Efficient Algorithm for Local-Bound-Preserving
Remapping in ALE Methods

Rao Garimella!, Milan Kuchafik? and Mikhail Shashkov®

! Los Alamos National Laboratory, T-7, MS-284, Los Alamos, NM 87545, USA

rao@lanl.gov

Czech Technical University in Prague, Bfehova 7, 115 19 Prague 1, Czech

Republic kucharik@karkulka.fifi.cvut.cz

3 Los Alamos National Laboratory, T-7, MS-284, Los Alamos, NM 87545, USA
shashkov@lanl.gov

Summary. The remapping algorithm is an essential part of the ALE (Arbitrary
Lagrangian-Eulerian) method. In this talk we present such an algorithm based on
linear function reconstruction, approximate integration and mass redistribution.

1 Introduction

Conservative remapping is an essential part of the ALE (Arbitrary Lagrangian-
Eulerian) method for fluid dynamics computations. This method tries to use
advantages of both the Lagrangian and Eulerian approaches.

At first, several time steps of the pure Lagrangian computation are used.
As the grid moves together with the fluid, it may happen that the grid be-
comes distorted or tangled due to shear flow. Now comes the Eulerian part
of the algorithm. We prepare a new rezoned grid and recompute (remap) the
quantities from the distorted grid to the rezoned one.

We have several conditions this remapping step must satisfy. It must be
efficient to be usable in real computations. Total sum of the conservative quan-
tities must be preserved — the algorithm must be conservative. We do not want
to create new local extrema, we want it to be local-bound preserving. It must
be stable and applicable to general unstructured meshes in 2D and 3D. In this
article we introduce a 3D algorithm, which satisfies these conditions. A similar
procedure in 2D is described in [1].

2 Algorithm Description

2.1 Problem statement

Suppose, we have two grids: Lagrangian C = {c} and rezoned C= {¢}. The
grids have the same topology. The rezoned grid is created from the original
one just by small movement of the grid nodes. There exists some underlying

Efficient Algorithm for Local-Bound-Preserving Remapping 359

function g(r), r = (z,y, 2) in the Lagrangian cells (for example g = p, g = pu,
g=pv,g=pw, g=p(c+|U%/2), where p is mass density, U = (u,v,w)
is a vector of velocities and ¢ is the internal energy). We do not know the
function itself, we know just the mean values in the grid cells and their masses
and volumes

Jg(r)av e
o= g = VEC), m(c) = / o) dV, V()= / 1dv. (1)

c

Total mass (momentum, energy) in the computational domain {2 can be com-

puted as
ME/g(r)dV:Z/g(r)dV =Y m(). @)
) Ve Ve

c

We want to compute new masses m*(¢é) and corresponding mean values in
the rezoned cells “©
= m*(C
gr = 3
and we want them to be as close to the exact values as possible (m*(¢é) =
m(c) = [,g(r)dV). We also want not to create new local extrema

max >, Zx > min max _ nax min __ min 4
907209 290", 9e 0O Gens G D Gen s 4)

where C(c) C C is neighborhood of cell ¢, and to be conservative (total mass
must be the same)

> m (@ =M.

Ve

If the underlying function is a linear function, we want our method to be exact

m*(E):m(E):/g(r)dV for g(r)=a+br+cy+dz.

[4

2.2 Remapping Algorithm

We design our algorithm in three stages. In the first stage, we make a piecewise
linear reconstruction of the underlying function on the original mesh. This can
be done using different methods, with or without limiters. In the second stage,
we integrate this reconstructed function to obtain means on the new grid. The
most natural approach would be exact integration, but it needs computation of
the intersections of the Lagrangian grid with the rezoned one. This intersection
is very time consuming in 2D and almost unfeasible in 3D, so we use numerical
quadrature - swept integration. It does not require finding these intersections
so it is much faster. The problem is that it is an approximate method and
it may happen that the local extrema are violated, so we need also the third
stage - repair - which ensures us this local-bound preservation.

360 R. Garimella et al.
2.3 Stage 1 — Piecewise Linear Reconstruction
We want to reconstruct the underlying function in the form
pe(r) = pe(x,y,2) = pec + S (T — 2c) + SY (Y — ye) + 57 (2 = 2c) s (5)

where
JzdV fydv [zdV

Vo e Ve ©

are coordinates of the cell center and V'(¢) is the volume of the cell defined in

().

For computation of slopes we use the limited form

Te =

SC:L‘ — dsc Scz unlim ’Sg — @c Sg unlim ,Sj — Qc Sg unlim, (7)

where S{®¥2}unlim oo unlimited slopes and @, is Barth-Jasperson limiter,
which must be computed firstly.

Unlimited Slopes In 1D we can use just the central difference as the un-
limited slope. To compute unlimited slopes in 2D we construct a contour sur-
rounding the cell and use Green’s Theorem. In 3D this would require comput-
ing intersections of this neighborhood with the original grid, which would be
too slow. So we must use another method.

Let’s construct the functional

[pe(z,y,2) dzdydz

F(Sfasgvsf) = Z ﬁCn - V(C) (8)
cn€C(c) n

for each cell, which measures the sum of differences between the mean values in
the neighboring cells and average values of the reconstructed function from the
original cell in the same neighboring cell. We want to minimize this functional,
so we want the reconstructed function to be as close to the mean values in the
neighboring cells as possible.

We easily compute derivative of this functional with respect to all three
variables and let them be equal to zero. This gives us a linear system

OF(S¢,5¢,5%)

gglEwat O ©)

which can be easily solved and gives us our unlimited slopes S}®¥*} unlim,

Efficient Algorithm for Local-Bound-Preserving Remapping 361

Limited Slopes For computation of the slopes 5{#%#} we use the Barth-
Jasperson limiter at each cell vertex n and than the minimum of them as
a cell limiter

min (1, f:z,;:—;:,__—ﬁ;c for punlim _ 5. >0
b = : P:i.n—ﬁc unlim _ = ®d.= min @ 10
n min 1’W forpn' pc <0 e = B (10)
1 for punhm _ ﬁc — 0’

n

which ensures us preservation of local extrema and also preservation of a linear
function. Here piPlim is the value of the reconstructed function (using the

unlimited slopes) in the node n. It is described in details in [2].

Integration over an Arbitrary Polyhedron The only part in the func-
tional, we don’t know, is the integral

/pc(x, y,2)dzdydz. (11)

Cn

We also need to compute the integrals in the definition of cell centers z., ye,
z. (6) and cell volumes V., (1). So we need a method for integration of the
linear function over an arbitrary polyhedron. We note, that the boundary of
the polyhedron is uniquely defined , we know just the vertices of each face. If
the face vertices do not lie in one plane, the face is curved and the boundary
is not uniquely defined.

We demonstrate our integration procedure for the example of the cell vol-
ume, the integration of an arbitrary linear function is similar. The cell volume
can be written in the form

V(e) =/1dV= % /div(a:,y,z) av (12)

and using the Divergence Theorem we can rewrite it as an integral over the
boundary Oc

V(ie) = % /(m,y,z)T -SdA. (13)
dc

Here the superscript T means the transposition of a vector and S is the vector
normal to the boundary. The boundary integral can be split into the sum over
all faces IT of the face integrals

V=3 > [@ue)-sda (14)

I1edv 7

Now just by averaging the coordinates of vertices of each face we compute its
center, connect it with all face vertices and split these face integrals to the

362 R. Garimella et al.

integrals over such defined triangles A. On each this triangle the face normal
S is constant so it can go in front of the integral

CEED DY Sm/di-i—Sy/ydA—l-Sz/sz (15)

MmedV Aell WA A A

Now we project all triangles to the coordinate planes. For each triangle we
select the coordinate plane in which the triangle has the biggest area. This
ensures us that we do not get into trouble due to numerical problems. Using
Green’s Theorem we reduce these integrals over triangles to 1D edge integrals,
which can be computed directly from vertex coordinates. This algorithm gives
us a method for computing the integral of the arbitrary linear function over
an arbitrary polyhedron. More details can be seen in 3].

2.4 Stage 2 — Swept Integration

Swept region quadrature concept has been explained in detail in [1].

The swept region is created by the movement of the face from the original
grid to the new position. It is bordered by the old face, the new face, and by
not necessarily flat quadrilaterals connecting each edge from the original face
to the edge of the new face. We can compute the volume and mass of a such
region - we talk about swept volume and swept mass. We use these terms in
their signed sense. Suppose we have a cell on the original mesh and we move
just one face as illustrated on the Fig. 1. In this case, the right face moves

ORIGINAL CELL

NEW FACE POSITION

SWEPT REGION

Fig. 1. One swept region

outward from the original cell and the middle part is the swept region. In fact,
all faces can move in different ways and swept regions can be tangled. If most
“of the swept region goes outward from the original cell, the swept volume and
swept mass are positive, otherwise they are negative. The mass of the swept

Efficient Algorithm for Local-Bound-Preserving Remapping 363

region is computed by integration of the reconstructed function over the cell,
in which the most swept region lies. The new cell mass can be composed from
the mass of the original cell and the masses of all swept regions

m* @) =m(c)+ Y omy. (16)

FEF(c)

Here f means a swept region from the set F(c) of all swept regions of the cell
c. The new mean value can be than computed as
= _ m* (¢
= 17
and as noticed before, it can violate the local bounds due to the approxima-
tion of the integration. So the third stage is necessary to enforce local-bound
preservation.

2.5 Stage 3 — Repair

The repair stage works as the conservative redistribution of a conserved quan-
tity. It corrects the overshoots back to their local bounds. At first, we must
compute these local extrema. For each cell ¢ we define a bound-determining
neighborhood C(c), which is a piece of the original grid fully covering the new
cell. Usually we use the original cell plus its nearest neighbors. We compute
the local extrema in this neighborhood

min = , max __ . 18
P = min Do, P = max e, (18)

We show the repair for the example of violation of the lower bound
pe < P, (19)

upper bound is done similarly. At first we compute mass, which is needed in
the cell to bring the mean value back to the local minimum

smgeeied = (o —) V(2). (20)

We want our algorithm to be conservative, so we do not just add this mass
to the wrong cell, but we look for available mass in the bound-determining
neighborhood. For each neighboring cell we compute the mass

gt = max((Be, — P V(@),0) (21)

which can safely be taken from the cell without violating the local bound also.
The total available mass in the neighborhood is

omeeyt =) omzril, (22)
cn€C(c)

364 R. Garimella et al.

If the available mass is too small (§mg) < dmgeeded) we extend the sten-
cil and look for the available mass in a farger area. If there is enough mass
available, we perform the repair. We bring the wrong value back to the local
minimum

m/(&) = PPV (€) (23)
and we take the mass from the neighborhood proportionally to the mass avail-
able

avail
1%) — .,n _ 6n. 5 geeded_ 2
m/(En) = m(Cn) smzal Me (24)

In [1] we proved that this algorithm succeeds in a finite number of steps and
the repair stage corrects all local-bound violations.

3 Numerical Tests

3.1 Orthogonal Uniform Grid

In the first example the underlying function is equal to zero everywhere, only
in a spherical region around the center of the computation domain (0, 1)3 it is
equal to 1

g(zyz).—_{l for r <0.25 r=\/<x—-1->2+(y_l>2+(z_l)2
7 0 else ’ 2 2 2) "

(25)
We define the uniform orthogonal grid in the computational domain, the initial

Fig. 2. Initial spherical function on 40® orthogonal uniform grid

function is shown on the Fig. 2. We move the grid as the tensor product
movement

Efficient Algorithm for Local-Bound-Preserving Remapping 365

eV = (1-0) Tntazk® yrev = (1-a) Yn+ay®, 22V = (1-a) zn+a 225,

(26)

where

a=05sin(47t), t = N/Npax, t€ (0,1)— time of Nth timestep.
(27)
We make Nyax = 200 remappings to obtain accumulated errors and to have
the problematic regions visible. On the Fig. 3 we can see this spherical function

b)

Fig. 3. 200times remapped spherical function using only unlimited reconstruction
a) without repair b) with repair

remapped using only unlimited slopes. This causes more errors, so the effect
of the repair stage is more obvious. In the a) part of the figure we can see the
function without the repair stage. The light gray cells show areas where the
extrema are violated. In the b) part we see the same remapping with repair,
no values violate the bounds.

3.2 Tetrahedral Grid with Random Movement

The second numerical example shows the same cubical computational domain
with tetrahedral mesh inside. It includes about 9000 tetrahedrons. We use
the same spherical function as before, we can see it on the Fig. 4. Now, we
shake the grid randomly 10 times and remap between these grids. In the last
time step we remap back to the original grid. On the Fig. 5 we can see the
situation with the usage of the Barth-Jasperson limiter with and without the
repair stage. Again, we can see several white cells in the a) part, where the
bounds are violated. In the b) part, the repair stage corrects everything and
no problem with bound preservation is observed.

366 R. Garimella et al.

b)

Fig. 5. 10times remapped spherical function using Barth-Jasperson limiter a) with-
out repair b) with repair

4 Conclusion

In this article we constructed an efficient algorithm for function remapping
between two similar grids. It is face-based and usable in 3D unlike the most
natural exact integration algorithm, which is not feasible in 3D. The algorithm
is conservative (total mass remains constant), local-bound preserving (does
not create new extrema), stable and linearity preserving. We presented several
numerical examples to show, that we can use it for different types of grids and
grid movements.

5 Acknowledgments

This work was performed under the auspices of the US Department of En-
ergy at Los Alamos National Laboratory, under contract W-7405-ENG-36. The
authors acknowledge the partial support of the DOE/ASCR Program in the

Efficient Algorithm for Local-Bound-Preserving Remapping 367

Applied Mathematical Sciences and the Laboratory Directed Research and De-
velopment program (LDRD). R. Garimella and M. Shashkov acknowledge the
partial support of DOE’s Accelerated Strategic Computing Initiative (ASCI).
M. Kuchaiik also acknowledges the partial support of the Czech Technical
University grant CTU0310614. The authors thank L. Margolin, B. Wendroff,
B. Swartz, R. Liska, M. Berndt and V. Dyadechko for fruitful discussions and
constructive comments.

References

1. M. Kuchaitik, M. Shashkov, and B. Wendroff. An efficient linearity-and-bound-
preserving remapping method. Journal of Computational Physics, 188(2):462-471,
2003.

2. T. J. Barth. Numerical methods for gasdynamic systems on unstructured meshes.
In C. Rohde D. Kroner, M. Ohlberger, editor, An introduction to Recent Devel-
opments in Theory and Numerics for Conservation Laws, Proceedings of the In-
ternational School on Theory and Numerics for Conservation Laws, Berlin, 1997.
Lecture Notes in Computational Science and Engineering, Springer.

3. B. Mirtich. Fast and accurate computation of polyhedral mass properties. Journal
of Graphics Tools, 1(2):31-50, 1996.

