
The renormalization group algorithm in
problems of laser-plasma interactions

V. F. Kovalev

Institute for Mathematical Modeling, Russian Academy of Science, Moscow, Russia

Workshop “Ultrashop pulse laser plasma interactions”, Prague, September 24-27, 2003 – p. 1/58



Abstract

Evolution of the renormgroup algorithm and the related
renormgroup symmetry, introduced in mathematical
physics for solutions of boundary-value problems based
on differential equations, is reviewed. We discuss the
essential progress made recently in the application of
this algorithm to models with integral equations.

Several physical illustrations from nonlinear optics and
plasma physics demonstrate the potentialities of the
algorithm for models based on differential equations
and models with nonlocal terms in the form of the linear
solution functionals.
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Outline

Introduction to Renormalization Group (RG)
Symmetries: history, foundations, evolution of concept,
etc.

General scheme for constructing Renormalization
Group Symmetries (RGS): application to solutions of
b.v.p. for differential equations.

Generalization of the RG algorithm to nonlocal models.

Illustrations of the RG algorithm: applications to various
problems in mathematical physics.
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General grasp of RGS

Wave beam in nonlinear medium

kz + kkx = αIx , Iz + (kI)x = 0 ,

k(0, x) = 0 , I(0, x) = I0(x).

E = A exp(ik0Ψ) − electric field;

k ∼ Ψx − eikonal gradient;

I ∼ | A |2 − wave beam intensity.
x

I

z
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General grasp of RGS

Wave beam in nonlinear medium

kz + kkx = αIx , Iz + (kI)x = 0 ,

k(0, x) = 0 , I(0, x) = I0(x).

E = A exp(ik0Ψ) − electric field;

k ∼ Ψx − eikonal gradient;

I ∼ | A |2 − wave beam intensity.
x

I

z

What can be done for models with nonlocal (integral) equations?

Provided RGS for some model is known can we prolong it on solution
functionals?

I(z) =

∫

δ(x)I(z, x)dx .
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RGM and RGS: historical introduction

’51-’55

Renormalization
in QFT
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From S.Lie to Modern Group Analysis

Lie-Bäcklund Symmetry
& Conservation laws

Lie-Bäcklund
Symmetry

Symmetry of
Difference Equations

Conditional
Symmetry

Perturbation Theory &
Approximate Symmetry

Non-Lie and non-local
Symmetry

Classical Group Analysis

Sophus Lie (1842-1899) ↔ Group analysis of DEqs
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Evolution of the RGS concept

RGM in QFT and other fields of physics

Functional Similarity

Lie Group Analysis

Modern Group Analysis

Renormgroup Symmetry in Math.Physics
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Evolution of the RGS concept

RGM in QFT and other fields of physics

Functional Similarity

Lie Group Analysis

Modern Group Analysis

Renormgroup Symmetry in Math.Physics

The characteristic features of RGS:

It extends the notion of RG and generalizes the form of
RG implementation that differ from that known, say, in
Quantum Field Theory.

It is obtained with the use of a regular algorithm based
on the methods of Modern Group Analysis (MGA).
Kovalev,Pustovalov,Shirkov, JMP,98; Kovalev,Shirkov,Phys.Rep.02
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Distinctive features of the RGS

What are the distinctive features of RGS in math. physics
that distinguish it from the analogues in QFT and MGA?
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Distinctive features of the RGS

What are the distinctive features of RGS in math. physics
that distinguish it from the analogues in QFT and MGA?

The FS transformation in QFT is the scaling transformation of an
independent variable accompanied by a functional transformation of the
solution characteristic. It is introduced by means of either finite
transformations

Rt : { x → x′ = x/t , g → g′ = ḡ(t, g) } ,

or the infinitesimal operator

X = x∂x − β(g)∂g , β(g) = ∂ḡ(t, g)/∂t|t=1
.

The revealing of this symmetry in every particular case is a tricky
procedure in theoretical physics.
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Distinctive features of the RGS

What are the distinctive features of RGS in math. physics
that distinguish it from the analogues in QFT and MGA?

In group analysis we deal with invariant solutions generated by a group
admitted by differential equations. Boundary conditions for these solutions
are a priori unspecified.

Equivalence transformations involve parameters, but these
transformations are applied to the family of equations, not to one
particular equation.
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Distinctive features of the RGS

What are the distinctive features of RGS in math. physics
that distinguish it from the analogues in QFT and MGA?

In group analysis we deal with invariant solutions generated by a group
admitted by differential equations. Boundary conditions for these solutions
are a priori unspecified.

Equivalence transformations involve parameters, but these
transformations are applied to the family of equations, not to one
particular equation.

RGS algorithm appears as a synthesis of the theory of invariant solutions
and equivalence transformation groups. The concept of RGS helps to
realize the close connection of the RGM as formulated by Bogoliubov and
Shirkov and modern group analysis.

Workshop “Ultrashop pulse laser plasma interactions”, Prague, September 24-27, 2003 – p. 8/58



Sketch of RG algorithm

RG
Manifold

RG-
invariant
solution

PT
Solution

Basic
model

Group G

generators

RGS
generators

Show clip Go next

Workshop “Ultrashop pulse laser plasma interactions”, Prague, September 24-27, 2003 – p. 9/58



Sketch of RG algorithm

RG
Manifold

RG-
invariant
solution

PT
Solution

Basic
model

Group G

generators

RGS
generators

I step

Show clip Go next

Workshop “Ultrashop pulse laser plasma interactions”, Prague, September 24-27, 2003 – p. 9/58



Sketch of RG algorithm

RG
Manifold

RG-
invariant
solution

PT
Solution

Basic
model

Group G

generators

RGS
generators

I step

II step

Show clip Go next

Workshop “Ultrashop pulse laser plasma interactions”, Prague, September 24-27, 2003 – p. 9/58



Sketch of RG algorithm

RG
Manifold

RG-
invariant
solution

PT
Solution

Basic
model

Group G

generators

RGS
generators

I step

II step

III step

Show clip Go next

Workshop “Ultrashop pulse laser plasma interactions”, Prague, September 24-27, 2003 – p. 9/58



Sketch of RG algorithm

RG
Manifold

RG-
invariant
solution

PT
Solution

Basic
model

Group G

generators

RGS
generators

I step

II step

III stepIV step

Show clip Go next

Workshop “Ultrashop pulse laser plasma interactions”, Prague, September 24-27, 2003 – p. 9/58



RGS construction: basic objects

We start with a mathematical model, defined by a system of ν ≥ 1

differential and integral equations for the functions u = {uα}, α = 1, . . . , m

of x = {xi}, i = 1, . . . , n,

[E] : Eν(u(x)) = 0 ,

with appropriate boundary (initial) conditions. Nonlocal terms in these
equations depend on integrals of u. We suppose also that we know some
approximate solution, Uα, expressed, say, in the form of the truncated
Perturbation Theory (PT) series in powers of some parameter or small
distance from the boundary where this solution is given. ➹
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Construction of RG-manifold

The key idea of the fist step consists in involving in group transformations
the parameters and boundary conditions that define the particular solution
of the problem. This is achieved by constructing the special RG manifold
RM that we assume to have the form of s differential equations of the
k-th order and q nonlocal relations,

Fσ(z, u, u(1), . . . , u(k)) = 0 , σ = 1, . . . , s ,

Fσ(z, u, u(1), . . . , u(r), A(u)) = 0 , σ = 1 + s, . . . , q + s .

Here parameters p = {pj} , j = 1, . . . , l are included in z = {x, p} and
nonlocal variables are given by integral relations

A(u) =

∫

F(u(z))dz .
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Construction of RM: possible routines

The particular form of the realization of the first step depends both on the
form of input equations and the form of boundary (initial) conditions and is
inspired by PT solution as well. We can indicate several possible routines
to the problem:

Extension of the space of variables, involved in group transformations
(parameters and differential variables).
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Construction of RM: possible routines

The particular form of the realization of the first step depends both on the
form of input equations and the form of boundary (initial) conditions and is
inspired by PT solution as well. We can indicate several possible routines
to the problem:

Extension of the space of variables, involved in group transformations
(parameters and differential variables).

Non-standard form of boundary conditions: utilization of differential
constraints, embedding equations (Ambartzumyan, 1942).

RGS construction for the system of basic equations with small
parameter α is based on the approximate RM and utilizes
approximate symmetries. ➹
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Calculation of the admitted group - 1

The next step is the calculation of the most general symmetry group G,
admitted by RM.
For RM defined by differential equations Fσ = 0, σ ≤ s we deal with a
local group of transformations that leaves these equations unaltered. The
classical Lie algorithm for finding these symmetries consists in
constructing tangent vector fields with the generator

X = ξi∂zi + ηα∂uα , ξi , ηα ∈ A ,

where coordinates ξi , ηα are functions of {zi, uα} and satisfy the
so-called determining equations – linear homogeneous partial DEqs.
Return to nonlocal

X(k) Fσ
∣

∣

∣
[Fσ]

= 0 , X(k) = X + . . . + ζα
i1...ik

∂uα
i1...ik

.
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Calculation of the admitted group - 2

Solving the determining equations gives coordinates ξi , ηα, i.e.
infinitesimal operators (group generators), which correspond to the
admitted vector field and form a Lie algebra with a general element

X =
∑

j

AjXj , Aj- arbitrary constants.

Generalization of Lie algorithm ⇒ Modern group analysis:

Approximate symmetries

Non-classical symmetries

Non-local symmetries, conditional symmetries

Higher-order (or Lie-Bäcklund) symmetries
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Calculation of group G: generalities

The major obstacle for the application of Lie’s infinitesimal techniques to
RM defined by integral equations is that RM is not locally defined in the
space of differential functions, hence the crucial idea of splitting of
determining equations into over-determined systems, commonly used in
the classical Lie group analysis, fails.
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Hence, to apply the RGA to nonlocal models we should clarify two items
here:
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Calculation of group G: generalities

The major obstacle for the application of Lie’s infinitesimal techniques to
RM defined by integral equations is that RM is not locally defined in the
space of differential functions, hence the crucial idea of splitting of
determining equations into over-determined systems, commonly used in
the classical Lie group analysis, fails.

Hence, to apply the RGA to nonlocal models we should clarify two items
here:

Extension of the Lie point symmetry technique for nonlocal RM
Extension of the RGS operators to nonlocal variables
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Calculation of group G: generalities - 2

Indirect methods
Method of moments (Taranov, ’74;
Bunimovich and Krasnoslobodtsev, ’82)

Method of boundary-differential equations (Chetverikov and
Kudryavtsev, ’95)

Direct methods
Grigor’ev and Meleshko, ’87;
Kovalev, Krivenko, Pustovalov, ’92

Canonical representation for X,

X ∼ Y = X − ξiDi = æα∂uα + ζα
i ∂uα

i
+ ζα

i1i2∂uα
i1i2

+ . . . ,

æα = ηα − ξiuα
i , ζα

i = Di(æα) , ζα
i1i2 = Di1Di2(æ

α) .
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Calculation of group G: generalities - 3

Infinitesimal group transformations with this operator involve only
dependent variables uα and do not change independent variables zi,

u′α = uα + aæα + O(a2) , z′ i = zi .

The invariance criterion for F with respect to the admitted group can be
expressed in an infinitesimal form using the canonical group operator Y –
nonlocal determining equations,

Y Fσ

∣

∣

∣

[Fσ ]
= 0 , σ = 1 + s , . . . , q + s , Y ≡

∫

dz æ (z)
δ

δu (z)
.

Compare with local
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Prolongation on nonlocal variables ➹

To fulfill the procedure of prolongation of any Lie point symmetry
generator one should first rewrite this operator in a canonical form and
then formally prolong it on the nonlocal variable A

Y + æA∂A ≡ æ∂u + æA∂A , A(u) =

∫

F(u(z))dz .

The integral relation between æ and æA is obtained by applying the
generator Y + æA∂A to the definition of A. Substituting æ and calculating
integrals obtained gives the desired coordinate æA

æA =

∫

δA(u)

δu(z)
æ(z) dz =

∫

Fu æ(z) dz .

Workshop “Ultrashop pulse laser plasma interactions”, Prague, September 24-27, 2003 – p. 18/58



Generalities - direct method

Algorithm of finding symmetries of nonlocal equations

defining the set of local group variables,

Go to Example ➹
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Generalities - direct method

Algorithm of finding symmetries of nonlocal equations

defining the set of local group variables,

constructing determining equations on basis of the infinitesimal
criterion of invariance, that employs the generalization of the
definition of the canonical operator,
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Generalities - direct method

Algorithm of finding symmetries of nonlocal equations

defining the set of local group variables,

constructing determining equations on basis of the infinitesimal
criterion of invariance, that employs the generalization of the
definition of the canonical operator,

separating determining equations into local and nonlocal,

solving local determining equations using a standard Lie algorithm,
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Generalities - direct method

Algorithm of finding symmetries of nonlocal equations

defining the set of local group variables,

constructing determining equations on basis of the infinitesimal
criterion of invariance, that employs the generalization of the
definition of the canonical operator,

separating determining equations into local and nonlocal,

solving local determining equations using a standard Lie algorithm,

solving nonlocal determining equations using the procedure of
variational differentiation.

Go to Example ➹
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Restriction the group on a solution

This procedure appears as checking the vanishing condition for the
combination of coordinates of the canonical operator on a particular BVP
solution Uα(z)

∑

j

Ajæα
j ≡

∑

j

Aj
(

ηα
j − ξi

ju
α
i

)

∣

∣

∣
uα = Uα(z)

= 0 .

It transforms the system of DEs for the group invariants into algebraic
relations. This procedure has two consequences:

It gives relations between the Aj thus “combining" different
coordinates of the group generators Xj admitted by the RM.

It eliminates the arbitrariness in the coordinates ξi, ηα in the case of
an infinite group G.

➹
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Restriction the group on a solution

Generally, the restriction procedure reduces the dimension of G. Hence,
the general element of the group G after the fulfillment of a restriction
procedure is expressed as a linear combination of the new generators Ri

with the coordinates ξ̂i, η̂α,

X ⇒ R =
∑

j

BjRj , Rj = ξ̂i
j∂xi + η̂α

j ∂uα ,

with arbitrary constants Bj . We call them renormgroup generators.

This procedure also “fits" boundary conditions into the RG generator by a
special choice of coefficients Aj and/or by choosing the particular form of
arbitrary functions of the coordinates ξi, ηα. ➹
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RG invariant solution

Mathematically, this step makes use of the RG=FS invariance conditions
that are given by a combined system of RM and the vanishing condition
for the linear combination of coordinates of the RG canonical generator

∑

j

Bjæ̂α
j ≡

∑

j

Bj
(

η̂α
j − ξ̂i

ju
α
i

)

= 0 .

For the one-parameter Lie point renormgroup, RG invariance conditions
lead to the first order PDE that gives rise to the so-called group invariants
(such as invariant couplings in QFT) which arise as solutions of
associated characteristic equations. A general solution of the BVP is now
expressed in terms of these invariants. ➹
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RGA scheme & clips ➹

I step

II step

III stepIV step
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Symmetry group for Vlasov-Maxwell equations

☞ Vlasov kinetic equations:

fα
t + vfα

r +
eα

mαγ
{E +

1

c
[vB] − 1

c2
v (vE)}fα

v = 0 ; γ =
1

√

1 − (v/c)2
.

Maxwell equations:

Bt + c rot E = 0 ; div E = 4πρ ; Et − c rot B + 4πj = 0 ; div B = 0 .

Nonlocal material equations:

ρ =
∑

α

eαm3
α

∫

dv fα(γ)5 , j =
∑

α

eαm3
α

∫

dv fα(γ)5v .

Kovalev,Krivenko,Pustovalov, Diff.Eq.,93; SNMP-95 ➹
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Symmetry group for Vlasov-Maxwell equations

Vlasov kinetic equations with Lagrange velocity:
Lewak, J.Plasma Phys. 69; Chernikov,Pustovalov, Preprint Lebedev Phys.Inst.(171), 80

Nt + div(NV ) = 0 ,

Vt + (V ∇)V =
e

m

√

1 −
(

V

c

)2{

E +
1

c
[V , B] − 1

c2
V (V , E)

}

.

Maxwell equations:

Bt + c rot E = 0 ; div E = 4πρ ; Et − c rot B + 4πj = 0 ; div B = 0 .

Nonlocal material equations:

ρ = em3

∫

dw Nγ5 , j = em3

∫

dw NV γ5 , γ =
1

√

1 − (w/c)2
.
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Symmetry group for Vlasov-Maxwell equations

Vlasov kinetic equations with Lagrange velocity:
Lewak, J.Plasma Phys. 69; Chernikov,Pustovalov, Preprint Lebedev Phys.Inst.(171), 80

Nt + div(NV ) = 0 ,

Vt + (V ∇)V =
e

m

√

1 −
(

V

c

)2{

E +
1

c
[V , B] − 1

c2
V (V , E)

}

.

Initial conditions: V = w, N = N0(t0, r, w), E = B = 0 for t = t0.

Relations between f , N and V :

N(t, r, q) = f (p = P (q, r, t), r, t) det

(

∂Pi

∂qj

)

, V = c2P (m2c4 + c2P 2)−1/2,

w = c2q(m2c4 + c2q2)−1/2 , v = c2p(m2c4 + c2p2)−1/2.
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Group generator

The infinitesimal group generator is presented in a standard form:

X = ξ1∂t + ξ2∂r + ξ3∂w + η1∂N + η2∂V + η3∂E + η4∂B + η5∂j + η6∂ρ .

In the canonical form this operator is written as

Y = æ1∂N + æ2∂V + æ3∂E + æ4∂B + æ5∂j + æ6∂ρ ,

æ1 = η1 −DN , æ2 = η2 −DV , æ3 = η3 −DE , æ4 = η4 −DB ,

æ5 = η5 −Dj , æ6 = η6 −Dρ , D ≡ ξ1∂t − (ξ2∇r) − (ξ3∇w) .

Additional constraints

Ew = 0 ; Bw = 0 ; jw = 0 ; ρw = 0 .
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Determining equations

Local determining equations

Dt

(

æ1
)

+ (V , Dr) æ1 + N
(

Dr, æ2
)

= 0 , Γ =
(

1 − (V /c)
2
)−1/2

,

Dt

(

æ2
)

+ (V , Dr) æ2 +
(

æ2,∇
)

V =
e

mΓ

{

æ3 +
1

c

(

[V , æ4] + [æ2, B]
)

− 1

c2

(

æ2 (V , E) + V
((

æ2, E
)

+
(

V , æ2
)))

}

− e

m

(

V , æ2
)

c2
Γ

{

E +
1

c
[V , B] − 1

c2
V (V , E)

}

;

c
[

Dr, æ3
]

+ Dt

(

æ4
)

= 0 ; c
[

Dr, æ4
]

− Dt

(

æ3
)

= 4πæ5 ;

(

Dr, æ3
)

= 4πκ
6 ;

(

Dr, æ4
)

= 0 ; Dw

(

æ3,4,5
)

= 0 , Dw

(

æ6
)

= 0 .
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Determining equations

Nonlocal determining equations

æ6 − em4

∫

dw γ5æ1 = 0 , æ5 − em3

∫

dw γ5
(

æ1V + æ2N
)

= 0 .

Solutions of local determining equations

η1 = ((b, r) + A(w))N ; η2 = b c2 − V (b, V ) + [g, V ] ;

η3 = −A2E + [g, E] − c [b, B] ; η4 = −A2B + [g, B] + c [b, E] ;

η5 = −2A2j + [g, j] + c2b ρ ; η6 = −2A2ρ + (b, j) ;

ξ1 = A0 + A2t + (b, r) ; ξ2 = A1 + c2bt + [g, r] + A2r ; ξ3 = ξ(w) ,

Solutions of nonlocal determining equations

A = −2A2 − 5
(w, ξ)

c2
γ2 − (∇w, ξ) .
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Vlasov-Maxwell equations: symmetry group

Lie point symmetry group for Vlasov-Maxwell equations

P0 = i∂t ; P = i∂r ;

B = r∂t + c2t∂r − c [B, ∂E ] + c [E, ∂B] + c2ρ∂j + j∂ρ

+ NV ∂N + c2∂V − V (V , ∂V ) ;

R = [r, ∂r] + [V , ∂V ] + [E, ∂E ] + [B, ∂B] + [j, ∂j ] ;

D = t∂t + r∂r − 2N∂N − E∂E − B∂B − 2j∂j − 2ρ∂ρ ;

X∞ = ξ∂w −
(

5
(w, ξ)

c2
γ2 + (∇w, ξ)

)

N∂N , ξ ≡ ξ(w) .

Poincare group

L10 =< P0, P, B, R > .

➹
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Applications of RGS to nonlocal models

Dielectric permittivity of plasma Example 1

Laser beam self-focusing Example 2

Laser beam refraction in nonlinear medium Example 3

Plasma bunch expansion Example 4

Go to end
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Nonlinear dielectric permittivity of plasma

In nonlinear electrodynamics the material equation, i.e. the relation
between the induced current density j(t, r) and the electric field E(t, r), is
defined by the dependence of the electric induction D(t, r) upon the
electric field E. In Fourier variables the electric induction is defined as
follows

D̃i(k) = Ẽi(k) + i
4π

ω
j̃i(k) .
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Nonlinear dielectric permittivity of plasma

In nonlinear electrodynamics the material equation, i.e. the relation
between the induced current density j(t, r) and the electric field E(t, r), is
defined by the dependence of the electric induction D(t, r) upon the
electric field E. In Fourier variables the electric induction is defined as
follows

D̃i(k) = Ẽi(k) + i
4π

ω
j̃i(k) .

For various processes in plasma physics the material equation is
expressed as a series expansion in powers of E

j̃i(k) =
∑

l

j̃
(l)
i (k) , j̃

(l)
i (k) v O(Ẽl) .

Due to the temporal and spatial dispersion the relation between the
induced current and the electric field is integral (nonlocal). Hence, the
material equation has the form of an integral power series in E:
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Nonlinear dielectric permittivity of plasma

In nonlinear electrodynamics the material equation, i.e. the relation
between the induced current density j(t, r) and the electric field E(t, r), is
defined by the dependence of the electric induction D(t, r) upon the
electric field E. In Fourier variables the electric induction is defined as
follows

D̃i(k) = Ẽi(k) +
∑

l

j̃
(l)
i (k) =

= εij(k)Ẽj(k) +

∞
∑

n=2

∫

dk1 . . .dkn δ(k − k1 − . . . − kn)

× εij1...jn
(k1; . . . ; kn)Ẽj1(k1) . . . Ẽjn

(kn) , (k) ≡ (ω, k).

Comparison of two parts of this expression gives relations between the
nonlinear dielectric permittivity (NDP) tensors of plasma and the current
density j̃(l) of the given order l > 2.
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NDP in plasma

In hot plasma NDP are usually obtained by iterating Vlasov-Maxwell
equations with the stationary and homogeneous background distribution
function f0(v) ☞:

f(t, r, v) = f0(v) +
∑

l>1

f (l)(t, r, v) , j(l)(t, r) = em

∫

dvv(γ)5f (l) .

In cold plasma we derive NDP from collisionless hydrodynamic equations

Nt + div(NV ) = 0 , Vt + (V ∇)V =
e

m

{

E +
1

c
[V B]

}

, j = eNV .

It is generally taken, that expressions for NDP in hot plasma are of more
general type, hence “cold” expressions follow from them in the particular
case f0(v) = δ(v). The use of RGS gives the method of constructing “hot”
expression from the “cold” ones. (Kovalev et al. RG-91; RG-02)
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NDP of plasma

The key idea here is to express the current density j̃(l)(k) in hot plasma
as a convolution of a partial current density ̃(l)(k,w) with the equilibrium
distribution function f0(w),

j̃(l)(k) =

∫

dw f0(w)̃(l)(k,w) ,

and perform the following steps:

calculate ̃(l)(k, 0) in cold plasma using hydrodynamic equations,

construct ̃(l)(k,w) from ̃(l)(k, 0) for arbitrary w 6= 0,

integrate ̃(l)(k,w) over w with the weight function f0(w) to get the
desired expression for j̃(l)(k) in hot plasma,

use j̃(l)(k) to calculate NDP in hot plasma.
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NDP of plasma

A transition from the “cold” expression for ̃(l)(k, 0) to the “hot” expression
̃(l)(k,w) is a group transformation that is defined by the corresponding
RGS generator

R = k∂ω + ∂w − 1

c

[

B̃, ∂Ẽ

]

+ %̃∂̃ .

The finite transformations of this three dimensional RG have the form

ω = ω ′ + k ′w ; (βis/ω)Ẽs = (1/ω ′)Ẽ ′
i ; %̃ = %̃ ′ ; ̃i = βsĩ

′
s ;

k = k ′ ; B̃ = B̃ ′ = (c/ω′) [k ′ , Ẽ ′] ; βis = δis + kiws/(ω − kw) .

For example, in first order l = 1 this procedure gives

̃(1)a (k, 0) = i
e2ne0

mω
Ẽa(k) ; V ̃i

(1)(k,w) =
ie2ne0

mω
βsiβsaẼa(k) .
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NDP of plasma

These expressions leads to the one-to-one correspondence between the
scalar dielectric permittivity in cold plasma and the corresponding tensor
in hot plasma

ε(k) = 1 − 4πe2ne

mω2
V εab(k) = δab −

4πe2ne0

mω2

∫

dwf0(w)βsaβsb .

The proof of this result for the arbitrary order l is straightforward

εij1...jn
(k1; . . . ; kn) =

∫

dwf0(w)
ΩΩ1 . . .Ωn

ωω1 . . . ωn
ε̄ab1...bn

(κ1; . . . ; κn)

× βai(k)βb1j1(k1) . . . βbnjn
(kn) ; Ωi ≡ (ωi − kiw) , κi ≡ (Ωi, ki).

Here ε̄ corresponds to NDP tensor in cold plasma. For l = 2 we have,

ε̄isj(κ1; κ2) = − 4πie3ne0

2!m2ΩΩ1Ω2

(

ki

Ω
δjs +

k1s

Ω1
δij +

k2j

Ω2
δis

)

. Go back
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Laser beam self-focusing in nonlinear medium

A mathematical model of wave self-focusing is based on the nonlinear
Schrödinger (NLS) equation for the complex amplitude of the electric field
E of electromagnetic beam:

2ik0∂zE + 4⊥E + k2
0(ε2/ε0)E = 0 , E(0, r) = E0(r) .

It describes a stationary beam propagation in the direction z with an
assumption that the wave amplitude scale length along the z-axis is much
larger as compared to the characteristic scale in the transversal direction.
Here, k0 = (ω/c)

√
ε0 is the wave number, 4⊥ is the Laplace operator in

the perpendicular plane, r, and ε0 and ε2 are the real parts of linear and
nonlinear dielectric permittivities, respectively.
Regular and explosive-like singular solutions have been investigated by
using various analytical and numerical methods, which may be attributed
to the three categories.
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Laser beam self-focusing: different approaches

Rigorous analytical theories

the inverse scattering method Zakharov, Shabat, JETP, 72

the classical group analysis Taranov, J.Pl.Phys., 86;

Gagnon, Winternitz, J.Phys.A, 88

Approximate analytical methods

the paraxial ray (non-aberrational) approach Talanov, JETP Lett., 65;

Akhmanov et al.JETP, 66

the method of moments Vlasov, Radiophys.,74

the variational theory Anderson, Bonnedal, Phys.Fluids, 79

modifications of the ISM which employ an asymptotic or
perturbation expansions Zakharov-Manakov, JETP, 76; Enns, Rangnekar,

Can.J.Phys., 85

Numerical methods
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Laser beam self-focusing: different approaches

None of analytical methods is able to provide an exact solution to the NLS
equation for arbitrary boundary conditions. Only some specific BVPs that
are far away from practical requirements have been solved analytically so
far. There are also a number of contradictions between different theories
which have not been resolved yet. A parametric analysis of global
self-focusing characteristics versus boundary conditions is still far away
from applications.
We present a new, rather general method for finding analytical solutions to
the NLS equation by using the RGS approach ( Kovalev, Theor.Math.Phys., 99;

Kovalev,Bychenkov,Tikhonchuk,Phys.Rev A; 2000.).
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Laser beam self-focusing: basic model

We consider a cylindrically symmetric electromagnetic beam incident at
z = 0 on a homogeneous medium with a cubic nonlinearity, ε2(I) = γI.
The electric field, E =

√
I exp(ik0Ψ), is represented in terms of two real

functions: the intensity I and the phase Ψ,

kz + kkr − αIr − β ∂r

[

1

r
√

I
∂r(r∂r

√
I )

]

= 0 , Iz + Ikr + kIr +
kI

r
= 0 .

Here, k = Ψr is the radial phase derivative, r and z, are normalized by
the initial beam radius, r0, and the intensity is normalized by the on-axis
intensity, I0, at the entrance plane. The boundary conditions,
I(0, r) = I0N(r), k(0, r) = −r/R, assume that the incident beam intensity
is an arbitrary function of the radius, N(0) = 1, and that the incident beam
has a spherical front, Ψ(0, r) = −r2/2R, where R is the radius of the
wavefront curvature.
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Laser beam self-focusing: basic model

We consider a cylindrically symmetric electromagnetic beam incident at
z = 0 on a homogeneous medium with a cubic nonlinearity, ε2(I) = γI.
The electric field, E =

√
I exp(ik0Ψ), is represented in terms of two real

functions: the intensity I and the phase Ψ,

kz + kkr − αIr − β ∂r

[

1

r
√

I
∂r(r∂r

√
I )

]

= 0 , Iz + Ikr + kIr +
kI

r
= 0 .

The basic equations contain two small parameters: the nonlinearity,
α = ε2(I0)/2ε0, and the diffraction, β = 1/2k2

0r
2
0. Both terms can be made

arbitrary small if one considers a converging beam and the entrance plane
far away from the focal position. Hence, to construct the RGS generator
we employ the algorithm of approximate symmetries and expand
coordinates of RGS generator in power series over the nonlinearity and
diffraction parameters.
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Laser beam self-focusing: RGS generator

The RGS generator has the form:

R =

[

(

1 −
z

R

)

2

+ z2Sχχ

]

∂z +
[

−
r

R

(

1 −
z

R

)

+ zSχ + kz2Sχχ

]

∂r

+

[

r

R2
+

k

R

(

1 −
z

R

)

+ Sχ

]

∂k +

[

2I

R

(

1 −
z

R

)

− Iz

(

1 +
kz

r

)

Sχχ −
Iz

r
Sχ

]

∂I ,

where S depends on χ = r − kz and two expansion parameters:

S(χ) = αN(χ) +
β

χ
√

N(χ)
∂χ

[

χ∂χ

√

N(χ)
]

.

RGS generator serves as a tool for finding solutions of the desired
boundary value problem. It describes the finite-group transformation that
relates the values of the beam intensity and phase for any z > 0 to the
prescribed data at the boundary.
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Laser beam self-focusing: RGS generator

The BVP solution has the form:

k(z, r) =
r − χ

z
, I(z, r) = N(µ)

(

1 − z

R

)−1 χ

r

(Sχ)2

Sµµ
.

The dependence of two additional functions, χ and µ, on z and r is
defined by the following relations

r = χ
(

1 − z

R

)

[

1 +
2z2Sχχ

(1 − z/R)2

]

, S(µ) − S(χ) =
z2(Sχ)2

2(1 − z/R)2
.

It is important to note that this solution has been derived with no a priori

assumptions concerning the spatial structure of beam inside the medium.
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Laser beam self-focusing: BVP solutions

Example I: For an intensity profile at the boundary that obeys the equation

β(Arr + (1/r)Ar) + αA3 − (S0 + S2r
2/2)A = 0 , N(r) = A2 ,

the function S is given by S(χ) = S0 + S2χ
2/2; in particular, for S2 = 0 we

have the “Townes” beam (Townes et al.,PRL,64).
The BVP solution has the form:

k = −
r

R

1 − z/R − S2zR

(1 − z/R)2 + S2z2
, I = N

(

r
√

(1 − z/R)2 + S2z2

)

1

(1 − z/R)2 + S2z2
.

For S2 < 0 the solution has a singularity on the axes at zf1 where the
beam intensity goes to infinity

I(z, 0) =
zf1zf2

(zf1 − z) (zf2 − z)
, zf1,f2 = R/(1 ±

√

−S2R2) .
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Laser beam self-focusing: BVP solutions

Example II: For a Gaussian intensity profile, N(r) = exp (−r2) we have
S(χ) = α exp(−χ2) + β (χ2 − 2), and the beam structure can be written as
follows:

k(z, r) =
r − χ

z
, I(z, r) = e−µ2

(

1 − z

R

)−1 χ

r

β − α e−χ2

β − α e−µ2
,

where the parameters χ and µ are defined by the relations

β (µ2 − χ2) + α (e−µ2 − e−χ2

) = 2z2χ2

(

β − α e−χ2

)2

(1 − z/R)2
,

r = ρ(z, χ) ≡ χ
(

1 − z

R

)

[

1 + 2z2 β − α e−χ2

(1 − z/R)2

]

, χ = r − kz .
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Laser beam self-focusing: Gaussian beam

The structure of the solution singularity on the beam axis for α > β is
defined the formulas

I(z, 0) =
zf1zf2

(zf1 − z) (zf2 − z)
, k(z, 0) = 0 , zf1,f2 =

R

1 ± R
√

2(α − β)
.

They describe an explosive intensity growth near the singularity point
z = zf1. At this point a fractional power radial dependence of I and k near
the axis (r → 0) is observed

I(zf1, r) =
(R/r)2/3

[

2αz2
f1(R − zf1)2

]1/3
, k(zf1, r) =

r

zf1



1 −
(

1 − zf1/R

2αr2z2
f1

)1/3


 .
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Laser beam self-focusing: Gaussian beam

The structure of the solution singularity on the beam axis for α > β is
defined the formulas

I(z, 0) =
zf1zf2

(zf1 − z) (zf2 − z)
, k(z, 0) = 0 , zf1,f2 =

R

1 ± R
√

2(α − β)
.

They describe an explosive intensity growth near the singularity point
z = zf1 that is illustrated below for z = 0, 2, 3, 4, 4.9 and R = ∞ in a
nonlinear medium with α = 0.03 and β = 0.01:

0.4 0.8 1.2
r

−0.06

−0.02

0.02

k

0.4 0.8 1.2
r

2

6

10
I
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Laser beam self-focusing: global characteristics

Although the RGS method provides a complete BVP solution, it is also
instructive to discuss the integral characteristics of a self-focused beam.
The beam critical power, Pc = 2π

∫

Irdr, defines a minimum beam power,
required to create a self-focused channel.

In the paraxial ray approximation ( Akhmanov,66) the critical power of a
collimated beam reads Pc = πc2/γω2.
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Laser beam self-focusing: global characteristics

Although the RGS method provides a complete BVP solution, it is also
instructive to discuss the integral characteristics of a self-focused beam.
The beam critical power, Pc = 2π

∫

Irdr, defines a minimum beam power,
required to create a self-focused channel.

In the paraxial ray approximation ( Akhmanov,66) the critical power of a
collimated beam reads Pc = πc2/γω2.

The method of moments (Vlasov,74) predicts four times larger
magnitude P

(m)
c = 4Pc = 4πc2/γω2.
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Laser beam self-focusing: global characteristics

Although the RGS method provides a complete BVP solution, it is also
instructive to discuss the integral characteristics of a self-focused beam.
The beam critical power, Pc = 2π

∫

Irdr, defines a minimum beam power,
required to create a self-focused channel.

In the paraxial ray approximation ( Akhmanov,66) the critical power of a
collimated beam reads Pc = πc2/γω2.

The method of moments (Vlasov,74) predicts four times larger
magnitude P

(m)
c = 4Pc = 4πc2/γω2.

The RGS method resolves a contradiction in the definition of the critical
power: the first result defines the power where the singularity on the beam
axis shows up, while the second corresponds to the power where the
effective beam radius decreases at least at small distances from the entry
plane.
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Self-focusing: global characteristics-1

The definition of Pc coincides with the equality α = β which is a necessary
condition for the singularity to occur. However, the spatial beam structure
is quite different from a Gaussian-like beam that the paraxial ray method
predicts.

0.4 0.8 1.2
r

−0.06

−0.02

0.02

k

0.4 0.8 1.2
r

2

6

10
I
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Self-focusing: global characteristics-1

The method of moments identifies the self-focusing threshold as a power
where the mean square radius 〈r2〉 = 2π

∫

Ir3dr/P (0) does not depend
on z (for a collimated beam). The dependence of 〈r2〉 on z is shown below
in a nonlinear medium with α = 0.03 and α/β = 3.2 (a), 6 (b), and 30 (c).
Dashed curves demonstrate the same dependence that follows from the
method of moments.

5 10 15
z

0.5

1.5

2.5

<r2
>

a

b

c
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Self-focusing: global characteristics-2

The important characteristics of self-focusing is the amount of power
trapped in a singularity and the effective beam radius. The trapped power
part is defined as ptr(z) = 1 − P (z)/P (0) where P (0) is the incident beam
power and P (z) = 2π

∫ ∞

0
rI(z, r) dr and the effective beam radius, rtr(z)

is defined as a radius that encircles a half of the incident power,
2π

∫ ∞

rtr
Irdr = P (0)/2. The typical z-dependence of ptr and rtr for a

collimated beam in a medium with β = 0.001 and α/β = 3 (1), 6 (2), and
30 (3) is shown below.
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Self-focusing: global characteristics-2

The trapped power part, ptr(z), has to be found from the equation

ln
1

1 − ptr
+

α

β
(1 − ptr) =

[

1 +
(1 − z/R)2

2βz2

] [

1 + ln
2αz2

2βz2 + (1 − z/R)2

]

.

For a collimated beam (R → ∞) with α/β = 3 the trapped power
approaches 67% for z → ∞ while for α/β = 30 the trapped power reaches
97%, i.e. the maximum trapped power equals to the incident beam power
with exception of the critical power,

pmax
tr = 1 − β

α
≡ 1 − Pc

P (0)
.

This conclusion is in an apparent contradiction with a heuristic expectation
that the critical power should be trapped in a channel while the rest of the
incident power could be radiated. Go back
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Laser beam refraction in nonlinear medium

The evolution of the laser beam intensity I(z, x) and the eikonal derivative
k(z, x) in nonlinear medium (z > 0) is defined by nonlinear optics
equations:

kz + kkx − αIx = 0 , Iz + kIx + Ikx = νIk/x ; k(0, x) = 0 , I(0, x) = I(x) .

Here α is the parameter that define nonlinear refraction, z and x are the
coordinates along and transverse to the beam axis, respectively; ν = 1 for
cylindrical beam and ν = 0 for the plane beam geometry.
The RGS approach can serve as a regular method of constructing BVP
solutions with various boundary conditions. The typical example here is
the well-known solution (Akhmanov et al,JETP,66) for the laser beam with the
“soliton” intensity distribution at the boundary, I(x) = cosh−2(x),

k = −2αIz tanh(x − kz) , αI2z2 = I cosh2(x − kz) − 1 .
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Laser beam refraction: Akhmanov solution

This solution can be obtained in a regular way with the help of the
following second order Lie-Bäcklund RGS operator

R =
(

2I(1 − I)τII − IτI − 2IK(χI + IχII) +
α

2
IK2τII

)

∂τ

+

(

2I(1 − I)χII + (2 − 3I)χI + αK (2IτII + τI) +
αK2

2
(IχII + χI)

)

∂χ ,

where χ = x − kz, τ = Iz and K = k/α.
The typical behavior of k and I is illustrated below for z = 0.05 (a), 0.35 (b)
and 0.5 (c) in a nonlinear medium with α = 1.
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Laser beam refraction: Akhmanov solution

0.4 0.8
x

 −0.2

 −0.4

k

a

b

c
0.4 0.8

x

1

2
I

a

c
b

The appearance of the singularity in the solution is obtained using the
reduced description via two solution functionals, namely laser beam
intensity, I0(z) ≡ I(z, 0), and the second derivative of the eikonal,
W 0(z) ≡ kx(z, 0), on the beam axis, that may be formally introduces as

I0(z) =

∫

dx δ(x)I(z, x) , W 0(z) =

∫

dx δ(x)kx(z, x) , I0(0) = 1, W 0(0) = 0 .
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Parabolic laser beam

For the cylindrical laser beam (ν = 1) with the parabolic intensity
distribution, I(x) = 1 − x2, the RGS generator is given by

Rpar =
(

1 − 2αz2
)

∂z − 2αzx∂x − 2α (x − vz) ∂k + 4αIz∂I .

Prolongation on “nonlocal” variables I0 and W 0 yields

R =
(

1 − 2αz2
)

∂z + 4αI0z∂I0 − 2α(1 − 2zW 0)∂W 0 .

Solving Lie equations gives the behavior of I0(z) and W 0(z)

I0 =
1

1 − 2αz2
, W 0 = − 2αz

1 − 2αz2
,

starting from the boundary of the nonlinear medium up to the point of the
solution singularity, zsing = 1/

√
2α, where both the beam intensity and the

eikonal derivative go to infinity. (Kovalev TMP,97;Nonlin.Dyn.,2000.)

Workshop “Ultrashop pulse laser plasma interactions”, Prague, September 24-27, 2003 – p. 50/58



Parabolic laser beam

For the cylindrical laser beam (ν = 1) with the parabolic intensity
distribution, I(x) = 1 − x2, the RGS generator is given by

Rpar =
(

1 − 2αz2
)

∂z − 2αzx∂x − 2α (x − vz) ∂k + 4αIz∂I .

The typical behavior of I0 and W 0 is presented below (solid lines) from
the boundary up to the singularity point
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Soliton-type laser beam

The same, though more complicated procedure can be fulfilled in case
when the RG generator is presented by Lie-Bäcklund symmetry
generator, e.g. when we have the “soliton” profile at the boundary,
I(x) = cosh−2(x), (Kovalev et. al , Diff.Eq.93; SNMP-95; TMP,97; Nonlin.Dyn.,2000 )

Rsol =
{ I

(Ik2
x + αI2

x)2

[(

1

2

(

Ik2

x − αI2

x

) (

k2 + 4α(1 − I)
)

+ 4αkIIxkx

)

vxx

+
(

2αk
(

αI2

x − Ik2

x

)

+ αkxIx

(

k2 + 4α(1 − I)
))

(

Ixx −
I2
x

2I

)]

− k(1 − zkx) − αzIx

}

∂k

+
{ I

(Ik2
x + αI2

x)2

[

(

1

2

(

Ik2

x − αI2

x

) (

k2 + 4α(1 − I)
)

+ 4αkIkxIx

) (

Ixx −
I2
x

2I

)

−
[

2k
(

αI2

x − Ik2

x

)

+ kxIx

(

k2 + 4α(1 − I)
)]

Ikxx +
1

4I
(Ik2

x + αI2

x)
[

4αI2

x

+(Ixk − 2Ikx)2
]

]

− I(2 − zkx) + zkIx

}

∂I .

Prolongation on nonlocal variables, gives the RGS generator
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Soliton-type laser beam

R = Rsol +

(

4 − 5I0 − zI0
z + 2(I0 − 1)

I0I0
zz

(I0
z )2

)

∂I0

+

(

I0
z

I0
+ z

I0
zz

I0
− z

(

I0
z

I0

)2

− 2(I0 − 1)

[

I0
zzz

(I0
z )2

+ 2
I0
z

(I0)2
− 2

(I0
zz)

2

(I0
z )3

]

)

∂W 0 .

Utilizing RG invariance conditions in view of the additional constraint,
(I0

z /
√

I0 − 1)|z→0 = 2
√

α, yields the behavior of I0 and W 0,

z =

√
I0 − 1√
αI0

, W 0 = − 2αzI0

1 − 2αz2I0
,

from the boundary z = 0 up to the singularity point zsing = 1/2
√

α, where
I0 = 2.
Go back
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Soliton-type laser beam

R = Rsol +

(

4 − 5I0 − zI0
z + 2(I0 − 1)

I0I0
zz

(I0
z )2

)

∂I0

+

(

I0
z

I0
+ z

I0
zz

I0
− z

(

I0
z

I0

)2

− 2(I0 − 1)

[

I0
zzz

(I0
z )2

+ 2
I0
z

(I0)2
− 2

(I0
zz)

2

(I0
z )3

]

)

∂W 0 .

The typical behavior of I0 and W 0 is presented below (dashed lines) from
the boundary up to the singularity point
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Expansion of a plasma bunch

We consider the 1-D expansion of a plasma bunch, which is
inhomogeneous in x. The basic system include kinetic equations for
particle distribution functions fα,

fα
t + vfα

x + (eα/mα)E(t, x)fα
v = 0 , fα

∣

∣

t=0
= fα

0 (x, v) ,

with the additional quasi-neutrality conditions

∫

dv
∑

α

eαfα = 0 ,

∫

dv v
∑

α

eαfα = 0 .

Electric field is expressed in terms of moments of distribution functions.

E(t, x) =

∫

dv v2 ∂x

∑

α

eαfα

{
∫

dv
∑

α

e2
α

mα
fα

}−1

.
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Expansion of a plasma bunch

We consider the 1-D expansion of a plasma bunch, which is
inhomogeneous in x. The basic system include kinetic equations for
particle distribution functions fα,

fα
t + vfα

x + (eα/mα)E(t, x)fα
v = 0 , fα

∣

∣

t=0
= fα

0 (x, v) ,

with the additional quasi-neutrality conditions

∫

dv
∑

α

eαfα = 0 ,

∫

dv v
∑

α

eαfα = 0 .

Electric field is expressed in terms of moments of distribution functions.

RGS method allows to derive an entire class of solutions to the Cauchy
problem for different initial distributions of the particles. (Kovalev et al.

JETP,02; PRL,03.)
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Expansion of a plasma bunch: RG generator

The RGS generator is the linear combination of time translations and the
projective operator

R = (1 + Ω2t2)∂t + Ω2tx∂x + Ω2(x − vt)∂v .

This operator is the only which selects the spatially symmetric initial DFs
with zero mean velocity. The value Ω can be treated as the ratio of the ion
acoustic velocity to the gradient length L0.
Distribution functions are invariants of the RG transformations, i.e.

fα = fα
0 (I(α)) , I(α) =

1

2

(

v2 + Ω2(x − vt)2
)

+
eα

mα
Φ0(x

′) ,

The dependence of Φ0 on self-similar variable x′ = x/
√

1 + Ω2t2 is
defined by quasi-neutrality conditions.
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Expansion of a plasma bunch: RG generator

For practical applications rough integral characteristics, such as partial ion
density, nq(t, r), might be more useful,

nq(t, x) =

∞
∫

−∞

dvfq(t, x, v) .

One may consider nq(t, x) as the linear functional of fq and prolong the
RG generator to get the following operator

R = (1 + Ω2t2)∂t + Ω2tx∂x + Ω2tnq∂nq .

Finite group transformations defined by this operator yield

nq =
nq0√

1 + Ω2t2
Nq

(

x√
1 + Ω2t2

)

, Nq =

∞
∫

−∞

dvfq
0 .
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Expansion of a plasma bunch: illustration

For an expansion of a plasma bunch with two different ion species having
Maxwellian distribution functions and electrons obeying a two-temperature
Maxwellian distribution function with densities and temperatures of the
cold and hot components nc0 and nh0 (nc0 + nh0 = Zni0) and Te and Th,
respectively, the solution to the Cauchy problem reads:

fe =
nc0√
2πvTc

exp

(

−I(c)

v2
Tc

)

+
nh0√
2πvTh

exp

(

−I(h)

v2
Th

)

, v2
Tα =

Tα

mα
,

fq =
nq0√
2πvTq

exp

(

−I(q)

v2
Tq

)

, u = xt
Ω2

(1 + Ω2t2)
, U = x

Ω√
1 + Ω2t2

,

I(c)

v2
Tc

= E +
(1 + Ω2t2)

2v2
Tc

(v − u)2 ,
I(h)

v2
Th

= E Tc

Th
+

(1 + Ω2t2)

2v2
Th

(v − u)2 ,

I(q)

v2
Tq

= −E
(

ZqTc0

Tq0

)

+
U2

2v2
Tq

(

1 +
Zqme

mq

)

+
(1 + Ω2t2)

2v2
Tq

(v − u)2 , q = 1, 2 .
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Expansion of a plasma bunch: illustration

Here the function E satisfy the equation,

nc0 =
∑

q=1,2

Zqnq0 exp

[

(

1 +
ZqTc

Tq

)

E −
U2

2v2

Tq

(

1 +
Zqme

mq

)

]

− nh0 exp

[(

1 −
Tc

Th

)

E

]

.

For the specified initial distribution functions the ion density distributions
Nq in carbon-proton plasma have the form

Nq = exp

[

E
(

ZqTc0

Tq0

)

− U2

2v2
Tq

(

1 +
Zqme

mq

)

]

, q = 1, 2 .

Go back
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Expansion of a plasma bunch: illustration

Here the function E satisfy the equation,

nc0 =
∑

q=1,2

Zqnq0 exp

[

(

1 +
ZqTc

Tq

)

E −
U2

2v2

Tq

(

1 +
Zqme

mq

)

]

− nh0 exp

[(

1 −
Tc

Th

)

E

]

.

For the specified initial distribution functions the ion density distributions
nq in carbon-proton plasma are presented below for two different
moments: t1 = 0.5L0/cs and t2 = 10t1.
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Conclusion

We hope that this report serves as an illustration of the universality of the
RGS algorithm in application both to models based on DE and nonlocal
(integral) equations. The possibility to prolong the symmetry on solution
functionals enables to investigate the behavior of solution characteristics
even in the case when the explicit form of the solution is not known. The
results presented gives the promise for the progress in this field and can
give rise to many potential applications. ➦
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