ }^{[1]}$.
- Preparation, analysis, interpretation of PALS experiments.
- Simulations of processes in channel covered by a cavity.
- Cavity \Rightarrow large portion of laser energy transferred to shock wave \Rightarrow higher impact velocity, larger craters.
- Many configurations: with of ablator/projectile, material of projectile/target $(\mathrm{CH}, \mathrm{Al}, \mathrm{Cu}, \mathrm{Au})$, laser energy $(100-400 \mathrm{~J})$, laser frequency $(1 \omega, 3 \omega)$.

- Different aspects of experiments, hydroefficiency.
- Comparison of simulations and experiments (impact velocity, shock speed, crater size) \Rightarrow reasonably good agreement.

Laser examples: LICPA scheme

Absorption

Accel. + impact

Shock formation

Crater development

New trends in ALE hydrodynamics

- ALE+AMR (Adaptive Mesh Refinement) ${ }^{[1]}$
- automatically finer mesh in interesting regions (shocks, interfaces, physical phenomena, . . .);
- higher effective resolution, uncomputable in whole domain;
- necessary in Eulerian codes, useful in ALE.
- ReALE - reconnection $\mathrm{ALE}^{[2]}$
- changing mesh topology, cell follows the fluid;
- significant improvement in regions of sheer flows or vortices.
- Curvilinear ALE $^{[3]}$ - curved mesh instead of straight
- cell can significantly deform during fluid motion;
- prevents most of tangling, increased robustness, less ALE.

Conclusions

- Lagrangian and ALE methods suitable for laser/target simulations.
- Physical models crucial for realistic results.
- Current codes able to perform realistic laser/target computations.
- Ongoing research, attractive topic.

Thank you for your attention.

