
Introduction to Mathematica

Mathematica Conventions

What Mathematica Is

Getting  Started

Entering  Input

à Questions Must Be Precise

à Evaluating Questions

à Function Names

à Brackets: ( ) and [ ] and { }

à Equal Signs: = and == and :=

à Referring to Previous Results

à On-Line Help

If  we know the name of a function,  Mathematica displays a usage message for  the function after  we 

enter ?FunctionName. For example, if we want to see how to use the Simplify command, we type 

?Simplify, followed by pressing  ÷ëçì.

? Simplify

On the other hand, ?*String* finds all Mathematica functions,  commands, constants,  and expressions 

that contain the string  String. This is useful if we know a word, or part  of a word, that is likely to be 

contained in a command.

For instance, to find all Mathematica functions related to logarithms we type ?*Log*. (The asterisks  

before and after  Log stand for  any characters,  similar to MS-DOS  and Unix “wild card” characters.)

?*Log*

After locating the desired command in the above list, we evaluate ?FunctionName  as before.

? ProductLog

The on-line help is case sensitive, so ?*log* finds only function names that contain the word “log” in 

lower case.



The on-line help is case sensitive, so ?*log* finds only function names that contain the word “log” in 

lower case.

? *log*

à Loading Add-On Packages

Mathematica is an extensible system. In addition to the hundreds of built-in functions,  there are many 

more functions defined inside packages which come with most copies of Mathematica. Packages  are 

Mathematica notebooks  which contain programs  that teach Mathematica additional functions,  and to 

make these functions available to us we must load the appropriate  packages.  (Many packages  are 

included with the standard distribution of Mathematica, and it is a straightforward  exercise to create 

additional packages.)

To load a package  we use the Needs command, which takes the following form.

Needs@"Statistics`DescriptiveStatistics`"D
The argument to Needs is a string  inside quotation marks. The first  part  of the string  is the desired 

package  directory  (in this case, Statistics; some of the other possibilities are DiscreteMath, 

Calculus, and Graphics— see the Help Browser or the book  Standard Add-on Packages for  a com-

plete list of available packages  and directories).  After the directory  name goes a backquote character  ` 

(usually found on the same key as the tilde ~, and not an ordinary single quote '),  followed by the 

package  name (DescriptiveStatistics, in this case)  and another backquote. (An alternative 

command for  loading packages  takes the form << Statistics`DescriptiveStatistics`; when 

using this form,  it is important not to try  to reload a package  after  it has been loaded.)

Once a package  has been loaded using Needs, we use the functions defined in the package  as if they 

were built in. Here is the on-line help message for  the LocationReport function defined in the 

Statistics`DescriptiveStatistics` package.

? LocationReport

We can now use LocationReport as if it were a built-in function.

LocationReport@82, 1, 7, 5, 5, 5, 1, 2, 1, 2<D
Packages  can also be loaded by clicking  the button labeled Add-ons in the Help Browser,  and navigat-

ing through  the package  directories  to the listing for  the desired package.  In each package’s help 

notebook is a command to load the package,  which can be evaluated by clicking  in it and pressing  

÷ëçì.

à Warning Messages

When Mathematica does not understand a question, cannot complete an operation,  or needs to draw 

attention to special considerations during the course of an evaluation, it displays one or more warning 

messages.
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When Mathematica does not understand a question, cannot complete an operation,  or needs to draw 

attention to special considerations during the course of an evaluation, it displays one or more warning 

messages.

Here Mathematica warns that the input is incomplete: in this case, it needs a closing square bracket  to 

be valid.

Sin@x
Here Mathematica warns that the name cos is similar to the built-in function name Cos; this message 

appears  when we misspell or fail to capitalize  a built-in function. It is important to remember that 

Mathematica is case sensitive.

cos@PiD
Here Mathematica explains the reason it did not return an answer.

Integrate@1 � x, 8x, -1, 2<D
The first  part  of a message (Integrate::idiv) in the previous example) is the name of the message. 

Messages  can be turned off  by entering Off[messagename]. For example, to turn off  the message 

named General::spell1 we enter the following.

Off@General::spell1D
Mathematica no longer prints  warning messages about possible spelling errors.  Here we misspell the 

command Integrate.

IntegratAx5, xE
Mathematica does not print the warning message.

To turn the warning message back on, we enter the following.

On@General::spell1D

The Mathematica Front End

Notebooks

Cells

Word Processing
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Special Characters

Two-Dimensional Input

Different  Forms of Input  and Output

Mathematica understands a few different  forms of input and output.  By default,  input and output  are 

in a form called StandardForm, which is an unambiguous two-dimensional form that uses the capital-

ization and bracketing  conventions described earlier.

We can convert any input or output  to TraditionalForm, which follows the rules of traditional 

typeset  notation. For example, here is some StandardForm input and output.

à 1

x3 - 1
âx

To convert the input and output  to traditional mathematical notation, we select the input and output  

cells, pull down the Cell menu, and choose TraditionalForm from the Convert To submenu. Here is the 

result,  which uses the conventions of traditional mathematical typesetting.

à
1

x3 - 1
â x

Entering  Hyperlinks

Numbered  Equations and Figures

Numerics

Basic Calculator Functions  

We enter arithmetic calculations in Mathematica just  as on a calculator,  followed by pressing  ÷ëçì.

Addition and subtraction  are denoted by the usual symbols.

2 + 3.45 - 0.4

A space denotes multiplication, as does an asterisk  * or the character  �, entered \[Times] .
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2 * 2 ´ 2 H2 ´ 2L
A forward slash / denotes division, as does the two-dimensional form 

�

�
.

5 � 3
A caret ^ or a superscript  �� stands for  exponentiation.

2^5 - 24

Because Mathematica uses the standard order of arithmetic operations,  it is sometimes necessary to 

group  parts  of a calculation using parentheses. Note that in InputForm and StandardForm parenthe-

ses are not used for  function notation, as they are in written mathematics, or to enclose lists of ele-

ments, as they are in some programming  languages.

2 + 4 H2 + 9.25L^2
See also NonCommutativeMultiply

à Exercises: Basic Calculator Functions

What is the ratio of heights between a person 5 feet,  8 inches tall and a person 6 feet,  4 inches tall?

Here is an exact value for the ratio. Note that we group the numerator and denominator with parentheses, and that we do not include units 

in the calculation.

H5 * 12 + 8L � H6 * 12 + 4L
Applying the function N to the previous exact result returns an approximate figure.

N@%D
If  a copy  of Mathematica for Students costs $139, and sales tax is 7%,  what is the total cost?

The total cost is $139 plus 7% tax on $139. Note that there is no built-in percent function, so we express 7% as 0.07.

139 + H0.07 * 139L
Alternatively, we can define a unit multiplier called percent.

percent = 0.01;

139 + H7 percent * 139L
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How many days are there in 35 years?  How many hours? Minutes? Seconds? (Ignore  the complication 
of leap years.)

days = 35 * 365

hours = 24 * days

minutes = 60 * hours

seconds = 60 * minutes

Numbers  and Constants

à Integers, Rationals, and Reals

When working  with numbers, Mathematica returns  an answer as precise  as it can justified by each 

calculation. For this reason, it has different  rules for  working  with exact and approximate quantities.

An approximate quantity can be identified by the presence of a decimal point; therefore  17.0 and 0.71 

are approximate numbers. The integer 17 and the ratio 71/100, on the other hand, do not contain a 

decimal point and are considered exact numbers. In the following discussion, we refer  to an approxi-

mate (non-complex) number containing a decimal point as a real number, an integer without a deci-

mal point as an integer, and a ratio of two exact integers  as a rational number. To Mathematica 7.0 is an 

approximate real number, and 7 is an exact integer.

When doing arithmetic with exact numbers, Mathematica returns  an exact number. For example, the 

following input contains only integers,  so the result is an integer.

2 + H3 * 5L7
Mathematica leaves rational numbers (quotients of two integers,  reduced to lowest terms)  in explicit 

fractional  form.

3 +
1

7

This occurs  even when there is a precise  decimal equivalent.

2

3
+

7

12

If  a calculation involves even one approximate number (a number that contains a decimal point),  

however, the result will be an approximate number because the uncertainty associated with the approx-

imate number propagates  through  the whole calculation.
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If  a calculation involves even one approximate number (a number that contains a decimal point),  

however, the result will be an approximate number because the uncertainty associated with the approx-

imate number propagates  through  the whole calculation.

2

3
+
7.0

12

à Irrational Numbers

Irrational numbers (numbers that cannot be written as the quotient of two integers)  are held in exact 

symbolic form. Mathematica allows us to use exact irrational numbers in calculations and, unless we 

ask,  it does not automatically approximate these numbers. The following difference  of two exact 

irrational numbers is an exact irrational number.

27 - 12

The following difference  is also left in exact form.

27 - 13

If  we repeat  the calculation with inexact input,  however, we get  an inexact answer.

27.0 - 13

à Mathematical Constants

Mathematica also has a number of common mathematical constants built in, defined so that we can 

take an approximation to whatever precision we want; the only limits being the amount of RAM 

installed on the computer  and the amount of time we are willing to wait for  an answer. Two of the 

more well known constants are Pi and E.

Pi > E

Pi and E can be entered in the special forms Π and ã by typing  åp å and åee å.

ãΠ ä

As with other irrational numbers, Mathematica leaves constants in symbolic form unless we specifi -

cally ask for  an approximation with the function N, described below. Here is a 250-digit approximation 

to Π.

N[Π, 250]

Mathematica also knows the standard rules for  dealing with infinity,  entered as Infinity or ¥ 

(åinfå).
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Mathematica also knows the standard rules for  dealing with infinity,  entered as Infinity or ¥ 

(åinfå).

: 1

Infinity
, Infinity - 1>

The add-on package  Miscellaneous`PhysicalConstants` defines a wide range of physical con-

stants such as the speed of light,  the radius of the earth,  acceleration due to gravity,  Avogadro’s 

constant,  and many more.

See also N, Degree (° ),  GoldenRatio, EulerGamma, Catalan, Indeterminate, DirectedInfinity, 
Miscellaneous`Units` 

à Complex Numbers

I denotes the imaginary unit -1 .

Sqrt@-9D
We can enter I in the special form ä by typing  åiiå.

ä2

We can also use the form ü, used in some scientific fields, by typing  åjjå.

H5 üL2
As with all numbers, exact input generates  exact output.

H3 + 19 IL � H2 - 9 IL
Inexact input leads to inexact output.

H3.0 + 19 IL � H2 - 9 IL
Mathematica knows the standard functions for  describing and manipulating complex numbers. Re[z] 

returns the real part  of z, Im[z] returns  the imaginary part,  and so forth.

Here is a complex number called num.

num = 1.23 + 4.56 I

Here is a list of the real and imaginary parts  of num.

8Re@numD, Im@numD<
Here is the conjugate  of num.
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Conjugate@numD
Here are the absolute value and approximate argument (or phase),  in radians, of num.

8Abs@numD, Arg@numD<

à Converting between Types of Numbers

To convert from an exact number to an approximate number we use the function N. N[expr] returns  a 

numerical approximation to expr.

NB 27 - 13 F
N[expr, n] does computations to at most n significant  digits. Here is a 100-digit approximation to 

the difference  between 
22

7
 and Π.

N@22 � 7 - Π, 100D
The presence of the decimal point in the following example indicates the change from exact integer to 

approximate real number.

N@2D
There are many functions that convert an approximate number into an exact integer. Round[x] 

returns the integer closest to x, Floor[x] returns  the greatest  integer less than x, and Ceiling[x] 

returns the least integer greater  than x.

8Round@3.3D, Floor@3.3D, Ceiling@3.3D<
Chop[expr] replaces approximate real numbers in expr that are close to zero (within 10-10) with the 

exact integer 0. Chop[expr, tol] replaces approximate real numbers in expr that differ  from zero 

by less than tol with 0.

ChopA1.012 + 10-20 IE
When we take the Fourier transform  of a list of approximate numbers, then take the inverse Fourier 

transform  of the result,  the uncertainty in the approximate input leads to spurious  imaginary parts  in 

the answer.

InverseFourier@Fourier@80, 0, 0, 1., 1., 1.<DD
Chop removes the small imaginary parts  of the answer, and returns  the original data.
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Chop@%D
The function Rationalize converts numbers into exact rational numbers. Rationalize[x,dx] 

returns a rational number equal to x within a tolerance of dx.

Here are some successively better  rational approximations to Π. (Table is explained below in the 

section “Matrix and Vector Operations”.)

TableARationalizeAΠ, 10-2nE, 8n, 1, 4<E
See also IntegerPart, FractionalPart, NumberTheory`Recognize` 

à Finding the Type of a Number

Although Mathematica does not have the concept  of a type declaration (a statement such as “the 

variable x is a real number”),  the type of a number can be found using the function Head. (Head has 

many other uses in Mathematica programming.)

Head@2D
Head@3.2D
Head@3 + 19 ID

HeadB2
3

F
Seel also FullForm, InputForm 
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à Exercises: Numbers and Constants

Set the variable comp equal to the complex number 23 + 19 ä  . What is the absolute value of comp? What 
is the result of adding comp and its conjugate?

comp = 23 + 19 I

Abs@compD
comp + Conjugate@compD

Catalan’s constant (used in combinatorics)  is built into Mathematica. Knowing Mathematica’s naming 
conventions, find Mathematica’s name for  the constant,  then find an approximation to this number 
with 100 digits of precision. 

We search for a list of functions that contain the word Catalan; there is only one, so Mathematica displays the usage message for it.

? *Catalan*

We use N to find a 100-digit numeric approximation.

N@Catalan, 100D
Enter the expression 2 19 + 2 into Mathematica. Take  approximations to 20, 30, and 100 decimal 
places. 

Because the number is an exact quantity, Mathematica leaves it in symbolic form.

2 Sqrt@19D + 2

Here we use N to approximate the number.

NB2 + 2 19 , 20F

NB2 + 2 19 , 30F

NB2 + 2 19 , 100F
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Mathematical Functions

à Elementary Functions

All the standard elementary functions are built into Mathematica.

All of the trigonometric  functions are available. Note that when given exact input,  they return exact 

output,  and that Mathematica uses the standard abbreviations for  trigonometric  functions.

Sin[Pi/4]

By default Mathematica assumes that arguments to trigonometric  functions are in radians. For enter-

ing arguments in degrees there is a multiplier called Degree. (Degree can be entered in the special 

form °  by typing  ådegå.)

Cos@15 DegreeD
Where appropriate,  functions are defined for  complex values.

Sin@6.54321 - 1.23456 ID
Inverse and hyperbolic  trigonometric  functions are also available.

ArcSin@1 � 2D
Here no exact mathematical result is known, so Mathematica returns  the expression unevaluated.

Sinh@3D
If  we give approximate input,  Mathematica returns  an approximate answer.

Sinh@3.0D
N also returns  an approximate value.

N@Sinh@3DD
Logarithmic and exponential functions are also built in. Log[z] returns  the natural logarithm of z.

Log@Exp@5DD
Log[b,z] returns  the logarithm to base b of z.

Log@10, 10000D
See also Tan, ArcTan, Tanh, ArcTanh
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à Special Functions

Mathematica includes many special functions that cover a wide range of scientific subjects.  In most 

cases, special functions are solutions to transcendental equations, integrals,  or differential  equations 

that have no elementary symbolic solution. In many cases it is advisable to consult The Mathematica 

Book to see what definition Mathematica uses for  a particular  special function,  as many special func-

tions have conflicting  definitions in different  fields.

In general,  if a function is named after  a person,  the Mathematica name for  it is PersonSymbol. For 

example, to find out if Mathematica knows any of the Bessel functions,  we assume the word “Bessel” is 

in the name, and use the question mark to get  a list of all such functions.

? *Bessel*

Here is the usage message for  a particular  Bessel function.

? BesselJ

Mathematica’s special functions are typically  defined for  both real and complex arguments,  and know 

special values of the functions.

Gamma@1 � 2D
Gamma@1.23 + 4.56 ID
Zeta@8D

There are several hundred special functions built into Mathematica, and the Help Browser provides a 

convenient way to explore the different  classes of functions.

See also Erf, Binomial, Multinomial, Beta, Factorial, HypergeometricPFQ, MeijerG

Matrix  and Vector  Operations

à Creating Vectors, Matrices, and Tensors

The basic structural  form in Mathematica is the list, which is an arbitrary  collection of numbers, 

variables, data, and other objects,  where the elements are separated by commas and enclosed within 

braces { }, as in {1, 4, 2}.

A list can have several interpretations,  depending on its context. For example, the list {1, 4, 2} can 

be interpreted  as a vector with three components,  a point in 3-space,  or a data set containing three 

measurements; and Mathematica automatically treats  a list correctly  depending on the functions used 

with it.
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Table is one of several commands used to generate lists.

Table[expr, {imax}] generates  a list of imax  copies of expr.

Table@again, 87<D
Here is a vector of ten zeros.

Table@0, 810<D
Table[expr, {i,imax}]generates a list of the values of expr when i runs from 1 to imax .

Table@i � 12, 8i, 12<D
Table[expr, {i, imin, imax}] starts  with i = imin.

Table@Sqrt@iD, 8i, 5, 15<D
Table[expr, {i, imin, imax , di}] uses the increment di.

Table@Sqrt@iD, 8i, 2, 5, 1 � 2<D
Table[expr, {i, imin, imax}, {j,  jmin, jmax}, … ] generates  a nested (multi-dimensional) list.

Table[i/j, {i,1,4}, {j,1,2}]

A matrix is represented in Mathematica as a two-dimensional list, where each sublist represents  a 

separate  row of the matrix. Here we create a matrix by using Table with two iterators.

Table@a + b, 8a, 2, 5<, 8b, 1, 3<D
We can also enter matrices by hand, being sure to enclose each sublist with curly brackets  { }. For 

example, a 3 × 3 matrix is a list containing three sublists,  where each sublist is one row of the matrix.

matrix = 881, 2, 3<, 83, 4, 5<, 85, 6, 7<<
We can also enter matrices in two-dimensional form by clicking  a button in a palette,  or pulling down 

the Input menu, choosing Create Table/Matrix/Palette , clicking  the Matrix button,  choosing the 

desired numbers of rows and columns, and clicking  the OK button,  after  which we fill in the placehold-

ers. Notice that the default output  form of the following matrix is still a nested list of elements.

matrix =
1 2 3
3 4 5
5 6 7

See also Range, Array, DiagonalMatrix, IdentityMatrix 
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à Formatting Matrices and Tensors

MatrixForm displays a matrix in two-dimensional form. Here we use the matrix defined above.

MatrixForm@matrixD
TableForm is a generalization of MatrixForm that formats  arbitrary  arrays  of elements. Here is the 

TableForm of a four-dimensional tensor (created by giving Table four  iterators).

TableForm@Table@i + j + k - l, 8i, 2<, 8j, 3<, 8k, 4<, 8l, 5<DD
See also TableSpacing, TableAlignments 

à Describing and Manipulating Lists

There are many functions for  describing Mathematica lists. For instance, we can compute the length 

or dimensions of a vector or matrix.

Length@8a, b, c, d, e<D

DimensionsBK a b c

d e f
OF

Part extracts an element from a list according to its position. Here is the fourth  element of a list. 

(Note that the first  element of a list has position 1, not 0.)

Part@8a, b, c, d, e<, 4D
An abbreviation for  Part is the following double square bracket  notation, where the desired position 

is placed inside [[ and ]].

8a, b, c, d, e<@@4DD
We can also extract elements according to their distance from the end of the list, by giving a negative 

position. Here is the last element of a list.

8a, b, c, d, e<@@-1DD
We extract ranges of elements from a list using Take. Here are the first  three elements of a list.

Take@8a, b, c, d, e<, 3D
Here are the second through  fourth  elements.

Take@8a, b, c, d, e<, 82, 4<D
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Drop removes elements from a list. Here we drop the first  three elements from a list.

Drop@8a, b, c, d, e<, 3D
Here we drop the last three elements.

Drop@8a, b, c, d, e<, -3D
Mathematica has many built-in routines for  sorting  and otherwise rearranging  lists.

Sort@81, 3, 5, 2, 4, 6<D
Reverse@8a, b, c, d, e<D

See also Extract, Select, Cases, Depth, TensorRank, Append, Prepend, Insert, Join, Union, 
Intersection, Flatten, Partition, Split, LinearAlgebra`MatrixManipulation` 

à Linear Algebra

Here is a Hilbert  matrix, where each element of the matrix is a function of its indices, created using 

Table.

hil = TableAHi + j - 1L-1, 8i, 3<, 8j, 3<E
Here is the standard matrix form of hil.

MatrixForm@hilD
Standard operations,  such as computing  the determinant or eigenvalues of a matrix, are straightfor -

ward.

Det@hilD
Eigenvalues@N@hilDD

We can also take the inverse, here giving it the name inv.

inv = Inverse@hilD
Cross[a,b] or a �b (where � is entered \[Cross]) returns  the vector cross  product  of a and b.

Cross@81, 2, 3<, 8a, b, c<D
Dot[a, b] or a.b gives products  of vectors,  matrices,  and tensors. Here is the dot product  of the 

vectors  {1,2,3} and {a,b,c}.
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Dot[a, b] or a.b gives products  of vectors,  matrices,  and tensors. Here is the dot product  of the 

vectors  {1,2,3} and {a,b,c}.

81, 2, 3<.8a, b, c<
Here is the matrix product  of the Hilbert  matrix hil and its inverse inv.

MatrixForm@hil.invD
An identity matrix is the expected result.

It is important not to confuse the matrix-multiplication operator  . and ordinary multiplication *. 

Using * to multiply the two matrices results in termwise multiplication.

MatrixForm@hil * invD
We do use ordinary multiplication to multiply a scalar by a vector or matrix.

Λ * 81, 3, 5, 7<
There are many other matrix functions defined in Mathematica. For example, 

Minors[m, k] gives a matrix consisting of the determinants of all k × k submatrices of m.

Minors@hil, 2D

mp = MatrixPowerBK 1 1
1 0

O, 10F; MatrixForm@mpD
See also Transpose, Eigenvectors, Eigensystem, LinearSolve, NullSpace, RowReduce, 
LinearProgramming, MatrixExp, MatrixPower, Inner, Outer, 
LinearAlgebra`Orthogonalization` 
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à Exercises: Numerical Matrix Operations

Use Table to create a 5 × 5 matrix where each element has the form 
1

i 2+ j 2-1
.

matrix = TableB 1

i2 + j2 - 1
, 8i, 1, 5<, 8j, 1, 5<F

Display the matrix using MatrixForm.

MatrixForm@matrixD
Compute the inverse of this matrix.

inv = Inverse@matrixD; MatrixForm@invD
Display a numerical approximation to the inverted matrix using MatrixForm.

MatrixForm@N@invDD
Find the determinant of the inverted matrix.

Here is the determinant of the exact matrix.

Det@invD
Here is an approximation to the determinant.

N@%D

Working with Precision

Mathematica can work with numbers with any number of digits,  and in the case of approximate num-

bers it maintains information about how many of the digits are significant. The number of significant  

digits in a number x is called the precision of x, and Mathematica knows the rules of numerical analysis 

for  dealing with numbers with different  amounts of precision.

Precision[x] returns  the number of significant  digits in the number x.

Precision@N@Π, 40DD
Accuracy returns  the number of digits to the right  of the decimal point. Precision  is a measure of the 

relative error  of a number, and accuracy  is a measure of the absolute error.

The following number has 24 significant  digits.
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Precision@1234567890.123456789012345D
It has 15 digits to the right  of the decimal point.

Accuracy@1234567890.123456789012345D
For simplicity,  we deal primarily with Precision in these notes.

Mathematica uses two types  of approximate numbers, machine-precision numbers and arbitrary-

precision numbers. Machine-precision numbers are numbers that can be calculated using a comput-

er’s hardware: most computers  can directly handle numbers with up to 16 significant  digits. (The 

number of digits that the hardware can handle is stored in the parameter  $MachinePrecision.) For 

efficiency  reasons,  Mathematica does any calculation that contains even one machine-precision 

number to machine precision.

We determine a machine’s precision by looking at the value of $MachinePrecision.

$MachinePrecision

The number 2.3 in the following calculation is a machine-precision number (while the other number is 

not),  so the answer is a machine-precision number.

2.3 + 1.234567890123456789012345

Precision@%D
By default,  N returns  a machine-precision number.

NB 19 F

Precision[%]

If  a number has more than 16 (or the value of $MachinePrecision, if different)  significant  digits,  it is 

called an arbitrary-precision  number.

Here we ask for  an approximation to 19  with 50 significant  digits.

NB 19 , 50F
The precision of the result is 50, making the approximation an arbitrary-precision  number.

Precision[%]

Note that Mathematica defaults to machine precision when a number with lower precision than 

machine precision is generated.
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Note that Mathematica defaults to machine precision when a number with lower precision than 

machine precision is generated.

NB 19 , 4F

Precision@%D
Using SetPrecision we can artificially  set the precision of a number to an arbitrary  number of digits.

SetPrecisionB NB 19 , 4F, 5F

Precision@%D
When using arbitrary-precision  numbers, Mathematica does not generate more precision than is 

justified by the calculation. For example, adding two values with different  numbers of significant  

digits returns  a number as precise  as the less precise  value.

x1 = 54.23232323232312312624874590149643;

x2 = 34323.98129712872939137913;

Precision@x1D
Precision@x2D

The precision of the sum is equal to the precision of x2.

Precision@x1 + x2D
The precision of an exact number is Infinity.

We can approximate an exact number to as many digits as desired.

N@Sin@1D, 250D
However,  we cannot approximate the following machine-precision number to more than machine 

precision.

N@Sin@1.0D, 250D
An additional way to enter a number with a known precision is in the form nnnn`p, where nnnn is the 

number and p is the number of digits of precision. For example, here is an approximation to Π with 

three digits of precision.
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3.141`3

By default Mathematica prints  only the correct  digits,  without the `p. To explicitly see all of the infor-

mation Mathematica has for  a number, we look at the number’s input form.

InputForm@%D
As with arbitrary-precision  arithmetic, Mathematica keeps  track  of the number of significant  digits in 

a result. Here we use several imprecise numbers in the calculation of the volume of a cylinder, and 

Mathematica returns  an answer with the correct  number of significant  digits.

3.1416`4 * H11.1111`5L2 H15.253545`6L
Similarly, Mathematica knows the standard rules of interval arithmetic. Here is a similar calculation 

performed  using intervals.

Interval@83.1415, 3.1416<D * Interval@811.11105, 11.11110<D2 *

Interval@815.25350, 15.25355<D
See also MachineNumberQ, SetAccuracy, PrecisionGoal, AccuracyGoal, $NumberMarks, 
$MaxExtraPrecision, Interval, IntervalMemberQ, NumericalMath`Microscope` 
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à Exercises: Working With Precision

Find the machine precision of a particular  machine either by entering $MachinePrecision or by 
entering a machine-precision number and finding its precision.

Precision@3.0D
$MachinePrecision

Create an number with more than machine precision by entering digits by hand, and add it to a 
machine-precision number. What is the precision of the result?  Now add Sqrt[3] to the original 
number. What is the precision of the result?

Here is a number with more than machine precision.

bignum = 12.32121212134312321234

Precision@bignumD
Here is the sum of bignum and a machine-precision number.

result = bignum + 2.3

The result has machine precision.

Precision@resultD
Here is the sum of bignum and an exact quantity (a number with infinite precision).

result2 = bignum + Sqrt@3D
The result has the same precision as bignum.

Precision@result2D

Equation Solving

Solve is the basic function for  solving equations in Mathematica. Solve finds solutions to equations 

using algebraic  methods, which are often enough to get  an exact numeric result. 

When we solve this quadratic equation, we get  an answer involving irrational numbers.

SolveA 3 x2 - 12 x + 10 == 11, xE
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We get  approximate solutions by using N on the exact solutions.

N@%D
But when we try  to solve a quintic (fifth-degree  polynomial) equation, we find that we do not get  a 

numerical answer, but rather an implicit symbolic answer in the form of Root objects.

SolveAx5 + 5 x + 1 == 0, xE
N still returns  approximations to the implicit solutions.

N@%D
When an equation cannot be solved symbolically, NSolve will often find numeric solutions. (Using  

NSolve is different  from using both N and Solve.)

NSolveAx5 - x4 + 12 x3 - 11 x2 + x - 12 == 0, xE
NSolve solves systems of any number of algebraic  equations for  an appropriate  number of unknowns. 

Here we look for  the points of intersection between an ellipse and a line. The graph  allows us to make 

a visual approximation of the solutions.

NSolve numerically solves the system of equations.

NSolveA93 x2 + 12 y2 == 10, 12 x - 19 y == 10=, 8x, y<E
There are several pairs of functions in Mathematica whose names differ  by the letter N,  such as Solve 

and NSolve, and Integrate and NIntegrate. These “N-functions” perform  their operations numeri-

cally, rather than symbolically. Although in most cases we arrive at the same result by taking  a numeri-

cal approximation of a symbolic solution, Mathematica is in fact  using a different  algorithm.

FindRoot searches for  a root of an equation, using a given starting  point. This function uses Newton’s 

method to find the roots  of non-algebraic expressions that NSolve cannot solve.

Here is a graph  of a transcendental expression; the roots  of the expression are the points at which the 

graph  crosses  the x-axis.

Plot@Exp@xD - Sin@xD, 8x, -7, 2<, PlotLabel ® "expHxL - sinHxL"D
NSolve is unable to solve this equation.

NSolve@Exp@xD - Sin@xD == 0, xD
FindRoot returns  one root of the equation, given a starting  point for  the search algorithm. From the 

graph  it appears  that one root is near x = -6, so we use -6 as one starting  point. The result indicates 

that there is a root at x = -6.28131.
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FindRoot returns  one root of the equation, given a starting  point for  the search algorithm. From the 

graph  it appears  that one root is near x = -6, so we use -6 as one starting  point. The result indicates 

that there is a root at x = -6.28131.

FindRoot@Exp@xD - Sin@xD == 0, 8x, -6<D
The other root appears  to be near x = -3, so we use -3 as the second starting  point.

FindRoot@Exp@xD - Sin@xD == 0, 8x, -3<D
See also RootReduce, ToRadicals, NumericalMath`IntervalRoots`
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à Exercises: Equation Solving

Use FindRoot to find approximations for  the three roots  of the function graphed below. (Hint: 
estimate the starting  points from the graph.)

- +

The first  root is near x = - 4, so we use - 4 as the starting  point for  the search algorithm.

FindRoot@x^3 - 12 x + 12 == 0, 8x, -4<D
The second root is near x = 1.

FindRoot@x^3 - 12 x + 12 == 0, 8x, 1<D
The third root is near x = 3.

FindRoot@x^3 - 12 x + 12 == 0, 8x, 3<D
Find the six roots  of the equation 4 x6 - 12 x 5 + 8 x4 + 3 x 3 - 19 x 2 + 12 x - 10 = 0.

NSolve will find the six roots  of the equation. Remember to use == to represent  equations.

NSolveA4 x6 - 12 x5 + 8 x4 + 3 x3 - 19 x2 + 12 x - 10 == 0, xE
The result is a list of two real-valued solutions, and two conjugate  complex pairs.

Find six solutions of the equation x sinHxL = 1.

Here is a plot of x sinHxL - 1, the roots  of which are the roots  of x sinHxL = 1.

Plot@8x Sin@xD - 1<, 8x, 0, 20<, PlotStyle ® GrayLevel@0.5`DD
Note that NSolve does not find the solutions of this transcendental equation.

NSolve@x Sin@xD == 1, xD
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We then use FindRoot. Using Table we can find six of the infinite number of solutions at once.

Table@FindRoot@x Sin@xD == 1, 8x, a<D, 8a, Π, 6 Π, Π<D
 

Numerical Calculus

We perform  integration using the commands Integrate and NIntegrate. Integrate uses symbolic 

methods to compute the value of a definite integral.

Integrate@Sin@xD, 8x, 0, Π<D
Integrate also works on functions with more than one variable. Here is the volume under a surface,  

over a square region.

Integrate@Sin@xD + Sin@yD, 8x, 0, Π<, 8y, 0, Π<D
Here is a special input form for  the same expression. We enter the integral sign Ù by typing  åintå or 

\[Integral] , and we must use the special differential  â, entered by typing  åddå or 

\[DifferentialD] , and not an ordinary keyboard  d.

à
0

Πà
0

ΠHSin@xD + Sin@yDL âx ây

Here is a more complicated integral,  taken over a nonrectangular  region.

à
0

2 Πà
0

x
Sin@x yD ây âx

When calculating definite integrals involving symbolic parameters,  Mathematica may return an 

answer that depends on the value of the parameters.

Integrate@xn, 8x, 0, 1<D
NIntegrate uses numerical methods to approximate the area under the specified curve in the speci-

fied domain. This method produces  results in many cases where the symbolic method fails.

We cannot get  an exact value for  the following integral using symbolic methods.

IntegrateAESin@xD, 8x, -2, 2<E
We can get  an approximation using N.
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N@%D
NIntegrate uses numerical methods from the beginning, and returns  the same result.

NIntegrateA ESin@xD, 8x, -2, 2<E
By default,  Mathematica does all numerical calculus calculations with machine-precision numbers, but 

most numerical functions in Mathematica allow changes to this through  the WorkingPrecision 

option. WorkingPrecision->n causes all internal computations to be done to at most n-digit 

precision.

We can see the effect  of this option by looking at an example of numerical integration. Here is an 

example performed  with machine precision.

NIntegrateB 1
x
, 8x, 1, 2<F

Precision@%D
Now we look at the same example with a working  precision of 50 digits. Note that we are setting the 

precision to be used while working  this problem, and not the desired precision of the result.

NIntegrate@1 � x, 8x, 1, 2<, WorkingPrecision -> 50D
Precision[%]

NDSolve finds numerical solutions to systems of differential  equations. Here we solve a system of 

differential equations, giving the list of solutions the name sol.

sol = NDSolveA9x'@tD == -y@tD - x@tD2, y'@tD == 2 x@tD - y@tD,
x@0D == y@0D == 1=, 8x, y<, 8t, 0, 9<E

The result of this calculation is a set of two interpolating  functions,  essentially large sets of points that 

we treat  as continuous functions. We then look at the solution set graphically,  in two different  ways. 

For the first  plot,  we plot xHt L (dashed line) and y Ht L (gray  line) on the same set of axes. (The form /. is 

explained in the next chapter.)

Plot@8x@tD �. sol, y@tD �. sol<, 8t, 0, 9<,
PlotStyle ® 8Dashing@80.015`<D, GrayLevel@0.5`D<D

For the second plot,  we plot xHt L against y Ht L.
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ParametricPlot@Evaluate@8x@tD, y@tD< �. solD, 8t, 0, 9<,
AspectRatio ® AutomaticD

Here is the first  interpolating  function,  corresponding  to x.

x �. sol@@1, 1DD
To evaluate the interpolating  function at a particular  point,  we append an argument inside square 

brackets.  Here is the value of the interpolating  function at 6.28.

%@6.28D
Mathematica can also solve some partial  differential  equations numerically, given sufficient  initial 

conditions and ranges for  all variables appearing  in the system. (The form 

Derivative[0,1][x][t,0]  means the derivative of the function x, taking  the first  derivative with 

respect  to the second variable of x, and no derivative with respect  to the first  variable, evaluating the 

derivative at (t, 0); in traditional notation, it represents  x I0,1M Ht , 0L.) The result of NDSolve in this case 

is a single two-dimensional interpolating  function.

NDSolve@8D@x@t, uD, 8u, 2<D == D@x@t, uD, 8t, 2<D, x@t, 0D == Exp@-t^2D,
Derivative@0, 1D@xD@t, 0D == 0<, x, 8t, -5, 5<, 8u, -2, 2<D

Here is a graph  of the solution.

Plot3D@Evaluate@x@t, uD �. First@%DD, 8t, -5, 5<, 8u, -2, 2<,
PlotPoints ® 30D

See also NSum, NProduct, Derivative, PrincipalValue, Assumptions, GenerateConditions, 
NumericalMath`ListIntegrate`, Method, Trapezoidal, Oscillatory, MonteCarlo  

à Exercises: Numerical Calculus

The area under the curve 
4

1+x 2
, between 0 and 1, is exactly Π. Use NIntegrate to generate an 

approximation of Π to approximately 20, 30, and 40 places of precision. (Hint: use the 
WorkingPrecision option,  recalling that the precision of the result is usually 10 places less than the 
WorkingPrecision.)

Here is a graph  that represents  the area we wish to compute. (The graph  uses the add-on package  

Graphics`FilledPlot` to fill in the areas under the curve.)

When we calculate the integral with a working  precision of 30 digits,  the result has around 20 signifi-

cant digits.
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NIntegrateB 4

1 + x2
, 8x, 0, 1<, WorkingPrecision ® 30F

Precision@%D
Using 40 digits internally results in a value with around 30 significant  digits.

NIntegrateB 4

1 + x2
, 8x, 0, 1<, WorkingPrecision ® 40F

Precision@%D
Using 50 digits returns  an answer with around 40 digits.

NIntegrateB 4

1 + x2
, 8x, 0, 1<, WorkingPrecision ® 50F

Precision@%D
Aside from rounding in the last digit,  the answers are the same as a direct approximation to Π.

N@Π, 45D
 

Other  Numerical Functions

à Random Numbers

There are many more numerical functions built into the Mathematica kernel or defined in the standard 

add-on packages  that cover a large number of specialized fields.

A function useful for  performing  simulations is Random, which generates  pseudorandom numbers. 

Random[] gives a uniformly distributed pseudorandom real number in the range 0 to 1. 

Random[type,range]  gives a pseudorandom number of the specified type in the specified range. 

Possible types  are Integer, Real, and Complex. The default range is from 0 to 1, and we can specify  

the range {min, max} explicitly.

Here is a random number between 0 and 1.

RandomReal@D
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Here is a table of random integers  between 1 and 10.

RandomInteger@81, 10<, 15D
See also SeedRandom, $RandomState, Statistics`ContinuousDistributions`, 
Statistics`DiscreteDistributions` 

à Products and Sums

Products  and sums are also defined in Mathematica. Product[f, {i, imin, imax, di}] evaluates the 

product  of f with i running from imin  to imax  in steps of di. If  imin  and di are omitted they are assumed to 

be 0 and 1, respectively.  Multiple products  are entered in the form Product[f, {i, imin, imax}, {j, 

jmin, jmax}, … ].

Product computes an exact result.

Product[i, {i, 1, 10}]

We can enter products  in the following two-dimensional form.

ä
i=1

10

i

NProduct uses numerical methods to find an approximate product.

NProduct@i, 8i, 1, 10<D
The values computed are equal to 10 factorial.

10!

Sum takes the same form as Product. Sum computes exact values, and NSum computes approximate 

values.

9SumAn2, 8n, 2, 30<E, NSumAn2, 8n, 2, 30<E=
Here is the two-dimensional input form for  Sum.

â
n=2

30

n2

See also NumericalMath`NLimit`, NumericalMath`NSeries` 

à Optimization

Mathematica has several built-in optimization functions. FindMinimum finds a local minimum for  a 

function,  given a starting  value for  the search. Here is a graph  of the gamma function.

30 Introduction to Mathematica



Mathematica has several built-in optimization functions. FindMinimum finds a local minimum for  a 

function,  given a starting  value for  the search. Here is a graph  of the gamma function.

Plot@Gamma@xD, 8x, 0, 4<D
The following command finds a local minimum for  the gamma function. The result states that the local 

minimum is 0.885603, which occurs  when x is 1.46163.

FindMinimum@Gamma@xD, 8x, 1.5<D
Here is a function with several local minima. The starting  value we give to FindMinimum can affect  the 

local minimum that Mathematica returns.

PlotBSin@xD +
x

5
, 8x, -6, 6<F

Here is the local minimum of sinHxL + x

5
 near x = -2.

FindMinimumBSin@xD +
x

5
, 8x, -2<F

Starting  the search near x = 4 gives a different  local minimum.

FindMinimumBSin@xD +
x

5
, 8x, 4<F

We interpret  the result as telling us that the local minimum is –0.0775897, which occurs  when x is 

4.51103.

ConstrainedMin[f, {inequalities}, {x, y, … }] finds the global minimum of f in the domain speci-

fied by the linear constraints inequalities. The variables x, y, …  are all assumed to be nonnegative. Here 

is the minimum of 5 x - 3 y , constrained by x + 2 y < 4 and x + 3 y > 6. The constraints x ³ 0, y ³ 0 are 

implied.

ConstrainedMin@5 x - 3 y, 8x + 2 y < 4, x + 3 y > 6<, 8x, y<D
The result states that the constrained minimum is -6, which occurs  when x is 0 and y is 2.

ConstrainedMax works similarly.

ConstrainedMax@12 x + 10 y, 8x + y < 4, 5 x + 3 y < 15<, 8x, y<D
Again, the Help Browser provides an easy way to explore the many different  categories  of functions 

and algorithms.

See also LinearProgramming, Fourier, InverseFourier, PrimeQ, FactorInteger
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à Exercises: Other Numerical Functions

Use Table to make a list of the squares of the first  25 integers.

TableAi2, 8i, 1, 25<E
What is the product  of these integers?  (Hint: do not use Table or the result of the last exercise.)

Product@i^2, 8i, 1, 25<D
Use Table to create a list of fifteen random integers  between 1 and 10.

numbers = RandomInteger@81, 10<, 15D
The commands Max and Min return the greatest  and least elements of  a list. What are the greatest  and 
least numbers in the list generated above?

Max@numbersD
Min@numbersD

The sum of the numbers 1, 2, … , n (Úi =1
n i) is equal to 

1

2
nHn + 1L. Use Mathematica to verify  that this is 

true for  n = 50, 100, and 200. (Compare the results of each method.)

Here we verify  the formula when n is 50.

Sum@i, 8i, 1, 50<D
1

2
´ 50 ´ H50 + 1L

Here we verify  the formula when n is 100, using the two-dimensional input form for  Sum, and directly 

testing if the two results are equal.

â
i=1

100

i ==
1

2
H100L H101L

Here we repeat  the calculation for  n = 200.

â
i=1

200

i ==
1

2
H200L H201L

Mathematica verifies the general formula when we use a variable name for  the upper  limit of the 

summation.
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â
i=1

n

i

 

Symbolics

Algebra

à Entering Symbolic Expressions

We enter symbolic expressions such as polynomials the same way we enter numeric expressions. To 

enter the expression x 3 + a x 2 + b x + 1, for  example, we type the following. We use a caret ^ or a 

superscript  to represent  a power,  and use a space or an asterisk  to represent  multiplication.

x3 + a x^2 + b * x + 1

It is very important to remember to type a space or asterisk  for  multiplication. Mathematica inter-

prets  b x  and b*x as b times x, but interprets  bx (with no space between) as a variable with the two-

letter name bx.

It is also important to group  exponents, numerators,  and denominators with parentheses: Mathemat-

ica uses the grouping  rules and order of operations of standard arithmetic, so the following two 

expressions are interpreted  differently.

8E^2 Π, E^H2 ΠL<
The following two expressions are also different.

81 � 2 Π, 1 � H2 ΠL<
Variables, functions,  and other expressions can contain special characters,  such as Greek and script  

letters. The following is a valid symbolic expression.

Α Λ2 + Β Λ + Γ

We can also use two-dimensional forms in symbolic expressions.
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x =
1

3
Hx1 + x2 + x3L

à Defining Variables

We define variables in Mathematica by typing  name = value, using a single equal sign. Variable names 

can be as long as desired, and can be any combination of letters (both upper-  and lower-case)  and 

numbers, with the restriction  that a variable name cannot begin with a number.

To set the variable newvar equal to 15, we enter the following.

newvar = 15

After we make the assignment, every time newvar is used it is replaced with its value.

newvar2 - 2newvar

Variable names are case sensitive, so the following names are all different.

newvar + newVAR + NewVar + NeWvAr

Variables can have symbolic values, so the following is a valid assignment. (We keep  Mathematica from 

printing  the value of a variable when it is assigned by ending the line with a semicolon.)

zzz = xxx2 + yyy2;

The right-hand side of a variable assignment can be a function or program;  Mathematica will set the 

value of the variable equal to the result of the right-hand side. Here we set the value of solutionset 

to be the result of solving an equation.

solutionset = Solve@x^2 == 2 x + 1, xD
We can even set a variable equal to a function name. For instance, we can set the variable int equal to 

the built-in Integrate function.

int = Integrate;

We can now use int where we would use Integrate.

int@Tan@xD, xD
It is important to realize that variable assignments are permanent. The values of newvar, zzz, 

solutionset, and int will remain in memory until we quit Mathematica, or until we use the Clear 

command to tell Mathematica to forget  the value of the variable. Here is another calculation that uses 

the value of newvar defined above.
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newvar2 + newvar - 200

The Clear function erases the value of newvar.

Clear@newvarD
We see that newvar no longer has a value.

newvar2 + newvar - 200

Here we clear the other variables used in this section.

Clear@zzz, solutionset, intD

à Defining Functions

Defining functions in Mathematica is somewhat different  from writing functions by hand. The reason 

is that standard mathematical notation is ambiguous,  while Mathematica requires a precise  definition 

in order to understand a question. For example, it is unclear in traditional notation whether q H1 - pL 

means the function q  evaluated at 1 - p , or q  times the quantity 1 - p .

To avoid this ambiguity,  in StandardForm and InputForm we type q[1-p] to denote the function q 

evaluated at 1 - p , and q(1-p) to denote q times 1 - p .

To define a function,  say areaCircle(r),  we must tell Mathematica that we wish areaCircle to be applica-

ble to any argument r, and not just  to the literal symbol r. In order to do this, we set up a pattern on the 

left side of the function definition. A pattern  is a blank that can match any single argument given to a 

function. For example, to define areaCircleHr L = Π r 2, we type the following. (Note  the use of := to 

separate  the left and right  sides of a function definition.)

areaCircle@r_D := Π r2

There are several things to keep  in mind. The name of the function is areaCircle, and because it is a 

function,  its argument goes inside square brackets.  The r_ term inside the square brackets  is the 

pattern  for  the argument to areaCircle, which we read as “any r”; the underscore _ is a blank that 

matches any single argument,  and the r next to it is the name of the pattern,  which is used to refer  to 

the argument on the right-hand side of the function definition.

We use the function after  defining it by entering a line such as the following.

areaCircle@10D
When we evaluate areaCircle[10], Mathematica looks in its database to see if it has a definition for  

areaCircle called with one argument. Because we used the pattern  r_ in the definition of 

areaCircle, and r_ is a pattern  that matches any single argument,  Mathematica puts  the 10 into the 

blank called r, then substitutes  10 everywhere r appears  on the right-hand side of the definition.
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When we evaluate areaCircle[10], Mathematica looks in its database to see if it has a definition for  

areaCircle called with one argument. Because we used the pattern  r_ in the definition of 

areaCircle, and r_ is a pattern  that matches any single argument,  Mathematica puts  the 10 into the 

blank called r, then substitutes  10 everywhere r appears  on the right-hand side of the definition.

When we define a function,  the name we give to the pattern  is unimportant,  except that we must use 

the same name on the right  side of the definition. For instance, we could have defined the function 

areaCircle by entering areaCircle@x _D := Π x2.

Arguments we give to areaCircle do not have to be numbers. When we type areaCircle@19 cD, 

Mathematica matches 19 c with the pattern  r_ , and again substitutes  19 c everywhere r 

appears  on the right  side of the definition.

areaCircle@19 cD
Here is a more complicated use of areaCircle.

1

2
HareaCircle@s � 2D + areaCircle@sDL

Once we define a function,  we use it just  as we use a built-in function. Here is a plot of  areaCircle.

Plot@areaCircle@tD, 8t, 0, 2<D
Here is the derivative of areaCircle with respect  to z.

D@areaCircle@zD, zD
Similarly, we can define a function volumeCylinderIr , hM = Π r 2 h  by entering the following.

volumeCylinder@r_, h_D := Π r2 h

We read the left side of the definition as “volumeCylinder of any r and any h”. Here is an application of 

the function.

volumeCylinder@2, 10D
Like variables, function definitions are permanent; the definitions of the functions areaCircle and 

volumeCylinder will remain in memory until we explicitly clear the definitions using Clear, or we 

quit Mathematica.

Clear@areaCircle, volumeCylinderD

à Manipulating Polynomials

Given a symbolic polynomial, Mathematica does not carry  out much manipulation without being told 

to do so; that is, it makes few assumptions about the form in which we want a polynomial.

One of the operations Mathematica carries  out automatically is putting  expressions into a standard 

order. In StandardForm and OutputForm Mathematica puts  constants in front,  and arranges  terms in 

order of increasing powers.
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One of the operations Mathematica carries  out automatically is putting  expressions into a standard 

order. In StandardForm and OutputForm Mathematica puts  constants in front,  and arranges  terms in 

order of increasing powers.

2 x + x^2 + 1

In TraditionalForm the reverse order is used.

TraditionalForm@2 x + x^2 + 1D
Mathematica automatically adds and subtracts  like terms.

H1 + 2 xL + H4 x + 3L
3H2 x-xL

However,  Mathematica does not automatically expand, factor,  or greatly  simplify a polynomial.

Hx + 3 y - 5 zL9
To have Mathematica expand an expression, we explicitly tell it to do so. In this case, we apply  the 

function Expand to the previous output  (which we refer  to as %).

Expand[%]

Similarly, Mathematica does not automatically simplify an expression. The most commonly used 

simplification command is Simplify, which tries a long list of transformation  rules,  returning  the 

smallest equivalent expression it finds, in this case the original expression.

Simplify@%D
SimplifyAI1 - x3M I1 + x3 + x6ME

One area where it is important to recognize  that Mathematica does not automatically simplify expres-

sions is equation solving. Mathematica’s == construct,  for  instance, returns  True only if the left and 

right  sides of the equation are identical in form, and not necessarily identical in a mathematical sense.

In the following example, the left and right  sides of the equation are mathematically equal, but not 

equal in form,  so Mathematica returns  the equation unevaluated.

Hb + xL Hb - xL == b2 - x2

One way to get  Mathematica to recognize  the equality is to use the Simplify command to transform  

each side of the equation into an equivalent form.

SimplifyAHb + xL Hb - xL == b2 - x2E
There are several ways to rearrange  polynomials generated in Mathematica, or to pick  out particular  

features  or specific  terms of a polynomial.
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There are several ways to rearrange  polynomials generated in Mathematica, or to pick  out particular  

features  or specific  terms of a polynomial.

Using Collect on the expansion of Ia + b + cM5, we can arrange  terms with respect  to the variable c.

CollectAExpandAHa + b + cL5E, cE
Using Coefficient, we can select the coefficient  of any expression in a polynomial.

CoefficientAExpandAHa + b + cL5E, a3E
Factor represents  an expression as a product  of factors.

Factor@x^9 + 1D
Here we find the names of all the variables in an expression.

Variables@Expand@Ha + b + cL^5DD
This is the greatest  exponent in the polynomial.

ExponentAH1 + xL I1 - x - x2M H1 - xL, xE
See also PolynomialMod, PolynomialQuotient, PolynomialRemainder, PolynomialGCD, 
PolynomialLCM, FactorList, CoefficientList, InterpolatingPolynomial, Fit, Cyclotomic 

à Manipulating Rational Expressions

There are several commands that work exclusively on rational expressions and formulas.

Apart performs  partial-fraction  decomposition of a rational expression.

Apart@1 � H1 - x^5LD
Together does the opposite:  it puts  two or more rational expressions over a common denominator, 

without simplifying.

Together@%D
We can choose what part  of a rational expression to expand, such as the numerator or denominator.

ExpandDenominator@%D
Cancel divides out common factors.
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CancelBx5 - 1

x - 1
F

See also Numerator, Denominator, ExpandAll 

à Manipulating Symbolic Functions

Mathematica carries  out basic simplifications and computes special values of mathematical functions.

HCsc@xD Tan@wDL � HCot@xD Sec@wDL
BesselY@5 � 2, ΖD

In most cases,  however, we must explicitly tell Mathematica to manipulate a symbolic expression. 

TrigExpand expands trigonometric  expressions.

TrigExpand@Sin@Α + Β + ΓDD
TrigToExp converts trigonometric  expressions into exponential form.

TrigToExp@ Cos@zD + I Sin@zDD
ExpToTrig does the opposite.

ExpToTrig@%D
FullSimplify generates  the smallest possible form of an expression involving special functions. 

(Simplify works primarily on polynomial expressions.)

FullSimplify@Gamma@ΩD Gamma@1 - ΩDD
FullSimplify@Abs@zD Exp@I Arg@zDDD

See also FunctionExpand, TrigReduce, ComplexityFunction 

à Options

Mathematica has many options to symbolic functions that allow us to change the default assumptions 

used to perform  a calculation. For instance, by default the Factor command allows only real integers  

in the factorization  of a polynomial.

FactorAx2 - 1E
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For this reason, Mathematica does not extract any factors  from x 2 - 2.

Factor@x^2 - 2D H* use the default behavior of Factor *L
There may be instances, however, in which algebraic  numbers should be allowed in the factorization.

Here is a list of options to Factor, along with their default values.

Options@FactorD
To allow algebraic numbers in the factorization  of a polynomial, we use the Extension option.

? Extension

Mathematica now factors  x 2 - 2.

FactorBx^2 - 2, Extension -> 2 F
Similarly we can factor  over complex integers  by including the complex unit ä in the field over which 

polynomials are factored.

Factor@ x^2 + 1, Extension ® äD
See also GaussianIntegers 

à Mathematica’s Assumptions

By default,  Mathematica assumes that any variable or symbol that does not have an explicit value can 

take any complex value.

Mathematica returns  the real part  of any number.

Re@3 + 4 ID
However,  Mathematica does not automatically simplify Re@x + I yD to x, because Mathematica 

assumes the variables x and y could have complex values.

Re@x + I yD
To instruct  Mathematica to assume that x and y have real values, we use ComplexExpand. When 

ComplexExpand is applied to an expression, Mathematica treats  all the variables in the expression as if 

they have real values. When x and y are assumed to be real-valued, the real part  of x + I y  is x.

ComplexExpand@Re@x + I yDD
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Similarly, Mathematica simplifies J z N2
 to z because the simplification is correct  for  any value of z.

Sqrt@zD^2
Mathematica does not, however, automatically simplify z 2  to z: the simplification is valid only for  

nonnegative real values of z, and by default Mathematica assumes z can take any complex value. Here 

is Mathematica’s default behavior.

Sqrt@z^2D
However,  there are ways to tell Mathematica to perform  the simplification. The PowerExpand func-

tion multiplies the exponents in an expression like z 2 , as the usage message reveals.

? PowerExpand

Here Mathematica performs  the simplification.

PowerExpandB z2 F
See also TargetFunctions, Miscellaneous`RealOnly` 

à Exercises: Algebra

Add, subtract,  multiply,  and divide any two polynomials, simplifying the result if necessary.

Here we define two polynomials, polyone and polytwo.

polyone = x2 + 2 x + 1;

polytwo = x3 - 3 x - 2;

Here are the sum and difference.

polyone + polytwo

polyone - polytwo

Here is the product.

polyone ´ polytwo

The result needs to be expanded.
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Expand@%D
Here is the quotient.

polyone � polytwo
In this case, the quotient can be simplified.

Simplify@%D
Expand the expression H1 + xL10. Factor  the expression 1 + x105.

This is simply a matter of using proper  Mathematica syntax.

Expand@H1 + xL^10D
Factor@1 + x^105D

Use ComplexExpand and its option TargetFunctions to convert Abs@x + I yD to 
Sqrt@x^2 + y^2D.

By default Mathematica does not simplify Abs@x + I yD because it assumes x and y could be com-

plex-valued variables.

Abs@x + I yD
The option TargetFunctions allows us to specify  the form in which we want the result of 

ComplexExpand.

? TargetFunctions

Here is the default setting of TargetFunctions.

Options@ComplexExpandD
To simplify Abs@x + I yD, we need to give a value for  TargetFunctions that does not include Abs. 

Here we use the option value 8Re, Im<, and we get  the desired result.

ComplexExpand@Abs@x + I yD, TargetFunctions -> 8Re, Im<D
 

Substitution  with Replacement Rules

Suppose  we want to substitute  a particular  value for  the variable y into the formula 

Sqrt@x^2 + y^2D. One way to substitute  the value 7 for  y is to set y equal to 7.
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Suppose  we want to substitute  a particular  value for  the variable y into the formula 

Sqrt@x^2 + y^2D. One way to substitute  the value 7 for  y is to set y equal to 7.

y = 7;

Evaluating Sqrt@x^2 + y^2D now reflects  the new value of y.

Sqrt@x^2 + y^2D
The trouble with this approach  is that the value 7 (in this case)  will be substituted wherever y appears  

in any expressions evaluated after  the assignment, at least until y is cleared of its value. For instance, if 

we later try  to solve an equation with respect  to y, Mathematica substitutes  the value 7 into y, in effect  

assuming we want to solve the equation with respect  to 7.

SolveAy10 + x10 == 1, yE
To clear the value of y, we use Clear.

Clear@yD
A better  method for  replacing  any part  of an expression with another value or expression uses the 

replacement operator  pair /. and ->. Expressions of the form replacethis -> withthis are called rules, 

and Mathematica carries  out any substitutions  described by a rule or set of rules placed after  the slash-

period /.. The general syntax for  making a substitution is expr /. replacethis -> withthis.

For instance, to replace y in the expression Sqrt@x^2 + y^2D with 7, we type the following.

Sqrt@x^2 + y^2D �. y -> 7

Although we replaced the variable y with the value 7 in the expression Sqrt@x^2 + y^2D, the value 

for  y remains undefined.

y

We are not limited to numerical replacements. Here we replace y with 1 + a.

Sqrt@x^2 + y^2D �. y -> 1 + a

Here is an expression that contains the variable x.

Log@H1 - xL xD
We can replace x with a numerical value by using a replacement rule. (We enter the arrow character  ® 

by typing  å->å.)
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Log@H1 - xL xD �. x ® 0.35

We can also replace any number of variables or subexpressions in an expression with others by giving 

a list of replacement rules.

a + b^2 + c^3 �. 8a ® Α, b ® Β, c ® Γ<
We can also create a list of expressions formed by different  lists of replacement rules by telling Mathe-

matica to substitute  more than one set of values for  an expression. Below we compute three values for  

Sqrt@x^2 + y^2D by substituting  into it a list containing three lists of replacement rules.

Sqrt@x^2 + y^2D �.88x ® 3, y ® 4<, 8x ® 5, y ® 12<, 8x ® 1, y ® 1<<
A somewhat tricky  case occurs  when we perform  more than one substitution in an expression with 

only one variable. For instance, to substitute  two values for  x into the expression defined above, we 

might try  the following.

Log@H1 - xL xD �. 8x -> 0.35, x -> 0.55< H* this is incorrect *L
Mathematica returned only one of the two desired values. The reason is that Mathematica performs  the 

substitutions from left to right:  First the rule x -> 0.35 was applied to the formula,  replacing  all 

occurrences  of x with 0.35; then the rule x -> 0.55 was applied to that result,  which was free of any 

occurrences  of x.

To avoid this difficulty,  we must put each set of replacement rules inside its own list, even if each set 

contains only one rule: this indicates to Mathematica that each replacement rule should be considered 

a separate  solution set.

Log@H1 - xL xD �. 88x -> 0.35<, 8x -> 0.55<< H* this is correct *L
In general Mathematica returns  as many values from a substitution as there are sets of replacement 

rules.

One reason that replacement rules are important is that functions such as Solve return results in the 

form of a list of lists of replacement rules.

SolveAx2 - 1 == 0, xE
Here we verify  the solutions separately  by substituting  each one into the original equation, using the 

replacement operator  /..

x2 - 1 == 0 �. x ® -1

x2 - 1 == 0 �. x ® 1
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We can test both solutions at the same time by substituting  a list of solution sets into the equation.

x2 - 1 == 0 �. 88x ® -1<, 8x ® 1<<
An easier way to do the same thing is to name the list of replacement rules. Here we solve the same 

equation, this time naming the solution set of replacement rules solset.

solset = SolveAx2 - 1 == 0, xE
Now, instead of retyping  the solutions, we can directly substitute  solset into the equation (note that 

the entire rule is contained in solset, so it is important not to type x ® solset after  the /.).

x2 - 1 == 0 �. solset
Similarly, we can generate a list of the solutions by substituting  the rules containing the solutions into 

the variable(s)  of the equation.

x �. solset
See also ReplaceAll, ReplaceRepeated, RuleDelayed, Dispatch 

à Exercises: Substitution with Replacement Rules

Using a replacement rule, replace x in the expression x 2 + 2 x - 1 with 5.

To replace x with 5, we use the replacement operator  pair /. and -> on the polynomial.

x2 + 2 x - 1 �. x ® 5

Verify that x = 3 and x = 5 are roots  of the expression x 3 - 9 x 2 + 23 x - 15, and that x = 4 is not.

Enter the polynomial, calling it cubic.

cubic = x3 - 9 x2 + 23 x - 15

Replace x with 3.

cubic �. x ® 3

The result is zero,  so x = 3 is a root.

Next replace x with 4.

cubic �. x ® 4

The result is not zero,  so x = 4 is not a root.
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Now replace x with 5.

cubic �. x ® 5

Again we have a root.

We can test all three roots  at once by giving a list of lists of replacement rules.

cubic �. 88x ® 3<, 8x ® 4<, 8x ® 5<<
We generate True or False values by substituting  the solutions into the equation cubic==0 .

cubic == 0 �. 88x ® 3<, 8x ® 4<, 8x ® 5<<
Verify that -b - b 2 - c  is  a root of x 2 + 2 b x + c .

The basic idea is the same as in the preceding  problem. (We must be certain to type a space or asterisk  

between the b and x in the term 2 b x  to denote multiplication.)

x2 + 2 b x + c �. x ® -b - SqrtAb2 - cE
In this case, a complication is that the symbolic result does not automatically simplify. Therefore,  we 

explicitly tell Mathematica to simplify the result.

Simplify@%D
Thus we see that the given expression is a root of x 2 + 2 b x + c .

 

Solving Equations

à Basic Solving

Using Solve gives generic solutions to an equation or system of equations. Recall that we use a double 

equal sign == to separate  the left and right  sides of an equation, and that we should specify  a variable 

or list of variables to solve for.  Here we solve the general quadratic equation with respect  to x.

SolveAa x2 + b x + c == 0, xE
Inside Solve, we enter a system of equations as a list of equations, followed by a list of variables to 

solve for.
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Solve@8x + 5 y == c, 2 x + y == d<, 8x, y<D
We can also solve some systems of equations expressed as matrices. For instance, the same set of 

linear equations as above can be solved by expressing the coefficients  in the system as a matrix.

coeffs = 881, 5<, 82, 1<<;
We can then use LinearSolve to solve the same system.

?LinearSolve

LinearSolve@coeffs, 8c, d<D
As expected, the answers are the same.

Naturally,  there are many equations that cannot be solved using symbolic techniques, and when such 

equations are encountered we must use numeric solving or root-finding  techniques.

Solve solves equations for  general values of the parameters,  so the solutions returned may be incor-

rect for  special values of the parameters.  For example, the solutions to the general quadratic equation 

are incorrect  for  the value a = 0.

SolveAa x2 + b x + c == 0, xE
Reduce  returns  a list of logical statements that account for  special values of parameters.  (The form 

&&  stands for  the logical function And , and ||  for  the logical function Or .)

ReduceAa x2 + b x + c == 0, xE
The result states that when a ¹ 0, the solutions x = -b± b 2-4 a c

2 a
 are correct;  that when a, b, and c are all 

zero,  any value of x is a solution; and that when a = 0 and b ¹ 0, x = - c

b
 is a solution.

See also Eliminate, NSolve, FindRoot, ToRules, Root, ToRadicals, RootReduce, 
LogicalExpand, Algebra`InequalitySolve`, Calculus`RSolve 

à Using Solutions as Replacement Rules

The following command loads from the Graphics package  directory  the package  containing the 

ImplicitPlot command.

Needs@"Graphics`ImplicitPlot`"D
Once the package  is loaded, we can make a plot of two relations on the same set of axes.
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imp = ContourPlotA911 x2 + 23 y2 � 200, 10 y - 6 x2 � -50=, 8x, -5, 5<,
8y, -5, 5<E;

Given symbols and integers  as coefficients,  Mathematica returns  a list of exact solutions to the 

equations.

solns =

SolveA
811 x^2 + 23 y^2 == 200, 10 y - 6 x^2 == -50<,8x, y<E

As before,  the answers are in the form of lists of replacement rules. As always, we can get  numeric 

approximations to the solutions.

solns = N@solnsD
We can then substitute  the x-y values into the Point graphics  primitive.

Point@8x, y<D �. solns
By default,  points are the same color and thickness as lines, so we need to prepend the graphics  

directive PointSize to make the points visible.

bigpoints = Prepend@%, PointSize@0.04DD
When we plot the two relations, we can then highlight the solutions by including the bigpoints 

object  in the plotting  command.

Show@imp, Epilog ® bigpointsD

à Exercises: Solving Equations

Solve the equation x 3 = 8 with respect  to x, then substitute  the solutions back into the equation.

Solve gives an answer in the form of a list of replacement rules,  and we call the list of rules solns. (It  

is important to use a double equal sign inside the Solve command to tell Mathematica that we are 

testing for  the equality of the polynomial and 0.) The single equal sign after  solns denotes that we 

wish to set solns equal to the result returned by Solve.

solns = SolveAx3 == 8, xE
To verify  the solutions, we substitute  the solutions (solns) back into the equations using the replace-

ment notation slash-period (/.).
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x3 == 8 �. solns
Solve the general quadratic equation, substituting  the solutions into the equation to verify  that they 
are roots.

Solve the equation, getting  the two roots  as a list of replacement rules.

SolveAa x2 + b x + c == 0, xE
Next, substitute  the roots  into the equation.

a x2 + b x + c == 0 �. %

The resulting equations need to be simplified.

Simplify@%D
 

Calculus and Analysis

à Differentiation, Integration, and Taylor Series Expansion

For differentiation,  integration,  and series expansions we must indicate the variable(s)  with respect  to 

which the operations are being performed.  Below we define an expression called expr and set it equal 

to sinHn Π xL.

Clear@exprD H* clear any previous values of expr *L
expr = Sin@n Pi xD

We take the derivative of expr with respect  to x, using the differentiation operator  D.

D@ expr, x D
We can also use the special form ¶� �.

¶x expr

Similarly we integrate  expr with respect  to x using Integrate.

Integrate@ expr, x D
We can also use the following form. We enter the integral sign Ù by typing  åintå or \[Integral] , 

and we must use the special differential  â, entered by typing  åddå or \[DifferentialD] , and 

not an ordinary keyboard  d.
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We can also use the following form. We enter the integral sign Ù by typing  åintå or \[Integral] , 

and we must use the special differential  â, entered by typing  åddå or \[DifferentialD] , and 

not an ordinary keyboard  d.

à expr âx

Here we take a Taylor  series expansion of expr with respect  to x, around x = 0, up to degree 7.

Series@expr, 8x, 0, 7<D
The O@xD8  term denotes the extra terms beginning at order 8. To remove the order term, we use the 

function Normal. The result is a polynomial.

Normal@%D
We can apply  these calculus operations to general functions and expressions as well.

D@f@xD g@xD h@xD, xD
If  Mathematica cannot return an antiderivative for  an expression, it returns  the expression 

unevaluated.

Integrate@f@xD, xD
Integrate@Sin@Sin@xDD, xD

Given limits of integration,  we can use numerical methods to obtain an approximation.

NIntegrate@Sin@Sin@xDD, 8x, 0, Π<D
All of the calculus functions apply  to multivariate expressions. Here is a mixed partial  derivative.

D@Πx y, x, yD
In these examples, Exp is Mathematica’s name for  the exponential function,  and Erf is the name for  

the error  function.

Integrate@Exp@-HΑ^2 + Β^2LD, Α, ΒD

à à à ExpA-Ix2 + y2 + z2ME âz ây âx

Here we see that Mathematica knows how to apply  the fundamental theorem of calculus.
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DBà
a

b@zD
f@xD âx, zF

à Other Calculus and Analysis Functions

Sum allows us to evaluate many finite and infinite sums and products.

We can evaluate summations with symbolic or infinite limits.

SumAk5, 8k, 1, n<E
Mathematica recognizes  many special summations, as well.

â
k=0

¥ xk

k!

We can do a spot  check of the answer by comparing  a partial  summation to the series expansion of 

Mathematica’s result.

Sum@x^k � k!, 8k, 0, 7<D
Normal@Series@Ex, 8x, 0, 7<DD

Mathematica solves a large class of ordinary differential  equations (or systems of ODEs) symbolically, 

given the equations and initial conditions, a function or list of functions to solve for,  and independent 

variables.

DSolve@y'@xD + 2 y@xD == 3 Exp@xD, y@xD, xD

DSolveBy'@xD
x

-
2 y@xD
x2

== x Cos@xD, y@xD, xF
The C[1] in each of the previous examples is an undetermined coefficient.  To replace it with a numeri-

cal (or other)  value, we use replacement rules.

% �. C@1D ® 5

We can specify  initial conditions, expressing them in the form of an equation (that is, using == 

notation).

DSolve@8y'@xD � x - H2 y@xD xL == x, y@ΠD == 3<, y@xD, xD
Here Mathematica recognizes  a special differential  equation, and returns  the answer as a linear combi-

nation of Bessel functions.
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Here Mathematica recognizes  a special differential  equation, and returns  the answer as a linear combi-

nation of Bessel functions.

DSolveAz2 y''@zD + z y'@zD + Iz2 - 169M y@zD == 0, y@zD, zE
Mathematica can solve some partial  differential  equations. Here the solution includes an undeter-

mined function C[1] of the quantity 2 t + u.

DSolve@x@t, uD == D@x@t, uD, tD - 2 D@x@t, uD, uD, x@t, uD, 8t, u<D
Mathematica calculates limits.

LimitB Hx^2 - 4L
Hx - 2L , x -> 2F

Graphics are useful as an informal way to verify  a limit. Here we find the limit of Sin@xD � x  as x 

approaches  zero.

Limit@Sin@xD � x, x -> 0D
A plot of 

sinHxL
x

suggests  that the result returned by Limit is correct.

PlotBSin@xD
x

, 8x, -10, 10<F
We can specify  the direction from which a limit is taken,  setting the option Direction to 1 to take the 

limit from the left,  or setting Direction to -1 to take the limit from the right.

Here is a plot of 
1

x
.

PlotB 1
x
, 8x, -0.5`, 0.5`<F

Setting  Direction to 1, we take the limit from the left.

Limit@ 1 � x, x -> 0, Direction -> 1 D
Setting  Direction to -1, we take the limit from the right.

Limit@ 1 � x, x -> 0, Direction -> -1 D
We can take limits of purely  symbolic expressions.

Limit@H1 + m � nL^n, n ® InfinityD
The Interval object  returned by Limit@Sin@xD, x -> InfinityD reflects  the fact  that the sine 

function oscillates forever  between -1 and 1.
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The Interval object  returned by Limit@Sin@xD, x -> InfinityD reflects  the fact  that the sine 

function oscillates forever  between -1 and 1.

Limit@Sin@xD, x ® InfinityD
There are hundreds of mathematical functions available for  use with symbolic arguments. Capabilities 

exist in the Mathematica kernel and standard packages  to solve recurrence  relations, calculate Laplace 

transforms,  compute orthogonal polynomials, and much more. The Help Browser,  on-line help, and 

Mathematica books provide convenient ways to explore these functions.

See also Residue, ComposeSeries, InverseSeries, Calculus`LaplaceTransform`, 
Calculus`FourierTransform`

à Exercises: Calculus and Analysis

Find where the polynomial x 3 - 6 x 2 + 11 x - 6 crosses  the x-axis, and where its derivative is equal to 
zero.

First we plot the curve.

PlotAx3 - 6 x2 + 11 x - 6, 8x, 0, 4<E
To find where the curve crosses the x-axis, we use Solve.

SolveAx3 - 6 x2 + 11 x - 6 == 0, xE
For the second part of the question, we take the derivative of the polynomial, using the derivative operator D.

der = DAIx3 - 6 x2 + 11 x - 6M, xE
Next, we use Solve again.

Solve@der == 0, xD
Using the command InterpolatingPolynomial, create a polynomial whose graph  passes through  
the points (0, 1),  (1, 11),  (2, 21),  and (3, 17); then take its derivative. If  possible,  plot the polynomial 
and its derivative.

We use InterpolatingPolynomial with the given points to create the polynomial.

mypoly = InterpolatingPolynomial@880, 1<, 81, 11<, 82, 21<, 83, 17<<, xD
Here it is in simpler form.

mypoly = Simplify@mypolyD
Here is the derivative of our interpolating polynomial.
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der = ¶xmypoly

Here is a somewhat simpler form of the derivative.

der = Simplify@derD
Here is a plot of mypoly and its derivative.

Plot@8mypoly, der<, 8x, -0.1`, 3.1`<,
PlotStyle ® 8GrayLevel@0.5`D, GrayLevel@0.2`D<D

Solve the differential  equation y ²HxL = y ¢HxL + ex , when y H0L = 2 and y ¢H0L = 1.

Additionally, try  plotting  y(x) over -1 £ x £ 1.

First we solve the differential equation using DSolve. Note that the initial conditions are written as equations, not assignments (y[0]==2, 

not y[0]=2). For convenience, we call the solution dsol.

dsol = DSolve@8y''@xD == y'@xD + E^x, y@0D == 2, y'@0D == 1<, y@xD, xD
We can isolate y(x) using the replacement operator /..

y@xD �. dsol
Next, plot y(x) using Plot.

Plot@%, 8x, -1, 1<D
Load the package  DiscreteMath`RSolve`. Using the on-line help, solve the following system of 
recurrence  equations, and compute a0 through  a10.

an = an -1 + an -2 , a0 = 1, a1 = 3

Here we load the package and examine the usage message for RSolve.

Needs@"DiscreteMath`RSolve`"D
?RSolve

We see from the usage message that RSolve accepts a list of recurrence equations, a list of functions to solve for, and an independent 

variable. Here we enter the given system of equations, following the directions of the usage message, and get the result. (It is possible that 

we have previously defined values or rules for a and n; to be safe, we clear the variables first.)

Clear@a, nD;
RSolve@8a@nD == a@n - 1D + a@n - 2D, a@0D == 1, a@1D == 3<, a@nD, nD

Extract the general result, calling it gen, by replacing a[n] with the solution.
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gen = Ha@nD �. First@%DL
Here we test some values of n, replacing the n in gen with 0.

gen �. n ® 0

The answer can be simplified.

Simplify@%D
We test the case n = 1.

Simplify@gen �. n ® 1D
Now we generate the table of values.

Table@Simplify@gen �. n ® jD, 8j, 0, 10<D
These numbers are called the Lucas numbers.

Lists  and Functions

à Function Definitions

Function definitions that we have seen look like the following.

func@z_D := 1 + z^10

The function has a name (func) and a pattern  to match the argument(s)  given to the function (z_, 

read as “any z”; the name of the pattern  is unimportant,  except that we must use the same name on the 

right  side of the definition) on the left side of the colon-equal, and something to do with the argumen-

t(s)  on the right  side of the colon-equal.

We define functions that take more than one argument in the same way, except we type in a pattern  

for  each argument that the function is to accept.  The following function dist takes two arguments,  

any x1 and any x2, and returns  the absolute value of the difference  of the two arguments.

dist@x1_, x2_D := Abs@x1 - x2D
The body of a function (the part  on the right-hand side of the definition) can be as complicated as 

necessary,  and can contain compound expressions. The following function assigns values to the 

variables X and Y, then prints  the new values.
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setXandY@xval_, yval_D :=HX = xval; Y = yval; Print@"X is now ", X, ", and Y is now ", YDL
Mathematica executes all of the commands in the body of the function.

setXandY@3, -7D
X � Y

When we finish using X and Y we clear their values.

Clear@X, YD
We can define functions so that only certain types  of arguments are valid. For instance, here is a 

recursive definition of a factorial  function.

fac@n_D := n fac@n - 1D; fac@0D := 1

Here we compare a value computed with fac to a value computed using the built-in factorial  function.

8fac@35D, 35!<
A shortcoming of fac is that it should apply  only to integers. We can determine a number’s type by 

using the Head function. Possible values for  the head of a number are Integer, Rational, Real, and 

Complex.

Head@3D

HeadB22
7

F

Head@3.14159D
We tell Mathematica that a function applies only to a certain type of number by typing  the permissible 

head of the number after  the underscore in the function definition. (Before  redefining fac, we use 

Clear to erase the old definition.)

Clear@facD
Here we restrict  fac to arguments that have the head Integer.

fac@n_IntegerD := n fac@n - 1D; fac@0D := 1
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The function works as intended when given an integer argument.

fac@35D
Mathematica returns  fac unevaluated if called with anything but an integer.

fac@1.23456D
A further  shortcoming of fac is that it should accept  only positive integers. We can include conditions 

(such as “n must be positive”) by typing  slash-semicolon /; after  the body of the function,  followed by 

the condition. First we clear fac.

Clear@facD
Now we include the condition by typing  /; after  the body of the definition, followed by the condition 

n > 0.

fac@n_IntegerD := n fac@n - 1D �; n > 0

fac@0D := 1

The function works for  arguments that are positive integers.

fac@40D
It returns  unevaluated if called with anything other than a positive integer.

fac@-10D
See also If, Which, Switch, Do, For, Alternatives, Optional, PatternTest, MatchQ 

à List Functions

Mathematica has many functions for  creating  lists. One such function is Range, which generates  a list 

of numbers. Range[n] creates a list of numbers going  from 1 to n.

Range@15D
Range[m, n] returns  a list of numbers from m to n.

Range@20, 30D
Range[m, n, s] returns  a list of numbers from m to n in increments of s.
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Range@3, 4, 1 � 10D
Another function for  creating  lists is Table, which we have seen before. Here is a table of approxima-

tions to the natural logarithm of the ith prime number, as i goes from 1 to 5.

Table@N@Log@Prime@iDDD, 8i, 1, 5<D
The elements of a list can be other lists,  and lists can be nested to any depth. For instance, a matrix is a 

list of lists,  where each sublist contains the elements of one row of the matrix. Here is a 3 × 3 matrix.

mymat = 88i, j, k<, 81, 2, 3<, 8-1, 0, -1<<;
We format matrices and arbitrary  arrays  of elements using MatrixForm and TableForm.

MatrixForm@mymatD
See also Part, Extract, Take, Drop, Append, AppendTo, Prepend, PrependTo, Insert, Delete, 
Join, Intersection, Union 

à Using Functions with Lists

Mathematica provides many functions designed to allow functions and lists to work together.

One such function is Map, which applies a function to each element of a list. Here is a simple function.

nlp@x_IntegerD := N@Log@Prime@xDDD
To apply  the function to each element of a list of integers,  we use Map. Notice that we give only the 

name of the function (nlp) as the first  argument to Map, and not nlp[x].

Map@nlp, Range@5DD
There is a special class of functions called predicate functions, each of which returns  True or False 

depending on whether its condition is met. All the built-in predicate functions in Mathematica end with 

the letter Q. Here are the names of all the built-in functions that end with the letter Q (not all of them 

are predicate functions).

Names@"*Q"D
Here are some predicate functions applied to the number 101. Here we check if 101 is prime.

PrimeQ@101D
Here we determine if 101 is even.
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EvenQ@101D
Mathematica has a function called Select that extracts all the elements of a list that satisfy  a particu -

lar predicate function. For example, we extract all the prime elements of a list of integers  from 1 to 

100. (Notice  again that we use only the name of the predicate function.)

Select@Range@100D, PrimeQD
We can define our own predicate functions. The following predicate function returns  True for  num-

bers between 0.33 and 0.66.

middlethird@x_D := 0.33 < x < 0.66

Given a list of numbers, we can select all the numbers that satisfy  middlethird. Here is a list of 25 

random real numbers between 0 and 1.

randompoints = RandomReal@80, 1<, 25D
Here is the subset of randompoints whose elements satisfy  middlethird.

Select@randompoints, middlethirdD
See also Cases, MemberQ, FreeQ, Count, Position, DeleteCases 

Graphics

Two-Dimensional Graphics

à Plot

The simplest example of Mathematica’s graphing  capabilities is a graph  of a function of one variable 

created with Plot. Plot takes a function to be graphed and a domain for  the variable, and generates  a 

two-dimensional graph.

Plot@Sin@xD � x, 8x, -10, 10<D
Plot also accepts  a list of functions to plot on the same set of axes.

Plot@8Sin@xD, Cos@xD<, 8x, -Π, Π<D
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à Options

There are dozens of options we can use to control almost every aspect  of a graph.  

Options[FunctionName]  returns  a list of the options available for  a function,  along with their 

default values.

Options@PlotD
For example, by default,  Mathematica uses an algorithm to choose the most “interesting” y-range for  a 

graph.  In the above list we see that the default value for  PlotRange is Automatic.

PlotBSinAx2E
x2

, 8x, -10, 10<F
We can override the default setting by giving a different  value to the PlotRange option.

PlotBSinAx2E
x2

, 8x, -10, 10<, PlotRange ® 8-0.25`, 1.05`<F
In every case, options are added after  the required arguments to the function. We set an option by 

typing  the name of the option,  an arrow made by the two characters  - and > (or the special character  ® 

made by typing  å->å),  and the new value of the option. Note that most plotting  commands accept  

the same set of options.

PlotBSin@xD
x

, 8x, -10, 10<, Frame ® True, PlotLabel ® "sinc function",

GridLines ® Automatic, PlotRange ® 88-11, 11<, 8-0.5`, 1.15`<<,
AspectRatio ® 1F

In the following sections we will change many of a graph’s default option settings.

See also SetOptions, FullOptions, FullGraphics 

à ParametricPlot

ParametricPlot plots a two-dimensional curve described by two functions of the same parameter,  

one that describes movement in the x direction and one for  the y direction. This allows us to plot 

curves that are not functions,  in the mathematical sense. Here is a parametric  plot of a circle.

ParametricPlot@8Sin@tD, Cos@tD<, 8t, 0, 2 Π<D
The option AspectRatio controls the relative sizes of units on the two axes; the setting Automatic 

makes them equal (that is, makes one unit on the vertical axis equal to one unit on the horizontal axis).
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ParametricPlot@8Sin@tD, Cos@tD<, 8t, 0, 2 Π<, AspectRatio ® AutomaticD
ParametricPlot can be used to plot graphs  of complicated curves that cannot be expressed as a 

function of the form y = f HxL.

ParametricPlotB:4 CosB-
5 t

4
F + 7 Cos@tD, 4 SinB-

5 t

4
F + 7 Sin@tD>,

8t, 0, 8 Π<, AspectRatio ® AutomaticF
ParametricPlot takes many of the same options as Plot.

ParametricPlotB:4 CosB-
11 t

4
F + 7 Cos@tD, 4 SinB-

11 t

4
F + 7 Sin@tD>,

8t, 0, 8 Π<, AspectRatio ® Automatic, Axes ® False, Frame ® True,

FrameLabel ® 8"x", "y"<F

à ImplicitPlot

ImplicitPlot allows us to plot implicit relations, rather than functions. It is defined in one of the 

standard packages,  so we must load it first  with the Needs command.

Needs@"Graphics`ImplicitPlot`"D
ImplicitPlot[eqn, {x, a, b}] draws a graph  of the set of points that satisfy  eqn. The variable x is 

associated with the horizontal axis and ranges from a to b. The remaining variable in the equation is 

associated with the vertical axis. We can also specify  a vertical range for  the graph  using the form 

ImplicitPlot[eqn, {x, a, b}, {y, c, d}].

ImplicitPlotA3 x2 + 3 x y + 12 y2 == 12, 8x, -2.5, 2.5<, AxesOrigin ® 80, 0<E;
Like most graphing  functions,  ImplicitPlot accepts  a list of functions to plot on the same set of 

axes.

ContourPlotA93 x2 + 3 x y + 12 y2 � 12, 12 x2 + 3 x y + 3 y2 � 12,

3 x2 + 12 x y + 3 y2 � 1=, 8x, -2.5`, 2.5`<, 8y, -2.5`, 2.5`<,
AxesOrigin ® 80, 0<E;

à Graphics Directives and Plot Styles

Mathematica contains several objects  called graphics directives, which specify  the style in which a 

graph  should be drawn. Graphics directives control the color,  thickness,  point size,  and dashing of a 

lines, points,  and other objects.
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Mathematica contains several objects  called graphics directives, which specify  the style in which a 

graph  should be drawn. Graphics directives control the color,  thickness,  point size,  and dashing of a 

lines, points,  and other objects.

For example, to specify  that lines should be drawn with a specified thickness,  we use the directive 

Thickness[t], where t is given as a percentage  of the width of a graph.

All two-dimensional graphing  functions have an option called PlotStyle, which allows us to specify  a 

list of graphics  directives that control how the actual curve (as opposed to the surrounding axes, grid 

lines, etc.)  is drawn. To draw a sine wave so that the curve is drawn with a thickness 2% of the width of 

the graph,  we set the option PlotStyle -> Thickness[0.02].

Plot@Sin@xD, 8x, -3, 3<, PlotStyle ® 8Thickness@0.02`D<D
To draw a curve with a dashed line, we use the directive Dashing. Dashing[{d}] draws a line so that 

it alternates between line segments d percent  of the width of the graph  and gaps  d percent  of the 

width of the graph.  Dashing[{d1,d2}] alternates between line segments d1 long and gaps  d2 long,  

and Dashing[{d1,d2,… }] applies the successive widths cyclically. The following graph  uses line 

segments twice as long as the gaps.

Plot@Sin@xD, 8x, -3, 3<, PlotStyle ® 8Dashing@80.04`, 0.02`<D<D
There are several ways to specify  colors using graphics  directives. RGBColor[r,g,b] describes a 

color made up of r, g, and b percent  of red, green,  and blue. Thus RGBColor[1,0,0]  is red, and 

RGBColor[1,0,1]  is purple.  (The parameters  r, g, and b must all be between 0 and 1.)

The add-on package  Graphics`Colors` defines a list of English names for  colors and their 

RGBColor values. Here we load the package.

Needs@"Graphics`Colors`"D
Here are the first  ten colors defined in the package.

Take@AllColors, 10D
Here is the RGBColor value of the color apricot.

Apricot

Other color functions are Hue[h], which represents  the spectrum  of colors going  through  red, 

orange,  yellow, green,  blue, purple,  and back to red; and GrayLevel[g] (0 £ g £ 1),  where 

GrayLevel[0] is black and GrayLevel[1] is white.

To change the style of each graph  in a list given to Plot, we give a list containing as many graphics  

directives as there are functions being plotted. Here we draw the first  curve in the list using a thick 

line ( Thickness[0.02]),  and the second curve using a green line ( RGBColor@0, 1, 0D).

Plot@8Sin@xD, Cos@xD<, 8x, -3, 3<,
PlotStyle ® 8Thickness@0.02`D, RGBColor@0, 1, 0D<D

To apply  multiple styles to each function in a list, we surround the styles that apply  to each function 

inside a set of list brackets.
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To apply  multiple styles to each function in a list, we surround the styles that apply  to each function 

inside a set of list brackets.

Plot@8Sin@xD, Cos@xD<, 8x, -3, 3<,
PlotStyle ® 88Thickness@0.02`D, Apricot<,8Dashing@80.04`, 0.02`<D, Green<<D

One tricky  case to be aware of is that to specify  more than one graphics  directive in the plot style of a 

single function,  we must surround the graphics  directives with double list brackets  {{  and }} .

PlotBSin@xD
x

, 8x, -10, 10<,
PlotStyle ® 88RGBColor@0, 0, 1D, Thickness@0.015`D<<F

See also PointSize, CMYKColor, AbsoluteThickness, AbsolutePointSize, 
Graphics`ArgColors` 

à Combining Graphs

Show allows us to display a previously  computed graph  without having to recompute  any of the points 

that make up the curve(s).

Show[graphics, options] displays two- and three-dimensional graphics  using the new option settings  

specified. Show accepts  options that affect  the way a graph  or its surrounding elements (axes, frame,  

etc.)  is drawn, without requiring any points of the graph  to be recomputed.

p1 = PlotBSin@xD
x

, 8x, -10, 10<F
None of the options given below require points on the graph  to be recomputed,  so we can use them 

inside Show.

Show@p1, Frame ® True, AxesStyle ® Hue@0D, PlotRange ® 8-0.1`, 0.8`<,
PlotLabel ® "p1"D

When given a list of graphics,  Show combines them onto the same set of axes. Here is another two-

dimensional plot.

p2 = Plot@BesselJ@2, xD, 8x, -10, 10<, PlotStyle ® 8GrayLevel@0.5`D<D
We combine p1 and p2 by placing their names in a list and giving the list to Show.

Show@8p1, p2<D
Show also combines three-dimensional graphics.  Here are two three-dimensional graphs.
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We put them in the same box using Show.

Show@8p3, p4<D
The object  GraphicsArray takes an array of graphs,  and when used with Show displays the graphs  in 

an array. Here is an array containing the four  previous graphs.

Show@GraphicsGrid@88p1, p3<, 8p4, p2<<D, ImageSize ® 8400, 250<D
The package  Graphics`Graphics` defines functions DisplayTogether and 

DisplayTogetherArray, which allow us to combine graphs  on the same set of axes or in an array 

without rendering each graph  beforehand. To use the functions we first  load the package.

Needs@"BarCharts`"D; Needs@"Histograms`"D;
Needs@"PieCharts`"D
Show@Plot@Sin@xD, 8x, -3, 3<, PlotStyle ® GrayLevel@0.5`DD,
Plot@Sin@3 xD, 8x, -3, 3<, PlotStyle ® Dashing@80.01`<DDD

GraphicsRow@8Plot@Sin@xD, 8x, -3, 3<, PlotStyle ® GrayLevel@0.5`DD,
Plot@Sin@3 xD, 8x, -3, 3<, PlotStyle ® Dashing@80.01`<DD<D

See also DisplayFunction, $DisplayFunction, Identity 

à How Mathematica Draws a Graph

Mathematica uses an adaptive sampling algorithm to choose the points sampled in a two-dimensional 

plot. Beginning with 25 equally spaced points dividing the domain to be plotted,  Mathematica looks at 

each set of three consecutive points and computes the angle between the line segment joining the first  

and second points and the line segment joining the second and third points. If  this angle is close to 180 

degrees,  then Mathematica connects the points with lines. If  not, Mathematica subdivides that interval 

and tries again. This allows Mathematica to sample more points in a “curvy” section of the function 

than in a flat section.

This process  can be controlled by the options PlotDivision, which is the upper  limit on the number 

of times an interval will be divided, and PlotPoints, which sets the initial number of points to be 

sampled.

Although this is a very robust  algorithm,  which produces  accurate  results in most cases,  any scheme 

using a finite number of sampled points is prone to miss sometimes. Here is an example of a function 

that is plotted incorrectly  using the default number of plot points,  but which can be accurately  plot-

ted by raising the initial number of plot points used.
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Plot@x + Sin@2 Π xD, 8x, 0, 25<D
Plot@x + Sin@2 Π xD, 8x, 0, 25<, PlotPoints ® 50D
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à Exercises: Two-Dimensional Graphics

Load the package  Graphics`Master` . This loads the name of every function defined in a graphics  
package  into memory, and tells Mathematica to load the appropriate  package  when a package  
function is first  used.

Needs@"Graphics`Master`"D
Make a simple two-dimensional plot of x 2 - 20 cosIx 2M between -10 and 10. (If  there are obvious flaws 

in the graph,  plot it again using more plot points.)

PlotAx2 - 20 CosAx2E, 8x, -10, 10<E
Use Options[Plot]  or the on-line help to find a list of all the options that Plot accepts.  Plot  the 
same function as above, this time changing at least five of Mathematica’s default options.

PlotAx2 - 20 CosAx2E, 8x, -10, 10<, PlotPoints ® 75, Frame ® True,

GridLines ® Automatic, PlotLabel ® "exercise one", AspectRatio ® 0.5`E
 

Three-Dimensional Graphics

à Plot3D

Plot3D is the three-dimensional analog of the Plot command. Given a function of two variables and a 

domain for  each variable, Plot3D produces  a surface  plot.

Plot3D@Sin@x - Cos@yDD, 8x, -3, 3<, 8y, -3, 3<D
Applying options to three-dimensional graphics  works the same as with two-dimensional graphics;  in 

fact,  many of the options are the same.

One of the differences  between two- and three-dimensional plotting  in Mathematica is point sampling. 

Instead of adaptive sampling, three-dimensional plots rely on a fixed grid of points at which to evalu-

ate the function. By default,  a 15 × 15 grid is used, resulting in 152 = 225 points plotted; raising this 

number results in a smoother graph,  but takes more time and memory to generate.

Here is a smoother graph  of the same function as above.

Plot3D@Sin@x - Cos@yDD, 8x, -3, 3<, 8y, -3, 3<, Axes ® False,

FaceGrids ® All, PlotPoints ® 25D
See also HiddenSurface, RenderAll, Lighting, ColorFunction 
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à Changing the Viewpoint

One important option to three-dimensional plotting  functions is the viewpoint, the point in space 

from which the observer looks at the object.  ViewPoint  is an option to all three-dimensional 

graphics  functions. Its default value is 81.3, -2.4, 2.0<, which can be changed by entering a new 

value directly as an option.

Show@%, ViewPoint ® 80, 3, 2<D
Mathematica provides an easier way to do this using the 3D ViewPoint Selector.  To use this front-end 

feature  we pull down the Input menu and choose 3D ViewPoint Selector . Rotating the box with the 

mouse will have Mathematica compute the point from which to view the object.  The Paste button 

enters the view point at the current  text insertion point.

à ParametricPlot3D

ParametricPlot3D is the three-dimensional analog of ParametricPlot. Depending on the input,  

ParametricPlot3D produces  a space curve or a surface.

When we give ParametricPlot3D a list of three parametric  functions in one parameter,  the result is 

a space curve.

ParametricPlot3DB:Sin@tD, Cos@tD, t

3
>, 8t, 0, 6 Π<, Axes ® FalseF

A list of three parametric  functions in two parameters  results in a surface.

ParametricPlot3D@8Sin@vD Cos@uD, Sin@vD Sin@uD, Cos@vD<,8u, 0, 1.5` Π<, 8v, 0, Π<D
Like most graphing  functions,  ParametricPlot3D accepts  a list of sets of parametric  equations and 

plots the surfaces  together.

ParametricPlot3DB:8Sin@vD Cos@uD, Sin@vD Sin@uD, Cos@vD<,
:1
2
Sin@vD CosB4 u

3
F, 1

2
Sin@vD SinB 4 u

3
F, Cos@vD

2
>>, 8u, 0, 1.5` Π<,

8v, 0, Π<F
Options are given to ParametricPlot3D the same way as for  Plot3D. Most of the options are the 

same.
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à Exercises: Three-Dimensional Graphics

Make a three-dimensional plot of the function sinHx + sinH y LL between -3 and 3 on both axes.

Plot3D@Sin@x + Sin@yDD, 8x, -3, 3<, 8y, -3, 3<D
Evaluate Options[Plot3D] or use the on-line help to find a list of all the options that Plot3D 
accepts.  Plot  the same function again, this time changing at least four  of Mathematica’s default 
options,  including the options that control the smoothness of the plot and the color.

changedplot3d = Plot3D@Sin@x + Sin@yDD, 8x, -3, 3<, 8y, -3, 3<,
PlotPoints ® 815, 45<, Mesh ® False, ColorFunction ® Hue,

FaceGrids ® AllD
 

Contour  and Density Graphics

à ContourPlot and DensityPlot

Mathematica plots contour and density plots of functions of two or three variables. With the exception 

of special options that apply  only to these types  of graphics,  these functions work very much like 

Plot and Plot3D.

ContourPlot displays a graphics  of a function of two variables, where regions of different  intensities 

of gray  have (nearly)  the same function value.

ContourPlot@Exp@xD Sin@yD, 8x, -3, 3<, 8y, -3, 3<D
DensityPlot by default generates  a grid of gray  levels, where the lighter gray  areas have greater  

function values than the darker  gray  areas.

DensityPlot@Exp@xD Sin@yD, 8x, -3, 3<, 8y, -3, 3<D
See also ColorFunction, Mesh, Contours, ContourLines, ContourStyle 

à ContourPlot3D

The function ContourPlot3D provides a way to plot surfaces  showing particular  values of a function 

of three variables. This function is defined in one of the standard add-on packages,  so we must load 

the package  before  using the function.

Needs@"Graphics`ContourPlot3D`"D
ContourPlot3D[fun, {x, x0, x1}, {y, y0, y1}, {z, z0, z1}] plots the surface  implicitly defined by 

fun[x, y, z] == 0. Setting  the option Contours to {val1, val2, …  }  plots the level surfaces  corre -

sponding to the values val1, val2, …
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ContourPlot3D[fun, {x, x0, x1}, {y, y0, y1}, {z, z0, z1}] plots the surface  implicitly defined by 

fun[x, y, z] == 0. Setting  the option Contours to {val1, val2, …  }  plots the level surfaces  corre -

sponding to the values val1, val2, …

ContourPlot3DB x2 + y2 + z2 , 8x, -1, 1<, 8y, 0, 1<, 8z, 0, 1<,
Contours ® 80.25`, 0.5`, 0.75`<F
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à Exercises: Contour and Density Graphics

Create a density plot of the function sinHx - sinH y LL over any range that includes the origin. Render the 

graphic  with twice as many plot points. Experiment with other options.

DensityPlot@Sin@x - Sin@yDD, 8x, -10, 10<, 8y, -10, 10<D
DensityPlot@Sin@x - Sin@yDD, 8x, -10, 10<, 8y, -10, 10<,
PlotPoints ® 30, Mesh ® False, FrameLabel ® 8"x", "y"<D

Repeat the above exercise using ContourPlot instead of DensityPlot. Experiment with the options 
to ContourPlot that do not apply  to DensityPlot.

ContourPlot@Sin@x - Sin@yDD, 8x, -10, 10<, 8y, -10, 10<D
ContourPlot@Sin@x - Sin@yDD, 8x, -10, 10<, 8y, -10, 10<,
PlotPoints ® 30, Contours ® 30, ContourStyle ® NoneD

 

Plotting  Data

There are many occasions when we want to work with data rather than functions. There are several 

functions designed to visualize data in two or three dimensions. For these examples, we need data to 

work with. In practice,  we would most likely read this data from a file or use the output  of other 

calculations. For this demonstration we will create a list of ordered pairs to use as data.

exampleData = N@Table@8n, n + Sin@nD + RandomReal@D<, 8n, 0, 5 Π, 0.2` Π<DD;
ListPlot takes a vector or array of data and plots it in two dimensions. Given a one-dimensional set 

of data such as 810, 20, 30, 40<, Mathematica plots the ordered pairs 881, 10<, 82, 20<, 83, 30<, 84, 40<<. In this case, we supply  a list of ordered pairs and Mathe-

matica plots the points using our explicit x values. (The graphics  directive PointSize[p] specifies  

that points should be drawn so they are p percent  of the width of the graph.)

pointplot = ListPlot@exampleData, PlotStyle ® PointSize@0.02`DD
Options to ListPlot include nearly all of those applicable to Plot. One exception is the option 

PlotJoined, which when set to True draws a line connecting each of the points.

joinedplot = ListPlot@exampleData, Joined ® True,

PlotStyle ® RGBColor@0, 0, 1DD
At this point in our analysis we can easily find a good least-squares fit  to this data. The function Fit 

takes as arguments a set of data, a set of basis functions for  the best-fit  polynomial, and a list of 

variables to be used. Below we include only constant,  linear, and quadratic terms for  the best-fit  

function.
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At this point in our analysis we can easily find a good least-squares fit  to this data. The function Fit 

takes as arguments a set of data, a set of basis functions for  the best-fit  polynomial, and a list of 

variables to be used. Below we include only constant,  linear, and quadratic terms for  the best-fit  

function.

exampleFit = FitAexampleData, 91, x, x2=, xE
Here is a plot of the best-fit  quadratic polynomial.

fitplot = Plot@exampleFit, 8x, 0, 5 Π<, PlotStyle ® Dashing@80.01`<DD
Here we combine the previous three graphs.

Show@8pointplot, joinedplot, fitplot<D
When working  with three-dimensional data, we use analogs to Plot3D, DensityPlot, and 

ContourPlot. ListPlot3D plots a three-dimensional surface  from a rectangular  array of height 

values.

examplearray = Table@n + Sin@nD + 3 RandomReal@D, 8i, 1, 5 Π, 0.3` Π<,8n, 1, 5 Π, 0.3` Π<D;
ListPlot3D@examplearrayD

ListContourPlot and ListDensityPlot create density and contour plots from rectangular  arrays  

of data.

ListDensityPlot@examplearrayD
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à Exercises: Plotting Data

Create tabular data from the curve x cosHxL - sinIx 2M between x = -2 Π  and x = 2 Π  and display the data 

using ListPlot.

mydata = TableANA9x, x Cos@xD - SinAx2E=E, 8x, -2 Π, 2 Π, 0.05 Π<E;
ListPlot@mydata, PlotStyle ® PointSize@0.02`DD

Create a list of the first  twenty prime numbers. (Hint: use Table and Prime[n], which gives the nth 
prime number.) Plot  the list using ListPlot, then fit  the data to a quadratic polynomial, and plot the 
data and the best-fitting  curve on the same set of axes. Use options to change the color and other 
aspects  of the graphic.

primes = Table@Prime@nD, 8n, 1, 20<D
pointplot = ListPlot@primes, PlotStyle ® 8Red, PointSize@0.02`D<D
fitline = FitAprimes, 91, x, x2=, xE
fitplot = Plot@fitline, 8x, 0, 20<, PlotStyle ® 8Blue<D
Show@8pointplot, fitplot<D

 

Graphics Primitives

In addition to the high-level plotting  functions just  described, Mathematica allows us to build up 

graphics  in two and three dimensions from the basic building blocks  of points,  lines, circles,  and so 

on. These building blocks  are called graphics primitives.

Graphics primitives are the actual objects  that are drawn, while graphics  directives control the style in 

which an object  is drawn.

First we look at an example in two dimensions. The following syntax is used to render a series of 

graphics  primitives.

ShowAGraphicsA9graphics primitives and directives=EE
The primitives Point, Line, Polygon, Text, Rectangle, Cuboid,  Circle, and Disk form the basis 

for  most graphics.

Circle[{x, y}, r] is a two-dimensional graphics  primitive that represents  a circle of radius r 

centered at the point {x, y}. Circle[{x, y}, {rx, ry }]  yields an ellipse with semi-axes rx  and ry . 

Circle[{x, y },  r, {Θ1,Θ2 }]  represents  a circular  arc. Line[{p1, p2, … }]  is a graphics  

primitive which represents  a line joining a sequence of points.
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Circle[{x, y}, r] is a two-dimensional graphics  primitive that represents  a circle of radius r 

centered at the point {x, y}. Circle[{x, y}, {rx, ry }]  yields an ellipse with semi-axes rx  and ry . 

Circle[{x, y },  r, {Θ1,Θ2 }]  represents  a circular  arc. Line[{p1, p2, … }]  is a graphics  

primitive which represents  a line joining a sequence of points.

Here is a diagram made up of text, line, and circle primitives.

ShowBGraphicsB:Text@"r", 81.6`, -0.2`<D, Text@"Θ", 80.8`, 0.35`<D,
Thickness@0.015`D, Circle@80, 0<, 3D, Thickness@0.01`D,
LineB:83, 0<, 80, 0<, :3 CosB Π

4
F, 3 SinB Π

4
F>>F, Thickness@0.005`D,

Dashing@80.0075`<D, CircleB80, 0<, 1.25`, :0, Π

4
>F>F,

AspectRatio ® AutomaticF
Here is a more complicated example.

ShowB
GraphicsB

:8GrayLevel@0.75`D, Polygon@880, 0<, 81, 1<, 80, 2<, 8-1, 1<, 80, 0<<D<,
8Hue@0D, Thickness@0.01`D,
Line@880, 0<, 81, 1<, 80, 2<, 8-1, 1<, 80, 0<<D<,

Line@880, 0<, 80, 2<<D,
:Dashing@80.01`<D, Circle@80, 0<, 1D, CircleB80, 0<, 2 F,
Line@88-2, -2<, 82, 2<<D, Line@88-2, 2<, 82, -2<<D,
Line@88-2, 0<, 82, 4<<D, Line@88-2, 4<, 82, 0<<D>,

8Thickness@0.01`D, Line@880, 0<, 81, 0<, 81, 1<, 80, 1<, 80, 0<<D<>F,
Axes ® True, AxesOrigin ® 80, 0<, AspectRatio ® Automatic,

PlotRange ® 8Automatic, 8-0.2`, 2.2`<<,
PlotLabel ® "duplicating the square"F

This works similarly in three dimensions using Graphics3D in place of Graphics.

ShowA
Graphics3DA9Polygon@880, 0, 0<, 80, 4, 0<, 84.5`, 4, 0<, 84.5`, 0, 0<<D,

PointSize@0.03`D, TableAPointA9t, 2, AbsA50 + 20 t - 8 t2E=E,
8t, 0, 4, 0.2`<E=E, BoxRatios ® 81, 0.25`, 1<,

ViewPoint ® 8-0.012`, -3.22`, 1.04`<, Axes ® 8True, False, True<,
AxesLabel ® 8"time", None, "height"<E

Several of the standard Mathematica packages  define more graphics  objects  and tools to manipulate 

them.
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Several of the standard Mathematica packages  define more graphics  objects  and tools to manipulate 

them.
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à Exercises: Graphics Primitives and Directives

Below is the Mathematica code to draw a face. Use other two-dimensional graphics  commands (such 
as Polygon) to add other features  (nose, beard, hat, etc.)  and make changes to the face (such as eye 
color).  Experiment and have fun.

ShowBGraphicsB:Thickness@0.03`D, Circle@80, 0<, 1D, PointSize@0.04`D,
Point@8-0.5`, 0.3`<D, Point@80.5`, 0.3`<D,
CircleB80, -0.1`<, 0.5`, :5 Π

4
,
7 Π

4
>F>F, AspectRatio ® AutomaticF

Here is one variation.

ShowBGraphicsB:Thickness@0.03`D, Circle@80, 0<, 1D, Thickness@0.009`D,
Blue, Circle@8-0.5`, 0.3`<, 0.04`D, Circle@80.5`, 0.3`<, 0.04`D,
Red, CircleB80, -0.1`<, 0.5`, :5 Π

4
,
7 Π

4
>F, Pink,

Polygon@88-0.25`, -0.9`<, 80.25`, -0.9`<, 80, -1.25`<<D,
Green, Polygon@88-0.6`, 0.9`<, 80.6`, 0.9`<, 80.6`, 1.1`<,8-0.6`, 1.1`<<D,
Polygon@88-0.4`, 1.1`<, 80.4`, 1.1`<, 80.4`, 1.5`<,

8-0.4`, 1.5`<<D>F, AspectRatio ® AutomaticF
 

Shapes and Polyhedra

The packages  Graphics`Shapes` and Graphics`Polyhedra` provide Mathematica definitions of 

common three-dimensional shapes and the regular  Platonic polyhedra,  as well as functions for  affine 

transformations  on them.

Needs@"Graphics`Shapes`"D
Once a package  is loaded, we can get  a list of all the objects  that it defines by giving using ? with the 

context name and * (to denote all names).

?Graphics`Shapes`*

Torus[r1, r2, n, m] is a list of m n polygons  approximating a torus centered around the z-axis with 

radii r1 and r2.

We use Show and Graphics3D to have Mathematica render the shape. 
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Show@Graphics3D@Torus@1, 0.75`, 25, 25DDD
Transformations  on these Mathematica objects,  such as WireFrame and RotateShape, are wrapped 

around the shape, using the following syntax. 

Show@WireFrame@Graphics3D@Torus@1, 0.75`, 25, 25DDD, Boxed ® FalseD
Here we load the package  in which various polyhedra are defined.

Needs@"PolyhedronOperations`"D
We can now use the standard polyhedra as graphics  primitives.

Show@PolyhedronData@"GreatIcosahedron"DD
See also Geometry`Polytopes` 
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à Exercises: Shapes and Polyhedra

Have Mathematica draw the default Cylinder. Draw another cylinder whose length is twice its 
diameter. Use RotateShape to rotate this Cylinder off  the vertical. Use AffineShape to deform the 
cylinder in any way.

Here we load the package  Graphics`Shapes`.

Needs@"Graphics`Shapes`"D
Here is the default cylinder.

Show@Graphics3D@Cylinder@DD, Boxed ® FalseD
Here is a cylinder with a height twice its diameter.

Show@Graphics3D@Cylinder@1, 2DD, Boxed ® FalseD
Here we use RotateShape to rotate the cylinder.

ShowBGraphics3DBRotateShapeBCylinder@1, 2D, 0,
Π

2
,

Π

2
FF,

Boxed ® FalseF
Here we deform the cylinder with AffineShape.

Show@Graphics3D@AffineShape@Cylinder@1, 2D, 80.25`, 0.5`, 0.15`<DD,
Boxed ® FalseD

Do the previous exercise with any other shape.

ShowBGraphics3DBRotateShapeBAffineShape@Cone@D, 80.25`, 0.5`, 1.15`<D,
Π,

Π

3
, -

Π

4
FF, Boxed ® FalseF

 

Customizing Graphics

à Arrows

Now that we know how to use graphics  primitives to create arbitrary  graphics  objects,  we can com-

bine these with other types  of graphics.

Epilog is an option for  most plotting  functions that allows us to specify  graphics  directives and 

primitives to be drawn after  the main graphics  are generated.
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Epilog is an option for  most plotting  functions that allows us to specify  graphics  directives and 

primitives to be drawn after  the main graphics  are generated.

We can use Epilog to add arbitrary  graphics  to any plot. The standard package  Graphics`Arrow` 

defines an arrow graphics  primitive. We load it in the standard way, using Needs.

Needs@"Graphics`Arrow`"D
Arrow[start, finish] is a graphics  primitive representing  an arrow starting  at the point start and 

ending at the point finish.

PlotBSin@xD
x

, 8x, -10, 10<, PlotRange ® All, AxesLabel ® 8"x", "y"<,
Epilog ® 8Arrow@87, 0.6`<, 80.01`, 0.99`<D,

Arrow@87, 0.4`<, 84.49`, -0.21`<D<F
See also Prolog 

à Text in Graphs

Text[expr, coords] is a graphics  primitive that represents  text corresponding  to the printed form of 

expr, centered at the point specified by coords.

Show@Graphics@Text@"look here", 80, 0<DDD
We can use text as part  of a list of graphics  primitives given to the option Epilog.

PlotBSin@xD
x

, 8x, -10, 10<, PlotRange ® All, AxesLabel ® 8"x", "y"<,
Epilog ® 8Arrow@87, 0.6`<, 80.01`, 0.99`<D,

Arrow@87, 0.4`<, 84.49`, -0.21`<D, Text@"some extrema", 87, 0.5`<D<F
The option TextStyle accepts  a list of options that change the font used for  all text in a graph,  as 

well as its size,  color,  weight, and slant. (The specific  options are FontFamily, FontSize, 

FontColor, FontWeight, and FontSlant.) In the following example all text is in 9-point Helvetica,  

drawn in 50% gray.

PlotBSin@xD
x

, 8x, -10, 10<, PlotRange ® All, AxesLabel ® 8"x", "y"<,
Epilog ® 8Arrow@87, 0.6`<, 80.01`, 0.99`<D,

Arrow@87, 0.4`<, 84.49`, -0.21`<D, Text@"some extrema", 87, 0.5`<D<,
BaseStyle ® 8FontFamily ® "Helvetica", FontSize ® 9,

FontColor ® GrayLevel@0.5`D<F
We can change the font styles for  a particular  piece of text by putting  the text inside StyleForm and 

including the desired changes. In this example all settings  are the same as above, except the text “some 

extrema” is drawn in red 12-point bold Times.
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We can change the font styles for  a particular  piece of text by putting  the text inside StyleForm and 

including the desired changes. In this example all settings  are the same as above, except the text “some 

extrema” is drawn in red 12-point bold Times.

PlotBSin@xD
x

, 8x, -10, 10<, PlotRange ® All, AxesLabel ® 8"x", "y"<,
Epilog ® 8Arrow@87, 0.6`<, 80.01`, 0.99`<D,

Arrow@87, 0.4`<, 84.49`, -0.21`<D,
Text@Style@"some extrema", FontFamily ® "Times", FontSize ® 12,

FontWeight ® "Bold", FontColor ® Hue@0DD, 87, 0.5`<D<,
BaseStyle ® 8FontFamily ® "Helvetica", FontSize ® 9,

FontColor ® GrayLevel@0.5`D<F
See also $TextStyle, FormatType, $FormatType, Background 

à Graphics Formats

By default Mathematica generates  graphics  using a subset of the PostScript  language,  which is trans-

portable  among all types  of computers  Mathematica runs on. Graphics in the PostScript  language can 

be enlarged or reduced to any size without loss of resolution.

The function DisplayString allows us to see the PostScript  code that makes up a graph.  We can 

save the PostScript  to a file that can be read by many of the highest-quality graphics  processors.  Here 

is a two-dimensional plot.

sinplot = Plot@Sin@xD, 8x, -3, 3<D
The PostScript  code that makes up the graph  is rather long,  so here we use StringTake to show only 

the first  150 characters.

StringTake@ExportString@sinplot, "EPS"D, 150D
The function Display will save a graph  in a file. Here we save the graph  called sinplot into a file 

called sinfile.

Export@"sinfile", sinplotD
Display["filename", graphics, "format"] saves a graph  to a file after  converting the graph  to 

another format. Some of the possible values for  the parameter  format are GIF, EPS, Illustrator, 

Metafile, PICT, TIFF, and XBitmap.

There is also a package  Utilities`DXF` that saves three-dimensional graphics  in DXF format,  the 

standard used in AutoCad and other modeling programs.

The Mathematica front  end will convert graphics  to several formats.  We select a graphic,  then pull 

down the Edit menu and choose a format from the Copy As submenu to copy  the graph  to the system 

clipboard in the specified form,  or choose a format from the Save As submenu to save the converted 

graph  to a file.
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The Mathematica front  end will convert graphics  to several formats.  We select a graphic,  then pull 

down the Edit menu and choose a format from the Copy As submenu to copy  the graph  to the system 

clipboard in the specified form,  or choose a format from the Save As submenu to save the converted 

graph  to a file.

See also Graphics`ThreeScript`, ImageSize 
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à Exercises: Customizing Graphics

Scroll back in this notebook and copy  the code used to generate the last graphic  in the two-
dimensional graphics  section. Use Arrow and Text to draw an arrow pointing at an arbitrary  point on 
the graphic  with the caption “Look Here!”

PlotAx2 - 20 CosAx2E, 8x, -10, 10<, PlotStyle ® 8Green<,
PlotPoints ® 75, Frame ® True, GridLines ® Automatic,

PlotLabel ® "Exercise One",

Epilog ® 8Arrow@85, 62<, 80, -19<D, Text@"Look Here!", 83, 64<D<E
 

Animation

All versions of Mathematica can create animations. Animation results when a series of Mathematica 

graphics  are displayed quickly in succession to create the illusion of smooth movement.

Mathematica provides many features  to aid this process.  Here is a simple example. The command 

Table creates an array of results by iterating  commands. Here we will create ten different  plots of 

sinHa xL, letting a vary. Notice that in the next example we explicitly set the value for  the option 

PlotRange because by default Mathematica picks  a new value for  PlotRange for  each frame of the 

animation, causing the axes to move from one frame to the next.

TableAPlot@Sin@a xD, 8x, 0, 10<, PlotRange ® 880, 10<, 8-1, 1<<D,
8a, 1, 5, 0.5<E;

(The cells of the animation have been deleted to save space. Enter the code into Mathematica to see the 

animation.)

The package  Graphics`Animation` defines several functions for  automating the creation of anima-

tions. Here we load the package.

Needs@"Graphics`Animation`"D
Here are the names of all the functions defined in the package.

?Graphics`Animation`*

MoviePlot[f[x,t],{x,x0,x1},{t,t0,t1}] animates plots of f[x,t] regarded as a function of x, with 

t serving as the animation, or time, variable.

MoviePlot@Sin@a xD, 8x, 0, 10<, 8a, 1, 5, 0.5<D;
(The cells of the animation have been deleted to save space. Enter the code into Mathematica to see the 

animation.)

Notice that MoviePlot is essentially a shortcut  for  using the Table command. One difference  is that 

MoviePlot automatically uses the same value for  PlotRange for  each frame.
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Notice that MoviePlot is essentially a shortcut  for  using the Table command. One difference  is that 

MoviePlot automatically uses the same value for  PlotRange for  each frame.

Another interesting animation results from varying the viewpoint, thereby creating  a revolution or a 

“fly-by” of an object.  SpinShow automates this process.

SpinShow@Graphics3D@Stellate@Icosahedron@DDD, Boxed ® FalseD;
(The cells of the animation have been deleted to save space. Enter the code into Mathematica to see the 

animation.)

Other effects  can be achieved by varying colors,  options,  ranges,  and so on.
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à Exercises: Animation

Using Table, Do, or MoviePlot, create a two-dimensional animation of a function that changes over 
time. Ensure that the domain and range remain the same throughout  the animation.

myanim = Table@Plot@Sin@k xD, 8x, 0, 3 Π<, PlotRange ® 880, 10<, 8-1, 1<<,
PlotPoints ® 50D, 8k, 1, 9<D;

The line above will generate the animation, but for  better  viewing on the printed page  we use 

GraphicsArray to view all the frames at once.

Show@GraphicsGrid@Partition@myanim, 3DDD
Choose your favorite  three-dimensional graphic  from this set of exercises (or make a new one) and 
create an animation using SpinShow.

To use SpinShow, we must load the package  Graphics`Animation`.

Needs@"Graphics`Animation`"D

simpleplot3d = Plot3DB 1

AbsAHx + ä yL5 - 1E , 8x, -1, 1<, 8y, -1, 1<F

my3danim = SpinShow@simpleplot3d, Frames ® 12D;
Using the same technique as above, we look at all of the frames at once.

Show@GraphicsGrid@Partition@my3danim, 3DDD
 

Additional Topics
This section is a sampler,  rather than a tutorial,  of a miscellany of Mathematica’s capabilities. Docu-

mentation for  the commands used here are found in The Mathematica Book, Standard Add-on Packages, 

and the Help Browser.

Mathematica and Files

Mathematica contains a virtual operating  system with which we can navigate directories  and list their 

contents,  as well as create,  delete, and get  information about files. Here we get  the name of the current  

working  directory,  where any files we create will be saved.
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Mathematica contains a virtual operating  system with which we can navigate directories  and list their 

contents,  as well as create,  delete, and get  information about files. Here we get  the name of the current  

working  directory,  where any files we create will be saved.

Directory@D
Here we get  a list of all files and subdirectories  found in our current  working  directory.

FileNames@D
Mathematica contains functions for  reading and writing many kinds of data files. We can read and 

write numbers, strings,  lists,  Mathematica expressions,  or anything else.

To illustrate,  here we create a file called datafile in which to write data, by using OpenWrite.

? OpenWrite

stream = OpenWrite@"datafile"D
Here we set up a loop that writes twelve random numbers to datafile.

Do@Write@stream, RandomReal@DD, 812<D

84 Introduction to Mathematica



When finished writing data, we close the file.

Close@streamD
Here we display the file,  using !!datafile.

!!datafile

In order to use the data in computations,  here we read the contents of datafile, putting  the contents 

in a list called somedata using ReadList.

somedata = ReadList@"datafile"D;
The list can now be treated as a list generated any other way. For example, we can plot the list or sort  

its elements.

ListPlot@somedata, Joined ® TrueD
ListPlot@Sort@somedataD, Joined ® TrueD

Moreover,  we can specify  to ReadList the type of data we wish to read. For example, suppose  we 

want to read datafile as six ordered pairs of data, rather than twelve data values. To do this, we 

specify  to ReadList that we are reading data of the form 8Number, Number<.

datapairs = ReadList@"datafile", 8Number, Number<D;
ListPlot@datapairs, Joined ® TrueD

Similarly, we can read datafile as a list of ordered triples.

datatriples = ReadList@"datafile", 8Number, Number, Number<D;
We now plot the ordered triples.

Show@Graphics3D@Line@datatriplesDDD
See also Read, RecordSeparators, Utilities`BinaryFiles` 

Statistics  and Data Analysis

To use Mathematica’s statistical  functions,  we first  load the appropriate  packages  from the Statistics  

directory.  The package  names can be found in the Help Browser or the book Standard Add-on Pack-

ages, and the packages  can be loaded using the Help Browser or the Needs command.

Mathematica knows about many continuous and discrete statistical  distributions. We first  load the 

package  containing the continuous distributions.
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Mathematica knows about many continuous and discrete statistical  distributions. We first  load the 

package  containing the continuous distributions.

Needs@"Statistics`ContinuousDistributions`"D
Once the package  is loaded, on-line help for  the statistics  functions is available.

?PDF

The loaded functions can then be plotted or manipulated in the usual ways. Below we generate two 

statistical plots. Here is a plot of the p.d.f. of the standard normal distribution and the p.d.f. of an 

extreme-value distribution.

Plot@8PDF@NormalDistribution@0, 1D, xD,
PDF@ExtremeValueDistribution@-1, 1D, xD<, 8x, -3, 3<D

Here is a three-dimensional plot of binomial coefficients.

ListPlot3D@Table@Binomial@m, nD, 8m, 1, 6<, 8n, 1, 6<DD
Here we load a package  that computes descriptive statistics  from lists of data.

Needs@"Statistics`DescriptiveStatistics`"D
The functions defined in the package  can be used on numeric lists of data.

Mean@80.1, 1, 10, 100, 1000<D
They can also be used on symbolic lists of data.

HarmonicMean@8a, b, c<D
Skewness@8a, b<D

The Fit function built into Mathematica performs  least-squares fitting  to a list of data. If  we want to 

fit to data a function that is not a linear combination of the basis functions,  we need to load the pack -

age Statistics`NonlinearFit`.

Needs@"NonlinearRegression`"D
?NonlinearFit

For this example we generate a list of points and call it dataToFit.
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dataToFit = TableB:x, NB3 SinB7 x
4

F +
RandomReal@D

3
-
1

6
F>, :x, 0, 3,

1

4
>F;

Here is a graph  of the points.

ListPlot@dataToFit, PlotStyle ® PointSize@0.02`DD
Here we use NonlinearFit to fit  our model (which is not a linear combination of basis functions)  to 

the list dataToFit. Here is the resulting model.

nlmodel = NonlinearFit@dataToFit, b Sin@a xD, x, 8a, b<D
Here we plot the nonlinear model called nlmodel.

Plot@nlmodel, 8x, 0, 3<, Epilog ® 8PointSize@0.02`D, Point �� dataToFit<D
To augment the built-in (least-squares)  Fit function,  a package  exists to perform  full linear regres -

sion on a set of data. We load the appropriate  package.

Needs@"LinearRegression`"D
Now we perform  the linear regression,  fitting  dataToFit with constant,  linear, quadratic, and cubic 

basis functions.

NotebookCompatibility`Dump`LinearModelFitAdataToFit, 91, x, x2, x3=,
xE@8"ParameterTable", "RSquared", "AdjustedRSquared",

"EstimatedVariance", "ANOVATable"<D
Part  of the default result is an ANOVA table. There are options we can set to obtain covariance and 

correlation matrices,  residual tables, confidence intervals, and more. If  all we want is the fitted func-

tion, we can use Mathematica’s built-in Fit function.

FitAdataToFit, 91, x, x2, x3=, xE
We plot the fitted function and again compare it to the given points.

Plot@%, 8x, 0, 3<, Epilog ® 8PointSize@0.02`D, Point �� dataToFit<D

Additional Graphics Functions

Other specialized graphics  functions are contained in the packages.
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HNeeds@"BarCharts`"D; Needs@"Histograms`"D; Needs@"PieCharts`"DL;
While not Mathematica’s main purpose,  it can create most of the common business graphics.  As an 

example, BarChart is an easy function to start  with.

BarChart@Prime@Range@5DD, PlotLabel ® "primes"D
There are several log-plotting  functions available. The list generated below shows eight different  log 

plots,  including functions for  data plotting.

? *Log*Plot*

LogPlotBAbsB 100

Hä xL2 + 2 ä x + 100
F, 8x, 1, 20<,

GridLines ® 8LogGridMajor, Automatic<F
Many variants of standard plots are defined in Mathematica. To visualize the space between curves,  we 

use FilledPlot.

Needs@"Graphics`FilledPlot`"D

PlotB:Sin@tD
t

, BesselJ@1, tD>, 8t, -10, 10<, Filling ® 81 ® 82<<F;
See also PieChart 

System Parameters

Mathematica contains many global and system parameters,  most of which begin with $. Here is a list of 

the system parameters  beginning with $M.

Names@"$M*"D
The on-line help tells us what each parameter  is.

? $MaxNumber

To find the setting or value of a parameter,  type its name and press  ÷ëçì.

$MaxNumber
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$MachineType

$Version

Here is a list containing the date and time at which this notebook was evaluated.

DateList@D
Here is the number of seconds that have elapsed since the turn of the century.

AbsoluteTime@D
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