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Abstract. Arbitrary Lagrangian-Eulerian (ALE) method over-
comes troubles with Lagrangian moving mesh distortion by mesh
smoothing and conservative remapping from the old mesh to the
smoother one. Conservative, bound-preserving remapping of con-
served quantities by swept area method is presented. 2D ALE code
on quadrilateral, logically orthogonal meshes has been developed
for laser plasma physics applications. A particular example of high
velocity disc impacting solid target cannot be simulated by pure
Lagrangian method due to mesh distortion while the ALE code
produces reasonable results.

1. Introduction

Many problems in compressible fluid dynamics modeled by Euler equations involve
moving boundaries. Treatment of moving boundaries on static Eulerian computa-
tional mesh is rather complicated and in some cases as modeling of large compres-
sion or expansion almost impossible. For such problems one usually use Lagrangian
coordinates moving with the fluid which naturally treat moving boundaries and are
able to deal with large scale changes of computational domain as large compression
or expansion. Typical examples of problems with moving boundaries come from
laser plasma physics. The interaction of very high intensity laser beams with matter
produces laser plasma which can be treated as compressible fluid and modeled by
Euler equations. Simulated problems involve target compression and corona expan-
sion where the volume of computational domain changes multiple times during the
computation and simulations are typically performed in Lagrangian coordinates.

In the Eulerian methods using static coordinate frame, the fluid flows through
the static computational mesh. On the other hand, in the Lagrangian methods,
the mesh moves with the fluid, there is no mass flux between computational cells,
the advective parts of fluxes are included through the movement of the mesh, so
that e.g. in momentum equation the pressure gradient remains as the only flux.
Lagrangian methods are suitable for problems involving large changes of volume.
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They treat naturally moving boundaries. Due to no mass flux between computa-
tional cells they treat very well multi-material problems and contact discontinuities
appearing not only on material interfaces. For some problems, as modeling shear
or physical instabilities, however Lagrangian methods suffer from deformations (see
Fig. 1(b) for example of such distorted mesh) of the moving mesh following the
fluid movement. The mesh might distort and degenerate so much that some compu-
tational cells become inverted when the node of the cell crosses an opposite edge of
the cell. At such point, when the computational grid tangles and loses its regular-
ity, the Lagrangian computation cannot continue as the assumptions of the method
(regularity of the grid) are violated and the method fails. A way, how to deal with
such failures, is to use the Arbitrary Lagrangian-Eulerian (ALE) method.

The ALE method consists of several Lagrangian computational time steps fol-
lowed by a mesh rezoning and a conservative quantities remapping. The mesh re-
zoning step smooths the Lagrangian computational mesh and avoids its distortion.
During the remapping step the conservative quantities are conservatively remapped
from the old Lagrangian mesh to the new smoothed one. After remapping the La-
grangian computation continues until the next rezone/remap steps which introduce
the Eulerian flavor into the method allowing mass flux between computational cells.
The rezone/remap steps keep the quality of the moving mesh good enough during
the whole computation and are performed either regularly after fixed amount of
Lagrangian time steps or when mesh quality deteriorates under some threshold.
Although the ALE method was first proposed in 1974 [1] and became popular for
transient, large deformation problems in solid mechanics [2], its usage in compress-
ible fluid simulations attracted attention only after Margolin [3] introduced the
reprint of [1] in the 30 years anniversary issue of the Journal of Computational
Physics in 1997. Recently the ALE method is becoming more and more popular
even for compressible fluid dynamics [4], [5].

The ALE method consists of repeating three parts: 1. Lagrangian computation,
2. rezone mesh smoothing, 3. conservative remapping. We briefly outline the
methods we use in the first two parts, present the third one in more detail, describe
the developed 2D ALE code and one its particular application to laser plasma
physics.

2. Lagrangian Solver

The Lagrangian solver is the essential part of the ALE algorithm. It solves the fluid
equations in the Lagrangian form

d ρ

d t
+ ρ div ~u = 0

ρ
d ~u

d t
+ grad p = 0(1)

ρ
d ε

d t
+ p div ~u = 0,
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where ~u = d ~x/d t is the velocity of the fluid particles, ρ is the fluid density,
ε is the specific internal energy, which gives us the fluid pressure p through the
equation of state p = p(ρ, ε). Note that the differential operator d/dt in (1) applied
to quantities depending on space and time is the operator of total derivative, e.g.
dρ/dt = ∂ρ/∂t+~u·grad ρ, the advective term ~u·grad ρ is included in the Lagrangian
moving coordinates.

For the numerical treatment of (1) we employ the compatible Lagrangian hydro-
dynamics algorithm proposed in [6] and [7]. The scalar quantities, (fluid density,
pressure and internal energy) are defined inside the grid cells. The vector quantities
(nodal positions and velocities) are defined at the grid nodes. The node movement
results from solving the ordinary differential equation d~x/dt = ~u at each node. Den-
sity is obtained from mesh movement and basic Lagrangian assumption of constant
mass of each cell which trivially gives mass conservation. The compatible algorithm
is based on the computation of the forces at each node from the surrounding cells.
The velocity and internal energy update is controlled by these forces in a way which
guarantees the conservation of momentum and total energy.

The nodal forces consist of three main parts affecting the nodal movement. The
zonal pressure force represents the force from the surrounding cells to the node due
to the pressure inside them. The subzonal pressure force protects grid from the
unphysical, hourglass-type motion, and it depends on the difference of the pressure
in the zone (cell) and the pressure in the subzone – the quadrilateral region between
the cell center, the appropriate node and two midpoints of two appropriate cell
edges. The artificial viscosity force adds viscosity pressure in the areas of fluid
compression. Other forces as gravitation can be included into the method.

3. Mesh Rezoning

The mesh rezoning step of the ALE algorithm performs untangling and smoothing
techniques to regularize and improve computational Lagrangian grids. To decrease
the numerical error of the following remapping step the grid should be modified as
little as possible.

Most often we apply the Winslow’s smoothing [8] technique, which is an improved
version of weighted averaging. One iteration of the node positions mesh smoothing
is given by

~xk+1
i,j =

1
2 (αk + γk)

(
αk (~xk

i,j+1 + ~xk
i,j−1) + γk (~xk

i+1,j + ~xk
i−1,j)(2)

− 1
2

βk (~xk
i+1,j+1 − ~xk

i−1,j+1 + ~xk
i−1,j−1 − ~xk

i+1,j−1)
)
,

where the coefficients αk = x2
ξ + y2

ξ , βk = xξ xη + yξ yη, γk = x2
η + y2

η, and where
(ξ, η) are logical coordinates ξi = i/M , ηj = j/N for i = 0, . . . ,M and j = 0, . . . , N .
Derivatives with respect to ξ and η are approximated by the central differences
(xξ)i,j ≈ (xi+1,j − xi−1,j)/2 ∆ξ, (xη)i,j ≈ (xi,j+1 − xi,j−1)/2 ∆η and analogically
for y.
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Other available rezoning methods include reference Jacobian optimization-based
strategies [4] or untangling by the combination of the feasible set approach and the
numerical optimization [9].

4. Conservative Remapping

The last part of the ALE algorithm is the remapping method for conservative inter-
polation of the conservative quantities to the new, smoothed grid. The remapping
of all conservative variables on the staggered grid is quite a complex problem dis-
cussed in [10]. We focus here just to remapping of one quantity, suppose the fluid
density.

We know the density values ρC inside the grid cells C, which represent the mean
values of some (unknown) underlying function g. The output of the remapping
process must be the mean values gC̃ of the function g in the cells C̃ of the new grid
corresponding to the new densities. To preserve second order of accuracy of the
complete ALE algorithm we want our remapping process to be linearity-preserving.
Also, we do not want to create new local extremes, the algorithm should protect
local bounds. Total mass must be the same, our method has to be conservative.

The most natural way to satisfy these conditions is based on the piecewise-
linear reconstruction of the underlying function followed by its integration over
the overlapped regions of the original and the new cells, which gives us the new
mean values. The problem is, that for determining the overlapped regions we have
to compute all the intersections of the original and the new cells, which is very
expensive to compute, and thus rather slow. Our method [11] is based on the
approximate integration and does not require finding these intersections. On the
other hand, the local-bound preservation can be violated, so one more stage is
needed – the repair, which corrects the values to the original local bounds.

The first stage – piecewise-linear reconstruction – remains the same for both
methods. It computes slopes of the underlying function in each cell from the sur-
rounding mean values. We use the method of integrating the function derivatives
over each cell, which corresponds to computing the average slopes in the cells. From
the Green theorem, we reduce the integrals of the function derivatives over cells
to the boundary integrals of the original function, which can be computed exactly.
After dividing by the cell volume, we get the unlimited average slopes (∂g/∂x)unlim

C .
Now, we apply the Barth-Jasperson limiter [12] φC to limit the values of the slopes
(∂g/∂x)BJ

C = φC (∂g/∂x)unlim
C , such that in each cell C with center (xC , yC), the

underlying function

(3) greconstr
C = gC + (∂g/∂x)BJ

C (x− xC) + (∂g/∂y)BJ
C (y − yC)

has all values within its local extremes in the neighboring cells.
The second stage – the integration – is different. In the natural “exact inte-

gration” algorithm, the new mean values are obtained by direct evaluation of the
integrals of the underlying function over the overlapped areas of the original and
the new grid. Our approximate integration is based on computation of the masses
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of the swept regions. Every quadrilateral cell C has four swept regions F i
C defined

by the smooth movement of each edge to its new position. By integration of the
reconstructed underlying function over these swept regions we compute the swept
masses F i

C (in signed sense – swept mass is positive, if the the edge moves outward
from the cell, and it is negative, if it moves inwards)

(4) F i
C =

∫
F i

C

greconstr(x, y) dV ,

and the reconstruction is taken from the cell, in which more of the swept region
lies. The new mass of the cell is than defined as the original mass plus all swept
masses

(5) mC̃ = mC +
∑

i

F i
C

and after dividing by the cell volume we get the new densities gC̃ .
The approximate integration method is much faster than the exact integration,

but it may produce new mean values out of the local bounds. Thus, we developed
the third stage – repair – to correct this problem. The repair is a conservative
redistribution of the conservative quantity. In each cell we check, whether the
mean value gC̃ lies within the local bounds or not. If so, we do not do anything,
but otherwise we perform the repair process. Suppose, that the local minimum is
violated gC̃ < gmin

C . At first, we compute the mass which is needed to be added
to the cell to bring the value back to the minimum. Then, we search for the mass,
which can safely be taken from the neighboring cells without violating their local
minimum. If we found enough mass, we perform the repair – we bring the “wrong”
value to the minimum and take the mass from the neighboring cells proportionally
to the mass available in each cell. If there is still not enough mass available, we
extend the neighborhood and repeat the whole process. We have proved [11], that
the whole repair process will successfully finish in a finite number of steps. The
repair process with more natural bounds in density, velocity and internal energy
(not in conserved variables as here) is more complicated [13].

The complete reconstruct-integrate-repair process satisfies all our mentioned con-
ditions for the remapping method. Moreover, it is very efficient when compared to
the natural remapping algorithm, and it is applicable to remapping of all conser-
vative quantities between general grids both in 2D and 3D [14].

5. ALE Code for Plasma Simulation

We have developed a 2D ALE code on logically orthogonal quadrilateral meshes for
laser plasma simulations. Laser plasma can be approximated as a compressible fluid
however its equation of state describing relation between pressure, density, internal
energy and temperature is far from the ideal gas one. The quotidian equation of
state (QEOS) is used to approximate the plasma equation of state.
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Figure 1. Density colormap [in g/cm3] for the disc impact prob-
lem: initial conditions (a); pure Lagrangian (b) and complete ALE
(c) results at time 0.2 ns.

Heat conductivity plays an important role in many problems from laser plasma
physics and often cannot be neglected. It is modeled by a parabolic term in the
energy equation. By splitting, we solve the parabolic part separately by the support
operator method with mimetic discretization [15]. The implicit treatment of para-
bolic equation allows to use the same time step as in the hyperbolic part treated by
ALE. Mimetic discretization results in a linear system with positive definite matrix
which is solved by the conjugate gradient algorithm.

As an example, we present here the numerical simulation of the impact of the
laser accelerated thin Aluminum disc into a massive Aluminum target. The param-
eters are taken from a part of one experiment performed at the PALS (Prague Laser
Asterix System) facility [16], [17]. The thin (11 µm) Aluminum disc of diameter
300 µm is irradiated by the 390 J laser beam operating on the third harmonic. The
disc is ablatively accelerated to a very high speed (150 km/s) against the massive
target. Presented ALE simulation starts at the moment of the disc impact into
the target with initial conditions shown in Fig. 1(a). The disc is on the right, the
target is on the left and the disc is flying to the left towards the target. The disc
is already heated by laser in plasma/gas phase state with lower density than solid
state Aluminum density. Very early after the impact the computational mesh of
the pure Lagrangian simulation degenerates considerably as shown in Fig. 1(b) at
time 0.2 ns. The mesh distortion leads to failure of pure Lagrangian computation
soon after this time. On the other hand, the complete ALE simulation continues
without any problem, see Fig. 1(c) for ALE result at time 0.2 ns, the grid remains
reasonable smooth during the whole simulation. This is the main reason for using
and developing ALE methods – for some simulations, the ALE method can reach
results, which cannot be obtained by pure Lagrangian methods. Pure Eulerian
method would have in this case troubles how to treat corona expanding to the right
at later stages.
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Figure 2. Internal energy increase [in erg] and coarsened compu-
tational mesh at time 40 ns with material phase interfaces.

After the impact the huge kinetic energy of the flying disc is transformed into
heat energy which melts and evaporates Aluminum in the target. The disc starts
to sink into the target and is reflected in the plasma/gas phase together with some
target material creating a crater in the target. The reflected very low density corona
expands multiple times to the right, a part of corona appears on the right of Fig.
2. Circular shape shock wave is formed in the target which coincides with the
solid-liquid phase interface presented in Fig. 2. The shock wave penetrates into
the target melting its material. The second phase interface shown in Fig. 2, the
liquid-gas interface, moves to the left into the target until the time 40 ns at which
the Fig. 2 is taken. Fig. 2 presents the internal energy increase colormap and
coarsened mesh including isolines corresponding to energy needed to: (1) heat and
melt for solid-liquid phase interface; (2) heat, melt and evaporate for the liquid-gas
phase interface. Due to limited available resolution the displayed computational
mesh is coarsened three times so that one plotted cell includes nine (3 × 3 patch)
computational cells. Plotted area is 2.2 mm wide and 0.7 mm high while the
corona expanding right and up is almost 6 mm wide and 2 mm high and expands
fastfurther. More physics related details can be found in [18],
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