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1. Examples of Various Interferograms

Experimental Interferogram
Classical

1 Degree of Freedom



Synthetic Interferogram
Modulated

2 Degrees of Freedom



Synthetic Interferogram
Complex

3 Degrees of Freedom



Experimental Interferogram
Complex

3 Degrees of Freedom



2. How is an Interferogram Created
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probe beam
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Φ( , )y z Probe Beam Phase Shift

E y z( , ) Probe Beam Amplitude
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Intensity at the plane of interference



( )
! ! ! ! ! !
E E E E E E

t t t t1 2
2

1
2

2
2

1 22+ = + +
where

!
E

t
E y z1

2 21

2
= ( , )

!
E

t
E2

2
0

21

2
=

! ! ! ! !
E E t E y z E k k r y z1 2 0 2 1

1
2

= − +( , ) cos ( ) ( , )Φ



Introducing new amplitudes
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we can arrive to the following expression for the 
interference pattern - interferogram

and

i y z a a y z( , ) ( , )= + +0
2 2

+ + +2 0 0 02a a y z y z y z( , )cos ( ) ( , )π ω ν ϕ

Here ω0 and ν0 are spatial frequences in the directions y
and z (in the plane of the interferogram) respectively and
ϕ(y,z) is the phase shift between the probe beam and the 
reference beam which has a constant value ϕ0(y,z)∈ (-π,π>
in the signal free region of the interferogram.



3. Fourier Method of Analysis
(Stationary Objects)

cos ( ) /x e eix ix= + − 2
the expression for an interferogram takes the form
Using the formula

i y z b y z v y z i y z( , ) ( , ) ( , ) exp[ ( )]= + + +2 0 0π ω υ

+ − +v y z i y z*( , ) exp[ ( )]2 0 0π ω υ
where

b y z a a y z( , ) ( , )= +0
2 2 background

v y z a a y z i y z( , ) ( , )exp[ ( , )]= 0 ϕ visibility



Provided the normalized visibility and background 
can be found
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(here the quantities ν0 and b0 denotes the corresponding 
values from the signal free region)



the following quantities can be determined from 
interferograms of stationary objects

ϕ( , ) Im[ln ( , )]y z v y z=

a y z b y z( , ) ( , )= −2 1

PHASE SHIFT
ϕ( , ) arctan Im[ ( , )]
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v y z
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To get the quantities ν(y,z) and b(y,z) the Fourier transform
method can be put to a good use.
First of all the Fourier transform of the interferogram should 
be performed with the graphical representation of such 
process looking like this 

Interferogram Spectrum



Three distinct regions of data � lobes - in the spectral plane
are clearly visible

I B V Vω υ ω υ ω ω υ υ ω ω υ υ, , , * ,a f a f c h c h= + − − + + +0 0 0 0
Middle lobe Right lobe Left lobe

corresponding to the following analytic expression



The quantity ν(y,z) can be obtained either from the right 
lobe or the left lobe of the spectrum.
E.g. in the case of the right lobe selection (as indicated on 
the picture bellow) first of all the corresponding part of the 
spectrum must be identified (yellow ellipse) and the part of 
the spectrum outside of the elliptical area put to zero 
values. Then the selected elliptical area must be shifted to 
the central part of the spectral plane. Finally the inverse 
Fourier transform should be performed to get the ν(y,z).



To describe this process mathematically the following 
flowchart could be used

V V v y z( , ) ( , ) ( , )ω ω υ υ ω υ− − → →0 0
The quantity b(y,z) can be obtained from the middle lobe
B(ω,ν) of the spectrum the similar way (no shifting needed 
in this case).



4. Practical Implementation
� Shifting of the side lobe to the center of the spectral 

plane can only be done with a certain degree of 
accuracy. The error in the side lobe shift will cause 
the reconstructed phase shift to be superimposed 
with an oblique plane. This error can be minimized by 
the method of regression by plane provided some 
signal free region of the interferogram is available.

� Neither the complex logarithm nor the arc tan
functions used as alternatives to reconstruct the 
phase shift can return values outside the interval
(-π,π>. Thus some post processing must be 
performed to remove artificial jumps in the 
reconstructed phase shift generated during analysis 
of interferograms with larges phase shifts. 



Interferogram Spectral plane Phase (with jumps)

Phase (jumps removed) 3D - Phase



� For the best separation of side lobes from the middle 
lobe the high number of fringes is necessary. In an 
ideal case this number should be close to N/3 (N 
being the number of digitization points in one row of 
the interferogram). 

� It is important to make sure that the interferogram will 
contain the whole object with signal free regions at all 
boundaries (with possible exception of one boundary  
adjacent to the target surface).

� Interferograms without suitable signal free regions can 
also be analyzed provided an auxiliary totally signal 
free interferogram is available for the exactly the same 
configuration.  



5. Fourier Method of Analysis
(Non-Stationary Objects)

When making interferometry of non-stationary objects the 
final interferogram i(y,z) is a superposition of a series of 
instantaneous interferograms i(y,z,t) taken trough the 
duration of the probing beam pulse f(t)

i y z t a f t a y z t f t( , , ) ( ) ( , , ) ( )= + +0
2 2

+ + +2 0 0 02a a y z t f ty z y z t( , , )cos ( )( ) ( , , )π ω ν ϕ

i y z i y z t dt( , ) ( , , )=
−∞

+∞i.e.



Let us now suppose that, in principle, both the phase shift
ϕ(y,z,t) and the amplitude a(y,z,t) of the probing beam can 
evolve in time due to temporal changes of characteristics of 
the object under investigation.
Keeping this in mind it becomes useful to express these 
quantities in the form of the first order Taylor expansion with 
static values ϕ0(y,z) and a0(y,z) as well as the corresponding 
time derivatives taken at the center of gravity of the probe 
beam pulse.

ϕ ϕ ϕ( , , ) ( , ) ' ( , )y z t y z y z t= +0 0

a y z t a y z a y z t( , , ) ( , ) ( , )'= +0 0



The shape of the pulse f(t) can be chosen (without any 
lose of generality) to satisfy the following criteria  

f t( )≥0 Intensity cannot be negative

f t dt( ) =
−∞

+∞z 1 Intensity can be normalized

Provided the pulse shape is symmetric around its center 
of gravity, the following useful expression holds

f t f t tf t dt( ) ( ) ( )− = ⇒ =
−∞

+∞z 0



After the integration in time has been performed the 
background and visibility functions will read as follows
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Knowing the pulse shape (either numerically or analytically) 
the phase shift time derivative ϕ0�(y,z) can be determined 
from the modifying function q(y,z). 
E.g. for the Gaussian pulse 

we get

ϕ τ0
2' ( , ) ln ( , )y z q y z= −



It is also becoming clear that in the case of non-stationary 
objects it is not possible to directly use the normalized 
visibility to calculate the normalized amplitude as now the 
absolute value of the normalized visibility is equal to the 
product of the normalized amplitude and the modifying 
function

v y z a y z q y z0 0, ( , ) ( , )( ) =

The only option left for determining the normalized 
amplitude in this case is using the normalized background. 
The absolute value of the normalized visibility is then used 
to determine the modifying function. 



QUANTITIES  WHICH  CAN  BE RECONSTRUCTED    
FROM COMPLEX  INTERFEROGRAMS
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