Diagnostics of pulsed capillary discharges as coherent and incoherent EUV sources

<u>C.Cachoncinlle</u>, E. Robert, O.Sarroukh, L. Nadvornikova*, J.Pons,R.Viladrosa,C. Fleurier, J.M. Pouvesle

Univerité d 'Orléans/CNRS France

* CTU Prague

Pulsed capillary discharges

Capella: a kilohertz EUV Lamp

CAPELLA:

- 75 m/sr (2%,à 13.5 nm)
- 1 kHz
- Débris OK
- Stabilité <0.5%
- Rendement: 0.1%
- \cdot Stabilité en position < 50 μ m
- Durée de vie > 10⁸ tirs

EUV Xenon spectrum

Capella: a kHz EUV lamp

P. Vrba et al « Modelling of emission characteristics od a xenon capillary discharge »

Compression factor

Electronic temperature

Electronic density

Experimental setup

Radiated EUV power

Φ: 1.5 mm

Φ: 3 mm

E-beam géneration

Plasma dynamics

IV.1 : images et profils radiaux d'émission aux différents instants pour un capillaire de diamètre 1,5 mm

Compression factors

IV.1 : évolution du rayon d'émission du plasma et du pic d'intensité du profil radial

Φ: 3 mm

Time resolved spectroscopie

Φ: 1.5 mm

Longueur d'onde (nm)

Φ: 3 mm

Line intensity evolutions

Temperature estimation: Spitzer formula

$$\rho = 1,03.10^{-2} \frac{Z \ln \Lambda}{T_e^{3/2}} \quad (\Omega.\text{cm})$$

$$\ln \Lambda = 23 - \ln \frac{Z N_e^{1/2}}{T_e^{3/2}}$$

Capillary dimension	Resistivity	Mean temperature
$5 \text{ cm} \times 1,5 \text{ mm}$	$2,1.10^{-3} \Omega.cm$	20-30 eV
$5 \text{ cm} \times 3 \text{ mm}$	$8,5.10^{-3} \Omega.cm$	5-15 eV
$5 \text{ cm} \times 4,5 \text{ mm}$	$1,9.10^{-2} \Omega.\text{cm}$	~ 5 eV
12,5 cm \times 3 mm	$1,1.10^{-2} \Omega.\mathrm{cm}$	5-10 eV

Temperature estimation: Fly code

2.0x10¹⁸

1.5x10¹⁸

5.0x10¹⁷

80

2 "Z 1.0x10¹⁸ Ω

Temperature estimation: electronics recombination

$$I(\lambda) = \frac{I_0}{\lambda^2} \exp\left(-\frac{hc}{\lambda k T_e}\right)$$

Temperature estimation: Blackbody radiation

Pinch time

V.1 : rayon théorique et expérimental pour le capillaire de longueur 5 cm et de diamètre 3 mm

Toward coherent shortwavelength discharge source

Carbon ablative capillary discharge for the production of

Hydrogen-like carbon H α at 18,2 nm and H β at 13.5 nm

Transitions of the Balmer serie of CVI

Ablative capillary discharge

#Uncoherent sources: still needs of powerfull lamps for EUV Lithography.

Coherent sources: Gas filled capillary: carbon plasma can lead to gain at 18.2 and 13.4 nm