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● Basics of fluid turbulent models.

● Simple 2D model.

○ Equations

○ Implementation

○ Results and limitations

● From kinetic to fluid equations to Braginskii equations.

● 3D GBS modell.

○ Inputs / outputs.

○ Implementation of the GBS code.

○ Results and limitations.

● Fluid codes on GPU using Python and JAX.



Fluid models basics
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● From kinetic equation to fluid equations.

● Maxwellian distribution is assumed (high collisionality)!

● Several first moments (up to temperature equations) + closure.

● Much faster compared to kinetic simulations, several 3D models exists (GBS, TOKAM3X, GRILLIX).

● Full-size simulations of medium size machines (COMPASS, TCV, etc).

● Kinetic effects and gyromotions are neglected.

● Describes edge plasma only => unable to simulate core plasma (ITGs, ETGs, TEM neglected).



Turbulence v okrajovém plazmatu
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Density turbulence

Complex 3D model Simple 2D model
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Towards simple 2D fluid model



Drift reduced approximation
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● The momentum equation for each charged particle species reduced to an algebraic expression for the 

fluid drifts in terms of scalar fields.

● To separate the parallel and perpendicular motion.

● To remove fast temporal scales.

● Can be used because the turbulence is much slower compared to gyro-frequency and much larger 

compared to the gyro-radius.

● Perpendicular motion given by ExB drift, diamagnetic drift, and polarization drift.



Simple 2D model - equations
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Perpendicular transport:
Kinetic equation

Density equation

Temperature equation



Simple 2D model - without temperature
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● Turbulence can be evolved even without temperature.

● Considering constant temperature - simplification.

● Poisson equation is unchanged.

● Numerical solution:

○ Poisson equation- Poisson solver

○ Operator d/dt

○ Curvature operator C(.)

○ Diffusion operator Λ

2D model without temperature:



Simple 2D model - implementation
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Total time derivative -> time change + convection

Curvature operator - derivative in y direction

Diffusion term -> diffusion in x and y + parallel decay

convection

1. derivative in x:

2. derivative in y:



Simple 2D model - Arakawa scheme

17/04/2023 10

● Convection term using Arakawa 

scheme for numerical stability.

● Arakawa conserves:

○ Mean vorticity

○ Mean-square vorticity

○ Kinetic energy



Simple 2D model - Poisson Solver
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Solve Poisson equation in 2D using periodical BCs in y:

● The Poisson equation in 2D:

● Fourier transform in y direction:

● Discretization - solving for phi:



Simple 2D model - Poisson Solver
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Solve Poisson equation in 2D using general BCs:

● The Poisson equation in 2D:

● Fourier transform cannot be used (no periodic BCs) -> finite difference matrix solver [1]:



Simple 2D model - Boundary conditions
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Left:

● Temperature and density set to 1 (normalization).

Right:

● Neumann for temperature, density and potential.

● Dirichlet for vorticity.

Top and bottom:

● Periodic boundary conditions for all the fields.

Parallel transport:

● Exponential decay in SOL and WALL SHADOW. 

● Represents region of open / closed mg. field lines.



Simple 2D model - results
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21st IAEA Fusion Energy Conference



Simple 2D model - limits
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Advantages

● Reduced computational resources.

● Faster simulation time

● Easier interpretation of the results.

● Easier implementation (simple equations).

● Some processes can be reasonably approximated 

by 2D model.

● Validation of more complex 3D codes.

Disadvantages

● Limited accuracy (neglects 3rd dimension).

● Oversimplification (some processes cannot be 

described in 2D).

● Not possible to perform full-size simulation.

● Cannot describe the complex tokamak geometry.
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Towards complex 3D fluid model



Towards Braginskii equations I
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Towards Braginskii equations II
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● Assumptions on drift reduced limit, electrostatic limit, etc…



Towards Braginskii equations III
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convection

curvature

parallel gadient

perp. Laplace

Gyroviscous
terms
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Operators used in fluid codes

Poisson bracket

Curvature operator

Perpendicular laplacian

Parallel laplacian
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Derivatives in 3D model
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● Poisson equation:

● Ampere equation:
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Complex 3D codes
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 3D, flux-driven turbulence codes, based on drift-reduced Braginskii model:

● GBS
○ Non-aligned grid, includes plasma core, kinetic neutrals, electromagnetic effects, ion dynamics.

● GRILLIX
○ Cylindrical grid, includes plasma core, electron-ion heat exchange, drift corrections at the magnetic presheath.

○ Evolves parallel component of the electromagnetic vector potential A॥ .

● TOKAM3X
○ Electron-ion heat exchange, drift corrections at the magnetic presheath.

● BOUT++
○ Framework for writing plasma simulations.

○ Any set of equations can be inserted and solved.

○ Can perform fluid or kinetic simulations.



GBS - FLUID TURBULENCE SIMULATION
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● Global Braginskii Solver - first principle, 3D, flux-driven, global, 

turbulence code for plasma edge simulations based on 

Braginskii equations.

● Full plasma volume, Divertor geometry, electromagnetic 

effects, kinetic neutrals, ion temperature dynamics, 

self-consistent turbulence evolution.

● High computational requirements (~2000 cores, ~5-10 M CPU 

hours / simulation), however still lower compared to full kinetic 

models.



GBS - SIMULATION DOMAIN
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Set of Magnetic boundary conditions
(Bohm Chodura boundary conditions)

Density source

Temperature source



GBS - SIMULATION DOMAIN
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SIMULATION RESULTS EXAMPLES
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Virtual probe 
diagnostics



SIMULATION RESULTS EXAMPLES
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Example of derivative on GPU
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● Python allows simple transformations of the code to GPU.

● All the fluid terms can be transformed.

● Central difference: 

● Compare of speeds using numpy vs NUMBA vs JAX CPU vs 

JAX GPU.

● Huge boost on GPU.

● Problem - limited memory on GPUs.

Boosting simulation using GPU



Using GPUs in Python
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● JAX - module for calculations on GPU.

● Very easy to use and to convert code into JAX.

● Numpy-like syntax - very easy to be used.

● The code is parallelized along GPU automatically.

● JAX insluces JIT (just-in-time) compiler boosting the code.

● Uses machine learning for boosting the code even more.

GPUs using Python 

several fast cores
universal

sequential operations
a lot of memory

many simple cores
parallel operations

fast computing
fast memory access



Conclusions

17/04/2023 31

● Turbulence plays a key role in particle and heat transport.

● Understanding and controlling turbulence in plasma edge can lead to better confinement. 

● Simulations can provide interpretation or prediction on turbulent transport.

● Fluid models offer higher speeds while still encompassing important physics.

○ Much faster compared to kinetic / gyrokinetic codes.

○ Does not include kinetic effects (Maxwellian distribution is assumed).

● Simple 2D model can be written very easily, providing still good results.

● Complex 3D models are more complicated, but almost the only way to perform full-size simulations.

● Consider using GPUs in your future works.
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