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The stimulated Raman scattering
Resonant decay of an incident laser beam into a forward-going
electrostatic wave and into a scattered electromagnetic wave is the
dominant ‘wave-wave’ interaction in well under-dense and long
scale-length plasmas in target experiments.

Strong growth of daughter waves causes generation of hot electrons
travelling in the target direction.

In the case of Raman backscattering part of laser energy is driven away
from the target.



Raman backscattering and Raman cascade

Raman backscattering matching
conditions:

ω0 = ωB + ω−
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Linear dispersion relations:
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Necessary condition for SRS:
ω−,B ≥ ωpe ⇒

ω0 ≥ 2ωpe ⇒ ne ≤
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Cascading occurs only if:

ω0 ≥ 3ωpe ⇒ ne ≤
nc
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Raman Scattering
Linear growth rates of Raman instability
Linear growth rate for Raman backscattering and forward scatteringa:
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aKruer, W. L., The Physics of Laser Plasma Interactions, 1988.

Wave number of SRS-B plasma wave
By solving the matching conditions together with the dispersion relations for
participating waves, we get the relation for the wave number of electron
plasma wavea
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aKarttunen, S. J., Laser Part. Beams 2 (1985), 157.



Existence regions of SRS-B and SRS-F

Temperature and density dependence of SRS growth rate for PALS
laser at fundamental wavelength λ = 1.3152 µm.



Damping of electron plasma waves

Landau collisionless dampinga:
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Electron-ion collision frequencyb:

νei = 4(2π)1/2Z 2e4ni lnΛ
3√me(KBTe)3/2

νei ≈ 2, 9 · 10−6 Z 2ni(cm−3) lnΛ
[Te(eV )]3/2

[
s−1]

aKruer, W. L., The Physics of Laser Plasma Interactions, 1988.
bEliezer, S., The Interaction of High-Power Lasers with Plasmas, 2002.



Total damping rate for SRS-B EPW

Temperature and density dependence of total damping rate for PALS
laser at fundamental wavelength λ = 1.3152 µm.



Charged particle motion in periodic potential

The particle motion is governed by the Newton
equation:

mẍ′(t) = F(x′
, t),

F(x′
, t) = −eE(x′

, t).

Transformation to the wave frame:

x = x′ −
ω

k
t = x′ − vph t.

By multiplication of the Newton
equation by ẋ we get:
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∫
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0/2.

Electron plasma wave:

E(x) = E0 sin (kx), ϕ(x) = −
E0

k
cos (kx).

For free moving particles expression under root
must be positive, so the condition for separatrix
separating free and trapped particles:
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In the approximation of well trapped particles
(particle moving close to the potential minimum):
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is the lowest estimation for electron bouncing
frequency.



Trapped particle instability
Trapped electrons oscilating around potential minima with frequency
roughly ωBf act coherently like a beam.

New satellite modes are generated in the way similar to the two-stream
instabilty.

The sidebands gradually dominates over the resonant wave mode.

Stronger Landau damping of the waves with higher wave number causes
a shift of broaden spectral line to the left in k-spectrum.

Linear dispersion relationa:
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aKruer et al., Phys. Rev. Lett. 23 (1969), 838



Self-consistent Vlasov-Maxwell model

Assumptions of the model and the solution method
Non-relativistic collisionless plasma with homogeneous neutralizing ion
background

1D changes of physical quantities

Velocity of electrons in the perpendicular direction in the Vlasov
equation is replaced by the mean velocity of particles in the field of
incident laser beam (vy = eA/m)

A Fourier-Hermite transform method is used for solution of the set of
partial differential equationsa

Numerical stability is ensured by employing a simplified Fokker-Planck
collision term in the Vlasov equationb

aArmstrong et al., In Methods in Computational Physics vol. 9,
Academic Press, London (1970), pp. 22-86

bGrant, F. C. and Feix, M. R., Phys. Fluids 10 (1967), 696 and 1356



Self-consistent Vlasov-Maxwell model

Set of equations for the kinetic model
∂f
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For more detailed information about the numerical method see our
previous worka

aMašek, M. and Rohlena, K., Czech. J. Phys. 55, 8 (2005), 973.



Envelope model

The starting set of equations consists of the motion equation for
the electron fluid together with the full set of Maxwell’s equations.
These equations are coupled by the general form of the state
equation.
E denotes the longitudinal part of electric field and A is the
transverse part of vector potential

(Weiland, J. and Wilhelmsson, H., Coherent Non-Linear Interaction of
Waves in Plasmas, Pergamon Press, 1977)
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Formalism of coupled wave modes

A(x, t) = 1
2A0(x, t)ei(k0x−ω0t) + 1

2AR(x, t)ei(kRx−ωRt) + c.c.

E(x, t) = 1
2Ee(x, t)ei(kex−ωet) + c.c.

A0(x, t) and AR(x, t) denote the slowly varying amplitude of the
impinging electromagnetic wave and of the scattered electromagnetic
wave, respectively, and Ee(x, t) is the amplitude of electron plasma
wave. Since the fully self-consistent model is periodic, we assume a
perfect wave numbers matching

k0 = kR + ke,

while we allow for a mismatch in the matching condition for the
frequencies:

ω0(k0) + ∆ω = ωR(kR) + ωe(ke).



Three-wave envelope equations
Substituting slowly varying fields into the starting set of equations and
using the standard cancelation due to the zeroth-order dispersion
relation leaves the following three-waves envelope equations:[
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Group velocities
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Collision damping rates
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Results of the numerical models

PALS laser facility parameters
λ = 1.315 µm
τ = 400 ps
P = 1020 W /m2

Te = 0.9 keV

(a) ωpe = 5.5× 1014 s−1

ne/ncrit = 0.147
k0λD = 0.0987
kRλD = 0.0498
keλD = 0.1485

vph
e /vT = 6.95

(b) ωpe = 3.0× 1014 s−1

ne/ncrit = 0.044
k0λD = 0.192
kRλD = 0.143
keλD = 0.335

vph
e /vT = 3.45



(a) Raman backscattering

The simplest case: weak SRS-F, no Raman cascading, simulation
spectra set to avoid TPI



(a) Phase space evolution

Contour plot of phase space at ωpet = 130, 200, 270.
vph/vT = 6.95 and vsep/vT = 5.57.



(a) ωpe = 5.5× 1014 s−1

0 200 400 600 800 1000

Ωpet

0

0.5

1

1.5

2

He
Λ

D
�

m
e

v
T

2
L

E

0 200 400 600 800 1000

Ωpet

0

0.1

0.2

0.3

0.4

0.5

0.6

R
e

fl
e

k
ti
v
it
a

0 200 400 600 800 1000

Ωpet

0

0.5

1

1.5

2

2.5

He
�

m
e

v
T
L

A

0 200 400 600 800 1000

Ωpet

0

0.5

1

1.5

2

2.5

He
�

m
e

v
T
L

A

Figure: Comparison of the temporal evolutions of the participating wave
modes obtained from the full kinetic simulation (blue) and from the envelope
model (red) in a denser plasma (ne/ncrit = 0.147).



Discussion (a)
In a denser plasma (ncrit/9 ≤ ne ≤ ncrit/4) no Raman cascading
can occur and the Raman backscattering dominates the forward
scattering.
The phase velocity of the plasma wave is under the mentioned
conditions relatively high (vph/vT = 6.95) lying outside the body
of electron distribution, so the influence of particle trapping is
relatively weak and the results of the both models agree with a
strong instability growth at the first stage of evolution.
When the electrostatic wave reaches a sufficiently high amplitude
(peak value from the Vlasov simulation is E = 4.43× 1010 V /m,
which corresponds to the amplitude of separatrix vsep/vT = 5.57)
to trap a large amount of electrons, the growth of the instability is
saturated and the amplitudes of the participating waves reaches
more or less equilibrium values.
Small amplitude fluctuations correspond to the period of wobbling
motion of trapped electrons in the wave
Raman reflectivity R = E2

R/E2
L ≈ 20 %



(b) Raman cascade

Raman cascading is possible, presence of SRS-F, simulation spectra set
to avoid TPI



(b) ωpe = 3.0× 1014 s−1

0 200 400 600 800 1000

Ωpet

0

0.5

1

1.5

2

2.5

A
L

0 200 400 600 800 1000

Ωpet

0

0.5

1

1.5

2

2.5

3

A
-

0 200 400 600 800 1000

Ωpet

0

0.5

1

1.5

2

2.5

3

E
B

Figure: Comparison of the temporal evolutions of the participating wave
modes obtained from the full kinetic simulation (blue) and from the envelope
model (red) in a thinner plasma (ne/ncrit = 0.044).



(b) Phase space evolution - Raman backscattering

Contour plot of phase space at ωpet = 0, 100, 120, 140.
vphB/vT = 3.45 and vsep/vT = 1.5.



(b) Phase space evolution - SRS cascade

Contour plot of phase space at ωpet = 500, 750, 1100.
vphc/vT = −4.54.



(b) Evolution of resonant wave mode amplitudes

Due to the strong wave-particle
interaction in a thinner plasma,
Raman reflectivity is in order of a
few percent and it is additionally
reduced by the Raman cascading.



Discussion (b)
In a thinner plasma (ne ≤ ncrit/9) the Raman backscattering is no
longer a dominant process, since the forward scattering also
appears. Moreover, the Raman cascading appears and there is also
a possibility of electrostatic quasi-mode formation, through which
the SRS-F plasma wave can interact with the electrons.
SRS-B plasma wave has the phase velocity vph/vT = 3.45, thus it
is strongly interacting with the electrons from the very start of the
growth.
The large amount of laser energy is used for electron acceleration
and a fast saturation of Raman backscattering occurs, which is
still enhanced by the secondary decay of the back-scattered
electromagnetic wave due to the Raman cascading.
It results in a disagreement of results of the both methods, when
the Raman reflectivity is about 1 % in the full model, while in the
envelope model we observe almost a laser reflection.
Later stage of the system evolution is affected by the Raman
cascading, which is also taken into account in the envelope model.



(c) Denser Fourier k-spectrum

Raman cascading is possible, presence of SRS-F, TPI enabled, the
same case as (b)



(c) Fully developed electrostatic spectrum at ωpet = 300

A fully developed electrostatic k-spectrum in the non-linear stage of
SRS with a broadened and shifted peak of SRS-B due to the presence

of trapped particle instability.



(c) Fully developed electrostatic spectrum at ωpet = 300

A fully developed electrostatic k-spectrum in the non-linear stage of
SRS with a broadened and shifted peak of SRS-B due to the presence

of trapped particle instability.



(c) Temporal evolution of SRS-B plasma wave

Comparison of the SRS-B plasma wave temporal evolution as a result
of simulation with thinner Fourier spectrum (b) and with denser

Fourier spectrum (c).



(c) Trapped particle instability growth rate

A certain disagreement between
the results of the full model and
of the linear theory is caused by
the presence of collisions in the
full model.



(c) Phase space evolution

Contour plot of phase space at ωpet = 110, 130, 170, 290.



(c) Phase space evolution
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(c) Anomalous dispersion

Taken from V. Krapchev, A.K. Ram,
Phys. Rev. A 22 (1980), 1229.

More complex trapping
electrostatic field formed as a
consequence of the TPI frees the
trapped electrons. The resonant
wave mode is not then damped,
sidebands disappeared and the
EPW can trap electrons anew.

This leads to a quasi-periodicity
or an intermittency in the phase
space.

These perturbation are traveling
in the opposite direction, which
is caused by reversal of the
group velocity as a consequence
of existence of two sorts of
electrons (free and trapped).



Discussion (c)

The electrostatic daughter wave of the forward scattered Raman
wave cannot interact with the plasma electrons directly owing to
its high phase velocity, but it can combine with its partner
generated by the Raman backscattering to form a non-resonant
quasi-mode capable of electron trapping.
The wobbling of the trapped electrons in the potential minima of
the electrostatic backscattering daughter wave leads to a
modulation of the electron density and to a generation of unstable
sidebands of the main electrostatic daughter wave - trapped
particle instability.
In later times due to the Landau damping affecting mainly higher
sidebands, the lower sideband takes over from the main wave,
which is gradually outgrown.
Intermittency, quasi-periodicity and reversal of the EPW group
velocity.



Conclusions

Comparing results of Vlasov-Maxwell and envelope model we are
able to trace the influence of wave-particle interaction to the
temporal evolution of electrostatic waves.
In denser plasmas, where this interaction start to participate on
system evolution later, the value of Raman reflectivity is relatively
high.
In thinner plasmas, where wave-particle interaction is very strong,
the Raman reflectivity is in order of a few percents.
This value is significantly reduced by the Raman cascading.
Intermittency, quasi-periodicity and reversal of the EPW group
velocity as a consequence of particle trapping.
Our other studies showed higher Raman reflectivity in more
collisional plasmas (R ≈ 20 % and more).



Thank you for your attention!



(d) Increased collisionality - 3ω plasma

Raman cascading is possible, evidence of SRS-F, TPI enabled, the
same case as (b)



(d) Increased collisionality - 3ω plasma



Discussion (d)
As expected a strongly increased collisionality deeper inside the corona
suppresses the kinetic effects in the corona as obvious from the detailed
phase space evolution, the collisionality not in all the cases can
substitute the suppressed Landau damping.
With the suppression of Landau damping and of the associated higher
order kinetic effects (such as a generation of hot electrons) the Raman
reflectivity goes up. Although, the Raman instability is, in addition,
damped by the electron-ion collisions its value in the denser 3ω plasma
may reach 20 % or more.
The trapped electron wobbling frequency is no longer significant for the
fluctuations of the scattered wave amplitudes. It is rather the mutual
energy interplay between the driving and the scattered modes, which
controls the scattered amplitude oscillations around the saturation
values, which is also reflected in a modulation of the phase space
evolution.
The most efficient suppression of the primary local Raman reflectivity is
due to the cascading process. By the secondary scattering of backward
going scattered electromagnetic wave the flow of energy is very efficiently
returned to the forward direction and the back-scatter is significantly
diminished.
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