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† Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague,
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Overview

• Hydrodynamic simulations.

• Euler equations in Eulerian and Lagrangian frameworks.

• Arbitrary Lagrangian-Eulerian (ALE) methods.

• Staggered compatible Lagrangian scheme.

• Mesh rezoning techniques.

• Quantity remapping.

• Physical models for LPP.

• Examples of hydrodynamic ALE simulations.

• Conclusions.
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Hydrodynamic (fluid) simulations

• Hydrodynamics = dynamics of fluids.

• Description of fluid by a set of (hyperbolic) PDEs,
solution by tools of Computational Fluid Dynamics
(CFD).

• Fluid properties represented by macroscopic
quantities – density, velocity, pressure, specific
internal energy, . . .

• Discretization:
– space: computational mesh, cells c;
– time: sequence of meshes, time levels n.

• Approximation of continuous density (other
quantity) function ρ(~x, t) by its discrete values
ρnc = ρ(~xc, t

n).

• Transformation of system of PDEs for ρ(~x, t) to
system of algebraic equations for ρnc .

ρ(~x, t)

↓

ρnc

n− 1

n

n+ 1
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Euler equations

• Simplest approximation – Euler equations.

• System of hyperbolic PDEs representing conservation of mass, momentum,
and total energy:

ρt + div(ρ ~w)= 0 , (1)

(ρ ~w)t + div(ρ ~w2) +
−−→
grad p= 0 , (2)

Et + div(~w (E + p))= 0 . (3)

• Here: ρ – density, ~w – velocity, p – pressure, E = ρ ε + 1
2 ρ |~w|

2 – total
energy density, ε – specific internal energy.

• More unknowns than equations – system enclosed by equation of state
(EOS): p = P(ρ, ε). Ideal gas – p = (γ − 1) ρ ε, where γ – gas constant
(ratio of its specific heats).

• General fluid (plasma) – complicated (non-linear) EOSes, often tabulated.
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Transformation from Eulerian to Lagrangian framework

• Transforming system to moving (Lagrangian) reference frame.

• Example – conservation of mass in 1D: ρt+(ρ u)x = 0, expanding derivative:
ρt + u ρx + ρ ux = 0.

• This can be written as Dρ
D t + ρ ux = 0, where D

D t = ∂
∂t + ∂x

∂t
∂
∂x = ∂

∂t + u ∂
∂x

is the Lagrangian (total, material) derivative.

• In multiD: D
D t = ∂

∂ t + ~w · ∇.

• Similarly for the whole system:

Dρ

D t
+ ρ∇ · ~w= 0 , (4)

ρ
D ~w

D t
+∇ p= ~0 , (5)

ρ
D ε

D t
+ p∇ · ~w= 0 . (6)
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Lagrangian motion

• Motion of Lagrangian particles described by an ODE: D~x
D t = ~w, typically

defines motion of mesh nodes.

• Location of velocity w:

– in mesh cells → cell-centered methods: all
quantities located at the same place, need to use
approximate Riemann solver at each node to define
its velocity;

– in mesh nodes → staggered methods: mesh
motion directly defined, different location of
thermodynamic (ρc, pc, εc) and kinematic (~wn)
quantities.

• Computational cells considered to be Lagrangian
particles: no mass flux between cells ⇒ density
given by cell shape (volume), no need to solve mass
equation.

n

c

ρc
pc
εc
~wc

n

c
ρc
pc
εc

~wn
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Euler equation – notes

• Eulerian form – usually for conservative quantities, Lagrangian form – usually
for primitive quantities, equivalent.

• Inter-connected system of PDEs→ cannot be solved analytically (except for
few special cases) ⇒ numerical methods.

• Remains to define IC (ρ(~x, t = 0) = ρ0(~x)) and BC (wall, free, periodic,
physics dependent, . . . ) – can be most difficult.
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Eulerian vs. Lagrangian methods

• Eulerian methods:

– Fixed computational mesh, not changing in time.
– Fluid moves between mesh cells in the form of mass fluxes.
– Simpler methods, easier to analyze.
– Problem: Not suitable for highly-volume-changing problems – typical

in laser/plasma simulations, where strong material compressions and
expansions occur.

• Lagrangian methods:

– Computational mesh moves naturally with the fluid.
– No mass fluxes, constant masses in cells.
– Optimal for strongly changing domains.
– Problem: Due to mesh motion, mesh can degenerate – non-convex, self-

intersecting, or completely inverted cells → increase of numerical error or
simulation failure.

+ + +

− −
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Arbitrary Lagrangian-Eulerian (ALE) methods

• Combination of both approaches – mesh following the fluid motion +
guarantee its validity[1].

• Recently very popular, present in many hydrodynamic laser/plasma codes.

• 2 types: direct vs. indirect ALE.

• Direct ALE methods:

– Separate fluid and mesh velocities.
– More complicated equations – formulation of fluid flow on differently

moving mesh → convective term representing mass flux.
– Filtering dangerous velocity components (shear flow, vortexes) out from

the velocity field.

[1] Hirt, Amsden, Cook: JCP, 1974. 9



Indirect ALE methods

• Explicit separation of 3 steps:

– 1) Lagrangian step = solver of
PDEs, evolution of fluid quantities
and mesh in time;

– 2) Rezoning = untangling and
smoothing of computational mesh,
increasing its geometric quality;

– 3) Remap = conservative inter-
polation of all quantities from
Lagrangian to rezoned mesh.

• Rezone + remap = Eulerian part of
the ALE algorithm (fluxes).

• Different strategies for triggering
rezone/remap on (degeneracy,
Eulerian, counter, . . . )

Initialization

t = 0, i = 0

Main loop

Estimate ∆t

t = t+ ∆t

i = i+ 1

Lagrangian solver
• Fluid quantities
• Mesh
• EOS, MM, . . .

i = 0

Mesh rezoning

Remap
• Interpolate ρc, εc
• Interpolate ~un
• Energy fix
• MOF, pc, α/~z

(i > imax) ∨
low mesh quality

While t < tmax

Finish

YES

NO

Lagr. Eul.
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Example: Sedov blast wave

Euler Lagrange ALE20
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Step 1: Lagrangian solver

• Solving the system of Euler equations in Lagrangian form:

Dρ

D t
= −ρ∇ · ~w , (7)

ρ
D ~w

D t
= −∇ p , (8)

ρ
D ε

D t
= −p∇ · ~w , (9)

with ODE for motion of mesh nodes

D~x

D t
= ~w , (10)

and equation of state
p = P(ρ, ε) . (11)

• Compatible Lagrangian scheme in staggered discretization (mimetic or
support operators method)[1].

[1] Caramana, Burton, Shashkov, Whalen: JCP, 1998. 12



Step 1: Lagrangian solver

• Conservation of mass (7) – constant cell mass mc ⇒ automatically satisfied.

• Integration of momentum equation (8) over dual (nodal) volume Vn,

mn

(
D ~w

D t

)
n

=

∫
Vn

ρ
D ~w

D t
dV = −

∫
Vn

∇p dV ≡ ~F pn . (12)

• Forces on the right hand side can be written
as ~F pn =

∑
c∈C(n)

~F pc,n , (13)

where ~F pc,n is force from cell c to node n due
to pressure in c, can be computed from cell
pressures and cell geometry.

n

c

c,n

• Left hand size – approximation of velocity derivative by finite difference:

D ~w

D t

∣∣∣∣
n

≈ ~wt
n+1

n − ~wt
n

n

∆t
⇒ ~wt

n+1

n = ~wt
n

n +
∆t

mn

~F pn . (14)
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Step 1: Lagrangian solver

• Motion of computational mesh nodes from (10) – again finite difference

~xt
n+1

n = ~xt
n

n + ∆t ~wt
∗
n . (15)

• Computation of new cell volumes V t
n+1

c from cell geometry.

• Update of cell densities

ρt
n+1

c = mc/V
tn+1

c . (16)

• Total energy: internal + kinetic:

E =
∑
∀c

mc εc +
∑
∀n

1

2
mn ‖~wn‖2 =

∑
∀c

mc εc +
∑

n∈N(c)

1

2
mc,n ‖~wn‖2

 ,

(17)
where

mc =
∑

n∈N(c)

mc,n , mn =
∑

c∈C(n)

mc,n . (18)
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Step 1: Lagrangian solver

• Conservation =⇒ ∂E/∂t = 0, true if in each cell: ∂Ec/∂t = 0,

mc
∂εc
∂t

= −
∑

n∈N(c)

mc,n ‖~wn‖
∂‖~wn‖
∂t

≡Wc . (19)

• Substitution for velocity derivative from (12) ⇒

mc
∂εc
∂t

= Wc , where Wc = −
∑

n∈N(c)

mc,n

mn
~wn · ~F pc,n . (20)

• Wc = released/removed heat in cell c due to its compression/expansion,
can be explicitly computed.

• Energy update by central difference again,

εt
n+1

c = εt
n

c +
∆t

mc
Wc . (21)

• Due to this construction: exact energy conservation up to machine precision.
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Step 1: Lagrangian solver

• Remaining only pressure update – from EOS (11),

pt
n+1

c = P
(
ρt
n+1

c , εt
n+1

c

)
. (22)

• Resulting scheme conservative in mass, momentum, and total energy.

• Usually used in two-step (predictor-corrector) form – prediction of pressure
and velocity to tn+1/2 → second order of accuracy.

• Next to pressure forces, other forces can be added:

– Viscosity forces ~F qc,n – stabilization of the scheme (elimination of

oscillations) at shocks, several models[1,2].

– Subzonal-pressure forces ~F dpc,n – finer pressure discretization, reducing

unwanted mesh degeneracies (hourglass)[3].
– Other forces due to physical modes, such as gravity forces, . . .

[1] Caramana, Shashkov, Whalen: JCP, 1998.
[2] Campbell, Shashkov: JCP, 2001.
[3] Caramana, Shashkov: JCP, 1998. 16



Step 2: Mesh rezoning

• Mesh rezoning = mesh untangling (making it valid) and smoothing
(increasing its geometric quality).

• To avoid excessive diffusion of the solution in the following remapping step
– move only nodes needed to move, and as little as possible.

0
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0.6
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1
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Step 2: Mesh rezoning

• Many rezoning methods.

• In realistic computations – efficient methods
(3D), e.g. Laplace or Winslow.

• Laplace: new positions as weighted average,

~̃xi,j =
∑

k,l=−1,1

wi+k,j+l ~xi+k,j+l , where
∑

k,l=−1,1

wi+k,j+l = 1 . (23)

• Winslow[1]: based on solving of elliptic PDEs in logical directions,

~̃xi,j =
1

2 (αk + γk)

(
αk (~xi,j+1 + ~xi,j−1) + γk (~xi+1,j + ~xi−1,j) (24)

−1

2
βk (~xi+1,j+1 − ~xi−1,j+1 + ~xi−1,j−1 − ~xi+1,j−1)

)
,

where coefficients α = x2
ξ + y2

ξ , β = xξ xη + yξ yη, γ = x2
η + y2

η, and where
(ξ, η) are the logical coordinates.

• More advanced methods – eg. CN minimization, RJM[2]. For untangling –
modified CN minimization, feasible set[3].

[1] Winslow: LLNL Report, 1963.
[2] Knupp, Margolin, Shashkov: JCP, 2002.
[3] Berndt, Kucharik, Shashkov: PCS, 2010. 18



Step 3: Quantity remapping

• Remap = conservative interpolation of all fluid quantities from old
(Lagrangian) computational mesh to new (rezoned) one.

• Given: values of given quantity (e.g. density ρc) in the cell centroid
~xc = 1

Vc

∫
c
~x dV , Vc =

∫
c
1 dV .

• Understood as mean values of unknown underlying density function ρ(~x):

mc =

∫
c

ρ(~x) dV , ρc = mc/Vc . (25)

• Goal: compute new masses

mc̃ ≈
∫
c̃

ρ(~x) dV (26)

and mean values ρc̃ = mc̃/Vc̃ in the rezoned cells c̃.
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Step 3: Quantity remapping

• Requirements:

– Conservation:
∑
cmc =

∑
c̃mc̃.

Solving conservation laws, do not want to spoil it.

– Accuracy: ρc̃ ≈ ρ(c̃).
Mean value should be close to the function value in the cell centroid.

– Linearity-preservation: ρ(~x) linear ⇒ ρc̃ = ρ(~xc̃).
Implies second order of convergence.

– Consistency (continuity): c = c̃ ⇒ ρc = ρc̃.
Do not want to change value is cell did not change.

– Bound-preservation: ρmin
c ≤ ρc̃ ≤ ρmax

c , where ρmin
c = minc′∈C(c) ρc′.

Only interpolation ⇒ do not want to create new extrema.
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Step 3: Quantity remapping – Reconstruction

• First phase – piece-wise linear reconstruction of density function (2D):

ρ(x, y)
∣∣
c
≈ ρc(x, y) = ρc +

(
∂ρ

∂x

)
c

(x− xc) +

(
∂ρ

∂y

)
c

(y − yc) . (27)

• Slopes (∂ρ/∂x)c, (∂ρ/∂y)c:

– Integral average over super-cell:
(∂ρ/∂x)c ≈ 1

VSc

∫
Sc

(∂ρ/∂x) dV .

– Minimization (LS) of error functional:
(∂ρ/∂x)c ≈ arg min Φ(∂ρ/∂x, ∂ρ/∂x),

Φ(∂ρ/∂x, ∂ρ/∂x) =
∑

c′∈C(c)

∥∥ρ(~xc′)
∣∣
c
− ρc′

∥∥2
.

– Other possibilities.

c

Sc

c

c′
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Step 3: Quantity remapping – Reconstruction

• Usually with limiter, e.g. Barth-Jespersen[1]:
(∂ρ/∂x)c = Ψc (∂ρ/∂x)unlim

c , where Ψc = min
c′∈C(c)

Ψc,n, and

Ψc,n =


min

(
1,

ρmax
c −ρc

ρunlim
c (n)−ρc

)
for ρunlim

c (n)− ρc > 0

min
(

1,
ρmin
c −ρc

ρunlim
c (n)−ρc

)
for ρunlim

c (n)− ρc < 0

1 for ρunlim
c (n)− ρc = 0 .

cc− 1 c+ 1

ρc

ρc−1

ρc+1

(
∂ρ
∂x

)unlim

c

ρc(~x)unlim

ρc(~x)

[1] Barth: Springer, 1997. 22



Step 3: Quantity remapping – Exact integration

• Most natural method based on cell intersections:
mc̃ =

∫̃
c

ρ(~x) dV =
∑
∀c′

∫
c̃∩c′

ρ(~x) dV ≈
∑
∀c′

∫
c̃∩c′

ρc′(~x) dV .

• General geometry ⇒ global remap.

• Conservation obvious, limiter ⇒ local extrema.

• Same topology ⇒ can be formulated in flux form[1]:
mc̃ = mc +

∑
c′∈C(c)

Fmc′→c, F
m
c′→c=

∫
c̃∩c′

ρc′(~x) dV −
∫
c̃′∩c

ρc(~x) dV .

• Flux form ⇒ conservation guaranteed ⇒ more freedom
in flux construction.

• Problems: computationally expensive, robustness, 3D.

c′

c̃

c̃ ∩ c′

cc̃

c′c̃′
c̃ ∩ c′

[1] Margolin, Shashkov: JCP, 2003. 23



Step 3: Quantity remapping – Approximate integration

• Flux approximated using swept regions[1]:
mc̃ = mc +

∑
e∈E(c)

Fme , where Fme =
∫
Ωe

ρc∗(~x) dV , c∗ = c/c′.

• No intersections needed ⇒ less computationally
expensive, robustness.

• Problem: in certain parts of new cells (corner flux,
rotating edge), approximation from wrong cell is used⇒
local bound violation.

c

c′
Ωe

• Several options for fixing this:

– A-posteriori mass redistribution (repair)[2];
– Flux Corrected Transport (FCT)[3];
– Multi-dimensional Optimal Order Detection (MOOD)[4];
– . . .

• Difficult generalization for multi-material case.
[1] Dukowicz, Baumgardner: JCP, 2000.
[2] Kucharik, Shashkov, Wendroff: JCP, 2003.
[3] Kuzmin, Lohner, Turek: Springer, 2005.
[4] Blanchard, Loubere: C&F, 2016. 24



Remap of all fluid quantities

• Up to now – only remap of ρ, m.

• Remap of ε – similar as density.

• Pressure – usually computed from EOS, but can be remapped too.

• Remap of ~w – simple in cell-centered methods (same manner), more
complicated in staggered discretization.

• Kinetic energy computed from remapped velocities – non-linear → violation
of kinetic energy conservation⇒ wrong shock speeds, wrong plateau height,
. . .

• Typically treated by energy fix[1]: remap kinetic energy independently and
distribute its discrepancy to internal energy.

• Several options for velocity remap.

[1] Benson: CMAME, 1992. 25



Remap of all fluid quantities

n

c

µc,n

• Double-fine mesh[1].

• Simplest way:

– µc,n = mc,n un,
– remap µc,n → µc̃,ñ,
– uñ =

∑
c′∈C(n)

µc̃′,ñ/mñ.

nn′

c′
c
Fc′→c

F
n
′ →
n

• Inter-nodal fluxes[2].

• Interpolation of Fmn′→n
from ∀ Fmc′→c, µ flux:
Fµn′→n = urec

n′→nF
m
n′→n.

• uñ =

µn+
∑

n′∈N(n)

F
µ

n′→n

mñ
.

• Remap on dual cells[3].

• The rest same as for
other quantities.

[1] Loubere, Shashkov: JCP, 2005.
[2] Kucharik, Shashkov: JCP, 2014.
[3] Hirt, Amsden: LANL Report, 1973. 26



Multi-material ALE

• Lagrangian simulation – different materials in different
cells, remain there for the whole simulation.

• ALE ⇒ mixing unavoidable ⇒ numerical interface
diffusion, useless EOS, . . .

• Solution: multi-material ALE.

ck

~xc,k
αc,k

ρc,k
pc,k
εc,k

n
~un

• Concentrations × splitting of cell c to polygons ck representing particular
materials k, thermodynamic quantities separately for each material.

• Additional: material quantities – relative volume (volume fraction) αc,k,
eventually approximate material position (centroid) ~xc,k.

• Splitting of c to ck = material reconstruction[1]: Volume of Fluid (VOF)[2],
Moment of Fluid (MOF)[3], . . .

[1] Kucharik, Garimella, Schofield, Shashkov: JCP, 2010.
[2] Youngs: AWE Report, 1984.
[3] Dyadechko, Shashkov: JCP, 2008. 27



Multi-material ALE – Differences

• In Lagrangian step – additional model for material interaction (closure
model) defining interface motion → evolution of αc,k.

• In rezone – no difference. Methods minimizing rezone at material interfaces.

• In remap – generalization of exact integration→ instead of intersection with
original cell c, so intersections with all its material polygons ck

[1].

• Next to remap of standard fluid quantities, remap of αc,k and ~xc,k.

• Reconstruction/remap of velocity vector must be performed in a consistent
way, otherwise can lead to conservation violation due to non-linearity of
kinetic energy[2], or symmetry violation of velocity field[3].

[1] Kucharik, Shashkov: JCP, 2014.
[2] Bailey, Berndt, Kucharik, Shashkov: JCAM, 2010.
[3] Velechovsky, Kucharik, Liska, Shashkov, Vachal: JCP, 2013. 28



Physical aspects – Model

• Laser plasma – simplest approximation by modification of energy equation:

d ρ

d t
= −ρ∇ · ~w , (28)

ρ
d ~w

d t
= −∇ p , (29)

ρ
d ε

d t
= −p∇ · ~w +∇ · (κ∇T )−∇ · ~I , (30)

where T is temperature, κ is heat conductivity coefficient, and ~I is laser
beam intensity profile.

[1] Kucharik, Shashkov: JCP, 2014.
[2] Bailey, Berndt, Kucharik, Shashkov: JCAM, 2010.
[3] Velechovsky, Kucharik, Liska, Shashkov, Vachal: JCP, 2013. 29



Physical aspects – Laser absorption

• Simple model of laser absorption on the critical surface[1].

• Laser radiating from upwards – ~I = (0,−Iz(t, r)), Gaussian profile.

• On each edge – projection of intensity to the normal direction ~Ie.

• Interpolation of nodal density from
neighbors.

• Density in all cell nodes sub- or super-
critical ⇒ (D ~I)c = 0.

• Mixed ⇒ (D ~I)c = 1
Vc

∑
e∈δc

Ls(e) ~Ie,

Ls(e) – subcritical edge length,
~Ie – projected intensity along edge.

i,j

i+1,j

i+1,j+1i,j+1

• Equation of absorption: ρ d εd t + p∇ · ~w = −CA∇ · ~I, CA – coefficient.

[1] Liska, Kucharik: EQUADIFF, 2007. 30



Physical aspects – Laser absorption

• Problems – CA needed from user + full absorption in one cell leading to
series of “cell explosions”.

• Several more advanced models.

• Raytracing[1] – explicit tracking of each single ray in the domain, including
its refractions on the cell boundaries.

• Wave-based models employing stationary solution of Maxwell equations[2].

[1] Chaudhury, Chaturvedi: PoP, 2006.
[2] Kapin, Kucharik, Limpouch, Liska: CzJP, 2006. 31



Physical aspects – Heat conductivity

• Represented by parabolic term in the energy equation.

• Separated by operator splitting to the form ρ εt = ∇ · (κ∇T ), transformed
to temperatures Tt = 1

ρ εT
∇ · (κ∇T ).

• Solving using support operators method[1].

• Temperature derivative of energy εT computed numerically.

• Classical Spitzer-Harm heat conductivity coefficient

κ = 20

(
2

π

)3/2
k7/2

√
me e4

δee
T 5/2

Z ln Λ
(31)

corrected by electron-electron collision term δee = 0.095 Z+0.24
1+0.24Z , where k is

Boltzmann constant, me is the electron mass unit, e is the electron charge,
Z is the plasma mean ion charge, and ln Λ is the Coulomb logarithm.

[1] Shashkov, Steinberg: JCP, 1996. 32



Physical aspects – Heat conductivity

• Green/Gauss theorems express integral properties of operators:

– Generalized gradient ~W = ~GT = −κ∇T

– Extended divergence ~D ~W =

[
∇ ~W in V

−( ~W,~n) on ∂V

• Mimetic discrete operators G,D have the same discrete integral properties,
namely gradient is adjoint of divergence G = D∗.

• Fully implicit scheme in time (Tn+1 − Tn)/∆t+DGTn+1 = 0 .

• Explicit not suitable: CFL ⇒ many steps per 1 Lagrangian step.

• Matrix of global system is symmetric and positive definite – conjugate
gradient method.

• Exact on piecewise linear solutions, otherwise it is second order accurate
in space. Works well on bad quality meshes, allows discontinuous diffusion
coefficient.

33



Physical aspects – Heat flux limiter

• Standard methods can provide higher heat flux ~W than physically feasible –
need to limit it.

• Compare sizes of heat fluxes with local free stream limit

W lim = fmax k
mu

√
k
me

Z ρ
A T 3/2, where the coefficient fmax ∈ (0.05, 0.3)

(between 5% and 30% of the physical limit).

• Compute values c = W lim

| ~W |
, and renormalize the conductivity coefficient

κ̃ = c κ in each cell.

• The conductivity equation is then solved for the second time with new κ̃,
ensuring the limit is not exceeded.

• Need to solve the global system twice → new temperatures/energies more
realistic.

34



Physical aspects – EOS

• EOS crucial, strongly affects realistic simulations.

• Ideal gas for simple fluid test, reasonably valid in low-density corona.

• Realistic EOSes – significantly more computationally expensive, often
tabulated.

• Quotidian EOS (QEOS)[1] for real plasma – Thomas-Fermi theory for
electrons and Cowan model for ions.

• Sesame EOS[2] – tables of measured values + several material theories
providing interpolation techniques.

• Various modifications – such as Badger or FEOS.

• HerEOS[3] – library for Hermite interpolation of tabulated data.

[1] More, Warren, Young, Zimmerman: PF, 1988.
[2] Lyon, Johnson: LANL Report, 1992.
[3] Zeman, Holec, Vachal: CMA, 2019. 35



Physical aspects – ALE in cylindrical geometry

• Many laser-related processes are cylindrically symmetrical, 2D code with
cylindrical geometry well approximates 3D reality.

• Switching to cylindrical geometry = adding r factor into all integrals –
different volumes, centroids.

• Lagrangian solver – adding r factor leads to Control Volume scheme:
integration mainly in forces.

• Mesh rezoning – no change, done as in Cartesian case.

• Remap: r arises during integration.

36



Physical aspects – Others

• Many other models can be needed/usefull:

– Two-temperature model – separate electron/ion temperatures → two
energy equations + heat exchange term. More realistic for non-ideal
plasma.

– Phase transition model – taking into account latent heat of melting and
evaporation, important for interaction with solid targets.

– Non-local energy transport – represents long-distance transfer of energy
due to material radiation.

• Most of described methods implemented in Prague ALE (PALE) code –
Fortran, 2D Cartesian/cylindrical geometry, staggered ALE, realistic EOSes,
laser absorption, heat conductivity + limiter, two-temperature model, . . .

• Simulations of laser/target interactions, experiments at PALS or ELI.
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Fluid examples: 1D Sod problem
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Fluid examples: Rayleigh-Taylor instability

100× 600 mesh, MM, Eulerian regime[1].

T = 0 T = 5 T = 10 T = 15 T = 20

[1] Fung, Francois, Dendy, Kenamond, Lowrie: NECDC, 2006. 39



Fluid examples: Triple point problem

• Interfaces among three
materials[1].

γ =1.4

ρ=1
p =0.1

γ =1.5

ρ=0.125
p =0.1γ =1.5

ρ=1
p =1

0 1 7
0

1.5

3

• Higher pressure generates
shock, different properties of
right materials ⇒ vortex.

• Eulerian run, thin filaments.

0 1 2 3 4 5 6 7
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2

2.5

3

Time: 5.000

[1] Galera, Maire, Breil: JCP, 2010. 40



Fluid examples: Jet through a hole in a wall

• Hole in a wall[1] (inactive cells),
larger left pressure ⇒ jet.

• Deformation of cells around the hole,
ALE simulation failure.

• Feasible-set mesh untangling ⇒
increased robustness.

γ = 5/3

ρ = 1

p = 100

u = 0

v = 0

γ = 5/3

ρ = 1

p = 1

u = 0

v = 0

(a) (b)

(c) (d)

[1] Berndt, Kucharik, Shashkov: PCS, 2010. 41



Laser examples: Disc impact

• Simulation inspired by experi-
ments on PALS system[1].

• Laser evaporates disc target,
acceleration to tens/hundreds
km/s[2].

• Impact to massive target.

• Melting and evaporation of
material, crater formation.

BEAMBEAM

r

d

L
impv

MASSIVE TARGET

DISC FLYER
LASERLASER

[1] Borodziuk, Kasperczuk, Pisarczyk, et al.: CzJP, 2003.
[2] Kalal, Borodziuk, Demchenko, et al.: ECLIM, 2004. 42



Laser examples: Disc impact – 1) ablative acceleration
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• Geometrical computational mesh, in disc only.

• Laser absorption, material evaporation upwards.

• Massive part of the disc accelerated downward due to ablation (momentum
conservation).
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Laser examples: Disc impact – 1) ablative acceleration
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Laser examples: Disc impact – 2) interpolation
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Laser examples: Disc impact – 3) impact, crater
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• Comparison of Lagrangian and ALE simulation short after computation
starts, Lagrangian fails.

• ALE does not influence the result too much (slight shock diffusion), but
mesh improved significantly.

• Impossible to finish simulation without ALE.
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Laser examples: Disc impact – 3) impact, crater

• After impact – material compression, increase of temperature.

• Inside target: circular shock wave spreading from impact, melting and
evaporation of target.

• Corona (plasma plume) spreading outside.
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Laser examples: Disc impact – 3) impact, crater

• Crater formation – liquid/gas phase interface.

• Mesh remains smooth, the simulation can continue further.

• Comparison of crates sizes to experimental values – reasonable agreement[1]
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[1] Kucharik, Limpouch, Liska, Havlik: ECLIM, 2004. 48



Laser examples: LICPA scheme

• Laser induced cavity pressure acceleration[1].

• Preparation, analysis, interpretation of PALS experiments.

• Simulations of processes in channel covered by a cavity.

• Cavity ⇒ large portion of laser energy transferred to shock
wave ⇒ higher impact velocity, larger craters.

• Many configurations: with of ablator/projectile, material of
projectile/target (CH, Al, Cu, Au), laser energy (100− 400 J),
laser frequency (1ω, 3ω).

• Different aspects of experiments, hydroefficiency.

• Comparison of simulations and experiments (impact velocity,
shock speed, crater size) ⇒ reasonably good agreement.
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[1] Badziak, Borodziuk, Pisarczyk, et al.: APL, 2010. 49



Laser examples: LICPA scheme

200 J, 3ω(438 nm)

Al

Au
5µm
2.8µm

150µm

2
m

m

Absorption

Accel. + impact

Shock formation

Crater development

50



New trends in ALE hydrodynamics

• ALE+AMR (Adaptive Mesh Refinement)[1]

– automatically finer mesh in interesting regions
(shocks, interfaces, physical phenomena, . . . );

– higher effective resolution, uncomputable in whole
domain;

– necessary in Eulerian codes, useful in ALE.

• ReALE – reconnection ALE[2]

– changing mesh topology, cell follows the fluid;
– significant improvement in regions of sheer flows

or vortices.

• Curvilinear ALE[3] – curved mesh instead of straight

– cell can significantly deform during fluid motion;
– prevents most of tangling, increased robustness,

less ALE.

[1] Anderson, Elliott, Pember: JCP, 2004.
[2] Loubere, Maire, Shashkov, Breil, Galera: JCP, 2010.
[3] Anderson, Dobrev, Kolev, Rieben, Tomov: SIAM JSC, 2018. 51



Conclusions

• Lagrangian and ALE methods suitable for laser/target simulations.

• Physical models crucial for realistic results.

• Current codes able to perform realistic laser/target computations.

• Ongoing research, attractive topic.
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Thank you for your attention.
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