Laser interactions with low-density plastic foams

J. Limpouch
Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Břehová 7, 11519 Prague 1, Czech Republic
and
Institute of Physics, Academy of Sciences CR, Na Slovance 2, 18221 Prague 8
in collaboration with
N.N. Demchenko3, S.Yu. Gus’kov3, A.I. Gromov3, M. Kálal1,
A. Kasperczuk4, V.N. Kondrashov5, E. Krouský2, K. Mašek2,
M. Pfeifer2, P. Pisarczyk6, T. Pisarczyk4, K. Rohlena2, V.B. Rozanov3,
M. Šišor1, J. Ullschmied2

1Czech Technical University, Prague
2Institute of Physics, AS CR, Prague
3Lebedev Physical Institute, Moscow
4IPPLM Warsaw, Poland
5TRINITI, Troitsk, Russia
6Warsaw University of Technology

partially supported by
INTAS, project INTAS-01-0572
IAEA, project 11655/RBF
Czech Ministry Educaion LN00A100
EC contract HPRI-CT-1999-0053
(project PALS 013)
Outline

• Motivation and aim
• Experimental results
 – X-ray streak measurement of thermal transport in foam
 – 3-frame optical interferometry to measure foil acceleration
 – Preliminary experiment on shock break-through (opt.streak)
• 2D hydrodynamic simulations of experiments
• Analytical model of experiments
• Comparison of experiments, simulation and theory
 – Velocity of accelerated foil
 – Hydrothermal wave transit time though foam
• Conclusions and future plans
Motivation

• Low-density foam layers (mostly overdense plastic foams) have the potential of target design improvement for ICF and other experiments
• Laser imprint may be smoothed out in a relatively thick hot low-density outer layer of target – one approach relies on transport of x-rays generated in a thin high-Z outer layer, while the other approach prefers highly efficient laser absorption in the foam
• Density tailoring of sandwich target including foam layer with distant laser prepulse may suppress RT instability
• Foams are used in EOS experiment to increase pressure due to impedance mismatch on foam-solid interface
• Foam materials are also important in astrophysics dedicated experiments
Foam materials

- Low density materials must be inhomogeneous
- If you want 1% of solid density, you have 1% of solid, and 99% of vacuum
- Here we have basically cubic pores, but filamentary structure also possible
- When heated, pore walls expand (fast homogenization stage)
- After collision of mass fluxes (slow homogenization stage)
Aim

• More information is needed about laser-foam interaction and about energy transport in foam layers for successful design of ICF targets including foam layers

• Laser absorption and energy transport in the foam material with large pores ($D_p > 10 \, \mu m$) is studied here – laser pulse shorter than slow homogenization stage

• Sufficient efficiency of thin foil acceleration by the pressure of heated foam matter is demonstrated

• Substantial smoothing of laser inhomogeneities is searched for

• Comparison of experimental results with numerical simulations and analytical model is important for progress in understanding laser-foam interactions
Interaction of 400 ps iodine laser ($\lambda=1.32 \, \mu m$) pulse of energy 92 J and radius 150 μm with 400 μm thick polystyrene foam of density $\rho \approx 9 \, \text{mg/cm}^3$ and pore diameter $D_p \approx 50 – 70 \, \mu m$, 2 μm thick Al foil is placed at the target rear side.

- Images above the sensitivity limit of the streak could be registered only for foams with the largest pore diameter
- Laser penetration depth can be estimated from the immediately heated layer thickness $\sim 130 \, \mu m$
- Heat wave propagates later with velocity $1.4 \times 10^7 \, \text{cm/s}$
- No x-ray emission near the target rear side is observed
Three-frame optical interferometry

Sequence of 3 interferograms recorded in one shot in instants 1, 4 and 7 ns after the main 400 ps FWHM laser pulse maximum. Laser wavelength 1.32 µm and beam radius 150 µm on the polystyrene foam of $\rho \sim 9$ mg/cm3, $D_p \sim 50 - 70$ µm, 400 µm thick with 2 µm thick Al foil at its rear side. Laser energy 173 J. Parasitic effects of the target holder are denoted in the left picture.

- No sign of the target rear side (foil) expansion observed
- Smooth shape of accelerated foil (~ spherical shock wave)
- Rear side motion starts at about 3 ns after laser pulse
- Point P moves with velocity 8×10^6 cm/s between 4 and 7 ns after laser
Three-frame optical interferometry (PVA foam)

Sequence of 3 interferograms recorded in one shot in instants 1, 4 and 7 ns after the main 400 ps FWHM laser pulse maximum. Laser wavelength 1.32 µm and beam radius 150 µm on the PVA (polyvinylalcohol) foam of ρ ~ 5 mg/cm³, Dp ~ 5 µm, 100 µm thick with 0.8 µm thick Al foil at its rear side. Laser energy 238 J. Parasitic effects of the target holder are denoted in the left picture.

- Target rear side (foil) expansion observed
- Smooth shape of accelerated foil
- Rear side motion starts during laser pulse
- Point P moves with velocity 1.4x10⁷ cm/s between 4 and 7 ns
Measured evolution of point P position

- $E_L = 92 \text{ J}$
- $E_L = 173 \text{ J}$
- PVA target
Preliminary optical streak record of self-emission from target rear side

Left – foam 700 μm + 5 μm Al foil
Right - 5 μm Al foil only

5 ns/image - time grows downwards, spatial scale 1.5 mm/image, fiducial – left upper corner, 3rd harmonics of iodine laser, energy 240 J, laser spot radius 200 μm
2D hydrodynamic simulations

• 2D Langangian hydrocode “ATLANT-HE” used
• 1 fluid 2 temperature model of plasma with the flux-limited Spitzer’s heat conductivities for electrons and ions
• Advanced treatment of laser propagation and absorption
• Fast electron generation and transport included
• Simulations performed in cylindrical geometry
• Fine structure of the foam is not taken into account, foam approximated as uniform low density medium
• Fast homogenization stage – filling of the pores – lasts about 50-100 ps, i.e less than laser pulse
• Slow homogenization stage – density smoothing – up to several ns ⇒ speed of hydrothermal wave may be overestimated
Results of 2D hydrodynamic simulations

Density (in g/cm³) and electron temperature (in eV) profiles at times 1, 4 and 7 ns after laser pulse maximum calculated numerically for polystyrene foam 400 µm thick with 2 µm thick Al foil and laser energy 173 J.
Analytical model

• Does not take into account fine structure of the foam
• Spherical hydrothermal wave reaches rear side of the the foam in time t_f

$$t_f \approx \frac{\Delta_f^{5/2}}{\left[\frac{3}{2} \left(\frac{5}{3} \right)^2 \frac{(\gamma-1)E_{ab}}{\pi \rho_f} \right]^{1/2}}$$

• Initial pressure on the foil

$$P_0 = P_{ht}(t=t_f) \approx \frac{(\gamma-1)E_{ab}}{\pi \left(\Delta_f + R_L \right)^2 \Delta_f}$$

Foil maximum velocity

$$V_{max} = \frac{c_0 \cdot \rho_f \cdot \Delta_f}{\gamma \cdot \rho_s \cdot \Delta_s}$$

where $$c_0 = \left(\gamma P_0 / \rho_f \right)^{1/2}$$
Comparison of experiment, simulations and analytical theory

<table>
<thead>
<tr>
<th>Laser energy</th>
<th>Target</th>
<th>V_{exp} (cm/s)</th>
<th>V_{simul} (cm/s)</th>
<th>V_{max} (cm/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>92 J</td>
<td>(CH)$_n$</td>
<td>6.0×10^6</td>
<td>4.9×10^6</td>
<td>4.8×10^6</td>
</tr>
<tr>
<td>173 J</td>
<td>(CH)$_n$</td>
<td>8.0×10^6</td>
<td>8.2×10^6</td>
<td>6.7×10^6</td>
</tr>
<tr>
<td>238 J</td>
<td>(CH)$_n$</td>
<td>\ldots</td>
<td>1.1×10^7</td>
<td>8.2×10^6</td>
</tr>
<tr>
<td>238 J</td>
<td>PVA</td>
<td>1.4×10^7</td>
<td>3.5×10^7</td>
<td>1.32×10^7</td>
</tr>
</tbody>
</table>

- Generally good agreement in foil velocities
- Velocity in simulations is overestimated for the case of PVA that is heated up to 800 eV in simulations and foil expansion is faster than in experiment
- Hydrodynamic efficiencies (foil kinetic energy/absorbed laser energy) in range 12 – 14%
- Smooth shape of accelerated region of the foil
Delay in hydrothermal wave propagation

- The hydrothermal wave arrival on the rear boundary is approximately the same in simulations and in theory.
- Experimental time of arrival is by about 2 ns greater for 400 μm thick foam layer.
- Delay may influence laser imprint mitigation.
- Delay may be explained by foam homogenization.
- Fast homogenization stage needs $t_s \sim (D_p - b)/V_s$ (~ 100 ps).
- Final homogenization stage controlled by speed of viscous processes (broadening of shock wavefront).
- Time t_h is about 2 ns for $T = 1$ keV, $D_p = 50$ μm, $\rho = 10$ mg/cm3.

\[
t_h \approx 10^{-9} \times \frac{D^2 p \rho f}{\lambda_i V_s T^{3/2}}
\]
Conclusions

- Depth of laser absorption region and speed of heat wave in foam measured by x-ray streak
- Foil acceleration observed by 3-frame interferometry
- Preliminary measurement of shock wave arrival
- 2D hydrodynamic simulations and analytical model applied, but foam fine structure not taken into account
- Good efficiency of foil acceleration found
- Smooth profile of accelerated foil boundary
- Agreement between theory and experiment in accelerated foil velocities
- Increased experimental delay in hydrothermal wave transit explained by foam homogenization process
- Delay may influence laser imprint mitigation
Plans for future

- Next experiment on PALS laser – November 2004
- Comparison between foams with submicron and large pores will be performed
- Shock wave arrival on the foam rear side for 1ω
- Laser reflection to focusing optics will be measured
- Foams containing a medium Z element in order to enhance x-ray emission for x-ray streak measurements will be also used
- High resolution line x-ray spectra of medium Z element in foam will be recorded

Thank you for attention
Preliminary optical streak record of self-emission from target rear side

Left – foam 700 µm + 5 µm Al foil
Right - 5 µm Al foil only

5 ns/image - time grows downwards, spatial scale 1.5 mm/image, fiducial – left upper corner, 3rd harmonics of iodine laser, energy - 75 J, laser spot radius 150 µm