
Introduction to Mathematica

Mathematica Conventions

What Mathematica Is

Getting Started

Entering Input

à Questions Must Be Precise

à Evaluating Questions

à Function Names

à Brackets: () and [] and { }

à Equal Signs: = and == and :=

à Referring to Previous Results

à On-Line Help

If we know the name of a function, Mathematica displays a usage message for the function after we

enter ?FunctionName. For example, if we want to see how to use the Simplify command, we type

?Simplify, followed by pressing ÷ëçì.

? Simplify

On the other hand, ?*String* finds all Mathematica functions, commands, constants, and expressions

that contain the string String. This is useful if we know a word, or part of a word, that is likely to be

contained in a command.

For instance, to find all Mathematica functions related to logarithms we type ?*Log*. (The asterisks

before and after Log stand for any characters, similar to MS-DOS and Unix “wild card” characters.)

?*Log*

After locating the desired command in the above list, we evaluate ?FunctionName as before.

? ProductLog

The on-line help is case sensitive, so ?*log* finds only function names that contain the word “log” in

lower case.

The on-line help is case sensitive, so ?*log* finds only function names that contain the word “log” in

lower case.

? *log*

à Loading Add-On Packages

Mathematica is an extensible system. In addition to the hundreds of built-in functions, there are many

more functions defined inside packages which come with most copies of Mathematica. Packages are

Mathematica notebooks which contain programs that teach Mathematica additional functions, and to

make these functions available to us we must load the appropriate packages. (Many packages are

included with the standard distribution of Mathematica, and it is a straightforward exercise to create

additional packages.)

To load a package we use the Needs command, which takes the following form.

Needs@"Statistics`DescriptiveStatistics`"D
The argument to Needs is a string inside quotation marks. The first part of the string is the desired

package directory (in this case, Statistics; some of the other possibilities are DiscreteMath,

Calculus, and Graphics— see the Help Browser or the book Standard Add-on Packages for a com-

plete list of available packages and directories). After the directory name goes a backquote character `

(usually found on the same key as the tilde ~, and not an ordinary single quote '), followed by the

package name (DescriptiveStatistics, in this case) and another backquote. (An alternative

command for loading packages takes the form << Statistics`DescriptiveStatistics`; when

using this form, it is important not to try to reload a package after it has been loaded.)

Once a package has been loaded using Needs, we use the functions defined in the package as if they

were built in. Here is the on-line help message for the LocationReport function defined in the

Statistics`DescriptiveStatistics` package.

? LocationReport

We can now use LocationReport as if it were a built-in function.

LocationReport@82, 1, 7, 5, 5, 5, 1, 2, 1, 2<D
Packages can also be loaded by clicking the button labeled Add-ons in the Help Browser, and navigat-

ing through the package directories to the listing for the desired package. In each package’s help

notebook is a command to load the package, which can be evaluated by clicking in it and pressing

÷ëçì.

à Warning Messages

When Mathematica does not understand a question, cannot complete an operation, or needs to draw

attention to special considerations during the course of an evaluation, it displays one or more warning

messages.

2 Introduction to Mathematica

When Mathematica does not understand a question, cannot complete an operation, or needs to draw

attention to special considerations during the course of an evaluation, it displays one or more warning

messages.

Here Mathematica warns that the input is incomplete: in this case, it needs a closing square bracket to

be valid.

Sin@x
Here Mathematica warns that the name cos is similar to the built-in function name Cos; this message

appears when we misspell or fail to capitalize a built-in function. It is important to remember that

Mathematica is case sensitive.

cos@PiD
Here Mathematica explains the reason it did not return an answer.

Integrate@1 � x, 8x, -1, 2<D
The first part of a message (Integrate::idiv) in the previous example) is the name of the message.

Messages can be turned off by entering Off[messagename]. For example, to turn off the message

named General::spell1 we enter the following.

Off@General::spell1D
Mathematica no longer prints warning messages about possible spelling errors. Here we misspell the

command Integrate.

IntegratAx5, xE
Mathematica does not print the warning message.

To turn the warning message back on, we enter the following.

On@General::spell1D

The Mathematica Front End

Notebooks

Cells

Word Processing

Introduction to Mathematica 3

Special Characters

Two-Dimensional Input

Different Forms of Input and Output

Mathematica understands a few different forms of input and output. By default, input and output are

in a form called StandardForm, which is an unambiguous two-dimensional form that uses the capital-

ization and bracketing conventions described earlier.

We can convert any input or output to TraditionalForm, which follows the rules of traditional

typeset notation. For example, here is some StandardForm input and output.

à 1

x3 - 1
âx

To convert the input and output to traditional mathematical notation, we select the input and output

cells, pull down the Cell menu, and choose TraditionalForm from the Convert To submenu. Here is the

result, which uses the conventions of traditional mathematical typesetting.

à
1

x3 - 1
â x

Entering Hyperlinks

Numbered Equations and Figures

Numerics

Basic Calculator Functions

We enter arithmetic calculations in Mathematica just as on a calculator, followed by pressing ÷ëçì.

Addition and subtraction are denoted by the usual symbols.

2 + 3.45 - 0.4

A space denotes multiplication, as does an asterisk * or the character �, entered \[Times] .

4 Introduction to Mathematica

2 * 2 ´ 2 H2 ´ 2L
A forward slash / denotes division, as does the two-dimensional form

�

�
.

5 � 3
A caret ^ or a superscript �� stands for exponentiation.

2^5 - 24

Because Mathematica uses the standard order of arithmetic operations, it is sometimes necessary to

group parts of a calculation using parentheses. Note that in InputForm and StandardForm parenthe-

ses are not used for function notation, as they are in written mathematics, or to enclose lists of ele-

ments, as they are in some programming languages.

2 + 4 H2 + 9.25L^2
See also NonCommutativeMultiply

à Exercises: Basic Calculator Functions

What is the ratio of heights between a person 5 feet, 8 inches tall and a person 6 feet, 4 inches tall?

Here is an exact value for the ratio. Note that we group the numerator and denominator with parentheses, and that we do not include units

in the calculation.

H5 * 12 + 8L � H6 * 12 + 4L
Applying the function N to the previous exact result returns an approximate figure.

N@%D
If a copy of Mathematica for Students costs $139, and sales tax is 7%, what is the total cost?

The total cost is $139 plus 7% tax on $139. Note that there is no built-in percent function, so we express 7% as 0.07.

139 + H0.07 * 139L
Alternatively, we can define a unit multiplier called percent.

percent = 0.01;

139 + H7 percent * 139L

Introduction to Mathematica 5

How many days are there in 35 years? How many hours? Minutes? Seconds? (Ignore the complication
of leap years.)

days = 35 * 365

hours = 24 * days

minutes = 60 * hours

seconds = 60 * minutes

Numbers and Constants

à Integers, Rationals, and Reals

When working with numbers, Mathematica returns an answer as precise as it can justified by each

calculation. For this reason, it has different rules for working with exact and approximate quantities.

An approximate quantity can be identified by the presence of a decimal point; therefore 17.0 and 0.71

are approximate numbers. The integer 17 and the ratio 71/100, on the other hand, do not contain a

decimal point and are considered exact numbers. In the following discussion, we refer to an approxi-

mate (non-complex) number containing a decimal point as a real number, an integer without a deci-

mal point as an integer, and a ratio of two exact integers as a rational number. To Mathematica 7.0 is an

approximate real number, and 7 is an exact integer.

When doing arithmetic with exact numbers, Mathematica returns an exact number. For example, the

following input contains only integers, so the result is an integer.

2 + H3 * 5L7
Mathematica leaves rational numbers (quotients of two integers, reduced to lowest terms) in explicit

fractional form.

3 +
1

7

This occurs even when there is a precise decimal equivalent.

2

3
+

7

12

If a calculation involves even one approximate number (a number that contains a decimal point),

however, the result will be an approximate number because the uncertainty associated with the approx-

imate number propagates through the whole calculation.

6 Introduction to Mathematica

If a calculation involves even one approximate number (a number that contains a decimal point),

however, the result will be an approximate number because the uncertainty associated with the approx-

imate number propagates through the whole calculation.

2

3
+
7.0

12

à Irrational Numbers

Irrational numbers (numbers that cannot be written as the quotient of two integers) are held in exact

symbolic form. Mathematica allows us to use exact irrational numbers in calculations and, unless we

ask, it does not automatically approximate these numbers. The following difference of two exact

irrational numbers is an exact irrational number.

27 - 12

The following difference is also left in exact form.

27 - 13

If we repeat the calculation with inexact input, however, we get an inexact answer.

27.0 - 13

à Mathematical Constants

Mathematica also has a number of common mathematical constants built in, defined so that we can

take an approximation to whatever precision we want; the only limits being the amount of RAM

installed on the computer and the amount of time we are willing to wait for an answer. Two of the

more well known constants are Pi and E.

Pi > E

Pi and E can be entered in the special forms Π and ã by typing åp å and åee å.

ãΠ ä

As with other irrational numbers, Mathematica leaves constants in symbolic form unless we specifi -

cally ask for an approximation with the function N, described below. Here is a 250-digit approximation

to Π.

N[Π, 250]

Mathematica also knows the standard rules for dealing with infinity, entered as Infinity or ¥

(åinfå).

Introduction to Mathematica 7

Mathematica also knows the standard rules for dealing with infinity, entered as Infinity or ¥

(åinfå).

: 1

Infinity
, Infinity - 1>

The add-on package Miscellaneous`PhysicalConstants` defines a wide range of physical con-

stants such as the speed of light, the radius of the earth, acceleration due to gravity, Avogadro’s

constant, and many more.

See also N, Degree (°), GoldenRatio, EulerGamma, Catalan, Indeterminate, DirectedInfinity,
Miscellaneous`Units`

à Complex Numbers

I denotes the imaginary unit -1 .

Sqrt@-9D
We can enter I in the special form ä by typing åiiå.

ä2

We can also use the form ü, used in some scientific fields, by typing åjjå.

H5 üL2
As with all numbers, exact input generates exact output.

H3 + 19 IL � H2 - 9 IL
Inexact input leads to inexact output.

H3.0 + 19 IL � H2 - 9 IL
Mathematica knows the standard functions for describing and manipulating complex numbers. Re[z]

returns the real part of z, Im[z] returns the imaginary part, and so forth.

Here is a complex number called num.

num = 1.23 + 4.56 I

Here is a list of the real and imaginary parts of num.

8Re@numD, Im@numD<
Here is the conjugate of num.

8 Introduction to Mathematica

Conjugate@numD
Here are the absolute value and approximate argument (or phase), in radians, of num.

8Abs@numD, Arg@numD<

à Converting between Types of Numbers

To convert from an exact number to an approximate number we use the function N. N[expr] returns a

numerical approximation to expr.

NB 27 - 13 F
N[expr, n] does computations to at most n significant digits. Here is a 100-digit approximation to

the difference between
22

7
 and Π.

N@22 � 7 - Π, 100D
The presence of the decimal point in the following example indicates the change from exact integer to

approximate real number.

N@2D
There are many functions that convert an approximate number into an exact integer. Round[x]

returns the integer closest to x, Floor[x] returns the greatest integer less than x, and Ceiling[x]

returns the least integer greater than x.

8Round@3.3D, Floor@3.3D, Ceiling@3.3D<
Chop[expr] replaces approximate real numbers in expr that are close to zero (within 10-10) with the

exact integer 0. Chop[expr, tol] replaces approximate real numbers in expr that differ from zero

by less than tol with 0.

ChopA1.012 + 10-20 IE
When we take the Fourier transform of a list of approximate numbers, then take the inverse Fourier

transform of the result, the uncertainty in the approximate input leads to spurious imaginary parts in

the answer.

InverseFourier@Fourier@80, 0, 0, 1., 1., 1.<DD
Chop removes the small imaginary parts of the answer, and returns the original data.

Introduction to Mathematica 9

Chop@%D
The function Rationalize converts numbers into exact rational numbers. Rationalize[x,dx]

returns a rational number equal to x within a tolerance of dx.

Here are some successively better rational approximations to Π. (Table is explained below in the

section “Matrix and Vector Operations”.)

TableARationalizeAΠ, 10-2nE, 8n, 1, 4<E
See also IntegerPart, FractionalPart, NumberTheory`Recognize`

à Finding the Type of a Number

Although Mathematica does not have the concept of a type declaration (a statement such as “the

variable x is a real number”), the type of a number can be found using the function Head. (Head has

many other uses in Mathematica programming.)

Head@2D
Head@3.2D
Head@3 + 19 ID

HeadB2
3

F
Seel also FullForm, InputForm

10 Introduction to Mathematica

à Exercises: Numbers and Constants

Set the variable comp equal to the complex number 23 + 19 ä . What is the absolute value of comp? What
is the result of adding comp and its conjugate?

comp = 23 + 19 I

Abs@compD
comp + Conjugate@compD

Catalan’s constant (used in combinatorics) is built into Mathematica. Knowing Mathematica’s naming
conventions, find Mathematica’s name for the constant, then find an approximation to this number
with 100 digits of precision.

We search for a list of functions that contain the word Catalan; there is only one, so Mathematica displays the usage message for it.

? *Catalan*

We use N to find a 100-digit numeric approximation.

N@Catalan, 100D
Enter the expression 2 19 + 2 into Mathematica. Take approximations to 20, 30, and 100 decimal
places.

Because the number is an exact quantity, Mathematica leaves it in symbolic form.

2 Sqrt@19D + 2

Here we use N to approximate the number.

NB2 + 2 19 , 20F

NB2 + 2 19 , 30F

NB2 + 2 19 , 100F

Introduction to Mathematica 11

Mathematical Functions

à Elementary Functions

All the standard elementary functions are built into Mathematica.

All of the trigonometric functions are available. Note that when given exact input, they return exact

output, and that Mathematica uses the standard abbreviations for trigonometric functions.

Sin[Pi/4]

By default Mathematica assumes that arguments to trigonometric functions are in radians. For enter-

ing arguments in degrees there is a multiplier called Degree. (Degree can be entered in the special

form ° by typing ådegå.)

Cos@15 DegreeD
Where appropriate, functions are defined for complex values.

Sin@6.54321 - 1.23456 ID
Inverse and hyperbolic trigonometric functions are also available.

ArcSin@1 � 2D
Here no exact mathematical result is known, so Mathematica returns the expression unevaluated.

Sinh@3D
If we give approximate input, Mathematica returns an approximate answer.

Sinh@3.0D
N also returns an approximate value.

N@Sinh@3DD
Logarithmic and exponential functions are also built in. Log[z] returns the natural logarithm of z.

Log@Exp@5DD
Log[b,z] returns the logarithm to base b of z.

Log@10, 10000D
See also Tan, ArcTan, Tanh, ArcTanh

12 Introduction to Mathematica

à Special Functions

Mathematica includes many special functions that cover a wide range of scientific subjects. In most

cases, special functions are solutions to transcendental equations, integrals, or differential equations

that have no elementary symbolic solution. In many cases it is advisable to consult The Mathematica

Book to see what definition Mathematica uses for a particular special function, as many special func-

tions have conflicting definitions in different fields.

In general, if a function is named after a person, the Mathematica name for it is PersonSymbol. For

example, to find out if Mathematica knows any of the Bessel functions, we assume the word “Bessel” is

in the name, and use the question mark to get a list of all such functions.

? *Bessel*

Here is the usage message for a particular Bessel function.

? BesselJ

Mathematica’s special functions are typically defined for both real and complex arguments, and know

special values of the functions.

Gamma@1 � 2D
Gamma@1.23 + 4.56 ID
Zeta@8D

There are several hundred special functions built into Mathematica, and the Help Browser provides a

convenient way to explore the different classes of functions.

See also Erf, Binomial, Multinomial, Beta, Factorial, HypergeometricPFQ, MeijerG

Matrix and Vector Operations

à Creating Vectors, Matrices, and Tensors

The basic structural form in Mathematica is the list, which is an arbitrary collection of numbers,

variables, data, and other objects, where the elements are separated by commas and enclosed within

braces { }, as in {1, 4, 2}.

A list can have several interpretations, depending on its context. For example, the list {1, 4, 2} can

be interpreted as a vector with three components, a point in 3-space, or a data set containing three

measurements; and Mathematica automatically treats a list correctly depending on the functions used

with it.

Introduction to Mathematica 13

Table is one of several commands used to generate lists.

Table[expr, {imax}] generates a list of imax copies of expr.

Table@again, 87<D
Here is a vector of ten zeros.

Table@0, 810<D
Table[expr, {i,imax}]generates a list of the values of expr when i runs from 1 to imax .

Table@i � 12, 8i, 12<D
Table[expr, {i, imin, imax}] starts with i = imin.

Table@Sqrt@iD, 8i, 5, 15<D
Table[expr, {i, imin, imax , di}] uses the increment di.

Table@Sqrt@iD, 8i, 2, 5, 1 � 2<D
Table[expr, {i, imin, imax}, {j, jmin, jmax}, …] generates a nested (multi-dimensional) list.

Table[i/j, {i,1,4}, {j,1,2}]

A matrix is represented in Mathematica as a two-dimensional list, where each sublist represents a

separate row of the matrix. Here we create a matrix by using Table with two iterators.

Table@a + b, 8a, 2, 5<, 8b, 1, 3<D
We can also enter matrices by hand, being sure to enclose each sublist with curly brackets { }. For

example, a 3 × 3 matrix is a list containing three sublists, where each sublist is one row of the matrix.

matrix = 881, 2, 3<, 83, 4, 5<, 85, 6, 7<<
We can also enter matrices in two-dimensional form by clicking a button in a palette, or pulling down

the Input menu, choosing Create Table/Matrix/Palette , clicking the Matrix button, choosing the

desired numbers of rows and columns, and clicking the OK button, after which we fill in the placehold-

ers. Notice that the default output form of the following matrix is still a nested list of elements.

matrix =
1 2 3
3 4 5
5 6 7

See also Range, Array, DiagonalMatrix, IdentityMatrix

14 Introduction to Mathematica

à Formatting Matrices and Tensors

MatrixForm displays a matrix in two-dimensional form. Here we use the matrix defined above.

MatrixForm@matrixD
TableForm is a generalization of MatrixForm that formats arbitrary arrays of elements. Here is the

TableForm of a four-dimensional tensor (created by giving Table four iterators).

TableForm@Table@i + j + k - l, 8i, 2<, 8j, 3<, 8k, 4<, 8l, 5<DD
See also TableSpacing, TableAlignments

à Describing and Manipulating Lists

There are many functions for describing Mathematica lists. For instance, we can compute the length

or dimensions of a vector or matrix.

Length@8a, b, c, d, e<D

DimensionsBK a b c

d e f
OF

Part extracts an element from a list according to its position. Here is the fourth element of a list.

(Note that the first element of a list has position 1, not 0.)

Part@8a, b, c, d, e<, 4D
An abbreviation for Part is the following double square bracket notation, where the desired position

is placed inside [[and]].

8a, b, c, d, e<@@4DD
We can also extract elements according to their distance from the end of the list, by giving a negative

position. Here is the last element of a list.

8a, b, c, d, e<@@-1DD
We extract ranges of elements from a list using Take. Here are the first three elements of a list.

Take@8a, b, c, d, e<, 3D
Here are the second through fourth elements.

Take@8a, b, c, d, e<, 82, 4<D

Introduction to Mathematica 15

Drop removes elements from a list. Here we drop the first three elements from a list.

Drop@8a, b, c, d, e<, 3D
Here we drop the last three elements.

Drop@8a, b, c, d, e<, -3D
Mathematica has many built-in routines for sorting and otherwise rearranging lists.

Sort@81, 3, 5, 2, 4, 6<D
Reverse@8a, b, c, d, e<D

See also Extract, Select, Cases, Depth, TensorRank, Append, Prepend, Insert, Join, Union,
Intersection, Flatten, Partition, Split, LinearAlgebra`MatrixManipulation`

à Linear Algebra

Here is a Hilbert matrix, where each element of the matrix is a function of its indices, created using

Table.

hil = TableAHi + j - 1L-1, 8i, 3<, 8j, 3<E
Here is the standard matrix form of hil.

MatrixForm@hilD
Standard operations, such as computing the determinant or eigenvalues of a matrix, are straightfor -

ward.

Det@hilD
Eigenvalues@N@hilDD

We can also take the inverse, here giving it the name inv.

inv = Inverse@hilD
Cross[a,b] or a �b (where � is entered \[Cross]) returns the vector cross product of a and b.

Cross@81, 2, 3<, 8a, b, c<D
Dot[a, b] or a.b gives products of vectors, matrices, and tensors. Here is the dot product of the

vectors {1,2,3} and {a,b,c}.

16 Introduction to Mathematica

Dot[a, b] or a.b gives products of vectors, matrices, and tensors. Here is the dot product of the

vectors {1,2,3} and {a,b,c}.

81, 2, 3<.8a, b, c<
Here is the matrix product of the Hilbert matrix hil and its inverse inv.

MatrixForm@hil.invD
An identity matrix is the expected result.

It is important not to confuse the matrix-multiplication operator . and ordinary multiplication *.

Using * to multiply the two matrices results in termwise multiplication.

MatrixForm@hil * invD
We do use ordinary multiplication to multiply a scalar by a vector or matrix.

Λ * 81, 3, 5, 7<
There are many other matrix functions defined in Mathematica. For example,

Minors[m, k] gives a matrix consisting of the determinants of all k × k submatrices of m.

Minors@hil, 2D

mp = MatrixPowerBK 1 1
1 0

O, 10F; MatrixForm@mpD
See also Transpose, Eigenvectors, Eigensystem, LinearSolve, NullSpace, RowReduce,
LinearProgramming, MatrixExp, MatrixPower, Inner, Outer,
LinearAlgebra`Orthogonalization`

Introduction to Mathematica 17

à Exercises: Numerical Matrix Operations

Use Table to create a 5 × 5 matrix where each element has the form
1

i 2+ j 2-1
.

matrix = TableB 1

i2 + j2 - 1
, 8i, 1, 5<, 8j, 1, 5<F

Display the matrix using MatrixForm.

MatrixForm@matrixD
Compute the inverse of this matrix.

inv = Inverse@matrixD; MatrixForm@invD
Display a numerical approximation to the inverted matrix using MatrixForm.

MatrixForm@N@invDD
Find the determinant of the inverted matrix.

Here is the determinant of the exact matrix.

Det@invD
Here is an approximation to the determinant.

N@%D

Working with Precision

Mathematica can work with numbers with any number of digits, and in the case of approximate num-

bers it maintains information about how many of the digits are significant. The number of significant

digits in a number x is called the precision of x, and Mathematica knows the rules of numerical analysis

for dealing with numbers with different amounts of precision.

Precision[x] returns the number of significant digits in the number x.

Precision@N@Π, 40DD
Accuracy returns the number of digits to the right of the decimal point. Precision is a measure of the

relative error of a number, and accuracy is a measure of the absolute error.

The following number has 24 significant digits.

18 Introduction to Mathematica

Precision@1234567890.123456789012345D
It has 15 digits to the right of the decimal point.

Accuracy@1234567890.123456789012345D
For simplicity, we deal primarily with Precision in these notes.

Mathematica uses two types of approximate numbers, machine-precision numbers and arbitrary-

precision numbers. Machine-precision numbers are numbers that can be calculated using a comput-

er’s hardware: most computers can directly handle numbers with up to 16 significant digits. (The

number of digits that the hardware can handle is stored in the parameter $MachinePrecision.) For

efficiency reasons, Mathematica does any calculation that contains even one machine-precision

number to machine precision.

We determine a machine’s precision by looking at the value of $MachinePrecision.

$MachinePrecision

The number 2.3 in the following calculation is a machine-precision number (while the other number is

not), so the answer is a machine-precision number.

2.3 + 1.234567890123456789012345

Precision@%D
By default, N returns a machine-precision number.

NB 19 F

Precision[%]

If a number has more than 16 (or the value of $MachinePrecision, if different) significant digits, it is

called an arbitrary-precision number.

Here we ask for an approximation to 19 with 50 significant digits.

NB 19 , 50F
The precision of the result is 50, making the approximation an arbitrary-precision number.

Precision[%]

Note that Mathematica defaults to machine precision when a number with lower precision than

machine precision is generated.

Introduction to Mathematica 19

Note that Mathematica defaults to machine precision when a number with lower precision than

machine precision is generated.

NB 19 , 4F

Precision@%D
Using SetPrecision we can artificially set the precision of a number to an arbitrary number of digits.

SetPrecisionB NB 19 , 4F, 5F

Precision@%D
When using arbitrary-precision numbers, Mathematica does not generate more precision than is

justified by the calculation. For example, adding two values with different numbers of significant

digits returns a number as precise as the less precise value.

x1 = 54.23232323232312312624874590149643;

x2 = 34323.98129712872939137913;

Precision@x1D
Precision@x2D

The precision of the sum is equal to the precision of x2.

Precision@x1 + x2D
The precision of an exact number is Infinity.

We can approximate an exact number to as many digits as desired.

N@Sin@1D, 250D
However, we cannot approximate the following machine-precision number to more than machine

precision.

N@Sin@1.0D, 250D
An additional way to enter a number with a known precision is in the form nnnn`p, where nnnn is the

number and p is the number of digits of precision. For example, here is an approximation to Π with

three digits of precision.

20 Introduction to Mathematica

3.141`3

By default Mathematica prints only the correct digits, without the `p. To explicitly see all of the infor-

mation Mathematica has for a number, we look at the number’s input form.

InputForm@%D
As with arbitrary-precision arithmetic, Mathematica keeps track of the number of significant digits in

a result. Here we use several imprecise numbers in the calculation of the volume of a cylinder, and

Mathematica returns an answer with the correct number of significant digits.

3.1416`4 * H11.1111`5L2 H15.253545`6L
Similarly, Mathematica knows the standard rules of interval arithmetic. Here is a similar calculation

performed using intervals.

Interval@83.1415, 3.1416<D * Interval@811.11105, 11.11110<D2 *

Interval@815.25350, 15.25355<D
See also MachineNumberQ, SetAccuracy, PrecisionGoal, AccuracyGoal, $NumberMarks,
$MaxExtraPrecision, Interval, IntervalMemberQ, NumericalMath`Microscope`

Introduction to Mathematica 21

à Exercises: Working With Precision

Find the machine precision of a particular machine either by entering $MachinePrecision or by
entering a machine-precision number and finding its precision.

Precision@3.0D
$MachinePrecision

Create an number with more than machine precision by entering digits by hand, and add it to a
machine-precision number. What is the precision of the result? Now add Sqrt[3] to the original
number. What is the precision of the result?

Here is a number with more than machine precision.

bignum = 12.32121212134312321234

Precision@bignumD
Here is the sum of bignum and a machine-precision number.

result = bignum + 2.3

The result has machine precision.

Precision@resultD
Here is the sum of bignum and an exact quantity (a number with infinite precision).

result2 = bignum + Sqrt@3D
The result has the same precision as bignum.

Precision@result2D

Equation Solving

Solve is the basic function for solving equations in Mathematica. Solve finds solutions to equations

using algebraic methods, which are often enough to get an exact numeric result.

When we solve this quadratic equation, we get an answer involving irrational numbers.

SolveA 3 x2 - 12 x + 10 == 11, xE

22 Introduction to Mathematica

We get approximate solutions by using N on the exact solutions.

N@%D
But when we try to solve a quintic (fifth-degree polynomial) equation, we find that we do not get a

numerical answer, but rather an implicit symbolic answer in the form of Root objects.

SolveAx5 + 5 x + 1 == 0, xE
N still returns approximations to the implicit solutions.

N@%D
When an equation cannot be solved symbolically, NSolve will often find numeric solutions. (Using

NSolve is different from using both N and Solve.)

NSolveAx5 - x4 + 12 x3 - 11 x2 + x - 12 == 0, xE
NSolve solves systems of any number of algebraic equations for an appropriate number of unknowns.

Here we look for the points of intersection between an ellipse and a line. The graph allows us to make

a visual approximation of the solutions.

NSolve numerically solves the system of equations.

NSolveA93 x2 + 12 y2 == 10, 12 x - 19 y == 10=, 8x, y<E
There are several pairs of functions in Mathematica whose names differ by the letter N, such as Solve

and NSolve, and Integrate and NIntegrate. These “N-functions” perform their operations numeri-

cally, rather than symbolically. Although in most cases we arrive at the same result by taking a numeri-

cal approximation of a symbolic solution, Mathematica is in fact using a different algorithm.

FindRoot searches for a root of an equation, using a given starting point. This function uses Newton’s

method to find the roots of non-algebraic expressions that NSolve cannot solve.

Here is a graph of a transcendental expression; the roots of the expression are the points at which the

graph crosses the x-axis.

Plot@Exp@xD - Sin@xD, 8x, -7, 2<, PlotLabel ® "expHxL - sinHxL"D
NSolve is unable to solve this equation.

NSolve@Exp@xD - Sin@xD == 0, xD
FindRoot returns one root of the equation, given a starting point for the search algorithm. From the

graph it appears that one root is near x = -6, so we use -6 as one starting point. The result indicates

that there is a root at x = -6.28131.

Introduction to Mathematica 23

FindRoot returns one root of the equation, given a starting point for the search algorithm. From the

graph it appears that one root is near x = -6, so we use -6 as one starting point. The result indicates

that there is a root at x = -6.28131.

FindRoot@Exp@xD - Sin@xD == 0, 8x, -6<D
The other root appears to be near x = -3, so we use -3 as the second starting point.

FindRoot@Exp@xD - Sin@xD == 0, 8x, -3<D
See also RootReduce, ToRadicals, NumericalMath`IntervalRoots`

24 Introduction to Mathematica

à Exercises: Equation Solving

Use FindRoot to find approximations for the three roots of the function graphed below. (Hint:
estimate the starting points from the graph.)

- +

The first root is near x = - 4, so we use - 4 as the starting point for the search algorithm.

FindRoot@x^3 - 12 x + 12 == 0, 8x, -4<D
The second root is near x = 1.

FindRoot@x^3 - 12 x + 12 == 0, 8x, 1<D
The third root is near x = 3.

FindRoot@x^3 - 12 x + 12 == 0, 8x, 3<D
Find the six roots of the equation 4 x6 - 12 x 5 + 8 x4 + 3 x 3 - 19 x 2 + 12 x - 10 = 0.

NSolve will find the six roots of the equation. Remember to use == to represent equations.

NSolveA4 x6 - 12 x5 + 8 x4 + 3 x3 - 19 x2 + 12 x - 10 == 0, xE
The result is a list of two real-valued solutions, and two conjugate complex pairs.

Find six solutions of the equation x sinHxL = 1.

Here is a plot of x sinHxL - 1, the roots of which are the roots of x sinHxL = 1.

Plot@8x Sin@xD - 1<, 8x, 0, 20<, PlotStyle ® GrayLevel@0.5`DD
Note that NSolve does not find the solutions of this transcendental equation.

NSolve@x Sin@xD == 1, xD

Introduction to Mathematica 25

We then use FindRoot. Using Table we can find six of the infinite number of solutions at once.

Table@FindRoot@x Sin@xD == 1, 8x, a<D, 8a, Π, 6 Π, Π<D

Numerical Calculus

We perform integration using the commands Integrate and NIntegrate. Integrate uses symbolic

methods to compute the value of a definite integral.

Integrate@Sin@xD, 8x, 0, Π<D
Integrate also works on functions with more than one variable. Here is the volume under a surface,

over a square region.

Integrate@Sin@xD + Sin@yD, 8x, 0, Π<, 8y, 0, Π<D
Here is a special input form for the same expression. We enter the integral sign Ù by typing åintå or

\[Integral] , and we must use the special differential â, entered by typing åddå or

\[DifferentialD] , and not an ordinary keyboard d.

à
0

Πà
0

ΠHSin@xD + Sin@yDL âx ây

Here is a more complicated integral, taken over a nonrectangular region.

à
0

2 Πà
0

x
Sin@x yD ây âx

When calculating definite integrals involving symbolic parameters, Mathematica may return an

answer that depends on the value of the parameters.

Integrate@xn, 8x, 0, 1<D
NIntegrate uses numerical methods to approximate the area under the specified curve in the speci-

fied domain. This method produces results in many cases where the symbolic method fails.

We cannot get an exact value for the following integral using symbolic methods.

IntegrateAESin@xD, 8x, -2, 2<E
We can get an approximation using N.

26 Introduction to Mathematica

N@%D
NIntegrate uses numerical methods from the beginning, and returns the same result.

NIntegrateA ESin@xD, 8x, -2, 2<E
By default, Mathematica does all numerical calculus calculations with machine-precision numbers, but

most numerical functions in Mathematica allow changes to this through the WorkingPrecision

option. WorkingPrecision->n causes all internal computations to be done to at most n-digit

precision.

We can see the effect of this option by looking at an example of numerical integration. Here is an

example performed with machine precision.

NIntegrateB 1
x
, 8x, 1, 2<F

Precision@%D
Now we look at the same example with a working precision of 50 digits. Note that we are setting the

precision to be used while working this problem, and not the desired precision of the result.

NIntegrate@1 � x, 8x, 1, 2<, WorkingPrecision -> 50D
Precision[%]

NDSolve finds numerical solutions to systems of differential equations. Here we solve a system of

differential equations, giving the list of solutions the name sol.

sol = NDSolveA9x'@tD == -y@tD - x@tD2, y'@tD == 2 x@tD - y@tD,
x@0D == y@0D == 1=, 8x, y<, 8t, 0, 9<E

The result of this calculation is a set of two interpolating functions, essentially large sets of points that

we treat as continuous functions. We then look at the solution set graphically, in two different ways.

For the first plot, we plot xHt L (dashed line) and y Ht L (gray line) on the same set of axes. (The form /. is

explained in the next chapter.)

Plot@8x@tD �. sol, y@tD �. sol<, 8t, 0, 9<,
PlotStyle ® 8Dashing@80.015`<D, GrayLevel@0.5`D<D

For the second plot, we plot xHt L against y Ht L.

Introduction to Mathematica 27

ParametricPlot@Evaluate@8x@tD, y@tD< �. solD, 8t, 0, 9<,
AspectRatio ® AutomaticD

Here is the first interpolating function, corresponding to x.

x �. sol@@1, 1DD
To evaluate the interpolating function at a particular point, we append an argument inside square

brackets. Here is the value of the interpolating function at 6.28.

%@6.28D
Mathematica can also solve some partial differential equations numerically, given sufficient initial

conditions and ranges for all variables appearing in the system. (The form

Derivative[0,1][x][t,0] means the derivative of the function x, taking the first derivative with

respect to the second variable of x, and no derivative with respect to the first variable, evaluating the

derivative at (t, 0); in traditional notation, it represents x I0,1M Ht , 0L.) The result of NDSolve in this case

is a single two-dimensional interpolating function.

NDSolve@8D@x@t, uD, 8u, 2<D == D@x@t, uD, 8t, 2<D, x@t, 0D == Exp@-t^2D,
Derivative@0, 1D@xD@t, 0D == 0<, x, 8t, -5, 5<, 8u, -2, 2<D

Here is a graph of the solution.

Plot3D@Evaluate@x@t, uD �. First@%DD, 8t, -5, 5<, 8u, -2, 2<,
PlotPoints ® 30D

See also NSum, NProduct, Derivative, PrincipalValue, Assumptions, GenerateConditions,
NumericalMath`ListIntegrate`, Method, Trapezoidal, Oscillatory, MonteCarlo

à Exercises: Numerical Calculus

The area under the curve
4

1+x 2
, between 0 and 1, is exactly Π. Use NIntegrate to generate an

approximation of Π to approximately 20, 30, and 40 places of precision. (Hint: use the
WorkingPrecision option, recalling that the precision of the result is usually 10 places less than the
WorkingPrecision.)

Here is a graph that represents the area we wish to compute. (The graph uses the add-on package

Graphics`FilledPlot` to fill in the areas under the curve.)

When we calculate the integral with a working precision of 30 digits, the result has around 20 signifi-

cant digits.

28 Introduction to Mathematica

NIntegrateB 4

1 + x2
, 8x, 0, 1<, WorkingPrecision ® 30F

Precision@%D
Using 40 digits internally results in a value with around 30 significant digits.

NIntegrateB 4

1 + x2
, 8x, 0, 1<, WorkingPrecision ® 40F

Precision@%D
Using 50 digits returns an answer with around 40 digits.

NIntegrateB 4

1 + x2
, 8x, 0, 1<, WorkingPrecision ® 50F

Precision@%D
Aside from rounding in the last digit, the answers are the same as a direct approximation to Π.

N@Π, 45D

Other Numerical Functions

à Random Numbers

There are many more numerical functions built into the Mathematica kernel or defined in the standard

add-on packages that cover a large number of specialized fields.

A function useful for performing simulations is Random, which generates pseudorandom numbers.

Random[] gives a uniformly distributed pseudorandom real number in the range 0 to 1.

Random[type,range] gives a pseudorandom number of the specified type in the specified range.

Possible types are Integer, Real, and Complex. The default range is from 0 to 1, and we can specify

the range {min, max} explicitly.

Here is a random number between 0 and 1.

RandomReal@D

Introduction to Mathematica 29

Here is a table of random integers between 1 and 10.

RandomInteger@81, 10<, 15D
See also SeedRandom, $RandomState, Statistics`ContinuousDistributions`,
Statistics`DiscreteDistributions`

à Products and Sums

Products and sums are also defined in Mathematica. Product[f, {i, imin, imax, di}] evaluates the

product of f with i running from imin to imax in steps of di. If imin and di are omitted they are assumed to

be 0 and 1, respectively. Multiple products are entered in the form Product[f, {i, imin, imax}, {j,

jmin, jmax}, …].

Product computes an exact result.

Product[i, {i, 1, 10}]

We can enter products in the following two-dimensional form.

ä
i=1

10

i

NProduct uses numerical methods to find an approximate product.

NProduct@i, 8i, 1, 10<D
The values computed are equal to 10 factorial.

10!

Sum takes the same form as Product. Sum computes exact values, and NSum computes approximate

values.

9SumAn2, 8n, 2, 30<E, NSumAn2, 8n, 2, 30<E=
Here is the two-dimensional input form for Sum.

â
n=2

30

n2

See also NumericalMath`NLimit`, NumericalMath`NSeries`

à Optimization

Mathematica has several built-in optimization functions. FindMinimum finds a local minimum for a

function, given a starting value for the search. Here is a graph of the gamma function.

30 Introduction to Mathematica

Mathematica has several built-in optimization functions. FindMinimum finds a local minimum for a

function, given a starting value for the search. Here is a graph of the gamma function.

Plot@Gamma@xD, 8x, 0, 4<D
The following command finds a local minimum for the gamma function. The result states that the local

minimum is 0.885603, which occurs when x is 1.46163.

FindMinimum@Gamma@xD, 8x, 1.5<D
Here is a function with several local minima. The starting value we give to FindMinimum can affect the

local minimum that Mathematica returns.

PlotBSin@xD +
x

5
, 8x, -6, 6<F

Here is the local minimum of sinHxL + x

5
 near x = -2.

FindMinimumBSin@xD +
x

5
, 8x, -2<F

Starting the search near x = 4 gives a different local minimum.

FindMinimumBSin@xD +
x

5
, 8x, 4<F

We interpret the result as telling us that the local minimum is –0.0775897, which occurs when x is

4.51103.

ConstrainedMin[f, {inequalities}, {x, y, … }] finds the global minimum of f in the domain speci-

fied by the linear constraints inequalities. The variables x, y, … are all assumed to be nonnegative. Here

is the minimum of 5 x - 3 y , constrained by x + 2 y < 4 and x + 3 y > 6. The constraints x ³ 0, y ³ 0 are

implied.

ConstrainedMin@5 x - 3 y, 8x + 2 y < 4, x + 3 y > 6<, 8x, y<D
The result states that the constrained minimum is -6, which occurs when x is 0 and y is 2.

ConstrainedMax works similarly.

ConstrainedMax@12 x + 10 y, 8x + y < 4, 5 x + 3 y < 15<, 8x, y<D
Again, the Help Browser provides an easy way to explore the many different categories of functions

and algorithms.

See also LinearProgramming, Fourier, InverseFourier, PrimeQ, FactorInteger

Introduction to Mathematica 31

à Exercises: Other Numerical Functions

Use Table to make a list of the squares of the first 25 integers.

TableAi2, 8i, 1, 25<E
What is the product of these integers? (Hint: do not use Table or the result of the last exercise.)

Product@i^2, 8i, 1, 25<D
Use Table to create a list of fifteen random integers between 1 and 10.

numbers = RandomInteger@81, 10<, 15D
The commands Max and Min return the greatest and least elements of a list. What are the greatest and
least numbers in the list generated above?

Max@numbersD
Min@numbersD

The sum of the numbers 1, 2, … , n (Úi =1
n i) is equal to

1

2
nHn + 1L. Use Mathematica to verify that this is

true for n = 50, 100, and 200. (Compare the results of each method.)

Here we verify the formula when n is 50.

Sum@i, 8i, 1, 50<D
1

2
´ 50 ´ H50 + 1L

Here we verify the formula when n is 100, using the two-dimensional input form for Sum, and directly

testing if the two results are equal.

â
i=1

100

i ==
1

2
H100L H101L

Here we repeat the calculation for n = 200.

â
i=1

200

i ==
1

2
H200L H201L

Mathematica verifies the general formula when we use a variable name for the upper limit of the

summation.

32 Introduction to Mathematica

â
i=1

n

i

Symbolics

Algebra

à Entering Symbolic Expressions

We enter symbolic expressions such as polynomials the same way we enter numeric expressions. To

enter the expression x 3 + a x 2 + b x + 1, for example, we type the following. We use a caret ^ or a

superscript to represent a power, and use a space or an asterisk to represent multiplication.

x3 + a x^2 + b * x + 1

It is very important to remember to type a space or asterisk for multiplication. Mathematica inter-

prets b x and b*x as b times x, but interprets bx (with no space between) as a variable with the two-

letter name bx.

It is also important to group exponents, numerators, and denominators with parentheses: Mathemat-

ica uses the grouping rules and order of operations of standard arithmetic, so the following two

expressions are interpreted differently.

8E^2 Π, E^H2 ΠL<
The following two expressions are also different.

81 � 2 Π, 1 � H2 ΠL<
Variables, functions, and other expressions can contain special characters, such as Greek and script

letters. The following is a valid symbolic expression.

Α Λ2 + Β Λ + Γ

We can also use two-dimensional forms in symbolic expressions.

Introduction to Mathematica 33

x =
1

3
Hx1 + x2 + x3L

à Defining Variables

We define variables in Mathematica by typing name = value, using a single equal sign. Variable names

can be as long as desired, and can be any combination of letters (both upper- and lower-case) and

numbers, with the restriction that a variable name cannot begin with a number.

To set the variable newvar equal to 15, we enter the following.

newvar = 15

After we make the assignment, every time newvar is used it is replaced with its value.

newvar2 - 2newvar

Variable names are case sensitive, so the following names are all different.

newvar + newVAR + NewVar + NeWvAr

Variables can have symbolic values, so the following is a valid assignment. (We keep Mathematica from

printing the value of a variable when it is assigned by ending the line with a semicolon.)

zzz = xxx2 + yyy2;

The right-hand side of a variable assignment can be a function or program; Mathematica will set the

value of the variable equal to the result of the right-hand side. Here we set the value of solutionset

to be the result of solving an equation.

solutionset = Solve@x^2 == 2 x + 1, xD
We can even set a variable equal to a function name. For instance, we can set the variable int equal to

the built-in Integrate function.

int = Integrate;

We can now use int where we would use Integrate.

int@Tan@xD, xD
It is important to realize that variable assignments are permanent. The values of newvar, zzz,

solutionset, and int will remain in memory until we quit Mathematica, or until we use the Clear

command to tell Mathematica to forget the value of the variable. Here is another calculation that uses

the value of newvar defined above.

34 Introduction to Mathematica

newvar2 + newvar - 200

The Clear function erases the value of newvar.

Clear@newvarD
We see that newvar no longer has a value.

newvar2 + newvar - 200

Here we clear the other variables used in this section.

Clear@zzz, solutionset, intD

à Defining Functions

Defining functions in Mathematica is somewhat different from writing functions by hand. The reason

is that standard mathematical notation is ambiguous, while Mathematica requires a precise definition

in order to understand a question. For example, it is unclear in traditional notation whether q H1 - pL

means the function q evaluated at 1 - p , or q times the quantity 1 - p .

To avoid this ambiguity, in StandardForm and InputForm we type q[1-p] to denote the function q

evaluated at 1 - p , and q(1-p) to denote q times 1 - p .

To define a function, say areaCircle(r), we must tell Mathematica that we wish areaCircle to be applica-

ble to any argument r, and not just to the literal symbol r. In order to do this, we set up a pattern on the

left side of the function definition. A pattern is a blank that can match any single argument given to a

function. For example, to define areaCircleHr L = Π r 2, we type the following. (Note the use of := to

separate the left and right sides of a function definition.)

areaCircle@r_D := Π r2

There are several things to keep in mind. The name of the function is areaCircle, and because it is a

function, its argument goes inside square brackets. The r_ term inside the square brackets is the

pattern for the argument to areaCircle, which we read as “any r”; the underscore _ is a blank that

matches any single argument, and the r next to it is the name of the pattern, which is used to refer to

the argument on the right-hand side of the function definition.

We use the function after defining it by entering a line such as the following.

areaCircle@10D
When we evaluate areaCircle[10], Mathematica looks in its database to see if it has a definition for

areaCircle called with one argument. Because we used the pattern r_ in the definition of

areaCircle, and r_ is a pattern that matches any single argument, Mathematica puts the 10 into the

blank called r, then substitutes 10 everywhere r appears on the right-hand side of the definition.

Introduction to Mathematica 35

When we evaluate areaCircle[10], Mathematica looks in its database to see if it has a definition for

areaCircle called with one argument. Because we used the pattern r_ in the definition of

areaCircle, and r_ is a pattern that matches any single argument, Mathematica puts the 10 into the

blank called r, then substitutes 10 everywhere r appears on the right-hand side of the definition.

When we define a function, the name we give to the pattern is unimportant, except that we must use

the same name on the right side of the definition. For instance, we could have defined the function

areaCircle by entering areaCircle@x _D := Π x2.

Arguments we give to areaCircle do not have to be numbers. When we type areaCircle@19 cD,

Mathematica matches 19 c with the pattern r_ , and again substitutes 19 c everywhere r

appears on the right side of the definition.

areaCircle@19 cD
Here is a more complicated use of areaCircle.

1

2
HareaCircle@s � 2D + areaCircle@sDL

Once we define a function, we use it just as we use a built-in function. Here is a plot of areaCircle.

Plot@areaCircle@tD, 8t, 0, 2<D
Here is the derivative of areaCircle with respect to z.

D@areaCircle@zD, zD
Similarly, we can define a function volumeCylinderIr , hM = Π r 2 h by entering the following.

volumeCylinder@r_, h_D := Π r2 h

We read the left side of the definition as “volumeCylinder of any r and any h”. Here is an application of

the function.

volumeCylinder@2, 10D
Like variables, function definitions are permanent; the definitions of the functions areaCircle and

volumeCylinder will remain in memory until we explicitly clear the definitions using Clear, or we

quit Mathematica.

Clear@areaCircle, volumeCylinderD

à Manipulating Polynomials

Given a symbolic polynomial, Mathematica does not carry out much manipulation without being told

to do so; that is, it makes few assumptions about the form in which we want a polynomial.

One of the operations Mathematica carries out automatically is putting expressions into a standard

order. In StandardForm and OutputForm Mathematica puts constants in front, and arranges terms in

order of increasing powers.

36 Introduction to Mathematica

One of the operations Mathematica carries out automatically is putting expressions into a standard

order. In StandardForm and OutputForm Mathematica puts constants in front, and arranges terms in

order of increasing powers.

2 x + x^2 + 1

In TraditionalForm the reverse order is used.

TraditionalForm@2 x + x^2 + 1D
Mathematica automatically adds and subtracts like terms.

H1 + 2 xL + H4 x + 3L
3H2 x-xL

However, Mathematica does not automatically expand, factor, or greatly simplify a polynomial.

Hx + 3 y - 5 zL9
To have Mathematica expand an expression, we explicitly tell it to do so. In this case, we apply the

function Expand to the previous output (which we refer to as %).

Expand[%]

Similarly, Mathematica does not automatically simplify an expression. The most commonly used

simplification command is Simplify, which tries a long list of transformation rules, returning the

smallest equivalent expression it finds, in this case the original expression.

Simplify@%D
SimplifyAI1 - x3M I1 + x3 + x6ME

One area where it is important to recognize that Mathematica does not automatically simplify expres-

sions is equation solving. Mathematica’s == construct, for instance, returns True only if the left and

right sides of the equation are identical in form, and not necessarily identical in a mathematical sense.

In the following example, the left and right sides of the equation are mathematically equal, but not

equal in form, so Mathematica returns the equation unevaluated.

Hb + xL Hb - xL == b2 - x2

One way to get Mathematica to recognize the equality is to use the Simplify command to transform

each side of the equation into an equivalent form.

SimplifyAHb + xL Hb - xL == b2 - x2E
There are several ways to rearrange polynomials generated in Mathematica, or to pick out particular

features or specific terms of a polynomial.

Introduction to Mathematica 37

There are several ways to rearrange polynomials generated in Mathematica, or to pick out particular

features or specific terms of a polynomial.

Using Collect on the expansion of Ia + b + cM5, we can arrange terms with respect to the variable c.

CollectAExpandAHa + b + cL5E, cE
Using Coefficient, we can select the coefficient of any expression in a polynomial.

CoefficientAExpandAHa + b + cL5E, a3E
Factor represents an expression as a product of factors.

Factor@x^9 + 1D
Here we find the names of all the variables in an expression.

Variables@Expand@Ha + b + cL^5DD
This is the greatest exponent in the polynomial.

ExponentAH1 + xL I1 - x - x2M H1 - xL, xE
See also PolynomialMod, PolynomialQuotient, PolynomialRemainder, PolynomialGCD,
PolynomialLCM, FactorList, CoefficientList, InterpolatingPolynomial, Fit, Cyclotomic

à Manipulating Rational Expressions

There are several commands that work exclusively on rational expressions and formulas.

Apart performs partial-fraction decomposition of a rational expression.

Apart@1 � H1 - x^5LD
Together does the opposite: it puts two or more rational expressions over a common denominator,

without simplifying.

Together@%D
We can choose what part of a rational expression to expand, such as the numerator or denominator.

ExpandDenominator@%D
Cancel divides out common factors.

38 Introduction to Mathematica

CancelBx5 - 1

x - 1
F

See also Numerator, Denominator, ExpandAll

à Manipulating Symbolic Functions

Mathematica carries out basic simplifications and computes special values of mathematical functions.

HCsc@xD Tan@wDL � HCot@xD Sec@wDL
BesselY@5 � 2, ΖD

In most cases, however, we must explicitly tell Mathematica to manipulate a symbolic expression.

TrigExpand expands trigonometric expressions.

TrigExpand@Sin@Α + Β + ΓDD
TrigToExp converts trigonometric expressions into exponential form.

TrigToExp@ Cos@zD + I Sin@zDD
ExpToTrig does the opposite.

ExpToTrig@%D
FullSimplify generates the smallest possible form of an expression involving special functions.

(Simplify works primarily on polynomial expressions.)

FullSimplify@Gamma@ΩD Gamma@1 - ΩDD
FullSimplify@Abs@zD Exp@I Arg@zDDD

See also FunctionExpand, TrigReduce, ComplexityFunction

à Options

Mathematica has many options to symbolic functions that allow us to change the default assumptions

used to perform a calculation. For instance, by default the Factor command allows only real integers

in the factorization of a polynomial.

FactorAx2 - 1E

Introduction to Mathematica 39

For this reason, Mathematica does not extract any factors from x 2 - 2.

Factor@x^2 - 2D H* use the default behavior of Factor *L
There may be instances, however, in which algebraic numbers should be allowed in the factorization.

Here is a list of options to Factor, along with their default values.

Options@FactorD
To allow algebraic numbers in the factorization of a polynomial, we use the Extension option.

? Extension

Mathematica now factors x 2 - 2.

FactorBx^2 - 2, Extension -> 2 F
Similarly we can factor over complex integers by including the complex unit ä in the field over which

polynomials are factored.

Factor@ x^2 + 1, Extension ® äD
See also GaussianIntegers

à Mathematica’s Assumptions

By default, Mathematica assumes that any variable or symbol that does not have an explicit value can

take any complex value.

Mathematica returns the real part of any number.

Re@3 + 4 ID
However, Mathematica does not automatically simplify Re@x + I yD to x, because Mathematica

assumes the variables x and y could have complex values.

Re@x + I yD
To instruct Mathematica to assume that x and y have real values, we use ComplexExpand. When

ComplexExpand is applied to an expression, Mathematica treats all the variables in the expression as if

they have real values. When x and y are assumed to be real-valued, the real part of x + I y is x.

ComplexExpand@Re@x + I yDD

40 Introduction to Mathematica

Similarly, Mathematica simplifies J z N2
 to z because the simplification is correct for any value of z.

Sqrt@zD^2
Mathematica does not, however, automatically simplify z 2 to z: the simplification is valid only for

nonnegative real values of z, and by default Mathematica assumes z can take any complex value. Here

is Mathematica’s default behavior.

Sqrt@z^2D
However, there are ways to tell Mathematica to perform the simplification. The PowerExpand func-

tion multiplies the exponents in an expression like z 2 , as the usage message reveals.

? PowerExpand

Here Mathematica performs the simplification.

PowerExpandB z2 F
See also TargetFunctions, Miscellaneous`RealOnly`

à Exercises: Algebra

Add, subtract, multiply, and divide any two polynomials, simplifying the result if necessary.

Here we define two polynomials, polyone and polytwo.

polyone = x2 + 2 x + 1;

polytwo = x3 - 3 x - 2;

Here are the sum and difference.

polyone + polytwo

polyone - polytwo

Here is the product.

polyone ´ polytwo

The result needs to be expanded.

Introduction to Mathematica 41

Expand@%D
Here is the quotient.

polyone � polytwo
In this case, the quotient can be simplified.

Simplify@%D
Expand the expression H1 + xL10. Factor the expression 1 + x105.

This is simply a matter of using proper Mathematica syntax.

Expand@H1 + xL^10D
Factor@1 + x^105D

Use ComplexExpand and its option TargetFunctions to convert Abs@x + I yD to
Sqrt@x^2 + y^2D.

By default Mathematica does not simplify Abs@x + I yD because it assumes x and y could be com-

plex-valued variables.

Abs@x + I yD
The option TargetFunctions allows us to specify the form in which we want the result of

ComplexExpand.

? TargetFunctions

Here is the default setting of TargetFunctions.

Options@ComplexExpandD
To simplify Abs@x + I yD, we need to give a value for TargetFunctions that does not include Abs.

Here we use the option value 8Re, Im<, and we get the desired result.

ComplexExpand@Abs@x + I yD, TargetFunctions -> 8Re, Im<D

Substitution with Replacement Rules

Suppose we want to substitute a particular value for the variable y into the formula

Sqrt@x^2 + y^2D. One way to substitute the value 7 for y is to set y equal to 7.

42 Introduction to Mathematica

Suppose we want to substitute a particular value for the variable y into the formula

Sqrt@x^2 + y^2D. One way to substitute the value 7 for y is to set y equal to 7.

y = 7;

Evaluating Sqrt@x^2 + y^2D now reflects the new value of y.

Sqrt@x^2 + y^2D
The trouble with this approach is that the value 7 (in this case) will be substituted wherever y appears

in any expressions evaluated after the assignment, at least until y is cleared of its value. For instance, if

we later try to solve an equation with respect to y, Mathematica substitutes the value 7 into y, in effect

assuming we want to solve the equation with respect to 7.

SolveAy10 + x10 == 1, yE
To clear the value of y, we use Clear.

Clear@yD
A better method for replacing any part of an expression with another value or expression uses the

replacement operator pair /. and ->. Expressions of the form replacethis -> withthis are called rules,

and Mathematica carries out any substitutions described by a rule or set of rules placed after the slash-

period /.. The general syntax for making a substitution is expr /. replacethis -> withthis.

For instance, to replace y in the expression Sqrt@x^2 + y^2D with 7, we type the following.

Sqrt@x^2 + y^2D �. y -> 7

Although we replaced the variable y with the value 7 in the expression Sqrt@x^2 + y^2D, the value

for y remains undefined.

y

We are not limited to numerical replacements. Here we replace y with 1 + a.

Sqrt@x^2 + y^2D �. y -> 1 + a

Here is an expression that contains the variable x.

Log@H1 - xL xD
We can replace x with a numerical value by using a replacement rule. (We enter the arrow character ®

by typing å->å.)

Introduction to Mathematica 43

Log@H1 - xL xD �. x ® 0.35

We can also replace any number of variables or subexpressions in an expression with others by giving

a list of replacement rules.

a + b^2 + c^3 �. 8a ® Α, b ® Β, c ® Γ<
We can also create a list of expressions formed by different lists of replacement rules by telling Mathe-

matica to substitute more than one set of values for an expression. Below we compute three values for

Sqrt@x^2 + y^2D by substituting into it a list containing three lists of replacement rules.

Sqrt@x^2 + y^2D �.88x ® 3, y ® 4<, 8x ® 5, y ® 12<, 8x ® 1, y ® 1<<
A somewhat tricky case occurs when we perform more than one substitution in an expression with

only one variable. For instance, to substitute two values for x into the expression defined above, we

might try the following.

Log@H1 - xL xD �. 8x -> 0.35, x -> 0.55< H* this is incorrect *L
Mathematica returned only one of the two desired values. The reason is that Mathematica performs the

substitutions from left to right: First the rule x -> 0.35 was applied to the formula, replacing all

occurrences of x with 0.35; then the rule x -> 0.55 was applied to that result, which was free of any

occurrences of x.

To avoid this difficulty, we must put each set of replacement rules inside its own list, even if each set

contains only one rule: this indicates to Mathematica that each replacement rule should be considered

a separate solution set.

Log@H1 - xL xD �. 88x -> 0.35<, 8x -> 0.55<< H* this is correct *L
In general Mathematica returns as many values from a substitution as there are sets of replacement

rules.

One reason that replacement rules are important is that functions such as Solve return results in the

form of a list of lists of replacement rules.

SolveAx2 - 1 == 0, xE
Here we verify the solutions separately by substituting each one into the original equation, using the

replacement operator /..

x2 - 1 == 0 �. x ® -1

x2 - 1 == 0 �. x ® 1

44 Introduction to Mathematica

We can test both solutions at the same time by substituting a list of solution sets into the equation.

x2 - 1 == 0 �. 88x ® -1<, 8x ® 1<<
An easier way to do the same thing is to name the list of replacement rules. Here we solve the same

equation, this time naming the solution set of replacement rules solset.

solset = SolveAx2 - 1 == 0, xE
Now, instead of retyping the solutions, we can directly substitute solset into the equation (note that

the entire rule is contained in solset, so it is important not to type x ® solset after the /.).

x2 - 1 == 0 �. solset
Similarly, we can generate a list of the solutions by substituting the rules containing the solutions into

the variable(s) of the equation.

x �. solset
See also ReplaceAll, ReplaceRepeated, RuleDelayed, Dispatch

à Exercises: Substitution with Replacement Rules

Using a replacement rule, replace x in the expression x 2 + 2 x - 1 with 5.

To replace x with 5, we use the replacement operator pair /. and -> on the polynomial.

x2 + 2 x - 1 �. x ® 5

Verify that x = 3 and x = 5 are roots of the expression x 3 - 9 x 2 + 23 x - 15, and that x = 4 is not.

Enter the polynomial, calling it cubic.

cubic = x3 - 9 x2 + 23 x - 15

Replace x with 3.

cubic �. x ® 3

The result is zero, so x = 3 is a root.

Next replace x with 4.

cubic �. x ® 4

The result is not zero, so x = 4 is not a root.

Introduction to Mathematica 45

Now replace x with 5.

cubic �. x ® 5

Again we have a root.

We can test all three roots at once by giving a list of lists of replacement rules.

cubic �. 88x ® 3<, 8x ® 4<, 8x ® 5<<
We generate True or False values by substituting the solutions into the equation cubic==0 .

cubic == 0 �. 88x ® 3<, 8x ® 4<, 8x ® 5<<
Verify that -b - b 2 - c is a root of x 2 + 2 b x + c .

The basic idea is the same as in the preceding problem. (We must be certain to type a space or asterisk

between the b and x in the term 2 b x to denote multiplication.)

x2 + 2 b x + c �. x ® -b - SqrtAb2 - cE
In this case, a complication is that the symbolic result does not automatically simplify. Therefore, we

explicitly tell Mathematica to simplify the result.

Simplify@%D
Thus we see that the given expression is a root of x 2 + 2 b x + c .

Solving Equations

à Basic Solving

Using Solve gives generic solutions to an equation or system of equations. Recall that we use a double

equal sign == to separate the left and right sides of an equation, and that we should specify a variable

or list of variables to solve for. Here we solve the general quadratic equation with respect to x.

SolveAa x2 + b x + c == 0, xE
Inside Solve, we enter a system of equations as a list of equations, followed by a list of variables to

solve for.

46 Introduction to Mathematica

Solve@8x + 5 y == c, 2 x + y == d<, 8x, y<D
We can also solve some systems of equations expressed as matrices. For instance, the same set of

linear equations as above can be solved by expressing the coefficients in the system as a matrix.

coeffs = 881, 5<, 82, 1<<;
We can then use LinearSolve to solve the same system.

?LinearSolve

LinearSolve@coeffs, 8c, d<D
As expected, the answers are the same.

Naturally, there are many equations that cannot be solved using symbolic techniques, and when such

equations are encountered we must use numeric solving or root-finding techniques.

Solve solves equations for general values of the parameters, so the solutions returned may be incor-

rect for special values of the parameters. For example, the solutions to the general quadratic equation

are incorrect for the value a = 0.

SolveAa x2 + b x + c == 0, xE
Reduce returns a list of logical statements that account for special values of parameters. (The form

&& stands for the logical function And , and || for the logical function Or .)

ReduceAa x2 + b x + c == 0, xE
The result states that when a ¹ 0, the solutions x = -b± b 2-4 a c

2 a
 are correct; that when a, b, and c are all

zero, any value of x is a solution; and that when a = 0 and b ¹ 0, x = - c

b
 is a solution.

See also Eliminate, NSolve, FindRoot, ToRules, Root, ToRadicals, RootReduce,
LogicalExpand, Algebra`InequalitySolve`, Calculus`RSolve

à Using Solutions as Replacement Rules

The following command loads from the Graphics package directory the package containing the

ImplicitPlot command.

Needs@"Graphics`ImplicitPlot`"D
Once the package is loaded, we can make a plot of two relations on the same set of axes.

Introduction to Mathematica 47

imp = ContourPlotA911 x2 + 23 y2 � 200, 10 y - 6 x2 � -50=, 8x, -5, 5<,
8y, -5, 5<E;

Given symbols and integers as coefficients, Mathematica returns a list of exact solutions to the

equations.

solns =

SolveA
811 x^2 + 23 y^2 == 200, 10 y - 6 x^2 == -50<,8x, y<E

As before, the answers are in the form of lists of replacement rules. As always, we can get numeric

approximations to the solutions.

solns = N@solnsD
We can then substitute the x-y values into the Point graphics primitive.

Point@8x, y<D �. solns
By default, points are the same color and thickness as lines, so we need to prepend the graphics

directive PointSize to make the points visible.

bigpoints = Prepend@%, PointSize@0.04DD
When we plot the two relations, we can then highlight the solutions by including the bigpoints

object in the plotting command.

Show@imp, Epilog ® bigpointsD

à Exercises: Solving Equations

Solve the equation x 3 = 8 with respect to x, then substitute the solutions back into the equation.

Solve gives an answer in the form of a list of replacement rules, and we call the list of rules solns. (It

is important to use a double equal sign inside the Solve command to tell Mathematica that we are

testing for the equality of the polynomial and 0.) The single equal sign after solns denotes that we

wish to set solns equal to the result returned by Solve.

solns = SolveAx3 == 8, xE
To verify the solutions, we substitute the solutions (solns) back into the equations using the replace-

ment notation slash-period (/.).

48 Introduction to Mathematica

x3 == 8 �. solns
Solve the general quadratic equation, substituting the solutions into the equation to verify that they
are roots.

Solve the equation, getting the two roots as a list of replacement rules.

SolveAa x2 + b x + c == 0, xE
Next, substitute the roots into the equation.

a x2 + b x + c == 0 �. %

The resulting equations need to be simplified.

Simplify@%D

Calculus and Analysis

à Differentiation, Integration, and Taylor Series Expansion

For differentiation, integration, and series expansions we must indicate the variable(s) with respect to

which the operations are being performed. Below we define an expression called expr and set it equal

to sinHn Π xL.

Clear@exprD H* clear any previous values of expr *L
expr = Sin@n Pi xD

We take the derivative of expr with respect to x, using the differentiation operator D.

D@ expr, x D
We can also use the special form ¶� �.

¶x expr

Similarly we integrate expr with respect to x using Integrate.

Integrate@ expr, x D
We can also use the following form. We enter the integral sign Ù by typing åintå or \[Integral] ,

and we must use the special differential â, entered by typing åddå or \[DifferentialD] , and

not an ordinary keyboard d.

Introduction to Mathematica 49

We can also use the following form. We enter the integral sign Ù by typing åintå or \[Integral] ,

and we must use the special differential â, entered by typing åddå or \[DifferentialD] , and

not an ordinary keyboard d.

à expr âx

Here we take a Taylor series expansion of expr with respect to x, around x = 0, up to degree 7.

Series@expr, 8x, 0, 7<D
The O@xD8 term denotes the extra terms beginning at order 8. To remove the order term, we use the

function Normal. The result is a polynomial.

Normal@%D
We can apply these calculus operations to general functions and expressions as well.

D@f@xD g@xD h@xD, xD
If Mathematica cannot return an antiderivative for an expression, it returns the expression

unevaluated.

Integrate@f@xD, xD
Integrate@Sin@Sin@xDD, xD

Given limits of integration, we can use numerical methods to obtain an approximation.

NIntegrate@Sin@Sin@xDD, 8x, 0, Π<D
All of the calculus functions apply to multivariate expressions. Here is a mixed partial derivative.

D@Πx y, x, yD
In these examples, Exp is Mathematica’s name for the exponential function, and Erf is the name for

the error function.

Integrate@Exp@-HΑ^2 + Β^2LD, Α, ΒD

à à à ExpA-Ix2 + y2 + z2ME âz ây âx

Here we see that Mathematica knows how to apply the fundamental theorem of calculus.

50 Introduction to Mathematica

DBà
a

b@zD
f@xD âx, zF

à Other Calculus and Analysis Functions

Sum allows us to evaluate many finite and infinite sums and products.

We can evaluate summations with symbolic or infinite limits.

SumAk5, 8k, 1, n<E
Mathematica recognizes many special summations, as well.

â
k=0

¥ xk

k!

We can do a spot check of the answer by comparing a partial summation to the series expansion of

Mathematica’s result.

Sum@x^k � k!, 8k, 0, 7<D
Normal@Series@Ex, 8x, 0, 7<DD

Mathematica solves a large class of ordinary differential equations (or systems of ODEs) symbolically,

given the equations and initial conditions, a function or list of functions to solve for, and independent

variables.

DSolve@y'@xD + 2 y@xD == 3 Exp@xD, y@xD, xD

DSolveBy'@xD
x

-
2 y@xD
x2

== x Cos@xD, y@xD, xF
The C[1] in each of the previous examples is an undetermined coefficient. To replace it with a numeri-

cal (or other) value, we use replacement rules.

% �. C@1D ® 5

We can specify initial conditions, expressing them in the form of an equation (that is, using ==

notation).

DSolve@8y'@xD � x - H2 y@xD xL == x, y@ΠD == 3<, y@xD, xD
Here Mathematica recognizes a special differential equation, and returns the answer as a linear combi-

nation of Bessel functions.

Introduction to Mathematica 51

Here Mathematica recognizes a special differential equation, and returns the answer as a linear combi-

nation of Bessel functions.

DSolveAz2 y''@zD + z y'@zD + Iz2 - 169M y@zD == 0, y@zD, zE
Mathematica can solve some partial differential equations. Here the solution includes an undeter-

mined function C[1] of the quantity 2 t + u.

DSolve@x@t, uD == D@x@t, uD, tD - 2 D@x@t, uD, uD, x@t, uD, 8t, u<D
Mathematica calculates limits.

LimitB Hx^2 - 4L
Hx - 2L , x -> 2F

Graphics are useful as an informal way to verify a limit. Here we find the limit of Sin@xD � x as x

approaches zero.

Limit@Sin@xD � x, x -> 0D
A plot of

sinHxL
x

suggests that the result returned by Limit is correct.

PlotBSin@xD
x

, 8x, -10, 10<F
We can specify the direction from which a limit is taken, setting the option Direction to 1 to take the

limit from the left, or setting Direction to -1 to take the limit from the right.

Here is a plot of
1

x
.

PlotB 1
x
, 8x, -0.5`, 0.5`<F

Setting Direction to 1, we take the limit from the left.

Limit@ 1 � x, x -> 0, Direction -> 1 D
Setting Direction to -1, we take the limit from the right.

Limit@ 1 � x, x -> 0, Direction -> -1 D
We can take limits of purely symbolic expressions.

Limit@H1 + m � nL^n, n ® InfinityD
The Interval object returned by Limit@Sin@xD, x -> InfinityD reflects the fact that the sine

function oscillates forever between -1 and 1.

52 Introduction to Mathematica

The Interval object returned by Limit@Sin@xD, x -> InfinityD reflects the fact that the sine

function oscillates forever between -1 and 1.

Limit@Sin@xD, x ® InfinityD
There are hundreds of mathematical functions available for use with symbolic arguments. Capabilities

exist in the Mathematica kernel and standard packages to solve recurrence relations, calculate Laplace

transforms, compute orthogonal polynomials, and much more. The Help Browser, on-line help, and

Mathematica books provide convenient ways to explore these functions.

See also Residue, ComposeSeries, InverseSeries, Calculus`LaplaceTransform`,
Calculus`FourierTransform`

à Exercises: Calculus and Analysis

Find where the polynomial x 3 - 6 x 2 + 11 x - 6 crosses the x-axis, and where its derivative is equal to
zero.

First we plot the curve.

PlotAx3 - 6 x2 + 11 x - 6, 8x, 0, 4<E
To find where the curve crosses the x-axis, we use Solve.

SolveAx3 - 6 x2 + 11 x - 6 == 0, xE
For the second part of the question, we take the derivative of the polynomial, using the derivative operator D.

der = DAIx3 - 6 x2 + 11 x - 6M, xE
Next, we use Solve again.

Solve@der == 0, xD
Using the command InterpolatingPolynomial, create a polynomial whose graph passes through
the points (0, 1), (1, 11), (2, 21), and (3, 17); then take its derivative. If possible, plot the polynomial
and its derivative.

We use InterpolatingPolynomial with the given points to create the polynomial.

mypoly = InterpolatingPolynomial@880, 1<, 81, 11<, 82, 21<, 83, 17<<, xD
Here it is in simpler form.

mypoly = Simplify@mypolyD
Here is the derivative of our interpolating polynomial.

Introduction to Mathematica 53

der = ¶xmypoly

Here is a somewhat simpler form of the derivative.

der = Simplify@derD
Here is a plot of mypoly and its derivative.

Plot@8mypoly, der<, 8x, -0.1`, 3.1`<,
PlotStyle ® 8GrayLevel@0.5`D, GrayLevel@0.2`D<D

Solve the differential equation y ²HxL = y ¢HxL + ex , when y H0L = 2 and y ¢H0L = 1.

Additionally, try plotting y(x) over -1 £ x £ 1.

First we solve the differential equation using DSolve. Note that the initial conditions are written as equations, not assignments (y[0]==2,

not y[0]=2). For convenience, we call the solution dsol.

dsol = DSolve@8y''@xD == y'@xD + E^x, y@0D == 2, y'@0D == 1<, y@xD, xD
We can isolate y(x) using the replacement operator /..

y@xD �. dsol
Next, plot y(x) using Plot.

Plot@%, 8x, -1, 1<D
Load the package DiscreteMath`RSolve`. Using the on-line help, solve the following system of
recurrence equations, and compute a0 through a10.

an = an -1 + an -2 , a0 = 1, a1 = 3

Here we load the package and examine the usage message for RSolve.

Needs@"DiscreteMath`RSolve`"D
?RSolve

We see from the usage message that RSolve accepts a list of recurrence equations, a list of functions to solve for, and an independent

variable. Here we enter the given system of equations, following the directions of the usage message, and get the result. (It is possible that

we have previously defined values or rules for a and n; to be safe, we clear the variables first.)

Clear@a, nD;
RSolve@8a@nD == a@n - 1D + a@n - 2D, a@0D == 1, a@1D == 3<, a@nD, nD

Extract the general result, calling it gen, by replacing a[n] with the solution.

54 Introduction to Mathematica

gen = Ha@nD �. First@%DL
Here we test some values of n, replacing the n in gen with 0.

gen �. n ® 0

The answer can be simplified.

Simplify@%D
We test the case n = 1.

Simplify@gen �. n ® 1D
Now we generate the table of values.

Table@Simplify@gen �. n ® jD, 8j, 0, 10<D
These numbers are called the Lucas numbers.

Lists and Functions

à Function Definitions

Function definitions that we have seen look like the following.

func@z_D := 1 + z^10

The function has a name (func) and a pattern to match the argument(s) given to the function (z_,

read as “any z”; the name of the pattern is unimportant, except that we must use the same name on the

right side of the definition) on the left side of the colon-equal, and something to do with the argumen-

t(s) on the right side of the colon-equal.

We define functions that take more than one argument in the same way, except we type in a pattern

for each argument that the function is to accept. The following function dist takes two arguments,

any x1 and any x2, and returns the absolute value of the difference of the two arguments.

dist@x1_, x2_D := Abs@x1 - x2D
The body of a function (the part on the right-hand side of the definition) can be as complicated as

necessary, and can contain compound expressions. The following function assigns values to the

variables X and Y, then prints the new values.

Introduction to Mathematica 55

setXandY@xval_, yval_D :=HX = xval; Y = yval; Print@"X is now ", X, ", and Y is now ", YDL
Mathematica executes all of the commands in the body of the function.

setXandY@3, -7D
X � Y

When we finish using X and Y we clear their values.

Clear@X, YD
We can define functions so that only certain types of arguments are valid. For instance, here is a

recursive definition of a factorial function.

fac@n_D := n fac@n - 1D; fac@0D := 1

Here we compare a value computed with fac to a value computed using the built-in factorial function.

8fac@35D, 35!<
A shortcoming of fac is that it should apply only to integers. We can determine a number’s type by

using the Head function. Possible values for the head of a number are Integer, Rational, Real, and

Complex.

Head@3D

HeadB22
7

F

Head@3.14159D
We tell Mathematica that a function applies only to a certain type of number by typing the permissible

head of the number after the underscore in the function definition. (Before redefining fac, we use

Clear to erase the old definition.)

Clear@facD
Here we restrict fac to arguments that have the head Integer.

fac@n_IntegerD := n fac@n - 1D; fac@0D := 1

56 Introduction to Mathematica

The function works as intended when given an integer argument.

fac@35D
Mathematica returns fac unevaluated if called with anything but an integer.

fac@1.23456D
A further shortcoming of fac is that it should accept only positive integers. We can include conditions

(such as “n must be positive”) by typing slash-semicolon /; after the body of the function, followed by

the condition. First we clear fac.

Clear@facD
Now we include the condition by typing /; after the body of the definition, followed by the condition

n > 0.

fac@n_IntegerD := n fac@n - 1D �; n > 0

fac@0D := 1

The function works for arguments that are positive integers.

fac@40D
It returns unevaluated if called with anything other than a positive integer.

fac@-10D
See also If, Which, Switch, Do, For, Alternatives, Optional, PatternTest, MatchQ

à List Functions

Mathematica has many functions for creating lists. One such function is Range, which generates a list

of numbers. Range[n] creates a list of numbers going from 1 to n.

Range@15D
Range[m, n] returns a list of numbers from m to n.

Range@20, 30D
Range[m, n, s] returns a list of numbers from m to n in increments of s.

Introduction to Mathematica 57

Range@3, 4, 1 � 10D
Another function for creating lists is Table, which we have seen before. Here is a table of approxima-

tions to the natural logarithm of the ith prime number, as i goes from 1 to 5.

Table@N@Log@Prime@iDDD, 8i, 1, 5<D
The elements of a list can be other lists, and lists can be nested to any depth. For instance, a matrix is a

list of lists, where each sublist contains the elements of one row of the matrix. Here is a 3 × 3 matrix.

mymat = 88i, j, k<, 81, 2, 3<, 8-1, 0, -1<<;
We format matrices and arbitrary arrays of elements using MatrixForm and TableForm.

MatrixForm@mymatD
See also Part, Extract, Take, Drop, Append, AppendTo, Prepend, PrependTo, Insert, Delete,
Join, Intersection, Union

à Using Functions with Lists

Mathematica provides many functions designed to allow functions and lists to work together.

One such function is Map, which applies a function to each element of a list. Here is a simple function.

nlp@x_IntegerD := N@Log@Prime@xDDD
To apply the function to each element of a list of integers, we use Map. Notice that we give only the

name of the function (nlp) as the first argument to Map, and not nlp[x].

Map@nlp, Range@5DD
There is a special class of functions called predicate functions, each of which returns True or False

depending on whether its condition is met. All the built-in predicate functions in Mathematica end with

the letter Q. Here are the names of all the built-in functions that end with the letter Q (not all of them

are predicate functions).

Names@"*Q"D
Here are some predicate functions applied to the number 101. Here we check if 101 is prime.

PrimeQ@101D
Here we determine if 101 is even.

58 Introduction to Mathematica

EvenQ@101D
Mathematica has a function called Select that extracts all the elements of a list that satisfy a particu -

lar predicate function. For example, we extract all the prime elements of a list of integers from 1 to

100. (Notice again that we use only the name of the predicate function.)

Select@Range@100D, PrimeQD
We can define our own predicate functions. The following predicate function returns True for num-

bers between 0.33 and 0.66.

middlethird@x_D := 0.33 < x < 0.66

Given a list of numbers, we can select all the numbers that satisfy middlethird. Here is a list of 25

random real numbers between 0 and 1.

randompoints = RandomReal@80, 1<, 25D
Here is the subset of randompoints whose elements satisfy middlethird.

Select@randompoints, middlethirdD
See also Cases, MemberQ, FreeQ, Count, Position, DeleteCases

Graphics

Two-Dimensional Graphics

à Plot

The simplest example of Mathematica’s graphing capabilities is a graph of a function of one variable

created with Plot. Plot takes a function to be graphed and a domain for the variable, and generates a

two-dimensional graph.

Plot@Sin@xD � x, 8x, -10, 10<D
Plot also accepts a list of functions to plot on the same set of axes.

Plot@8Sin@xD, Cos@xD<, 8x, -Π, Π<D

Introduction to Mathematica 59

à Options

There are dozens of options we can use to control almost every aspect of a graph.

Options[FunctionName] returns a list of the options available for a function, along with their

default values.

Options@PlotD
For example, by default, Mathematica uses an algorithm to choose the most “interesting” y-range for a

graph. In the above list we see that the default value for PlotRange is Automatic.

PlotBSinAx2E
x2

, 8x, -10, 10<F
We can override the default setting by giving a different value to the PlotRange option.

PlotBSinAx2E
x2

, 8x, -10, 10<, PlotRange ® 8-0.25`, 1.05`<F
In every case, options are added after the required arguments to the function. We set an option by

typing the name of the option, an arrow made by the two characters - and > (or the special character ®

made by typing å->å), and the new value of the option. Note that most plotting commands accept

the same set of options.

PlotBSin@xD
x

, 8x, -10, 10<, Frame ® True, PlotLabel ® "sinc function",

GridLines ® Automatic, PlotRange ® 88-11, 11<, 8-0.5`, 1.15`<<,
AspectRatio ® 1F

In the following sections we will change many of a graph’s default option settings.

See also SetOptions, FullOptions, FullGraphics

à ParametricPlot

ParametricPlot plots a two-dimensional curve described by two functions of the same parameter,

one that describes movement in the x direction and one for the y direction. This allows us to plot

curves that are not functions, in the mathematical sense. Here is a parametric plot of a circle.

ParametricPlot@8Sin@tD, Cos@tD<, 8t, 0, 2 Π<D
The option AspectRatio controls the relative sizes of units on the two axes; the setting Automatic

makes them equal (that is, makes one unit on the vertical axis equal to one unit on the horizontal axis).

60 Introduction to Mathematica

ParametricPlot@8Sin@tD, Cos@tD<, 8t, 0, 2 Π<, AspectRatio ® AutomaticD
ParametricPlot can be used to plot graphs of complicated curves that cannot be expressed as a

function of the form y = f HxL.

ParametricPlotB:4 CosB-
5 t

4
F + 7 Cos@tD, 4 SinB-

5 t

4
F + 7 Sin@tD>,

8t, 0, 8 Π<, AspectRatio ® AutomaticF
ParametricPlot takes many of the same options as Plot.

ParametricPlotB:4 CosB-
11 t

4
F + 7 Cos@tD, 4 SinB-

11 t

4
F + 7 Sin@tD>,

8t, 0, 8 Π<, AspectRatio ® Automatic, Axes ® False, Frame ® True,

FrameLabel ® 8"x", "y"<F

à ImplicitPlot

ImplicitPlot allows us to plot implicit relations, rather than functions. It is defined in one of the

standard packages, so we must load it first with the Needs command.

Needs@"Graphics`ImplicitPlot`"D
ImplicitPlot[eqn, {x, a, b}] draws a graph of the set of points that satisfy eqn. The variable x is

associated with the horizontal axis and ranges from a to b. The remaining variable in the equation is

associated with the vertical axis. We can also specify a vertical range for the graph using the form

ImplicitPlot[eqn, {x, a, b}, {y, c, d}].

ImplicitPlotA3 x2 + 3 x y + 12 y2 == 12, 8x, -2.5, 2.5<, AxesOrigin ® 80, 0<E;
Like most graphing functions, ImplicitPlot accepts a list of functions to plot on the same set of

axes.

ContourPlotA93 x2 + 3 x y + 12 y2 � 12, 12 x2 + 3 x y + 3 y2 � 12,

3 x2 + 12 x y + 3 y2 � 1=, 8x, -2.5`, 2.5`<, 8y, -2.5`, 2.5`<,
AxesOrigin ® 80, 0<E;

à Graphics Directives and Plot Styles

Mathematica contains several objects called graphics directives, which specify the style in which a

graph should be drawn. Graphics directives control the color, thickness, point size, and dashing of a

lines, points, and other objects.

Introduction to Mathematica 61

Mathematica contains several objects called graphics directives, which specify the style in which a

graph should be drawn. Graphics directives control the color, thickness, point size, and dashing of a

lines, points, and other objects.

For example, to specify that lines should be drawn with a specified thickness, we use the directive

Thickness[t], where t is given as a percentage of the width of a graph.

All two-dimensional graphing functions have an option called PlotStyle, which allows us to specify a

list of graphics directives that control how the actual curve (as opposed to the surrounding axes, grid

lines, etc.) is drawn. To draw a sine wave so that the curve is drawn with a thickness 2% of the width of

the graph, we set the option PlotStyle -> Thickness[0.02].

Plot@Sin@xD, 8x, -3, 3<, PlotStyle ® 8Thickness@0.02`D<D
To draw a curve with a dashed line, we use the directive Dashing. Dashing[{d}] draws a line so that

it alternates between line segments d percent of the width of the graph and gaps d percent of the

width of the graph. Dashing[{d1,d2}] alternates between line segments d1 long and gaps d2 long,

and Dashing[{d1,d2,… }] applies the successive widths cyclically. The following graph uses line

segments twice as long as the gaps.

Plot@Sin@xD, 8x, -3, 3<, PlotStyle ® 8Dashing@80.04`, 0.02`<D<D
There are several ways to specify colors using graphics directives. RGBColor[r,g,b] describes a

color made up of r, g, and b percent of red, green, and blue. Thus RGBColor[1,0,0] is red, and

RGBColor[1,0,1] is purple. (The parameters r, g, and b must all be between 0 and 1.)

The add-on package Graphics`Colors` defines a list of English names for colors and their

RGBColor values. Here we load the package.

Needs@"Graphics`Colors`"D
Here are the first ten colors defined in the package.

Take@AllColors, 10D
Here is the RGBColor value of the color apricot.

Apricot

Other color functions are Hue[h], which represents the spectrum of colors going through red,

orange, yellow, green, blue, purple, and back to red; and GrayLevel[g] (0 £ g £ 1), where

GrayLevel[0] is black and GrayLevel[1] is white.

To change the style of each graph in a list given to Plot, we give a list containing as many graphics

directives as there are functions being plotted. Here we draw the first curve in the list using a thick

line (Thickness[0.02]), and the second curve using a green line (RGBColor@0, 1, 0D).

Plot@8Sin@xD, Cos@xD<, 8x, -3, 3<,
PlotStyle ® 8Thickness@0.02`D, RGBColor@0, 1, 0D<D

To apply multiple styles to each function in a list, we surround the styles that apply to each function

inside a set of list brackets.

62 Introduction to Mathematica

To apply multiple styles to each function in a list, we surround the styles that apply to each function

inside a set of list brackets.

Plot@8Sin@xD, Cos@xD<, 8x, -3, 3<,
PlotStyle ® 88Thickness@0.02`D, Apricot<,8Dashing@80.04`, 0.02`<D, Green<<D

One tricky case to be aware of is that to specify more than one graphics directive in the plot style of a

single function, we must surround the graphics directives with double list brackets {{ and }} .

PlotBSin@xD
x

, 8x, -10, 10<,
PlotStyle ® 88RGBColor@0, 0, 1D, Thickness@0.015`D<<F

See also PointSize, CMYKColor, AbsoluteThickness, AbsolutePointSize,
Graphics`ArgColors`

à Combining Graphs

Show allows us to display a previously computed graph without having to recompute any of the points

that make up the curve(s).

Show[graphics, options] displays two- and three-dimensional graphics using the new option settings

specified. Show accepts options that affect the way a graph or its surrounding elements (axes, frame,

etc.) is drawn, without requiring any points of the graph to be recomputed.

p1 = PlotBSin@xD
x

, 8x, -10, 10<F
None of the options given below require points on the graph to be recomputed, so we can use them

inside Show.

Show@p1, Frame ® True, AxesStyle ® Hue@0D, PlotRange ® 8-0.1`, 0.8`<,
PlotLabel ® "p1"D

When given a list of graphics, Show combines them onto the same set of axes. Here is another two-

dimensional plot.

p2 = Plot@BesselJ@2, xD, 8x, -10, 10<, PlotStyle ® 8GrayLevel@0.5`D<D
We combine p1 and p2 by placing their names in a list and giving the list to Show.

Show@8p1, p2<D
Show also combines three-dimensional graphics. Here are two three-dimensional graphs.

Introduction to Mathematica 63

We put them in the same box using Show.

Show@8p3, p4<D
The object GraphicsArray takes an array of graphs, and when used with Show displays the graphs in

an array. Here is an array containing the four previous graphs.

Show@GraphicsGrid@88p1, p3<, 8p4, p2<<D, ImageSize ® 8400, 250<D
The package Graphics`Graphics` defines functions DisplayTogether and

DisplayTogetherArray, which allow us to combine graphs on the same set of axes or in an array

without rendering each graph beforehand. To use the functions we first load the package.

Needs@"BarCharts`"D; Needs@"Histograms`"D;
Needs@"PieCharts`"D
Show@Plot@Sin@xD, 8x, -3, 3<, PlotStyle ® GrayLevel@0.5`DD,
Plot@Sin@3 xD, 8x, -3, 3<, PlotStyle ® Dashing@80.01`<DDD

GraphicsRow@8Plot@Sin@xD, 8x, -3, 3<, PlotStyle ® GrayLevel@0.5`DD,
Plot@Sin@3 xD, 8x, -3, 3<, PlotStyle ® Dashing@80.01`<DD<D

See also DisplayFunction, $DisplayFunction, Identity

à How Mathematica Draws a Graph

Mathematica uses an adaptive sampling algorithm to choose the points sampled in a two-dimensional

plot. Beginning with 25 equally spaced points dividing the domain to be plotted, Mathematica looks at

each set of three consecutive points and computes the angle between the line segment joining the first

and second points and the line segment joining the second and third points. If this angle is close to 180

degrees, then Mathematica connects the points with lines. If not, Mathematica subdivides that interval

and tries again. This allows Mathematica to sample more points in a “curvy” section of the function

than in a flat section.

This process can be controlled by the options PlotDivision, which is the upper limit on the number

of times an interval will be divided, and PlotPoints, which sets the initial number of points to be

sampled.

Although this is a very robust algorithm, which produces accurate results in most cases, any scheme

using a finite number of sampled points is prone to miss sometimes. Here is an example of a function

that is plotted incorrectly using the default number of plot points, but which can be accurately plot-

ted by raising the initial number of plot points used.

64 Introduction to Mathematica

Plot@x + Sin@2 Π xD, 8x, 0, 25<D
Plot@x + Sin@2 Π xD, 8x, 0, 25<, PlotPoints ® 50D

Introduction to Mathematica 65

à Exercises: Two-Dimensional Graphics

Load the package Graphics`Master` . This loads the name of every function defined in a graphics
package into memory, and tells Mathematica to load the appropriate package when a package
function is first used.

Needs@"Graphics`Master`"D
Make a simple two-dimensional plot of x 2 - 20 cosIx 2M between -10 and 10. (If there are obvious flaws

in the graph, plot it again using more plot points.)

PlotAx2 - 20 CosAx2E, 8x, -10, 10<E
Use Options[Plot] or the on-line help to find a list of all the options that Plot accepts. Plot the
same function as above, this time changing at least five of Mathematica’s default options.

PlotAx2 - 20 CosAx2E, 8x, -10, 10<, PlotPoints ® 75, Frame ® True,

GridLines ® Automatic, PlotLabel ® "exercise one", AspectRatio ® 0.5`E

Three-Dimensional Graphics

à Plot3D

Plot3D is the three-dimensional analog of the Plot command. Given a function of two variables and a

domain for each variable, Plot3D produces a surface plot.

Plot3D@Sin@x - Cos@yDD, 8x, -3, 3<, 8y, -3, 3<D
Applying options to three-dimensional graphics works the same as with two-dimensional graphics; in

fact, many of the options are the same.

One of the differences between two- and three-dimensional plotting in Mathematica is point sampling.

Instead of adaptive sampling, three-dimensional plots rely on a fixed grid of points at which to evalu-

ate the function. By default, a 15 × 15 grid is used, resulting in 152 = 225 points plotted; raising this

number results in a smoother graph, but takes more time and memory to generate.

Here is a smoother graph of the same function as above.

Plot3D@Sin@x - Cos@yDD, 8x, -3, 3<, 8y, -3, 3<, Axes ® False,

FaceGrids ® All, PlotPoints ® 25D
See also HiddenSurface, RenderAll, Lighting, ColorFunction

66 Introduction to Mathematica

à Changing the Viewpoint

One important option to three-dimensional plotting functions is the viewpoint, the point in space

from which the observer looks at the object. ViewPoint is an option to all three-dimensional

graphics functions. Its default value is 81.3, -2.4, 2.0<, which can be changed by entering a new

value directly as an option.

Show@%, ViewPoint ® 80, 3, 2<D
Mathematica provides an easier way to do this using the 3D ViewPoint Selector. To use this front-end

feature we pull down the Input menu and choose 3D ViewPoint Selector . Rotating the box with the

mouse will have Mathematica compute the point from which to view the object. The Paste button

enters the view point at the current text insertion point.

à ParametricPlot3D

ParametricPlot3D is the three-dimensional analog of ParametricPlot. Depending on the input,

ParametricPlot3D produces a space curve or a surface.

When we give ParametricPlot3D a list of three parametric functions in one parameter, the result is

a space curve.

ParametricPlot3DB:Sin@tD, Cos@tD, t

3
>, 8t, 0, 6 Π<, Axes ® FalseF

A list of three parametric functions in two parameters results in a surface.

ParametricPlot3D@8Sin@vD Cos@uD, Sin@vD Sin@uD, Cos@vD<,8u, 0, 1.5` Π<, 8v, 0, Π<D
Like most graphing functions, ParametricPlot3D accepts a list of sets of parametric equations and

plots the surfaces together.

ParametricPlot3DB:8Sin@vD Cos@uD, Sin@vD Sin@uD, Cos@vD<,
:1
2
Sin@vD CosB4 u

3
F, 1

2
Sin@vD SinB 4 u

3
F, Cos@vD

2
>>, 8u, 0, 1.5` Π<,

8v, 0, Π<F
Options are given to ParametricPlot3D the same way as for Plot3D. Most of the options are the

same.

Introduction to Mathematica 67

à Exercises: Three-Dimensional Graphics

Make a three-dimensional plot of the function sinHx + sinH y LL between -3 and 3 on both axes.

Plot3D@Sin@x + Sin@yDD, 8x, -3, 3<, 8y, -3, 3<D
Evaluate Options[Plot3D] or use the on-line help to find a list of all the options that Plot3D
accepts. Plot the same function again, this time changing at least four of Mathematica’s default
options, including the options that control the smoothness of the plot and the color.

changedplot3d = Plot3D@Sin@x + Sin@yDD, 8x, -3, 3<, 8y, -3, 3<,
PlotPoints ® 815, 45<, Mesh ® False, ColorFunction ® Hue,

FaceGrids ® AllD

Contour and Density Graphics

à ContourPlot and DensityPlot

Mathematica plots contour and density plots of functions of two or three variables. With the exception

of special options that apply only to these types of graphics, these functions work very much like

Plot and Plot3D.

ContourPlot displays a graphics of a function of two variables, where regions of different intensities

of gray have (nearly) the same function value.

ContourPlot@Exp@xD Sin@yD, 8x, -3, 3<, 8y, -3, 3<D
DensityPlot by default generates a grid of gray levels, where the lighter gray areas have greater

function values than the darker gray areas.

DensityPlot@Exp@xD Sin@yD, 8x, -3, 3<, 8y, -3, 3<D
See also ColorFunction, Mesh, Contours, ContourLines, ContourStyle

à ContourPlot3D

The function ContourPlot3D provides a way to plot surfaces showing particular values of a function

of three variables. This function is defined in one of the standard add-on packages, so we must load

the package before using the function.

Needs@"Graphics`ContourPlot3D`"D
ContourPlot3D[fun, {x, x0, x1}, {y, y0, y1}, {z, z0, z1}] plots the surface implicitly defined by

fun[x, y, z] == 0. Setting the option Contours to {val1, val2, … } plots the level surfaces corre -

sponding to the values val1, val2, …

68 Introduction to Mathematica

ContourPlot3D[fun, {x, x0, x1}, {y, y0, y1}, {z, z0, z1}] plots the surface implicitly defined by

fun[x, y, z] == 0. Setting the option Contours to {val1, val2, … } plots the level surfaces corre -

sponding to the values val1, val2, …

ContourPlot3DB x2 + y2 + z2 , 8x, -1, 1<, 8y, 0, 1<, 8z, 0, 1<,
Contours ® 80.25`, 0.5`, 0.75`<F

Introduction to Mathematica 69

à Exercises: Contour and Density Graphics

Create a density plot of the function sinHx - sinH y LL over any range that includes the origin. Render the

graphic with twice as many plot points. Experiment with other options.

DensityPlot@Sin@x - Sin@yDD, 8x, -10, 10<, 8y, -10, 10<D
DensityPlot@Sin@x - Sin@yDD, 8x, -10, 10<, 8y, -10, 10<,
PlotPoints ® 30, Mesh ® False, FrameLabel ® 8"x", "y"<D

Repeat the above exercise using ContourPlot instead of DensityPlot. Experiment with the options
to ContourPlot that do not apply to DensityPlot.

ContourPlot@Sin@x - Sin@yDD, 8x, -10, 10<, 8y, -10, 10<D
ContourPlot@Sin@x - Sin@yDD, 8x, -10, 10<, 8y, -10, 10<,
PlotPoints ® 30, Contours ® 30, ContourStyle ® NoneD

Plotting Data

There are many occasions when we want to work with data rather than functions. There are several

functions designed to visualize data in two or three dimensions. For these examples, we need data to

work with. In practice, we would most likely read this data from a file or use the output of other

calculations. For this demonstration we will create a list of ordered pairs to use as data.

exampleData = N@Table@8n, n + Sin@nD + RandomReal@D<, 8n, 0, 5 Π, 0.2` Π<DD;
ListPlot takes a vector or array of data and plots it in two dimensions. Given a one-dimensional set

of data such as 810, 20, 30, 40<, Mathematica plots the ordered pairs 881, 10<, 82, 20<, 83, 30<, 84, 40<<. In this case, we supply a list of ordered pairs and Mathe-

matica plots the points using our explicit x values. (The graphics directive PointSize[p] specifies

that points should be drawn so they are p percent of the width of the graph.)

pointplot = ListPlot@exampleData, PlotStyle ® PointSize@0.02`DD
Options to ListPlot include nearly all of those applicable to Plot. One exception is the option

PlotJoined, which when set to True draws a line connecting each of the points.

joinedplot = ListPlot@exampleData, Joined ® True,

PlotStyle ® RGBColor@0, 0, 1DD
At this point in our analysis we can easily find a good least-squares fit to this data. The function Fit

takes as arguments a set of data, a set of basis functions for the best-fit polynomial, and a list of

variables to be used. Below we include only constant, linear, and quadratic terms for the best-fit

function.

70 Introduction to Mathematica

At this point in our analysis we can easily find a good least-squares fit to this data. The function Fit

takes as arguments a set of data, a set of basis functions for the best-fit polynomial, and a list of

variables to be used. Below we include only constant, linear, and quadratic terms for the best-fit

function.

exampleFit = FitAexampleData, 91, x, x2=, xE
Here is a plot of the best-fit quadratic polynomial.

fitplot = Plot@exampleFit, 8x, 0, 5 Π<, PlotStyle ® Dashing@80.01`<DD
Here we combine the previous three graphs.

Show@8pointplot, joinedplot, fitplot<D
When working with three-dimensional data, we use analogs to Plot3D, DensityPlot, and

ContourPlot. ListPlot3D plots a three-dimensional surface from a rectangular array of height

values.

examplearray = Table@n + Sin@nD + 3 RandomReal@D, 8i, 1, 5 Π, 0.3` Π<,8n, 1, 5 Π, 0.3` Π<D;
ListPlot3D@examplearrayD

ListContourPlot and ListDensityPlot create density and contour plots from rectangular arrays

of data.

ListDensityPlot@examplearrayD

Introduction to Mathematica 71

à Exercises: Plotting Data

Create tabular data from the curve x cosHxL - sinIx 2M between x = -2 Π and x = 2 Π and display the data

using ListPlot.

mydata = TableANA9x, x Cos@xD - SinAx2E=E, 8x, -2 Π, 2 Π, 0.05 Π<E;
ListPlot@mydata, PlotStyle ® PointSize@0.02`DD

Create a list of the first twenty prime numbers. (Hint: use Table and Prime[n], which gives the nth
prime number.) Plot the list using ListPlot, then fit the data to a quadratic polynomial, and plot the
data and the best-fitting curve on the same set of axes. Use options to change the color and other
aspects of the graphic.

primes = Table@Prime@nD, 8n, 1, 20<D
pointplot = ListPlot@primes, PlotStyle ® 8Red, PointSize@0.02`D<D
fitline = FitAprimes, 91, x, x2=, xE
fitplot = Plot@fitline, 8x, 0, 20<, PlotStyle ® 8Blue<D
Show@8pointplot, fitplot<D

Graphics Primitives

In addition to the high-level plotting functions just described, Mathematica allows us to build up

graphics in two and three dimensions from the basic building blocks of points, lines, circles, and so

on. These building blocks are called graphics primitives.

Graphics primitives are the actual objects that are drawn, while graphics directives control the style in

which an object is drawn.

First we look at an example in two dimensions. The following syntax is used to render a series of

graphics primitives.

ShowAGraphicsA9graphics primitives and directives=EE
The primitives Point, Line, Polygon, Text, Rectangle, Cuboid, Circle, and Disk form the basis

for most graphics.

Circle[{x, y}, r] is a two-dimensional graphics primitive that represents a circle of radius r

centered at the point {x, y}. Circle[{x, y}, {rx, ry }] yields an ellipse with semi-axes rx and ry .

Circle[{x, y }, r, {Θ1,Θ2 }] represents a circular arc. Line[{p1, p2, … }] is a graphics

primitive which represents a line joining a sequence of points.

72 Introduction to Mathematica

Circle[{x, y}, r] is a two-dimensional graphics primitive that represents a circle of radius r

centered at the point {x, y}. Circle[{x, y}, {rx, ry }] yields an ellipse with semi-axes rx and ry .

Circle[{x, y }, r, {Θ1,Θ2 }] represents a circular arc. Line[{p1, p2, … }] is a graphics

primitive which represents a line joining a sequence of points.

Here is a diagram made up of text, line, and circle primitives.

ShowBGraphicsB:Text@"r", 81.6`, -0.2`<D, Text@"Θ", 80.8`, 0.35`<D,
Thickness@0.015`D, Circle@80, 0<, 3D, Thickness@0.01`D,
LineB:83, 0<, 80, 0<, :3 CosB Π

4
F, 3 SinB Π

4
F>>F, Thickness@0.005`D,

Dashing@80.0075`<D, CircleB80, 0<, 1.25`, :0, Π

4
>F>F,

AspectRatio ® AutomaticF
Here is a more complicated example.

ShowB
GraphicsB

:8GrayLevel@0.75`D, Polygon@880, 0<, 81, 1<, 80, 2<, 8-1, 1<, 80, 0<<D<,
8Hue@0D, Thickness@0.01`D,
Line@880, 0<, 81, 1<, 80, 2<, 8-1, 1<, 80, 0<<D<,

Line@880, 0<, 80, 2<<D,
:Dashing@80.01`<D, Circle@80, 0<, 1D, CircleB80, 0<, 2 F,
Line@88-2, -2<, 82, 2<<D, Line@88-2, 2<, 82, -2<<D,
Line@88-2, 0<, 82, 4<<D, Line@88-2, 4<, 82, 0<<D>,

8Thickness@0.01`D, Line@880, 0<, 81, 0<, 81, 1<, 80, 1<, 80, 0<<D<>F,
Axes ® True, AxesOrigin ® 80, 0<, AspectRatio ® Automatic,

PlotRange ® 8Automatic, 8-0.2`, 2.2`<<,
PlotLabel ® "duplicating the square"F

This works similarly in three dimensions using Graphics3D in place of Graphics.

ShowA
Graphics3DA9Polygon@880, 0, 0<, 80, 4, 0<, 84.5`, 4, 0<, 84.5`, 0, 0<<D,

PointSize@0.03`D, TableAPointA9t, 2, AbsA50 + 20 t - 8 t2E=E,
8t, 0, 4, 0.2`<E=E, BoxRatios ® 81, 0.25`, 1<,

ViewPoint ® 8-0.012`, -3.22`, 1.04`<, Axes ® 8True, False, True<,
AxesLabel ® 8"time", None, "height"<E

Several of the standard Mathematica packages define more graphics objects and tools to manipulate

them.

Introduction to Mathematica 73

Several of the standard Mathematica packages define more graphics objects and tools to manipulate

them.

74 Introduction to Mathematica

à Exercises: Graphics Primitives and Directives

Below is the Mathematica code to draw a face. Use other two-dimensional graphics commands (such
as Polygon) to add other features (nose, beard, hat, etc.) and make changes to the face (such as eye
color). Experiment and have fun.

ShowBGraphicsB:Thickness@0.03`D, Circle@80, 0<, 1D, PointSize@0.04`D,
Point@8-0.5`, 0.3`<D, Point@80.5`, 0.3`<D,
CircleB80, -0.1`<, 0.5`, :5 Π

4
,
7 Π

4
>F>F, AspectRatio ® AutomaticF

Here is one variation.

ShowBGraphicsB:Thickness@0.03`D, Circle@80, 0<, 1D, Thickness@0.009`D,
Blue, Circle@8-0.5`, 0.3`<, 0.04`D, Circle@80.5`, 0.3`<, 0.04`D,
Red, CircleB80, -0.1`<, 0.5`, :5 Π

4
,
7 Π

4
>F, Pink,

Polygon@88-0.25`, -0.9`<, 80.25`, -0.9`<, 80, -1.25`<<D,
Green, Polygon@88-0.6`, 0.9`<, 80.6`, 0.9`<, 80.6`, 1.1`<,8-0.6`, 1.1`<<D,
Polygon@88-0.4`, 1.1`<, 80.4`, 1.1`<, 80.4`, 1.5`<,

8-0.4`, 1.5`<<D>F, AspectRatio ® AutomaticF

Shapes and Polyhedra

The packages Graphics`Shapes` and Graphics`Polyhedra` provide Mathematica definitions of

common three-dimensional shapes and the regular Platonic polyhedra, as well as functions for affine

transformations on them.

Needs@"Graphics`Shapes`"D
Once a package is loaded, we can get a list of all the objects that it defines by giving using ? with the

context name and * (to denote all names).

?Graphics`Shapes`*

Torus[r1, r2, n, m] is a list of m n polygons approximating a torus centered around the z-axis with

radii r1 and r2.

We use Show and Graphics3D to have Mathematica render the shape.

Introduction to Mathematica 75

Show@Graphics3D@Torus@1, 0.75`, 25, 25DDD
Transformations on these Mathematica objects, such as WireFrame and RotateShape, are wrapped

around the shape, using the following syntax.

Show@WireFrame@Graphics3D@Torus@1, 0.75`, 25, 25DDD, Boxed ® FalseD
Here we load the package in which various polyhedra are defined.

Needs@"PolyhedronOperations`"D
We can now use the standard polyhedra as graphics primitives.

Show@PolyhedronData@"GreatIcosahedron"DD
See also Geometry`Polytopes`

76 Introduction to Mathematica

à Exercises: Shapes and Polyhedra

Have Mathematica draw the default Cylinder. Draw another cylinder whose length is twice its
diameter. Use RotateShape to rotate this Cylinder off the vertical. Use AffineShape to deform the
cylinder in any way.

Here we load the package Graphics`Shapes`.

Needs@"Graphics`Shapes`"D
Here is the default cylinder.

Show@Graphics3D@Cylinder@DD, Boxed ® FalseD
Here is a cylinder with a height twice its diameter.

Show@Graphics3D@Cylinder@1, 2DD, Boxed ® FalseD
Here we use RotateShape to rotate the cylinder.

ShowBGraphics3DBRotateShapeBCylinder@1, 2D, 0,
Π

2
,

Π

2
FF,

Boxed ® FalseF
Here we deform the cylinder with AffineShape.

Show@Graphics3D@AffineShape@Cylinder@1, 2D, 80.25`, 0.5`, 0.15`<DD,
Boxed ® FalseD

Do the previous exercise with any other shape.

ShowBGraphics3DBRotateShapeBAffineShape@Cone@D, 80.25`, 0.5`, 1.15`<D,
Π,

Π

3
, -

Π

4
FF, Boxed ® FalseF

Customizing Graphics

à Arrows

Now that we know how to use graphics primitives to create arbitrary graphics objects, we can com-

bine these with other types of graphics.

Epilog is an option for most plotting functions that allows us to specify graphics directives and

primitives to be drawn after the main graphics are generated.

Introduction to Mathematica 77

Epilog is an option for most plotting functions that allows us to specify graphics directives and

primitives to be drawn after the main graphics are generated.

We can use Epilog to add arbitrary graphics to any plot. The standard package Graphics`Arrow`

defines an arrow graphics primitive. We load it in the standard way, using Needs.

Needs@"Graphics`Arrow`"D
Arrow[start, finish] is a graphics primitive representing an arrow starting at the point start and

ending at the point finish.

PlotBSin@xD
x

, 8x, -10, 10<, PlotRange ® All, AxesLabel ® 8"x", "y"<,
Epilog ® 8Arrow@87, 0.6`<, 80.01`, 0.99`<D,

Arrow@87, 0.4`<, 84.49`, -0.21`<D<F
See also Prolog

à Text in Graphs

Text[expr, coords] is a graphics primitive that represents text corresponding to the printed form of

expr, centered at the point specified by coords.

Show@Graphics@Text@"look here", 80, 0<DDD
We can use text as part of a list of graphics primitives given to the option Epilog.

PlotBSin@xD
x

, 8x, -10, 10<, PlotRange ® All, AxesLabel ® 8"x", "y"<,
Epilog ® 8Arrow@87, 0.6`<, 80.01`, 0.99`<D,

Arrow@87, 0.4`<, 84.49`, -0.21`<D, Text@"some extrema", 87, 0.5`<D<F
The option TextStyle accepts a list of options that change the font used for all text in a graph, as

well as its size, color, weight, and slant. (The specific options are FontFamily, FontSize,

FontColor, FontWeight, and FontSlant.) In the following example all text is in 9-point Helvetica,

drawn in 50% gray.

PlotBSin@xD
x

, 8x, -10, 10<, PlotRange ® All, AxesLabel ® 8"x", "y"<,
Epilog ® 8Arrow@87, 0.6`<, 80.01`, 0.99`<D,

Arrow@87, 0.4`<, 84.49`, -0.21`<D, Text@"some extrema", 87, 0.5`<D<,
BaseStyle ® 8FontFamily ® "Helvetica", FontSize ® 9,

FontColor ® GrayLevel@0.5`D<F
We can change the font styles for a particular piece of text by putting the text inside StyleForm and

including the desired changes. In this example all settings are the same as above, except the text “some

extrema” is drawn in red 12-point bold Times.

78 Introduction to Mathematica

We can change the font styles for a particular piece of text by putting the text inside StyleForm and

including the desired changes. In this example all settings are the same as above, except the text “some

extrema” is drawn in red 12-point bold Times.

PlotBSin@xD
x

, 8x, -10, 10<, PlotRange ® All, AxesLabel ® 8"x", "y"<,
Epilog ® 8Arrow@87, 0.6`<, 80.01`, 0.99`<D,

Arrow@87, 0.4`<, 84.49`, -0.21`<D,
Text@Style@"some extrema", FontFamily ® "Times", FontSize ® 12,

FontWeight ® "Bold", FontColor ® Hue@0DD, 87, 0.5`<D<,
BaseStyle ® 8FontFamily ® "Helvetica", FontSize ® 9,

FontColor ® GrayLevel@0.5`D<F
See also $TextStyle, FormatType, $FormatType, Background

à Graphics Formats

By default Mathematica generates graphics using a subset of the PostScript language, which is trans-

portable among all types of computers Mathematica runs on. Graphics in the PostScript language can

be enlarged or reduced to any size without loss of resolution.

The function DisplayString allows us to see the PostScript code that makes up a graph. We can

save the PostScript to a file that can be read by many of the highest-quality graphics processors. Here

is a two-dimensional plot.

sinplot = Plot@Sin@xD, 8x, -3, 3<D
The PostScript code that makes up the graph is rather long, so here we use StringTake to show only

the first 150 characters.

StringTake@ExportString@sinplot, "EPS"D, 150D
The function Display will save a graph in a file. Here we save the graph called sinplot into a file

called sinfile.

Export@"sinfile", sinplotD
Display["filename", graphics, "format"] saves a graph to a file after converting the graph to

another format. Some of the possible values for the parameter format are GIF, EPS, Illustrator,

Metafile, PICT, TIFF, and XBitmap.

There is also a package Utilities`DXF` that saves three-dimensional graphics in DXF format, the

standard used in AutoCad and other modeling programs.

The Mathematica front end will convert graphics to several formats. We select a graphic, then pull

down the Edit menu and choose a format from the Copy As submenu to copy the graph to the system

clipboard in the specified form, or choose a format from the Save As submenu to save the converted

graph to a file.

Introduction to Mathematica 79

The Mathematica front end will convert graphics to several formats. We select a graphic, then pull

down the Edit menu and choose a format from the Copy As submenu to copy the graph to the system

clipboard in the specified form, or choose a format from the Save As submenu to save the converted

graph to a file.

See also Graphics`ThreeScript`, ImageSize

80 Introduction to Mathematica

à Exercises: Customizing Graphics

Scroll back in this notebook and copy the code used to generate the last graphic in the two-
dimensional graphics section. Use Arrow and Text to draw an arrow pointing at an arbitrary point on
the graphic with the caption “Look Here!”

PlotAx2 - 20 CosAx2E, 8x, -10, 10<, PlotStyle ® 8Green<,
PlotPoints ® 75, Frame ® True, GridLines ® Automatic,

PlotLabel ® "Exercise One",

Epilog ® 8Arrow@85, 62<, 80, -19<D, Text@"Look Here!", 83, 64<D<E

Animation

All versions of Mathematica can create animations. Animation results when a series of Mathematica

graphics are displayed quickly in succession to create the illusion of smooth movement.

Mathematica provides many features to aid this process. Here is a simple example. The command

Table creates an array of results by iterating commands. Here we will create ten different plots of

sinHa xL, letting a vary. Notice that in the next example we explicitly set the value for the option

PlotRange because by default Mathematica picks a new value for PlotRange for each frame of the

animation, causing the axes to move from one frame to the next.

TableAPlot@Sin@a xD, 8x, 0, 10<, PlotRange ® 880, 10<, 8-1, 1<<D,
8a, 1, 5, 0.5<E;

(The cells of the animation have been deleted to save space. Enter the code into Mathematica to see the

animation.)

The package Graphics`Animation` defines several functions for automating the creation of anima-

tions. Here we load the package.

Needs@"Graphics`Animation`"D
Here are the names of all the functions defined in the package.

?Graphics`Animation`*

MoviePlot[f[x,t],{x,x0,x1},{t,t0,t1}] animates plots of f[x,t] regarded as a function of x, with

t serving as the animation, or time, variable.

MoviePlot@Sin@a xD, 8x, 0, 10<, 8a, 1, 5, 0.5<D;
(The cells of the animation have been deleted to save space. Enter the code into Mathematica to see the

animation.)

Notice that MoviePlot is essentially a shortcut for using the Table command. One difference is that

MoviePlot automatically uses the same value for PlotRange for each frame.

Introduction to Mathematica 81

Notice that MoviePlot is essentially a shortcut for using the Table command. One difference is that

MoviePlot automatically uses the same value for PlotRange for each frame.

Another interesting animation results from varying the viewpoint, thereby creating a revolution or a

“fly-by” of an object. SpinShow automates this process.

SpinShow@Graphics3D@Stellate@Icosahedron@DDD, Boxed ® FalseD;
(The cells of the animation have been deleted to save space. Enter the code into Mathematica to see the

animation.)

Other effects can be achieved by varying colors, options, ranges, and so on.

82 Introduction to Mathematica

à Exercises: Animation

Using Table, Do, or MoviePlot, create a two-dimensional animation of a function that changes over
time. Ensure that the domain and range remain the same throughout the animation.

myanim = Table@Plot@Sin@k xD, 8x, 0, 3 Π<, PlotRange ® 880, 10<, 8-1, 1<<,
PlotPoints ® 50D, 8k, 1, 9<D;

The line above will generate the animation, but for better viewing on the printed page we use

GraphicsArray to view all the frames at once.

Show@GraphicsGrid@Partition@myanim, 3DDD
Choose your favorite three-dimensional graphic from this set of exercises (or make a new one) and
create an animation using SpinShow.

To use SpinShow, we must load the package Graphics`Animation`.

Needs@"Graphics`Animation`"D

simpleplot3d = Plot3DB 1

AbsAHx + ä yL5 - 1E , 8x, -1, 1<, 8y, -1, 1<F

my3danim = SpinShow@simpleplot3d, Frames ® 12D;
Using the same technique as above, we look at all of the frames at once.

Show@GraphicsGrid@Partition@my3danim, 3DDD

Additional Topics
This section is a sampler, rather than a tutorial, of a miscellany of Mathematica’s capabilities. Docu-

mentation for the commands used here are found in The Mathematica Book, Standard Add-on Packages,

and the Help Browser.

Mathematica and Files

Mathematica contains a virtual operating system with which we can navigate directories and list their

contents, as well as create, delete, and get information about files. Here we get the name of the current

working directory, where any files we create will be saved.

Introduction to Mathematica 83

Mathematica contains a virtual operating system with which we can navigate directories and list their

contents, as well as create, delete, and get information about files. Here we get the name of the current

working directory, where any files we create will be saved.

Directory@D
Here we get a list of all files and subdirectories found in our current working directory.

FileNames@D
Mathematica contains functions for reading and writing many kinds of data files. We can read and

write numbers, strings, lists, Mathematica expressions, or anything else.

To illustrate, here we create a file called datafile in which to write data, by using OpenWrite.

? OpenWrite

stream = OpenWrite@"datafile"D
Here we set up a loop that writes twelve random numbers to datafile.

Do@Write@stream, RandomReal@DD, 812<D

84 Introduction to Mathematica

When finished writing data, we close the file.

Close@streamD
Here we display the file, using !!datafile.

!!datafile

In order to use the data in computations, here we read the contents of datafile, putting the contents

in a list called somedata using ReadList.

somedata = ReadList@"datafile"D;
The list can now be treated as a list generated any other way. For example, we can plot the list or sort

its elements.

ListPlot@somedata, Joined ® TrueD
ListPlot@Sort@somedataD, Joined ® TrueD

Moreover, we can specify to ReadList the type of data we wish to read. For example, suppose we

want to read datafile as six ordered pairs of data, rather than twelve data values. To do this, we

specify to ReadList that we are reading data of the form 8Number, Number<.

datapairs = ReadList@"datafile", 8Number, Number<D;
ListPlot@datapairs, Joined ® TrueD

Similarly, we can read datafile as a list of ordered triples.

datatriples = ReadList@"datafile", 8Number, Number, Number<D;
We now plot the ordered triples.

Show@Graphics3D@Line@datatriplesDDD
See also Read, RecordSeparators, Utilities`BinaryFiles`

Statistics and Data Analysis

To use Mathematica’s statistical functions, we first load the appropriate packages from the Statistics

directory. The package names can be found in the Help Browser or the book Standard Add-on Pack-

ages, and the packages can be loaded using the Help Browser or the Needs command.

Mathematica knows about many continuous and discrete statistical distributions. We first load the

package containing the continuous distributions.

Introduction to Mathematica 85

Mathematica knows about many continuous and discrete statistical distributions. We first load the

package containing the continuous distributions.

Needs@"Statistics`ContinuousDistributions`"D
Once the package is loaded, on-line help for the statistics functions is available.

?PDF

The loaded functions can then be plotted or manipulated in the usual ways. Below we generate two

statistical plots. Here is a plot of the p.d.f. of the standard normal distribution and the p.d.f. of an

extreme-value distribution.

Plot@8PDF@NormalDistribution@0, 1D, xD,
PDF@ExtremeValueDistribution@-1, 1D, xD<, 8x, -3, 3<D

Here is a three-dimensional plot of binomial coefficients.

ListPlot3D@Table@Binomial@m, nD, 8m, 1, 6<, 8n, 1, 6<DD
Here we load a package that computes descriptive statistics from lists of data.

Needs@"Statistics`DescriptiveStatistics`"D
The functions defined in the package can be used on numeric lists of data.

Mean@80.1, 1, 10, 100, 1000<D
They can also be used on symbolic lists of data.

HarmonicMean@8a, b, c<D
Skewness@8a, b<D

The Fit function built into Mathematica performs least-squares fitting to a list of data. If we want to

fit to data a function that is not a linear combination of the basis functions, we need to load the pack -

age Statistics`NonlinearFit`.

Needs@"NonlinearRegression`"D
?NonlinearFit

For this example we generate a list of points and call it dataToFit.

86 Introduction to Mathematica

dataToFit = TableB:x, NB3 SinB7 x
4

F +
RandomReal@D

3
-
1

6
F>, :x, 0, 3,

1

4
>F;

Here is a graph of the points.

ListPlot@dataToFit, PlotStyle ® PointSize@0.02`DD
Here we use NonlinearFit to fit our model (which is not a linear combination of basis functions) to

the list dataToFit. Here is the resulting model.

nlmodel = NonlinearFit@dataToFit, b Sin@a xD, x, 8a, b<D
Here we plot the nonlinear model called nlmodel.

Plot@nlmodel, 8x, 0, 3<, Epilog ® 8PointSize@0.02`D, Point �� dataToFit<D
To augment the built-in (least-squares) Fit function, a package exists to perform full linear regres -

sion on a set of data. We load the appropriate package.

Needs@"LinearRegression`"D
Now we perform the linear regression, fitting dataToFit with constant, linear, quadratic, and cubic

basis functions.

NotebookCompatibility`Dump`LinearModelFitAdataToFit, 91, x, x2, x3=,
xE@8"ParameterTable", "RSquared", "AdjustedRSquared",

"EstimatedVariance", "ANOVATable"<D
Part of the default result is an ANOVA table. There are options we can set to obtain covariance and

correlation matrices, residual tables, confidence intervals, and more. If all we want is the fitted func-

tion, we can use Mathematica’s built-in Fit function.

FitAdataToFit, 91, x, x2, x3=, xE
We plot the fitted function and again compare it to the given points.

Plot@%, 8x, 0, 3<, Epilog ® 8PointSize@0.02`D, Point �� dataToFit<D

Additional Graphics Functions

Other specialized graphics functions are contained in the packages.

Introduction to Mathematica 87

HNeeds@"BarCharts`"D; Needs@"Histograms`"D; Needs@"PieCharts`"DL;
While not Mathematica’s main purpose, it can create most of the common business graphics. As an

example, BarChart is an easy function to start with.

BarChart@Prime@Range@5DD, PlotLabel ® "primes"D
There are several log-plotting functions available. The list generated below shows eight different log

plots, including functions for data plotting.

? *Log*Plot*

LogPlotBAbsB 100

Hä xL2 + 2 ä x + 100
F, 8x, 1, 20<,

GridLines ® 8LogGridMajor, Automatic<F
Many variants of standard plots are defined in Mathematica. To visualize the space between curves, we

use FilledPlot.

Needs@"Graphics`FilledPlot`"D

PlotB:Sin@tD
t

, BesselJ@1, tD>, 8t, -10, 10<, Filling ® 81 ® 82<<F;
See also PieChart

System Parameters

Mathematica contains many global and system parameters, most of which begin with $. Here is a list of

the system parameters beginning with $M.

Names@"$M*"D
The on-line help tells us what each parameter is.

? $MaxNumber

To find the setting or value of a parameter, type its name and press ÷ëçì.

$MaxNumber

88 Introduction to Mathematica

$MachineType

$Version

Here is a list containing the date and time at which this notebook was evaluated.

DateList@D
Here is the number of seconds that have elapsed since the turn of the century.

AbsoluteTime@D

Introduction to Mathematica 89

