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Magnetic fields can be generated during RTI in ICF 
process. 

• Ablative Rayleigh-Taylor instability (aRTI) 
develops in acceleration and deceleration 
stages of ICF process 
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• Pioneering works have evidenced existence of self-
generated magnetic fields during ICF process: 
 

 J.R. Rygg et al., Science, 319(5867):1223, 2008 
 C.A. Cecchetti et al., PoP, 16(4):043102, 2009  
 F.H. Séguin et al., PoP, 19(1):012701, 2012 

• We focus here on magnetic fields self-generated in a magnetohydro-
dynamic way: 
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•  aIRT in the acceleration phase 
 

Ø  DNS set up 
Ø  behavior without magnetic field 
Ø  turning on magnetic fields self-generation 

 
  *B-fields quantification 
  *dispersion relations 
  *effects evaluation through Masse model 

 

•  aIRT in the deceleration phase 
  

Ø  DNS set up 
Ø  Comparison between with or without B-fields 
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•  aIRT in the acceleration phase 
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•  aIRT in the deceleration phase 
  

Ø  DNS set up 
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We restrict ourselves to planar geometry by simulating 
planar ablator slab. 

• We performed 2D simulations (FCI2) of ablator slabs with 
single mode density perturbation 
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• We only simulate a half wavelength. 

•  2 slab lengths à 2 accelerations 
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Example of            map at 
2ns in the ablation region 

ρδρ / • We study evolution of            at the abla-
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Perturbations (without B-field) at the ablation front 
experience three different regimes. 
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Légendes des diffrts k !!! 
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Perturbations (without B-field) at the ablation front 
experience three different regimes. 
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•  Transient regime driven 
by hydrodynamics 

•  Linear regime 

• Non linear regime 
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Perturbations (without B-field) at the ablation front 
experience three different regimes. 
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•  Transient regime driven 
by hydrodynamics 

•  Linear regime 

• Non linear regime 

Légendes des diffrts k !!! 
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Perturbations (without B-field) at the ablation front 
experience three different regimes. 
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• Growth rapidly enters non linear regime and rates deviate from 
Goncharov-Betti’s model  

 
 ml µ9= ml µ18=

• We did not reach high wave number because of non linear 
behaviour and mesh distortion  

 
 



•  The perturbations enable self-generation of magnetic field: 
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Assuming sinusoidal perturbation and exponential 
spatial decay, one has at the ablation front: 

Self-generated magnetic field can reach about 1 T at the 
ablation front. 
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•  Single mode simulations: 
 

 *maximum of generation 
 rate at the ablation front 

 

 *negative magnetic fields 
 during early stage 
  

 
  

Self-generated magnetic field can reach about 1 T at the 
ablation front. 
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Self-generated magnetic fields are not high enough to 
influence hydrodynamics. 
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•  The plasma is not magnetised: 

• Hall Parameter     is too small to expect effects on 
transport: 
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We observe discrepancies in the dispersion relation 
though when B-field generation is on… 

• Differences are enhanced for long times and high mode wave 
numbers. 
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…especially faster growth of third harmonic. 
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• High enhancement of third harmonic with self-generation of 
magnetic field 
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• Masse derived dispersion relation 
using a conduction anisotropy 
coefficient: 
 

15 05.29.2012 10th Direct Drive Fast Ignition Workshop 

eTalong

transverseD
∇

=
κ
κ

0)12()1(2 222 =−−+++ kgvkDakvD aaγγ

*L. Masse, PRL,98(24):245001, 2007  

We used a model of aRTI with anisotropic thermal 
conduction* to model B-fields effects. 



We used a model of aRTI with anisotropic thermal 
conduction* to model B-fields effects. 

• Considering th. flux anisotropy induced by the 
field according to Braginskii** we propose: 

• Masse derived dispersion relation 
using a conduction anisotropy 
coefficient: 
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Time (s) 

•  and we link  D to B and growth rate by 
integrating B-field evolution equation: 
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We used a model of aRTI with anisotropic thermal 
conduction  to model B-fields effects. 
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• We then make strong assumptions: 
 

 * only self-generated magnetic fields (no 
 convection, no Nernst effect,…) from aRTI growth  
 *                 in time 
 * we know B and density perturbations amplitude at 
 ablation at time t1, when the linear regime starts  
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A self consistent closure is still missing though. 
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• A closure for      and             is needed …  1B
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• We obtained the following non linear dispersion relation: 

Fitting their value as a function of k and 
introducing a multiplicative factor     to 
easily estimate discrepancies one obtain 
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Outline 
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•  aIRT in the acceleration phase: 
 

Ø  DNS set up; 
Ø  behavior without magnetic field; 
Ø  turning on magnetic fields self-generation: 

 
  *B-fields quantification; 
  *dispersion relations; 
  *effects evaluation through Masse model. 

 

•  aIRT in the deceleration phase: 
  

Ø  DNS set up; 
Ø  Comparison between with or without B-fields. 

 
 



• Numerical simulations that take self-generated magnetic fields 
into account are performed in 2D in cylindrical geometry: 
 

We also investigate B-fields in the deceleration stage by 
numerical simulations. 
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t = 0 

Initialization radial profiles 
are given by 1D code FCI* 

r 
t = 600ps 

r
 Symmetrization from 1D radial profile + 
Legendre single mode perturbation 
 

 Deceleration is calculated by HADES**: 
- resistive MHD 
- perfect gas EOS 
- lagrangian with projection 
- 2D cylindrical geometry 
- no fusion reactions 

HADES 

r 

z 
density map at 500ps 

0l

*Canaud & al., Nuc. Fus., 44(10):1118,  2004 **M. Wolff, PhD, 2011  



Self-generated B-fields of ~1000 T can be generated at the 
end of the deceleration phase without influencing aRTI. 
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• Magnetic fields generated are very localized. Their amplitude is 
coherent with Hata & al.* cannot balance high hot spot pressure. 

• Growth rates are not influenced either by self-generated magnetic 
fields. 

B at 300 ps B at 500 ps 
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*Hata & al., Plasma Fus. Res., 1:20,  2006 
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Harmonics do not « feel » self-generated magnetic field. 
    
• We performed Legendre polynomial decomposition to analyze 

hot spot contour for different initial mode numbers l0: 
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Time (s) Time (s) Time (s) Time (s) 

Time (s) Time (s) Time (s) Time (s) 

l0 = 4 l0 = 8 l0 = 12 l0 = 16 

l0 = 20 l0 = 24 l0 = 28 l0 = 32 



Conclusions 
 •  In the acceleration stage: 

 
Ø  we found rapid transition to non linear regime. 
Ø  The effect of self-generated magnetic fields is small: 

  * enhanced for small wavelength, 
  * enhanced at late times, 
  * non linear development of aRTI is enhanced   
 especially for third harmonic à transits faster in to  
 non linear growth. 

Ø  we tried to estimate effects on the growth rate by taking 
anisotropy induced by B-field into account but we also need look 
at other effects, with a proper closure. 

  

• Concerning deceleration stage: 
 

Ø  no effect on aIRT has been observed because of the too high 
constraint of this stage where growth is driven by hydrodynamics. 
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