

Laser driven shock experiments at PALS

D.Batani, H.Stabile, A.Ravasio, T.Desai, G.Lucchini, F.Strati

Dipartimento di Fisica "G. Occhialini", Università degli Studi di Milano Bicocca and INFM, 20126 Milano,Italy

J.Ullschmied, E.Krousky, J.Skala, B.Kralikova, M.Pfeifer, C.Kadlec, T.Mocek, A.Präg

PALS Research Centre, 18221 Prague 8, Czech Republic

H.Nishimura, Y.Ochi

ILE, Osaka University, Suita City, Osaka 565-0871, Japan

SEQUENCE OF THE TALK

- **1. Introduction to our work**
- 2. Theme of the experiment: Shock pressure in Aluminum EOS of Carbon
- 3. Results and Discussion Pressure scaling (Expt & comparison with Theoretical models) EOS of Carbon
- 4. Summary

Laser induced shock pressures

Studied from the 70's.

Ambiguity in the earlier works

1. Small laser spots

Edge effectsComparison with 1-D models

2. Intensity profile not smooth - Hot spots - Drilling effects

- **3. Data missing for short wavelengths at relevant intensity**
 - $P \propto I^{0.3}$ at 0.35 μm (Key et al., 1983)
 - $P \propto I^{0.7}$ (theoretical models, 80s')
- Imp. features of this work:
 - Smooth intensity profile (no hot spots)
 - Large spot

(no edge / lateral effects)

Theoretical Models

• C.Max et al. '80s, absorption at $n_e \approx n_c$ P (Mbar) = 12 (I /10¹⁴)^{2/3} $\lambda^{-2/3}$ (A/2Z)^{1/3}

- **Caruso & Gratton (Plasma Phys., 10, 867, 1968)**
- Mora (Phys. Fluids, 25, 1051, 1982) delocalized absorption $(n_e < n_c)$

 $P(Mbar) = 11.6 (I/10^{14})^{3/4} \lambda^{-1/4} (A/2Z)^{7/16} (Z*t/3.5)^{-1/8}$

Lindl (Phys. Plasmas, 2, 3933, 1995), at $n_e \approx n_c$ P(Mbar) = 8.6 (I /10¹⁴)^{2/3} λ^{-2/3}

Experimental Method

Detection of shock breakout at the rear side of a stepped Al target

The method is direct

It is less prone to 2D effects or relaxation

Al is a standard reference material for shock high pressure experiments (SESAME, QEOS, TEOS)

Experimental set-up

Prague Asterix Laser System

Experimental parameters

PALS laser specifications.

 $\lambda = 0.44 \ \mu m (3 \ \omega)$ $\tau = 450 \text{ ps}, \text{ E}_1 = 400 \text{ J}.$ $I \approx 2 \times 10^{14} \text{ W/cm}^2$ **Target configuration** Al base = $8 \mu m$ Drive Laser Al step = $8.5 \mu m$ **C** step = $9.52 \,\mu m$ **Optical smoothing technique** PZP **Diagnostics- Streak camera** Spatial resolution - 2.6 µm/Pixel **Temporal resolution** - 3.22 ps/Pixel

Phase Zone Plates

Collection of Fresnel lenses with random phases 0 or π Focal spot

Shock breakout from a flat aluminum target. Image 1.69 ns \times 1300 μm

Experimental results (dots) Scaling law for absorption at n_c (continous) De-localized absorption (dotted line).

Discussion

Pressure vs. Intensity shows closer agreement with the de-localized laser radiation approximation

Corroboration with Theory: Plasma temp. \approx 900 eV (Max, 1985) n_e at which laser is absorbed \approx 3 x 10²¹/cc Assuming an exponential fall N_o \approx 40 µm from n_c.

Interest of Carbon Study for Planetology

Mantle of Uranus and Neptune = «hot ices» of H₂O, NH₃, CH₄ Intense, asymetrical magnetic field (observed by VOYAGER 2)

Existence of a fluid, conducting region ?

EOS of Carbon

Grumbach and Martin's phase diagram and the two Hugoniot curves corresponding to the initial densities $\rho_0 = 1.6 \text{ g/cm}^3$ and $\rho_0 = 1.45 \text{ g/cm}^3$

Targets: Details

SEM image of carbon steps with $\rho_0 = 1.45 \text{ g/cm}^3$ deposited on a CHAl substrate. Al steps are not present since they were deposited later

Determination of a relative EOS point

Process used to find carbon Hugoniot from experimental shock velocities

Shock breakout image from a C / Al target for $E_L = 108$ J.

t₀ - t₁ 205 ps D_{AI} 38.8 km/s P_{AI} 33 Mbar

t₀ - t₂ 295 ps D_c 32.2 Mbar P_c 18 Mbar

EOS of Carbon

Experimental EOS results from shock experiments. On ly data with pressures P 1.5 Mb ar and corresponding Hugon iot are shown. Our points: full squares, 1.45 g/ cm³ LULI; empty circles, 1.6 g/cm³ LULI; full circles, 1.6 g/cm³ PALS. Previous points: empty diamond, 1.85 g/ cm³ Pavlov skii et al. [28]; triangles, 2.2 g/ cm³ Nellis [29]; full diamond, 2.23 g/ cm³ Pavlov skii et al. [28]; empty squares, 3.51 g /cm³ (diamond) Pavlovsk ii [30].

Conclusions

- Laser induced shock pressures on Al was measured at 0.44 μm, I=10¹⁴ W/cm² with large spot and PZP.
- P scaling with Intensity shows good agreement with de-localized absorption model
- EOS of Carbon has been meaured in the Mbar pressure range
- A deviation from SESAME is present at high pressure.