

energie atomique • energies alternatives

Self-generated magnetic fields and Rayleigh-Taylor Instability in the context of ICF

Y.Levy, B. Canaud

CEA, DAM, DIF, F-91297 Arpajon, France

05.29.2012

10th Direct Drive Fast Ignition Workshop

Magnetic fields can be generated during RTI in ICF process.

- Ablative Rayleigh-Taylor instability (aRTI) develops in acceleration and deceleration stages of ICF process
 Pioneering works have evidenced existence of self-generated magnetic fields during ICF process: J.R. Rygg et al., Science, 319(5867):1223, 2008
 - C.A. Cecchetti et al., PoP, 16(4):043102, 2009 F.H. Séguin et al., PoP, 19(1):012701, 2012
 - We focus here on magnetic fields self-generated in a magnetohydrodynamic way:

$$\partial_t B = \nabla \times \left(u \times B \right) - \nabla \times \stackrel{=}{\eta} \cdot J - \nabla \times \left(\frac{1}{en_e} J \times B \right) - \nabla \times \left(\frac{k_B}{e} \stackrel{=}{\beta} \cdot \nabla T_e \right) + \frac{k_B}{e} \nabla T_e \times \nabla \ln(n_e)$$

→ no non-local heat flux, → No kinetic effects

Outline

aIRT in the acceleration phase

- DNS set up
- behavior without magnetic field
- turning on magnetic fields self-generation

*B-fields quantification

*dispersion relations

*effects evaluation through Masse model

aIRT in the deceleration phase

- DNS set up
- Comparison between with or without B-fields

Outline

aIRT in the acceleration phase

- > DNS set up
- behavior without magnetic field
- turning on magnetic fields self-generation

*B-fields quantification *dispersion relations *effects evaluation through Masse model

- aIRT in the deceleration phase
 - DNS set up
 - Comparison between with or without B-fields

We restrict ourselves to planar geometry by simulating planar ablator slab.

 Growth rapidly enters non linear regime and rates deviate from Goncharov-Betti's model

 We did not reach high wave number because of non linear behaviour and mesh distortion Self-generated magnetic field can reach about 1 T at the ablation front.

æ

The perturbations enable self-generation of magnetic field:

$$\partial_t B_{self} \sim -\frac{1}{n_e} \nabla n_e \times \nabla T_e$$

Assuming sinusoidal perturbation and exponential spatial decay, one has at the ablation front:

Self-generated magnetic field can reach about 1 T at the ablation front.

Self-generated magnetic fields are not high enough to influence hydrodynamics.

• Hall Parameter $\chi_e = \omega_{ce} \tau_{ei}$ is too small to expect effects on transport: $\chi_e = \omega_{ce} \tau_{ei}$ is too small to expect effects on

05.29.2012

10th Direct Drive Fast Ignition Workshop

We observe discrepancies in the dispersion relation though when B-field generation is on...

 High enhancement of third harmonic with self-generation of magnetic field We used a model of aRTI with anisotropic thermal conduction* to model B-fields effects⁹

Masse derived dispersion relation using a conduction anisotropy coefficient:

3e+09

D=1,1

D=1

D=1.2

D=1,5

We used a model of aRTI with anisotropic thermal

 Masse derived dispersion relation using a conduction anisotropy coefficient:

conduction* to model B-fields effe

tion anisotropy $D = \frac{K_{transverse}}{K_{along \nabla T_e}}$ $\gamma^2 + 2(\sqrt{D} + 1)kv_a\gamma + a(2\sqrt{D} - 1)k^2v_a^2 - kg = 0$

3e+09

D=1,1

D=1

D=1.2

D=1,5

 Considering th. flux anisotropy induced by the field according to Braginskii** we propose:

$$D = 1 + \frac{K_{x}}{K_{\perp}} \quad \text{with} \quad \begin{aligned} \kappa_{x} &= \frac{n_{e}T_{e}\tau_{ei}}{m_{e}} \frac{\chi_{e}(\gamma_{0}"+\gamma_{1}"\chi_{e}^{2})}{\Delta} \\ \kappa_{\perp} &= \frac{n_{e}T_{e}\tau_{ei}}{m_{e}} \frac{(\gamma_{0}"+\gamma_{1}"\chi_{e}^{2})}{\Delta} \\ \Delta &= \delta_{0} + \delta_{1}\chi_{e}^{2} + \chi_{e}^{4} \end{aligned}$$

• Since we have small B-fields: $D = 1 + \frac{\kappa_x}{\kappa_\perp} \sim 1 + \chi_e \frac{\gamma_0}{\gamma_0}$

*L. Masse, PRL,98(24):245001, 2007

**S.I. Braginskii, Rev. Plasma Phys.,1:205, 1965

We used a model of aRTI with anisotropic thermal conduction to model B-fields effects.

We then make strong assumptions:

* only self-generated magnetic fields (no convection, no Nernst effect,...) from aRTI growth * $\partial_z T_e \Big|_a \sim cst$ in time

* we know B and density perturbations amplitude at ablation at time t1, when the linear regime starts

• Self-generated magnetic field rate can then be easily integrated... B(t,k) - B

$$t,k) - B(t_1,k) \sim \int_{t_1}^t -\frac{k_B}{e} \frac{\delta\rho}{\rho}(t) k \,\partial_z T_e \Big|_a \,\mathrm{d}t$$

with $\begin{cases} \widetilde{B} = \frac{k_B}{e} \partial_z T_e \Big|_a \left(\frac{\delta \rho}{\rho}\right)_{t_1} \\ B_1 = B(t_1, k) \\ \widetilde{\chi} = \frac{3\varepsilon_0^2 (2\pi k_B T_e)^{3/2}}{\sqrt{m_e n_e} \ln \Lambda Z e^3} \end{cases}$

 and we link D to B and growth rate by integrating B-field evolution equation:

$$B(t,k) \sim B_1 + \widetilde{B} \frac{k}{\gamma} \left(e^{\gamma(t-t_1)} - 1 \right)$$

$$\chi_e(t,k) \sim \widetilde{\chi} B(t,k) \sim \widetilde{\chi} B_1 + \widetilde{\chi} \widetilde{B} \frac{k}{\gamma} \left(e^{\gamma(t-t_1)} - 1 \right)$$

 $\gamma = \frac{\mathrm{d}}{\mathrm{d}t} \ln\left(\frac{\partial\rho}{\rho}\right)$

A self consistent closure is still missing though.

Outline

• aIRT in the acceleration phase:

- DNS set up;
- behavior without magnetic field;
- turning on magnetic fields self-generation:

*B-fields quantification;

*dispersion relations;

*effects evaluation through Masse model.

aIRT in the deceleration phase:

- DNS set up;
- Comparison between with or without B-fields.

We also investigate B-fields in the deceleration stage by numerical simulations.

*Canaud & al., Nuc. Fus., 44(10):1118, 2004 **M. Wolff, PhD, 2011

 We performed Legendre polynomial decomposition to analyze hot spot contour for different initial mode numbers I₀:

Conclusions

In the acceleration stage:

CEC

- \succ we found rapid transition to non linear regime.
 - > The effect of self-generated magnetic fields is small:
 - * enhanced for small wavelength,
 - * enhanced at late times,

* non linear development of aRTI is enhanced especially for third harmonic \rightarrow transits faster in to non linear growth.

we tried to estimate effects on the growth rate by taking anisotropy induced by B-field into account but we also need look at other effects, with a proper closure.

Concerning deceleration stage:

 \succ no effect on aIRT has been observed because of the too high constraint of this stage where growth is driven by hydrodynamics.